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Preface To The Fourth Edition

We are happy to report that Kalman filtering is alive and well after 50 years of
existence. New applications keep appearing regularly which broadens the interest
throughout engineering. This, of course, has all been made possible by the fantastic
advances in computer technology over the past few decades. If it were not for that,
the neat recursive solution for the Wiener filter problem that R. E. Kalman
introduced in 1960 would probably only be remembered as an interesting academic
curiosity, in engineering literature at least. Enough of the history; clearly, Kalman
filtering is here to stay. It is eminently practical, and it has withstood the test of time.

This text is a revision of the Third Edition of Introduction to Random Signals
and Applied Kalman Filtering with MATLAB Exercises. Kalman filtering has now
reached a stage of maturity where a variety of extensions and variations on the basic
theory have been introduced since the Third Edition was published in 1997. We
have included some of these developments, especially those that deal with nonlinear
systems. The extended Kalman filter is included because it is used widely and it is
still the preferred solution to many integrated navigation systems today, just as it
was a few decades ago.

Our intent is still to keep the book at the introductory level with emphasis on
applications. We feel that this material is suitable for undergraduate as well as
beginning graduate courses. The necessary prerequisite material for this book will
be found in a number of books on linear systems analysis or linear control systems.
We think that we have improved the organization of the text material in this edition
by making a distinct separation of the random signals background material (Part 1)
and the main subject of applied Kalman filtering (Part 2). Students who have already
had a course in random processes and response of linear systems to random inputs
may want to move directly to Part 2 and simply use Part 1 as reference material.

Part 1 (Chapters 1 through 3) includes the essential notions of probability, an
introduction to random signals and response to linear systems, state-space model-
ing, and Monte Carlo simulation. We have found from teaching both university-
credit and continuing-education courses that the main impediment to learning about
Kalman filtering is not the mathematics. Rather, it is the background material in
random processes that usually causes the difficulty. Thus, the background material
in Part 1 is most important.

v



FPREF 12/14/2011 9:10:39 Page 6

Part 2 (Chapters 4 through 9) contains the main theme of the book, namely
applied Kalman filtering. This part begins with the basic filter derivation using the
minimum-mean-square-error approach. This is followed by various embellishments
on the basic theory such as the information filter, suboptimal analysis, conditional
density viewpoint, Bayesian estimation, relationship to least squares and other
estimators, smoothing, and other methods of coping with nonlinearities. Chapter 8
is a completely new chapter that expands on the complementary filter material in the
Third Edition. Chapter 9 deals entirely with applications, mainly those in the
engineering field of positioning, navigation, and timing (PNT).

The authors wish to thank all of our former students and colleagues for their
many helpful comments and suggestions over the years. Special thanks goes to the
late Larry Levy. His generous counsel and advice on many aspects of Kalman
filtering will certainly be missed.

Robert Grover Brown
Patrick Y. C. Hwang

vi PREFACE TO THE FOURTH EDITION
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1
Probability and Random
Variables: A Review

1.1
RANDOM SIGNALS

Nearly everyone has some notion of random or noiselike signals. One has only to
tune a radio away from a station, turn up the volume, and the result is static, or noise.
If one were to look at a recording of such a signal, it would appear to wander on
aimlessly with no apparent order in its amplitude pattern, as shown in Fig. 1.1.
Signals of this type cannot be described with explicit mathematical functions such
as sine waves, step functions, and the like. Their description must be put in
probabilistic terms. Early investigators recognized that random signals could be
described loosely in terms of their spectral content, but a rigorous mathematical
description of such signals was not formulated until the 1940s, most notably with
the work of Wiener and Rice (1, 2).

Probability plays a key role in the description of noiselike or random signals. It
is especially important in Kalman filtering, which is also sometimes referred to as
statistical filtering. This is a bit of a misnomer though, because Kalman filtering is
based on probabilistic descriptors of the signals and noise, and these are assumed to
be known at the beginning of the filtering problem. Recall that in probability we
assume that we have some a priori knowledge about the likelihood of certain
elemental random outcomes. Then we wish to predict the theoretical relative
frequency of occurrence of combinations of these outcomes. In statistics we do
just the reverse. We make observations of random outcomes. Then, based on these
observations, we seek mathematical models that faithfully represent what we have
observed. In Kalman filtering it may well be that some statistical methods were used
in arriving at the necessary probabilistic descriptors. But, nevertheless, once the
descriptors are determined (or assumed) it is all probability the rest of the way.

Our treatment of probability must necessarily be brief and directed toward the
specific needs of subsequent chapters. We make no apology for this, because many
fine books have been written on probability in a rigorous sense. Our main objective
here is the study of random signal analysis and Kalman filtering, and we wish to
move on to this as quickly as possible. First, though, wemust at least review the bare
essentials of probability with special emphasis on random variables.

3
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1.2
INTUITIVE NOTION OF PROBABILITY

Most engineering and science students have had some acquaintance with the
intuitive concepts of probability. Typically, with the intuitive approach we first
consider all possible outcomes of a chance experiment as being equally likely,
and then the probability of a particular combination of outcomes, say, event A, is
defined as

PðAÞ ¼ Possible outcomes favoring event A

Total possible outcomes
(1.2.1)

where we read P(A) as “probability of event A.” This concept is then expanded to
include the relative-frequency-of-occurrence or statistical viewpoint of probability.
With the relative-frequency concept, we imagine a large number of trials of some
chance experiment and then define probability as the relative frequency of
occurrence of the event in question. Considerations such as what is meant by
“large” and the existence of limits are normally avoided in elementary treatments.
This is for good reason. The idea of limit in a probabilistic sense is subtle.

Although the older intuitive notions of probability have limitations, they still
play an important role in probability theory. The ratio-of-possible-events concept is
a useful problem-solving tool in many instances. The relative-frequency concept is
especially helpful in visualizing the statistical significance of the results of
probability calculations. That is, it provides the necessary tie between the theory
and the physical situation. An example that illustrates the usefulness of these
intuitive notions of probability should now prove useful.

Figure 1.1 Typical noise waveform.

EXAMPLE 1.1

In straight poker, each player is dealt 5 cards face down from a deck of 52 playing
cards. We pose two questions:

(a) What is the probability of being dealt four of a kind, that is, four aces, four
kings, and so forth?

(b) What is the probability of being dealt a straight flush, that is, a continuous
sequence of five cards in any suit?

Solution to Question (a) This problem is relatively complicated if you think in
terms of the sequence of chance events that can take place when the cards are dealt
one at a time. Yet the problem is relatively easy when viewed in terms of the ratio
of favorable to total number of outcomes. These are easily counted in this case.
There are only 48 possible hands containing 4 aces; another 48 containing 4 kings;
etc. Thus, there are 13 � 48 possible four-of-a-kind hands. The total number of

4 CHAPTER 1 PROBABILITY AND RANDOM VARIABLES: A REVIEW
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1.3
AXIOMATIC PROBABILITY

It should be apparent that the intuitive concepts of probability have their limitations.
The ratio-of-outcomes approach requires the equal-likelihood assumption for all
outcomes. This may fit many situations, but often we wish to consider “unfair”
chance situations as well as “fair” ones. Also, there are situations where all possible
outcomes simply cannot be enumerated. The relative-frequency approach is intui-
tive by its very nature. Intuition should never be ignored; but, on the other hand, it
can lead one astray in complex situations. For these reasons, the axiomatic
formulation of probability theory is now almost universally favored among both
applied and theoretical scholars in this area. As we would expect, axiomatic prob-
ability is compatible with the older, more heuristic probability theory.

Axiomatic probability begins with the concept of a sample space. We first
imagine a conceptual chance experiment. The sample space is the set of all possible
outcomes of this experiment. The individual outcomes are called elements or points
in the sample space, We denote the sample space as S and its set of elements as
fs1; s2; s3; . . .g. The number of points in the sample space may be finite, countably
infinite, or simply infinite, depending on the experiment under consideration.

It should be noted that elements of a sample space must always be mutually
exclusive or disjoint.On a given trial, the occurrence of one excludes the occurrence
of another. There is no overlap of points in a sample space.

possible poker hands of any kind is obtained from the combination formula for “52
things taken 5 at a time” (3). This is given by the binomial coefficient

52

5

� �
¼ 52!

5!ð52� 5Þ! ¼
52 � 51 � 50 � 49 � 48

5 � 4 � 3 � 2 � 1 ¼ 2; 598; 960 (1.2.2)

Therefore, the probability of being dealt four of a kind is

Pðfour of a kindÞ ¼ 13 � 48
2; 598; 960

¼ 624

2; 598; 960
� :00024 (1.2.3)

Solution to Question (b) Again, the direct itemization of favorable events is the
simplest approach. The possible sequences in each of four suits are: AKQJ10,
KQJ109, . . . , 5432A. (Note: We allow the ace to be counted either high or low.)
Thus, there are 10 possible straight flushes in each suit (including the royal flush of
the suit) giving a total of 40 possible straight flushes. The probability of a straight
flush is, then,

PðStraight flushÞ ¼ 40

2; 598; 960
� :000015 (1.2.4)

We note in passing that in poker a straight flush wins over four of a kind; and,
rightly so, since it is the rarer of the two hands.

&

1.3 AXIOMATIC PROBABILITY 5
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In axiomatic probability, the term event has special meaning and should not
be used interchangeably with outcome. An event is a special subset of the sample
space S. We usually wish to consider various events defined on a sample space,
and they will be denoted with uppercase letters such as A, B, C, . . . , or perhaps
A1, A2, . . . , etc. Also, we will have occasion to consider the set of operations of
union, intersection, and complement of our defined events. Thus, we must be
careful in our definition of events to make the set sufficiently complete such that
these set operations also yield properly defined events. In discrete problems, this
can always be done by defining the set of events under consideration to be all
possible subsets of the sample space S.We will tacitly assume that the null set is a
subset of every set, and that every set is a subset of itself.

One other comment about events is in order before proceeding to the basic
axioms of probability. The event A is said to occur if any point in A occurs.

The three axioms of probability may now be stated. Let S be the sample space
and A be any event defined on the sample space. The first two axioms are

Axiom 1: PðAÞ � 0 (1.3.1)

Axiom 2: PðSÞ ¼ 1 (1.3.2)

Now, let A1, A2, A3, . . . be mutually exclusive (disjoint) events defined on S. The
sequence may be finite or countably infinite. The third axiom is then

Axiom 3: PðA1 [ A2 [ A3 [ . . .Þ
¼ PðA1Þ þ PðA2Þ þ PðA3Þ þ � � �

(1.3.3)

Axiom 1 simply says that the probability of an event cannot be negative. This
certainly conforms to the relative-frequency-of-occurrence concept of probability.
Axiom 2 says that the event S, which includes all possible outcomes, must have a
probability of unity. It is sometimes called the certain event. The first two axioms
are obviously necessary if axiomatic probability is to be compatible with the older
relative-frequency probability theory. The third axiom is not quite so obvious,
perhaps, and it simply must be assumed. In words, it says that when we have
nonoverlapping (disjoint) events, the probability of the union of these events is the
sum of the probabilities of the individual events. If this were not so, one could easily
think of counterexamples that would not be compatible with the relative-frequency
concept. This would be most undesirable.

We now recapitulate. There are three essential ingredients in the formal
approach to probability. First, a sample space must be defined that includes all
possible outcomes of our conceptual experiment. We have some discretion in what
we call outcomes, but caution is in order here. The outcomes must be disjoint and
all-inclusive such that P(S)¼ 1. Second, we must carefully define a set of events on
the sample space, and the set must be closed such that me operations of union,
intersection, and complement also yield events in the set. Finally, we must assign
probabilities to all events in accordance with the basic axioms of probability. In
physical problems, this assignment is chosen to be compatible with what we feel to
be reasonable in terms of relative frequency of occurrence of the events. If the
sample space S contains a finite number of elements, the probability assignment is
usually made directly on the elements of S. They are, of course, elementary events

6 CHAPTER 1 PROBABILITY AND RANDOM VARIABLES: A REVIEW
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themselves. This, along with Axiom 3, then indirectly assigns a probability to all
other events defined on the sample space. However, if the sample space consists of
an infinite “smear” of points, the probability assignment must be made on events
and not on points in the sample space.

Once we have specified the sample space, the set of events, and the probabilit-
ies associated with the events, we have what is known as a probability space. This
provides the theoretical structure for the formal solution of a wide variety of
probability problems.

In addition to the set operations of union and complementation, the operation
of intersection is also useful in probability theory. The intersection of two events A
and B is the event containing points that are common to both A and B. This is
illustrated in Fig. 1.2 with what is sometimes called a Venn diagram. The points
lying within the heavy contour comprise the union of A and B, denoted as A [ B or
“A or B.” The points within the shaded region are the event “A intersection B,”
which is denoted A \ B, or sometimes just “A and B,”� The following relationship
should be apparent just from the geometry of the Venn diagram:

PðA [ BÞ ¼ PðAÞ þ PðBÞ � PðA \ BÞ (1.3.6)

The subtractive term in Eq. (1.3.6) is present because the probabilities in the
overlapping region have been counted twice in the summation of P(A) and P(B).

The probability PðA \ BÞ is known as the joint probability of A and B and will
be discussed further in Section 1.5.We digress for the moment, though, to look at an
example.

Figure 1.2 Venn diagram for two events A and B.

EXAMPLE 1.2

Return to Example 1.1(a) where we are dealt 5 cards from a deck of 52 cards.
Clearly the sample space is quite large in this example; it contains 2,598,960
outcomes! Yet, this is quite legitimate with the associated probability of each
outcome being 1/2,598,960. Now if we were to group all the possible hands into
just two groups, the first group containing all the possible 4-of-a-kind hands, and
the second group containing all the hands that do not have 4-of-a-kind, our event

1.3 AXIOMATIC PROBABILITY 7
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1.4
RANDOM VARIABLES

In the study of noiselike signals, we are nearly always dealing with physical
quantities such as voltage, force, distance, and so forth, which can be measured in
physical units. In these cases, the chance occurrences are related to real numbers,
not just objects, like playing cards, dots on the dice, and the like. This brings us to
the notion of a random variable. Let us say that we have a conceptual experiment for
which we have defined a suitable events space and a probability assignment for the
set of events. A random variable is simply a function that maps every point in the
events space on to points on the real line. The probability assignments in the events
space transfer over to the corresponding points on the real line. This will now be
illustrated with an example.

space would be reduced to just two events. The first would have a probability of
624/2,598,960 and the second would have a probability of 2,598,336/2,598,960.
This would be a legitimate event space that would satisfy all the basic
requirements just enumerated above.

On the other hand, suppose we form events as follows:

(a) All possible 4-of-a-kind hands;
(b) All possible straight flush hands;
(c) All possible flush hands;
(d) All hands not containing any of the hands specified in (a), (b), or (c).

Certainly we could calculate the associated probabilities for each of the four
groupings using the ratio-of-events rule. But, would this be a legitimate events
space?

The answer is no, because the defined events are not disjointed. There is
overlap between Event (b) and Event (c). See Fig. 1.2a. Also, the sum of the event
probabilities would not be unity.

&

Figure 1.2(a) The ellipsoidal set contains the entire sample

space of elemental outcomes (dots) that represent each 5-

card poker hand described in Example 1.2. Subsets of these

outcomes (known as “events”) are associated with special

card combinations such as “4-of-a-kind,” “flush,” or “straight

flush” hands. Such event sets may be mutually disjointed,

overlapping or a full subset of one another.

8 CHAPTER 1 PROBABILITY AND RANDOM VARIABLES: A REVIEW
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1.5
JOINT AND CONDITIONAL PROBABILITY, BAYES RULE,
AND INDEPENDENCE

In many applications we have need to consider two or more chance situations where
there may be probabilistic connections among the events. A variety of these
connections that are most commonly encountered will be covered in this section.
We will illustrate these with an example.

2 3 4 5 6 7 8 9 10 11 12

Real line

Event Space
(11 events)

(1/36) (1/36)

(1/18) (1/18)

(1/12) (1/12)

(1/9) (1/9)

(5/36) (5/36)

(1/6)

Figure 1.3 Mapping of events in event-space into numbers on the real line. (Probabilities being

transfered are shown in parentheses.)

EXAMPLE 1.3

There are many games of chance that involve the throw of two dice, and it is the
sum of dots on the throw that is of special interest. Monopoly and casino craps
are notable examples. We will use this as our first example of a random variable.
The setting for this is shown in Fig. 1.3. In this example we begin with 36 possible
elemental outcomes that could occur with the throw of two dice. We will assume
that each outcome has a probability of 1/36. We then group the elemental
outcomes according to the sum of the dots on the top of the dice. This results in just
11 items in the new events space. Finally, these are then mapped into the integer
numbers 2 through 12 as shown in the referenced figure. Note that the probabilities
assigned in the events space are transferred directly over to the corresponding
random variables. The events are disjoint, and their probabilities sum to unity, so
we have a legitimate set of random variables.

1.5 JOINT AND CONDITIONAL PROBABILITY, BAYES RULE, AND INDEPENDENCE 9
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EXAMPLE 1.4

Consider an experiment where we draw a card from a deck of playing cards. In the
interest of simplicity, say we keep one suite (i.e., 13 cards) from the deck, and we
set the others aside. Also, with the abridged deck we will assign numerical values
to the cards as follows:

Card Name Numerical Value

Ace 1

Two 2
..
. ..

.

Ten 10

Jack 11

Queen 12

King 13

We can now describe our conceptual experiment in terms of random
variables rather than objects. The random variable space consists of 13 integer
values 1, 2, . . . , 13.

Suppose we draw a card from the abridged deck, note its value, and then
replace the card. (This is called sampling with replacement.) Then we shuffle the
deck and draw another card. We will denote the first card value as random variable
X and the second card value as Y. We can now keep repeating this pairwise
experiment with replacement on and on as long as we like, conceptually, at least,
and collect a large amount of statistical data. We now have two joint random
variables and their probabilities to keep track of. This calls for an array of
probabilities as shown in Table 1.1.

Clearly, in this experiment with replacement the result of the first draw does
not affect the second draw in any way, so X and Y are said to be independent.
(This will be formalized presently.) The entries in the array of Table 1.1 represent
the joint occurrence of Xi and Yj for all i and j ranging from 1 to 13. (We will
subsequently omit the subscripts i and j to eliminate the clutter.) We can now
think of the pairwise X and Y as defining a new sample space with the
probabilities as indicated in Table 1.1. They are the probabilities of the joint
occurrence of X and Y, and they will be denoted simply as pXY. The entries in the

Table 1.1 Joint Probabilities for Two Draws with Replacement

X 1st Draw
Y 2nd Draw 1 2 3 . . . 13

Marginal
Probability

1 1/169 1/169 1/169 . . . 1/169 1/13

2 1/169 1/169 1/169 . . . 1/169 1/13

3 . . . . . . . . . . . . . .

. . .

13 1/169 1/169 1/169 . . . 1/169 1/13

Marginal Probability 1/13 1/13 1/13 1/13 Sum¼ 1

10 CHAPTER 1 PROBABILITY AND RANDOM VARIABLES: A REVIEW
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array are all nonnegative and sum to unity, so the conditions for a legitimate
sample space that were stated in Section 1.3 are satisfied.

In addition to the joint probabilities in Table 1.1, the sum of the entries in the
respective rows and columns are also of interest. They are sometimes called the
marginal or unconditional probabilities. Thinking in terms of statistics, they repre-
sent the relative frequency of occurrence of a particular value of one of the random
variables irrespective of the other member of the pair. For example, consider the
marginal value shown adjacent to the first row in the array. This is the probability
of Y¼ 1, irrespective of the value of its X partner. This is, of course, just 1/13 in
this example. We will denote the unconditional probabilities of X and Y as pX and
pY, as the case may be. Also, we will usually omit the word “unconditional”
because it is redundant. The single subscript on p tacitly indicates there is no
conditioning.

Finally, there are two other distributions that are also of interest when
considering joint random variables. These are the conditional probabilities of X
given Y and Y given X, and they will be denoted as pXjY and pYjX. Note here that we
consider the “given” variable as being fixed, and the probability distribution is on
the “first” variable. One might think at first glance that the conditional distributions
come directly from the rows and columns of the pXY array such as what is shown in
Table 1.2. However, even though the respective rows and columns do provide the
correct relative frequency-of-occurrences, their sums do not equal unity, so they
cannot be legitimate probability distributions.

This brings us to Bayes Rule (or Theorem).
Bayes Rule:

pXjY ¼ pY jXpX
pY

(1.5.1)

Conditional and Joint Relationships:

pXjY ¼ pXY
pY

(1.5.2)

or

pYjX ¼ pXY
pX

(1.5.3)

Note that the probabilities pX and pY are the “normalizing” factors in the deno-
minators of Eqs. (1.5.2) and (1.5.3) that take us from the joint row and column
distributions to the respective conditional distributions. It is also worth noting that
the joint distribution of X and Y contains all the necessary information to get the
conditional distributions either way, so to speak.

Finally, we come to the term independence as it is used in random variable
theory. Two discrete random variables X and Y are said to be independent if

pXY ¼ pXpY

That is, in words, X and Y are independent if and only if their joint probability
distribution is equal to the product of their respective pX and pY distributions. It is
tacitly implied that this must be true for all permissible values of X and Y. Before

1.5 JOINT AND CONDITIONAL PROBABILITY, BAYES RULE, AND INDEPENDENCE 11
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EXAMPLE 1.5.

Card Drawing Without Replacement Let us return to the card-drawing example
(Example 1.4) where the abridged card deck is limited to just one suit (i.e., 13
cards), and the cards are given numerical values of 1 through 13. This time,
though, consider that the two successive draws are made without replacement.
Clearly, the result of the second draw is not independent of the first draw. The
initial card from the first draw is missing from the deck of the second draw, so the
probability of drawing that same card is zero. Thus, the joint probability table is
modified as shown in Table 1.2.

This array of joint probabilities is quite different from the corresponding array
in Table 1.1 because of the zeros along the major diagonal. The off-diagonal terms
also differ slightly from those in Table 1.1, because their row and column sums
must be unity. Note, though, that all the marginal probabilities are 1/13 just as
before in the experiment with replacement. This makes sense when viewed from a
statistical viewpoint. Imagine a large number of pairs being drawn without
replacement. The statistics of pairwise combinations will differ radically between
the with-replacement and without-replacement experiments. But, in the larger
sense, irrespective of which draw is which, there is no special preference given to
any of the numerical realizations (i.e., 1 through 13). So, you would expect all of
the marginal probabilities to be the same, namely 1/13.

Before leaving the card-drawing experiment, it is worth mentioning that we
do not have to rely on the intuitive notion of independence when we know the joint
probability distribution in all its detail. Look first at the array in Table 1.1. Clearly,
all the entries (which are pXY) are equal to the respective products of the marginal
probabilities (which are pX and pY). Thus, we have formal verification of the
independence of X and Y for the “with-replacement” case. Next look at the entries
in the array of Table 1.2. Clearly, here the entries in the array are not equal to the
products of the respective marginal probabilities, so we do not have independence
for the “without-replacement” experiment. This is consistent with our intuitive
notion of independence.

&

Table 1.2 Joint Probabilities for Two Draws Without Replacement

X 1st Draw
Y 2nd Draw 1 2 3 . . . 13

Marginal
Probability

1 0 1/156 1/156 . . . 1/156 1/13

2 1/156 0 1/156 . . . 1/156 1/13

3 1/156 1/156 0 . . .

. . . . . . . . . . . .

13 1/156 1/156 1/156 . . . 0 1/13

Marginal Probability 1/13 1/13 1/13 1/13 Sum¼ 1

moving on to continuous random variables, we will look at an example where we
do not have independence.

&
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1.6
CONTINUOUS RANDOM VARIABLES AND PROBABILITY
DENSITY FUNCTION

The emphasis in the preceding paragraphs has been on discrete random variables.
We will now extend these ideas to continuous random variables. We will begin the
discussion with a simple spin-the-pointer example.

In the spin-the-pointer example just presented, the random variable sample
space is seen to be a continuous smear of points on the real line between 0 and 2p. In
this chance situation the probability of achieving any particular point along the real
line is zero. But yet we know that the probability of achieving a point within a
nonzero interval between 0 and 2p is also nonzero. So, we should be able to describe
this chance situation in terms of a probability density rather than just probability.
This is analogous to the long thin rod problem in engineering mechanics where we
describe the mass of the rod in terms of mass per unit length rather than just mass.
The total mass is then the integral of the mass density. So be it with probability. In
the spin-the-pointer example the probability that the pointer will lie between u1 and
u2 (where u2 > u1) is

Pðu1 < X < u2Þ ¼
Z u2

u1

f XðuÞdu (1.6.1)

EXAMPLE 1.5A

In many games, the player spins a pointer that is mounted on a circular card of
some sort and is free to spin about its center. This is depicted in Fig. 1.3a and the
circular card is intentionally shown without any markings along its edge. Suppose
we define the outcome of an experiment as the location on the periphery of the card
at which the pointer stops. The sample space then consists of an infinite number of
points along a circle. For analysis purposes, we might wish to identify each point in
the sample space in terms of an angular coordinate measured in radians. The
functional mapping that maps all points on a circle to corresponding points on the
real line between 0 and 2p would then define an appropriate random variable.

&

Figure 1.3(a) Mapping for spin-the-pointer example.
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where X is the random variable, fx is the probability density function, u is a dummy
variable of integration, u2 > u1, and both u1 and u2 are assumed to lie within the
larger [0, 2p) interval.

In the example at hand, we would usually assume that the pointer would be
equally likely to stop anywhere in the [0, 2p] interval; so in this case f XðuÞwould be
a constant, namely

f XðuÞ ¼
1

2p
; 0 � u < 2p (1.6.2)

In this way,

Z 2p

0

f XðuÞdu ¼ 1 (1.6.3)

which is correct for the certain event.
It works out that the integral of the probability density function is also a useful

descriptor of a continuous random variable. It is usually defined with the integral’s
lower limit being set at the random variable’s smallest possible realization, and the
upper limit is set at some dummy variable, say x, where x is within the range of the
random variable space. The integral is then

FXðxÞ ¼
Z x

0

f XðuÞdu; xwithin the random variable space (1.6.4)

and FX(x) is called the cumulative probability distribution function (or sometimes,
for short, just distribution function in contrast to density function). In words, the
cumulative probability distribution is the probability that the random variable X is
equal to or less than the argument x. Both the probability density and distribution
functions for the spin-the-pointer example are shown in Fig. 1.4.

In summary, the probability density and distribution functions are alternative
ways of describing the relative distribution of the random variable. Both functions
are useful in random-variable analysis, and you should always keep in mind the
derivative/integral relationship between the two. As a matter of notation, we will
normally use an uppercase symbol for the distribution function and the correspond-
ing lowercase symbol for the density function. The subscript in each case indicates
the random variable being considered. The argument of the function is a dummy
variable and may be almost anything.

0 x0

(a) Density (b) Distribution

1
1

2π 2π

2π

fx(θ )
Fx(x)

θ

Figure 1.4 Probability density and cumulative

distribution functions for the spin-the-pointer example.
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1.7
EXPECTATION, AVERAGES, AND CHARACTERISTIC FUNCTION

The idea of averaging is so commonplace that it may not seemworthy of elaboration.
Yet there are subtleties, especially as averaging relates to probability. Thuswe need to
formalize the notion of average.

Perhaps the first thing to note is that we always average over numbers and not
“things.” There is no such thing as the average of apples and oranges. When we
compute a student’s average grades, we do not average over A, B, C, and so on;
instead, we average over numerical equivalents that have been arbitrarily assigned
to each grade. Also, the quantities being averaged may or may not be governed by
chance. In either case, random or deterministic, the average is just the sum of the
numbers divided by the number of quantities being averaged. In the random case,
the sample average or sample mean of a random variable X is defined as

�X ¼ X1 þ X2 þ � � � þ XN

N
(1.7.1)

where the bar over X indicates average, and X1, X2, . . . , are sample realizations
obtained from repeated trials of the chance situation under consideration. We
will use the terms average and mean interchangeably, and the adjective sample
serves as a reminder that we are averaging over a finite number of trials as in
Eq. (1.7.1).

In the study of random variables we also like to consider the conceptual
average that would occur for an infinite number of trials. This idea is basic to the
relative-frequency concept of probability. This hypothetical average is called
expected value and is aptly named; it simply refers to what one would “expect” in
the typical statistical situation. Beginning with discrete probability, imagine a
random variable whose n possible realizations are x1, x2, . . . , xn. The corre-
sponding probabilities are p1, p2, . . . , pn. If we have N trials, where N is large,
we would expect approximately p1N x1’s, p2N x2’s, etc. Thus, the sample average
would be

�Xsample � ðp1NÞx1 þ ðp2NÞx2 þ � � � þ ðpnNÞxn
N

(1.7.2)

This suggests the following definition for expected value for the discrete probability
case:

Expected value of X ¼ EðXÞ ¼
Xn
i¼1

pixi (1.7.3)

where n is the number of allowable values of the random variable X.
Similarly, for a continuous random variable X, we have

Expected value of X ¼ EðXÞ ¼
Z 1

�1
xf XðxÞdx (1.7.4)

1.7 EXPECTATION, AVERAGES, AND CHARACTERISTIC FUNCTION 15
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It should be mentioned that Eqs. (1.7.3) and (1.7.4) are definitions, and the
arguments leading up to these definitions were presented to give a sensible
rationale for the definitions, and not as a proof. We can use these same arguments
for defining the expectation of a function of X, as well as for X. Thus, we have the
following:

Discrete case:

EðgðXÞÞ ¼
Xn
i

pigðxiÞ (1.7.5)

Continuous case:

EðgðXÞÞ ¼
Z 1

�1
gðxÞf XðxÞdx (1.7.6)

As an example of the use of Eq. (1.7.6), let the function g(X) be Xk. Equation (1.7.6)
[or its discrete counterpart Eq. (1.7.5)] then provides an expression for the kth
moment of X, that is,

EðXkÞ ¼
Z 1

�1
xkf XðxÞdx (1.7.7)

The second moment of X is of special interest, and it is given by

EðX2Þ ¼
Z 1

�1
x2f XðxÞdx (1.7.8)

The first moment is, of course, just the expectation of X, which is also known as the
mean or average value of X. Note that when the term sample is omitted, we tacitly
assume that we are referring to the hypothetical infinite-sample average.

We also have occasion to look at the second moment of X “about the mean.”
This quantity is called the variance of X and is defined as

Variance of X ¼ E½ðX � EðXÞÞ2� (1.7.9)

In a qualitative sense, the variance of X is a measure of the dispersion of X about
its mean. Of course, if the mean is zero, the variance is identical to the second
moment.

The expression for variance given by Eq. (1.7.9) can be reduced to a more
convenient computational form by expanding the quantity within the brackets and
then noting that the expectation of the sum is the sumof the expectations. This leads to

Var X ¼ E½X2 � 2X � EðXÞ þ ðEðXÞÞ2�
¼ EðX2Þ � ðEðXÞÞ2

(1.7.10)

16 CHAPTER 1 PROBABILITY AND RANDOM VARIABLES: A REVIEW
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The square root of the variance is also of interest, and it has been given the
name standard deviation, that is,

Standard deviation of X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance of X

p
(1.7.11)

The characteristic function associated with the random variable X is defined as

cXðvÞ ¼
Z 1

�1
f XðxÞejvxdx (1.7.15)

EXAMPLE 1.6

Let X be uniformly distributed in the interval (0, 2p). This leads to the probability
density function (see Section 1.6).

f XðxÞ ¼
1

2p
; 0 � x < 2p

0; elsewhere

8><
>:

Find the mean, variance, and standard deviation of X.
The mean is just the expectation of X and is given by Eq. (1.7.4).

Mean of X ¼ EðXÞ ¼
Z 2p

0

x � 1

2p
dx

¼ 1

2p
� x

2

2
j2p
0

¼ p

(1.7.12)

Now that we have computed the mean, we are in a position to find the
variance from Eq. (1.7.10).

Var X ¼
Z 2p

0

x2
1

2p
dx� p2

¼ 4

3
p2 � p2

¼ 1

3
p2

(1.7.13)

The standard deviation is now just the square root of the variance:

Standard deviation of X ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Var X

p

¼
ffiffiffiffiffiffiffiffiffi
1

3
p2

r
¼ 1ffiffiffi

3
p p

(1.7.14)

&
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It can be seen that cXðvÞ is just the Fourier transform of the probability density
function with a reversal of sign on v. Thus, the theorems (and tables) of Fourier
transform theory can be used to advantage in evaluating characteristic functions and
their inverses.

The characteristic function is especially useful in evaluating the moments of X.
This can be demonstrated as follows. The moments of X may be written as

EðXÞ ¼
Z 1

�1
xf XðxÞdx (1.7.16)

EðX2Þ ¼
Z 1

�1
xkf XðxÞdx

..

.

etc:

(1.7.17)

Now consider the derivatives of cxðvÞ evaluated at v¼ 0.

dcX

dv

� �
v¼0

¼
Z 1

�1
jxf XðxÞejvxdx

� �
v¼0

¼
Z 1

�1
jxf XðxÞdx (1.7.18)

d2cX

dv2

� �
v¼0

¼
Z 1

�1
ðjxÞ2f XðxÞejvxdx

� �
v¼0

¼
Z 1

�1
j2x2f XðxÞdx

..

.

etc:

(1.7.19)

It can be seen that

EðXÞ ¼ 1

j

dcX

dv

� �
v¼0

(1.7.20)

EðX2Þ ¼ 1

j2
d2cX

dv2

� �
v¼0

..

.

etc:

(1.7.21)

Thus, with the help of a table of Fourier transforms, you can often evaluate the
moments without performing the integrations indicated in their definitions.

1.8
NORMAL OR GAUSSIAN RANDOM VARIABLES

The random variable X is called normal or Gaussian if its probability density
function is

f XðxÞ ¼
1ffiffiffiffiffiffi
2p

p
s
exp � 1

2s2
ðx� mXÞ2

� �
(1.8.1)
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Note that this density function contains two parameters mX and s2. These are the
random variable’s mean and variance. That is, for the fX specified by Eq. (1.8.1),

Z 1

�1
xf XðxÞdx ¼ mX (1.8.2)

and Z 1

�1
ðx� mXÞ2f XðxÞdx ¼ s2 (1.8.3)

Note that the normal density function is completely specified by assigning numeri-
cal values to the mean and variance. Thus, a shorthand notation has come into
common usage to designate a normal random variable. When we write

X 	 NðmX; s
2Þ (1.8.4)

we mean X is normal with its mean given by the first argument in parentheses and its
variance by the second argument. Also, as a matter of terminology, the terms normal
and Gaussian are used interchangeably in describing normal random variables, and
we will make no distinction between the two.

The normal density and distribution functions are sketched in Figs. 1.5a and
1.5b. Note that the density function is symmetric and peaks at its mean. Qualita-
tively, then, the mean is seen to be the most likely value, with values on either side
of the mean gradually becoming less and less likely as the distance from the mean
becomes larger. Since many natural random phenomena seem to exhibit this

fX(x)

mX

(a)

0
x

.3989/  σ

2σ

FX(x)

mX

(b)

0
x

1.0

.5

Figure 1.5 (a) Normal density function. (b) Normal distribution function.
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central-tendency property, at least approximately, the normal distribution is
encountered frequently in applied probability. Recall that the variance is a measure
of dispersion about the mean. Thus, small s corresponds to a sharp-peaked density
curve, whereas large s will yield a curve with a flat peak.

The normal distribution function is, of course, the integral of the density
function:

FXðxÞ ¼
Z 1

�1
f XðuÞdu ¼

Z 1

�1

1ffiffiffiffiffiffi
2p

p
s
exp � 1

2s2
ðu� mXÞ2

� �
du (1.8.5)

Unfortunately, this integral cannot be represented in closed form in terms of
elementary functions. Thus, its value must be obtained from tables or by numerical
integration. A brief tabulation for zeromean and unity variance is given in Table 1.4.
A quick glance at the table will show that the distribution function is very close to
unity for values of the argument greater than 4.0 (i.e., 4s). In our table, which was
taken from Feller (5), the tabulation quits at about this point. In some applications,
though, the difference between FX(x) and unity [i.e., the area under the “tail” of
fX(x)] is very much of interest, even though it is quite small. Tables such as the one
given here are not of much use in such cases, because the range of x is limited and
the resolution is poor. Fortunately, it is relatively easy to integrate the normal
density function numerically using software such as MATLAB’s quad. An example
will illustrate this.

EXAMPLE 1.7

Let X be a normal random variable with zero mean and unity variance, and say we
want to find the probability that 4.0< x< 4.5.

(a) Consider first the use of Table 1.3. The FX (x) column in the table gives the
cumulative distribution values forN(0,1) as a function of x. Clearly, in this
example:

Z 4:5

4:0

f XðxÞdx ¼
Z 4:5

�1
f XðxÞdx�

Z 4:0

�1
f XðxÞdx

So, to get the desired probability, all we have to do is difference the FX (4.5)
and FX (4.0) entries in the table, and the result is:

Probability ðfrom tableÞ ¼ ð0:999997� 0:999968Þ ¼ 0:000029

(b) Another way of getting the desired probability is to integrate the normal
density function between 4.0 and 4.5 usingMATLAB’s quad or integration
program. The result is:

Probability ðfrom MATLABÞ � 0:00002827

Note that there is a significant difference between the Table 1.3 and
MATLAB results, and we have good reason to believe that the MATLAB
result is the better of the two. After all, it was arrived at using very high
precision arithmetic.

&
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In spite of the previous remarks, tables of probabilities, both normal and
otherwise, can be useful for quick and rough calculations. A word of caution is in
order, though, relative to normal distribution tables. They come in a variety of
forms. For example, some tables give the one-sided area under the normal density
curve from 0 to X, rather than from �1 to X as we have done in Table 1.3. Other
tables do something similar by tabulating a function known as the error function,
which is normalized differently than the usual distribution function. Thus a word of
warning is in order. Be wary of using unfamiliar tables or computer library
software!

Table 1.3 The Normal Density and Distribution Functions for Zero
Mean and Unity Variance

f XðxÞ ¼
1ffiffiffiffiffiffi
2p

p e�x2=2; FXðxÞ ¼
Z x

�1

1ffiffiffiffiffiffi
2p

p e�u2=2du

x fX(x) FX(x) x fX(x) FX(x)

.0 .398 942 .500 000 2.3 .028 327 .989 276

.1 .396 952 .539 828 2.4 .022 395 .991 802

.2 .391 043 .579 260 2.5 .017 528 .993 790

.3 .381 388 .617 911 2.6 .013 583 .995 339

.4 .368 270 .655 422 2.7 .010 421 .996 533

.5 .352 065 .691 462 2.8 .007 915 .997 445

.6 .333 225 .725 747 2.9 .005 953 .998 134

.7 .312 254 .758 036 3.0 .004 432 .998 650

.8 .289 692 .788 145 3.1 .003 267 .999 032

.9 .266 085 .815 940 3.2 .002 384 .999 313

1.0 .241 971 .841 345 3.3 .001 723 .999 517

1.1 .217 852 .864 334 3.4 .001 232 .999 663

1.2 .194 186 .884 930 3.5 .000 873 .999 767

1.3 .171 369 .903 200 3.6 .000 612 .999 841

1.4 .149 727 .919 243 3.7 .000 425 .999 892

1.5 .129 581 .933 193 3.8 .000 292 .999 928

1.6 .110 921 .945 201 3.9 .000 199 .999 952

1.7 .094 049 .955 435 4.0 .000 134 .999 968

1.8 .078 950 .964 070 4.1 .000 089 .999 979

1.9 .065 616 .971 283 4.2 .000 059 .999 987

2.0 .053 991 .977 250 4.3 .000 039 .999 991

2.1 .043 984 .982 136 4.4 .000 025 .999 995

2.2 .035 475 .986 097 4.5 .000 016 .999 997
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1.9
IMPULSIVE PROBABILITY DENSITY FUNCTIONS

In the case of the normal distribution and many others, the probability associated
with the random variable X is smoothly distributed over the real line from�1 to1.
The corresponding probability density function is then continuous, and the proba-
bility that any particular value of X, say, x0, is realized is zero. This situation is
common in physical problems, but we also have occasion to consider cases where
the random variable has a mixture of discrete and smooth distribution. Rectification
or any sort of hard limiting of noise leads to this situation, and an example will
illustrate how this affects the probability density and distribution functions.

Consider a simple half-wave rectifier driven by noise as shown in Fig. 1.6.
For our purpose here, it will suffice to assume that the amplitude of the noise is
normally distributed with zero mean. That is, if we were to sample the input at any
particular time t1, the resultant sample is a random variable, say, X, whose dis-
tribution is N(0, s2

x). The corresponding output sample is, of course, a different
random variable; it will be denoted as Y.

Because of our assumption of normality, X will have probability density and
distribution functions as shown in Fig. 1.5, but with mX¼ 0. The sample space in
this case may be thought of as all points on the real line, and the function defining
the random variable X is just a one-to-one mapping of the sample space into X. Not
so with Y though; all positive points in the sample space map one-to-one, but the
negative points all map into zero because of the diode! This means that a total
probability of 1

2
in the sample space gets squeezed into a single point, zero, in the Y

space. The effect of this on the density and distribution functions for Y is shown in
Figs. 1.7a and 1.7b. Note that in order to have the area under the density function be
1
2
at y¼ 0, we must have a Dirac delta (impulse) function at the origin. This, in turn,

gives rise to a jump or discontinuity in the corresponding distribution function. It
should be mentioned that at the point of discontinuity, the value of the distribution
function is 1

2
. That is, the distribution function is continuous from the right and not

from the left. This is due to the “equal to or less than . . . ” statement in the
definition of the probability distribution function (see Section 1.6).

fY(y) (y)

y

1–
2

0

(a)

δ

e –1
–––––
2    Xπσ

y2

––––––
2   X

2 σ√

FY(y)

y
0

.5

1.0

(b)

Figure 1.7 Output density and distribution functions for diode example. (a) Probability density

function for Y. (b) Probability distribution function for Y.

Figure 1.6 Half-wave rectifier driven by noise.
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1.10
JOINT CONTINUOUS RANDOM VARIABLES

In the subsequent chapters we will frequently have occasion to deal with joint
continuous random variables. These are also referred to as multivariate random
variables with the case of two joint random variables, called the bivariate case,
being encountered frequently. We will begin with the bivariate case and then extend
the discussion to higher-order cases later.

Recall from Sec. 1.6 that in the single-variate case we have the probability
interpretation of probability density:

Pðx0 � X � x0 þ dxÞ ¼ f Xðx0Þdx (1.10.1)

where x0 is within the random variable space. The corresponding equation in the
bivariate case is then

Pðfx0 � X � x0 þ dxg and fy0 � Y � y0 þ dygÞ ¼ f XYfx0; y0Þdxdy (1.10.2)

It then follows directly from integral calculus that the probability that X and Y both
lie within the region shown as R in Fig. 1.8 is:

PðX and Y lie within RÞ ¼
ðð

R

f XYðx; yÞdxdy (1.10.3)

It should now be apparent that we can also define a joint cumulative distribution
function for the bivariate case as:

FXYðx0; y0Þ ¼ PðfX � x0g and fY � y0gÞ ¼
Z y0

�1

Z x0

�1
f XYðx; yÞdxdy (1.10.4)

The integration region for this double integral is the open lower-left quadrant
bounded on the East by x0 and on the North by y0. It should also be apparent that we

Figure 1.8 Region R in xy plane.
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have a differential/integral relationship between the density and cumulative distri-
bution functions that is similar to what we have in the single-variate case. The only
difference is that we have a double integral for the integration and the second partial
derivative for the derivative part of the analogy.

The bivariate normal random variable arises frequently in applied situations,
so it deserves special attention. Example 1.8 will illustrate a case where the two
random variables have zero means, equal variances, and are independent.

EXAMPLE 1.8

Consider a dart-throwing game in which the target is a conventional xy coordinate
system. The player aims each throw at the origin according to his or her best ability.
Since there are many vagaries affecting each throw, we can expect a scatter in the
hit pattern. Also, after some practice, the scatter should be unbiased, left-to-right
and up-and-down. Let the coordinate of a hit be a bivariate random variable (X, Y).
In this example we would not expect the x coordinate to affect y in any way;
therefore statistical independence of X and Y is a reasonable assumption. Also,
because of the central tendency in X and Y, the assumption of normal distribution
would appear to be reasonable. Thus we assume the following probability densities:

f XðxÞ ¼
1ffiffiffiffiffiffi
2p

p
s
e�x2=2s2

(1.10.5)

f YðyÞ ¼
1ffiffiffiffiffiffi
2p

p
s
e�y2=2s2

(1.10.6)

The joint density is then given by

f XYðx; yÞ ¼
1ffiffiffiffiffiffi
2p

p
s
e�x2=2s2 � 1ffiffiffiffiffiffi

2p
p

s
e�y2=2s2 ¼ 1

2ps2
e�ðx2þy2Þ=2s2

(1.10.7)

Equation (1.10.7) is the special case of a bivariate normal density function in
which X and Y are independent, unbiased, and have equal variances. This is an
important density function and it is sketched in Fig. 1.9. It is often described as a
smooth “hill-shaped” function and, for the special case here, the hill is symmetric
in every respect. Thus the equal-height contour shown in Fig. 1.9 is an exact circle.

fXY

y x

Equal height
contour

Figure 1.9 Bivariate normal density

function.
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It is worthy of mention that only the joint probability density function gives
the complete description of the probabilistic relationship between the X and Y
random variables. The other densities (i.e., conditional and marginal) contain
specialized information which may be important in certain applications, but each
does not, when considered alone, “tell the whole story”. Only the joint density
function does that.

Bayes Rule, independence, and the equations for marginal density carry over
directly from discrete probability to the continuous case. They are given by the
following.

Bayes Rule (Continuous Case):

f XjY ¼ f Y jXf X
f Y

(1.10.8)

Conditional Densities (Continuous Case):

f XjY ¼ f XY
f Y

(1.10.9)

Also,

f YjX ¼ f XY
f X

(1.10.10)

Independence:
Random variables X and Y are independent if and only if

f XY ¼ f Xf Y (1.10.11)

Marginal probability density:

f Y ¼
Z 1

�1
f XY x; yð Þdx (1.10.12)

and

f X ¼
Z 1

�1
f XY x; yð Þdy (1.10.13)

The indicated integrations are analogous to summing out a rowor column (as the case
maybe) in discrete probability (seeSec. 1.5).One should always remember that to get
marginal probability from joint probability, you must always “sum out,” not simply
substitute a fixed value for the random variable being held fixed. Example 1.9 will
illustrate this.

&

1.10 JOINT CONTINUOUS RANDOM VARIABLES 25



C01 12/09/2011 9:40:58 Page 26

EXAMPLE 1.9

Return to the dart throwing example (Example 1.7). The end result for fXY was

f XY x; yð Þ ¼ 1

2ps2
e�ðx2þy2Þ=2s2 (1.10.14)

Now, say we want to get fX from fXY. To do this we need to integrate out on y.
This yields

f X ¼
Z 1

�1

1

2ps2
e�ðx2þy2Þ=2s2

dy

¼ 1ffiffiffiffiffiffi
2p

p
s
e�x2=2s2

Z 1

�1

1

2ps2
e�y2=2s2

dy

¼ 1ffiffiffiffiffiffi
2p

p
s
e�x2=2s2

(1.10.15)

which is the correct fX for this example where X and Y are independent.
The extension of the bivariate case to multivariate situation is fairly obvious.

Consider the trivariate case, for example. Here the probability density is a function
of three variables instead of two. To get the probability that the 3-tuple random
variable lies within a given region, we must integrate over a volume rather than an
area. Also, the Bayes Rule for the trivariate case is:

f XY jZ ¼ f ZjXYf XY
f Z

(1.10.16)

Or, if the variable to be held fixed is both Y and Z, we would have

f XjYZ ¼ f YZjXf X
f YZ

(1.10.17)

Also, the marginal probability densities are obtained by double integration. For
example,

f X ¼
Z 1

�1

Z 1

�1
f XYZ x; y; zð Þdydz

and so forth.
&

1.11
CORRELATION, COVARIANCE, AND ORTHOGONALITY

The expectation of the product of two random variables X and Y is of special
interest. In general, it is given by

EðXYÞ ¼
Z 1

�1

Z 1

�1
xyf XYðx; yÞdx dy (1.11.1)
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There is a special simplification of Eq. (1.11.1) that occurs when X and Y are
independent. In this case, fXY may be factored (see Eq. 1.10.10). Equation (1.11.1)
then reduces to

EðXYÞ ¼
Z 1

�1
xf XðxÞdx

Z 1

�1
yf YðyÞdy ¼ EðXÞEðYÞ (1.11.2)

If X and Y possess the property of Eq. (1.11.2), that is, the expectation of the
product is the product of the individual expectations, they are said to be uncorre-
lated. Obviously, if X and Y are independent, they are also uncorrelated. However,
the converse is not true, except in a few special cases (see Section 1.15).

As a matter of terminology, if

EðXYÞ ¼ 0 (1.11.3)

X and Y are said to be orthogonal.
The covariance of X and Y is also of special interest, and it is defined as

Cov of X and Y ¼ EðX � mXÞðY � mYÞ� (1.11.4)

With the definition of Eq. (1.11.4) we can now define the correlation coefficient for
two random variables as

Correlation coefficient ¼ r ¼ Cov of X and Yffiffiffiffiffiffiffiffiffiffiffiffi
Var X

p ffiffiffiffiffiffiffiffiffiffiffiffi
Var Y

p

¼ E½ðX � mXÞðY � mYÞ�ffiffiffiffiffiffiffiffiffiffiffiffi
Var X

p ffiffiffiffiffiffiffiffiffiffiffiffi
Var Y

p
(1.11.5)

The correlation coefficient is a normalized measure of the degree of correlation
between two random variables, and the normalization is such that r always lies
within the range�1 � r � 1. This will be demonstrated (not proved) by looking at
three special cases:

1. Y¼X (maximum positive correlation):
When Y¼X, Eq. (1.11.5) becomes

r ¼ E½ðX � mXÞðX � mXÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðX � mXÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðX � mXÞ2

q ¼ 1

2. Y¼�X (maximum negative correlation):
When Y¼�X, Eq. (1.11.5) becomes

r ¼ E½ðX � mXÞð�X þ mXÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðX � mXÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð�X þ mXÞ2

q ¼ �1
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3. X and Y uncorrelated, that is, E(XY) ¼ E(X)E(Y):
Expanding the numerator of Eq. (1.11.5) yields

EðXY � mXY � mYX þ mXmYÞ
¼ EðXYÞ � mXEðYÞ � mYEðXÞ þ mXmY

¼ mXmY � mXmY � mYmX þ mXmY ¼ 0

(1.11.5)

Thus, r¼ 0.

We have now examined the extremes of positive and negative correlation and
zero correlation; there can be all shades of gray in between. [For further details, see
Papoulis (7).]

1.12
SUM OF INDEPENDENT RANDOM VARIABLES AND TENDENCY
TOWARD NORMAL DISTRIBUTION

Since we frequently need to consider additive combinations of independent random
variables, this will now be examined in some detail. Let X and Y be independent
random variables with probability density functions fX(x) and fY(y). Define another
random variable Z as the sum of X and Y:

Z ¼ X þ Y (1.12.1)

Given the density functions of X and Y, we wish to find the corresponding density
of Z.

Let z be a particular realization of the random variable Z, and think of z as being
fixed. Now consider all possible realizations of X and Y that yield z. Clearly, they
satisfy the equation

xþ y ¼ z (1.12.2)

and the locus of points in the x, y plane is just a straight line, as shown in Fig. 1.10.
Next, consider an incremental perturbation of z to zþ dz, and again consider

the locus of realizations of X and Y that will yield zþ dz. This locus is also a straight
line, and it is shown as the upper line in Fig. 1.10. It should be apparent that all x and
y lying within the differential strip between the two lines map into points between z
and zþ dz in the z space. Therefore,

P z � Z � zþ dzð Þ ¼ Pðx and y lie in differential stripÞ
¼

ðð
Diff:
strip

f XðxÞf YðyÞ dx dy (1.12.3)

But within the differential strip, y is constrained to x according to

y ¼ z� x (1.12.4)
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Also, since the strip is only of differential width, the double integral of Eq. (1.12.3)
reduces to a single integral. Choosing x as the variable of integration and noting that
dy¼ dz lead to

Pðz � Z � zþ dzÞ ¼
Z 1

�1
f XðxÞf Yðz� xÞdx

� �
dz (1.12.5)

It is now apparent from Eq. (1.12.5) that the quantity within the brackets is the
desired probability density function for Z. Thus,

f ZðzÞ ¼
Z 1

�1
f XðxÞf Yðz� xÞdx (1.12.6)

It is of interest to note that the integral on the right side of Eq. (1.12.6) is a
convolution integral. Thus, from Fourier transform theory, we can then write

F½f Z � ¼ F½f X� � F½f Y � (1.12.7)

where F½�� denotes “Fourier transform of ½��.” We now have two ways of evaluating
the density of Z: (1) We can evaluate the convolution integral directly, or (2) we can
first transform fX and fY, then form the product of the transforms, and finally invert
the product to get fZ. Examples that illustrate each of these methods follow.

Figure 1.10 Differential strip used for deriving

fz(Z).

EXAMPLE 1.11

Let X and Y be independent random variables with identical rectangular density
functions as shown in Fig. 1.11a. We wish to find the density function for their
sum, which we will call Z.

Note first that the density shown in Fig. 1.11a has even symmetry. Thus
f Yðz� xÞ ¼ f Yðx� zÞ. The convolution integral expression of Eq. (1.12.6) is then
the integral of a rectangular pulse multiplied by a similar pulse shifted to the right
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amount z. When z> 2 or z< 2, there is no overlap in the pulses so their product is
zero. When �2 � z � 0, there is a nontrivial overlap that increases linearly
beginning at z¼�2 and reaching a maximum at z¼ 0. The convolution integral
then increases accordingly as shown in Fig. 1.11b. A similar argument may be
used to show that fZ (z) decreases linearly in the interval where 0 � z � 2. This
leads to the triangular density function of Fig. 1.11b.

We can go one step further now and look at the density corresponding to the
sum of three random variables. LetW be defined as

W ¼ X þ Y þ V (1.12.8)

where X, Y, and V are mutually independent and have identical rectangular densities
as shown in Fig. 1.11a. We have already worked out the density for Xþ Y, so the
density ofW is the convolution of the two functions shown in Figs. 1.11a and 1.11b.
We will leave the details of this as an exercise, and the result is shown in Fig. 1.12.
Eachofthesegments labeled1,2,and3isanarcofaparabola.Notice thesmoothcentral
tendency. With a little imagination one can see a similarity between this and a zero-
mean normal density curve. If we were to go another step and convolve a rectan-
gular density with that of Fig. 1.12, we would get the density for the sum of four
independent random variables. The resulting function would consist of connected
segments of cubic functions extending from �4 to þ4. Its appearance, though not
shown,would resemble thenormal curves evenmore than thatofFig. 1.12.Andonand
on—each additional convolution results in a curve that resembles the normal curve
more closely than the preceding one.

This simple example is intended to demonstrate (not prove) that a superposi-
tion of independent random variables always tends toward normality, regardless of

Figure 1.11 Probability density functions for

X and Y and their sum. (a) Density function for

both X and Y. (b) Density function for Z, where

Z¼XþY.
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Figure 1.12 Probability density for the sum of three independent random

variables with identical rectangular density functions.

EXAMPLE 1.11

Let X and Y be independent normal random variables with zero means and
variances s2

X and s2
Y . We wish to find the probability density function for the sum

of X and Y, which will again be denoted as Z. For variety, we illustrate the Fourier
transform approach. The explicit expressions for fX and fY are

f XðtÞ ¼
1ffiffiffiffiffiffi
2p

p
sX

e�t2=2s2
X (1.12.9)

f YðtÞ ¼
1ffiffiffiffiffiffi
2p

p
sY

e�t22s2
Y (1.12.10)

Note that we have used t as the dummy argument of the functions. It is of no
consequence because it is integrated out in the transformation to thev domain. Using
Fourier transform tables, we find the transforms of fX and fY to be

F½f X� ¼ e�s2
Xv

2=2 (1.12.11)

F½f Y � ¼ e�s2
Yv

2=2 (1.12.12)

Forming their product yields

F½f X�F½f Y � ¼ e�ðs2Xþs2
Y Þv2=2 (1.12.13)

the distribution of the individual random variables contributing to the sum. This is
known as the central limit theorem of statistics. It is a most remarkable theorem,
and its validity is subject to only modest restrictions (3). In engineering
applications the noise we must deal with is frequently due to a superposition of
many small contributions. When this is so, we have good reason to make the
assumption of normality. The central limit theorem says to do just that. Thus we
have here one of the reasons for our seemingly exaggerated interest in normal
random variables—they are a common occurrence in nature.

&
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1.13
TRANSFORMATION OF RANDOM VARIABLES

A mathematical transformation that takes one set of variables (say, inputs) into
another set (say, outputs) is a common situation in systems analysis. Let us begin
with a simple single-input, single-output situation where the input–output relation-
ship is governed by the algebraic equation

y ¼ gðxÞ (1.13.1)

Here we are interested in random inputs, so think of x as a realization of the input
random variable X, and y as the corresponding realization of the output Y. Assume
we know the probability density function for X, and would like to find the
corresponding density for Y. It is tempting to simply replace x in fX(x) with its
equivalent in terms of y and pass it off at that. However, it is not quite that simple, as
will be seen presently.

First, let us assume that the transformation g(x) is one-to-one for all per-
missible x. By this we mean that the functional relationship given by Eq. (1.13.1)
can be reversed, and x can be written uniquely as a function of y. Let the “reverse”
relationship be

x ¼ hðyÞ (1.13.2)

The probabilities that X and Y lie within corresponding differential regions must be
equal. That is,

PðX is between x and xþ dxÞ ¼ PðY is between y and yþ dyÞ (1.13.3)

Then the inverse gives the desired fZ:

f ZðzÞ ¼ F�1½e�ðs2Xþs2
Y Þv2=2�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðs2

X þ s2
YÞ

p e�z2=2ðs2
Xþs2

Y Þ
(1.12.14)

Note that the density function forZ is also normal in form, and its variance is given by

s2
Z ¼ s2

X þ s2
Y (1.12.15)

The summation of any number of random variables can always be thought
of as a sequence of summing operations on two variables; therefore, it should be
clear that summing any number of independent normal random variables leads
to a normal random variable. This rather remarkable result can be generalized
further to include the case of dependent normal random variables, which we will
discuss later.

&
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or

Z xþdx

x

f XðuÞdu ¼

Z yþdy

y

f YðuÞdu; for dy positive

�
Z yþdy

y

f YðuÞdu; for dy negative

8>>><
>>>:

(1.13.4)

One of the subtleties of this problem should now be apparent from Eq. (1.13.4). If
positive dx yields negative dy (i.e., a negative derivative), the integral of fY must be
taken from yþ dy to y in order to yield a positive probability. This is the equivalent
of interchanging the limits and reversing the sign as shown in Eq. (1.13.4).

The differential equivalent of Eq. (1.13.4) is

f XðxÞdx ¼ f YðyÞjdyj (1.13.5)

where we have tacitly assumed dx to be positive. Also, x is constrained to be h(y).
Thus, we have

f YðyÞ ¼
dx

dy

����
����f XðhðyÞÞ (1.13.6)

or, equivalently,

f YðyÞ ¼ jh0ðyÞjf XðhðyÞÞ (1.13.7)

where h0(y) indicates the derivative of h with respect to y. A simple example where
the transformation is linear will now be presented.

EXAMPLE 1.12

Find the appropriate output density functions for the case where the input X is
N(0, s2

X) and the transformation is

y ¼ Kx ðK is a given constantÞ (1.13.8)

Webeginwith thescale-factor transformation indicatedbyEq. (1.13.8).Wefirst solve
for x in terms of y and then form the derivative. Thus,

x ¼ 1

K
y (1.13.9)

dx

dy

����
���� ¼ 1

K

����
���� (1.13.10)

We can now obtain the equation for fY from Eq. (1.13.6). The result is

f YðyÞ ¼
1

jKj �
1ffiffiffiffiffiffi
2p

p
sX

exp �
y

K

� 	2

2s2
X

2
64

3
75 (1.13.11)
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Our next example will illustrate a nonlinear transformation of bivariate random
variable.

Or rewriting Eq. (1.13.11) in standard normal form yields

f YðyÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðKsXÞ2
q exp � y2

2ðKsXÞ2
" #

(1.13.12)

It can now be seen that transforming a zero-mean normal random variable with a
simple scale factor yields another normal random variable with a corresponding
scale change in its standard deviation. It is important to note that normality is
preserved in a linear transformation.

&

EXAMPLE 1.13

In the dart-throwing example (Example 1.8), the hit location was described in
terms of rectangular coordinates. This led to the joint probability density function

f XYðx; yÞ ¼
1

2ps2
e�ðx2þy2Þ=2s2 (1.13.13)

This is a special case of the bivariate normal density function where the two
variates are independent and have zero means and equal variances. Suppose we
wish to find the corresponding density in terms of polar coordinates r and u.
Formally, then, we wish to define new random variables R and Q such that
pairwise realizations (x, y) transform to (r, u) in accordance with

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; r � 0

u ¼ tan�1 y

x
; 0 � u < 2p

(1.13.14)

Or, equivalently,

x ¼ r cos u

y ¼ r sin u
(1.13.15)

We wish to find f RQðr; uÞ and the unconditional density functions fR(r) and
fQðuÞ.

The probability that a hit will lie within an area bounded by a closed contour
C is given by

PðHit lies withinCÞ ¼
ðð
Area

enclosed

by C

f XYðx; yÞ dx dy (1.13.16)
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Weknowfrommultivariablecalculus that thedouble integral inEq. (1.13.16)canalso
be evaluated in the r, u coordinate frame asðð

Region

encosed

by C

f XYðx; yÞ dx dy ¼
ðð

Region

encosed

by C0

f XYðxðr; uÞ; yðr; uÞÞ J
x; y

r; u

� �����
���� dr du (1.13.17)

where C0 is the contour in the r, u plane corresponding to C in the x, y plane. That
is, points within C map into points within C0. (Note that it is immaterial as to how
we draw the “picture” in the r, u coordinate frame. For example, if we choose to
think of r and u as just another set of Cartesian coordinates for plotting purposes,
C0 becomes a distortion of C.) The J quantity in Eq. (1.13.17) is the Jacobian of
the transformation, defined as

J
x; y

r; u

� �
¼ Det

@x

@r

@y

@r

@x

@u

@y

@u

2
664

3
775 (1.13.18)

The vertical bars around J in Eq. (1.13.17) indicate absolute magnitude. We can
argue now that if Eq. (1.13.17) is true for regions in general, it must also be true for
differential regions. Let the differential region in the r, q domain be bounded by r
and rþ dr in one direction and by u and uþ du in the other. If it helps, think of
plotting r and u as Cartesian coordinates. The differential region in the r, u domain
is then rectangular, and the corresponding one in the x, y domain is a curvilinear
differential rectangle (see Fig. 1.13). Now, by the very definition of joint density,
the quantity multiplying dr du in Eq. (1.13.17) is seen to be the desired density
function. That is,

f RQðr; uÞ ¼ f XY xðr; uÞ; yðr; uÞ½ � J x; y

r; u

� �����
���� (1.13.19)

In the transformation of this example,

J
x; y

r; u

� �
¼ Det

cos u sin u

�r sin u r cos u

� �
¼ r (1.13.20)

Figure 1.13 Corresponding differential regions for

transformation of Example 1.13.
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Since the radial coordinate r is always positive, jJj ¼ r. We can now substitute
Eqs. (1.13.13) and (1.13.20) into (1.13.19) and obtain

f RQðr; uÞ ¼ r
1

2ps2
exp �ðr cos uÞ2 þ ðr sin uÞ2

2s2

" #

¼ r

2ps2
e�r2=2s2

(1.13.21)

Note that the density function of this example has no explicit dependence on u. In
other words, all angles between 0 and 2p are equally likely, which is what we
would expect in the target-throwing experiment.

We get the unconditional density functions by integrating f RQ with respect to
the appropriate variables. That is,

f RðrÞ ¼
Z 2p

0

f RQðr; uÞ du ¼
r

2ps2
e�r2=2s2

Z 2p

0

du

¼ r

s2
e�r2=2s2

(1.13.22)

and

fQðuÞ ¼
Z 1

0

f RQðr; uÞ dr ¼
1

2p
; 0 � u < 2p

0; otherwise

8><
>: (1.13.23)

The single-variate density function given by Eq. (1.13.22) is called the
Rayleigh density function. It is of considerable importance in applied probability,
and it is sketched in Fig. 1.14. It is easily verified that the mode (peak value) of the
Rayleigh density is equal to standard deviation of the x and y normal random
variables from which it was derived. Thus, we see that similar independent, zero-
mean normal densities in the x, y domain correspond to Rayleigh and uniform
densities in the r, u domain.

&

Figure 1.14 Rayleigh density function.
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1.14
MULTIVARIATE NORMAL DENSITY FUNCTION

In Sections 1.8 and 1.10 examples of the single and bivariate normal density
functions were presented. We work so much with normal random variables that we
need to elaborate further and develop a general form for the n-dimensional normal
density function. One can write out the explicit equations for the single and bivariate
cases without an undue amount of “clutter” in the equations. However, beyond this,
matrix notation is a virtual necessity. Otherwise, the explicit expressions are
completely unwieldy.

Consider a set of n random variables X1, X2, . . . , Xn (also called variates). We
define a vector random variable X as�

X ¼
X1

X2

..

.

Xn

2
6664

3
7775 (1.14.1)

In general, the components of X may be correlated and have nonzero means.
We denote the respective means as m1, m2, . . . , mn, and thus, we define a mean
vector m as

m ¼
m1

m2

..

.

mn

2
6664

3
7775 (1.14.2)

Also, if x1, x2, . . . , xn is a set of realizations of X1, X2, . . . , Xn, we can define a
vector realization of X as

x ¼
x1
x2
..
.

xn

2
6664

3
7775 (1.14.3)

We next define a matrix that describes the variances and correlation structure of the
n variates. The covariance matrix for X is defined as

C ¼
E½ðX1 � m1Þ2� E½ðX1 � m1ÞðX2 � m2Þ� � � �

E½ðX2 � m2ÞðX1 � m1Þ� }

..

.
E½ðXn � mnÞ2�

2
6664

3
7775

(1.14.4)

�Note that uppercase X denotes a column vector in this section. This is a departure from the usual notation of
matrix theory, but it is necessitated by a desire to be consistent with the previous uppercase notation for random
variables. The reader will simply have to remember this minor deviation in matrix notation. It appears in this
section and also occasionally in Chapter 2.
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The terms along the major diagonal ofC are seen to be the variances of the variates,
and the off-diagonal terms are the covariances.

The random variables X1, X2, . . . , Xn are said to be jointly normal or jointly
Gaussian if their joint probability density function is given by

f XðxÞ ¼
1

ð2pÞn=2jCj1=2
exp � 1

2
ðx�mÞTC�1ðx�mÞ
 �� 

(1.14.5)

where x,m, andC are defined by Eqs. (1.14.2) to (1.14.4) and jCj is the determinant
of C. “Super �1” and “super T ” denote matrix inverse and transpose, respectively.
Note that the defining function for fX is scalar and is a function of x, x2, . . . , xn
when written out explicitly.We have shortened the indicated functional dependence
to x just for compactness in notation. Also note thatC�1 must exist in order for fX to
be properly defined by Eq. (1.14.5). Thus,Cmust be nonsingular. More will be said
of this later.

Clearly, Eq. (1.14.5) reduces to the standard normal form for the single variate
case. For the bivariate case, we may write out fX explicitly in terms of x1 and x2
without undue difficulty. Proceeding to do this, we have

X ¼ X1

X2

� �
; x ¼ x1

x2

� �
; m ¼ m1

m2

� �
(1.14.6)

and

C ¼ E½ðX1 � m1Þ2� E½ðX1 � m1ÞðX2 � m2Þ�
E½ðX1 � m1ÞðX2 � m2Þ� E½ðX2 � m2Þ2�

� �
¼ s2

1 rs1s2

rs1s2 s2
2

� �
(1.14.7)

The second form for C in Eq. (1.14.7) follows directly from the definitions of
variance and correlation coefficient. The determinant of C and its inverse are
given by

jCj ¼ s2
1 rs1s2

rs1s2 s2
2

����
���� ¼ ð1� r2Þs2

1s
2
2 (1.14.8)

C�1 ¼
s2
2

jCj �rs1s2

jCj
�rs1s2

jCj
s2
1

jCj

2
664

3
775 ¼

1

ð1� r2Þs2
1

�r

ð1� r2Þs1s2

�r

ð1� r2Þs1s2

1

ð1� r2Þs2
2

2
664

3
775 (1.14.9)

Substituting Eqs. (1.14.8) and (1.14.9) into Eq. (1.14.5) then yields the desired
density function in terms of x1 and x2.

f x1x2ðx1; x2Þ ¼ 1

2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p exp � 1

2ð1� r2Þ
ðx1 � m1Þ2

s2
1

"(

� 2rðx1 � m1Þðx2 � m2Þ
s1s2

þ ðx2 � m2Þ2
s2
2

#) (1.14.10)
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It should be clear in Eq. (1.14.10) that f x1x2ðx1; x2Þ is intended to mean the same as
fX(x) in vector notation.

As mentioned previously, the third- and higher-order densities are very
cumbersome to write out explicitly; therefore, we will examine the bivariate
density in some detail in order to gain insight into the general multivariate normal
density function. The bivariate normal density function is a smooth hill-shaped
surface over the x1, x2 plane. This was sketched previously in Fig. 1.9 for the
special case where s1 ¼ s2 and r ¼ 0. In the more general case, a constant
probability density contour projects into the x1, x2 plane as an ellipse with its
center at (m1, m2) as shown in Fig. 1.15. The orientation of the ellipse in Fig. 1.15
corresponds to a positive correlation coefficient. Points on the ellipse may be
thought of as equally likely combinations of x1 and x2. If r ¼ 0, we have the case
where X1 and X2 are uncorrelated, and the ellipses have their semimajor and
semiminor axes parallel to the x1 and x2 axes. If we specialize further and let
s1 ¼ s2 (and r ¼ 0), the ellipses degenerate to circles. In the other extreme, as jrj
approaches unity, the ellipses become more and more eccentric.

The uncorrelated case where r ¼ 0 is of special interest, and in this case f x1x2
reduces to the form given in Eq. (1.14.11).

For uncorrelated X1 and X2

f X1X2
ðx1; x2Þ ¼ 1

2ps1s2

exp � 1

2

ðx1 � m1Þ2
s2
1

þ ðx2 � m2Þ2
s2
2

" #( )

¼ 1ffiffiffiffiffiffi
2p

p
s1

e�ðx1�m1Þ2=2s2
1 � 1ffiffiffiffiffiffi

2p
p

s2

e�ðx2�m2Þ2=2s2
2

(1.14.11)

The joint density function is seen to factor into the product of f X1
ðx1Þ and f X2

ðx2Þ.
Thus, two normal random variables that are uncorrelated are also statistically
independent. It is easily verified from Eq. (1.14.5) that this is also true for any
number of uncorrelated normal random variables. This is exceptional, because in
general zero correlation does not imply statistical independence. It does, however,
in the Gaussian case.

10

8

6

4

2

0
0 2 4 6 8 10

x2

x1

(m1, m2)
Locus of constant
probability density

Figure 1.15 Contour projection of a bivariate normal density

function to the (X1, X2) plane.
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Now try to visualize the three-variate normal density function. The locus of
constant f X1X2X3

ðx1; x2; x3Þ will be a closed elliptically shaped surface with three
axes of symmetry. These axes will be aligned with the x1, x2, x3 axes for the case of
zero correlation among the three variates. If, in addition to zero correlation, the
variates have equal variances, the surface becomes spherical.

If we try to extend the geometric picture beyond the three-variate case, we run
out of Euclidean dimensions. However, conceptually, we can still envision equal-
likelihood surfaces in hyperspace, but there is no way of sketching a picture of such
surfaces. Some general properties of multivariate normal random variables will be
explored further in the next section.

1.15
LINEAR TRANSFORMATION AND GENERAL PROPERTIES
OF NORMAL RANDOM VARIABLES

The general linear transformation of one set of normal random variables to another
is of special interest in noise analysis. This will now be examined in detail.

We have just seen that the density function for jointly normal random variables
X1, X2, . . . , Xn can be written in matrix form as

f XðxÞ ¼
1

ð2pÞn=2jCXj1=2
exp � 1

2
ðx�mXÞTC�1

X ðx�mXÞ

 �� 

(1.15.1)

We have added the subscript X to m and C to indicate that these are the mean and
covariance matrices associated with the X random variable. We now define a new
set of random variables Y1, Y2, . . . , Yn that are linearly related to X1, X2, . . . , Xn

via the equation

y ¼ Axþ b (1.15.2)

where lowercase x and y indicate realizations ofX andY, b is a constant vector, and
A is a square matrix that will be assumed to be nonsingular (i.e., invertible). We
wish to find the density function for Y, and we can use the methods of Section 1.13
to do so. In particular, the transformation is one-to-one; therefore, a generalized
version of Eq. (1.13.32) may be used.

f YðyÞ ¼ f XðxðyÞÞ J
x

y

� �����
���� (1.15.3)

We must first solve Eq. (1.15.2) for x in terms of y. The result is

x ¼ A�1y� A�1b (1.15.4)
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Let the individual terms of A�1 be denoted as

A�1 ¼

d11 d12 � � � d1n

d21 d22 � � �
� � � � �

dn1 � � � � dnn

2
6664

3
7775 (1.15.5)

The scalar equations represented by Eq. (1.15.4) are then

x1 ¼ ðd11y1 þ d12y2 þ � � �Þ � ðd11b1 þ d12b2 þ � � �Þ
x2 ¼ ðd21y1 þ d22y2 þ � � �Þ � ðd21b1 þ d22b2 þ � � �Þ
x3 ¼ � � � etc:

(1.15.6)

The Jacobian of the transformation is then

J
x

y

� �
¼ J

x1; x2; . . .

y1; y2; . . .

� �
¼ Det

@x1
@y1

@x2
@y1

� � �

@x1
@y2

@x2
@y2

� � �
. . . . . . . . . . . . . . .

2
666664

3
777775

¼ Det

d11 d21 � � �
d12 d22 � � �
� � � � � � � � � � � �

2
4

3
5 ¼ DetðA�1ÞT ¼ DetðA�1Þ

(1.15.7)

We can now substitute Eqs. (1.15.4) and (1.15.7) into Eq. (1.15.3). The result is

f YðyÞ ¼
jDetðA�1Þj

ð2pÞn=2jCXj1=2


 exp � 1

2
ðA�1y� A�1b�mXÞTC�1

X ðA�1y� A�1b�mXÞ

 �� 

(1.15.8)

We find the mean of Y by taking the expectation of both sides of the linear
transformation

Y ¼ AXþ b

Thus,

mY ¼ AmX þ b (1.15.9)
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The exponent in Eq. (1.15.8) may now be written as

� 1

2
ðA�1y� A�1b� A�1AmXÞTC�1

X ðA�1y� A�1b� A�1AmXÞ

 �
¼ � 1

2
ðy�mYÞTðA�1ÞTC�1

X A�1ðy�mYÞ

 �

¼ � 1

2
ðy�mYÞTðACXA

TÞ�1ðy�mYÞ
h i

(1.15.10)

The last step in Eq. (1.15.10) is accomplished by using the reversal rule for the
inverse of triple products and noting that the order of the transpose and inverse
operations may be interchanged. Also note that

jDetðA�1Þj ¼ 1

jDetAj ¼
1

jDetAj1=2 � jDetAT j1=2
(1.15.11)

Substitution of the forms given in Eqs. (1.15.10) and (1.15.11) into Eq. (1.15.8)
yields for fY

f YðyÞ ¼ 1

ð2pÞn=2jACXA
T j1=2


exp � 1

2
ðy�mYÞTðACXA

TÞ�1ðy�mYÞ
h i�  (1.15.12)

It is apparent now that fY is also normal in formwith the mean and covariance matrix
given by

mY ¼ AmX þ b (1.15.13)

and

CY ¼ ACXA
T (1.15.14)

Thus, we see that normality is preserved in a linear transformation. All that is
changed is the mean and the covariance matrix; the form of the density function
remains unchanged.

There are, of course, an infinite number of linear transformations one can make
on a set of normal random variables. Any transformation, say, S, that produces a
new covariance matrix SCXS

T that is diagonal is of special interest. Such a
transformation will yield a new set of normal random variables that are uncorre-
lated, and thus they are also statistically independent. In a given problem, we may
not choose to actually make this change of variables, but it is important just to know
that the variables can be decoupled and under what circumstances this can be done.
It works out that a diagonalizing transformation will always exist if CX is positive
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definite (8).� In the case of a covariance matrix, this implies that all the correlation
coefficients are less than unity in magnitude. This will be demonstrated for the
bivariate case, and the extension to higher-order cases is fairly obvious.

A symmetric matrix C is said to be positive definite if the scalar xTCx is
positive for all nontrivial x, that is, x 6¼ 0. Writing out xTCx explicitly for the 2
 2
case yields

½x1x2� c11 c12
c12 c22

� �
x1
x2

� �
¼ c11x

2
1 þ 2c12x1x2 þ c22x

2
2 (1.15.15)

But if C is a covariance matrix,

c11 ¼ s2
1; c12 ¼ rs1s2; c22 ¼ s2

2 (1.15.16)

Therefore, xTCx is

xTCx ¼ ðs1x1Þ2 þ 2rðs1x1Þðs2x2Þ þ ðs2x2Þ2 (1.15.17)

Equation (1.15.17) now has a simple geometric interpretation. Assume jrj < 1; r
can be related to the negative cosine of some angle u, where 0 < u < p. Equation
(1.15.17) will then be recognized as the equation for the square of the “opposite
side” of a general triangle; and this, of course, must be positive. Thus, a 2
 2
covariance matrix is positive definite, provided jrj < 1.

It is appropriate now to summarize some of the important properties of
multivariate normal random variables:

1. The probability density function describing a vector random variable X is
completely defined by specifying the mean and covariance matrix of X.

2. The covariance matrix of X is positive definite. The magnitudes of all
correlation coefficients are less than unity.

3. If normal random variables are uncorrelated, they are also statistically
independent.

4. A linear transformation of normal random variables leads to another set of
normal random variables. A decoupling (decorrelating) transformation will
always exist if the original covariance matrix is positive definite.

5. If the joint density function for n random variables is normal in form, all
marginal and conditional densities associated with the n variates will also be
normal in form.

1.16
LIMITS, CONVERGENCE, AND UNBIASED ESTIMATORS

No discussion of probability could be complete without at least some mention of
limits and convergence. To put this in perspective, we first review the usual

�MATLAB’s Cholesky factorization function is helpful in determining a diagonalizing transformation. This is
discussed in detail in Section 3.10 on Monte Carlo simulation.
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deterministic concept of convergence. As an example, recall that the Maclaurin
series for ex is

ex ¼ 1þ xþ x2

2!
þ x3

3!
þ � � � (1.16.1)

This series converges uniformly to ex for all real x in any finite interval. By
convergence we mean that if a given accuracy figure is specified, we can find an
appropriate number of terms such that the specified accuracy is met by a
truncated version of the series. In particular, note that once we have determined
how many terms are needed in the truncated series, this same number is good for
all x within the interval, and there is nothing “chancy” about it. In contrast, we
will see presently that such “100 percent sure” statements cannot be made in
probabilistic situations. A look at the sample mean of n random variables will
serve to illustrate this.

Let X1, X2, . . . , Xn be independent random variables with identical proba-
bility density functions fX(x). In terms of an experiment, these may be thought of as
ordered samples of the random variable X. Next, consider a sequence of random
variables defined as follows:

Y1 ¼ X1

Y2 ¼ X1 þ X2

2

Y3 ¼ X1 þ X2 þ X3

3

..

.

Yn ¼ X1 þ X2 þ � � �Xn

n

(1.16.2)

The random variable Yn is, of course, just the sample mean of the random
variable X. We certainly expect Yn to get closer to E(X) as n becomes large. But
closer in what sense? This is the crucial question. It should be clear that any
particular experiment could produce an “unusual” event in which the sample
mean would differ from E(X) considerably. On the other hand, quite by chance, a
similar experiment might yield a sample mean that was quite close to E(X).
Thus, in this probabilistic situation, we cannot expect to find a fixed number of
samples n that will meet a specified accuracy figure for all experiments. No
matter how large we make n, there is always some nonzero probability that the
very unusual thing will happen, and a particular experiment will yield a sample
mean that is outside the specified accuracy. Thus, we can only hope for
convergence in some sort of average sense and not in an absolute (100 percent
sure) sense.

Let us now be more specific in this example, and let X (and thus X1, X2, . . . ,
Xn) be normal with meanmX and variance s

2
X. From Section 1.15 we also know that

the sample mean Yn is a normal random variable. Since a normal random variable is
characterized by its mean and variance, we now examine these parameters for Yn.
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The expectation of a sum of elements is the sum of the expectations of the elements.
Thus,

EðYnÞ ¼ E
X1 þ X2 þ � � �Xn

n

� �

¼ 1

n
EðX1Þ þ EðX2Þ þ � � �½ �

¼ 1

n
nEðXÞ½ � ¼ mX

(1.16.3)

The sample mean is, of course, an estimate of the true mean of X, and we see from
Eq. (1.16.3) that it at least yields E(X) “on the average.” Estimators that have this
property are said to be unbiased. That is, an estimator is said to be unbiased if

EðEstimate of XÞ ¼ EðXÞ (1.16.4)

Consider next the variance of Yn. Using Eq. (1.16.3) and recalling that the
expectation of the sum is the sum of the expectations, we obtain

Var Yn ¼ E½Yn � EðYnÞ�2

¼ EðY2
n � 2YnmX þ m2

XÞ
¼ EðY2

nÞ � m2
X

(1.16.5)

The sample mean Yn may now be replaced with (1/n)ðX1 þ X2 � � � þ XnÞ; and, after
squaring and some algebraic simplification, Eq. (1.16.5) reduces to

Var Yn ¼ 1

n
Var X

¼ s2
X

n

(1.16.6)

Thus, we see that the variance of the sample mean decreases with increasing n and
eventually goes to zero as n ! 1.

The probability density functions associated with the sample mean are shown
in Fig. 1.16 for three values of n. It should be clear from the figure that convergence
of some sort takes place as n ! 1. However, no matter how large we make n, there
will still remain a nonzero probability that Yn will fall outside some specified
accuracy interval. Thus, we have convergence in only a statistical sense and not in
an absolute deterministic sense.

There are a number of types of statistical convergence that have been defined
and are in common usage (9, 10). We look briefly at two of these. Consider a
sequence of random variables Y1, Y2, . . . , Yn. The sequence Yn is said to converge
in the mean (or mean square) to Y if

lim
n!1E½ðYn � YÞ2� ¼ 0 (1.16.7)
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Convergence in the mean is sometimes abbreviated as

l:i:m: Yn ¼ Y (1.16.8)

where l.i.m. denotes “limit in the mean.”
The sequence Yn converges in probability to Y if

lim
n!1PðjYn � Y j � eÞ ¼ 0 (1.16.9)

where e is an arbitrarily small positive number.
It should be clear from Eqs. (1.16.3) and (1.16.6) that the sample mean

converges “in the mean” to mX. It also converges in probability because the
area under the “tails” of the probability density outside a specified interval about
mX goes to zero as n ! 1. Roughly speaking, convergence in the mean indicates
that the dispersion (variance) about the limiting value shrinks to zero in the limit.
Similarly, convergence in probability means than an arbitrarily small accuracy
criterion is met with a probability of one as n ! 1. Davenport and Root (9) point
out that convergence in the mean is a more severe requirement than convergence in
probability. Thus, if a sequence converges in the mean, we are also assured that it
will converge in probability. The converse is not true though, because convergence
in probability is a “looser” sort of criterion than convergence in the mean.

1.17
A NOTE ON STATISTICAL ESTIMATORS

Books on statistics usually give a whole host of types of estimators, each having its
own descriptive title. For example, a consistent estimator is one that continually gets
better and better with more and more observations; estimation efficiency is a
measure of the accuracy of the estimate relative to what we could ever expect to
achieve with a given set of observations; and so forth. We will not go on further.
Most of these descriptors pertain to estimating parameters such as mean and/or
variance of the random variable under consideration. These are important parame-
ters, and then accurate determination from observations is important in real-life

Figure 1.16 Probability density functions illustrating

convergence of the sample mean.
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applications. However, estimating parameters is a statistical problem, not a filtering
problem. In the filtering problem we usually assume that the key statistical
parameters have already been determined, and the remaining problem is that of
estimating the random process itself as it evolves with time. This is the central
theme of Kalman filtering, which is the primary subject of this book, so we will
defer on the statistics part of the overall problem.

However, all the foregoing comments being said, certain statistical terms carry
over to filtering, and we need to give these terms precise mathematical meaning:

(a) Linear estimate. A linear estimate of a random variable is one that is
formed as a linear function of the measurements, both past and present. We
think of the random variable and its estimate as evolving with time; i.e., in
general, they are not constants. Prior information about the process being
estimated may also be included in the estimate, but if so, it must be
accounted for linearly.

(b) Unbiased estimate. This estimate is one where

E x̂½ � ¼ x; ðx is the random variable; and x̂ is its estimateÞ (1.17.1)

If the above statement is satisfied, then the expectation of the error is
zero, i.e.,

E x� x̂½ � ¼ E e½ � ¼ 0 (1.17.2)

(c) Minimum-mean-square-error estimate. This estimate is formed such that

E x� x̂ð Þ2
h i

is made as small as possible. Simply stated, no further

mathematical manipulation will do any better.

(d) Minimum variance estimate. Here, the variance of the estimate is made as
small as possible. Clearly, if x itself has zero mean, then the minimum-
mean-square-error estimate, or Item (c), is the same as the minimum
variance estimate.

(e) Consistent estimate. When associated with the filtering of a dynamic
random process, a consistent estimate is defined as one where the esti-
mation error is zero mean with the covariance matching that calculated by
the filter.

PROBLEMS

1.1 In straight poker, five cards are dealt to each player from a deck of ordinary
playing cards. What is the probability that a player will be dealt a flush (i.e., five
cards all of one suit)?

1.2 In the game of blackjack, the player is initially dealt two cards from a deck of
ordinary playing cards. Without going into all the details of the game, it will suffice
to say here that the best possible hand one could receive on the initial deal is a
combination of an ace of any suit and any face card or 10. What is the probability
that the player will be dealt this combination?
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1.3 During most of 2009 the U.S. Congress was debating wide-ranging changes
in the health care system in the United States. During this period a prominent
midwestern newspaper conducted a poll in an attempt to assess the public’s feelings
about the proposed changes. The results were published in the form of the following
table of percentages:

Democratic Republican Independent

Strongly in favor 36 4 15

Just in favor 10 6 7

Don’t much care 30 27 32

Strongly oppose 20 51 36

Just oppose 4 11 8

Not sure 2 1 2

Even allowing for some roundoff, note that the sum of all the percentages in the
table is not 100 percent. Thus, this cannot be a table of joint probabilities.

(a) If not joint probabilities, what do the numerical values represent in terms of
probabilities (if anything)?

(b) If we have two sets of random outcomes, not necessarily disjoint, and we
have the table of joint probabilities, then we can always get all of the
conditional and unconditional probabilities from the joint table. This is to
say that the joint table tells the “whole story.” Can the table of joint
probabilities be obtained from the table given in this problem? Explain
your answer.

1.4 Imagine a simple dice game where three dice are rolled simultaneously. Just as
in craps, in this game we are only interested in the sum of the dots on any given roll.

(a) Describe, in words, the sample space for this probabilistic scenario. (You
do not need to calculate all the associated probabilities—just a few at the
low end of the realizable sums will suffice.)

(b) What is the probability of rolling a 3?
(c) What is the probability of rolling a 4?
(d) What is the probability of rolling a 3 or 4?

1.5 Roulette is a popular table game in casinos throughout the world. In this game
a ball is spun around a wheel rotating in the opposite direction. As the wheel and ball
slow down, the ball drops into a pocket on the wheel at random. In United States
casinos the pockets are numbered 1 through 36 plus two more that are numbered 0
and 00. The probability of the ball falling into any particular pocket is then 1/38. The
player can make a variety of bets. The simplest is to bet that the ball falls into one
particular pocket, and the payout on this bet is 35 to 1. That is, in the event of a win
the casino returns the player’s wager plus 35 times the wager.

(a) Compute the player’s average return when betting on a single number.
Express the return as a percentage.

(b) Also compute the average percentage "take" for the casino.
(c) The layout of the numbers on the table is such that it is easy to bet on

selected groups of four numbers. The payout on this bet is 8 to 1. What is
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the player’s average return on this 4-number group bet? (This is also known
as a “corner” bet.)

1.6 Contract bridge is played with an ordinary deck of 52 playing cards. There are
four players with players on opposite sides of the table being partners. One player
acts as dealer and deals each player 13 cards. A bidding sequence then takes place,
and this establishes the trump suit and names the player who is to attempt to take a
certain number of tricks. This player is called the declarer. The play begins with the
player to the declarer’s left leading a card. The declarer’s partner’s hand is then laid
out on the table face up for everyone to see. This then enables the declarer to see a
total of 27 cards as the play begins. Knowledge of these cards will, of course, affect
his or her strategy in the subsequent play.

Suppose the declarer sees 11 of the 13 trump cards as the play begins. We will
assume that the opening lead was not a trump, which leaves 2 trumps outstanding in
the opponents’ hands. The disposition of these is, of course, unknown to the
declarer. There are, however, a limited number of possibilities:

(a) Both trumps lie with the opponent to the left and none to the right.
(b) Both trumps are to the right and none to the left.
(c) The two trumps are split, one in each opponent’s hand.

Compute the probabilities for each of the (a), (b), and (c) possibilities.

(Hint: Rather than look at all possible combinations, look at numbers of combina-
tions for 25 specific cards held by the opponents just after the opening lead. Two of
these will, of course, be specific trump cards. The resulting probability will be the
same regardless of the particular choice of specific cards.)

1.7 In the game of craps the casinos have ways of making money other than
betting against the player rolling the dice. The other participants standing around the
table may also place side bets with the casino while waiting their turn with the dice,
one such side bet is to bet that the next roll will be 2 (i.e.,“snake eyes”). This is a
one roll bet and the payout is 30 to 1. That is, the casino returns the player’s bet plus
30 times the amount bet with a win.

(a) Compute the average percentage return for the player making this bet.
(b) Also compute the average percentage casino “take” for this bet. would you

say this is a good bet relative to throwing the dice?

1.8 Cribbage is an excellent two-player card game. It is played with a 52-card deck
of ordinary player cards. The initial dealer is determined by a cut of the cards, and
the dealer has a slight advantage over the nondealer because of the order in which
points are counted. Six cards are dealt to each player and, after reviewing their
cards, they each contribute two cards to the crib. The non-dealer then cuts the
remaining deck for the dealer who turns a card. This card is called the starter, if it
turns out to be a jack, the dealer immediately scores 2 points. Thus, the jack is an
important card in cribbage.

(a) What is the unconditional probability that the starter card will be a jack?
(b) Now consider a special case where both the dealer and non-dealer have

looked at their respective six cards, and the dealer observes that there is no
jack in his hand. At this point the deck has not yet been cut for the starter
card. From the dealer’s viewpoint, what is the probability that the starter
card will be a jack?

(c) Now consider another special case where the dealer, in reviewing his initial
six cards, notes that one of them is a jack. Again, from his vantage point,
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what is the probability that the starter card will be a jack? [Note in both
parts (a) and (b) we are considering conditional rather than unconditional
probability].

1.9 Assume equal likelihood for the birth of boys and girls. What is the probability
that a four-child family chosen at random will have two boys and two girls,
irrespective of the order of birth?

[Note: The answer is not 1
2
as might be suspected at first glance.)

1.10 Consider a sequence of random binary digits, zeros and ones. Each digit may
be thought of as an independent sample from a sample space containing two
elements, each having a probability of 1

2
. For a six-digit sequence, what is the

probability of having:
(a) Exactly 3 zeros and 3 ones arranged in any order?
(b) Exactly 4 zeros and 2 ones arranged in any order?
(c) Exactly 5 zeros and 1 one arranged in any order?
(d) Exactly 6 zeros?

1.11 A certain binary message is n bits in length. If the probability of making an
error in the transmission of a single bit is p, and if the error probability does not
depend on the outcome of any previous transmissions, show that the probability of
occurrence of exactly k bit errors in a message is

Pðk errorsÞ ¼ n
k

� �
pkð1� pÞn�k

(P1.10)

The quantity n
k

� �
denotes the number of combinations of n things taken k at a time.

(This is a generalization of Problems 1.9 and 1.10.)

1.12 Video poker has become a popular game in casinos in the United States (4).
The player plays against the machine in much the same way as with slot machines,
except that the machine displays cards on a video screen instead of the familiar
bars, etc., on spinning wheels. When a coin is put into the machine, it immediately
displays five cards on the screen. After this initial five-card deal, the player is
allowed to discard one to five cards at his or her discretion and obtain replacement
cards (i.e., this is the “draw”). The object, of course, is to try to improve the poker
hand with the draw.

(a) Suppose the player is dealt the 3, 7, 8, 10 of hearts and the queen of spades
on the initial deal. The player then decides to keep the four hearts and
discard the queen of spades in hopes of getting another heart on the draw,
and thus obtain a flush (five cards, all of the same suit). The typical video
poker machine pays out five coins for a flush. Assume that this is the payout
and that the machine is statistically fair. What is the expected (i.e., average)
return for this draw situation? (Note that an average return of 1.0 is the
break-even return.)

(b) Some of the Las Vegas casinos advertise 100 percent (or “full pay”) video
poker machines. These machines have pay tables that are such that the
machines will return slightly greater than 100 percent under the right
conditions. How can this be? The answer is that most of the players do not
play a perfect game in terms of their choices on the draw. Suppose,
hypothetically, that only 10 percent of the players make perfect choices on
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the draw and they achieve a 100.2 percent; and the other 90 percent of the
players only achieve a 98 percent return. What would be the casino
percentage return under these circumstances?

1.13 The random variable X may take on all values between 0 and 2, with all
values within this range being equally likely.

(a) Sketch the probability density function for X.
(b) Sketch the cumulative probability distribution function for X.
(c) Calculate E(X), E(X2), and Var X.

1.14 A random variable X has a probability density function as shown.
(a) Sketch the cumulative distribution function for X.
(b) What is the variance of X?

1.15 A random variable X whose probability density function is given by

f XðxÞ ¼ ae�ax; x � 0

0; x < 0

�

is said to have an exponential probability density function. This density function is
sometimes used to describe the failure of equipment components (13). That is, the
probability that a particular component will fail within time T is

PðfailureÞ ¼
Z T

0

f XðxÞ dx (P1.15)

Note that a is a parameter that may be adjusted to fit the situation at hand. Find a for
an electronic component whose average lifetime is 10,000 hours. (“Average” is
used synonymously with “expectation” here.)

1.16 Consider a sack containing several identical coins whose sides are labeledþ1
and �1. A certain number of coins are withdrawn and tossed simultaneously. The
algebraic sum of the numbers resulting from the toss is a discrete random variable.
Sketch the probability density function associated with the random variable for the
following situations:

(a) One coin is tossed.
(b) Two coins are tossed.
(c) Five coins are tossed.
(d) Ten coins are tossed.

Figure P1.14
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The density functions in this case consist of impulses. In the sketches, represent
impulses with “arrows” whose lengths are proportional to the magnitudes of the
impulses. (This is the discrete analog of Example 1.11. Note the tendency toward
central distribution.)

1.17 Let the sum of the dots resulting from the throw of two dice be a discrete
random variable X. The probabilities associated with their permissible values 2, 3,
. . . , 12 are easily found by itemizing all possible results of the throw (or from
Fig. 1.3). Find E(X) and Var X.

1.18 Discrete random variables X and Ymay each take on integer values 1, 3, and
5, and the joint probability of X and Y is given in the table below.

Y
X 1 3 5

1 1
18

1
18

1
18

2 1
18

1
18

1
6

3 1
18

1
6

1
3

(a) Are random variables X and Y independent?
(b) Find the unconditional probability P(Y¼ 5).
(c) What is the conditional probability PðY ¼ 5jX ¼ 3Þ?

1.19 The diagram shown as Fig. P1.19 gives the error characteristics of a hypothetical
binary transmission system. The numbers shown next to the arrows are the conditional
probabilities of Y givenX. The unconditional probabilities forX are shown to the left of
the figure. Find:

(a) The conditional probabilities PðX ¼ 0jY ¼ 1Þ and PðX ¼ 0jY ¼ 0Þ.
(b) The unconditional probabilities P(Y¼ 0) and P(Y¼ 1).
(c) The joint probability array for P(X, Y).

1.20 The Rayleigh probability density function is defined as

f RðrÞ ¼
r

s2
e�r2=2s2

(P1.20)

where s2 is a parameter of the distribution (see Example 1.13).
(a) Find the mean and variance of a Rayleigh distributed random variable R.
(b) Find the mode of R (i.e., the most likely value of R).

Figure P1.19
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1.21 The target shooting example of Section 1.13 led to the Rayleigh density
function specified by Eq. (1.13.22).

(a) Show that the probability that a hit will lie within a specified distance R0

from the origin is given by

PðHit lies within R0Þ ¼ 1� e�R2
0=2s

2

(P1.21)

(b) The value of R0 in Eq. (P1.21) that yields a probability of .5 is known as the
circular probable error (or circular error probable, CEP). Find the CEP in
terms of s.

(c) Navigation engineers also frequently use a 95 percent accuracy figure in
horizontal positioning applications. (This is in contrast to CEP.) The same
circular symmetry assumptions used in parts (a) and (b) apply here in
computing the 95 percent radius. To be specific, find the R95 which is such
that 95 percent of the horizontal error lies within a circle of radius R95. Just
as in part (b) express R95 in terms of s.

1.22 Consider a random variable X with an exponential probability density
function

f XðxÞ ¼ e�x; x � 0

0; x < 0

�

Find:
(a) P(X� 2).
(b) P(1�X� 2).
(c) E(X), E(X2), and Var X.

1.23 Random variables X and Y have a joint probability density function defined as
follows:

f XYðx; yÞ ¼ :25; �1 � x � 1 and �1 � y � 1

0; otherwise

�

Are random variables X and Y statistically independent?

[Hint: Integrate with respect to appropriate dummy variables to obtain fX(x) and
fY(y). Then check to see if the product of fX and fY is equal to fXY.]

1.24 Random variables X and Y have a joint probability density function

f XYðx; yÞ ¼ e�ðxþyÞ; x � 0 and y � 0

0; otherwise

�

Find:
(a) PðX � 1

2
Þ

(b) P(Xþ Y)� 1].
(c) P[(X or Y)� 1].
(d) P[(X and Y)� 1].

1.25 Are the random variables of Problem 1.24 statistically independent?
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1.26 Random variables X and Y are statistically independent and their respective
probability density functions are

f XðxÞ ¼ 1
2
e�jxj

f YðyÞ ¼ e�2jyj

Find the probability density function associated with Xþ Y.

(Hint: Fourier transforms are helpful here.)

1.27 Random variable X has a probability density function

f XðxÞ ¼
1
2
; �1 � x � 1

0; otherwise

(

Random variable Y is related to X through the equation

y ¼ x3 þ 1

What is the probability density function for Y?

1.28 The vector Gaussian random variable

X ¼ X1

X2

� �

is completely described by its mean and covariance matrix. In this example, they are

mX ¼ 1

2

� �

CX ¼ 4 1

1 1

� �

Now consider another vector random variable Y that is related to X by the equation

y ¼ Axþ b

where

A ¼ 2 1

1 �1

� �
; b ¼ 1

1

� �

Find the mean and covariance matrix for Y.

1.29 A pair of random variables, X and Y, have a joint probability density function

f XYðx; yÞ ¼
1; 0 � y � 2x and 0 � x � 1

0; elsewhere

�
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Find:

EðXjY ¼ :5Þ
[Hint: Find f XjYðxÞ for y¼ .5, and then integrate xf XjYðxÞ to find EðXjY ¼ :5Þ.]
1.30 Two continuous random variables X and Y have a joint probability density
function that is uniform inside the unit circle and zero outside, that is,

f XYðx; yÞ ¼
1=p; ðx2 þ y2Þ � 1

0; ðx2 þ y2Þ > 1

(

(a) Find the unconditional probability density function for the random variable
Y and sketch the probability density as a function of Y.

(b) Are the random variables X and Y statistically independent?

1.31 A normal random variable X is described byN(0, 4). Similarly, Y is normal
and is described byN(1, 9). X and Y are independent. Another random variable Z is
defined by the additive combination

Z ¼ X þ 2Y

Write the explicit expression for the probability density function for Z.

1.32 Consider a random variable that is defined to be the sum of the squares of n
independent normal random variables, all of which areN(0, 1). The parameter n is
any positive integer. Such a sum-of-the-squares random variable is called a chi-
square random variable with n degrees of freedom. The probability density function
associated with a chi-square random variable X is

f XðxÞ ¼
xðn=2Þ�1e�x=2

2n=2G
n

2

� 	 ; x > 0

0; x � 0

8><
>:

where G indicates the gamma function (10). It is not difficult to show that the mean
and variance of X are given by

EðXÞ ¼ n
Var X ¼ 2n

[This is easily derived by noting that the defining integral expressions for the first
and second moments of X are in the exact form of a single-sided Laplace transform
with s ¼ 1

2
. See Appendix A for a table of Laplace transforms and note that

n! ¼ Gðnþ 1Þ.]
(a) Make rough sketches of the chi-square probability density for n¼ 1, 2,

and 4. (You will find MATLAB useful here.)
(b) Note that the chi-square random variable for n> 1 is the sum of indepen-

dent random variables that are radically non-Gaussian (e.g., look at the
sketch of fX for n¼ 1). According to the central limit theorem, there should
be a tendency toward normality as we sum more and more such random
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variables. Using MATLAB, create an m-file for the chi-square density
function for n¼ 16. Plot this function along with the normal density
function for a N(16, 32) random variable (same mean and sigma as
the chi-square random variable). This is intended to demonstrate the
tendency toward normality, even when the sum contains only 16 terms.
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2
Mathematical Description of
Random Signals

The concept of frequency spectrum is familiar from elementary physics, and so it
might seem appropriate to begin our discussion of noiselike signals with their
spectral description. This approach, while intuitively appealing, leads to all sorts of
difficulties. The only really careful way to describe noise is to begin with a
probabilistic description and then proceed to derive the associated spectral char-
acteristics from the probabilistic model. We now proceed toward this end.

2.1
CONCEPT OF A RANDOM PROCESS

We should begin by distinguishing between deterministic and random signals.
Usually, the signals being considered here will represent some physical quantity
such as voltage, current, distance, temperature, and so forth. Thus, they are real
variables. Also, time will usually be the independent variable, although this does not
necessarily need to be the case. A signal is said to be deterministic if it is exactly
predictable for the time span of interest. Examples would be

(a) xðtÞ ¼ 10 sin 2pt (sine wave)

(b) xðtÞ ¼ 1; t � 0

0; t < 0

�
(unit step)

(c) xðtÞ ¼ 1� e�t; t � 0

0; t < 0

�
(exponential response)

Notice that there is nothing “chancy” about any of these signals. They are
described by functions in the usual mathematical sense; that is, specify a numerical
value of t and the corresponding value of x is determined. We are usually able to
write the functional relationship between x and t explicitly. However, this is not
really necessary. All that is needed is to know conceptually that a functional
relationship exists.
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In contrast with a deterministic signal, a random signal always has some
element of chance associated with it. Thus, it is not predictable in a deterministic
sense. Examples of random signals are:

(d) X(t)¼ 10 sin(2ptþ u), where u is a random variable uniformly distributed
between 0 and 2p.

(e) X(t)¼A sin(2ptþ u), where u and A are independent random variables with
known distributions.

(f) X(t)¼A noiselike signal with no particular deterministic structure—one that
just wanders on aimlessly ad infinitum.

Since all of these signals have some element of chance associated with them, they
are random signals. Signals such as (d), (e), and (f) are formally known as random or
stochastic processes, and we will use the terms random and stochastic interchange-
ably throughout the remainder of the book.*

Let us now consider the description of signal (f) in more detail. It might be the
common audible radio noise that was mentioned in Chapter 1. If we looked at an
analog recording of the radio speaker current, itmight appear as shown in Fig. 2.1.We
might expect such a signal to have some kind of spectral description, because the
signal is audible to the human ear. Yet the precise mathematical description of such
a signal is remarkably elusive, and it eluded investigators prior to the 1940s (3, 4).

Imagine sampling the noise shown in Fig. 2.1 at a particular point in time, say, t1.
The numerical value obtained would be governed largely by chance, which suggests
it might be considered to be a random variable. However, with random variables we
must be able to visualize a conceptual statistical experiment in which samples of
the random variable are obtained under identical chance circumstances. It would not
be proper in this case to sample X by taking successive time samples of the same
signal, because, if they were taken very close together, there would be a close
statistical connection among nearby samples. Therefore, the conceptual experiment
in this case must consist of many “identical” radios, all playing simultaneously, all

*We need to recognize a notational problem here. Denoting the random process as X(t) implies that there is a
functional relationship between X and t. This, of course, is not the case because X(t) is governed by chance.
For this reason, some authors (1, 2) prefer to use a subscript notation, that is, Xt rather than X(t), to denote a
random time signal. Xt then “looks” like a random variable with time as a parameter, which is precisely what it
is. This notation, however, is not without its own problems. Suffice it to say, in most engineering literature, time
random processes are denoted with “parentheses t” rather than “subscript t.”Wewill do likewise, and the reader
will simply have to remember that X(t) does not mean function in the usual mathematical sense when X(t) is a
random process.

Figure 2.1 Typical radio noise signal.
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being tuned away from regular stations in different portions of the broadcast band,
and all having their volumes turned up to the same sound level. This then leads to the
notion of an ensemble of similar noiselike signals as shown in Fig. 2.2.

It can be seen then that a random process is a set of random variables that
unfold with time in accordance with some conceptual chance experiment. Each of
the noiselike time signals so generated is called a sample realization of the process.
Samples of the individual signals at a particular time t1 would then be sample
realizations of the random variable X(t1). Four of these are illustrated in Fig. 2.2 as
XA(t1), XB(t1), XC(t1), and XD(t1). If we were to sample at a different time, say, t2, we
would obtain samples of a different random variable X(t2), and so forth. Thus, in this
example, an infinite set of random variables is generated by the random process X(t).

The radio experiment just described is an example of a continuous-time
random process in that time evolves in a continuous manner. In this example,
the probability density function describing the amplitude variation also happens to
be continuous. However, random processes may also be discrete in either time or
amplitude, as will be seen in the following two examples.

Figure 2.2 Ensemble of sample realizations of a random process.

EXAMPLE 2.1

Consider a card player with a deck of standard playing cards numbered from 1 (ace)
through 13 (king). The deck is shuffled and the player picks a card at random and
observes its number. The card is then replaced, the deck reshuffled, and another card
observed. This process is then repeated at unit intervals of time and continued on ad
infinitum. The random process so generated would be discrete in both time and
“amplitude,” provided we say that the observed number applies only at the precise
instant of time it is observed.

The preceding description would, of course, generate only one sample real-
ization of the process. In order to obtain an ensemble of sample signals, we need to
imagine an ensemble of card players, each having similar decks of cards and each
generating a different (but statistically similar) sample realization of the process.

&
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2.2
PROBABILISTIC DESCRIPTION OF A RANDOM PROCESS

As mentioned previously, one can usually write out the functional form for a
deterministic signal explicitly; for example, s(t)¼ 10 sin 2pt, or s(t)¼ t2, and so on.
No such deterministic description is possible for random signals because the
numerical value of the signal at any particular time is governed by chance.
Thus, we should expect our description of noiselike signals to be somewhat vaguer
than that for deterministic signals. One way to specify a random process is to
describe in detail the conceptual chance experiment giving rise to the process.
Examples 2.1 and 2.2 illustrated this way of describing a random process. The
following two examples will illustrate this further.

EXAMPLE 2.3

Consider a time signal (e.g., a voltage) that is generated according to the following
rules: (a) The waveform is generated with a sample-and-hold arrangement where
the “hold” interval is 1 sec; (b) the successive amplitudes are independent samples
taken from a set of random numbers with uniform distribution from �1 to þ1; and
(c) the first switching time after t¼ 0 is a random variable with uniform distribution
from 0 to 1. (This is equivalent to saying the time origin is chosen at random.) A
typical sample realization of this process is shown in Fig. 2.3. Note that the process
mean is zero and its mean-square value works out to be one-third. [This is obtained
from item (b) of the description and integrating

R 1

�1
x2pðxÞdx.]

&

EXAMPLE 2.2

Imagine a sack containing a large quantity of sample numbers taken from a zero-
mean, unity-variance normal distribution. An observer reaches into the sack at unit
intervals of time and observes a number with each trial. In order to avoid exact
repetition, he does not replace the numbers during the experiment. This process
would be discrete in time, as before, but continuous in amplitude. Also, the
conceptual experiment leading to an ensemble of sample realizations of the process
would involve many observers, each with a separate sack of random numbers.

&

Figure 2.3 Sample signal for Example 2.3.
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Now, from Examples 2.3 and 2.4 it should be apparent that if we simply say,
“Noiselike waveform with zero mean and mean-square value of one-third,” we
really are not being very definite. Both processes of Examples 2.3 and 2.4 would
satisfy these criteria, but yet they are quite different. Obviously, more information
than just mean and variance is needed to completely describe a random process.
We will now explore the “description” problem in more detail.

A more typical “noiselike” signal is shown in Fig. 2.5. The times indicated,
t1, t2, . . . , tk, have been arranged in ascending order, and the corresponding
sample values X1, X2, . . . , Xk are, of course, random variables. Note that we have
abbreviated the notation and have let X(t1)¼X1, X(t2)¼X2, . . . , and so on.
Obviously, the first-order probability density functions f X1

ðxÞ; f X2
ðxÞ; . . . ; f Xk

ðxÞ,
are important in describing the process because they tell us something about the
process amplitude distribution. In Example 2.3, f X1

ðxÞ; f X2
ðxÞ; . . . ; f Xk

ðxÞ, are all
identical density functions and are given by [using f X1

ðxÞ as an example]

f X1
ðxÞ

1

2
; �1 � x � 1

0; jxj > 1

8<
:

EXAMPLE 2.4

Consider another time function generated with a sample-and-hold arrangement with
these properties: (a) The “hold” interval is 0.2 sec, (b) the successive amplitudes are
independent samples obtained from a zero-mean normal distribution with a variance
of one-third, and (c) the switching points occur at multiples of .2 units of time; that
is, the time origin is not chosen at random in this case. A sketch of a typical
waveform for this process is shown in Fig. 2.4.

&

Figure 2.4 Typical waveform for Example 2.4.

Figure 2.5 Sample signal of a typical noise process.
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The density functions are not always identical for X1, X2, . . . , Xk; they just happened
to be in this simple example. In Example 2.4, the density functions describing the
amplitude distribution of the X1, X2, . . . , Xk random variables are again all the same,
but in this case they are normal in form with a variance of one-third. Note that
the first-order densities tell us something about the relative distribution of the
process amplitude as well as its mean and mean-square value.

It should be clear that the joint densities relating any pair of random variables,
for example, f X1X2

ðx1; x2Þ; f X1X3
ðx1; x3Þ, and so forth, are also important in our

process description. It is these density functions that tell us something about how
rapidly the signal changes with time, and these will eventually tell us something
about the signal’s spectral content. Continuing on, the third, fourth, and subsequent
higher-order density functions provide even more detailed information about the
process in probabilistic terms. However, this leads to a formidable description of
the process, to say the least, because a k-variate density function is required where k
can be any positive integer. Obviously, we will not usually be able to specify this kth
order density function explicitly. Rather, this usually must be done more subtly by
providing, with a word description or otherwise, enough information about the
process to enable one to write out any desired higher-order density function; but
the actual “writing it out” is usually not done.

Recall from probability theory that two random variables X and Y are said to be
statistically independent if their joint density function can be written in product
form

f XYðx; yÞ ¼ f XðxÞf YðyÞ (2.2.1)

Similarly, random processes X(t) and Y(t) are statistically independent if the joint
density for any combination of random variables of the two processes can be written
in product form, that is, X(t) and Y(t) are independent if

f X1X2...Y1Y2... ¼ f X1X2...f Y1Y2... (2.2.2)

In Eq. (2.2.2) we are using the shortened notation X1¼X(t1), X2¼X(t2), . . . , and
Y1 ¼ Y1ðt01Þ; Y2 ¼ Y2ðt02Þ, . . . , where the sample times do not have to be the same
for the two processes.

In summary, the test for completeness of the process description is this: Is
enough information given to enable one, conceptually at least, to write out the kth
order probability density function for any k? If so, the description is as complete as
can be expected; if not, it is incomplete to some extent, and radically different
processes may fit the same incomplete description.

2.3
GAUSSIAN RANDOM PROCESS

There is one special situation where an explicit probability density description of
the random process is both feasible and appropriate. This case is the Gaussian or
normal random process. It is defined as one in which all the density functions
describing the process are normal in form. Note that it is not sufficient that just
the “amplitude” of the process be normally distributed; all higher-order density
functions must also be normal! As an example, the process defined in Example 2.4
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has a normal first-order density function, but closer scrutiny will reveal that its
second-order density function is not normal in form. Thus, the process is not a
Gaussian process.

The multivariate normal density function was discussed in Section 1.14. It
was pointed out there that matrix notation makes it possible to write out all k-
variate density functions in the same compact matrix form, regardless of the size
of k. All we have to do is specify the vector random-variable mean and covariance
matrix, and the density function is specified. In the case of a Gaussian random
process the “variates” are the random variables X(t1), X(t2), . . . , X(tk), where the
points in time may be chosen arbitrarily. Thus, enough information must
be supplied to specify the mean and covariance matrix regardless of the choice
of t1, t2, . . . , tk. Examples showing how to do this will be deferred for the moment,
because it is expedient first to introduce the basic ideas of stationarity and
correlation functions.

2.4
STATIONARITY, ERGODICITY, AND CLASSIFICATION OF
PROCESSES

A random process is said to be time stationary or simply stationary if the density
functions describing the process are invariant under a translation of time. That is,
if we consider a set of random variables X1¼X(t1), X2¼X(t2), . . . , Xk¼X(tk), and
also a translated set X0

1 ¼ Xðt1 þ tÞ; X0
2 ¼ Xðt1 þ tÞ; X0

k ¼ Xðtk þ tÞ, the density
functions f X1

; f X1X2
; . . . ; f X1X2...Xk

describing the first set would be identical in
form to those describing the translated set. Note that this applies to all the higher-
order density functions. The adjective strict is also used occasionally with this
type of stationarity to distinguish it from wide-sense stationarity, which is a less
restrictive form of stationarity. This will be discussed later in Section 2.5 on
correlation functions.

A random process is said to be ergodic if time averaging is equivalent to
ensemble averaging. In a qualitative sense this implies that a single sample time
signal of the process contains all possible statistical variations of the process. Thus,
no additional information is to be gained by observing an ensemble of sample
signals over the information obtained from a one-sample signal, for example, one
long data recording. An example will illustrate this concept.

EXAMPLE 2.5

Consider a somewhat trivial process defined to be a constant with time, the constant
being a random variable with zero-mean normal distribution. An ensemble of
sample realizations for this process is shown in Fig. 2.6. A common physical
situation where this kind of process model would be appropriate is random
instrument bias. In many applications, some small residual random bias will remain
in spite of all attempts to eliminate it, and the bias will be different for each
instrument in the batch. In Fig. 2.6 we see that time samples collected from a single
sample signal, say the first one, will all have the same value a0. The average of these
is, of course, just a0. On the other hand, if we were to collect samples in an ensemble
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In the case of physical noise processes, one can rarely justify strict stationarity
or ergodicity in a formal sense. Thus, we often lean on heuristic knowledge of the
processes involved and simply make assumptions accordingly.

Random processes are sometimes classified according to two categories,
deterministic and nondeterministic. As might be expected, a deterministic random
process resembles a deterministic nonrandom signal in that it has some special
deterministic structure. Specifically, if the process description is such that knowl-
edge of a sample signal’s past enables exact prediction of its future, it is classified as
a deterministic random process. Examples are:

1. X(t)¼ a; a is normal, N(m, s2).

2. X(t)¼A sin vt; A is Rayleigh distributed, and v is a known constant.

3. X(t)¼A sin(vtþ u); A and u are independent, and Rayleigh and uniformly
distributed, respectively.

sense, the values a0, a1, a2, . . . , an, would be obtained. These would have a normal
distribution with zero mean. Obviously, time and ensemble sampling do not lead to
the same result in this case, so the process is not ergodic. It is, however, a stationary
process because the “statistics” of the process do not change with time.

&

Figure 2.6 Ensemble of random constants.
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In each case, if one were to specify a particular sample signal prior to some
time, say, t1, the sample realizations for that particular signal would be indirectly
specified, and the signal’s future values would be exactly predictable.

Random processes that are not deterministic are classified as nondetermin-
istic. These processes have no special functional structure that enables their
exact prediction by specification of certain key parameters or their past history.
Typical “noise” is a good example of a nondeterministic random process. It
wanders on aimlessly, as determined by chance, and has no particular determi-
nistic structure.

2.5
AUTOCORRELATION FUNCTION

The autocorrelation function for a random process X(t) is defined as*

RXðt1; t2Þ ¼ E½Xðt1ÞXðt2Þ� (2.5.1)

where t1 and t2 are arbitrary sampling times. Clearly, it tells how well the process is
correlated with itself at two different times. If the process is stationary, its
probability density functions are invariant with time, and the autocorrelation
function depends only on the time difference t2� t1. Thus, RX reduces to a function
of just the time difference variable t, that is,

RXðtÞ ¼ E½XðtÞXðt þ tÞ� ðstationary caseÞ (2.5.2)

where t1 is now denoted as just t and t2 is (tþ t). Stationarity assures us that the
expectation is not dependent on t.

Note that the autocorrelation function is the ensemble average (i.e., expect-
ation) of the product of X(t1) and X(t2); therefore, it can formally be written as

RXðt1; t2Þ ¼ E½X1X2� ¼
Z 1

�1

Z 1

�1
x1x2f X1X2

ðx1; x2Þdx1dx2 (2.5.3)

where we are using the shortened notation X1¼X(t1) and X2¼X(t2). However,
Eq. (2.5.3) is often not the simplest way of determining RX because the joint density
function f X1X2

ðx1; x2Þ must be known explicitly in order to evaluate the integral. If
the ergodic hypothesis applies, it is often easier to compute RX as a time average
rather than an ensemble average. An example will illustrate this.

* In describing the correlation properties of random processes, some authors prefer to work with the
autocovariance function rather than the autocorrelation function as defined by Eq. (2.5.1). The autocovariance
function is defined as

Autocovariance function ¼ Ef½Xðt1Þ � mxðt1Þ�½Xðt2Þ � mxðt2Þ�g
The two functions are obviously related. In one case the mean is included in the product (autocorrelation),
and in the other the mean is subtracted out (autocovariance). That is the essential difference. The two
functions are, of course, identical for zero-mean processes. The autocorrelation function is probably the
more common of the two in engineering literature, so it will be used throughout this text.
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Sometimes, the random process under consideration is not ergodic, and it is
necessary to distinguish between the usual autocorrelation function (ensemble
average) and the time-average version. Thus, we define the time autocorrelation
function as

RXA
ðtÞ ¼ lim

T!1
1

T

Z T

0

XAðtÞXAðt þ tÞdt (2.5.4a)

EXAMPLE 2.6

Consider the same process defined in Example 2.3. A typical sample signal for this
process is shown in Fig. 2.7 along with the same signal shifted in time an amount t.
Now, the process under consideration in this case is ergodic, so we should be able to
interchange time and ensemble averages. Thus, the autocorrelation function can be
written as

RXðtÞ ¼ time average of XAðtÞ � XAðt þ tÞ

¼ lim
T!1

1

T

Z T

0

XAðtÞ � XAðt þ tÞdt (2.5.4)

It is obvious that when t¼ 0, the integral of Eq. (2.5.4) is just the mean square value
of XA(t), which is

1
3
in this case. On the other hand, when t is unity or larger, there is

no overlap of the correlated portions of XA(t) and XA(tþ t), and thus the average of
the product is zero. Now, as the shift t is reduced from 1 to 0, the overlap of
correlated portions increases linearly until the maximum overlap occurs at t¼ 0.
This then leads to the autocorrelation function shown in Fig. 2.8. Note that for
stationary ergodic processes, the direction of time shift t is immaterial, and hence
the autocorrelation function is symmetric about the origin. Also, note that we
arrived at RX(t) without formally finding the joint density function f X1X2

ðx1; x2Þ.

&

Figure 2.7 Random waveform for Example 2.6.

Figure 2.8 Autocorrelation function for Example 2.6.
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where XA(t) denotes a sample realization of the X(t) process. There is the tacit
assumption that the limit indicated in Eq. (2.5.4a) exists. Also note that script R
rather than italic R is used as a reminder that this is a time average rather than an
ensemble average.

General Properties of Autocorrelation Functions

There are some general properties that are common to all autocorrelation functions
for stationary processes. These will now be enumerated with a brief comment about
each:

1. RX(0) is the mean-square value of the process X(t). This is self-evident from
Eq. (2.5.2).

2. RX(t) is an even function of t. This results from the stationarity assumption.
[In the nonstationary case there is symmetry with respect to the two

EXAMPLE 2.7

To illustrate the difference between the usual autocorrelation function and the time
autocorrelation function, consider the deterministic random process

XðtÞ ¼ A sin vt (2.5.5)

where A is a normal random variable with zero mean and variance s2, and v is a
known constant. Suppose we obtain a single sample of A and its numerical value is
A1. The corresponding sample of X(t) would then be

XAðtÞ ¼ A1 sinvt (2.5.6)

According to Eq. (2.5.4a), its time autocorrelation function would then be

RXA
ðtÞ ¼ lim

T!1
1

T

Z T

0

A1 sin vt � A1 sin vðt þ tÞdt

¼ A2
1

2
cos vt

(2.5.7)

On the other hand, the usual autocorrelation function is calculated as an
ensemble average, that is, from Eq. (2.5.1). In this case, it is

RXðt1; t2Þ ¼ E½Xðt1ÞXðt2Þ�
¼ E½A sin vt1 � A sin vt2�
¼ s2 sin vt1 sin vt2

(2.5.8)

Note that this expression is quite different from that obtained for RXA
ðtÞ. Clearly,

time averaging does not yield the same result as ensemble averaging, so the process
is not ergodic. Furthermore, the autocorrelation function given by Eq. (2.5.8) does
not reduce to simply a function of t2� t1. Therefore, the process is not stationary.

&
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arguments t1 and t2. In Eq. (2.5.1) it certainly makes no difference in which
order we multiply X(t1) and X(t2). Thus, RX(t1, t2)¼RX(t2, t1).]

3. jRX(t)j �RX(0) for all t. We have assumed X(t) is stationary and thus the
mean-square values of X(t) and X(tþ t) must be the same. Also the
magnitude of the correlation coefficient relating two random variables is
never greater than unity. Thus, RX(t) can never be greater in magnitude
than RX(0).

4. If X(t) contains a periodic component, RX(t) will also contain a periodic
component with the same period. This can be verified by writing X(t) as
the sum of the nonperiodic and periodic components and then applying
the definition given by Eq. (2.5.2). It is of interest to note that if the
process is ergodic as well as stationary and if the periodic component
is sinusoidal, then RX(t) will contain no information about the phase of
the sinusoidal component. The harmonic component always appears
in the autocorrelation function as a cosine function, irrespective of
its phase.

5. If X(t) does not contain any periodic components, RX(t) tends to zero as
t!1. This is just a mathematical way of saying that X(tþ t) becomes
completely uncorrelated with X(t) for large t if there are no hidden
periodicities in the process. Note that a constant is a special case of a
periodic function. Thus, RX(1)¼ 0 implies zero mean for the process.

6. The Fourier transform of RX(t) is real, symmetric, and nonnegative. The
real, symmetric property follows directly from the even property of RX (t).
The nonnegative property is not obvious at this point. It will be justified
later in Section 2.7, which deals with the spectral density function for
the process.

It was mentioned previously that strict stationarity is a severe requirement,
because it requires that all the higher-order probability density functions be
invariant under a time translation. This is often difficult to verify. Thus, a less
demanding form of stationarity is often used, or assumed. A random process is said
to be covariance stationary or wide-sense stationary if E[X(t1)] is independent of t1
and E[X(t1)X(t2)] is dependent only on the time difference t2� t1. Obviously, if the
second-order density f X1X2

ðx1; x2Þ is independent of the time origin, the process is
covariance stationary.

Further examples of autocorrelation functions will be given as this chapter
progresses. We will see that the autocorrelation function is an important descriptor
of a random process and one that is relatively easy to obtain because it depends on
only the second-order probability density for the process.

2.6
CROSSCORRELATION FUNCTION

The crosscorrelation function between the processes X(t) and Y(t) is defined as

RXYðxt1 ; t2Þ ¼ E½Xðt1ÞYðt2Þ� (2.6.1)
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Again, if the processes are stationary, only the time difference between sample
points is relevant, so the crosscorrelation function reduces to

RXYðtÞ ¼ E½XðtÞYðt þ tÞ� ðstationary caseÞ (2.6.2)

Just as the autocorrelation function tells us something about how a process is
correlated with itself, the crosscorrelation function provides information about the
mutual correlation between the two processes.

Notice that it is important to order the subscripts properly in writing RXY (t).
A skew-symmetric relation exists for stationary processes as follows. By
definition,

RXYðtÞ ¼ E½XðtÞYðt þ tÞ� (2.6.3)

RYXðtÞ ¼ E½YðtÞXðt þ tÞ� (2.6.4)

The expectation in Eq. (2.6.4) is invariant under a translation of �t. Thus, RYX (t)
is also given by

RYXðtÞ ¼ E½Yðt � tÞXðtÞ� (2.6.5)

Now, comparing Eqs. (2.6.3) and (2.6.5), we see that

RYXðtÞ ¼ RYXð�tÞ (2.6.6)

Thus, interchanging the order of the subscripts of the crosscorrelation function has
the effect of changing the sign of the argument.

EXAMPLE 2.8

Let X(t) be the same random process of Example 2.6 and illustrated in Fig. 2.7. Let
Y(t) be the same signal as X(t), but delayed one-half unit of time. The cross-
correlation RXY(t) would then be shown in Fig. 2.9. Note that RXY(t) is not an even
function of t, nor does its maximum occur at t¼ 0. Thus, the crosscorrelation
function lacks the symmetry possessed by the autocorrelation function.

&

Figure 2.9 Crosscorrelation function for Example 2.8.
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We frequently need to consider additive combinations of random processes.
For example, let the process Z(t) be the sum of stationary processes X(t) and Y(t):

ZðtÞ ¼ XðtÞ þ YðtÞ (2.6.7)

The autocorrelation function of the summed process is then

RZðtÞ ¼ Ef½XðtÞ þ YðtÞ�½Xðt þ tÞ þ Yðt þ tÞ�g
¼ E½XðtÞXðt þ tÞ þ E½YðtÞXðt þ tÞ� þ E½XðtÞYðt þ tÞ þ E½YðtÞYðt þ tÞ�
¼ RXðtÞ þ RYXðtÞ þ RXYðtÞ þ RYðtÞ

(2.6.8)

Now, if X and Y are zero-mean uncorrelated processes, the middle terms of
Eq. (2.6.8) are zero, and we have

RZðtÞ ¼ RXðtÞ þ RXðtÞ ðfor zero crosscorrelationÞ (2.6.9)

This can obviously be extended to the sum of more than two processes. Equa-
tion (2.6.9) is a much-used relationship, and it should always be remembered that
it applies only when the processes being summed have zero crosscorrelation.

2.7
POWER SPECTRAL DENSITY FUNCTION

It was mentioned in Section 2.6 that the autocorrelation function is an important
descriptor of a random process. Qualitatively, if the autocorrelation function
decreases rapidly with t, the process changes rapidly with time; conversely, a
slowly changing process will have an autocorrelation function that decreases slowly
with t. Thus, we would suspect that this important descriptor contains information
about the frequency content of the process; and this is in fact the case. For stationary
processes, there is an important relation known as the Wiener–Khinchine relation:

SXð jvÞ ¼ F½RXðtÞ� ¼
Z 1

�1
RXðtÞe�jvtdt (2.7.1)

where F½�� indicates Fourier transform and v has the usual meaning of (2p)
(frequency in hertz). SX is called the power spectral density function or simply
the spectral density function of the process.

The adjectives power and spectral come from the relationship of SX( jv) to the
usual spectrum concept for a deterministic signal. However, some care is required
in making this connection. If the process X(t) is time stationary, it wanders on ad
infinitum and is not absolutely integrable. Thus, the defining integral for the Fourier
transform does not converge. When considering the Fourier transform of the
process, we are forced to consider a truncated version of it, say, XT(t), which is
truncated to zero outside a span of time T. The Fourier transform of a sample
realization of the truncated process will then exist.
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Let FfXTg denote the Fourier transform of XT(t), where it is understood that
for any given ensemble of samples of XT(t) there will be corresponding ensemble
of FfXTðtÞg. That is, FfXTðtÞg has stochastic attributes just as does XT(t). Now
look at the following expectation:

E
1

T
FfXTðtÞgj j2

� �

For any particular sample realization of XT(t), the quantity inside the brackets is
known as the periodogram for that particular signal. It will now be shown that
averaging over an ensemble of periodograms for large T yields the power spectral
density function.

The expectation of the periodogram of a signal spanning the time interval [0, T]
can be manipulated as follows:

E
1

T
FfXTðtÞgj j2

� �

E
1

T

Z T

0

XðtÞe�jvtdt

Z T

0

XðsÞejvtds
� �

1

T

Z T

0

Z T

0

E½XðtÞXðsÞe�jvðt�sÞdt ds

(2.7.2)

Note that we were able to drop the subscript T on X(t) because of the restricted range
of integration. If we now assume X(t) is stationary, E[X(t)X(s)] becomes RX(t� s)
and Eq. (2.7.2) becomes

E
1

T
FfXTðtÞgj j2

� �
¼ 1

T

Z T

0

Z T

0

RXðt � sÞe�jvðt�sÞdt ds (2.7.3)

The appearance of t� s in two places in Eq. (2.7.3) suggests a change of variables.
Let

t ¼ t � s (2.7.4)

Equation (2.7.3) then becomes

1

T

Z T

0

Z T

0

RXðt � sÞe�jvðt�sÞdt ds ¼ � 1

T

Z T

0

Z T

0

RXðt � sÞe�jvtdt dt (2.7.5)

The new region of integration in the tt plane is shown in Fig. 2.10.
Next we interchange the order of integration and integrate over the two

triangular regions separately. This leads to

E
1

T
FfXTðtÞgj j2

� �

¼ 1

T

Z T

�T

Z rþT

0

RXðtÞe�jvtdt dt þ 1

T

Z T

0

Z T

t

RXðtÞe�jvtdt dt

(2.7.6)
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We now integrate with respect to t with the result

E
1

T
FfXTðtÞgj j2

� �

¼ 1

T

Z 0

�T

ðt þ TÞRXðtÞe�jvtdt þ 1

T

Z T

t

ðT � tÞRXðtÞe�jvt dt

(2.7.7)

Finally, Eq. (2.7.7) may be written in more compact form as

E
1

T
FfXTðtÞgj j2

� �
¼

Z T

�T

1� jtj
T

� �
RXðtÞe�jvt dt (2.7.8)

The factor 1� jtj=T that multiplies RX(t) may be thought of as a triangular
weighting factor that approaches unity as T becomes large; at least this is true if
RX(t) approaches zero as t becomes large, which it will do if X(t) contains no
periodic components. Thus, as T becomes large, we have the following relationship:

E
1

T
FfXTðtÞgj j2

� �
)

Z 1

�1
RXðtÞe�jvt dt as T ! 1 (2.7.9)

Or, in other words,

Average periodogram for large T ) power spectral density (2.7.10)

Note especially the “for large T” qualification in Eq. (2.7.10). (This is pursued
further in Section 2.13.)

Equation (2.7.9) is a most important relationship, because it is this that ties the
spectral function SX(jv) to “spectrum” as thought of in the usual deterministic sense.
Remember that the spectral density function, as formally defined by Eq. (2.7.1), is a
probabilistic concept. On the other hand, the periodogram is a spectral concept
in the usual sense of being related to the Fourier transform of a time signal. The
relationship given by Eq. (2.7.9) then provides the tie between the probabilistic and
spectral descriptions of the process, and it is this equation that suggests the name for
SX(jv), power spectral density function. More will be said of this in Section 2.13,
which deals with the determination of the spectral function from experimental data.

Figure 2.10 Region of integration in the tt

plane.
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Because of the spectral attributes of the autocorrelation function RX(t), its
Fourier transform SX( jv) always works out to be a real, nonnegative, symmetric
function of v. This should be apparent from the left side of Eq. (2.7.9), and will be
illustrated in Example 2.9.

Occasionally, it is convenient to write the spectral density function in terms
of the complex frequency variable s rather than v. This is done by simply replacing
jv with s; or, equivalently, replacing v2 with �s2. For Example 2.9, the spectral
density function in terms of s is then

SXðsÞ ¼ 2s2b

v2 þ b2

����
v2¼�s2

¼ 2s2b

�s2 þ b2
(2.7.13)

It should be clear now why we chose to include the “j” with v in SX( jv), even
though SX( jv) always works out to be a real function of v. By writing the argument
of SX( jv) as jv, rather than just v, we can use the same symbol for spectral function
in either the complex or real frequency domain. That is,

SXðsÞ ¼ SXðjvÞ (2.7.14)

is correct notation in the usual mathematical sense.

EXAMPLE 2.9

Consider a random process X(t) whose autocorrelation function is given by

RXðtÞ ¼ s2e�bjtj (2.7.11)

where s2 and b are known constants. The spectral density function for the X(t)
process is

SXðjvÞ ¼ F RXðtÞ½ � ¼ s2

jvþ b
þ s2

�jvþ b
¼ 2s2b

v2 þ b2
(2.7.12)

Both RX and SX are sketched in Fig. 2.11.

&

Figure 2.11 Autocorrelation and spectral density functions for Example 2.9.

(a) Autocorrelation function. (b) Spectral function.
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From Fourier transform theory, we know that the inverse transform of the
spectral function should yield the autocorrelation function, that is,

F�1 SXðjvÞ½ � ¼ 1

2p

Z 1

�1
SXðjvÞejvt dv ¼ RXðtÞ (2.7.15)

If we let t¼ 0 in Eq. (2.7.15), we get

RXð0Þ ¼ E X2ðtÞ� 	 ¼ 1

2p

Z 1

�1
SXðjvÞ dv (2.7.16)

Equation (2.7.16) provides a convenient means of computing the mean square value
of a stationary process, given its spectral function. As mentioned before, it is
sometimes convenient to use the complex frequency variable s rather than jv. If this
is done, Eq. (2.7.16) becomes

E X2ðtÞ� 	 ¼ 1

2pj

Z j1

�j1
SXðsÞ ds (2.7.17)

Equation (2.7.16) suggests that we can consider the signal power as being
distributed in frequency in accordancewith SX(jv), thus, the terms power and density
in power spectral density function. Using this concept, we can obtain the power in a
finite band by integrating over the appropriate range of frequencies, that is,

“Power” in

range v1 � v � v2

� �
¼ 1

2p

Z �v1

�v2

SXðjvÞ dvþ 1

2p

Z v2

v1

SXðjvÞ dv (2.7.18)

An example will now be given to illustrate the use of Eqs. (2.7.16) and (2.7.17).

EXAMPLE 2.10

Consider the spectral function of Example 2.9:

SXðjvÞ ¼ 2s2b

v2 þ b2
(2.7.19)

Application of Eq. (2.7.16) should yield the mean square value s2. This can be
verified using conventional integral tables.

EðX2Þ ¼ 1

2p

Z 1

�1

2s2b

v2 þ b2
dv ¼ s2b

p

1

b
tan�1 v

b

� �1
�1

¼ s2 (2.7.20)

Or equivalently, in terms of s:

EðX2Þ ¼ 1

2pj

Z j1

�j1

2s2b

s2 þ b2
ds ¼ s2 (2.7.21)

More will be said about evaluating integrals of the type in Eq. (2.7.21) later, in
Chapter 3.

&
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In summary, we see that the autocorrelation function and power spectral
density function are Fourier transform pairs. Thus, both contain the same basic
information about the process, but in different forms. Since we can easily transform
back and forth between the time and frequency domains, the manner in which the
information is presented is purely a matter of convenience for the problem at hand.

Before leaving the subject of power spectral density, it is worthy of mention
that when two processes x and y are uncorrelated, the spectral density of the sum is
given by

SxþyðjvÞ ¼ SxðjvÞ þ SyðjvÞ

This follows directly from the corresponding autocorrelation equation, Eq. (2.6.9).

2.8
WHITE NOISE

White noise is defined to be a stationary random process having a constant spectral
density function. The term “white” is a carryover from optics, where white light is
light containing all visible frequencies. Denoting the white noise spectral amplitude
as A, we then have

SwnðjvÞ ¼ A (2.8.1)

The corresponding autocorrelation function for white noise is then

RwnðtÞ ¼ AdðtÞ (2.8.2)

These functions are sketched in Fig. 2.12.
In analysis, one frequently makes simplifying assumptions in order to make the

problem mathematically tractable. White noise is a good example of this. However,
by assuming the spectral amplitude of white noise to be constant for all frequencies
(for the sake of mathematical simplicity), we find ourselves in the awkward
situation of having defined a process with infinite variance. Qualitatively, white
noise is sometimes characterized as noise that is jumping around infinitely far,

R(  ) S( j  )

A

τ

τ ω

ωImpulse
amplitude = A

0 0

(a) (b)

Figure 2.12 White noise. (a) Autocorrelation function. (b) Spectral density

function.
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infinitely fast! This is obviously physical nonsense but it is a useful abstraction. The
saving feature is that all physical systems are bandlimited to some extent, and a
bandlimited system driven by white noise yields a process that has finite variance;
that is, the end result makes sense. We will elaborate on this further in Chapter 3.

Bandlimited white noise is a random process whose spectral amplitude is
constant over a finite range of frequencies, and zero outside that range. If the
bandwidth includes the origin (sometimes called baseband), we then have

SbwnðjvÞ ¼
A; jvj � 2pW

0; jvj > 2pW

�
(2.8.3)

where W is the physical bandwidth in hertz. The corresponding autocorrelation
function is

RbwnðtÞ ¼ 2WA
sinð2pWtÞ
2pWt

(2.8.4)

Both the autocorrelation and spectral density functions for baseband bandlimited
white noise are sketched in Fig. 2.13. It is of interest to note that the autocorrelation
function for baseband bandlimited white noise is zero for t¼ 1=2W, 2=2W, 3=2W,
etc. From this we see that if the process is sampled at a rate of 2W samples/second
(sometimes called the Nyquist rate), the resulting set of random variables are
uncorrelated. Since this usually simplifies the analysis, the white bandlimited
assumption is frequently made in bandlimited situations.

The frequency band for bandlimited white noise is sometimes offset from the
origin and centered about some center frequency W0. It is easily verified that the
autocorrelation/spectral-function pair for this situation is

SðjvÞ ¼
A; 2pW1 � jvj � 2pW2

0; jvj < 2pW1 and jvj > 2pW2

(
(2.8.5)

RðtÞ ¼ A 2W2

sin 2pW2t

2pW2t
� 2W1

sin 2pW1t

2pW1t

� �

¼ A2DW
sin pDWt

pDWt
cos 2pWot

(2.8.6)

Figure 2.13 Baseband bandlimited white noise. (a) Autocorrelation function. (b) Spectral

density function.
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where

DW ¼W2 �W1 Hz

W0 ¼ W1 þW2

2
Hz

These functions are sketched in Fig. 2.14.
It is worth noting the bandlimited white noise has a finite mean-square value,

and thus it is physically plausible, whereas pure white noise is not. However, the
mathematical forms for the autocorrelation and spectral functions in the band-
limited case are more complicated than for pure white noise.

Before leaving the subject of white noise, it is worth mentioning that the
analogous discrete-time process is referred to as a white sequence. Awhite sequence
is defined simply as a sequence of zero-mean, uncorrelated random variables.
That is, all members of the sequence have zero means and are mutually uncorrelated
with all other members of the sequence. If the random variables are also normal,
then the sequence is a Gaussian white sequence.

2.9
GAUSS–MARKOV PROCESSES

A stationary Gaussian process X(t) that has an exponential autocorrelation is called
a Gauss–Markov process. The autocorrelation and spectral functions for this

Figure 2.14 Bandlimited white noise with center frequencyW0.

(a) Autocorrelation function. (b) Spectral density.
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process are then of the form

RXðtÞ ¼ s2e�bjtj (2.9.1)

SXðjvÞ ¼ 2s2b

v2 þ b2
or SXðsÞ ¼ 2s2b

�s2 þ b2

� �
(2.9.2)

These functions are sketched in Fig. 2.15. The mean-square value and time
constant for the process are given by the s2 and 1=b parameters, respectively. The
process is nondeterministic, so a typical sample time function would show no
deterministic structure and would look like typical “noise.” The exponential
autocorrelation function indicates that sample values of the process gradually
become less and less correlated as the time separation between samples increases.
The autocorrelation function approaches zero as t!1, and thus the mean value
of the process must be zero. The reference to Markov in the name of this process
is not obvious at this point, but it will be after the discussion on optimal
prediction in Chapter 4.

The Gauss–Markov process is an important process in applied work because
(1) it seems to fit a large number of physical processes with reasonable accuracy,
and (2) it has a relatively simple mathematical description. As in the case of all
stationary Gaussian processes, specification of the process autocorrelation function
completely defines the process. This means that any desired higher-order probability
density function for the process may be written out explicitly, given the auto-
correlation function. An example will illustrate this.

Figure 2.15 Autocorrelation and spectral density functions for Gauss–Markov

process. (a) Autocorrelation function. (b) Spectral density.

EXAMPLE 2.11

Let us say that a Gauss–Markov process X(t) has autocorrelation function

RXðtÞ ¼ 100e�2jtj (2.9.3)

We wish to write out the third-order probability density function

f X1X2X3
ðx1; x2; x3Þ where X1 ¼ Xð0Þ; X2 ¼ Xð:5Þ; and X3 ¼ Xð1Þ
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The simple scalar Gauss–Markov process whose autocorrelation function is
exponential is sometimes referred to as a first-order Gauss–Markov process. This is
because the discrete-time version of the process is described by a first-order
difference equation of the form

Xðtkþ1Þ ¼ e�bDtXðtkÞ þWðtkÞ

where W(tk) is an uncorrelated zero-mean Gaussian sequence. Discrete-time
Gaussian processes that satisfy higher-order difference equations are also often
referred to as Gauss–Markov processes of the appropriate order. Such processes are
best described in vector form, and this is discussed in detail in Section 3.8. For now
we will simply illustrate the benefit of higher-order models with a second-order
process example.

First we note that the process mean is zero. The covariance matrix in this case is
a 3� 3 matrix and is obtained as follows:

CX ¼
EðX2

1Þ EðX1X2Þ EðX1X3Þ
EðX2X1Þ EðX2

2Þ EðX2X3Þ
EðX3X1Þ EðX3X2Þ EðX2

3Þ

2
664

3
775 ¼

RXð0Þ RXð:5Þ RXð1Þ
RXð:5Þ RXð0Þ RXð:5Þ
RXð1Þ RXð:5Þ RXð0Þ

2
664

3
775

¼
100 100e�1 100e�2

100e�1 100 100e�1

100e�2 100e�1 100

2
664

3
775 (2.9.4)

Now that CX has been written out explicitly, we can use the general normal form
given by Eq. (1.14.5). The desired density function is then

f XðxÞ ¼
1

ð2pÞ3=2jCXj1=2
e�

1
2
xtC�1

x x½ � (2.9.5)

where x is the 3-tuple

x ¼
x1

x2

x3

2
64

3
75 (2.9.6)

and Cx is given by Eq. (2.9.4).
&
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EXAMPLE 2.12 SECOND-ORDER GAUSS–MARKOV PROCESS

Suppose we have a dynamic situation where the position and velocity are to be
modeled as random processes, and the usual exact derivative relationship between x
and _x applies. We will assume that both processes are stationary and have finite
variances. In this case we dare not model the position as a simple first-order Markov
process, because the corresponding velocity would have infinite variance. This is
obvious from their respective power spectral densities, and the methods for
computing mean square value discussed in Chapter 3, Sections 3.2 and 3.3. The
spectral densities are

SposðjvÞ ¼ 2s2b

v2 þ b2
; and SvelðjvÞ ¼ 2s2bv2

v2 þ b2

The integral of SposðjvÞ over all v will exist, but the integral of SvelðjvÞ will not.
Thus, we need to look further for a model where both position and velocity have
finite variance.

So, consider the following tentative power spectral density for x:

SxðjvÞ ¼ 2
ffiffiffi
2

p
v3
0s

2

v4 þ v4
0

(2.9.7)

where s2 is the position variance parameter and v0 is the natural frequency para-
meter (in rad/s). This power spectral density leads to an especially simple auto-
correlation function of the form:

RxðtÞ ¼
s2e�atðcos at þ sin atÞ; t � 0

s2eat½cosð�atÞ þ sinð�atÞ�; t < 0

(
(2.9.8)

where

a ¼ v0ffiffiffi
2

p (2.9.9)

Qualitatively, this will be recognized as a damped oscillatory function with its
maximum at the origin. The s2 and v0 parameters can be chosen to roughly match
the s2 and b parameters of a corresponding first-order Markov process. Note that the
tentative Sx(jv) is fourth-order in v in the denominator and zero-order in the
numerator, so both the position and velocity variances will be finite for this model.

In order to check the reasonableness of the second-order Gauss–Markovmodel,
it was simulated using MATLAB with s2¼ 1m2 and v0¼ 0.1 rad/s. For compari-
son, a first-order Markov process was also simulated with its s2 and b set at 1m2 and
0.1 rad/s respectively. The results for a 100-second time span are shown in
Figs. 2.16(a) and (b). Both processes were assigned the same variance, but different
seeds were used in the Monte Carlo simulations, so there is no way to make an exact
comparison. The most conspicuous difference in the two sample realizations shown
in the figure lies in the high frequency components. Clearly, the high frequency
content is much smaller in the second-order model than in the first-order model.
This was expected because of the v4 the denominator of Sx( jv) for the second-order
model, versus v2 in the denominator of the first-order Sx( jv).

&
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2.10
NARROWBAND GAUSSIAN PROCESS

In both control and communication systems, we frequently encounter situations
where a very narrowband system is excited by wideband Gaussian noise. A high-Q
tuned circuit and/or a lightly damped mass–spring arrangement are examples of
narrowband systems. The resulting output is a noise process with essentially all its
spectral content concentrated in a narrow frequency range. If one were to observe
the output of such a system, the time function would appear to be nearly sinusoidal,
especially if just a few cycles of the output signal were observed. However, if one
were to carefully examine a long record of the signal, it would be seen that the quasi-
sinusoid is slowly varying in both amplitude and phase. Such a signal is called
narrowband noise and, if it is the result of passing wideband Gaussian noise through
a linear narrowband system, then it is also Gaussian. We are assured of this because
any linear operation on a set of normal variates results in another set of normal
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(b) Second-order process.

(a) First-order process.
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Figure 2.16 First- and second-order Gauss–Markov processes

are compared.
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variates. The quasi-sinusoidal character depends only on the narrowband property,
and the exact spectral shape within the band is immaterial.

The mathematical description of narrowband Gaussian noise follows. We first
write the narrowband signal as

SðtÞ ¼ XðtÞ cos vct � YðtÞ sin vct (2.10.1)

where X(t) and Y(t) are independent Gaussian random processes with similar
narrowband spectral functions that are centered about zero frequency. The fre-
quency vc is usually called the carrier frequency, and the effect of multiplying X(t)
and Y(t) by cos vct and sin vct is to translate the baseband spectrum up to a similar
spectrum centered about vc (see Problem 2.24). The independent X(t) and Y(t)
processes are frequently called the in-phase and quadrature components of S(t).
Now, think of time t as a particular time, and think of X(t) and Y(t) as the
corresponding random variables. Then make the usual rectangular to polar trans-
formation via the equations

X ¼ R cosQ

Y ¼ R sinQ
(2.10.2)

or, equivalently,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
Q ¼ tan�1 Y

X

(2.10.3)

By substituting Eq. (2.10.2) into Eq. (2.10.1), we can now write S(t) in the form

SðtÞ ¼ RðtÞ cosQðtÞ cosvct � RðtÞ sinQðtÞ sin vct

¼ RðtÞ cos ½vct þQðtÞ� (2.10.4)

It is from Eq. (2.10.4) that we get the physical interpretation of “slowly varying
envelope (amplitude) and phase.”

Before we proceed, a word or two about the probability densities for X, Y, R,
andQ is in order. If X and Y are independent normal random variables with the same
variance s2, their individual and joint densities are

f XðxÞ ¼
1ffiffiffiffiffiffi
2p

p
s
e�x2=2s2

(2.10.5)

f YðyÞ ¼
1ffiffiffiffiffiffi
2p

p
s
e�y2=2s2

(2.10.6)

and

f XYðx; yÞ ¼
1

2ps2
e�ðx2þy2Þ=2s2 (2.10.7)
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The corresponding densities for R and Q are Rayleigh and uniform (see Exam-
ple 1.13). The mathematical forms are

f RðrÞ ¼
r

s2
e�r2=2s2

; r � 0 ðRayleighÞ (2.10.8)

fQðuÞ ¼
1

2p
; 0 � u < 2p

0; otherwise

8><
>: ðuniformÞ (2.10.9)

Also, the joint density function for R and Q is

f RQðr; uÞ ¼
r

2ps2
e�r2=2s2

; r � 0 and 0 � u < 2p (2.10.10)

It is of interest to note here that if we consider simultaneous time samples of
envelope and phase, the resulting random variables are statistically independent.
However, the processes R(t) and Q(t) are not statistically independent (5). This is
due to the fact that the joint probability density associated with adjacent samples
cannot be written in product form, that is,

f R1R2Q1Q2
ðr1; r2; u1; u2Þ 6¼ f R1R2

ðr1; r2ÞfQ1Q2
ðu1; u2Þ (2.10.11)

We have assumed that S(t) is a Gaussian process, and from Eq. (2.10.1) we see
that

Var S ¼ 1

2
ðVar XÞ þ 1

2
ðVar YÞ ¼ s2 (2.10.12)

Thus,

f SðsÞ ¼
1ffiffiffiffiffiffi
2p

p
s
e�s2=2s2

(2.10.13)

The higher-order density functions for S will, of course, depend on the specific
shape of the spectral density for the process.

2.11
WIENER OR BROWNIAN-MOTION PROCESS

Suppose we start at the origin and take n steps forward or backward at random,
with equal likelihood of stepping in either direction. We pose two questions:
After taking n steps, (1) what is the average distance traveled, and (2) what is the
variance of the distance? This is the classical random-walk problem of statistics.
The averages considered here must be taken in an ensemble sense; for example,
think of running simultaneous experiments and then averaging the results for a
given number of steps. It should be apparent that the average distance traveled
is zero, provided we say “forward” is positive and “backward” is negative.
However, the square of the distance is always positive (or zero), so its average for
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a large number of trials will not be zero. It is shown in elementary statistics that
the variance after n unit steps is just n, or the standard deviation is

ffiffiffi
n

p
(see

Problem 2.13). Note that this increases without bound as n increases, and thus
the process is nonstationary.

The continuous analog of random-walk is the output of an integrator driven
with white noise. This is shown in block-diagram form in Fig. 2.17a. Here we
consider the input switch as closing at t¼ 0 and the initial integrator output as being
zero. An ensemble of typical output time signals is shown in Fig. 2.17b. The system
response X(t) is given by

XðtÞ ¼
Z t

0

FðuÞ du (2.11.1)

Figure 2.17 Continuous analog of random walk. (a) Block

diagram. (b) Ensemble of output signals.
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Clearly, the average of the output is

E½XðtÞ� ¼ E

Z t

0

FðuÞ du
� �

¼
Z t

0

E½FðuÞ� dy ¼ 0 (2.11.2)

Also, the mean-square-value (variance) is

E½X2ðtÞ� ¼ E

Z t

0

FðuÞ du
Z t

0

FðyÞ dy
� �

¼
Z t

0

Z t

0

E½FðuÞFðyÞ� du dy (2.11.3)

But E[F(u)F(y)] is just the autocorrelation function RF(u �y), which in this case is
a Dirac delta function. Thus,

E½X2ðtÞ� ¼
Z t

0

Z t

0

dðu� yÞ du dy ¼
Z t

0

dy ¼ t (2.11.14)

So, E[X2(t)] increases linearly with time and the rms value increases in accordance
with

ffiffi
t

p
(for unity white noise input). (Problem 2.26 provides a demonstration

of this.)
Now, add the further requirement that the input be Gaussian white noise. The

output will then be a Gaussian process because integration is a linear operation on
the input. The resulting continuous random-walk process is known as theWiener or
Brownian-motion process. The process is nonstationary, it is Gaussian, and its
mean, mean-square value, and autocorrelation function are given by

E½XðtÞ� ¼ 0 (2.11.5)

E½X2ðtÞ� ¼ t (2.11.6)

RXðt1; t2Þ ¼ E½Xðt1ÞXðt2Þ� ¼ E

Z t1

0

FðuÞ du �
Z t2

0

FðyÞ dy
� �

¼
Z t2

0

Z t1

0

E½FðuÞFðyÞ� du dy ¼
Z t2

0

Z t1

0

dðu� yÞ du dy

Evaluation of the double integral yields

RXðt1; t2Þ ¼
t2; t1 � t2

t1; t1 < t2

�
(2.11.7)

Since the process is nonstationary, the autocorrelation function is a general function
of the two arguments t1 and t2. With a little imagination, Eq. (2.11.7) can be seen to
describe two faces of a pyramid with the sloping ridge of the pyramid running along
the line t1¼ t2.

It was mentioned before that there are difficulties in defining directly what is
meant by Gaussian white noise. This is because of the “infinite variance” problem.
The Wiener process is well behaved, though. Thus, we can reverse the argument
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given here and begin by arbitrarily defining it as a Gaussian process with an
autocorrelation function given by Eq. (2.11.7). This completely specifies the
process. We can now describe Gaussian white noise in terms of its integral.
That is, Gaussian white noise is that hypothetical process which, when integrated,
yields a Wiener process.

2.12
PSEUDORANDOM SIGNALS

As the name implies, pseudorandom signals have the appearance of being random,
but are not truly random. In order for a signal to be truly random, there must be
some uncertainty about it that is governed by chance. Pseudorandom signals do
not have this “chance” property. For example, consider a hypothetical situation
where we have a very long record of a particular realization of a Gauss–Markov
process. After the fact, nothing remains to chance insofar as the observer is
concerned. Next, imagine folding the record back on itself into a single loop. Then
imagine playing the loop back over and over again. Clearly, the resulting signal is
periodic and completely known to the original observer. Yet, to a second observer
it would appear to be pure random noise, especially if the looped-back splice were
done carefully so as to not have an abrupt discontinuity at the splice.

It also should be clear that if the looped signal is periodic, then its spectrum
would be line-type rather than continuous. The line spacing would be quite small if
the original record length was large; but, nevertheless, the true spectrum would
consist of discrete lines rather than a “smear” as in the case of true random noise.
Line-type spectrum is characteristic of all pseudorandom signals.

Pseudorandom noise of the type just described would not be of much value in
today’s digital world. Yet, computer-generated pseudorandom noise has proved
quite useful in a variety of practical applications, and two simplified examples will
illustrate this.

EXAMPLE 2.13

Binary sequences generated by shift registers with feedback have periodic pro-
perties and have found extensive application in ranging and communication systems
(6, 7, 8, 9). We will use the simple 5-bit shift register shown in Fig. 2.18 to
demonstrate how a pseudorandom binary signal can be generated. In this system the
bits are shifted to the right with each clock pulse, and the input on the left is
determined by the feedback arrangement. For the initial condition shown, it can be
verified that the output sequence is

1111100011011101010000100101100|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
31 bits

1111100 . . . . . . . . .|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
same 31 bits

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
etc:

Note that the sequence repeats itself after 31 bits. This periodic property is chara-
cteristic of a shift register with feedback. The maximum length of the sequence
(before repetition) is given by (2n� 1), where n is the register length (9). The 5-bit
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example used here is then a maximum-length sequence. These sequences are
especially interesting because of their pseudorandom appearance. Note that there
are nearly the same number of zeros and ones in the sequence (16 ones and 15
zeros), and that they appear to occur more or less at random. If we consider a longer
shift register, say, one with 10 bits, its maximum-length sequence would be 1023
bits. It would have 512 ones and 511 zeros; again, these would appear to be
distributed at random. A casual look at any interior string of bits would not reveal
anything systematic. Yet the string of bits so generated is entirely deterministic.
Once the feedback arrangement and initial condition are specified, the output is
determined forever after. Thus, the sequence is pseudorandom, not random.

When converted to voltage waveforms, maximum-length sequences also have
special autocorrelation properties. Returning to the 31-bit example, let binary one
be 1V and binary zero be�1V, and let the voltage level be held constant during the
clock-pulse interval. The resulting time waveform is shown in Fig. 2.19, and its time
autocorrelation function is shown in Fig. 2.20. Note that the unique distribution of
zeros and ones for this sequence is such that the autocorrelation function is a small
constant value after a shift of one unit of time (i.e., one bit). This is typical of all

Figure 2.18 Binary shift register with

feedback.

Figure 2.19 Pseudorandom binary waveform.

Figure 2.20 Time autocorrelation function for waveform of Figure 2.19.
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maximum-length sequences. When the sequence length is long, the correlation after
a shift of one unit is quite small. This has obvious advantages in correlation
detection schemes, and such schemes have been used extensively in electronic
ranging applications (7, 8).

The spectral density function for the waveform of Fig. 2.19 is shown in
Fig. 2.21. As with all pseudorandom signals, the spectrum is line-type rather than
continuous (6).

&

0 
ω

Figure 2.21 Spectral density for pseudorandom binary waveform.

EXAMPLE 2.14 BOC (1.1) CODE

In code-division multiplexed systems such as GPS, the various codes’ bandwidths
and correlation structures are important considerations. There is usually no shortage
of possible codes; and, as one might expect, some are better than others. One
possible way of improving on a basic set of codes is to modulate each code in the set
with a periodic square wave. Such codes are referred to as Binary Offset Carrier
(BOC) codes (10). We will now look at a simple tutorial example of a BOC (1,1)
code as applied to the basic 31-chip code of Example 2.13.

The basic 31-chip maximum-length sequence and the corresponding modulat-
ing square wave are shown together in Fig. 2.22. The modulating square wave
frequency is the same as the code chipping rate, and they are synchronized such that
the square wave “chops up” each chip equally withþ1 and�1. Thus, the polarity of
the chip makes no difference, and the zero frequency component in the basic code is
eliminated entirely by the modulation.

The autocorrelation function for the BOC(1,1) code is shown in Fig. 2.23. Note
that the slope of the BOC(1,1) autocorrelation is steeper than that for the reference
31-chip code. This helps with the receiver’s timing accuracy.

The spectral functions for both the BOC(1,1) code and the basic reference
31-chip code are shown together in Fig. 2.24. These are shown at baseband and the
plots are shownwith discrete symbols to emphasize their discrete spectra. Note that
when the codes modulate the true high frequency carrier, the baseband spectra are
translated symmetrically about the carrier frequency. Clearly, the effect of the
BOC(1,1) modulation is to push the signal power out away from the carrier
frequency; thus, the term binary offset carrier. This makes for more efficient
use of the available bandwidth.

The purpose of this BOC example has been to simply demonstrate one of the
many proposed improved codes for use in code-division multiplexed applications.
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(b) Modulating square wave

(c) Resultant BOC code

8 9

4 5 6 7 8 9

0

1

–1

0

1

4 5 6 7 8 9
–1

0

1

Figure 2.22 Basic reference 31-chip code, the modulating and the BOC waveforms.
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2.13
DETERMINATION OF AUTOCORRELATION AND SPECTRAL
DENSITY FUNCTIONS FROM EXPERIMENTAL DATA

The determination of spectral characteristics of a random process from experi-
mental data is a common engineering problem. All of the optimization techniques
presented in the following chapters depend on prior knowledge of the spectral
density of the processes involved. Thus, the designer needs this information and it
usually must come from experimental evidence. Spectral determination is a
relatively complicated problem with many pitfalls, and one should approach it
with a good deal of caution. It is closely related to the larger problem of digital data
processing, because the amount of data needed is usually large, and processing it
either manually or in analog form is often not feasible. We first consider the span of
observation time of the experimental data, which is a fundamental limitation,
irrespective of the means of processing the data.

The time span of the data to be analyzed must, of course, be finite; and, as a
practical matter, we prefer not to analyze any more data than is necessary to achieve
reasonable results. Remember that since this is a matter of statistical inference, there
will always remain some statistical uncertainty in the result. One way to specify the
accuracy of the experimentally determined spectrum or autocorrelation function is
to say that its variance must be less than a specified value. General accuracy bounds
applicable to all processes are not available but there is one special case, the
Gaussian process, that is amenable to analysis.Wewill not give the proof here, but it
can be shown (11) that the variance of an experimentally determined auto-
correlation function satisfies the inequality

Var VXðtÞ � 4

T

Z 1

0

R2
XðtÞ dt (2.13.1)

where it is assumed that a single sample realization of the process is being analyzed,
and

T¼ time length of the experimental record

RX(t)¼ autocorrelation function of the Gaussian process under consideration

VX(t)¼ time average of XT (t)XT (tþ t) where XT (t) is the finite-length sample of
X(t) [i.e., VX(t) is the experimentally determined autocorrelation func-
tion based on a finite record length]

It should be mentioned that in determining the time average of XT (t)XT(tþ t), we
cannot use the whole span of time T, because XT (t) must be shifted an amount of t
with respect to itself before multiplication. The true extension of XT (t) beyond the
experimental data span is unknown; therefore, we simply omit the nonoverlapped
portion in the integration:

VXðtÞ ¼ time avg: of XTðtÞXTðt þ tÞ½ � ¼ 1

T � t

Z T�t

0

XTðtÞXTðt þ tÞ dt
(2.13.2)
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It will be assumed from this point on that the range of t being considered is much
less than the total data span T, that is, t�T.

We first note that VX(t) is the result of analyzing a single time signal;
therefore, VX(t) is itself just a sample function from an ensemble of functions. It is
hoped that VX(t) as determined by Eq. (2.13.2) will yield a good estimate of RX(t)
and, in order to do so, it should be an unbiased estimator. This can be verified by
computing its expectation:

E½VXðtÞ� ¼ E
1

T � t

Z T�t

0

XTðtÞXTðt þ tÞ dt
� �

¼ 1

T � t

Z T�t

0

E½XTðtÞXTðt þ tÞ dt

¼ 1

T � t

Z T�t

0

RXðtÞ dt ¼ RXðtÞ

(2.13.3)

Thus, VX(t) is an unbiased estimator of RX(t). Also, it can be seen from the equation
for Var VX(t), Eq. (2.13.1), that if the integral of R

2
X converges (e.g., RX decreases

exponentially with t), then the variance of VX(t) approaches zero as T
becomes large. Thus, VX(t) would appear to be a well-behaved estimator of
RX(t), that is, VX(t) converges in the mean to RX(t). We will now pursue the
estimation accuracy problem further.

Equation (2.13.1) is of little value if the process autocorrelation function is not
known. So, at this point, we assume that X(t) is a Gauss–Markov process with an
autocorrelation function

RXðtÞ ¼ s2e�bjtj (2.13.4)

The s2 and b parameters may be difficult to determine in a real-life problem, but we
can get at least a rough estimate of the amount of experimental data needed for a
given required accuracy. Substituting the assumedMarkov autocorrelation function
into Eq. (2.13.1) then yields

Var VXðtÞ½ � � 2s4

bT
(2.13.5)

We now look at an example illustrating the use of Eq. (2.13.5).

EXAMPLE 2.15

Let us say that the process being investigated is thought to be a Gauss–Markov
process with an estimated time constant (1=b) of 1 sec. Let us also say that wewish to
determine its autocorrelation function within an accuracy of 10 percent, and we want
to know the length of experimental data needed. By “accuracy” we mean that the
experimentally determinedV(t) should have a standard deviation less than .1 of thes2

of the process, at least for a reasonably small range of t near zero. Therefore, the ratio
of Var[V(t)] to (s2)2 must be less than .01. Using Eq. (2.13.5), we can write

Var½VðtÞ�
s4

� 2

bT
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Themain point to be learned from this example is that reliable determination of
the autocorrelation function takes considerably more experimental data than one
might expect intuitively. The spectral density function is just the Fourier transform
of the autocorrelation function, so we might expect a similar accuracy problem in its
experimental determination.

As just mentioned, the spectral density function for a given sample signal may
be estimated by taking the Fourier transform of the experimentally determined
autocorrelation function. This, of course, involves a numerical procedure of some
sort because the data describing VX(t) will be in numerical form. The spectral
function may also be estimated directly from the periodogram of the sample signal.
Recall from Section 2.7 that the average periodogram (the square of the magnitude
of the Fourier transform of XT) is proportional to the spectral density function (for
large T ). Unfortunately, since we do not usually have the luxury of having a large
ensemble of periodograms to average, there are pitfalls in this approach, just as there

Setting the quantity on the left side equal to .01 and using the equality condition
yield

T ¼ 1

ð:1Þ2 �
2

b
¼ 200 sec (2.13.6)

A sketch indicating a typical sample experimental autocorrelation function is
shown in Fig. 2.25. Note that 10 percent accuracy is really not an especially
demanding requirement, but yet the data required is 200 times the time constant of
the process. To put this in more graphic terms, if the process under investigation
were random gyro drift with an estimated time constant of 10 hours, 2,000 hours of
continuous data would be needed to achieve 10 percent accuracy. This could very
well be in the same range as the mean time to failure for the gyro. Were we to be
more demanding and ask for 1 percent accuracy, about 23 years of data would
be required! It can be seen that accurate determination of the autocorrelation
function is not a trivial problem in some applications. (This example is pursued
further in Problem 2.25.)

&

Figure 2.25 Experimental and true autocorrelation functions

for Example 2.15.
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are in going the autocorrelation route. Nevertheless, modern digital processing
methods using fast Fourier transform (FFT) techniques have popularized the
periodogram approach. Thus, it is important to understand its limitations (6).

First, there is the truncation problem. When the time record being analyzed is
finite in length, we usually assume that the signal will “jump” abruptly to zero
outside the valid data interval. This causes frequency spreading and gives rise to
high-frequency components that are not truly representative of the process under
consideration, which is assumed to ramble on indefinitely in a continuous manner.
An extreme case of this would occur if we were to chop up one long record into
many very short records and then average the periodograms of the short records.
The individual periodograms, with their predominance of high-frequency compo-
nents due to the truncation, would not be at all representative of the spectral content
of the original signal; nor would their average! Thus, the first rule is that we must
have a long time record relative to the typical time variations in the signal. This is
true regardless of the method used in analyzing the data. There is, however, a
statistical convergence problem that arises as the record length becomes large, and
this will now be examined.

In Section 2.7 it was shown that the expectation of the periodogram approaches
the spectral density of the process for large T. This is certainly desirable, because we
want the periodogram to be an unbiased estimate of the spectral density. It is also of
interest to look at the behavior of the variance of the periodogram as T becomes
large. Let us denote the periodogram of XT(t) as M(v, T), that is,

Mðv; TÞ ¼ 1

T
jF XTðtÞf gj2 (2.13.7)

Note that the periodogram is a function of the record length T as well as v. The
variance of M(v, T) is

VarM ¼ EðM2Þ � ½EðMÞ�2 (2.13.8)

Since we have already found E(M) as given by Eqs. (2.7.8) and (2.7.9), we now need
to find E(M)2. Squaring Eq. (2.13.7) leads to

EðM2Þ ¼ 1

T2
E

Z T

0

Z T

0

Z T

0

Z T

0

XðtÞXðsÞXðuÞXðyÞe�jvðt�sþu�yÞ dt ds du dy
� �

(2.13.9)

It can be shown that if X(t) is a Gaussian process,*

E½XðtÞXðsÞXðuÞXðyÞ� ¼ RXðt � sÞRXðu� yÞ
þ RXðt � uÞRXðs� yÞ
þ RXðt � yÞRXðs� uÞ

(2.13.10)

* See Problem 2.23.
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Thus, moving the expectation operator inside the integration in Eq. (2.13.9) and
using Eq. (2.13.10) lead to

EðM2Þ ¼ 1

T2

Z T

0

Z T

0

Z T

0

Z T

0

½RXðt � sÞRXðu� yÞ þ RXðt � uÞRXðs� yÞ

þRXðt � yÞRXðs� uÞ�e�jvðt�sþu�yÞ dt ds du dy

¼ 1

T2

Z T

0

Z T

0

RXðt � sÞe�jvðt�sÞ dt ds
Z T

0

Z T

0

RXðu� yÞe�jvðu�yÞ du dy

þ 1

T2

Z T

0

Z T

0

RXðt � yÞe�jvðt�yÞ dt dy
Z T

0

Z T

0

RXðu� uÞe�jvðu�uÞ ds du

þ 1

T2

Z T

0

Z T

0

RXðt � uÞe�jvðtþuÞ dt du
����

����
2

(2.13.11)

Next, substituting Eq. (2.7.3) into (2.13.11) leads to

EðM2Þ ¼ 2½EðMÞ�2 þ 1

T2

Z T

0

Z T

0

RXðt � uÞe�jvðtþuÞ dt du
����

����
2

(2.13.12)

Therefore,

VarM ¼ EðM2Þ � ½EðMÞ�2

¼ ½EðMÞ�2 þ 1

T2

Z T

0

Z T

0

RXðt � uÞe�jvðt�uÞ dt du
����

����
2 (2.13.13)

The second term of Eq. (2.13.13) is nonnegative, so it should be clear that

VarM � ½EðMÞ�2 (2.13.14)

But E(M) approaches the spectral function as T!1. Thus, the variance of the
periodogram does not go to zero as T!1 (except possibly at those exceptional
points where the spectral function is zero). In other words, the periodogram does not
converge in the mean as T!1! This is most disturbing, especially in view of the
popularity of the periodogram method of spectral determination. The dilemma is
summarized in Fig. 2.26. Increasing T will not help reduce the ripples in the
individual periodogram. It simply makesM “jump around” faster with v. This does
help, though, with the subsequent averaging that must accompany the spectral
analysis. Recall that it is the average periodogram that is the measure of the spectral
density function. Averaging may not be essential in the analysis of deterministic
signals, but it is for random signals. Averaging in both frequency and time is easily
accomplished in analog spectrum analyzers by appropriate adjustment of the width
of the scanning window and the sweep speed. In digital analyzers, similar averaging
over a band of discrete frequencies can be implemented in software. Also, further
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averaging in time may be accomplished by averaging successive periodograms
before displaying the spectrum graphically. In either event, analog or digital, some
form of averaging is essential when analyzing noise.

Our treatment of the general problem of autocorrelation and spectral determi-
nation from experimental data must be brief. However, the message here should be
clear. Treat this problem with respect. It is fraught with subtleties and pitfalls.
Engineering literature abounds with reports of shoddy spectral analysis methods
and the attendant questionable results. Know your digital signal processing methods
and recognize the limitations of the results.

We will pursue the subject of digital spectral analysis further in Section 2.15.
But first we digress to present Shannon’s sampling theorems, which play an
important role in digital signal processing.

2.14
SAMPLING THEOREM

Consider a time function g(t) that is bandlimited, that is,

F½gðtÞ� ¼ GðvÞ ¼
Nontrivial; jvj � 2pW

0; jvj > 2pW

(
(2.14.1)

Under the conditions of Eq. (2.14.1), the time function can be written in the form

gðtÞ ¼
X1

n¼�1
g

n

2W

�  sinð2pWt � npÞ
2pWt � np

(2.14.2)

This remarkable theorem is due to C. E. Shannon (12, 13), and it has special
significance when dealing with bandlimited noise.* The theorem says that if one
were to specify an infinite sequence of sample values . . . , g1, g2, g3, . . . , uniformly

Figure 2.26 Typical periodogram for long record length.

* The basic concept of sampling at twice the highest signal frequency is usually attributed to H. Nyquist (14).
However, the explicit form of the sampling theorem given by Eq. (2.14.2) and its associated signal bandwidth
restriction was first introduced into communication theory by C. E. Shannon. You may wish to refer to Shannon
(13) or Black (15) for further comments on the history of sampling theory.
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spaced 1/2W sec apart as shown in Fig. 2.27, then there would be one and only one
bandlimited function that would go through all the sample values. In other words,
specifying the signal sample values and requiring g(t) to be bandlimited indirectly
specify the signal in between the sample points aswell. The sampling rate of 2WHz is
known as the Nyquist rate. This represents the minimum sampling rate needed to
preserve all the information content in the continuous signal. If we sample g(t) at less
than the Nyquist rate, some information will be lost, and the original signal cannot be
exactly reconstructed on the basis of the sequence of samples. Sampling at a rate
higher than the Nyquist rate is not necessary, but it does no harm because this simply
extends the allowable range of signal frequencies beyond W Hz. Certainly, a signal
lying within the bandwidth W also lies within a bandwidth greater than W.

In describing a stationary random process that is bandlimited, it can be seen
that we need to consider only the statistical properties of samples taken at the
Nyquist rate of 2W Hz. This simplifies the process description considerably. If
we add the further requirement that the process is Gaussian and white within the
bandwidthW, then the joint probability density for the samples may be written as a
simple product of single-variate normal density functions. This simplification is
frequently used in noise analysis in order to make the problem mathematically
tractable.

Since there is symmetry in the direct and inverse Fourier transforms, we would
expect there to be a corresponding sampling theorem in the frequency domain. It
may be stated as follows. Consider the time function g(t) to be time limited, that is,
nontrivial over a span of time T and zero outside this interval; then its Fourier
transform G(v) may be written as

GðvÞ ¼
X1
n¼�1

G
2pn

T

� � sin
vT

2
� np

� �
vT

2
� np

(2.14.3)

All of the previous comments relative to time domain sampling have their
corresponding frequency-domain counterparts.

Frequently, it is useful to consider time functions that are limited in both
time and frequency. Strictly speaking, this is not possible, but it is a useful
approximation. This being the case, the time function can be uniquely repre-
sented by 2WT samples. These may be specified either in the time or frequency
domain.

Sampling theorems have also been worked out for the nonbaseband case (17).
These are somewhat more involved than the baseband theorems and will not be
given here.

Figure 2.27 Samples of bandlimited signal g(t).
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PROBLEMS

2.1 Noise measurements at the output of a certain amplifier (with its input shorted)
indicatethat thermsoutputvoltageduetointernalnoiseis100mV.Ifweassumethatthe
frequency spectrumof the noise is flat from0 to 10MHz and zero above 10MHz, find:

(a) The spectral density function for the noise.
(b) The autocorrelation function for the noise.

Give proper units for both the spectral density and autocorrelation functions.

2.2 A sketch of a sample realization of a stationary random process X(t) is shown
in the figure. The pulse amplitudes ai are independent samples of a normal random
variable with zero mean and variance s2. The time origin is completely random.
Find the autocorrelation function for the process.

2.3 Find the autocorrelation function corresponding to the spectral density
function

S jvð Þ ¼ d vð Þ þ 1

2
d v� v0ð Þ þ 1

2
d vþ v0ð Þ þ 2

v2 þ 1

2.4 A stationary Gaussian random process X(t) has an autocorrelation function of
the form

RXðtÞ ¼ 4e�jtj

What fraction of the time will jX(t)j exceed four units?

2.5 It is suggested that a certain real process has an autocorrelation function as
shown in the figure. Is this possible? Justify your answer.

(Hint: Calculate the spectral density function and see if it is plausible.)

2.6 The input to an ideal rectifier (unity forward gain, zero reverse gain) is a
stationary Gaussian process.

(a) Is the output stationary?
(b) Is the output a Gaussian process?

Give a brief justification for both answers.

Figure P2.2

Figure P2.5
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2.7 A random process X(t) has sample realizations of the form

XðtÞ ¼ at þ Y

where a is a known constant and Y is a random variable whose distribution is
N(0, s2). Is the process (a) stationary and (b) ergodic? Justify your answers.

2.8 A sample realization of a random process X(t) is shown in the figure. The time
t0 when the transition from the �1 state to the þ1 state takes place is a random
variable that is uniformly distributed between 0 and 2 units.

(a) Is the process stationary?
(b) Is the process deterministic or nondeterministic?
(c) Find the autocorrelation function and spectral density function for the

process.

2.9 A common autocorrelation function encountered in physical problems is

RðtÞ ¼ s2e�bjtj cosv0t

(a) Find the corresponding spectral density function.
(b) R(t) will be recognized as a damped cosine function. Sketch both the

autocorrelation and spectral density functions for the lightly damped case.

2.10 Show that a Gauss–Markov process described by the autocorrelation function

RðtÞ ¼ s2e�bjtj

becomesGaussianwhitenoise ifwe letb!1 ands2!1 in suchaway that the area
under the autocorrelation-function curve remains constant in the limiting process.

2.11 A stationary random process X(t) has a spectral density function of the form

SXðvÞ ¼ 6v2 þ 12

ðv2 þ 4Þðv2 þ 1Þ

What is the mean-square value of X(t)?
(Hint:SX(v)may be resolved into a sum of two terms of the form: [A=(v2þ 4)]þ
[B=(v2þ 1)]. Each term may then be integrated using standard integral
tables.)

Figure P2.8

98 CHAPTER 2 MATHEMATICAL DESCRIPTION OF RANDOM SIGNALS



C02 12/09/2011 10:6:6 Page 99

2.12 The stationary process X(t) has an autocorrelation function of the form

RXðtÞ ¼ s2e�bjtj

Another process Y(t) is related to X(t) by the deterministic equation

YðtÞ ¼ aXðtÞ þ b

where a and b are known constants.
What is the autocorrelation function for Y(t)?

2.13 The discrete random walk process is discussed in Section 2.11. Assume each
step is of length l and that the steps are independent and equally likely to be positive
or negative. Show that the variance of the total distance D traveled in N steps is
given by

VarD ¼ l2N

(Hint: First write D as the sum l1þ l2þ . . . lN and note that l1, l2, . . . , lN are
independent random variables. Then form E(D) and E(D2) and compute Var D as
E(D2)� [E(D)]2.)

2.14 The Wiener process was discussed in Section 2.11. It is defined to be
Gaussian random walk that begins with zero at t¼ 0. A more general random walk
process can be defined to be similar to the Wiener process except that it starts with a
N (0, s2) random variable where s is specified.

(a) What is the autocorrelation function for this more general process? Denote
the white noise PSD driving the integrator as W.

(b) Write the expression for the mean-square value of the process as a function
of W, s, and the elapsed time from t¼ 0.

2.15 Let the process Z(t) be the product of two independent stationary processes
X(t) and Y(t). Show that the spectral density function for Z(t) is given by (in the s
domain)

SZðsÞ ¼ 1

2pj

Z j1

�j1
SXðwÞSYðs� wÞ dw

[Hint: First show that RZ(t)¼RX(t)RY(t).]

2.16 The spectral density function for the stationary process X(t) is

SXðjvÞ ¼ 1

ð1þ v2Þ2

Find the autocorrelation function for X(t).

2.17 A stationary process X(t) is Gaussian and has an autocorrelation function of
the form

RXðtÞ ¼ 4e�jtj

Let the random variableX1 denoteX(t1) andX2 denoteX(t1þ 1).Write the expression
for the joint probability density function f X1X2

ðx1; x2Þ.
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2.18 A stationary Gaussian process X(t) has a power spectral density function

SXðjvÞ ¼ 2

v4 þ 1

Find E(X) and E(X2).

2.19 A typical sample function of a stationary Gauss–Markov process is shown in
the sketch. The process has a mean-square value of 9 units, and the random variables
X1 and X2 indicated on the waveform have a correlation coefficient of 0.5. Write the
expression for the autocorrelation function of X(t).

2.20 It was stated in Section 2.9 that a first-order Gauss–Markov process has an
autocorrelation function of the form

R tð Þ ¼ s2e�b tj j

It was also stated that a discrete-time version of the process can be generated by the
recursive equation

X tkþ1ð Þ ¼ e�bDtX tkð Þ þW tkð Þ

whereW(tk) is a zero-mean white Gaussian sequence that is uncorrelated with X(tk)
and all the preceding X samples. Show that

E W2 tkð Þ� 	 ¼ s2 1� e�2bDt
� �

Note that in simulating a first-order Gauss–Markov process, the initial X(t0) must be
a N(0, s2) sample in order for the process to be stationary.

2.21 In Example 2.12, it was mentioned that the derivative of a first-order Gauss–
Markov process does not exist, and this is certainly true in the continuous-time case.
Yet, when we look at adjacent samples of a typical discrete-time first-order process
(see Fig. 2.16a), it appears that the difference between samples is modest and well-
behaved. Furthermore, we know that the X(tk) samples evolve in accordance with
the recursive equation

X tkþ1ð Þ ¼ e�bDtX tkð Þ þW tkð Þ
where W(tk) is an uncorrelated random sequence with a variance s2 1� e�2bDt

� �
.

(See Problem 2.20.)

Figure P2.19
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Thus, as Dt becomes smaller and smaller, the variance of W(tk) approaches
zero. Thus, it appears that the X(tk) sequence becomes “smooth” as Dt approaches
zero, and one would think intuitively that the derivative (i.e., slope) would exist.
This, however, is a mirage, because in forming the slope as the ratio [X(tkþ1)�X
(tk)]=Dt, both numerator and denominator approach zero as Dt ! 0.

Show that the denominator in the approximate slope expression approaches
zero “faster” than the numerator, with the result that the approximate slope becomes
larger as Dt becomes smaller. This confirms that the approximate derivative does
not converge as Dt ! 0, even in the discrete time case.

2.22 Wewish to determine the autocorrelation function a random signal empirically
from a single time record. Let us say we have good reason to believe the process is
ergodic andat least approximatelyGaussian and, furthermore, that the autocorrelation
function of the process decays exponentiallywith a time constant no greater than 10 s.
Estimate the record length needed to achieve 5 percent accuracy in the determination
of the autocorrelation function. (By 5 percent accuracy, assume wemean that for any
t, the standard deviation of the experimentally determined autocorrelation function
will not be more than 5 percent of the maximum value of the true autocorrelation
function.)

2.23 Let X1, X2, X3, X4 be zero-mean Gaussian random variables. Show that

EðX1X2X3X4Þ ¼ EðX1X2ÞEðX3X4Þ þ EðX1X3ÞEðX2X4Þ
þ EðX1X4ÞEðX2X3Þ (P2.23.1)

(Hint: The characteristic function was discussed briefly in Section 1.8.)
The multivariate version of the characteristic function is useful here. Let c(v1,

v2, . . . , vn) be the multidimensional Fourier transform of f x1x2...xnðx1; x2; . . . ; xnÞ
(but with the signs reversed on v1, v2, . . . , vn). Then it can be readily verified that

ð�jÞn @
ncðv1;v1 . . .vnÞ
@v1@v2; . . . ; @vn

���� v1 ¼ 0
v2 ¼ 0
etc:

¼
Z 1

�1

Z 1

�1
. . .

Z 1

�1
x1 x2; . . . ;

xnf x1x2;...;xnðx1; x2; . . . ; xnÞ dx1; dx2; . . . ; dxn
¼ EðX1;X2; . . . ;XnÞ (P2.23.2)

The characteristic function for a zero-mean, vector Gaussian random variable X is

cðvÞ ¼ e�
1
2
vTCXv (P2.23.3)

whereCX is the covariance matrix forX. This, along with Eq. (P2.23.2), may now be
used to justify the original statement given by Eq. (P2.23.1).

2.24 The accompanying figure shows a means of generating narrowband noise
from two independent baseband noise sources. (See Section 2.10.) The bandwidth
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of the resulting narrowband noise is controlled by the cutoff frequency of the low-
pass filters, which are assumed to have identical characteristics. Assume that F1(t)
and F2(t) are independent white Gaussian noise processes with similar spectral
amplitudes. The resulting noise processes after low-pass filtering will then have
identical autocorrelation functions that will be denoted RX(t).

(a) Show that the narrowband noise S(t) is a stationary Gaussian random
process whose autocorrelation function is

RSðtÞ ¼ RXðtÞ cos vct

(b) Also show that both the in-phase and quadrature channels are needed to
produce stationary narrowband noise. (That is, if either of the sin vct or cos
vct multiplying operations is omitted, the resultant output will not be
strictly stationary.)

2.25 A sequence of discrete samples of a Gauss–Markov process can be generated
using the following difference equation (see Section 2.9):

Xkþ1 ¼ e�bDtXk þWk; k ¼ 0; 1; 2; . . .

Wk¼ white sequence, N[0, s2(1� e�2bDt)]

s2¼ variance of the Markov process

b¼ reciprocal time constant of the process

Dt¼ time interval between samples

If the initial value of the processX0 is chosen from a population that isN(0, s2),
then the sequence so generated will be a sample realization of a stationary Gauss–
Markov process. Such a sample realization is easily generated with MATLAB’s
normal random number generator with appropriate scaling of the initial X0 and the
Wk sequence.

(a) Generate 1024 samples of a Gauss–Markov process with s2¼ 1, b¼ 1, and
Dt¼ .05 s. As a matter of convenience, let the samples be a 1024-element
row vector with a suitable variable name.

Figure P2.24
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(b) Calculate the experimental autocorrelation function for the Xk sequence of
part (a). That is, find VX(t) for t¼ 0, .05, .10, . . . , 3.0 (i.e., 60 “lags”). You
will find it convenient here to write a general MATLAB program for
computing the autocorrelation function for a sequence of length s and for
m lags. (This program can then be used in subsequent problems.) Compare
your experimentally determined VX(t) with the true autocorrelation
function RX(t) by plotting both VX(t) and RX(t) on the same graph.
Note that for the relatively short 1024-point time sequence being used
here, you should not expect to see a close match between VX(t) and RX(t)
(see Example 2.15).

(c) The theory given in Section 2.13 states that the expectation of VX(t) is
equal to RX(t) regardless of the length of the sequence. It is also shown that
VX(t) converges in the mean for a Gauss–Markov process as T becomes
large. One would also expect to see the same sort of convergence when we
look at the average of an ensemble of VX(t)’s that are generated from
“statistically identical,” but different, 1024-point sequences. This can be
demonstrated (not proved) using a different seed in developing each VX(t).
Say we use seeds 1, 2, . . . , 8. First plot the VX(t) obtained using seed 1.
Next, average the two VX(t)’s obtained from seeds 1 and 2, and plot the
result. Then average the four VX(t)’s for seeds 1, 2, 3, and 4, and plot
the result. Finally, average all eight VX(t)’s, and plot the result. You should
see a general trend toward the true RX(t) as the number of VX(t)’s used in
the average increases.

2.26 Discrete samples of a Wiener process are easily generated using MATLAB’s
normal random number generator and implementing the recursion equation:

�Xkþ1 ¼ Xk þWk; k ¼ 0; 1; 2; . . . (P2.26)

where the subscript k is the time index and the initial condition is set to

X0 ¼ 0

Consider a Wiener process where the white noise being integrated has a power
spectral density of unity (see Section 2.7), and the sampling interval is 1 s. The
increment to be added with each step (i.e., Wk) is a N(0, 1) random variable, and
all the Wk’s are independent. [That this will generate samples of a process whose
variance is t (in s) is easily verified by working out the variance of Xk for a few
steps beginning at k¼ 0.]

(a) Using Eq. (P2.26), generate an ensemble of 50 sample realizations of the
Wiener process described above for k¼ 0, 1, 2, . . . , 10. For convenience,
arrange the resulting realizations into a 50� 11 matrix, where each row
represents a sample realization beginning at k¼ 0.

(b) Plot any 8 sample realizations (i.e., rows) from part (a), and note the
obvious nonstationary character of the process.

(c) Form the average squares of the 50 process realizations from part (a), and
plot the result vs. time (i.e., k). (The resulting plot should be approximately
linear with a slope of unity.)
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3
Linear Systems Response,
State-Space Modeling, and
Monte Carlo Simulation

The central problem of linear systems analysis is: Given the input, what is the
output? In the deterministic case, we usually seek an explicit expression for the
response or output. In the random-input problem no such explicit expression is
possible, except for the special case where the input is a so-called deterministic
random process (and not always in this case). Usually, in random-input problems,
we must settle for a considerably less complete description of the output than we get
for corresponding deterministic problems. In the case of random processes the most
convenient descriptors to work with are autocorrelation function, power spectral
density function, and mean-square value. We will now examine the input–output
relationships of linear systems in these terms.

3.1
INTRODUCTION: THE ANALYSIS PROBLEM

In any system satisfying a set of linear differential equations, the solution may be
written as a superposition of an initial-condition part and another part due to the
driving or forcing functions. Both the initial conditions and forcing functions may
be random; and, if so, the resultant response is a random process. We direct our
attention here to such situations, and it will be assumed that the reader has at least an
elementary acquaintance with deterministic methods of linear system analysis (1, 2).

With reference to Fig. 3.1, the analysis problem may be simply stated: Given
the initial conditions and the input and the system’s dynamical characteristics [i.e.,
G (s) in Fig. 3.1], what is the output? Of course, in the stochastic problem, the input
and output will have to be described in probabilistic terms.

We need to digress here for a moment and discuss a notational matter. In
Chapters 1 and 2 we were careful to use uppercase symbols to denote random
variables and lowercase symbols for the corresponding arguments of their proba-
bility density functions. This is the custom in most current books on probability.
There is, however, a long tradition in engineering books on automatic control and
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linear systems analysis of using lowercase for time functions and uppercase for the
corresponding Laplace or Fourier transforms. Hence, we are confronted with
notational conflict. We will resolve this in favor of the traditional linear analysis
notation, and from this point on we will use lowercase symbols for time signals—
either random or deterministic—and uppercase for their transforms. This seems to
be the lesser of the two evils. The reader will simply have to interpret the meaning of
symbols such as x(t), f (t), and the like, within the context of the subject matter
under discussion. This usually presents no problem. For example, with reference to
Fig. 3.1, g(t) would mean inverse transform of G(s), and it clearly is a deterministic
time function. On the other hand, the input and output, f(t) and x(t), will usually be
random processes in the subsequent material.

Generally, analysis problems can be divided into two categories:

1. Stationary (steady-state) analysis. Here the input is assumed to be time
stationary, and the system is assumed to have fixed parameters with a stable
transfer function. This leads to a stationary output, provided the input has
been present for a long period of time relative to the system time constants.

2. Nonstationary (transient) analysis. Here we usually consider the driving
function as being applied at t¼ 0, and the system may be initially at rest or
have nontrivial initial conditions. The response in this case is usually
nonstationary. We note that analysis of unstable systems falls into this
category, because no steady-state (stationary) condition will exist.

The similarity between these two categories and the corresponding ones in
deterministic analysis should be apparent. Just as in circuit analysis, we would
expect the transient solution to lead to the steady-state response as t—I 1.
However, if we are only interested in the stationary result, this is getting at the
solution the “hard way.” Much simpler methods are available for the stationary
solution, and these will now be considered.

3.2
STATIONARY (STEADY-STATE) ANALYSIS

We assume in Fig. 3.1 thatG(s) represents a stable, fixed-parameter system and that
the input is covariance (wide-sense) stationary with a known power spectral density
function (PSD). In deterministic analysis, we know that if the input is Fourier
transformable, the input spectrum is simply modified byG( jv) in going through the
filter. In the random process case, one interpretation of the spectral function is that it
is proportional to the magnitude of the square of the Fourier transform. Thus, the
equation relating the input and output spectral functions is

SxðsÞ ¼ GðsÞGð�sÞSf ðsÞ (3.2.1)

Figure 3.1 Block diagram for elementary analysis problem.
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Note that Eq. (3.2.1) is written in the s domain where the imaginary axis has the
meaning of real angular frequency v. If you prefer to write Eq. (3.2.1) in terms of v,
just replace s with jv. Equation (3.2.1) then becomes

SxðjvÞ ¼ Gð jvÞGð�jvÞSf ð jvÞ
¼ jGð jvÞj2Sf ð jvÞ

(3.2.2)

Because of the special properties of spectral functions, both sides of Eq. (3.2.2)
work out to be real functions of v. Also note that the autocorrelation function of the
output can be obtained as the inverse Fourier transform of Sx( jv). Two examples
will now illustrate the use of Eq. (3.2.1).

EXAMPLE 3.1

Consider a first-order low-pass filter with unity white noise as the input. With
reference to Fig. 3.1, then

Sf ðsÞ ¼ 1

GðsÞ ¼ 1

1þ Ts

where T is the time constant of the filter. The output spectral function is then

SxðsÞ ¼ 1

1þ Ts
� 1

1þ Tð�sÞ � 1

¼ ð1=TÞ2
�s2 þ ð1=TÞ2

Or, in terms of real frequency v,

Sxð jvÞ ¼ ð1=TÞ2
v2 þ ð1=TÞ2

This is sketched as a function of v in Fig. 3.2. As would be expected, most of the
spectral content is concentrated at low frequencies and then it gradually diminishes
as v!1.

It is also of interest to compute the mean-square value of the output. It is given
by Eq. (2.7.17).

Eðx2Þ ¼ 1

2pj

Z j1

�j1

1

1þ Ts
� 1

1þ Tð�sÞ ds (3.2.3)

Figure 3.2 Spectral function for low-pass filter output

with white noise input.
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The integral of Eq. (3.2.3) is easily evaluated in this case by substituting jv for s
and using a standard table of integrals. This leads to

Eðx2Þ ¼ 1

2T

The “standard” table-of-integrals approach is of limited value, though, as will be
seen in the next example.

&

EXAMPLE 3.2

Consider the input process to have an exponential autocorrelation function and the
filter to be the same as in the previous example. Then

Rf ðtÞ ¼ s2e�bjtj

GðsÞ ¼ 1

1þ Ts

First, we transform Rf to obtain the input spectral function.

F Rf ðtÞ
� � ¼ 2s2b

�s2 þ b2

The output spectral function is then

SxðsÞ ¼ 2s2b

�s2 þ b2
� ð1=TÞ
½sþ ð1=TÞ� �

ð1=TÞ
½�sþ ð1=TÞ� (3.2.4)

Now, if we wish to find E(x2) in this case, it will involve integrating a function
that is fourth-order in the denominator, and most tables of integrals will be of no
help. We note, though, that the input spectral function can be factored and the
terms of Eq. (3.2.4) can be rearranged as follows:

SxðsÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2s2b

p
ðsþ bÞ �

ð1=TÞ
½sþ ð1=TÞ�

" # ffiffiffiffiffiffiffiffiffiffi
2s2b

p
ð�sþ bÞ �

ð1=TÞ
½�sþ ð1=TÞ�

" #
(3.2.5)

The first term has all its poles and zeros in the left half-plane, and the second term
has mirror-image poles and zeros in the right half-plane. This regrouping of terms
is known as spectral factorization and can always be done if the spectral function
is rational in form (i.e., if it can be written as a ratio of polynomials in even powers
of s).

Since special tables of integrals have been worked out for integrating complex
functions of the type given by Eq. (3.2.5), we defer evaluating E(x2) until these
have been presented in the next section. We note, however, that the concept of
power spectral density presented in Section 2.7 is perfectly general, and its integral
represents a mean-square value irrespective of whether or not the integral can be
evaluated in closed form.

&
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3.3
INTEGRAL TABLES FOR COMPUTING MEAN-SQUARE VALUE

In linear analysis problems, the spectral function can often be written as a ratio of
polynomials in s2. If this is the case, spectral factorization can be used to write the
function in the form

SxðsÞ ¼ cðsÞ
dðsÞ �

cð�sÞ
dð�sÞ (3.3.1)

where c(s)/d(s) has all its poles and zeros in the left half-plane and c(–s)/d(–s) has
mirror-image poles and zeros in the right half-plane. No roots of d(s)
are permitted on the imaginary axis. The mean-square value of x can now be
written as

Eðx2Þ ¼ 1

2pj

Z j1

�j1

cðsÞcð�sÞ
dðsÞdð�sÞ ds (3.3.2)

R. S. Phillips (3) was the first to prepare a table of integrals for definite
integrals of the type given by Eq. (3.3.2). His table has since been repeated in
many texts with a variety of minor modifications (4,5,6). An abbreviated table in
terms of the complex s domain follows. An example will now illustrate the use of
Table 3.1.

Table 3.1 Table of Integrals

In ¼ 1

2pj

Z j1

�j1

cðsÞcð�sÞ
dðsÞdð�sÞ ds ð3:3:3Þ

cðsÞ ¼ cn�1s
n�1 þ cn�2s

n�2 þ � � � þ c0

dðsÞ ¼ dns
n þ dn�1s

n�1 þ � � � þ d0

I1 ¼ c20
2d0d1

I2 ¼ c21d0 þ c20d2
2d0d1d2

I3 ¼ c22d0d1 þ ðc21 � 2c0c2Þd0d3 þ c20d2d3
2d0d3ðd1d2 � d0d3Þ

I4 ¼ c23ð�d20d3 þ d0d1d2Þ þ ðc22 � 2c1c3Þd0d1d4 þ ðc21 � 2c0c2Þd0d3d4 þ c20ð�d1d
2
4 þ d2d3d4Þ

2d0d4ð�d0d
2
3 � d21d4 þ d1d2d3Þ
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3.4
PUREWHITE NOISE AND BANDLIMITED SYSTEMS

We are now in a position to demonstrate the validity of using the pure white noise
model in certain problems, even though white noise has infinite variance. This will
be done by posing two hypothetical mean-square analysis problems:

1. Consider a simple first-order low-pass filter with bandlimited white noise as
the input. Specifically, with reference to Fig. 3.1, let

Sf ð jvÞ ¼ A; vj j � vc

0; vj j > vc

�
(3.4.1)

GðsÞ ¼ 1

1þ Ts
(3.4.2)

EXAMPLE 3.3

The solution in Example 3.2 was brought to the point where the spectral function
had been written in the form

SxðsÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2s2b

p
� 1=T

ðsþ bÞðsþ 1=TÞ

" # ffiffiffiffiffiffiffiffiffiffi
2s2b

p
� 1=T

ð�sþ bÞð�sþ 1=TÞ

" #
(3.3.4)

Clearly, Sx has been factored properly with its poles separated into left and right
half-plane parts. The mean-square value of x is given by

Eðx2Þ ¼ 1

2pj

Z j1

�j1
SxðsÞds (3.3.5)

Comparing the form of Sx(s) in Eq. (3.3.4) with the standard form given in Eq.
(3.3.3), we see that

cðsÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2s2b

p
T

dðsÞ ¼ s2 þ ðbþ 1=TÞsþ b=T

Thus, we can use the I2 integral of Table 3.1. The coefficients for this case are

c1 ¼ 0 d2 ¼ 1

c0 ¼
ffiffiffiffiffiffiffiffiffiffi
2s2b

p
T

d1 ¼ ðbþ 1=TÞ
d0 ¼ b=T

and E(x2) is then

Eðx2Þ ¼ c20
2d0d1

¼ 2s2b=T2

2ðb=TÞðbþ 1=TÞ ¼
s2

1þ bT

&
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2. Consider the same low-pass filter as in problem 1, but with pure white noise
as the input:

Sf ð jvÞ ¼ A; for all v (3.4.3)

GðsÞ ¼ 1

1þ Ts
(3.4.4)

Certainly, problem 1 is physically plausible because bandlimited white
noise has finite variance. Conversely, problem 2 is not because the input has
infinite variance. The preceding theory enables us to evaluate the mean-
square value of the output for both problems. As a matter of convenience,
we do this in the real frequency domain rather than the complex s domain.

Problem 1:

Sxð jvÞ ¼
1

1þ ðTvÞ2 ; vj j � vc

0; vj j > vc

8<
: (3.4.5)

Eðx2Þ ¼ 1

2p

Z vc

�vc

A

1þ ðTvÞ2 dv ¼ A

pT
tan�1ðvcTÞ (3.4.6)

Problem 2:

SxðjvÞ ¼ A

1þ ðTvÞ2 ; for all v (3.4.7)

Eðx2Þ ¼ 1

2p

Z 1

�1

A

1þ ðTvÞ2 dv

¼ A

pT
tan�1ð1Þ ¼ A

2T
(3.4.8)

Now, we see by comparing the results given by Eqs. (3.4.6) and (3.4.8) that the
difference is just that between tan�1(vcT ) and tan�1(1). The bandwidth of the
input is vc and the filter bandwidth is 1/T. Thus, if their ratio is large, tan�1(vcT )
� tan�1(1). For a ratio of 100:1, the error is less than 1 percent. Thus, if the input
spectrum is flat considerably out beyond the point where the system response is
decreasing at 20 db/decade (or faster), there is relatively little error introduced by
assuming that the input is flat out to infinity. The resulting simplification in the
analysis is significant.

3.5
NOISE EQUIVALENT BANDWIDTH

In filter theory, it is sometimes convenient to think of an idealized filter whose
frequency response is unity over a prescribed bandwidth B (in hertz) and zero

3.5 NOISE EQUIVALENT BANDWIDTH 111
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outside this band. This response is depicted in Fig. 3.3a. If this ideal filter is driven
by white noise with amplitude A, its mean-square response is

Eðx2Þ ðidealÞ ¼ 1

2p

Z 2pB

�2pB

Adv ¼ 2AB (3.5.1)

Next, consider an actual filter G(s) whose gain has been normalized to yield a
peak response of unity. An example is shown in Fig. 3.3b. The mean-square
response of the actual filter to white noise of amplitude A is given by

Eðx2Þ ðactualÞ ¼ 1

2pj

Z j1

�j1
AGðsÞGð�sÞds (3.5.2)

Now, if we wish to find the idealized filter that will yield this same response, we
simply equate E(x2) (ideal) and E(x2) (actual) and solve for the bandwidth that gives
equality. The resultant bandwidth B is known as the noise equivalent bandwidth. It
may, of course, be written explicitly as

B ðin hertzÞ ¼ 1

2

1

2pj

Z j1

�j1
GðsÞGð�sÞds

� �
(3.5.3)

Figure 3.3 Ideal and actual filter

responses. (a) Ideal. (b) Actual.

EXAMPLE 3.4

Suppose we wish to find the noise equivalent bandwidth of the second-order low-
pass filter

GðsÞ ¼ 1

ð1þ TsÞ2
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3.6
SHAPING FILTER

With reference to Fig. 3.4, we have seen that the output spectral function can be
written as

SxðsÞ ¼ 1 � GðsÞGð�sÞ (3.6.1)

If G(s) is minimum phase and rational in form,* Eq. (3.6.1) immediately provides a
factored form for Sx(s) with poles and zeros automatically separated into left and
right half-plane parts.

Clearly, we can reverse the analysis problem and pose the question: What
minimum-phase transfer function will shape unity white noise into a given spectral
function Sx(s)? The answer should be apparent. If we can use spectral factorization
on Sx(s), the part with poles and zeros in the left half-plane provides the appropriate
shaping filter. This is a useful concept, both as a mathematical artifice and also as a
physical means of obtaining a noise source with desired spectral characteristics
from a wideband source.

Since the peak response of G(s) occurs at zero frequency and is unity, the gain
scale factor is set properly. We must next evaluate the integral in brackets in
Eq. (3.5.3). Clearly, G(s) is second-order in the denominator, and therefore we use
I2 of the integral tables given in Section 3.3. The coefficients in this case are

c1 ¼ 0 d2 ¼ T2

c0 ¼ 1 d1 ¼ 2T

d0 ¼ 1

and thus I2 is

I2 ¼ c20
2d0d1

¼ 1

4T

The filter’s noise equivalent noise bandwidth is then

B ¼ 1

8T
Hz

This says, in effect, that an idealized filter with a bandwidth of 1/8T Hz would
pass the same amount of noise as the actual second-order filter.

&

Figure 3.4 Shaping filter.

*This condition requires G(s) to have a finite number of poles and zeros, all of which must be in the left half-
plane.
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3.7
NONSTATIONARY (TRANSIENT) ANALYSIS

Thus far we have only considered the stationary (steady-state) analysis problem.We
will now look at the nonstationary (transient) problem.

The block diagram of Fig. 3.1 is repeated as Fig. 3.5 with the addition of a
switch in the input. Imagine the system to be initially at rest, and then close the
switch at t¼ 0. A transient response takes place in the stochastic problem just as in
the corresponding deterministic problem. If the input f(t) is a nondeterministic
random process, we would expect the response also to be nondeterministic, and its
autocorrelation function may be computed in terms of the input autocorrelation
function. This is done as follows.

The system response can be written as a convolution integral

xðtÞ ¼
Z t

0

gðuÞf ðt � uÞ du (3.7.1)

where g(u) is the inverse Laplace transform of G(s) and is usually referred to as the
system weighting function or impulsive response. To find the autocorrelation

EXAMPLE 3.5

Suppose we wish to find the shaping filter that will shape unity white noise into
noise with a spectral function

Sxð jvÞ ¼ 16

v4 þ 64
(3.6.2)

First, we write Sx in the s domain as

SxðsÞ ¼ 16

s4 þ 64
(3.6.3)

Next, we find the poles of Sx. (There are no zeros.)

Poles ¼ �2� j2; 2� j2

Finally, we group together left and right half-plane parts. Sx(s) can then be written as

SxðsÞ ¼ 4

s2 þ 4sþ 8
� 4

s2 � 4sþ 8
(3.6.4)

The desired shaping filter is then

GðsÞ ¼ 4

s2 þ 4sþ 8
(3.6.5)

&

Figure 3.5 Block diagram for nonstationary analysis

problem.
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function, we simply evaluate E[x(t1)x(t2)].

Rxðt1; t2Þ ¼ E½xðt1Þxðt2Þ�

¼ E

Z t1

0

gðuÞf ðt1 � uÞ du
Z t2

0

gðyÞf ðt2 � yÞ dy
� �

¼
Z t2

0

Z t1

0

gðuÞgðyÞE½f ðt1 � uÞf ðt2 � yÞ� du dy

(3.7.2)

Now, if f(t) is stationary, Eq. (3.7.2) can be written as

Rxðt1; t2Þ ¼
Z t2

0

Z t1

0

gðuÞgðyÞRf ðu� yþ t2 � t1Þ du dy (3.7.3)

and we now have an expression for the output autocorrelation function in terms of
the input autocorrelation function and system weighting function.

Equation (3.7.3) is difficult to evaluate except for relatively simple systems.
Thus, we are often willing to settle for less information about the response and just
compute its mean-square value. This is done by letting t2¼ t1¼ t in Eq. (3.7.3) with
the result

E x2ðtÞ� � ¼ Z t

0

Z t

0

gðuÞgðyÞRf ðu� yÞ du dy (3.7.4)

Three examples will now illustrate the use of Eqs. (3.7.3) and (3.7.4).

EXAMPLE 3.6

Let G(s) be a first-order low-pass filter, and let f(t) be white noise with amplitude
A. Then

GðsÞ ¼ 1

1þ Ts

Sf ðvÞ ¼ A

Taking inverse transforms gives

gðuÞ ¼ 1

T
e�u=T

Rf ðtÞ ¼ AdðtÞ
Next, substituting in Eq. (3.7.4) yields

E x2ðtÞ½ � ¼
Z t

0

Z t

0

A

T2
e�u=Te�y=Tdðu� yÞ du dy

¼ A

T2

Z t

0

e�2y=T dy

¼ A

2T
1� e�2t=T
h i

(3.7.5)

Note that as t!1, the mean-square value approaches A/2T, which is the same
result obtained in Section 3.2 using spectral analysis methods.

&
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EXAMPLE 3.7

Let G(s) be an integrator with zero initial conditions, and let f(t) be a Gauss–Markov
process with variance s2 and time constant 1/b. We desire the mean-square value of
the output x. The transfer function and input autocorrelation function are

GðsÞ ¼ 1

s
or gðuÞ ¼ 1

and
Rf ðtÞ ¼ s2e�b tj j

Next, we use Eq. (3.7.4) to obtain E[x2(t)].

E x2ðtÞ� � ¼ Z t

0

Z t

0

1 � 1 � s2e�bju�yj du dy (3.7.6)

Some care is required in evaluating Eq. (3.7.6) because one functional expression for
e�bju�yj appliesforu> y,andadifferentoneappliesforu< y.ThisisshowninFig.3.6.
Recognizing that the region of integration must be split into two parts, we have

E x2ðtÞ� � ¼ Z t

0

Z y

0

s2e�bðu�yÞ du dyþ
Z t

0

Z t

y

s2e�bðu�yÞ du dy (3.7.7)

Since there is symmetry in the two integrals ofEq. (3.7.7),we can simply evaluate the
first one and multiply by 2. The mean-square value of x is then

E x2ðtÞ½ � ¼ 2

Z t

0

Z y

0

s2e�bðu�yÞ du dy ¼ 2

Z t

0

s2e�by

Z y

0

ebu du dy

¼ 2s2

b

Z t

0

e�by eby � 1
� 	

dy

¼ 2s2

b2
bt � 1� e�bt

� 	� �
(3.7.8)

Note thatE[x2(t)] increaseswithout bound as t!1. Thismight be expected because
an integrator is an unstable system.

&

Figure 3.6 Regions of integration for

Example 3.7.
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EXAMPLE 3.8

As our final example, we find the autocorrelation function of the output of a simple
integrator driven by unity-amplitude Gaussian white noise. The transfer function
and input autocorrelation function are

GðsÞ ¼ 1

s
or gðuÞ ¼ 1

Rf ðtÞ ¼ dðtÞ
We obtain Rx(t1, t2) from Eq. (3.7.3):

Rxðt1; t2Þ ¼
Z t2

0

Z t1

0

1 � 1 � dðu� yþ t2 � t1Þ du dy (3.7.9)

The region of integration for this double integral is shown in Fig. 3.7 for t2> t1. The
argument of the Dirac delta function in Eq. (3.7.9) is zero along the dashed line in the
figure. It can be seen that it is convenient to integrate first with respect to y if t2> t1 as
shown in the figure. Considering this case first (i.e., t2> t1), we have

Rxðt1; t2Þ ¼
Z t1

0

Z t2

0

dðu� yþ t2 � t1Þ dy du ¼
Z t1

0

1 � du ¼ t1

Similarly, when t2< t1,

Rxðt1; t2Þ ¼ t2

The final result is then

Rxðt1; t2Þ ¼ t1; t2 � t1
t2; t2 < t1

�
(3.7.10)

Note that this is the same result obtained for the Wiener process in Chapter 2.

&

Figure 3.7 Region of integration for

Example 3.8.
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In concluding this section, we might comment that if the transient response
includes both forced and initial-condition components, the total response is just the
superposition of the two. The mean-square value must be evaluated with care,
though, because the total mean-square value is the sum of the two only when the
crosscorrelation is zero. If the crosscorrelation between the two responses is not
zero, it must be properly accounted for in computing the mean-square value.

3.8
NOTE ON UNITS AND UNITY WHITE NOISE

The Pesky 2p Problem

We have been a bit cavalier about units in our examples thus far, but this is a good
place to pause and consider the matter of units more carefully. First of all, in the
term power spectral density (PSD) we will always interpret “power” to be mean-
square-value in squared units of the random variable under consideration. Also, in
our analysis thus far we have dealt with frequency in terms of v rather than f, so
there has been a tacit assumption that the units of PSD in the denominator are
radians per second (rad/s). This is where the “units” problem begins.

Say, for example, the random variable x being considered is distance in meters.
Our formula for computing mean-square-value is given by Eq. (2.7.16), which is
repeated here for convenience:

E x2
� 	 ¼ 1

2p

Z1
�1

Sxð jvÞdv (2.7.16)

The Sx( jv) was rigorously derived as the Fourier transform of the autocorrelation
function, and we are tempted to refer to Sx( jv) as density in units of meters2 per rad/
s. But yet the direct integral of Sx( jv) over the whole v space does not yield total
power. This is in conflict with the basic notion of the term “density”! It is not until
we modify the summation of Sx( jv) (i.e., integration with respect tov) by a factor of
1/2p that we get the true total power. This says that the proper units for Sx( jv) must
be meters2 per (2p rad)/s, or equivalently meters2 per Hz, but not meters2/(rad/s).
Then, when we sum with respect to Hz, we will get the correct mean-square-value.
Now, all this being said, we can actually perform the mechanics of the summation
with respect tov if we so choose; but, if we do so, we must be careful to put the 1/2p
factor in front of the integral. On the other hand, if we choose to integrate the same
Sx(jv) as before but with respect to f, we then omit the 1/2p in front of the integral. A
simple numerical example will illustrate this.

EXAMPLE 3.9

Consider a bandlimited white noise situation where the bandwidth is 60 Hz and the
mean-square-value is 36m2. The corresponding PSD and mean-square-value
calculations are shown in Fig. 3.8. Note especially that the same identical value of
the PSD magnitude is used in both the (a) and (b) parts of the figure.
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White Noise And Unity White Noise

Pure white noise is a conceptual idea. It has a spectral density that is flat out to
infinity and its power is infinite (whatever that means). Yet the PSD of white noise is
finite and has meaning, so we need to consider its units. For example, let y be a
velocity random variable that is assumed to be white. From the discussion in the
previous paragraphs, the units would then be (m/s)2/Hz. Then the integral with
respect to Hz over any finite bandwidth would give the power in the specified
bandwidth. Let A be the amplitude of Sy( jv). Then the corresponding auto-
correlation function would be

RyðtÞ ¼ AdðtÞ (3.8.1)

where

dðtÞ ¼ Dirac delta function ðdimensionlessÞ

Now continue this scenario. Let us say we integrate the velocity y to get position.
We can now use the methods of Sec. 3.7 to compute the variance of the output of the
integrator that we will call x. If the integrator has zero initial conditions:

E x2ð Þ ¼
Z t

0

Z t

0

1 � 1 � A � dðu� vÞdudv

¼
Z t

0

Adv

¼ At

(3.8.2)

&

Figure 3.8 Computation of mean-square-value from two different viewpoints.
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We can pause to check on the units here:

At
units
)

m

s


 �2

cycles

s

� s ¼ m2

Eq. (3.8.2) says that the variance of the integrated white noise increases linearly
with time, and the scale factor of the ramp is just the PSD of the input white noise in
units (m/s)2/Hz. Note that this gives us a more rigorous way of describing white
noise, i.e., in terms of its integral rather than the magnitude of the noise itself, which
does not exist.

Unity white noise is a special white noise whose PSD is unity. It is dimen-
sionless in the numerator and has units of Hz in the denominator. It is especially
useful as the forcing function in a conceptual shaping filter as discuss in Section 3.6.
When used in this context, the units for the output of the shaping filter are provided
by the filter transfer function, and not by the input unity white noise. A simple
example will illustrate this.

EXAMPLE 3.10

Consider the shaping filter shown in Fig. 3.9.

We wish to shape u(t) into a Markov process whose variance is to be s2 in m2, and
b is in the usual rad/s units. The units for the PSD of u(t) are (Hz)�1. Using Eq.
(3.2.2) we get the relationship between the input and output PSDs.

SxðjvÞ ¼ GðjvÞGð�jvÞSuðjvÞ

¼
ffiffiffiffiffiffiffiffiffiffi
2s2b

p
jvþ b

�
ffiffiffiffiffiffiffiffiffiffi
2s2b

p
�jvþ b

� 1

¼ 2s2b

v2 þ b2
m2=Hz

Notethat theinputPSDis“perHz,”sotheoutputshouldalsobe“perHz.”Asacheckon
this we can compute the mean-square-value of x as discussed previously. Sx(jv) is
inm2/Hz, butwewill be integratingwith respect tov (not f).Therefore,weneed (1/2p)
in front of the integral:

E x2ð Þ ¼ 1

2p

Z1
�1

2s2b

v2 þ b2
dv

¼ 2s2

2p

Z1
�1

b

v2 þ b2
dv

¼ s2 m2 ðfrom standard integral tablesÞ
&

Figure 3.9 Shaping filter for a Markov process.
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3.9
VECTOR DESCRIPTION OF RANDOM PROCESSES

In the subsequent chapters on Kalman filtering we will have need to put the various
random processes being considered into vector state-space format. We will consider
the continuous-time model first and then follow this with the discrete-time model.

Continuous-Time Model

Even though the filter measurement stream may consist of discrete-time samples,
some of the underlying random processes may be time-continuous (e.g., physical
dynamics, Newton’s law, etc.). Thus, the continuous-time model is often just as
important as the corresponding discrete-time model. So, consider a continuous-time
linear state-space model of the form

_x ¼ FxþGu ðrandom process differential equationÞ (3.9.1)

z ¼ Hxþ v ðlinear measurement relationshipÞ (3.9.2)

where

x is the n x 1 state vector.
u is the vector forcing function whose components are white noise.
z is the m x 1 noisy measurement vector.
v is the measurement noise vector.
F, G, H are matrices that give the linear connections appropriate for the
problem at hand.

Eq. (3.9.1) is a linear differential equation, and the components of x describe the
dynamics of the various processes under consideration. Some of these process
descriptions may initially be in the form of power spectral densities, so we need to
be able to translate these PSD descriptions into differential equation form. So, we
will now look at this problem, and we will take advantage of the shaping-filter
methods of Section 3.6 in doing so.

Suppose we start with a PSD in rational form where both the numerator and
denominator are polynomials in v2 (or s2). There are some restrictions on the orders
of the polynomials. These are imposed to assure that the variances of the phase
variables of the state vector will be finite. They are fairly obvious, so we will not
pursue this further. A simple numerical example will illustrate the procedure for
getting a state model from the spectral description of the process.

EXAMPLE 3.11

Suppose that we want to get a state-space model for the second-order Markov
process that was discussed in Section 2.9. We will let v0¼ 2 rad/s and s2¼ 1m2

for this numerical example. Then the PSD is

SxðsÞ ¼ 16
ffiffiffi
2

p

s4 þ 16
ðin terms of s rather than jvÞ
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First, we do spectral factorization of Sx(s).

SxðsÞ ¼ 4
ffiffiffi
24

p

s2 þ 2
ffiffiffiffiffi
2s

p þ 4
� 4

ffiffiffi
24

p

ð�sÞ2 þ 2
ffiffiffi
2

p ð�sÞ þ 4
(3.9.3)

The units of Sx(s) arem
2/Hz. The shaping filter and pole locations for this exercise are

shown in Fig. 3.10.

The scalar differential equation relating x(t) to u(t) is now obtained directly from
the transfer function of the shaping filter. It is

x€þ 2
ffiffiffi
2

p
_xþ 4x ¼ 4

ffiffiffi
2

4
p

u (3.9.4)

We now choose phase variables x and _x as our two state variables, and the resulting
vector differential equation becomes:*

_x1
_x2

� �
|fflffl{zfflffl}
_x

¼ 0 1

�4 �2
ffiffiffi
2

p
� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

F

x1
x2

� �
|fflffl{zfflffl}
x

þ 0

4
ffiffiffi
24

p
� �
|fflfflfflffl{zfflfflfflffl} u

G

(3.9.5)

Let us assume that in this example we only have a measurement of position, and
not velocity. The measurement equation would then be

z ¼ 1 0½ �|fflfflffl{zfflfflffl}
H

x1
x2

� �
|fflffl{zfflffl}
x

þv (3.9.6)

We have now defined the F, G and H parameters for the state model for our
second-order Markov process.

&

*In an nth-order differential equation in x, the scalar x and its (n–1) derivatives are often referred to as the phase
variables. In state-space notation these then become the n elements of the nxl state vector.

Figure 3.10 Shaping filter and pole locations for Sx(s).
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Sampled Continuous-Time Systems

Discrete-time processes may arise in either of two ways. First, there may be appli-
cations where a sequence of random events take place naturally in discrete steps, and
there is no underlying continuous dynamics to consider. Or, the discrete process may
be the result of sampling a continuous-time process such has physical motion
governed by Newton’s laws. It is such sampled processes that need further discussion
here. So, let us now consider a continuous-time random process of the form given by
Eq. (3.9.1), but the accompanying measurements come to us sampled in the form

zðtkÞ ¼ HðtkÞxðtkÞ þ vðtkÞ (3.9.7)

where H(tk) is known, and the mean and covariance of v(tk) are also known.
We only have measurements at discrete times tk, tkþ1, tkþ2, . . . , so we will

be primarily interested in the solution of the differential equation, Eq. (3.9.1),
at the corresponding times. In linear systems, this solution can always be written
as the sum of an initial condition part and a driven-response part. Thus, from basic
differential equation theory we have

x tkþ1ð Þ ¼ f tkþ1; tkð Þx tkð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Initial condition part

þ
Ztkþ1

tk

f tkþ1; tð ÞG tð Þu tð Þdt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Driven part w tkð Þ

(3.9.8)

Clearly, f tkþ1; tkð Þ is the state transition matrix, and w(tk) is the driven response
for the (tkþ1, tk) interval. Note that the scale factor for the white noise driving
function is accounted for in the G matrix. Also, we are assured that the w(tk),
w(tkþ1), . . . sequence is a zero-mean white sequence, because we have assumed
that the driving function is vector unity white noise. The solution as given by
Eq. (3.9.8) is quite formidable if the system is time varying in the intervals
between samples. So, we will assume here that the Dt intervals are small, and that
the system parameters are constant within the Dt intervals. (More will be said of
this assumption in Chapter 4.)

With the constant parameter assumption in place, the state transition matrix can
be written out explicitly in terms of Laplace transforms:

f Dtð Þ ¼ L�1 ðsI� FÞ�1
h i

t¼Dt
(3.9.9)

where t is the dummy inverse Laplace transform variable, and Dt is the (tkþ1, tk)
interval. This calculation is quite manageable for lower-order systems; but, if the
system order is large, it is next to impossible to do this with “paper-and-pencil”
methods. (More will be said about numerical methods presently.)

It will be shown in Chapter 4 that the covariance of w(k) is one of the key
parameters of the Kalman filter, so we need to be able to compute it as well as the
state transition matrix. We will call the covariance ofw(k),Q(tk) (or sometimes, just
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Qk for short), and it can be written out explicitly as

Q tkð Þ ¼ E w tkð ÞwT tkð Þ½ �

¼ E

Ztkþ1

tk

f tkþ1; jð ÞG jð Þu jð Þdj
2
4

3
5 Ztkþ1

tk

f tkþ1; hð ÞG hð Þu hð Þdh
2
4

3
5
T

8><
>:

9>=
>;

¼
Ztkþ1

tk

Ztkþ1

tk

f tkþ1; jð ÞG jð ÞE u jð ÞuT hð Þ� �
GT hð ÞfT tkþ1; hð Þdjdh

(3.9.10)

The matrix E[u(j)uT(h)] is a matrix of Dirac delta functions that, presumably, is
known from the continuous model. Thus, in principle, Qk may be evaluated from
Eq. (3.9.10). This is not a trivial task, though, even for low-order systems. If the
continuous system giving rise to the discrete situation has constant parameters and if
the various white noise inputs have zero crosscorrelation, some simplification is
possible and the weighting function methods of Section 3.7 may be applied. This is
best illustrated with an example rather than in general terms.

EXAMPLE 3.12

The integrated Gauss–Markov process shown in Fig. 3.11 is frequently encoun-
tered in engineering applications. The continuous model in this case is

_x1
_x2

� �
¼ 0 1

0 �b

� �
x1
x2

� �
þ 0ffiffiffiffiffiffiffiffiffiffi

2s2b
p� �

u tð Þ (3.9.11)

y ¼ 1 0½ � x1
x2

� �
(3.9.12)

Let us say the sampling interval is Dt and we wish to find the corresponding discrete
model. The key parameters to be determined arefk, andQk. The transition matrix is
easily determined as

fk ¼ L�1½ sI� Fð Þ�1�
h i

t¼Dt

¼ L�1 s �1

0 sþ b

� ��1

¼ L�1

1

s

1

sðsþ bÞ
0

1

sþ b

2
664

3
775

¼ 1
1

b
1� e�bDt
� 	

0 e�bDt

2
4

3
5

(3.9.13)

s +  

22  σ β
β

Unity
white
noise

u(t)

x2 = Gauss-
Markov
process

x1 = Integrated
Gauss-Markov
process

y (The scalar process
being observed)

√ 1––s

Figure 3.11 Integrated Gauss–Markov process.

124 CHAPTER 3 LINEAR SYSTEMS RESPONSE, STATE-SPACE MODELING



C03 12/09/2011 10:47:32 Page 125

Next, rather than using Eq. (3.9.10) directly to determineQk, we will use the transfer
function approach. From the block diagram of Fig. 3.11, we observe the following
transfer functions:

Gðu to x1Þ ¼ G1 ¼
ffiffiffiffiffiffiffiffiffiffi
2s2b

p
sðsþ bÞ (3.9.14)

Gðu to x2Þ ¼ G2 ¼
ffiffiffiffiffiffiffiffiffiffi
2s2b

p
sþ b

(3.9.15)

The corresponding weighting functions are

g1ðtÞ ¼
ffiffiffiffiffiffiffiffi
2s2

b

s
1� e�bt
� 	

(3.9.16)

g2ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2s2b

p
e�bt (3.9.17)

Wecannowuse themethodsofSection3.7 tofind theneededmean-square responses:

E½x1x1� ¼
Z Dt

0

Z Dt

0

g1ðjÞg1ðhÞE½uðjÞuðhÞ�dj dh

¼
Z Dt

0

Z Dt

0

2s2

b
ð1� e�bjÞð1� e�bhÞdðj� hÞ dj dh

¼ 2s2

b
Dt � 2

b
ð1� e�bDtÞ þ 1

2b
ð1� e�2bDtÞ

� �
(3.9.18)

E½x1x2� ¼
Z Dt

0

Z Dt

0

g1ðjÞg2ðhÞE½uðjÞuðhÞ�dj dh

¼
Z Dt

0

Z Dt

0

2s2e�bjð1� e�bhÞdðj� hÞ dj dh

¼ 2s2 1

b
ð1� e�bDtÞ � 1

2b
ð1� e�2bDtÞ

� �
(3.9.19)

E½x2x2� ¼
Z Dt

0

Z Dt

0

g2ðjÞg2ðhÞE½uðjÞuðhÞ�dj dh

¼
Z Dt

0

Z Dt

0

2s2be�bje�bhdðj� hÞ dj dh

¼ s2ð1� e�2bDtÞ

(3.9.20)
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Numerical Evaluation of fk and Qk

Analytical methods for finding fk and Qk work quite well for constant parameter
systems with just a few elements in the state vector. However, the dimensionality
does not have to be very large before it becomes virtually impossible to work out
explicit expressions forfk andQk. A numerical method for determiningfk andQk

for large scale systems has been worked out by C. F. van Loan [7], and it is
especially convenient when usingMATLAB.With reference to the continuous-time
model given by Eq. (3.9.1), the van Loan method proceeds as follows:

1. First, form a 2n	 2n matrix that we will call A (n is the dimension of x and
W is the power spectral density of u).*

A ¼
�F GWGT

0 FT

2
4

3
5Dt (3.9.22)

2. Using MATLAB (or other software), form eA and call it B.

B ¼ expmðAÞ ¼
� � � f�1

k Qk

0 fT
k

2
4

3
5 (3.9.23)

(The upper-left partition of B is of no concern here.)

3. Transpose the lower-right partition of B to get fk.

fk ¼ transpose of lower-right partition of B (3.9.24)

4. Finally, Qk is obtained from a matrix product as follows:

Qk ¼ fk½upper-right partition of B� (3.9.25)

The method will now be illustrated with an example.

Thus, the Qk matrix is

Qk ¼ E½x1x1� E½x1x2�
E½x1x2� E½x2x2�

� �
¼ Eq: ð3:9:18Þ Eq: ð3:9:19Þ

Eq: ð3:9:19Þ Eq: ð3:9:20Þ
� �

(3.9.21)

The discrete model is now complete with the specification of fk, and Qk, as given
by Eqs. (3.9.13) and (3.9.21). Note that the k subscript could have been dropped in
this example because the sampling interval is constant.

&

*In the shaping filter notation used here (see Section 3.6), we usually account for the white noise scale factor
within the G matrix. Thus,W is an identity matrix with dimensions that are compatible with G. Other authors
may prefer to include the noise scaling directly in u, andW is not trivial in that case. The “bottom line” is simply
that the triple product GWGT must properly account for the white noise forcing function, whatever it may be.
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EXAMPLE 3.13

Consider the nonstationary harmonic-motion process described by the differential
equation

y€þ y ¼ 2uðtÞ (3.9.26)

where u(t) is unitywhite noise and letDt¼ .1 sec. The continuous statemodel for this
process is then

_x1
_x2

� �
¼ 0 1

�1 0

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

F

x1
x2

� �
þ 0

2

� �
|ffl{zffl}
G

uðtÞ (3.9.27)

where x1 and x2 are the usual phase variables. In this case,W is

W ¼ 1 (3.9.28)

(The scale factor is accounted for in G.) GWGT is then

GWGT ¼ 0 0

0 4

� �
(3.9.29)

Now form the partitioned A matrix. Let Dt¼ .1

A ¼ �FDt GWGTDt
0 FTDt

� �
¼

0 �:1 0 0

:1 0 0 :4

0 0 0 �:1
0 0 :1 0

2
66664

3
77775 (3.9.30)

The next step is to compute B¼ eA. The result is (with numerical rounding)

B ¼ expmðAÞ ¼

:9950 �:0998 �:0007 �:0200
:0998 :9950 :0200 :3987

0 0 :9950 �:0998
0 0 :0998 :9950

2
66664

3
77775 (3.9.31)

Finally, we get both fk and Qk from

fk ¼ transpose of lower-right partition of B

¼ :9950 :0998

:0998 :9950

� �
(3.9.32)

Qk ¼ fk½upper-right partition of B�

¼ :0013 :0199

:0199 :3987

� �
(3.9.33)

&
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3.10
MONTE CARLO SIMULATION OF DISCRETE-TIME PROCESSES

Monte Carlo simulation refers to system simulation using random sequences as
inputs. Such methods are often helpful in understanding the behavior of stochastic
systems that are not amenable to analysis by usual direct mathematical me-
thods. This is especially true of nonlinear filtering problems (considered later in
Chapter 7), but there are also many other applications where Monte Carlo methods
are useful. Briefly, these methods involve setting up a statistical experiment that
matches the physical problem of interest, then repeating the experiment over and
over with typical sequences of random numbers, and finally, analyzing the results
of the experiment statistically. We are concerned here primarily with experiments
where the random processes are Gaussian and sampled in time.

Simulation of Sampled Continuous-Time Random Processes

The usual description of a stationary continuous-time random process is its power
spectral density (PSD) function or the corresponding autocorrelation function. It
was mentioned in Chapter 2 that the autocorrelation function provides a complete
statistical description of the process when it is Gaussian. This is important in Monte
Carlo simulation (even though somewhat restrictive), because Gaussian processes
have a firm theoretical foundation and this adds credibility to the resulting analysis.
In Section 3.9 a general method was given for obtaining a discrete state-space model
for a random process, given its power spectral density. Thus, we will begin with a
state model of the form given by Eq. (3.9.8) (Here we will use the more compact
notation where the subscript k refers to the time tk.)

xkþ1 ¼ fkxk þ wk (3.10.1)

Presumably, fk is known, and wk is a Gaussian white sequence with known
covariance Qk. The problem is to generate an ensemble of random trials of xk (i.e.,
sample realizations of the process) for k¼ 0, 1, 2, . . . , m.

Equation (3.10.1) is explicit. Thus, once methods are established for generating
wk for k¼ 0, 1, 2, . . . , (m – 1) and setting the initial condition for x at k¼ 0, then
programming the few lines of code needed to implement Eq. (3.10.1) is routine.
MATLAB is especially useful here because of its “user friendliness” in performing
matrix calculations. If fk is a constant, it is simply assigned a variable name and
given a numerical value in the MATLAB workspace. If fk is time-variable, it is
relatively easy to reevaluate the parameters with each step as the simulation pro-
ceeds in time. Generating thewk sequence is a bit more difficult, though, becauseQk

is usually not diagonal. Proceeding on this basis, we begin with a vector uk whose
components are independent samples from anN(0, 1) population (which is readily
obtained in MATLAB), and then operate on this vector with a linear transformation
Ck that is chosen so as to yield awk vector with the desired covariance structure. The
desired Ck is not unique, but a simple way of forming a suitable Ck is to let it be
lower triangular and then solve for the unknown elements. Stated mathematically,
we have (temporarily omitting the k subscripts)

w ¼ Cu (3.10.2)
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and we demand that

E ðCuÞðCuÞT� � ¼ E wwT
� � ¼ Q (3.10.3)

Now, E[uuT] is the unitary matrix because of the way we obtain the elements of u as
independent N(0, 1) samples. Therefore,

CCT ¼ Q (3.10.4)

We will now proceed to show that the algebra for solving for the elements ofC
is simple, provided that the steps are done in the proper order. This will be
demonstrated for a 2	 2Qmatrix. Recall thatQ is symmetric and positive definite.
For the 2	 2 case, we have (with the usual matrix subscript notation)

c11 0

c21 c22

� �
c11 c21
0 c22

� �
¼ q11 q12

q21 q22

� �

or

c211 c11c21
c11c21 c221 þ c222

� �
¼ q11 q12

q21 q22

� �
(3.10.5)

We start first with the 11 term.

c11 ¼ ffiffiffiffiffiffi
q11

p
(3.10.6)

Next, we solve for the 21 term.

c21 ¼ q12
c11

(3.10.7)

Finally, c22 is obtained as

c22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q22 � c221

q
(3.10.8)

The preceding 2	 2 example is a special case of what is known as Cholesky
factorization, and it is easily generalized to higher-order cases. This procedure
factors a symmetric, positive definite matrix into upper- and lower-triangular parts,
and MATLAB has a built-in function chol to perform this operation. The user
defines a matrix variable, say, QUE, with the numerical values of Q, and then chol
(QUE) returns the transpose of the desiredC in the notation used here. This is a very
nice feature of MATLAB, and it is a valuable timesaver when dealing with higher-
order systems.

It should also be clear that if the transformation C takes a vector of uncorre-
lated, unit-variance random variables into a corresponding set of correlated random
variables, then C�1 will do just the opposite. If we start with a set of random vari-
ables with covarianceQ, then C�1QC�1T will be the covariance of the transformed
set. This covariance is, of course, just the identity matrix.
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One limitation of the Cholesky factorization is that it cannot be used if the cova-
riance matrix is singular. We can overcome this limitation by the use of another
factorization method called the singular value decomposition, which is given as
“svd” in MATLAB. If a variable Q is singular, then a MATLAB command line

½U;T ;V � ¼ svd ðQÞ

will return three matrices U, T, and V such that UTV¼Q.
IfQ is symmetric, as would be the case if it is a covariance matrix, then we also

get U¼VT. The T matrix is diagonal with non-negative elements so we can easily
compute its square root in MATLAB with S¼ sqrt (T).

T ¼
t11 0 0

0 t22 0

0 0 t33

2
4

3
5 ) S ¼

ffiffiffiffiffiffi
t11

p
0 0

0
ffiffiffiffiffiffi
t22

p
0

0 0
ffiffiffiffiffiffi
t33

p

2
4

3
5

Note that T¼ SST. So Q can be factored into Q¼USSTUT¼ (US)(US)T and the
desired C factor in Eq. 3.10.4 is simply formed by C¼US.

Specifying an appropriate initial condition on x in the simulation can also be
troublesome, and each case has to be considered on its own merits. If the process
being simulated is nonstationary, there is no “typical” starting point. This will
depend on the definition of the process. For example, a Wiener process is defined to
have a zero initial condition. All sample realizations must be initialized at zero in
this case. On the other hand, a simple one-state random-walk process can be defined
to start with any specified x0, be it deterministic or random.

If the process being considered is stationary, one usually wants to generate an
ensemble of realizations that are stationary throughout the time span of the runs.
The initial condition on x must be chosen carefully to assure this. There is one
special case where specification of the initial components of x is relatively easy. If
the process is stationary and the state variables are chosen to be phase variables, it
works out that the covariance matrix of the state variables is diagonal in the steady-
state condition (see Problem 3.18). Thus, one simply chooses the components of x
as independent samples from an N(0, 1) population appropriately scaled in accor-
dance with the rms values of the process “position,” “velocity,” “acceleration,” and
so forth. If the state variables are not phase variables, however, then they will be
correlated (in general), and this complicates matters considerably. Sometimes, the
most expeditious way of circumventing the problem is to start the simulation with
zero initial conditions, then let the process run until the steady-state condition is
reached (or nearly so), and finally use just the latter portion of the realization for
“serious” analysis. This may not be an elegant solution to the initial-condition
problem, but it is effective.

3.11
SUMMARY

In this chapter we have developed various stochastic input/output relationships for
linear systems. In steady-state analysis the primary descriptors for the random
processes being considered are autocorrelation function and power spectral density
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(PSD). They are Fourier transform pairs, so both contain the same information about
the process at hand. Thus, whichever description we choose to work with is a matter
of mathematical convenience.

The process magnitude description of primary interest in our analysis is mean-
square-value, also called power. This is partly a matter of convenience, because it is
relatively easy to calculate mean-square-value and not so easy with other measures
of amplitude. In Section 3.8 it was mentioned that we must be careful in our
interpretation of S( jv) as being power density. When we formulate our equations in
terms of v (in contrast to frequency in Hz), and when we integrate S( jv) with
respect to v to get power, we must remember to multiply the integral by 1/2p in
order to get the correct power. This little bit of confusion came about because we
defined PSD as the Fourier transform of the autocorrelation function, and thus the
inversion integral had to contain a 1/2p factor. There is no confusion, though, when
using the integral tables given in Section 3.3, because the 1/2p factor is already
accounted for in the tables.

Input/output calculations for transient problems are considerably more com-
plicated than for the steady-state case. Explicit expressions for mean-square-value
can usually be calculated for first- and second-order systems. However, beyond that
it becomes quite difficult using “paper-and-pencil” methods. Thus we usually have
to resort to numerical methods for higher-order cases. In subsequent chapters we
will see that there are two key parameters in the discrete Kalman filter that depend
on the step size between measurements. These are the state transition matrix and the
process noise covariance matrix. Section 3.9 gives a convenient algorithm for
computing these parameters. This is an important algorithm and is now used almost
universally, in offline analysis at least.

We have now presented in Chapters 1, 2, and 3 all of the basic
background material needed for the study of Kalman filtering. So, the remaining
chapters will concentrate on Kalman filtering, as such, and its many variations and
applications.

PROBLEMS

3.1 Find the steady-state mean-square value of the output for the following filters.
The input is white noise with a spectral density amplitude A.

(a) GðsÞ ¼ Ts

ð1þ TsÞ2

(b) GðsÞ ¼ v2
0

s2 þ 2zv0sþ v2
0

(c) GðsÞ ¼ sþ 1

ðsþ 2Þ2

3.2 A white noise process having a spectral density amplitude of A is applied to
the circuit shown. The circuit has been in operation for a long time. Find the steady-
state mean-square value of the output voltage.
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3.3 The input to the feedback system shown is a stationaryMarkov process with an
autocorrelation function

Rf ðtÞ ¼ s2e�b tj j

The system is in a stationary condition.
(a) What is the spectral density function of the output?
(b) What is the mean-square value of the output?

3.4 Find the steady-state mean-square value of the output for a first-order low-pass
filter, i.e., G(s)¼ 1/(1þTs) if the input has an autocorrelation function of the form

RðtÞ ¼
s2 1� b tj jð Þ; � 1

b
� t � 1

b

0; tj j > 1

b

8><
>:

[Hint:The input spectral function is irrational so the integrals given in Table 3.1 are of
no help here. One approach is towrite the integral expression forE(X2) in terms of real
v rather than s and then use conventional integral tables. Also, those familiar with
residue theory will find that the integral can be evaluated by the method of residues.]

3.5 Consider a linear filter whose weighting function is shown in the figure. (This
filter is sometimes referred to as a finite-time integrator.) The input to the filter is
white noise with a spectral density amplitude A, and the filter has been in operation a
long time. What is the mean-square value of the output?

Figure P3.2

Figure P3.3

Figure P3.5 Filter weighting function.
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3.6 Find the shaping filter that will shape unity white noise into noise with a
spectral function

SðjvÞ ¼ v2 þ 1

v4 þ 8v2 þ 16

3.7 A series resonant circuit is shown in the figure. Let the resistance R be small
such that the circuit is sharply tuned (i.e., high Q or very low damping ratio). Find
the noise equivalent bandwidth for this circuit and express it in terms of the damping
ratio z and the natural undamped resonant frequency vr (i.e., vr ¼ 1=

ffiffiffiffiffiffi
LC

p
). Note

that the “ideal” response in this case is a unity-gain rectangular pass band centered
about vr. Also find the usual half-power bandwidth and compare this with the
noise equivalent bandwidth. (Half-power bandwidth is defined to be the frequency
difference between the two points on the response curve that are “down” by a factor
of 1=

ffiffiffi
2

p
from the peak value. It is useful to approximate the resonance curve as

being symmetric about the peak for this part of the problem.)

3.8 The transfer functions and corresponding bandpass characteristics for first-,
second-, and third-order Butterworth filters are shown in the figure below. These
filters are said to be “maximally flat” at zero frequency with each successive higher-
order filter more nearly approaching the ideal curve than the previous one. All three

Figure P3.7

Figure P3.8 (a) Responses of three Butterworth filters.

(b) Transfer functions of Butterworth filters.
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filters have been normalized such that all responses intersect the �3-db point at
1 rad/s (or 1/2p Hz).

(a) Find the noise equivalent bandwidth for each of the filters.
(b) Insofar as noise suppression is concerned, is there much to be gained by

using anything higher-order than a third-order Butterworth filter?

3.9 Find the mean-square value of the output (averaged in an ensemble sense) for
the following transfer functions. In both cases, the initial conditions are zero and the
input f(t) is applied at t¼ 0.

(a) GðsÞ ¼ 1

s2
; Rf ðtÞ ¼ AdðtÞ

(b) GðsÞ ¼ 1

s2 þ v2
0

; Rf ðtÞ ¼ AdðtÞ

3.10 A certain linear system is known to satisfy the following differential
equation:

x€þ 10 _xþ 100x ¼ f ðtÞ
xð0Þ ¼ _xð0Þ ¼ 0

where x(t) is the response (say, position) and the f(t) is a white noise forcing
function with a power spectral density of 10 units. (Assume the units are consistent
throughout.)

(a) Let x and _x be state variables x1 and x2. Then write out the vector state space
differential equations for this random process.

(b) Suppose this process is sampled at a uniform rate beginning at t¼ 0. The
sampling interval is 0.2 s. Find the f and Q parameters for this situation.
(The Van Loan method described in Section 3.9 is recommended.)

(c) What are the mean-square values of x(t) and _xðtÞ at t¼ 0.2 s?

3.11 Consider a simple first-order low-pass filter whose transfer function is

GðsÞ ¼ 1

1þ 10s

The input to the filter is initiated at t¼ 0, and the filter’s initial condition is zero. The
input is given by

f ðtÞ ¼ AuðtÞ þ nðtÞ
where

u(t)¼ unit step function

A¼ random variable with uniform distribution from 0 to 1

n(t)¼ unity Gaussian white noise

Find:
(a) The mean, mean square, and variance of the output evaluated at t¼ .1 sec.
(b) Repeat (a) for the steady-state condition (i.e., for t¼1).

(Hint: Since the system is linear, superposition may be used in computing the
output. Note that the deterministic component of the input is written explicitly in
functional form. Therefore, deterministic methods may be used to compute the
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portion of the output due to this component. Also, remember that the mean-square
value and the variance are not the same if the mean is nonzero.)

3.12 A signal is known to have the following form:

sðtÞ ¼ a0 þ nðtÞ
where a0 is an unknown constant and n(t) is a stationary noise process with a known
autocorrelation function

RnðtÞ ¼ s2e�b tj j

It is suggested that a0 can be estimated by simply averaging s(t) over a finite
interval of time T. What would be the rms error in the determination of a0 by this
method?

(Note: The rootmean square rather than mean square value is requested in this
problem.)

3.13 Unity Gaussian white noise f(t) is applied to the cascaded combination of
integrators shown in the figure. The switch is closed at t¼ 0. The initial condition
for the first integrator is zero, and the second integrator has two units as its initial
value.

(a) What is the mean-square value of the output at t¼ 2 s?
(b) Sketch the probability density function for the output evaluated at t¼ 2 s.

3.14 Consider again the filter with a rectangular weighting function discussed in
Problem 3.5. Consider the filter to be driven with unity Gaussian white noise, which
is initiated at t¼ 0 with zero initial conditions.

(a) Find the mean-square response in the interval from 0 to T.
(b) Find the mean-square response for t� T and compare the result with that

obtained in Problem 3.5.
(c) From the result of (b), would you say the filter’s “memory” is finite or

infinite?

3.15 The block diagram on the next page describes the error propagation in
one channel of an inertial navigation system with external-velocity-reference
damping (8). The inputs shown as f1(t) and f2(t) are random driving functions
due to the accelerometer and external-velocity-reference instrument errors.
These will be assumed to be independent white noise processes with spectral
amplitudes A1 and A2, respectively. The outputs are labeled x1, x2, and x3, and
these physically represent the inertial system’s platform tilt, velocity error, and
position error.

(a) Write out the vector state-space model for this system.
(b) Find the steady-state mean-square values for the three state variables.

Express them in terms of A1, A2, R, g, and K parameters.

1––sf(t)
(Unity

white noise)

1––s

ic = 0 ic = 2

Output

Figure P3.13
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3.16 In the nonstationary mean-square-response problem, it is worth noting that
the double integral in Eq. (3.7.4) reduces to a single integral when the input is white
noise. That is, if Rf ðtÞ ¼ AdðtÞ, then

E x2ðtÞ� � ¼ A

Z t

0

g2ðyÞdy (P3.16)

where g(y) is the inverse Laplace transform of the transfer function G(s), and A is
the power spectral density (PSD) of the white noise input.

Evaluation of integrals analytically can be laborious (if not impossible), so one
should not overlook the possibility of using numerical integration when g2(y) is
either rather complicated in form, or when it is only available numerically. To
demonstrate the effectiveness of the numerical approach, consider the following
system driven by white noise whose PSD ¼ 10 units:

GðsÞ ¼ 1

s2 þ v2
0

; v0 ¼ 20p

Let us say that we want to find E[x2(t)] for 0� t� .1 with a sample spacing of .001
sec (i.e., 101 samples including end points). Using MATLAB’s numerical integra-
tion function quad (or other suitable software), find the desired mean-square
response numerically. Then plot the result along with the exact theoretical response
for comparison [see part (b) of Problem 3.9].

3.17 In the discussion of Markov Processes in Chapter 2 it was mentioned that the
derivative of a first-order Markov process does not exist, but the derivative of a
second-order Markov does exist. This can be readily demonstrated with a Monte
Carlo simulation. For example, consider the same second-order Markov process
that was used in Example 2.12. Its power spectral density (PSD) is

SxðjvÞ ¼ 2
ffiffiffi
2

p
v3
0s

2

v4 þ v4
0

(P3.17.1)

where

s2 ¼ 1 m2

v0 ¼ 0:1 rad/s

1––s
x3

x1x2

f2(t)

f1(t) 1––
R

1––s

+

– –

1––s

+

–

g

K

R = earth radius ≈ 2.09 × 107 ft
g = gravitational constant ≈ 32.2 ft/sec2

K = feedback constant (adjustable to yield the desired damping ratio)

Figure P3.15
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Do a Monte Carlo simulation of this process for 100 steps where the Dt step size is
1 s. To do this you will need to develop a vector state-space model for the process.
This is discussed in Section 3.9, and the Van Loan method of computingfk andQk

is recommended. Once the keyfk andQk parameters are determined, it is relatively
easy to implement samples of the process (both position and velocity) using the
vector equation

x tkþ1ð Þ ¼ fkx tkð Þ þ w tkð Þ (P3.17.2)

In this demonstration we only want to show that the velocity sequence exists and is
well-behaved. So, for simplicity, you may initialize the simulated process with x1(0)
and x2(0) set at zero. This is somewhat artificial, but legitimate. Plot both position
and velocity. We are especially interested in velocity. Note it appears to be well-
behaved, and it is approaching a steady-state condition near the end of the run.

3.18 In the preceding Problem 3.17 the process was initialized with both x1 and x2
set at zero at t¼ 0. This is artificial and it leads to a transient period during the run. A
more natural way to do the simulation would be to begin the run with x1(0) and x2(0)
chosen at random for stationary conditions as dictated by the PSD of the process.

(a) First show that in steady-state conditions x1(t) and x2(t) are uncorrelated
when the states are chosen to be position and velocity. The initial 2	 2
process covariance matrix will then be diagonal. The two nontrivial
elements of the covariance are easily computed using the integral table
given in Section 3.3.
Hint: The indefinite integral

R
u du

dt dt ¼ u2=2 will be helpful here.
(b) Now re-run the simulation described in Problem 3.17, except start the

simulation with typical random initial conditions in accordance with the
covariance computed in Part (a).
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4
Discrete Kalman Filter Basics

Modern filter theory began with N. Wiener’s work in the 1940s (1). His work was
based on minimizing the mean-square error, so this branch of filter theory is
sometimes referred to as least-squares filtering. This is an oversimplification
though, because a more exact description would be “linear time-domain minimum
mean-square error filtering.” This is a bit wordy though, so the shortened version
will suffice for now. Regardless of what it is called, the central problem is simply a
matter of separation of the signal from an additive combination of signal and noise.
In hindsight, the Wiener solution turned out to be one of those subjects that was
much discussed in textbooks, but little used in practice. Perhaps Wiener’s main
contribution was the way in which he posed the the problem in terms of minimizing
the mean-square error in the time domain. This is in contrast to the frequency-
separation methods that were in use at the time. However, in fairness to Wiener’s
work, the weighting function approach (which is central in the Wiener theory) still
has some merit. More is said of this in Section 6.8.

In 1960 R.E. Kalman considered the same problem that Wiener had dealt with
earlier, but in his 1960 paper he considered the noisy measurement to be a discrete
sequence in time in contrast to a continuous-time signal (2). He also posed the
problem in a state-space setting that accommodated the time-variable multiple-
input/multiple-output scenario nicely. Engineers, especially in the field of naviga-
tion, were quick to see the Kalman technique as a practical solution to some applied
filtering problems that were intractable using Wiener methods. Also, the rapid
advances in computer technology that occurred in the 1960s certainly contributed to
popularizing Kalman filtering as a practical means of separating signal from noise.
After some 50 years now, Kalman filtering is still alive and well, and new
applications keep appearing on the scene regularly.

4.1
A SIMPLE RECURSIVE EXAMPLE

Whenworkingwith practical problems involving discrete data, it is important that our
methods be computationally feasible as well as mathematically correct. A simple
example will illustrate this. Consider the problem of estimating the mean of some
random constant based on a sequence of noisy measurements. That is, in filtering
terms the true mean is the “signal,” and the measurement error is the “noise.”

141
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The resulting estimate is the filter output. Now think of processing the data on-line.
Let the measurement sequence be denoted as z1, z2, . . . , zn, where the subscript
denotes the time at which the measurement is taken. One method of processing
the datawouldbe to store eachmeasurement as it becomes available and thencompute
the sample mean in accordance with the following algorithm (in words):

1. First measurement z1: Store z1 and estimate the mean as

m̂1 ¼ z1

2. Second measurement z2: Store z2 along with z1 and estimate the mean as

m̂2 ¼ z1 þ z2
2

3. Thirdmeasurement z3: Store z3 alongwith z1 and z2 and estimate themean as

m̂3 ¼ z1 þ z2 þ z3
3

4. And so forth.

Clearly, this would yield the correct sequence of sample means as the
experiment progresses. It should also be clear that the amount of memory needed
to store the measurements keeps increasing with time, and also the number of
arithmetic operations needed to form the estimate increases correspondingly. This
would lead to obvious problems when the total amount of data is large. Thus,
consider a simple variation in the computational procedure in which each new
estimate is formed as a blend of the old estimate and the current measurement. To be
specific, consider the following algorithm:

1. First measurement z1: Compute the estimate as

m̂1 ¼ z1

Store m̂1 and discard z1.

2. Second measurement z2: Compute the estimate as a weighted sum of the
previous estimate m̂1 and the current measurement z2:

m̂2 ¼ 1

2
m̂1 þ 1

2
z2

Store m̂2 and discard z2 and m̂1.

3. Thirdmeasurement z3:Compute the estimate as aweighted sumof m̂2 and z3:

m̂3 ¼ 2

3
m̂2 þ 1

3
z3

Store m̂3 and discard z3 and m̂2.

4. And so forth. It should be obvious that at the nth stage the weighted sum is

m̂n ¼ n� 1

n

� �
m̂n�1 þ 1

n

� �
zn

Clearly, the above procedure yields the same identical sequence of estimates as
before, but without the need to store all the previous measurements. We simply use
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the result of the previous step to help obtain the estimate at the current step of the
process. In this way, the previous computational effort is used to good advantage
and not wasted. The second algorithm can proceed on ad infinitum without a
growing memory problem. Eventually, of course, as n becomes extremely large, a
round-off problem might be encountered. However, this is to be expected with
either of the two algorithms.

The second algorithm is a simple example of a recursive mode of operation.
The key element in any recursive procedure is the use of the results of the previous
step to aid in obtaining the desired result for the current step. This is one of the main
features of Kalman filtering, and one that clearly distinguishes it from the weight-
factor (Wiener) approach.

In order to apply the recursive philosophy to estimation of a random process, it
is first necessary that both the process and the measurement noise be modeled in
vector form. This was discussed in Section 3.9, and we will proceed on that basis.

4.2
THE DISCRETE KALMAN FILTER

We will now proceed to develop the Kalman filter recursive equations. The optimiza-
tion criterion used here is minimization of the mean-square estimation error of the
random variable x. Then later in Section 4.7 wewill show that this same linear estimate
also corresponds to the mean of x conditioned on the entire past measurement stream.

We begin by assuming the random process to be estimated can be modeled in
the form

xkþ1 ¼ fkxk þ wk (4.2.1)

The observation (measurement) of the process is assumed to occur at discrete points
in time in accordance with the linear relationship

zk ¼ Hkxk þ vk (4.2.2)

and we assume that we know fk, Hk, and the covariances describing wk and vk.
Also, we will be using the same shortened notation here that was introduced earlier
in Section 3.9. It will be repeated here for easy reference:

xk¼ (n� 1) process state vector at time tk
fk¼ (n� n) matrix relating xk to xkþ1 in the absence of a forcing function—if xk is

a sample of continuous process, fk is the usual state transition matrix
f(tkþ1, tk)

wk¼ (n� 1) vector—assumed to be a white sequence with known covariance
structure. It is the input white noise contribution to the state vector for the
time interval (tkþ1, tk)

zk¼ (m� 1) vector measurement at time tk
Hk¼ (m� n) matrix giving the ideal (noiseless) connection between the

measurement and the state vector at time tk
vk¼ (m� 1) measurement error—assumed to be a white sequence with known

covariance structure and having zero crosscorrelation with the wk sequence
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The covariance matrices for the wk and vk vectors are given by

E wkw
T
i

� � ¼ Qk; i ¼ k
0; i 6¼ k

�
(4.2.3)

E vkv
T
i

� � ¼ Rk; i ¼ k
0; i 6¼ k

�
(4.2.4)

E wkv
T
i

� � ¼ 0; for all k and i (4.2.5)

We assume at this point that we have an initial estimate of the process at some
point in time tk, and that this estimate is based on all our knowledge about the
process prior to tk. This prior (or a priori) estimate will be denoted as x̂�k where the
“hat” denotes estimate, and the “super minus” is a reminder that this is our best
estimate prior to assimilating the measurement at tk. (Note that super minus as used
here is not related in any way to the super minus notation used in spectral
factorization.) We also assume that we know the error covariance matrix associated
with x̂�k . That is, we define the estimation error to be

e�k ¼ xk � x̂�k (4.2.6)

and the associated error covariance matrix is*

P�
k ¼ E e�k e

�T
k

� � ¼ E½ xk � x̂�k
� �

xk � x̂�k
� �T � (4.2.7)

In many cases, we begin the estimation problem with no prior measurements. Thus,
in this case, if the process mean is zero, the initial estimate is zero, and the
associated error covariance matrix is just the covariance matrix of x itself.

With the assumption of a prior estimate x̂�k , we now seek to use the measure-
ment zk to improve the prior estimate. We choose a linear blending of the noisy
measurement and the prior estimate in accordance with the equation

x̂k ¼ x̂�k þKk zk �Hkx̂
�
k

� �
(4.2.8)

where

x̂k ¼ updated estimate

Kk¼ blending factor (yet to be determined)

The justification of the special form of Eq. (4.2.8) will be deferred until Section 4.7.
The problem now is to find the particular blending factor Kk that yields an updated
estimate that is optimal in some sense. Just as in the Wiener solution, we use
minimum mean-square error as the performance criterion. Toward this end, we first
form the expression for the error covariance matrix associated with the updated
(a posteriori) estimate.

Pk ¼ E eke
T
k

� � ¼ E xk � x̂kð Þ xk � x̂kð ÞT� �
(4.2.9)

* We tacitly assume here that the estimation error has zero mean, and thus, it is proper to refer to E e�k e
�T
k

� �
as a

covariance matrix. It is also, of course, a moment matrix, but it is usually not referred to as such.
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Next, we substitute Eq. (4.2.2) into Eq. (4.2.8) and then substitute the resulting
expression for x̂k into Eq. (4.2.9). The result is

Pk ¼ E xk � x̂�k
� ��Kk Hkxk þ vk �Hkx̂

�
k

� �� �	
xk � x̂�k
� ��Kk Hkxk þ vk �Hkx̂

�
k

� �� �To (4.2.10)

Now, performing the indicated expectation and noting the xk � x̂�k
� �

is the a priori
estimation error that is uncorrelated with the current measurement error vk, we have

Pk ¼ I�KkHkð ÞP�
k I�KkHkð ÞT þKkRkK

T
k (4.2.11)

Notice here that Eq. (4.2.11) is a perfectly general expression for the updated error
covariance matrix, and it applies for any gain Kk, suboptimal or otherwise.

Returning to the optimization problem, we wish to find the particular Kk that
minimizes the individual terms along the major diagonal of Pk, because these terms
represent the estimation error variances for the elements of the state vector being
estimated. The optimization can be done in a number of ways. We will do this using
a straightforward differential calculus approach, and to do so we need two matrix
differentiation formulas. They are

d trace ABð Þ½ �
dA

¼ BT ABmust be squareð Þ (4.2.12)

d trace ACAT
� �� �
dA

¼ 2AC ðCmust be symmetricÞ (4.2.13)

where the derivative of a scalar with respect to a matrix is defined as

ds

dA
¼

ds

da11

ds

da12
� � �

ds

da21

ds

da22
� � �

..

.

2
6666664

3
7777775

(4.2.14)

The two matrix differentiation formulas can be easily verified by writing out the
indicated traces explicitly and then differentiating the results term by term. (This
will be left as an exercise.)

We will now expand the general form for Pk, Eq. (4.2.11), and rewrite it in the
form:

Pk ¼ P�
k �KkHkP

�
k � P�

k H
T
kK

T
k þKk HkP

�
k H

T
k þ Rk

� �
KT

k (4.2.15)

Notice that the second and third terms are linear in Kk and that the fourth term is
quadratic in K. The two matrix differentiation formulas may now be applied to
Eq. (4.2.15). We wish to minimize the trace of P because it is the sum of the mean-
square errors in the estimates of all the elements of the state vector. We can use
the argument here that the individual mean-square errors are also minimized when
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the total is minimized, provided that we have enough degrees of freedom in the
variation ofKk, which we do in this case. We proceed now to differentiate the trace
of Pk with respect toKk, and we note that the trace of P

�
k H

T
kK

T
k is equal to the trace

of its transpose KkHkP
�
k . The result is

d tracePkð Þ
dKk

¼ �2 HkP
�
k

� �T þ 2Kk HkP
�
k H

T
k þ Rk

� �
(4.2.16)

We now set the derivative equal to zero and solve for the optimal gain. The result is

Kk ¼ P�
k H

T
k HkP

�
k H

T
k þ Rk

� ��1
(4.2.17)

This particular Kk, namely, the one that minimizes the mean-square estimation
error, is called the Kalman gain.

The covariance matrix associated with the optimal estimate may now be
computed. Referring to Eq. (4.2.11), we have

Pk ¼ I�KkHkð ÞP�
k I�KkHkð ÞT þKkRkK

T
k (4.2.18)

¼ P�
k �KkHkP

�
k � P�

k H
T
kK

T
k þKk HkP

�
k H

T
k þ Rk

� �
KT

k (4.2.19)

Routine substitution of the optimal gain expression, Eq. (4.2.17), into Eq. (4.2.19)
leads to

Pk ¼ P�
k � P�

k H
T
k HkP

�
k H

T
k þ Rk

� ��1
HkP

�
k (4.2.20)

or

Pk ¼ P�
k �Kk HkP

�
k H

T
k þ Rk

� �
KT

k (4.2.21)

or

Pk ¼ I�KkHkð ÞP�
k (4.2.22)

Note that we have four expressions for computing the updated Pk from the prior
P�
k . Three of these, Eqs. (4.2.20), (4.2.21), and (4.2.22), are only valid for the

optimal gain condition. However, Eq. (4.2.18) is valid for any gain, optimal or
suboptimal. All four equations yield identical results for optimal gain with perfect
arithmetic. We note, though, that in the real engineering world Kalman filtering is a
numerical procedure, and some of the P-update equations may perform better
numerically than others under unusual conditions. More will be said of this later in
Section 4.9. For now, we will list the simplest update equation, that is, Eq. (4.2.22),
as the usual way to update the error covariance.

We now have a means of assimilating the measurement at tk by the use of
Eq. (4.2.8) with Kk set equal to the Kalman gain as given by Eq. (4.2.17). Note that
we need x̂�k and P�

k to accomplish this, and we can anticipate a similar need at the
next step in order to make optimal use of the measurement zkþ1. The updated
estimated x̂k is easily projected ahead via the transition matrix. We are justified in
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ignoring the contribution of wk in Eq. (4.2.1) because it has zero mean and is not
correlated with any of the previous w’s.* Thus, we have

x̂�kþ1 ¼ fkx̂k (4.2.23)

The error covariance matrix associated with x̂�kþ1 is obtained by first forming
the expression for the a priori error

e�kþ1 ¼ xkþ1 � x̂�kþ1

¼ fkxk þ wkð Þ �fkx̂k

¼ fkek þ wk

(4.2.24)

We now note that wk and ek have zero crosscorrelation, because wk is the process
noise for the step ahead of tk. Thus, we can write the expression for P�

kþ1 as

P�
kþ1 ¼ E e�kþ1e

�T
kþ1

� � ¼ E fkek þ wkð Þ fkek þ wkð ÞT� �
¼ fkPkf

T
k þQk

(4.2.25)

We now have the needed quantities at time tkþ1, and the measurement zkþ1 can be
assimilated just as in the previous step.

Equations (4.2.8), (4.2.17), (4.2.22), (4.2.23), and (4.2.25) comprise the
Kalman filter recursive equations. It should be clear that once the loop is entered,
it can be continued ad infinitum. The pertinent equations and the sequence of
computational steps are shown pictorially in Fig. 4.1. This summarizes what is now
known as the Kalman filter.

Before we proceed to some examples, it is interesting to reflect on the Kalman
filter in perspective. If you were to stumble onto the recursive process of Fig. 4.1

Compute Kalman gain:
Kk = PkHk (HkPkHk + Rk)–1

xk + 1 =   kxkφ

– –T T

Enter prior estimate x̂ –
0 and

its error covariance P0
–

Compute error covariance
for updated estimate:

– ^^

Pk + 1 =   kPk    k + Qkφ φ– T

Pk = (I – Kk Hk)P
–
k

Project ahead:

xk = xk + Kk (zk – Hk ̂xk
–)^ ^–

Update estimate with
measurement zk:

z0, z1, ···

x0, x1, ···^ ^

Figure 4.1 Kalman filter loop.

* Recall that in our notationwk is the process noise that accumulates during the step ahead from tk to tkþ1. This
is purely a matter of notation (but an important one), and in some books it is denoted as wkþ1 rather than wk.
Consistency in notation is the important thing here. Conceptually, we are thinking of doing real-time filtering in
contrast to smoothing, which we usually think of doing off-line (see Chapter 6).
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without benefit of previous history, you might logically ask, “Why in the world did
somebody call that a filter? It looks more like a computer algorithm.” You would, of
course, be quite right in your observation. The Kalman filter is just a computer
algorithm for processing discrete measurements (the input) into optimal estimates
(the output). Its roots, though, go back to the days when filters were made of
electrical elements wired together in such a way as to yield the desired frequency
response. The design was often heuristic. Wiener then came on the scene in the
1940s and added a more sophisticated type of filter problem. The end result of his
solution was a filter weighting function or a corresponding transfer function in the
complex domain. Implementation in terms of electrical elements was left as a
further exercise for the designer. The discrete-time version of the Wiener problem
remained unsolved (in a practical sense, at least) until Kalman’s paper of 1960 (2).
Even though his presentation appeared to be quite abstract at first glance, engineers
soon realized that this work provided a practical solution to a number of unsolved
filtering problems, especially in the field of navigation.

4.3
SIMPLE KALMAN FILTER EXAMPLES AND AUGMENTING
THE STATE VECTOR

The basic recursive equations for the Kalman filter were presented in Section 4.2.
We will now illustrate the use of these equations with two simple examples. The
emphasis here is on modeling. Monte Carlo examples with simulated measurements
will be considered later.

EXAMPLE 4.1 WIENER (BROWNIAN MOTION) PROCESS

TheWiener process is defined as integrated Gaussian white noise with the additional
stipulation that the initial value is zero. This is shown in Fig. 4.2, and the input u(t) is
unity white noise in this example. Let us say that we have uniformly spaced
measurements of x(t) beginning a t¼ 0 and that Dt is 1 second. Also, we will assume
that themeasurement errors are uncorrelated and have an rms value of 0.5m. The first
thing we need to do in any Kalman filter problem is to develop the four key model
parameters fk, Qk, Hk, Rk and the initial conditions. They are:

fk ¼ 1

Qk ¼ E
Ð Dt
0

u jð Þdj � Ð Dt
0

u hð Þdh
h i

¼ Ð Dt
0

Ð Dt
0

E u jð Þu hð Þ½ �djdh
¼ Ð Dt

0

Ð Dt
0

d j� hð Þdjdh ¼ Dt ¼ 1

(Note the input is unity white noise.)

Figure 4.2 Block diagram of Wiener process and typical sample function

of the process.
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Hk ¼ 1

Rk ¼ 0:5ð Þ2 ¼ 0:25

(All of these parameters are constant in this example so we will omit their subscripts
from here on.)

Next, we need the initial conditions. From the problem statement we can say:

x̂�0 ¼ 0

P�
0 ¼ 0

Now we can do the Kalman filter steps as indicated in Fig. 4.1. Begin with the first
measurement z0 at t¼ 0.

Step 1 Compute gain

K0 ¼ P�
0 H HP�

0 H þ R
� ��1 ¼ 0 � Rð Þ�1 ¼ 0

Step 2 Update estimate

x̂0 ¼ x̂�0 þ K0 z0 � Hx̂�0
� � ¼ 0þ 0 � z0ð Þ ¼ 0

Step 3 Update error covariance

P0 ¼ I � K0Hð ÞP�
0 ¼ 1� 0ð Þ � 0 ¼ 0

(Of course, in this simple example we could have guessed the results of Steps 2
and 3 from the trivial initial conditions.)

Step 4 Project ahead to t¼ 1

x̂�1 ¼ fx̂0 ¼ f � 0 ¼ 0

P�
1 ¼ fP0fþ Q ¼ 1 � 0 � 1þ 1 ¼ 1

The above steps can now be repeated at t¼ 1, and the z1 measurement will be
assimilated accordingly. This is left as an exercise. (Answer: x̂1 ¼ 4

5
z1;P1 ¼ 1

5
).

The above recursive process can now be repeated indefinitely as long as
the measurement sequence continues. Note especially that the identities of the
z1, z2, . . . measurements are not kept as we proceed in the recursive process. They
are “thrown away,” so to speak, after the information so contained is assimilated
into the estimate.

&

EXAMPLE 4.2 AUGMENTING THE STATE VECTOR

As a variation on the scenario of Example 4.1 consider a situation where the
integrator is driven by colored noise in contrast to white noise. To keep it simple let
the input to the integrator be a Gauss-Markov process as shown in Fig. 4.3. This
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presents a problem, because if we try to model the Kalman filter with just one state
variable, say x(t), we find that the corresponding discrete-model wk sequence will
have nontrivial correlation in time. This violates one of the assumptions in the
derivation of the Kalman filter recursive equations. Remember, there are very strict
constraints in the Kalman filter model (Eqs. 4.2.3 through 4.2.5), and these must be
followed carefully.

To obviate the difficulty just cited we can augment the original one-state model
with an additional state variable, namely the Markov state. The resulting two-state
model will then meet the model requirements. A proper model can then be
developed as follows. Define the state variables (Fig. 4.3):

x1 ¼ x tð Þ
x2 ¼ f tð Þ

Then the vector differential equation for the process is

_x1

_x2

" #

|fflffl{zfflffl}
_x

¼
0 1

0 �b

" #

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
F

x1

x2

" #

|fflffl{zfflffl}
x

þ
0ffiffiffiffiffiffiffiffiffiffi
2s2b

p
" #

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
G

u tð Þ; u tð Þ ¼ unity white noise

and the discrete measurement equation is:

zk ¼ 1 0½ �|fflfflffl{zfflfflffl}
H

x1

x2

" #
k

þ vk; E v2k
� � ¼ Rk

To complete the discrete process model we need to compute f and Q. These are
easily computed using the Van Loan method (see Section 3.9, Chapter 3). Using the
notation in the referenced Section 3.9, the A matrix is:

A ¼ Dt
�F GWGT

0 FT

" #

whereW is unity. To get a randomwalk process that is similar to theWiener process
of Example 4.1 (but not exactly the same) we could try letting;

s2 ¼ 1m2

b ¼ 1 rad=s

Dt ¼ 1 s

u(t)
unity
white
noise

Markov
process

s + β
x(t)

f(t) 1
s

2σ 2β√

Figure 4.3 Integrator driven by Markov noise.
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4.4
MARINE NAVIGATION APPLICATION WITH MULTIPLE-INPUTS/
MULTIPLE-OUTPUTS

It was mentioned earlier that one of the advantages of the Kalman filter over Wiener
methods lies in the convenience of handling multiple-input/multiple-output appli-
cations. We will now look at an example of this. Just as in Example 4.2, it will be
seen that it is sometimes necessary to expand the original state model in order to
achieve a suitable model that will satisfy the strict requirements for a Kalman filter.
The example that we will consider is based on a paper by B. E. Bona and R. J. Smay
that was published in 1966 (3). This paper is of some historical importance, because
it was one of the very early applications of real-time Kalman filtering in a terrestial
navigation setting. For tutorial purposes, we will consider a simplified version of the
state model used in the Bona–Smay paper.

In marine applications, and especially in the case of submarines, the mission
time is usually long, and the ship’s inertial navigation system (INS) must operate for
long periods without the benefit of position fixes. The major source of position error
during such periods is gyro drift. This, in turn, is due to unwanted biases on the axes
that control the orientation of the platform (i.e., the inertial instrument cluster).
These “biases” may change slowly over long time periods, so they need to be
recalibrated occasionally. This is difficult to do at sea, because the biases are hidden
from direct one-to-one measurement. One must be content to observe them
indirectly through their effect on the inertial system’s outputs. Thus, the main
function of the Kalman filter in this application is to estimate the three gyro biases
and platform azimuth error, so they can be reset to zero. (In this application, the
platform tilts are kept close to zero by the gravity vector and by damping the Schuler
oscillation with external velocity information from the ship’s log.)

In our simplified model, the measurements will be the inertial system’s two
horizontal position errors, that is, latitude error (N-S direction) and longitude error
(E-W direction). These are to be obtained by comparing the INS output with position

The Van Loan method then yields:

f ¼ 1:0000 0:6321
0 0:3679

� 
; Q ¼ 0:3362 0:3996

0:3996 0:8647

� 

The final step in model development is to specify filter initial conditions. Let us say
that the integrator is zeroed initially, but the Markov process is in steady-state
condition at t¼ 0. In that case:

x̂�0 ¼ 0

0

� 
; P�

0 ¼ 0 0

0 s2

� 

If we were to now generate a sequence of measurements in accordance with the
stated parameters using Monte Carlo methods, we could process the measurements
recursively and obtain a corresponding sequence of estimates of both states x1
and x2.

&
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as determined independently from other sources such as a satellite navigation system,
or perhaps from a known (approximately) position at dockside. The mean-square
errors associatedwith external reference are assumed tobeknown, and theydetermine
the numerical values assigned to the Rk matrix of the Kalman filter.

The applicable error propagation equations for a damped inertial navigation
system in a slow-moving vehicle are*

_cx �Vzcy ¼ ex (4.4.1)

_cy þVzcx �Vxcz ¼ ey (4.4.2)

_cz þVxcy ¼ ez (4.4.3)

where x, y, and z denote the platform coordinate axes in the north, west, and up
directions, and

cx¼ inertial system’s west position error (in terms of great circle arc distance
in radians)

cy¼ inertial system’s south position error (in terms of great circle arc distance
in radians)

cz¼ [platform azimuth error]� [west position error] � [tan (latitude)]

Also,

Vx ¼ x component of earth rateV ½i:e:; Vx ¼ V cosðlat:Þ�
Vz ¼ z component of earth rateV ½i:e:; Vz ¼ V sinðlat:Þ�

and

ex; ey; ez ¼ gyro drift rates for the x; y; and z axis gyros

We assume that the ship’s latitude is known approximately; therefore, Vx and
Vz are known and may be assumed to be constant over the observation interval.

Nonwhite Forcing Functions

The three differential equations, Eqs. (4.4.1) through (4.4), represent a third-order
linear system with the gyro drift rates, ex, ey, ez, as the forcing functions. These will
be assumed to be random processes. However, they certainly are not white noises in
this application. Quite to the contrary, they are processes that vary very slowly with

* Equations (4.4.1) to (4.4.3) are certainly not obvious, and a considerable amount of background in inertial
navigation theory is needed to understand the assumptions and approximations leading to this simple set of
equations (4,5). We do not attempt to derive the equations here. For purposes of understanding the Kalman
filter, simply assume that these equations do, in fact, accurately describe the error propagation in this
application and proceed on to the details of the Kalman filter.
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time—just the opposite of white noise. Thus, if we were to discretize this third-order
system of equations using relatively small sampling intervals, we would find that
the resulting sequence of wk’s would be highly correlated. This would violate the
white-sequence assumption that was used in deriving the filter recursive equations
(see Eq. 4.2.3). The solution for this is to expand the size of the model and include
the forcing functions as part of the state vector. They can be thought of as the result
of passing fictitious white noises through a system with linear dynamics. This yields
an additional system of equations that can be appended to the original set; in the
expanded or augmented set of equations, the new forcing functions will be white
noises. We are assured then that when we discretize the augmented system of
equations, the resulting wk sequence will be white.

In the interest of simplicity, we will model; ex, ey, and ez as Gaussian random-
walk processes. This allows the “biases” to change slowly with time. Each of
the gyro biases can then be thought of as the output of an integrator as shown
in Fig. 4.4. The three differential equations to be added to the original set are
then

_ex ¼ f x (4.4.4)

_ey ¼ f y (4.4.5)

_ez ¼ f z (4.4.6)

where fx, fy, and fz are independent white noise processes with power spectral
densities equal to W.

We now have a six-state system of linear equations that can be put into the
usual state-space form.

_x1

_x2

_x3

_x4

_x5

_x6

2
6666666666664

3
7777777777775
¼

0 Vz 0

�Vz 0 Vx

0 �Vx 0

I

0 0

2
6666666666664

3
7777777777775

x1

x2

x3

x4
x5

x6

2
6666666666664

3
7777777777775
þ

0 0

0 I

2
6666666666664

3
7777777777775

0

0

0

f x

f y

f z

2
6666666666664

3
7777777777775

(4.4.7)

The process dynamics model is now in the proper form for a Kalman filter. It is
routine to convert the continuous model to discrete form for a given Dt step size.
The key parameters in the discrete model are fk and Qk, and methods for
calculating these are given in Section 3.9.

1––s
White noise

PSD = W Gyro bias

Figure 4.4 Random walk model for gyro bias.
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As mentioned previously, we will assume that there are only two measurements
available to the Kalman filter at time tk. They are west position error cx and south
position error cy. The matrix measurement equation is then

z1
z2

� 
k

¼ 1 0 0 0 0 0

0 1 0 0 0 0

� 
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hk

x1

x2

x3

x4

x5

x6

2
666666664

3
777777775
þ v1

v2

� 
k

(4.4.8)

The measurement model is now complete except for specifying Rk that describes
the mean-square errors associated with the external position fixes. The numerical
values will, of course, depend on the particular reference system being used for
the fixes.

Nonwhite Measurement Noise

We have just seen an example where it was necessary to expand the state model
because the random forcing functions were not white. A similar situation can also
occur when the measurement noise is not white. This would also violate one of the
assumptions used in the derivation of the Kalman filter equations (see Eq. 4.2.4). The
correlated measurement-error problem can also be remedied by augmenting the state
vector, just as was done in the preceding gyro-calibration application. The correlated
part of themeasurement noise is simplymoved from vk into the state vector, andHk is
changed accordingly. It should be noted, though, that if the white noise part of vkwas
zero in the original model, then in the new model, after augmentation, the measure-
ment noise will be zero. In effect, the model is saying that there exists a perfect
measurement of certain linear combinations of state variables. TheRkmatrixwill then
be singular. Technically, this is permissible in the discreteKalmanfilter, provided that
theP�

k matrix that has been projected ahead from the previous step is positive definite,
and themeasurement situation is not trivial. The key requirement for permitting a zero
Rk is that HkP

�
k H

T
k þ Rk

� �
be invertible in the gain-computation step. Even so, there

is some risk of numerical problems when working with “perfect” measurements. In
off-line analysis this problem can be easily avoided by simply letting Rk be small
relative to the HkP

�
k H

T
k term.

4.5
GAUSSIAN MONTE CARLO EXAMPLES

The previous examples were intended to illustrate Kalman filter modeling and the
step-by-step recursive procedure for estimating the signal. But the obvious question
still remains: “Does the filter really do a good job of separating the signal from the
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noise?” The answer to this question is a resounding yes, and we will now present
two examples to demonstrate this. In these examples the filter operates on simulated
measurement data that is generated with Monte Carlo methods. This is relatively
easy to do with MATLAB, which has an excellent normal random number
generator. Also, once the MATLAB code is written for a particular scenario, it
is then easy to make various runs with different numerical values for selected
parameters such as Rk. This kind of simulation can be most helpful in gaining some
insight into the filter’s effectiveness under various conditions. Our first example will
be for a signal that is first-order Gauss-Markov.

EXAMPLE 4.3 FIRST-ORDER GAUSS–MARKOV PROCESS

Consider a stationary first-order Gauss–Markov process whose autocorrelation
function is

Rx tð Þ ¼ s2e�b tj j

where

s2 ¼ 1m2

b ¼ 0:1 rad=s

This is the same process that is illustrated in Chapter 2, Fig. 2.16. Using the methods
discussed in Section 3.9, we see that the continuous state equation is:

_x ¼ �0:1xþ
ffiffiffiffiffiffiffi
0:2

p
u tð Þ (4.5.2)

where u(t) is unity white noise.
Let us say that we have a sequence of 51 discrete noisy measurements of the

process that begin at t¼ 0 and end at t¼ 50 s, and they are all equally spaced.
Therefore,

Dt ¼ 1:0 s (4.5.3)

We will further assume that the measurement errors are uncorrelated and their
standard deviation is 0.5m (a relatively coarse measurement for this example).
The key process parameters can then be written out explicitly for this scalar
example, and they are (with reference to Eq. (3.9.20), Section 3.9):

fk ¼ e�bDt ¼ e�0:1 � 0:9048 (4.5.4)

Qk ¼ E w2
k

� � ¼ s2 1� e�2bDt
� � ¼ 1� e�0:2

� � � 0:1813 (4.5.5)

Clearly, the measurement parameters are obvious from the problem statement:

Hk ¼ 1 (4.5.6)

Rk ¼ 0:5ð Þ2 ¼ 0:25m2 (4.5.7)

We now have the key filter parameters and are ready to begin the recursive process
at t¼ 0. The a priori estimate of x is just its mean, because we are assuming that the
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only prior knowledge about x is that it is Gauss–Markov with known s and b
parameters. Therefore,

x̂�0 ¼ 0 (4.5.8)

The error covariance associated with this initial estimate is just the variance of x,
which in this case is

P�
0 ¼ s2 ¼ 1m2 (4.5.9)

Presumably, the Monte Carlo samples of the true x and the corresponding zk samples
were generated separately and stored before running the filter. So, we now have
everything needed to run the filter through 51 steps begin at t¼ 0 and ending at t¼ 50.
The results are shown in Fig. 4.5. Statistically, about 95% of the estimates should fall
within the �2s bounds, and that is consistent with what we see in the upper plot in
Fig. 4.5. The lower plot in the figure shows a relatively rapid convergence of the rms
estimation error to its steady-state value of about 0.37m. This is an improvement over
the raw rmsmeasurement error of 0.5m, but the improvement is not dramatic. This is
due to the relatively largeQk, which represents the variance of new uncertainty that is
introduced into the x process with each 1-s step. The only solution to this (all other
parameters being held constant) is to increase the measurement sampling rate.

&
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Figure 4.5 Results of Monte Carlo run for first-order Gauss–Markov process.
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Recall from Example 2.12 that the second-order process had a PSD of the form:

SxðjvÞ ¼ b2s2

v4 þ v4
0

(4.5.10)

where

s2 ¼ 1m2ðmean-square-value of the x processÞ
v0 ¼ 0:1 rad=s

b2 ¼ 2
ffiffiffi
2

p
v3
0

We can do spectral factorization and rewrite SxðjvÞ in product form (after replacing
jv with s).

Sx sð Þ ¼ bs

s2 þ ffiffiffi
2

p
v0sþ v2

0

� bs

�sð Þ2 þ ffiffiffi
2

p
v0 �sð Þ þ v2

0

(4.5.11)

The shaping filter that shapes unity white noise into x is obtained by inspection of the
positive-time part of Sx(s) and this is shown in Fig. 4.6 (see Section 3.6).

From the transfer function shown in the figure, we get the second-order
differential equation:

€x þ
ffiffiffi
2

p
v0 _xþ v2

0x ¼ bsu (4.5.12)

We now choose phase variables for our state variables (i.e., position and velocity).
This leads to the continuous-time state model:

_x1
_x2

� 
¼ 0 1

�v2
0 � ffiffiffi

2
p

v0

� 
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F

x1
x2

� 
þ 0

bs

� 
|fflffl{zfflffl}
G

u (4.5.13)

x(t)u(t)
bσ

s2 + √2ω0s + ω0
2

(unity white
noise)

Figure 4.6 Shaping filter for Example 4.4.

EXAMPLE 4.4 SECOND-ORDER GAUSS–MARKOV PROCESS.

The second-order Gauss–Markov process described in Example 2.12, Chapter 2,
will be used for our next Kalman filter example. The parameters for the process
have been chosen to make the process similar to the first-order process used for
Example 4.3. This was done for the purpose of comparison. It should be
remembered, though, that there is no way to make the processes identical in all
respects. Their sigmas were chosen to be the same, and their low-frequency
spectral characteristics are similar. Also, the measurement situation is the same for
both examples.

&
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The differential equation in this example is second-order, so writing out explicit
equations for fk and Qk in terms of Dt is a bit messy. So, instead we will use the
Van Loan method of evaluating fk and Qk (see Section 3.9). The required
“inputs” for the Van Loan method are F, G, W, and Dt. F and G are shown in
Eq. (4.3.18), and W is just the PSD amplitude of the white noise forcing function.
This is unity. Also, we will let Dt¼ 1 s just as in Example 4.3. So we now use
these input values in the Van Loan algorithm, and fk and Qk work out to be (with
rounding):

fk ¼
0:9952 0:9310

�0:0093 0:8638

� 
(4.5.14)

Qk ¼ 0:000847 0:001226
0:001226 0:002456

� 
(4.5.15)

In our Kalman filter we will assume that the noisy measurement is of x1 (i.e.,
position), and the measurement error sigma is 0.5m just as in Example 4.3
Therefore, the H and R parameters are:

Hk ¼ 1 0 �½ (4.5.16)

Rk ¼ ð0:5Þ2 ¼ 0:25 (4.5.17)

We have now determined the four key parameters for our 2-state Kalman filter. The
only remaining items to be specified before running a Monte Carlo simulation are
the initial conditions. Presumably, we know nothing about the x process initially
other than its spectral function and that it is Gauss–Markov. Therefore, the initial
estimate vector is just zero, i.e.,

x̂�0 ¼ 0

0

� 
(4.5.18)

Also, because of our choice of phase variables as the state variables, we can say
with confidence that x and _x are uncorrelated (see Problem 3.18). Therefore,

P�
0 ¼ s2 0

0 v0sð Þ2
� 

(4.5.19)

It is now a routine matter to run a Monte Carlo simulation for 50 steps. The
results for a typical run are shown in Fig. 4.7. The filter reaches steady-state
fairly rapidly for the chosen parameters, and the steady-state position error
variance is approximately 0.0686. This compares with an error variance of
0.1346 for the first-order filter example of Example 4.3. This is a significant
improvement, and it is due to the smaller high-frequency components in the
second-order process as compared with those in the first-order Gauss–Markov
process.

158 CHAPTER 4 DISCRETE KALMAN FILTER BASICS



C04 12/13/2011 10:44:1 Page 159

4.6
PREDICTION

In the older Wiener theory the basic theoretical problem was posed in rather general
terms. Say x(t) was the random process to be estimated. Then the problem to be solved
was to find the least-squares estimate of x(tþa) in the presence of noise. The a
parameter could be either positive (prediction), zero (filtering), or negative
(smoothing). The parenthetical words here are the descriptive terms that were
used for the three respective cases of the a parameter, and the same terminology
continues today. So far, in this chapter we have only considered filtering (i.e.,
a¼ 0). We will now look at prediction as viewed in the context of Kalman
filtering. (We will consider smoothing later in Chapter 6).

Extension of Kalman filtering to prediction is straightforward. We first note
that the projection step in the filter loop shown in Fig. 4.1 is, in fact, one-step
prediction. This was justified on the basis of the white noise assumption for the wk

sequence in the process model (Eq. 4.2.1). We can use the same identical argument
for projecting (i.e., predicting) N steps ahead of the current measurement. The
obvious equations for N-step prediction are then:

x̂ k þ Njkð Þ ¼ f k þ N; kð Þx̂ kjkð Þ (4.6.1)

P k þ Njkð Þ ¼ f k þ N; kð ÞP kjkð ÞfT k þ N; kð Þ þQ k þ N; kð Þ (4.6.2)
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Figure 4.7 Sample Monte Carlo run of the simulated Kalman filter for the second-

order Gauss–Markov process.
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where

x̂ kjkð Þ ¼ updated filter estimate at time tk

x̂ k þ Njkð Þ ¼ predictive estimate of x at time tkþN given all the measurements
through tk

P kjkð Þ ¼ error covariance associated with the filter estimate x̂ kjkð Þ
P k þ Njkð Þ ¼ error covariance associated with the predictive estimate

x̂ k þ Njkð Þ
f k þ N; kð Þ ¼ transition matrix from step k to kþN

Q k þ N; kð Þ ¼ covariance of the cumulative effect of white noise inputs from
step k to step kþN

Note that a more explicit notation is required here in order to distinguish between
the end of the measurement stream (k) and the point of estimation (kþN). (These
were the same in the filter problem, and thus a shortened subscript notation could be
used without ambiguity.)

There are two types of prediction problems that we will consider:
Case 1: Case 1 is where N is fixed and k evolves in integer steps in time just as

in the filter problem. In this case, the predictor is just an appendage that we add to
the usual filter loop. This is shown in Fig. 4.8. In off-line analysis work, the
P(kþNjk) matrix is of primary interest. The terms along the major diagonal of
P(kþNjk) give a measure of the quality of the predictive state estimate. On the
other hand, in on-line prediction it is x̂ k þ Njkð Þ that is of primary interest. Note that
it is not necessary to compute P(kþNjk) to get x̂ k þ Njkð Þ.

Case 2: Case 2 is where we fix k and then compute x̂ k þ Njkð Þ and its error
covariance for ever-increasing prediction times, that is, N¼ 1, 2, 3, . . . , etc. The
error covariance is of special interest here, because it tells us how the predictive
estimate degrades as we reach out further and further into the future. We will now
consider an example that illustrates this kind of prediction problem.

x(k + N⎪k) = φ (k + N, k) x(k⎪k)

Enter loop with

x̂0
– and P0

–

Project
one step
ahead

Compute
filter
gain

Usual filter loop

^ ^

P(k + N⎪k) = φ (k + N, k) P(k⎪k) φT(k + N⎪k) + Q(k + N, k)

N-step predictor

Update
filter

estimate

Update filter
error covariance

Figure 4.8 N-step prediction.
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EXAMPLE 4.5 A PREDICTION SIMULATION

Let us return to the second-order Markov process that was considered in
Example 4.4. In the Monte Carlo simulation there, the filter had clearly reached a
steady-state condition at the end of the run (i.e., 50 sec). Suppose at that point in
time we wish to predict ahead and get a position estimate and its error covariance
for another 50 steps. This would be a Case 2 situation. However, rather than use
the method shown in Fig. 4.8 (where we would recompute x̂k and Pk for ever-
increasing time spans), we can use an alternative approach for off-line simulation.
We can accomplish the desired result using the usual filter equations for the steps
after t¼ 50, but with Rk set at an extremely large value, rather than the 0.25 value
used earlier in the filter part of the run where there were legitimate measurements
available for processing. This is equivalent to saying that the measurements after
t¼ 50 are worthless, and the filter will automatically give them zero weight during
the prediction period. This is what prediction is all about—making do with past,
but not current, information.

The results of such a simulation are shown in Fig. 4.9. There the same Monte
Carlo run that was used in Example 4.4 was simply extended 50 more steps with Rk

switched to a very large number at t¼51 and beyond. As one would expect, the rms
estimation error increases during the prediction period, and the simulated estimate
relaxes exponentially to zero (the unconditional mean of x) during the same period.
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Figure 4.9 Simulation results for Example 4.5.
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4.7
THE CONDITIONAL DENSITY VIEWPOINT

In our discussion thus far, we have used minimum mean-square error as the per-
formance criterion, and we have assumed a linear form for the filter. This was partly
a matter of convenience, but not entirely so, because we will see presently that the
resulting linear filter has more far-reaching consequences than are apparent at first
glance. This is especially so in the Gaussian case. We now elaborate on this.

We first show that if we choose as our estimate the mean of xk conditioned on
the available measurement stream, then this estimate will minimize the mean-
square error. This is a somewhat restrictive form of what is sometimes called the
fundamental theorem of estimation theory (6,7). The same notation and model
assumptions that were used in Section 4.2 will be used here, and our derivation
follows closely that given by Mendel (6). Also, to save writing, we will temporarily
drop the k subscripts, and we will denote the complete measurement stream z0,
z1, . . . , zk simply as z�. We first write the mean-square estimation error of x,
conditioned on z�, as

E x� x̂ð ÞT x� x̂ð Þjz�� � ¼ E xTx� xT x̂� x̂Txþ x̂T x̂
� �jz�� �

¼ E xTxjz�ð Þ � E xT jz�ð Þx̂� x̂TE xjz�ð Þ þ x̂T x̂ (4.7.1)

Factoring x̂ away from the expectation operator in Eq. (4.7.1) is justified, because x̂
is a function of z*, which is the conditioning on the random variable x. We now
complete the square of the last three terms in Eq. (4.7.1) and obtain

E x� x̂ð ÞT x� x̂ð Þjz�� �
¼ E xTxjz�ð Þ þ x̂� E xjz�ð Þ½ �T x̂� E xjz�ð Þ½ � � E xT jz�ð ÞE xjz�ð Þ (4.7.2)

Clearly, the first and last terms on the right side of Eq. (4.7.2) do not depend on our
choice of the estimate x̂. Therefore, in our search among the admissible estimators
(both linear and nonlinear), it should be clear that the best we can do is to force the
middle term to be zero. We do this by letting

x̂k ¼ E xkjz�k
� �

(4.7.3)

where we have now reinserted the k subscripts. We have tacitly assumed here that
we are dealing with the filter problem, but a similar line of reasoning would also
apply to the predictive and smoothed estimates of the x process. (See Section 4.6 for
the definition and a brief discussion of prediction and smoothing.)

Equation (4.7.3) now provides us with a general formula for finding the
estimator that minimizes the mean-square error, and it is especially useful in
the Gaussian case because it enables us to write out an explicit expression for the
optimal estimate in recursive form. Toward this end, we will now assume Gaussian
statistics throughout. We will further assume that we have, by some means, an
optimal prior estimate x̂�k and its associated error covariance P�

k . Now, at this point
we will stretch our notation somewhat and let xk denote the x random variable at tk
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conditioned on the measurement stream z�k�1. We know that the form of the
probability density of xk is then

f xk 	 N x̂�k;P
�
k

� �
(4.7.4)

Now, from our measurement model we know that xk is related to zk by

zk ¼ Hkxk þ vk (4.7.5)

Therefore, we can immediately write the density function for zk as

f zk 	 N Hkx̂
�
k ;HkP

�
k H

T
k þ Rk

� �
(4.7.6)

(Again, remember that conditioning on z�k�1 is implied.) Also, from Eq. (4.7.5) we
can write out the form for the conditional density of zk, given xk. It is

f zk jxk 	 N Hkxk;Rkð Þ (4.7.7)

Finally, we can now use Bayes formula and write

f xk jzk ¼
f zkjxk f xk
f zk

(4.7.8)

where the terms on the right side of the equation are given by Eqs. (4.7.4), (4.7.6),
and (4.7.7). But recall that xk itself was conditioned on z0, z1, . . . , zk�1. Thus, the
density function on the left side of Eq. (4.7.8) is actually the density of the usual
random variable xk, conditioned on the whole measurement stream up through zk.
So, we will change the notation slightly and rewrite Eq. (4.7.8) as

f xk jzk ¼
N Hkxk;Rkð Þ½ � N x̂�k ;P

�
k

� �� �
N Hkx�k ;HkP

�
k H

T
k þ Rk

� �� � (4.7.9)

where it is implied that we substitute the indicated normal functional expressions
into the right side of the equation (see Section 1.1.4 for the vector normal form). It is
a routine matter now to make the appropriate substitutions in Eq. (4.7.9) and
determine the mean and covariance by inspection of the exponential term. The
algebra is routine, but a bit laborious, so we will not pursue it further here. The
resulting mean and covariance for xkjz�k are

Mean ¼ x̂�k þ P�
k H

T
k HkP

�
k H

T
k þ Rk

� ��1
zk �Hkx̂

�
k

� �
(4.7.10)

Covariance ¼ P�
k

� ��1 þHT
kR

�1
k Hk

h i�1

(4.7.11)

Note that the expression for the mean is identical to the optimal estimate previously
derived by other methods. The expression for the covariance given by Eq. (4.7.11)
may not look familiar, but in Chapter 5 it will be shown to be identically equal to the
usual Pk ¼ ðI�KkHkÞP�

k expression, provided that Kk is the Kalman gain.
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We also note by comparing Eq. (4.7.10) with Eq. (4.2.8), which was used in the
minimum-mean-square-error approach, that the form chosen for the update in
Eq. (4.2.8) was correct (for the Gaussian case, at least). Note also that Eq. (4.2.8) can
be written in the form

x̂k ¼ I�KkHkð Þx̂�k þKkzk (4.7.12)

When the equation is written this way, we see that the updated estimate is formed as a
weighted linear combination of two independent measures of xk; the first is the prior
estimate that is the cumulative result of all the past measurements and the prior
knowledge of the process statistics, and the second is the new information about xk as
viewed in themeasurement space. Thus, the effectiveweight factor placed on the new
information isKkHk. FromEq. (4.7.12) we see that theweight factor placed on the old
information about xk is (I�KkHk), and thus the sum of the weight factors is I (or just
unity in the scalar case). This implies that x̂k will be an unbiased estimator, provided,
of course, that the two estimates being combined are themselves unbiased estimates.
[An estimate is said to beunbiased ifE x̂ð Þ ¼ x.]Note, though, in theGaussian casewe
did not start out demanding that the estimator be unbiased. This fell out naturally by
simply requiring the estimate to be the mean of the probability density function of xk,
given the measurement stream and the statistics of the process.

In summary, we see that in the Gaussian case the conditional density viewpoint
leads to the same identical result that was obtained in Section 4.2, where we
assumed a special linear form for our estimator. There are some far-reaching
conclusions that can be drawn from the conditional density viewpoint:

1. Note that in the conditional density function approach, we did not need to
assume a linear relationship between the estimate and the measurements.
Instead, this came out naturally as a consequence of the Gaussian assumption
and our choice of the conditional mean as our estimate. Thus, in the Gaussian
case,weknow thatwe need not search among nonlinear filters for a better one;
it cannot exist. Thus, our earlier linear assumption in the derivation of both the
Wiener and Kalman filters turns out to be a fortuitous one. That is, in the
Gaussian case, theWiener–Kalmanfilter is not just bestwithin a class of linear
filters; it is best within a class of all filters, linear or nonlinear.

2. For the Gaussian case, the conditional mean is also the “most likely” value
in that the maximum of the density function occurs at the mean. Also, it can
be shown that the conditional meanminimizes the expectation of almost any
reasonable nondecreasing function of the magnitude of the error (as well
as the squared error). [See Meditch (7) for a more complete discussion of
this.] Thus, in the Gaussian case, the Kalman filter is best by almost any
reasonable criterion.

3. In physical problems, we often begin with incomplete knowledge of the
process under consideration. Perhaps only the covariance structure of the
process is known. In this case, we can always imagine a corresponding
Gaussian process with the same covariance structure. This process is then
completely defined and conclusions for the equivalent Gaussian process can
be drawn. It is, of course, a bit risky to extend these conclusions to the
original process, not knowing it to be Gaussian. However, even risky
conclusions are better than none if viewed with proper caution.
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4.8
RE-CAP AND SPECIAL NOTE ON UPDATING THE ERROR
COVARIANCE MATRIX

The Kalman filter basics were presented in this chapter in the simplest terms
possible. The recursive equations for the filter are especially simple when viewed in
state-space form. So one might logically ask, “How can whole books be written
about such a simple subject?” The answer lies in the mathematical modeling and the
frailties of the model in fitting the physical situation at hand. Remember, the
physical problem must be made to fit a very special stochastic format, namely the
process equation

xkþ1 ¼ fkxk þ wk (4.8.1)

and the measurement equation

zk ¼ Hkxk þ vk (4.8.2)

This is usually the most difficult part of any applied Kalman filter problem.
“Turning the crank,” so to speak, is easy once a good model is developed. We
never expect the mathematical model to fit the physical situation perfectly, though,
so much of the associated analysis has to do with the effect of the misfit.

The filter equations were first derived using minimum-mean-square-error as
the performance criterion. Then in a later section it was shown that the same
equations can be deduced from a conditional density viewpoint. Perhaps the most
important conclusion from that section is that for Gaussian statistics, the Kalman
filter is best by almost any reasonable performance criterion. This is a remarkable
and far-reaching conclusion.

A special comment is in order about updating the filter error covariance matrix.
Four different equations (Eqs. 4.2.18, 4.2.20, 4.2.21, 4.2.22) are provided for this in
the filter derivation. All give the same result for optimal gain and with perfect
arithmetic. So, should we just use the simplest form, Eq. (4.2.22) (i.e.,
P ¼ I�KHð ÞP�), and let it go at that? The answer to this is no. We need to
be a little more discriminating about this, depending on the situation at hand. For
example, in a typical textbook example that only runs for a few hundred steps (or
less), we would not expect to see any appreciable difference in the results in using
any of the four mentioned update formulas. On the other hand, suppose we had a
surveying problem where we are processing millions of measurements taken over a
long time span, and we are trying to squeeze the last little bit of accuracy out of the
data. In this case the filter gain will be approaching zero near the end of the run, and
we might see a small error in the gain computation. If this gain is used in the short-
form update (i.e., P ¼ I�KHð ÞP�), the computed P will be slightly in error and
not representative of the true error covariance for the suboptimal gain. The effect of
this can be cumulative step-after-step. Now consider using the “longer” update
formula (i.e., P ¼ I�KHð ÞP� I�KHð ÞT þKRKT ), which is valid for any gain,
optimal or suboptimal. The updated P so computed will at least be consistent with
the suboptimal gain being used in the update. Thus the “crime” of using slightly
suboptimal gain is mitigated by properly accounting for the suboptimality. Thus, the
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longer-form update equation is a much safer update equation when large amounts of
data are being processed.

There is another fringe benefit in using the longer P update formula.* Each of
the two additive terms in the update have natural symmetry, which is not true with
the short-form update formula. Thus, if the P� that is projected from the previous
step is symmetric, then we are assured that the updated P will also be symmetric.
There are some researchers in the field who say that the longer form should always
be used, especially in off-line analysis where computational efficiency is usually not
important. After all, the longer form is not that difficult to program.

PROBLEMS

4.1 AWiener (or Brownian motion) process is a random walk process, which, by
definition, is exactly zero at t¼ 0. (This process is discussed in detail in Section
2.11.) Now consider a variation on this process where the initial value is a zero-
mean Gaussian random variable, rather than the deterministic value of zero.We will
say that the variance of the initial value is known. Let us now imagine that two
systems analysts are having an argument over lunch about how tomodel this process
for a Kalman filter application.

Analyst A says that the best way to model this situation is to let the initial value
be a random bias state (i.e., constant with time), and then add to this a second state
variable that is a Wiener process. Thus the state vector in this model would be a
2-tuple, and the H matrix would be a 1� 2 row vector [1 1].

But Analyst B says that two states are unnecessary; one will do just fine! All we
need to do is model the Wiener process with a one-state model as usual (see Section
2.11), and then simply start the Kalman filter with a nontrivial initial P�

0 that
properly accounts for the initial uncertainty in the conceptual integrator that forms
the Wiener process. Who is right, Analyst A or Analyst B?

(a) Student exercise: Implement both the one-state and two-state models and
compare the results. Covariance analysis only will suffice (i.e., no Monte
Carlo measurement sequences need to be generated for the comparison.)
The suggested numerical values for this study are:

Run length: 51 steps, k¼ 0,1,2 . . . , 50
Step size: Dt¼ 1 s
Random walk process: Q¼ 1m2

Measurement noise: R¼ 4m2

Initial random bias: Variance¼ 100m2 (zero-mean Gaussian)
(b) Discuss briefly the relative merits of each implementation.

4.2 The accompanying figure shows a generic model for random motion (in one
dimension). This model is one of a family of PVA models where PVA stands for
position, velocity, and acceleration, the three state variables in the model. Note
especially that the acceleration variable is modeled as randomwalk, i.e., the integral
of white noise (see Section 2.11). It should be apparent that all three states in this
model are nonstationary, and themodel is only useful where there are measurements
to bound the states, and that is where the Kalman filter comes into play. But, to

* The longer form for the P update equation is sometimes referred to as the Joseph equation. (See Reference (8),
Section 4.2, p. 136.)
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design the Kalman filter for this model, we first need to know the fk and the Qk

parameters that describe the statistics of the process in the time interval between the
discrete measurements. This problem is directed just toward the fk and the Qk

parameter determination, and not the filter in its totality.
(a) For a step size of Dt (in general), first show thatfk and theQk are given by

fk ¼
1 Dt Dt2=2
0 1 Dt
0 0 1

2
4

3
5; Qk ¼

W

20
Dt5

W

8
Dt4

W

6
Dt3

W

8
Dt4

W

3
Dt3

W

2
Dt2

W

6
Dt3

W

2
Dt2 W Dt

2
6666664

3
7777775

(b) Note that there are extreme variations in the powers ofDt in the terms of the
Qk matrix. This suggests the possibility of making some approximations
when Dt is small. One suggestion (rather gross) is to ignore all of the terms
except for the (3,3) term, which is first order in Dt. Using MATLAB (or
other suitable software) run the following numerical experiment:

Numerical Experiment
Let W¼ 1 and Dt¼ 0.1. Then consider a three-state trivial no-

measurement Kalman filter which is initialized with P� as a 3� 3 zero
matrix at t¼ 0, and then run the filter for 200 steps (i.e., from t¼ 0.1 to and
include t¼ 20). Do this first with theQk terms set at the exact values as given
in Part (a). Then repeat the experiment with all the terms of Qk set to zero
except the (3,3) term, which is set to WDt. Now compare the two runs and
make a statement about the validity of the approximation.

(Note that we cannot draw any firm conclusions from just this one
numerical experiment. It does, however, provide some insight as to
whether this crude approximation is worthy of more careful evaluation.)

4.3 A variation on the dynamic position-velocity-acceleration (PVA) model given
in Problem 4.2 is obtained bymodeling acceleration as aMarkov process rather than
random walk. The model is shown in block-diagram form in the accompanying
figure. The linear differential equation for this model is of the form

_x ¼ FxþGf

(a) Write out the F,G, andGWGTmatrices for this model, showing each term
in the respective matrices explicitly.

(b) The exact expressions for the terms of fk and Qk are considerably more
difficult to work out in this model than they were in Problem 4.2. However,
their numerical values for any reasonable values of W and b can be found
readily using the method referred to as the van Loan method discussed in

1––s
White noise
PSD = W

Acceleration Velocity

x2 x1x3

Position

1––s
1––s

Figure P4.2
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Section 3.9. Using MATLAB (or other suitable software), find fk and Qk

for b¼ 0.2 s�1, W¼ 10 (m/s3)2/Hz, and Dt¼ .1 s.
(Note: These numerical values yield a relatively high-dynamics model

where the sigma of the Markov process is about .5 g with a time constant of
5 s.

4.4 The system shown is driven by two independent Gaussian white sources u1(t)
and u2(t). Their spectral functions are given by

Sa1 ¼ 4ðft=s2Þ2=Hz
Sa2 ¼ 16ðft=sÞ2=Hz

Let the state variables be chosen as shown on (he diagram, and assume that noisy
measurements of x1, are obtained at unit intervals of time. A discrete Kalman filter
model is desired. Find fk and Qk for this model.

4.5 AstationaryGaussian randomprocess is known to have a power spectral density
function of the form

Sy jvð Þ ¼ v2 þ 1

v4 þ 20v2 þ 64

Assume that discrete noisymeasurements of y are available at t¼ 0, 1, 2, 3, . . . and
that the measurement errors are uncorrelated and have a variance of two units.
Develop a Kalman filter model for this process. That is, find fk, Qk, Hk, Rk, and
the initial conditions x̂�0 and P�

0 . Note that numerical answers are requested, so
MATLAB and the algorithms for determining fk and Qk given in Section 3.9 will
be helpful. You may assume that in (the stationary condition, the x1 and x2 state
variables are uncorrelated. Thus,P�

0 will be diagonal. (See Problem 3.18 formore on
this.)
Hint: It should be apparent that _y does not exist in this example because of the
v2 term in the numerator of SyðjvÞ. Thus, we cannot choose y and _y as state variables
in our Kalman filter model. However, a suitable model can be developed as follows:

1––––––
s +   

White
noise

PSD = W Acceleration
β

Velocity

x2 x1x3

Position

1––s
1––s

f (t)

Figure P4.3

x1
x2u1(t)

u2(t)

1––s+

+
1––s

Figure P4.4

168 CHAPTER 4 DISCRETE KALMAN FILTER BASICS



C04 12/13/2011 10:44:3 Page 169

First, do spectral factorization of SyðjvÞ as discussed in Section 3.9. This leads to a
shaping filter of the form:

Shaping filter ) asþ b

s2 þ csþ d

A block diagram for this shaping filter is then as shown in the accompanying figure.
Now, let the Kalman filter states be r and _r. The Kalman filter should be fairly
obvious now by inspection of the block diagram.

4.6 AstationaryGaussian randomprocess is known to have a power spectral density
function of the form (same as in Problem 4.5):

Sy jvð Þ ¼ v2 þ 1

v4 þ 20v2 þ 64

As a variation on the Kalman filter development used in Problem 4.5, do the
following:

(a) First, do the spectral factorization of Sy(jv) just as in Problem 4.5. This will
produce a shaping filter that will convert unity white noise into the y(t)
process.

(b) Instead of following the hint in Problem 4.5, do a partial fraction expansion
of the shaping filter (just as taught in elementary linear systems analysis).
This leads to a block diagram as shown in the figure accompanying this
problem.

(c) Now develop a Kalman filter model based on this block diagram. The state
variables are shown as x1 and x2 in the figure. The same numerical values
given in Problem 4.5 apply here also.

(d) Are the Kalman filters of Problem 4.5 and 4.6 equivalent in the steady-state
condition? (To be equivalent in every sense of the word, the estimates of
the two filters must be identical.)
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y(t)r(t)

b
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Figure P4.5
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4.7 It has been pointed out in this chapter that one of the main features of a Gauss-
Markov process is its boundedness, unlike a random walk process that will wander
off ad infinitum. In Example 4.4, we introduced the second-order Gauss-Markov
model for processes where the derivative state (e.g., the rate part of a phase/rate pair
of states) plays a prominent role in the problem such as if it is strongly connected to
a measurement. In some cases, if the second derivative state has similar prominence,
we may need to resort to a third-order Gauss-Markov model. Derive such a model
as an extension of the second-order Gauss-Markov model given in Example 4.4,
by multiplying another factor (sþv0) to the denominator of the “shaping filter”
transfer function.

(a) Using methods of Chapter 3, determine what needs to be modified in the
numerator of the transfer function to shape unity white noise to an output
with a mean-square value of s2.
(Hint: The table of integrals in Section 3.3 will be helpful here.)

(b) Generate a random sequence over 100 seconds of this third-order Gauss-
Markov process and plot out the time series of the third state (i.e., the
“second-derivative” state).

4.8 A classical problem in Wiener-filter theory is one of separating signal from
noise when both the signal and noise have exponential autocorrelation functions.
Let the noisy measurement be

zðtÞ ¼ sðtÞ þ nðtÞ

and let signal and noise be stationary independent processes with autocorrelation
functions

RsðtÞ ¼ s2
s e

�bsjtj

RnðtÞ ¼ s2
ne

�bnjtj

(a) Assume thatwehave discrete samples of z(t) spacedDt apart andwish to form
the optimal estimateof s(t) at the sample points. Let s(t) andn(t) be thefirst and
second elements of the process state vector, and then find the parameters
of the Kalman filter for this situation. That is, find fk, Hk, Qk, Rk, and the
initial conditions x̂�0 and P�

0 . Assume that the measurement sequence begins
at t¼ 0, and write your results in general terms of ss, sn, bs, bn, and Dt.

(b) To demonstrate that the discrete Kalman filter can be run withRk¼ 0 (for a
limited number of steps, at least), use the following numerical values in the
model developed in part (a):

s2
s ¼ 9; bs ¼ :1 s�1

s2
n ¼ 1; bn ¼ 1 s�1

Dt ¼ 1 s

Then run the error covariance part of the Kalman filter for 51 steps beginning at
t¼ 0. (You do not need to simulate the zk sequence for this problem. Simple
covariance analysis will do.)
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4.9 Suppose that we make the following linear transformation on the process state
vector of Problem 4.8:

x0
1

x0
2

� 
¼ 1 1

0 1

� 
x1
x2

� 

This transformation is nonsingular, and hence we should be able to consider x0 as the
state vector to be estimated and write out the Kalman filter equations accordingly.
Specify the Kalman filter parameters for the transformed problem. (Note: The
specified transformation yields a simplification of the measurement matrix, but this
is at the expense of complicating the model elsewhere.)

4.10 It is almost self-evident that if the estimation errors are minimized in one set
of state variables, this also will minimize the error in any linear combination of
those state variables. This can be shown formally by considering a new slate vector
x0 to be related to (the original state vector x via a general nonsingular transfor-
mation x0 ¼ Ax. Proceeding in this manner, show that the Kalman estimate obtained
in the transformed domain is the same aswould be obtained by performing the update
(i.e., Eq. 4.2.8) in the original x domain and then transforming this estimate via the
A matrix.

4.11 Consider two different measurement situations for the same random-walk
dynamical process:

Process model:

xkþ1 ¼ xk þ wk

Measurement model 1:

zk ¼ :5xk þ vk

Measurement model 2:

zk ¼ cos ukð Þxk þ vk; uk ¼ 1þ k

120
rad

Using Q¼ 4, R¼ 1, and P�
0 ¼ 100, run error covariance analyses for each

measurement model for k¼ 0, 1, 2, . . . , 200. Plot the estimation error variance
for the scalar state x against the time index k for each case. Explain the difference
seen between the two plots, particularly as the recursive process approaches and
passes k� 70.
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5
Intermediate Topics on
Kalman Filtering

5.1
ALTERNATIVE FORM OF THE DISCRETE KALMAN FILTER–THE
INFORMATION FILTER

The Kalman filter equations given in Chapter 4 can be algebraically manipulated
into a variety of forms. An alternative form that is especially useful will now be
presented (1). We begin with the expression for updating the error covariance,
Eq. (4.2.22), and we temporarily omit the subscripts to save writing:

P ¼ I�KHð ÞP�

KHP� ¼ P� � P (5.1.1)

Recall that the Kalman gain is given by Eq. (4.2.17):

K ¼ P�HT HP�HT þ R
� ��1

K HP�HT þ R
� � ¼ P�HT

KHP�HT þKR ¼ P�HT (5.1.2)

Substituting Eq. (5.1.1) into Eq. (5.1.2),

P� � Pð ÞHT þKR ¼ P�HT

KR ¼ PHT

K ¼ PHTR�1 (5.1.3)

Going back to the error covariance update:

P ¼ I�KHð ÞP�

I�KH ¼ P P�ð Þ�1
(5.1.4)
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Substituting Eq. (5.1.3) for the gain K in Eq. (5.1.4), we get

I� PHTR�1H ¼ P P�ð Þ�1

P P�ð Þ�1 þ PHTR�1H ¼ I

Factoring out P and rearranging the equation in terms of Pð Þ�1
, we get

Pð Þ�1 ¼ P�ð Þ�1 þHTR�1H (5.1.5)

For the error covariance projection equation, we start with the usual prediction
stage:

P� ¼ fPfT þQ

ðP�Þ�1 ¼ ðfPfT þQÞ�1 (5.1.6)

Using the following version of the matrix inversion lemma,

ðAþ BÞ�1 ¼ A�1 � A�1BðIþ A�1BÞ�1A�1

where

A ¼ fPfT and B ¼ Q;

and, defining M ¼ fPfT
� ��1 ¼ fT

� ��1
Pð Þ�1f�1, Eq. (5.1.6) becomes

P�ð Þ�1 ¼ fPfT þQ
� ��1

¼ M�MQ IþMQð Þ�1M (5.1.7)

If Qð Þ�1
exists, then Eq. (5.1.7) becomes

P�ð Þ�1 ¼ M�M Q�1 þM
� ��1

M (5.1.8a)

In the special case where Q ¼ 0, then Eq. (5.1.7) degenerates into

P�ð Þ�1 ¼ M (5.1.8b)

Eq. (5.1.5), Eqs. (5.1.8a) and (5.1.8b) provide the necessary update and projection
mechanisms for the inverse of the error covariance matrix P, the so-called
information matrix. Note that in these equations, we are no longer dealing with
the a priori error covariance nor the a posteriori error covariance, but only with
their inverses, P�ð Þ�1

and Pð Þ�1
.

Now let us look at the state update and projection equations that go along with
this alternative form of the Kalman filter. Let us revisit the original state estimate
update equation from Eq. (4.2.8):

x̂ ¼ x̂� þK z�Hx̂�ð Þ
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If we premultiply the inverse of P on both sides of this equation, we get

Pð Þ�1x̂ ¼ Pð Þ�1x̂� þ Pð Þ�1K z�Hx̂�ð Þ

Simplifying further, and redefining a new variable, y (to be called the information
state vector), related to the state estimate via the inverse of the error covariance,
we get

Pð Þ�1x̂|fflfflffl{zfflfflffl}
ŷ

¼ Pð Þ�1x̂� þHTR�1 z�Hx̂�ð Þ

¼ Pð Þ�1x̂��HTR�1Hx̂�þHTR�1z

¼ Pð Þ�1 �HTR�1H
h i

x̂�þHTR�1z

¼ P�ð Þ�1x̂�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ŷ�

þHTR�1z

(5.1.9)

This gives us a relationship between two modified quantities related to the original a
priori and a posteriori state estimates through the inverses of the respective error
covariances.

If we carry out the same kind of transformation on the state projection equation,
by premultiplying with the inverse of P�, we get

P�ð Þ�1x̂� ¼ P�ð Þ�1fx̂

If Qð Þ�1
exists, we can substitute the P�ð Þ�1

term on the right hand side with Eq.
(5.1.8a):

P�ð Þ�1x̂�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ŷ�

¼ M�M Q�1 þM
� ��1

M
h i

fx̂

¼ I�M Q�1 þM
� ��1

h i
fT
� ��1

Pð Þ�1f�1fx̂

¼ I�M Q�1 þM
� ��1

h i
fT
� ��1

Pð Þ�1x̂|fflfflffl{zfflfflffl}
ŷ

(5.1.10a)

If Qð Þ�1
does not exist, we substitute for that same term with Eq. (5.1.8b) instead:

P�ð Þ�1x̂�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ŷ�

¼ Mfx̂ ¼ fT
� ��1

Pð Þ�1f�1fx̂ ¼ fT
� ��1

Pð Þ�1x̂|fflfflffl{zfflfflffl}
ŷ

(5.1.10b)

Finally, we bring together the relevant equations, restore the time step indices, and
summarize the new algorithm for the Information Filter in the flow diagram of
Fig. 5.1.
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5.2
PROCESSING THE MEASUREMENTS ONE AT A TIME

We now have two different Kalman filter algorithms for processing the measure-
ment information. The first is the usual error-covariance algorithm that is shown
pictorially in Fig. 4.1, Chapter 4. Then in the preceding Section 5.1 we presented an
alternative algorithm that was centered around the inverse error covariance that
has a physical interpretation as the information matrix. Both algorithms yield
identical results with perfect arithmetic and proper interpretation.Which one should
be used is a matter of convenience in programming and online implementation. We
will now show that, under certain circumstances, the components of the measure-
ment vector can be processed one at a time.

We begin with the information matrix update formula that was derived as Eq.
5.1.5 in Section 5.1 (repeated here for convenience).

Pð Þ�1 ¼ P�ð Þ�1 þHTR�1H (5.2.1)

We note first that this update equation was derived with the assumption of optimal
gain. Let us assume that the R matrix is block diagonal. Then Eq. (5.2.1) can be
rewritten in partitioned form as (with the k subscripts reinserted):

Pkð Þ�1 ¼ P�
k

� ��1 þ HaT
k HbT

k . . .
� � Ra

k

� ��1
0 0

0 Rb
k

� ��1
0

0 0 }

2
66664

3
77775

Ha
k

Hb
k

..

.

2
664

3
775 (5.2.2)

Figure 5.1 The Information filter.
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Physically, the partitionedRmatrix means that the measurement suite at time tk can
be arranged in blocks such that the measurement errors among the a, b, . . . blocks
are uncorrelated. This is often the case when the measurements come from different
sensors or instrumentation sources. We next expand Eq. (5.2.2) to get:

Pkð Þ�1 ¼ P�
k

� ��1 þHaT
k Ra

k

� ��1
Ha

k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pkð Þ�1

after assimilating
block a measurements

þHbT
k Rb

k

� ��1
Hb

k þ � � � (5.2.3)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pkð Þ�1

after assimilating block b measurements

Note that the sum of the first two terms in Eq. (5.2.3) is just the Pkð Þ�1
one would

obtain after assimilating the “block a” measurement, just as if no further measure-
ments were available. The Kalman gain associated with this block (Eq. 5.1.3,
Section 5.1) may now be used to update the state estimate accordingly. Now think of
making a trivial projection through zero time, and then starting through the update
loop again with the “block b” measurements. This is shown in Fig. 5.2 with the
projection step shown bypassed. In effect, we can use the usual error covariance
update loop over and over again until all of the measurement blocks at time tk have
been assimilated. The end result is then the same as if we had processed the
measurements all at once as a vector quantity. We then step ahead with the usual
nontrivial projection to tkþ1, and there we start all over again with the one-at-a-time
measurement assimilation. It is as simple as that.

From a programming viewpoint one-at-a-time measurement processing may,
or may not, be advantageous depending on the application at hand. It is presented
here without specific recommendations, simply as a useful option in system
programming. It was probably noticed that we justified the one-at-a-time idea
with information filter concepts, and then we proceeded to illustrate the mechanics
of carrying out the procedure with the usual error-covariance filter. This is perfectly
legitimate, because the only thing that really matters is the end result after all the
measurements at tk have been assimilated. And the equivalence of the information

Figure 5.2 Kalman filter loop with projection step bypassed.
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and error-covariance filters was shown in Section 5.1, and this is enough justifica-
tion for the discussion here.

5.3
ORTHOGONALITY PRINCIPLE

In linear minimum-mean-square-error (MMSE) estimation theory there is a remark-
able connection among the estimation error, the measurement sequence and the
random process being estimated. This relationship is known as the Orthogonality
Principle, and it dates back to the early days of Wiener filtering (16). As applied to
discrete Kalman filtering, this principle simply says that the estimation error is
orthogonal to the measurement sequence, provided the filter gain is set to yield the
minimummean-square error. This is not at all obvious at the outset, but it is a direct
consequence of the MMSE criterion. It is also easy to show that the filter estimation
error is also orthogonal to the estimate, because it is a linear function of the
measurement stream.

The Orthogonality Principle is often explained geometrically with a triangular
diagram as shown in Fig. 5.3. The estimate x̂ lies in the measurement space z, and it
is adjustable, depending on how the measurement is to be weighted to yield the
desired estimate.

Clearly, the minimum error e occurs when x̂ is adjusted such that e is ortho-
gonal to z. This geometric picture is helpful in understanding the Orthogonality
Principle and its connection to minimizing the error (in some sense), but one should
not take the picture too literally. First of all, the principle is a vector concept, and it is
not easily described in a simple two-dimensional figure. One should also remember
that it is the expectation of the squared error that is minimized, not the error itself.
Also, it works out that the principle is much more general than the figure would
indicate. When the principle is written out mathematically, i.e.,

E x̂� xð ÞzT� � ¼ 0 (5.3.1)

we note that it is the outer product that is zero (not an inner product). This means that
all the components of the error are mutually orthogonal to all the components of the
measurement. Furthermore, this property extends back into the past history of the
measurement stream. Thus, the Orthogonality Principle is much more far-reaching
than can be shown in the simple diagram of Fig. 5.3.

We will not try to prove the Orthogonality Principle rigorously here. We will
leave that to the more advanced texts in the reference list at the end of the chapter. It
will be instructive though to demonstrate the orthogonality idea for a few recursive
steps with a simple one-stateMarkov example. In doing so, it will be evident exactly
where the MMSE criterion comes into play in effecting the orthogonality.

Figure 5.3 Geometric interpretation of the

Orthogonality Principle.
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EXAMPLE 5.1

Consider a first-order Gauss Markov process x with known s, and b, and say we
have a direct one-to-one measurement of x with an rms error of sv. We wish to
investigate the orthogonal relationships that exist right from the very start,
beginning at k¼ 0. The filter demands that we specify an initial x̂�0 and P�

0 . These
must be consistent with the prior assumption about the x process, which in this case
is the known autocorrelation function. Therefore,

x̂�0 ¼ 0; P�
0 ¼ s2

x (5.3.2)

Note also that the initial estimation error is

e�0 ¼ x̂�0 � x0 ¼ �x0 (5.3.3)

The first measurement z0 is to occur at k¼ 0, and the filter will process this measure-
ment and update the initial estimate in accordance with the usual Kalman filter
equations as described in Chapter 4. This leads to:

Gain K0 ¼ P�
0

P�
0 þ s2

v

¼ s2
x

s2
x þ s2

v

(5.3.4)

Also,

1� K0ð Þ ¼ s2
v

s2
x þ s2

v

(5.3.5)

The updated estimate is given by

x̂0 ¼ x̂�0 þ K0 z0 � x̂�0
� � ¼ K0z0 (5.3.6)

and the estimation error and its variance are

e0 ¼ x̂0 � x0 ¼ K0z0 � x0 ¼ K0 x0 þ v0ð Þ � x0 ¼ � 1� K0ð Þx0 þ K0v0 (5.3.7)

Now, according to theOrthogonality Principle the estimation error at k¼ 0 should be
orthogonal to z0, so we need to verify this:

E e0z0½ � ¼ E � 1� K0ð Þx0 þ K0v0f g x0 þ v0f g½ � (5.3.8)

We note here that x0 and v0 are uncorrelated. Therefore,

E e0z0½ � ¼ � 1� K0ð ÞE x20
� �þ K0E v20

� �
(5.3.9)

If we now substitute the optimal values for K0 and 1� K0ð Þ we get

E e0z0½ � ¼ � s2
vs

2
x

s2
x þ s2

v

þ s2
xs

2
v

s2
x þ s2

v

¼ 0 (5.3.10)

It is important to note here that the gain K0 has to be the optimal gain that minimizes
the mean-square error in order to get cancellation of the two terms in Eq. (5.3.9).
Otherwise, e0 will not be orthogonal to z0!
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Application of the Orthogonality Principle to the Measurement Residuals

The term zk �Hkx̂
�
k

� �
that appears in the measurement update equation is usually

referred to as the measurement residual. To be more precise, perhaps it should be
called the a priori measurement residual, because it is formed by differencing the
current measurement zkwith the a priori estimate of x̂�k (not x̂k) as it reflects into the
measurement space. However, it is customary to omit the “a priori,” so we will do
likewise here. Note that theHkx̂

�
k quantity in the residual is the filter’s best estimate

of zk before it gets to “see” the actual zk. It is conditioned on the measurement
stream up through zk-1, just like x̂

�
k , so it is also minimum-mean-square-error (in the

Gaussian case, at least). Thus, the measurement residual is an estimation error of
sorts. So, from the Orthogonality Principle, it should be orthogonal to the mea-
surement stream from zk-1 clear back to z0. In mathematical terms we then have:

zk �Hkx̂
�
k

� �
zTk�1 ¼ 0 (5.3.15)

zk �Hkx̂
�
k

� �
zTk�2 ¼ 0

..

.

etc:

(5.3.16)

Next, consider the expectation of the outer product of any adjacent pair of
measurement residuals, say, for example, the most “recent” pair:

E “adjacent pair”½ � ¼ E zk �Hkx̂
�
k

� �
zk�1 �Hk�1x̂

�
k�1

� �Th i
(5.3.17)

Let us now go one step further and look at the a priori estimate at the next
recursive step (i.e., at k¼ 1).

x̂�1 ¼ fx̂0 (5.3.11)

and, similarly, for the process model:

x1 ¼ fx0 þ w0 (5.3.12)

Therefore, the a priori error is

e�1 ¼ x̂�1 � x1 ¼ fe0 � w0 (5.3.13)

Now, the e�1 is also a minimummean-square error, so wemight expect E e�1 z0
� �

to be
zero, just as we found that E e0z0½ � was zero.

To verify this we can write out E e�1 z0
� �

explicitly as

E e�1 z0
� � ¼ E fe0 � w0ð Þz0½ � ¼ E fe0z0½ � � E w0z0½ � (5.3.14)

We have just shown thatE e0z0½ � is zero. AlsoE w0z0½ �must be zero, becausew0 is the
additive white noise that comes into the x process after k¼ 0. Therefore, e�1 is
orthogonal to the previous measurement z0.

We could now go further and show that the updated estimation error e1 is
orthogonal to both z1 and z0. The algebra is a bit messy, though, so we will leave
this as an exercise (see Problem 5.3).

&
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The first parenthetical quantity in Eq. (5.3.17) will be recognized as the estimation
error at tk, and the Hk�1x̂

�
k�1 in the second parenthetical term can be written as a

linear function of zk�2; zk�3; . . . ; z0. Therefore, the Orthogonality Principle says
that the expectation of the sum of the terms within the brackets of Eq. (5.3.17) must
be zero. A similar argument can be applied to any pair of residuals, so we can say
that the sequence of measurement residuals is a white sequence. This is also known
as an innovations sequence. It is also worth noting that the residuals are uncorrelated
(i.e., “white”) in an outer-product sense, not just an inner-product sense. This is to
say that any of the elements of a residual sampled at a particular time are orthogonal
to any of the elements of another residual sampled at a different time. This is a very
far-reaching form of orthogonality.

5.4
DIVERGENCE PROBLEMS

Since the discrete Kalman filter is recursive, the looping can be continued inde-
finitely, in principle, at least. There are practical limits, though, and under certain
conditions divergence problems can arise. We elaborate briefly on three common
sources of difficulty.

Roundoff Errors

Aswith any numerical procedure, roundoff error can lead to problems as the number
of steps becomes large. There is no one simple solution to this, and each case has to
be examined on its own merits. Fortunately, if the system is observable and process
noise drives each of the state variables, the Kalman filter has a degree of natural
stability. In this case a stable, steady-state solution for the P matrix will normally
exist, even if the process is nonstationary. If the P matrix is perturbed from its
steady-state solution in such a way as not to lose positive definiteness, then it tends
to return to the same steady-state solution. This is obviously helpful, provided P
does not lose its symmetry and positive definiteness. (See Section 5.8 for more on
filter stability.)

Some techniques that have been found useful in preventing, or at least
forestalling, roundoff error problems are:

1. Use high-precision arithmetic, especially in off-line analysis work.

2. If possible, avoid deterministic (undriven) processes in the filter modeling.
(Example: a random constant.) These usually lead to a situation where the P
matrix approaches a semidefinite condition as the number of steps becomes
large. A small error may then trip the P matrix into a non-positive definite
condition, and this can then lead to divergence. A good solution is to add (if
necessary) small positive quantities to the major diagonal terms of the Q
matrix. This amounts to inserting a small amount of process noise to each of
the states. This leads to a degree of suboptimality, but that is better than
having the filter diverge!

3. Symmetrize the error covariance matrix with each step. This is easily done
by forming the average of the matrix and its transpose. This is probably the
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most important way of avoiding divergence due to computational frailties. It
might appear at first glance that triple product operations such as fPfT or
I�KHð ÞP� I�KHð ÞT will always produce symmetric results. Be wary of
this. Symmetry is only assured if the inner matrice in the product is, in its
self, symmetric. Thus, it is important to keep both P and P� symmetric on
long runs.

4. Large uncertainty in the initial estimate can sometimes lead to numerical
problems. For example, in a navigation situation, if we start the filter’s P�

0

matrix with very large values along the major diagonal, and if we then
follow this with a very precise measurement at t ¼ 0, the P matrix must
transition from a very large value to a value close to zero in one step. It can
be seen from the P-update equation

Pk ¼ I�KkHkð ÞP�
k (5.4.1)

that this situation approximates the indeterminate form 0�1. One should
always be cautious in this kind of numerical situation. One possible solution
is to make the elements of P�

0 artificially smaller and simply recognize that
the filter will be suboptimal for the first few steps. Another possibility is to
use one of the forms of square-root filtering. This mitigates the problem of
extremely large swings in the error covariance from step to step. (See Section
5.7 for more on square root filtering.)

Gross Modeling Errors

Another type of divergence may arise because of inaccurate modeling of the process
being estimated. This has nothing to do with numerical roundoff; it occurs simply
because the designer (engineer) “told” the Kalman filter that the process behaved
one way, whereas, in fact, it behaves another way. As a simple example, if you tell
the filter that the process is a random constant (i.e., zero slope), and the actual
process is a random ramp (nonzero slope), the filter will be continually trying to fit
the wrong curve to the measurement data! This can also occur with nondeterministic
as well as deterministic processes, as will now be demonstrated.

EXAMPLE 5.2

Consider a process that is actually random walk but is incorrectly modeled as a
random constant. We have then (with numerical values inserted to correspond to a
subsequent simulation):

(a) The “truth model”:

x_¼ u tð Þ; u tð Þ ¼ unity Gaussian white noise; and Var x 0ð Þ½ � ¼ 1

zk ¼ xk þ vk; measurement samples at t ¼ 0; 1; 2; . . .

and Var vkð Þ ¼ :1

(b) Incorrect Kalman filter model:

x ¼ constant; where x � N 0; 1ð Þ
zk ¼ xk þ vk same as for truth modelð Þ

182 CHAPTER 5 INTERMEDIATE TOPICS ON KALMAN FILTERING



C05 12/09/2011 11:44:18 Page 183

The moral to Example 5.2 is simply this. Any model that assumes the process,
or any facet of the process, to be absolutely constant forever and ever is a risky
model. In the physical world, very few things remain absolutely constant. Instru-
ment biases, even though called “biases,” have a way of slowly changing with time.

The Kalman filter parameters for the incorrect model (b) are: fk ¼ 1;
Qk ¼ 0; Hk ¼ 1; Rk ¼ :1; x̂0 ¼ 0; and P�

0 ¼ 1. For the truth model the parameters
are the same except that Qk ¼ 1, rather than zero.

The random walk process (a) was simulated using Gaussian random numbers
with zero mean and unity variance. The resulting sample process for 35 sec is
shown in Fig. 5.4. A measurement sequence zk of this sample process was also
generated using another set ofN 0; 1ð Þ random numbers for uk. This measurement
sequence was first processed using the incorrect model (i.e., Qk ¼ 0), and again
with the correct model (i.e., Qk ¼ 1). The results are shown along with the sample
process in Fig. 5.4. In this case, the measurement noise is relatively small s � :3ð Þ,
and we note that the estimates of the correctly modeled filter follow the random
walk quite well. On the other hand, the incorrectly modeled filter does very poorly
after the first few steps. This is due to the filter’s gain becoming less and less with
each succeeding step. At the 35th step the gain is almost two orders of magnitude
less than at the beginning. Thus, the filter becomes very sluggish and will not
follow the random walk. Had the simulation been allowed to go on further, it
would have become even more sluggish.

&

Figure 5.4 Simulation results for random walk example.
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Thus, most instruments need occasional recalibration. The obvious remedy for this
type of divergence problem is always to insert some process noise into each of the
state variables. Do this even at the risk of some degree of suboptimality; it makes for
a much safer filter than otherwise. It also helps with potential roundoff problems.
(Note: Don’t “blame” the filter for this kind of divergence problem. It is the fault of
the designer/analyst, not the filter!). This example will be continued as Example 5.5
in Section 5.5.

Observability Problem

There is a third kind of divergence problem that may occur when the system is not
observable. Physically, this means that there are one or more state variables (or
linear combinations thereof) that are hidden from the view of the observer (i.e., the
measurements). As a result, if the unobserved processes are unstable, the corre-
sponding estimation errors will be similarly unstable. This problem has nothing to
do with roundoff error or inaccurate system modeling. It is just a simple fact of life
that sometimes the measurement situation does not provide enough information to
estimate all the state variables of the system. In a sense, this type of problem should
not even be referred to as divergence, because the filter is still doing the best
estimation possible under adverse circumstances.

There are formal tests of observability that may be applied to systems of low
dimensionality, These tests are not always practical to apply, though, in higher-
order systems. Sometimes one is not even aware that a problem exists until after
extensive error analysis of the system. If unstable estimation errors exist, this will be
evidenced by one or more terms along the major diagonal of P tending to increase
without bound. If this is observed, and proper precautions against roundoff error
have been taken, the analyst knows an observability problem exists. The only really
good solution to this kind of divergence is to improve the observability situation by
adding appropriate measurements to make the system completely observable.

5.5
SUBOPTIMAL ERROR ANALYSIS

A Kalman filter is optimal in a minimum mean square error sense if the filter model
matches the physical situation perfectly. However, in practical real-life applications
the filter actually being implemented will always be suboptimal to some degree or
other, so it is important to be able to assess the degree of suboptimality. In this
section we will assume that the structure of the filter is correct (i.e., the order of the
state vector and measurement relationship are correct), but some of the filter
parameters may not match the physical situation perfectly. To some extent, the
effect of such mismodeling errors is amenable to analysis, and this will be discussed
in this section. Then the analysis of reduced-order (i.e., state vector) systems will be
considered in Section 5.6.

Fig. 5.5 shows two conceptual suboptimal filters that will be helpful in our
analysis. The top filter, No. 1, represents the actual filter being implemented with the
wrong parameters (which can be R,Q or P�

0 , or any combination of these). We first
note that the usual online nonadaptive Kalman filter is really not very smart. The
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only thing it knows is what the designer tells it in terms of the model parameters. It
does not know truth from fiction or optimality from suboptimality. It simply takes
the given information and follows the rules as faithfully as possible numerically. It
was pointed out in the filter derivation in Chapter 4 that there are a number of
equations for updating the P matrix. The two most frequently used equations are a
“short form” Eq. (4.2.22) and a “long form” Eq. (4.2.18). These are repeated in
Fig. 5.5. One is for optimal gain only and the other applies to any gain. We also note
that the “long form” is often referred to as the Joseph update equation.

Now the online Filter No. 1 wants to be optimal (and it does not know that it is
using the wrong R, for example); so it can update its computed P with the short-
form equation. But the resulting P will not be truly representative of the actual
estimation error covariance, because the wrong R affects the gain calculation;
which, in turn, affects the P calculation. Thus, the P so computed by Filter No. 1 is
misleading. Remember, though, the online filter has no way of knowing this,
because it thinks the given parameters are true and accurate. Note, though, that
Filter No. 1 is suboptimal because it is using the wrong parameter, R for example,
not because it is using the short-form update equation.

Consider Filter No. 2 next. It is entirely conceptual, and it is “implemented”
offline for analysis purposes only. Its parameters represent truth, including the
correct R parameter. However, Filter No. 2 does not calculate its gain using the
usual formula, i.e., Kk ¼ P�

k H
T
k HkP

�
k H

T
k þ Rk

� ��1
. Rather, the filter is pro-

grammed to use a numerical gain sequence from another source—namely, Filter
No. 1. Thus, Filter No. 2 is also suboptimal because it is using a gain sequence that is
inconsistent with the truth model. Now the theory says that the P produced by the
Joseph update formula will be the true error covariance for Filter No. 1.

To justify the foregoing statement we need to look carefully at the estimates as
well as the error covariances for the two filters of Fig. 5.5. In general, the Kalman
filter estimate sequence is only affected directly by theK,H, x̂�0 , andf combination
of parameters. Therefore, if the gainsK are the same for both Filter No. 1 and Filter
No. 2 (which they are according to Fig. 5.5), and if theH,f, and x̂�0 parameters are

Figure 5.5 Two filters used in suboptimal analysis. (yNote the estimates of both are the

same because the same suboptimal gains are used in both filters.)
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identical for the two filters, then the respective estimate sequences must be identical.
Thus, the error covariance sequence from Filter No. 2 (which we know to be correct
for that filter) must also apply to the estimate sequence produced by Filter No. 1
(which is the suboptimal filter of primary interest in the analysis). This then also
dictates that in this type of analysis we must limit the incorrect parameters in Filter
No.1 to Q, R and P�

0 (or combinations thereof). Or, alternatively, we must demand
that the H, f, and x̂�0 be the same in both Filter No.1 and Filter No.2. (For more on
this see Gelb (3), pp. 246–273).

Two simple examples will now illustrate this suboptimal analysis methodology.

EXAMPLE 5.3

Suboptimal filter with wrong R parameter.
Consider a simple first-order Gauss–Markov situation where the nominal

design parameters are:

sx ¼ 1:0m ðstandard deviation of x processÞ
b ¼ 0:1 rad /s ðreciprocal time constantÞ
Dt ¼ 1:0 s ðstep sizeÞ
f ¼ e�bDt

Q ¼ s2
x 1� e�2bDt
� �

m2

H ¼ 1:0
R ¼ 1:0 m2

P�
0 ¼ s2

x ðInitial error covarianceÞ
The online filter tries to be optimal, and it is programmed accordingly using the
nominal parameterswhich it thinks represent truth. For reference purposes, let us first
look at the updated values of P produced by this filter at its first step at t¼ 0:

Computed gain at t¼ 0

K ¼ P�
0

P�
0 þ R

¼ 1:0

1:0þ 1:0
¼ 0:5

P0 ¼ I� KHð ÞP�
0 ¼ 1� 0:5ð Þ � 1:0 ¼ 0:5 m2

Let us now speculate about a suboptimal scenario where we say the true R in this
situation is 2.0 m2 rather than 1.0 as implemented in Filter No. 1. This filter is now
suboptimal,andwewishtoassess theeffectof themismodeling.Wecandothis simply
by cycling the suboptimal gain from Filter No.1 into the truth model, which is Filter
No. 2.Wewill now look at the result at the very first update at t¼ 0. (Note especially
that we use the Joseph update, rather than the short form).

P0 realisticð Þ ¼ I� KHð ÞP�
0 I� KHð ÞT þ KRKT

¼ 1� 0:5ð Þ 1:0ð Þ 1� 0:5ð Þ þ 0:5ð Þ 2:0ð Þ 0:5ð Þ
¼ 0:75 m2

Note that there is a significant difference between what Filter No.1 thinks is its estima-
tion accuracy (0.5m2) and its actual accuracy (0.75m2). Of course, this comparison is
only shown here for the first recursive step. It will change as the recursive process
proceeds onwards. We will leave this analysis as an exercise (see Problem 5.5).

&
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EXAMPLE 5.4

Suboptimal Filter with Wrong Q Parameter
This example is a continuation of the scenario given in Example 5.2 in

Section 5.4. There the emphasis was on the divergence problem, and this was
demonstrated with a Monte Carlo simulation. Here we will analyze the mean-
square error growth quantitatively using suboptimal analysis methods. With
reference to Fig. 5.5, the two filter models are as follows:

Suboptimal Filter No. 1: (Wrong Q model)

Dt ¼ 1:0 s

f ¼ 1:0

Q ¼ 0

R ¼ 0:1 m2

H ¼ 1:0

P�0 ¼ 1:0 m2 Initial x is a N 0; 1ð Þ random variableð Þ
Suboptimal Filter No. 2: (Truth model)

(a) Same parameters as Filter No.1, except Q¼ 1.0m2;
(b) Gains from Filter No.1 are recycled through Filter No. 2; and
(c) Joseph P update equation is used.

The suboptimal error analysis proceeds as follows. We first need the suboptimal
gain sequence that comes from Filter No. 1. These gains are computed using the
usual recursive equations shown in Fig. 4.1 of Chapter 4. This is easily done
with pencil-and-paper methods in this example. The resulting sequence beginning
with t¼ 0 is:

GainK sequence for 36 cycles Filter No: 1ð Þ : 10
11

;
10

21
;
10

31
;
10

41
; � � � 10

361

This gain sequence is then recycled through Filter No. 2, and the error variance is
shown in the plot of Fig. 5.6. The error variance growth appears to be linear near the
end of the run, which might have been expected intuitively for random walk.
However, the suboptimal analysis methodology used here provides a quantitative
measure of growth rate that is not so obvious intuitively.

&

Figure 5.6 Error variance plot for filter with wrong Q.
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5.6
REDUCED-ORDER SUBOPTIMALITY

In many real-life applications the size of the state vector can be a problem, and it
becomes necessary to eliminate some of the elements tomake the filter computationally
feasible in real time. This is especially true in integrated navigation systemswhere there
is often a wealth of measurements involved. Recall that when non-white measurement
noises are present, they must be absorbed as elements of the state vector to fit the
required format for the Kalman filter (see Section 4.2). The estimates of these states are
usually not of primary interest, and they are often only weakly observable. Thus, they
immediately become candidates for elimination if the need arises. If this is done, the
reduced-order system becomes suboptimal, and it is important to be able to assess
the degree of suboptimality induced by this choice. The analysis methods discussed
in the preceding section were restricted to situations where the suboptimal filter model
and the truth model were of the same order, so some special remodeling must be done
before applying these methods to the reduced-order filter problem.Wewill now look at
two reduced-order scenarios where exact suboptimal analyses are possible.

The Schmidt Kalman Filter

In the early days of Kalman filtering, Stanley F. Schmidt suggested a method of
reducing the order of the state vector, but at the same time still accounting for the
deleted states (4). Of course, in general, there is no way to eliminate states and
maintain true optimality. But the Schmidt scheme does partially account for the
“eliminated” states to some extent at least. Thus, these states in the Schmidt filter are
sometimes referred to as consider states, because they are considered but not
implemented literally in the filter.

We begin by assuming that we start with a finite-state truth model. Usually the
states to be eliminated are in the measurement part of the model, but this is not
necessary. The truth model can then be partitioned as follows. (The y states are the
ones to be eliminated.)

Process Model

x
y

� �
kþ1

¼ fx 0

0
fy

� �
x

y

" #
k

þ
wx

wy

" #
k

(5.6.1)

Measurement Model

zk ¼ H J½ � x
y

� �
k

þ vk (5.6.2)

And the gain and error covariance can also be partitioned as:

Kk ¼
Kx

Ky

� �
k

(5.6.3)

Pk ¼
Px Pxy

Pyx Py

" #
(5.6.4)
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Now, it is the lower partitioned part of the state vector that is to be eliminated and
not estimated. So, in the suboptimal model we will arbitrarily set the y estimate and
its associated gain equal to zero. That is,

ŷk ¼ 0 (5.6.5)

Ky ¼ 0 (5.6.6)

The suboptimal filter is then implemented (conceptually) in partitioned form using
the usual matrix equations shown in Fig. 4.1 of Chapter 4, except that the error
covariance matrix must be updated using the “Joseph form” of the P update
equation which also must be expanded out into partitioned form. The partitioning
is important if there is to be any computational savings in the Schmidt scheme.
(Most of the savings is due to setting Ky ¼ 0.)

In summary, it is the upper-left partitioned part of P that gives meaningful error
variances (along the major diagonal) for the states of primary interest in the
Schmidt-Kalman filter. It is worth noting that the off-diagonal parts of the P matrix
are not zero. This indicates that the “consider” states have played a role in
estimating states of primary interest.

The Pure Reduced-Order Kalman Filter

If the states to be eliminated are only weakly observable, one might logically ask,
“Why not just ignore the y states completely and shorten the state vector accor-
dingly?” This is certainly a reasonable suggestion, and it would be much
simpler than the partitioned Schmidt solution. The difficulty with this suggestion
is not, of course, with implementation. (It is easy to “throw away” states.)
Rather, the difficulty lies in the analysis of the effect of simply eliminating
the unwanted states.

The reduced-order filter, like any suboptimal filter, cannot count on its error
covariancematrix P to provide the “correct story” about its true error. In the previous
section, Section 5.5, we introduced a reasonably doable way of analyzing the true
error of a suboptimal filter by way of making two passes, the first time through the
suboptimal model, and then sequencing those collected suboptimal gains to run
through a second time through the optimal model. One major requirement of this
particularmethodof analysis is that both the “optimal” and“suboptimal”modelsmust
have the same dimensionality and the same parameters off andH. In order to use this
same method of analysis for our reduced-order filter model, we need to satisfy those
very requirements.

By definition, a reduced-order suboptimal filter will be estimating a set of sta-
tes, call it x̂R, that is a subset of the states of the full-order filter it is being “reduced”
from. Therefore, we must first seek out how to represent the reduced-order filter in
the same structure of the full-order filter. It turns out that if the set of filter states to
be “eliminated,” call it x̂E, is rigged such that the filter “thinks” that it perpetually
knows these states perfectly, i.e., the covariance matrix associated with x̂E is a zero
matrix, then this Kalman filter model behaves exactly like the reduced-order filter
with the x̂R states only.
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We begin with the partitioning the full-order model into the two subspaces
associated with xR and xE.

xR
xE

� �
kþ1

¼ fRR fRE

fER fEE

� �
xR
xE

� �
k

þ wR

wE

� �
k

(5.6.7)

zk ¼ HR HE½ � xR
xE

� �
k

þ vk (5.6.8)

The Kalman filter model for the full-order model would be specified along with the
following parameters:

x̂ �
0 ¼

x̂Rð Þ�0
x̂Eð Þ�0

" #
P�
0 ¼

PRRð Þ�0 PREð Þ�0
PT
RE

� ��
0

PEEð Þ�0

" #
(5.6.9)

To contrive a Kalman filter such that the error covariance associated with x̂E to be a
zero matrix, we need to start out with the following representation for an initial error
covariance matrix P�

0 :

x̂�0 ¼
x̂Rð Þ�0
0

" #
P�
0 ¼

PRð Þ�0 0

0 0

" #
(5.6.10)

Let us next examine how the state vector and error covariance matrix progresses
through the update processes of the Kalman filter.

K0 ¼ P�
0 H

T
0 H0P

�
0 H

T
0 þ R0

� ��1

¼
PRð Þ�0 0

0 0

" #
HR

HE

" #
HR HE½ �

PRð Þ�0 0

0 0

" #
HR

HE

" #
þ R0

 !�1

¼
PRð Þ�0 HR HR PRð Þ�0 HR þ R0

� ��1

0

2
4

3
5, KR

0

" #
(5.6.11)

x̂0 ¼ x̂�0 þK z0 �H0x̂
�
0

� �

¼
x̂Rð Þ�0
0

" #
þ

KR

0

" #
z0 � HR HE½ �

x̂Rð Þ�0
0

" # !

¼
x̂Rð Þ�0 þKR z0 �HR x̂Rð Þ�0

� �
0

2
4

3
5, x^Rð Þ0

0

2
4

3
5 (5.6.12)
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P0 ¼ I�K0H0ð ÞP�
0

¼
IR 0

0 IE

" #
�

KR

0

" #
HR HE½ �

 !
PRð Þ�0 0

0 0

" #

¼
IR �KRHRð Þ PRð Þ�0 0

0 0

" #
,

PRð Þ0 0

0 0

" # (5.6.13)

From the update equations of Eqs. (5.6.11)-(5.6.13), we see that the upper partition
essentially maintains what the reduced-order state estimates would undergo while
the lower partition associated with the eliminated states remains zeroed. Now, to
complete the cycle, we next examine the projection step, where we assert that the
partition of theQmatrix associated with the eliminated states must also be zeroed to
preserve the required condition we are seeking:

P�
1 ¼ f0P0f

T
0 þQ0

¼
fRR fRE

fER fEE

" #
PR 0

0 0

" #
fRR fRE

fER fEE

" #T
þ

QR 0

0 0

" #

¼ fRRPRf
T
RR þQR 0

0 0

" #
,

PRð Þ1 0

0 0

" # (5.6.14)

Thus, we have seen that the initialization of Eq. (5.6.10) and the modification of Q
in Eq. (5.6.14) are able to ensure the retention of a zeroing of the “eliminated” states
and its associated error covariance, the sole purpose of which is to allow the filter
model with the full-order structure of Eqs. (5.6.7)–(5.6.8) to mimic the reduced-
order filter containing the subset states of x̂R.

By doing so, we are now able to exploit the method outline in Section 5.5 where
we make two passes, the first time through the suboptimal model, and then
sequencing those collected suboptimal gains to run through a second time through
the optimal model, in order to analyze the true error of reduced-order filter. Such an
exercise is often made mostly in tradeoff studies to determine, when one starts out
with a rather high-dimensionality filter state vector, how much compromise in the
true error covariance performance would be made by eliminating certain states in
the final reduced-order filter implementation.

The contrived full-order filter may seem counterintuitive at first glance. But
look at it this way. Suppose you had a measurement of some unknown quantity,
voltage for example. And also say you know that the voltmeter has a known bias.
Certainly, a prudent person (without the benefit of Kalman filter background) would
simply subtract the bias from the voltmeter reading, and then have faith that the
compensated reading is in fact the correct voltage at hand. This is exactly what the
Kalman filter does when it is told that one of the state variables is known perfectly. It
estimates the other states just as if the one that is known perfectly did not even exist.
Of course, this is all fiction in the problem at hand, because it does not match truth.
Thus, the contrived filter is, in fact, suboptimal.
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EXAMPLE 5.5

We will now look at a numerical example where we compare the estimation error
variances for three different filters: (1) optimal; (2) Schmidt-Kalman; and (3) pure
reduced-order. The scenario is briefly this: The x process is Gaussian random walk
where the initial condition is, itself, a Gaussian random variable. The measurement
is one-to-one of the x process with additive Markov and white noises.

The numerical values for the various models are:

Truth Model (also the Optimal Filter)

s2
x ¼ 1:0 m2/s ðRate of growth of the x processÞ

s2
0 ¼ 1:0 m2 ðInitial variance of the x processÞ

s2
y ¼ 1:0 m2 ðVariance of the Markov measurement noise componentÞ
b ¼ 0:5 s�1 ðReciprocal time constant of Markov noise processÞ
Dt ¼ 1:0 s ðSampling intervalÞ
f ¼ 1 0

0 e�bDt

� �
ðState transition matrixÞ

Q ¼ s2
x 0

0 s2
y 1� e�2bDt
� �

" #
ðProcess noise covariance matrixÞ

H ¼ 1 1½ � ðMeasurement connection matrixÞ
R ¼ 1:0 m2 ðMeasurement noise covariance matrixÞ

P�
0 ¼ s2

0 0

0 s2
y

" #
ðProcess noise covariance matrixÞ

Schmidt-Kalman Model
Same model as the optimal filter except Ky is set to zero for each step, and all the
add and multiply operations are done in partitioned form. The Joseph form P
update formula is used, and this is also expanded out in partitioned form (with
Ky¼ 0, of course).

Pure Reduced-Order Kalman Filter

f ¼ 1½ �
Q ¼ 1½ �
H ¼ 1½ �
R ¼ 1:0 m2

P�
0 ¼ s2

0

� �
(Full-Order suboptimal model that mimics the Reduced-Order model):

fsub ¼ 1 0

0 e�bDt

� �

Qsub ¼ 1 0

0 0

� �
Hsub ¼ 1 1½ �

R ¼ 1:0 m2

P�
0 ¼ s2

0 0

0 0

� �
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5.7
SQUARE-ROOT FILTERING AND U-D FACTORIZATION

Due to its numerical nature, the Kalman filter may be saddled with computational
problems under certain circumstances. But in truth, such problems are far less
worrisome today as they were in the early 1960s because of the spectacular progress
in computer technology over the decades past. Also, problems of divergence are
better understood now than they were in the early days of Kalman filtering. Even so,
there are occasional applications where roundoff errors can be a problem, and one
must take all possible precautions against divergence. A class of Kalman filter
algorithms known as square-root filtering was developed out of necessity in the
early days of computer infancy, and they have somewhat better numerical behavior
than the “usual” algorithm given in Chapter 4. The basic idea is to propagate
something analogous to

ffiffiffi
P

p
(standard deviation) rather than P (variance). One of

the critical situations is where the elements of P go through an extremely wide
dynamical range in the course of the filter operation. For example, if the dynamical
range of P is 20 orders of magnitude, the corresponding range of

ffiffiffi
P

p
will be 10

orders of magnitude; and it does not take much imagination to see that we would be
better off, numerically, manipulating

ffiffiffi
P

p
rather than P.

Note:
The contrived xE state is assumed to be the known constant zero. This is assured by
letting Qsub(2, 2)¼ 0 and P�

0 2; 2ð Þ ¼ 0, even though we have left fsub 2; 2ð Þ ¼
e�bDt in order to match the f in the truth model.

The three filters just described were programmed for 21 steps doing
covariance analysis only. The results are shown in Fig. 5.7. The only surprise in
the results is in the comparison of the Schmidt-Kalman and the reduced-order
filters. When put in rms terms, the improvement of the Schmidt-Kalman over the
reduced-order filter is only about 2%. This is not very much when one considers
the extra computational effort involved in implementing the Schmidt-Kalman
filter. Of course, this comparison is just for one numerical example. The important
message here is the methodology of analysis, not the numerical results.

&

Figure 5.7 Suboptimal analysis comparison for three

different filters.

5.7 SQUARE-ROOT FILTERING AND U-D FACTORIZATION 193



C05 12/09/2011 11:44:24 Page 194

The idea of square-root filtering goes back to a 1964 paper by J.E. Potter (5),
but in the intervening years a scheme called U-D factorization, due to Bierman (6),
became quite popular. More recently, however, another approach to square-root
filtering using standard matrix decomposition techniques has found greater accep-
tance among the few who still need to count on numerically-efficient algorithms (7).
We begin by revisiting the parameters of the “usual” Kalman filter:f,Q,H,R, P�

0 .
Of these, three are covariance matrices that can easily be represented by their
“square root” counterparts,

ffiffiffiffi
Q

p
,

ffiffiffiffi
R

p
,

ffiffiffiffiffiffi
P�
0

p
via the Cholesky Decomposition

technique (In MATLAB, the function is called chol).
As a first step in the Kalman filter, we need to derive a gain for updating the

state estimate and the error covariance matrix. We form the following (mþn) x
(mþn) matrix (m measurements, n states):

A ¼
ffiffiffiffiffiffi
Rk

p� �T
0ffiffiffiffiffiffi

P�
k

p� �T
HT

k

ffiffiffiffiffiffi
P�
k

p� �T
2
4

3
5 (5.7.1)

If we perform a QR decomposition of A (MATLAB function is called qr), the
resultant factors TA and UA are such that TAUA¼A. Without proof, we state that

UA ¼
ffiffiffiffiffiffi
Bk

p� �T
WT

k

0
ffiffiffiffiffi
Pk

p� �T
2
4

3
5 (5.7.2)

But we then verify next this by forming ATA ¼ TAUAð ÞTTAUA ¼ UT
AT

T
ATAUA:

ffiffiffiffiffiffi
Rk

p
Hk

ffiffiffiffiffiffi
P�
k

p
0

ffiffiffiffiffiffi
P�
k

p
" # ffiffiffiffiffiffi

Rk

p� �T
0ffiffiffiffiffiffi

P�
k

p� �T
HT

k

ffiffiffiffiffiffi
P�
k

p� �T
2
4

3
5

¼
ffiffiffiffiffiffi
Bk

p
0

Wk

ffiffiffiffiffi
Pk

p
" #

TT
ATA

ffiffiffiffiffiffi
Bk

p� �T
WT

k

0
ffiffiffiffiffi
Pk

p� �T
2
4

3
5 (5.7.3)

Since TT
ATA ¼ I (the idempotent property of this factor of the QR decomposition),

we can rewrite Eq. (5.7.3) as:

Rk þHkP
�
k H

T
k HkP

�
k

P�
k H

T
k P�

k

" #
¼

Bk

ffiffiffiffiffiffi
Bk

p
WT

k

Wk

ffiffiffiffiffiffi
Bk

p� �T
WkW

T
k þ Pk

" #
(5.7.4)

The (2, 1) and (1, 1) submatrix elements of Eq. (5.7.4) can therefore be combined to
form the Kalman gain:

Kk ¼ Wk

ffiffiffiffiffiffi
Bk

p
 �T
B�1
k ¼ Wk

ffiffiffiffiffiffi
Bk

p
 �T ffiffiffiffiffiffi
Bk

p ffiffiffiffiffiffi
Bk

p
 �T� ��1

¼ Wk

ffiffiffiffiffiffi
Bk

p
 ��1

(5.7.5)
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Finally, the updated square-root of the error covariance matrix is simply obtained
from the transpose of the (2, 2) submatrix element of UA. This completes the
gain computation and the error covariance update portion of the Kalman filter
algorithm.

Equating the (2, 2) terms in Eq. (5.7.4), we get

Pk ¼ P�
k �WkW

T
k

¼ P�
k �Kk

ffiffiffiffiffiffi
Bk

p ffiffiffiffiffiffi
Bk

p� �T
KT

k

¼ P�
k �KkBkK

T
k

¼ P�
k �Kk Rk þHkP

�
k H

T
k

� �
KT

k

¼ P�
k � P�

k H
T
kK

T
k

¼ I�KkHkð ÞP�
k

(5.7.6)

This relationship of Eq. (5.7.6) is, in fact, the covariance update equation of the
Kalman filter, which verifies the conjecture of Eq. (5.7.2).

Now, for the projection step, we form a 2n � n matrix

C ¼
ffiffiffiffiffi
Pk

p� �T
fT

kffiffiffiffiffiffi
Qk

pð ÞT

2
4

3
5 (5.7.7)

Here again, we perform a QR decomposition of C to obtain the resultant factors TC

and UC are such that TCUC¼C. And, without proof, we state that

UC ¼
ffiffiffiffiffiffiffiffiffiffi
P�
kþ1

p
 �T
0

2
4

3
5 (5.7.8)

We verify this by forming CTC ¼ TCUCð ÞTTCUC ¼ UT
CT

T
CTCUC:

fk

ffiffiffiffiffi
Pk

p ffiffiffiffiffiffi
Qk

p� � ffiffiffiffiffi
Pk

p� �T
fT

kffiffiffiffiffiffi
Qk

pð ÞT

2
4

3
5 ¼ ffiffiffiffiffiffiffiffiffiffi

P�
kþ1

p
0

� �
TT
CTC

ffiffiffiffiffiffiffiffiffiffi
P�
kþ1

p
 �T
0

2
4

3
5 (5.7.9)

Again, since TT
CTC ¼ I, equating the left and right hand sides of Eq. (5.7.9), we get

the covariance projection equation of the Kalman filter, which verifies the conjec-
ture of Eq. (5.7.8):

fkPkf
T
k þQk ¼ P�

kþ1 (5.7.10)

The square-root Kalman filter algorithm is summarized in Fig. 5.8.
Note, in Fig. 5.8, that the entire Kalman filter algorithm can be run recursively

by maintaining the state estimate vector x̂�k and x̂k and the square roots of the
covariance matrices

ffiffiffiffiffiffi
P�
k

p
and

ffiffiffiffiffi
Pk

p
. At any point in time, the full covariance

matrices may be reconstituted from their respective square root forms, but they
are not needed or used anywhere in the recursive loop.
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U-D Factorization

U-D factorization, due to Bierman, was one of several alternatives available to those
in need of computationally efficient and stable algorithms in the early days of
Kalman filtering. One of the distinct features of the U-D factorization method was,
when decomposing the error covariance matrix into P¼UDUT, there is no need to
solve for simultaneous equations (much like the Cholesky Decomposition method),
and also there is no need for any square root numerical operation, which was
deemed to be exceedingly burdensome in the early dark ages of computers. Clearly,
many such computational constraints have gone by the wayside with the advances
of the past couple of decades, and even if there remains any tangible reason to look
towards square-root filtering to solve certain limited problems under the appropriate
circumstances, the square-root covariance filter method presented earlier in this
section now has clear advantages over the Bierman U-D factorization method. For
one, the square-root method uses a standard QR factorization operation that is
readily available in MATLAB and other mathematical tools, and it can clearly
account for the square-root form of the covariance matrix throughout the computa-
tional cycle without much fuss. Historically, the U-D factorization method played
its part in computational implementations of the Kalman filter and it still lingers on
in legacy software. If needed, the reader can consult the third edition of this
reference textbook (2), Maybeck (8), or Bierman (6) for details of the many
variations of this algorithm, but we will leave this subject without further fanfare.

Figure 5.8 Flow chart for a square-root Kalman filter.
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5.8
KALMAN FILTER STABILITY

A Kalman filter is sometimes referred to as a time-domain filter, because the design
is done in the time domain rather than the frequency domain; of course, one of the
beauties of the Kalman filter is its ability to accommodate time-variable parameters.
However, there are some applications where the filter, after many recursive steps,
approaches a steady-state condition. When this happens and the sampling rate is
fixed, the Kalman filter behaves much the same as any other digital filter (9), the
main difference being the vector input/output property of the Kalman filter. The
stability of conventional digital filters is easily analyzed with z-transform methods.
We shall proceed to do the same for the Kalman filter.

We begin by assuming that the Kalman filter under consideration has reached a
constant-gain condition. The basic estimate update equation is repeated here for
convenience:

x̂k ¼ x̂�k þKk zk �Hkx̂
�
k

� �
(5.8.1)

We first need to rewrite Eq. (5.8.1) as a first-order vector difference equation.
Toward this end, we replace x̂�k with fk�1x̂k�1 in Eq. (5.8.2). The result is

x̂k ¼ fk�1 �KkHkfk�1ð Þx̂k�1 þKkzk (5.8.2)

We now take the z-transform of both sides of Eq. (5.8.2) and note that retarding x̂k
by one step in the time domain is the equivalent of multiplying by z�1 in the
z-domain. This yields {in the z-domain)

X̂k z
� � ¼ fk�1 �KkHkfk�1ð Þz�1X̂k z

� �þKkZk z
� �

(5.8.3)

Or, after rearranging terms, we have

zI� fk�1 �KkHkfk�1ð Þ� �
X̂ z
� � ¼ zKkZk z

� �
(5.8.4)

[We note that in Eqs. (5.8.3) and (5.8.4), italic script z denotes the usual z-transform
variable, whereas boldface Zk refers to the z-transformed measurement vector.]

We know from linear system theory that the bracketed quantity on the left
side of Eq. (5.8.4) describes the natural modes of the system. The determinant of
the bracketed n� n matrix gives us the characteristic polynomial for the system,
that is,

Characteristic polynomial ¼ zI� fk�1 �KkHkfk�1ð Þ�� �� (5.8.5)

and the roots of this polynomial provide information about the filter stability. If all
the roots lie inside the unit circle in the z-plane, the filter is stable; conversely, if any
root lies on or outside the unit circle, the filter is unstable. [As a matter of
terminology, the roots of the characteristic polynomial are the same as the
eigenvalues of fk�1 �KkHkfk�1ð Þ]. A simple example will illustrate the useful-
ness of the stability concept.
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5.9
RELATIONSHIP TO DETERMINISTIC LEAST SQUARES ESTIMATION

Kalman filtering is sometimes loosely referred to as least-squares filtering
(10, 11, 12). It was mentioned earlier in Chapter 4 that this is an oversimplification,
because the criterion for optimization in Kalman filtering is minimum mean-square
error and not just the squared error in a deterministic sense. There is, however, a
coincidental connection between Kalman filtering and classical deterministic least
squares, and this will now be demonstrated (13).

Consider an algebraic problem where we have a set of m linear equations in n
unknowns, and the unknowns are overdetermined, i.e., m> n. In vector form the
equations are

Mx ¼ b (5.9.1)

EXAMPLE 5.6

Let us return to the random walk problem of Example 5.2 (Section 5.4) and
investigate the stability of the filter in the steady-state condition. The discrete
model in this example is

xkþ1 ¼ xk þ wk (5.8.6)

zk ¼ xk þ vk (5.8.7)

and the discrete filter parameters are

fk ¼ 1; Hk ¼ 1; Qk ¼ 1; Rk ¼ :1; P�
0 ¼ 1; x̂�0 ¼ 0

In this example the gain reaches steady state in just a few steps, and it is easily verified
that its steady-state value is

Kk � :916

We can now form the characteristic polynomial from Eq. (5.8.5)

Characteristic polynomial ¼ z � 1� :916ð Þ 1ð Þ 1ð Þ½ �
¼ z � :084

(5.8.8)

The characteristic root is at .084, which is well within the unit circle in the z-plane.
Thus we see that the filter is highly stable in this case.

Note that even though the input in this case is nonstationary, the filter itself is
intrinsically stable. Furthermore, the filter pole location tells us that any small
perturbation from the steady-state condition (e.g., due to roundoff error) will damp
out quickly. Any such perturbations will be attenuated by a factor of .084 with
each step in this case, so their effect “vaporizes” rapidly. This same kind of
reasoning can be extended to the vector case, provided that the P matrix is kept
symmetric in the recursive process and that it is never allowed to lose its positive
definiteness. Thus, we see that we can gain considerable insight into the filter
operation just by looking at its characteristic poles in the steady-state condition,
provided, of course, that a steady-state condition exists.

&
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And we think of x as the unknown vector, andM and b are given. Clearly, x is
n� 1ð Þ,M is m� nð Þ, and b is m� 1ð Þ. This situation arises frequently in physical
experiements where we have redundant noisy measurements of linear combinations
of certain variables of interest, and there is an abundance of measurement infor-
mation. In such cases where the system of equations is overdetermined, there is no
“solution” for x that will satisfy all the equations. So, it is reasonable to ask, “What
solution will best fit all the equations?” The term best must be defined, of course,
and it is frequently defined to be the particular x that will minimize the sum of the
squared residuals. That is, think of x in Eq. (5.9.1) as a test of x in our search for
the best x. And, in our search, move b in Eq. (5.9.1) over to the left side of the
equation and form the residual expression

Mx� b ¼ e (5.9.2)

We now seek the particular x that will minimize the sum of residuals given by eTe.
Or, we can generalize at this point and say that we wish to minimize the sum of
weighted residuals. That is,

Weighted sum of residuals½ � ¼ Mx� bð ÞTW Mx� bð Þ (5.9.3)

Weassume that theweightingmatrixW is symmetric and positive definite and, hence,
so is its inverse. If we wish equal weighting of the residuals, we simply letW be the
identity matrix. The problem now is to find the particular x (i.e., xopt) that minimizes
theweighted sumof the residuals. Toward this end, the expression givenbyEq. (5.9.3)
may be expanded and differentiated term by term and then set equal to zero.y

yThe derivative of a scalar s with respect to a vector x is defined to be

ds

dx
¼

ds

dx1

ds

dx2

..

.

ds

dxn

2
66666666666664

3
77777777777775

The two matrix differentiation formulas used to arrive at Eq. (5.9.4) are

d xTAxð Þ
dx

¼ 2Ax ðfor symmetricAÞ
and

d aTxð Þ
dx

¼ d xTað Þ
dx

¼ a

Both of these formulas can be verified by writing out a few scalar terms of the matrix expressions and using
ordinary differentiation methods.
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This leads to

d

dxopt
xTopt M

TWM
� �

xopt � bTWMxopt � xToptM
TWbþ bTb

h i

¼ 2 MTWM
� �

xopt � bTWM
� �T �MTWb ¼ 0

(5.9.4)

Equation (5.9.4) may now be solved for xopt. The result is

xopt ¼ MTWM
� ��1

MTW
h i

b (5.9.5)

and this is the solution of the deterministic least-squares problem.
Next consider the Kalman filter solution for the same measurement situation.

The vector x is assumed to be a random constant, so the differential equation for x is

_x ¼ 0 (5.9.6)

The corresponding discrete model is then

xkþ1 ¼ xk þ 0 (5.9.7)

The measurement equation is

zk ¼ Hkxk þ vk (5.9.8)

where zk andHk play the same roles as b andM in the deterministic problem. Since
time is of no consequence, we assume that all measurements occur simultaneously.
Furthermore, we assume that we have no a priori knowledge of x, so the initial x̂�0
will be zero and its associated error covariance will be infinity. Therefore, using the
alternative form of the Kalman filter (Section 5.1), we have

P�1
0 ¼ 1ð Þ�1 þHT

0R
�1
0 H0

¼ HT
0R

�1
0 H0

(5.9.9)

The Kalman gain is then

K0 ¼ HT
0R

�1
0 H0

� �
HT

0R
�1
0

and the Kalman filter estimate of x at t¼ 0 is

x̂0 ¼ HT
0R

�1
0 H0

� �
HT

0R
�1
0

� �
z0 (5.9.10)

This is the same identical expression obtained for xopt in the deterministic least-
squares problem with R�1

0 playing the role of the weighting matrix W.
Let us now recapitulate the conditions under which the Kalman filter estimate

coincides with the deterministic least-squares estimate. First, the system state vector
was assumed to be a random constant (the dynamics are thus trivial). Second, we
assumed the measurement sequence was such as to yield an overdetermined system
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of linear equations [otherwise HT
0R

�1
0 H0

� ��1
will not exist]. And, finally, we

assumed that we had no prior knowledge of the process being estimated. This is one
of the things that distinguishes the Kalman filter from the least squares estimator and
this is an important distinction.

In summary, we should always remember that least squares estimation is
basically a deterministic problem. In the beginning we make certain assumptions
about the linear measurement structure, and we assume that the system of equations
is overdetermined. We then look for a best-fit solution and call this the least-squares
estimate. At this point we say nothing whatsoever about the statistics of the best-fit
solution. This comes later. Now, if we go further and make some assumptions about
the measurement noise, then we can infer something about the statistics of the best-
fit solution.

Now, contrast this with the Kalman filter methodology. There, the initial
structure of the x process and the measurements are put into a probabilistic setting
right at the beginning, and the estimation statistics follow automatically with no
further assumptions. Furthermore, the Kalman filter allows considerably more
flexibility in the probabilistic setting than does the least-squares method. In short,
the Kalman filter can do everything that least-squares can do—and much more!

5.10
DETERMINISTIC INPUTS

In many situations the random processes under consideration are driven by
deterministic as well as random inputs. That is, me process equation may be of
the form

_x ¼ FxþGuþ Bud (5.10.1)

where Bud is the additional deterministic input. Since the system is linear, we can
use superposition and consider the random and deterministic responses separately.
Thus, the discrete Kalman filter equations are modified only slightly. The only
change required is in the estimate projection equation. In this equation the
contribution due to Bud must be properly accounted for. Using the same zero-
mean argument as before, relative to the random response, we then have

x̂�kþ1 ¼ fkx̂k þ 0þ
Z tkþ1

tk

f tkþ1; tð ÞB tð Þud tð Þdt (5.10.2)

where the integral term is the contribution due to Bud in the interval tk; tkþ1ð Þ. The
associated equation for P�

kþ1 is fkPkf
T
k þQk

� �
, as before, because the uncertainty

in the deterministic term is zero. Also, the estimate update and associated
covariance expressions (see Fig. 4.1) are unchanged, provided the deterministic
contribution has been properly accounted for in computing the a priori estimate x̂�k .

Another way of accounting for the deterministic input is to treat the problem as
a superposition of two entirely separate estimation problems, one deterministic and
the other random. The deterministic one is trivial, of course, and the random one is
not trivial. This complete separation approach is not necessary, though, provided
one properly accounts for the deterministic contribution in the projection step.
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PROBLEMS

5.1 In the Information Filter shown in Fig. 5.1, the measurement update of the
state and error covariance matrix is quite simple as compared to the time projection
of the same quantities. In this problem, we examine the latter with a special case.

Consider the following Kalman filter model that consists of two states, a
random walk, and a random constant.

Process Model:

x1

x2

" #
kþ1

¼
1 0

0 1

" #
x1

x2

" #
k

þ
w1

w2

" #
k

Qk ¼
102 0

0 0

2
4

3
5

P�
0 ¼

106 0

0 106

2
4

3
5

Measurement Model:

zk ¼ cos
2pk

600

 �
1

� � x1

x2

" #
k

þ vk

Rk ¼ 42

(a) Run a covariance analysis for 600 steps with the usual Kalman filter, save
the variance associated with the first state from the updated P matrix, and
plot the square root of the saved items.

(b) Replicate this analysis with the Information Filter. What makes this a
special case is the nature of theQmatrix, which is neither a zero matrix nor
an invertible one. Find a simple numerical approximation to overcome this
problem.

(c) Using this Information Filter with a mechanism to handle the special case
of Q, starting with the given initial error covariance P�

0 , save the inverted
updated Pmatrix, invert the saved matrices, and finally plot the square root
of the variance term associated with the first state.

(d) Generate simulated measurements with random numbers for aMonte Carlo
simulation that are processed by the Information Filter formulated in (b).
Plot the state estimate errors along with the rms error computed in (c).

5.2 Consider the measurement to be a two-tuple z1; z2½ �T, and assume that the
measurement errors are correlated such that the R matrix is of the form

R ¼
r11 r12

r12 r22

" #

202 CHAPTER 5 INTERMEDIATE TOPICS ON KALMAN FILTERING



C05 12/09/2011 11:44:26 Page 203

(a) Form a new measurement pair, z
0
1 and z

0
2, as a linear combination of the

originai pair such that the errors in the new pair are uncorrelated.
(Hint: First, let z

0
1 ¼ z1 and then assume z

0
2 ¼ c1z1 þ c2z2 and choose the

constants c1 and c2 such that the newmeasurement errors are uncorrelated.)
(b) Find theH and Rmatrices associated with the new z

0
measurement vector.

(c) Note that there is no uniqueness in the choice of c1 and c2, but rather the
specific combination that results in the desired outcome. A good alternative
for this choice is the use of the Cholesky Decomposition described in
Section 3.10. Show how the Cholesky method can be used to form the new
measurement pair that meets the condition desired in (a).

5.3 In Example 5.1, it was shown that the a priori estimation error is orthogonal to
the previous measurement, i.e., E e�k zk�1

� � ¼ 0. Proceed further to show that the
updated estimation error ek is orthogonal to both zk and zk�1.

5.4 The accompanying block diagram shows two cascaded integrators driven by
white noise. The two state variables x1 and x2 can be thought of as position and
velocity for convenience, and the forcing function is acceleration. Let us suppose
that we have a noisy measurement of velocity, but there is no direct observation of
position. From linear control theory, we know that this system is not observable on
the basis of velocity measurements alone. (This is also obvious from the ambiguity
in initial position, given only the integral of velocity.) Clearly, there will be no
divergence of the estimation error in x2, because we have a direct measurement of it.
However, divergence of the estimation error of x1 is not so obvious.

The question of divergence of the error in estimating x, is easily answered
empirically by cycling through the Kalman filter error covariance equations until
either (a) a stationary condition for p11 is reached, or (b) divergence becomes
obvious by continued growth of p11 with each recursive step. Perform the suggested
experiment using appropriate covariance analysis software. You will find the
following numerical values suitable for this exercise:

Power spectral density of f ðtÞ ¼ :1 ðm /s2Þ2 /ðrad /sÞ
Step size Dt ¼ 1 s

Measurement error variance ¼ :01 ðm /sÞ2

Note that if divergence is found, it is not the “fault” of the filter. It simply reflects an
inadequate measurement situation. This should not be confused with computational
divergence.

5.5 In Example 5.3, we considered a suboptimal filter when the R parameter is
incorrectly chosen to be 1 instead of its correct value of 2. Extend the analysis begun
for the first step in the example to 100 steps. Plot the “realistic” variance Pk over
this time duration. Compare this against a plot of the optimal variance of Pk if the
parameter R¼ 2 had been correctly chosen.

x1
x2

f (t)
Gaussian
white
noise

1 1–––
S S

Figure P5.4
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5.6 In Example 4.5, the concept of prediction was demonstrated for a second-order
Gauss-Markov process (derived in Example 4.4). The end result of the example was
a plot of the rms prediction error for the range correction for the optimal predictor.
It is also of interest to compare the optimal results with corresponding results
for a suboptimal predictor that is being considered for this application (14). The
suboptimal predictor simply takes the range and range-rate corrections, as provided
at the start time, and projects these ahead with a constant rate (much as is done in
dead reckoning). This, of course, does not take advantage of any prior knowledge of
the spectral characteristics of this process.

The continuous dynamic model for the suboptimal predictor is

€x ¼ w tð Þ (P5.6-1)

where x is range and w tð Þ is white noise. [The PSD of w tð Þ does not affect the
projection of x.] If we choose range and range rate as our state variables, the
continuous state model becomes

_x1
_x2

� �
¼

0 1

0 0

" #

|fflfflfflfflffl{zfflfflfflfflffl}
Fsubopt

x1

x2

" #
þ

0

1

" #
w tð Þ (P5.6-2)

The Fmatrix for the suboptimal model can now be compared with F for the optimal
model from Example 4.4. It is

Fopt ¼
0 1

�v2
0 � ffiffiffi

2
p

v0

" #
optimal modelð Þ (P5.6-3)

The optimal system is the truth model in this example, and clearly, Fopt and Fsubopt

are quite different. This means then that the fk matrices for the two models will be
different, and this precludes the use of the “recycling suboptimal gains” method of
analyzing the suboptimal system performance. All is not lost, though. In this simple
situation we can return to basics and write out an explicit expression for the
suboptimal prediction error, An explicit equation for the error covariance as a
function of prediction time can then be obtained.

(a) Write out explicitly the N-step prediction equations for both models and
then form the prediction error equation by differencing the two. From the
prediction error equation, form the associated error covariance matrix.

(b) Plot the RMS error of the first state, i.e., the square root of the (1,1) term of
the covariance matrix for a prediction time interval from 0 to 200 seconds.
From visual inspection, is this error bounded?

5.7 Consider an elementary physics experiment that is intended to measure the
gravity constant g. A mass is released at t ¼ 0 in a vertical, evacuated column, and
multiple-exposure photographs of the failing mass are taken at :05-s intervals
beginning at t ¼ :05-s. A sequence of N such exposures is taken, and then the
position of the mass at each time is read from a scale in the photograph. There will
be experimental errors for a number of reasons; let us assume that they are random
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(i.e., not systematic) and are such that the statistical uncertainties in all position
readings are the same and that the standard deviation of these is s.

Consider g to be an unknown constant, and suppose we say that we have no
prior knowledge about its value.

Develop a Kalman filter for processing the noisy position measurements by
letting g be the single state variable x. Form the necessary process and measurement
equations thereby specifying the relevant Kalman filter parameters.

Writing out the Kalman filter recursive equations for two steps through the
second measurement update, obtain an explicit expression for x̂ in terms of’
z1 and z2. Next, compute the ordinary least-squares estimate of g using just two
measurements z1 and z2. Do this on a batch basis using the equation

ĝ ¼ HTH
� ��1

HTz

where

H ¼
1
2
t21

1
2
t22

" #
and z ¼

z1

z2

" #

Compare the least-squares result with that obtained after carrying the Kalman filter
recursive process through two steps.

5.8 InProblem5.7, the initial position andvelocity for the fallingmasswere assumed
to be known, that is, they were exactly zero; the gravity constant was presumed to
be unknown and to be estimated. Bozic (15) presents an interesting variation on this
problem where the situation is reversed; g is assumed to be known perfectly and the
initial position and velocity are random variables with known Gaussian distribution,
Fven though the trajectory obeys a known deterministic equation of motion, the
random initial conditions add sufficient uncertainty to the motion to make the
trajectory a legitimate random process. Assume that the initial position and
velocity are normal random variables described by Nð0; s2

pÞ andNð0; s2
vÞ. Let

state variables x1 and x2 be position and velocity measured downward, and let
the measurements take place at uniform intervals Dt beginning at t ¼ 0. The
measurement error variance is R. Work out the key parameters for the Kalman
filter model for this situation. That is, find fk; Qk; Hk; Rk and the initial
x̂�0 and P�

0 . (Note that a deterministic forcing function has to be accounted for
in this example. The effect of this forcing function, though, will appear in projecting
x̂�kþ1, but not in the model parameters.)
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6
Smoothing and Further
Intermediate Topics

Chapters 4 and 5 were devoted entirely to Kalman filtering and prediction. We will
now look at the smoothing problem. This is just the opposite of prediction, because
in smoothing we are concerned with estimating the random process x in the past,
rather than out into the future as was the case with prediction. To be more exact, we
will be seeking the minimum-mean-square-error (MMSE) estimate of x (tþa)
where a is negative. (Note that a¼ 0 is filtering and a> 0 is prediction.) The three
classifications of smoothing will be discussed in detail in Sections 6.1 through 6.4.
Then, in Sections 6.5 through 6.9 we will take a brief look at five other intermediate
topics which have relevance in applications. There are no special connections
among these topics, so they may be studied in any desired order.

6.1
CLASSIFICATION OF SMOOTHING PROBLEMS

A great deal has been written about the smoothing problem, especially in the early
years of Kalman filtering. An older text by Meditch (1) is still a fine reference on the
subject. A more recent book by Grewal and Andrews (2) is also an excellent
reference. The early researchers on the subject were generally searching for efficient
algorithms for the various types of smoothing problems. Computational efficiency
was especially important with the computer facilities of the 1960s, but perhaps
efficiency is not so much of an issue today. Precision and algorithm stability in
processing large amounts of data are the more pressing concerns nowadays.

Meditch (1) classified smoothing into three categories:

1. Fixed-interval smoothing.Here the time interval of measurements (i.e., the
data span) is fixed, and we seek optimal estimates at some, or perhaps all,
interior points. This is the typical problem encountered when processing
noisy measurement data off-line.

2. Fixed-point smoothing. In this case, we seek an estimate at a single fixed
point in time, and we think of the measurements continuing on indefinitely

207
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ahead of the point estimation. An example of this would be the estimation
of initial conditions based on noisy trajectory observations after t¼ 0. In
fixed-point smoothing there is no loss of generality in letting the fixed point
be at the beginning of the data stream, i.e., t¼ 0.

3. Fixed-lag smoothing. In this problem, we again envision the measurement
information proceeding on indefinitely with the running time variable t, and
we seek an optimal estimate of the process at a fixed length of time back in
the past. Clearly, the Wiener problem with a negative is fixed-lag smooth-
ing. It is of interest to note that the Wiener formulation will not accommo-
date either fixed-interval or fixed-point smoothing without using multiple
sweeps through the same data with different values of a. This would be a
most awkward way to process measurement data.

We will begin our discussion with the fixed-interval problem. We will see
presently that the algorithm for it can be used, with some modifications, as a starting
point for the solutions for other two categories. Thus, the fixed-interval algorithm
as presented here is especially important.

6.2
DISCRETE FIXED-INTERVAL SMOOTHING

The algorithm to be presented here is due to Rauch, Tung, and Striebel (3, 4) and its
derivation is given in Meditch (1) as well as the referenced papers. In the interest of
brevity, the algorithm will be subsequently referred to as the RTS algorithm.
Consider a fixed-length interval containing Nþ 1 measurements. These will be
indexed in ascending order z0, z1, . . . , zN. The assumptions relative to the process
and measurement models are the same as for the filter problem. The computational
procedure for the RTS algorithm consists of a forward recursive sweep followed by
a backward sweep. This is illustrated in Fig. 6.1. We enter the algorithm as usual at
k¼ 0 with the initial conditions x̂0

� and P�
0 . We then sweep forward using the

conventional filter algorithm. With each step of the forward sweep, we must save
the computed a priori and a posteriori estimates and their associated P matrices.
These are needed for the backward sweep. After completing the forward sweep, we

Figure 6.1 Procedure for fixed-interval smoothing.
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begin the backward sweep with “initial” conditions x̂ NjNð Þ and P NjNð Þ obtained
as the final computation in the forward sweep.* With each step of the backward
sweep, the old filter estimate is updated to yield an improved smoothed estimate,
which is based on all the measurement data. The recursive equations for the
backward sweep are

x̂ kjNð Þ ¼ x̂ kjkð Þ þ A kð Þ x̂ k þ 1jNð Þ � x̂ k þ 1jkð Þ½ � (6.2.1)

where the smoothing gain A(k) is given by

A kð Þ ¼ P kjkð ÞfT k þ 1; kð ÞP�1 k þ 1jkð Þ (6.2.2)

and

k ¼ N � 1; N � 2; . . . ; 0

The error covariance matrix for the smoothed estimates is given by the recursive
equation

P kjNð Þ ¼ P kjkð Þ þ A kð Þ P k þ 1jNð Þ � P k þ 1jkð Þ½ �AT kð Þ (6.2.3)

It is of interest to note that the smoothing error covariance matrix is not needed for
the computation of the estimates in the backward sweep. This is in contrast to the
situation in the filter (forward) sweep where the P-matrix sequence is needed for
the gain and associated estimate computations. An example illustrating the use of
the RTS algorithm is now in order.

* The notation used here is the same as that used in the prediction problem. See Chapter 4, Section 4.6.

EXAMPLE 6.1

Consider a first-order Gauss–Markov Kalman filter scenario for position x whose
autocorrelation function is Rx tð Þ ¼ s2e�b tj j and the filter parameters are:

s2 ¼ 1m2

b ¼ 1 rad=s
Dt ¼ 0:02 s
Hk ¼ 1:0
Rk ¼ 1:0m2

Now suppose we wish to find the 51-point fixed-interval smoothing solution for all
the sample points from t¼ 0 to t¼ 1 s. Suppose we also wish to look at a Monte
Carlo trial solution, so it can be compared with the corresponding filter solution.
This is easily programmed with the RTS algorithm, and typical results are shown in
Figs. 6.2 and 6.3. Also, for future reference the numerical error covariances are
given in Table 6.1. (We will defer the step-by-step details of the RTS recursive
procedure until the next example. For now, we will just look at the results of the
simulation.)

6.2 DISCRETE FIXED-INTERVAL SMOOTHING 209



C06 12/09/2011 12:3:53 Page 210

Note first in Table 6.1, and also from the “Smoother” plot of Fig. 6.2, that the error
covariances are symmetric about the midpoint of the fixed interval. This is to be
expected because the autocorrelation function is an even function. This is to say that
the smoother, in weighting the measurements to obtain the estimate, is indifferent
as to the “direction” of time away from the point of estimation. This is as it must be in
the fixed-interval solution.Also note that in this example the smoother error variance
is considerably less in the middle of the fixed-interval than at the end points. This
is also as it should be. In estimating the x process in the middle of the interval, the
estimator gets to look at the measurements in “both directions,” whereas it only gets
to look in one direction at either end point. This improvement in the smoothing
estimate versus the filter estimate might lead one to think that smoothing is always
better than filtering. However, be wary of this conclusion. It is not always true. For
example, when the random variable of interest is a constant, the filter and smoother
estimates are one and the same once the filter has the opportunity of observing all the
measurements in the fixed interval of the smoother. This is demonstrated in Fig. 6.4.
Note that it is only at the end point where we have equivalence.

Before leaving this example, it is worth mentioning that it is obvious from the
plots in Fig. 6.3 why this type of estimation is called smoothing. Clearly, the time-
domain smoother plot is conspicuously “smoother” than the filter plot!

Figure 6.3 Monte Carlo plot of estimates and the true process for Example 6.1.

Figure 6.2 Profiles of error variances for filter and smoother estimates for Example 6.1.
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Also, it should be remembered that the fixed-interval smoothing problem is an
off-line problem, in contrast to “running” real-time problems. Thus, issues other than
computational efficiency, such as ease of programming and concern for numerical
stability, are usually more pertinent to consider in such cases. The RTS algorithm
presented here was developed early in the history of Kalman filtering (circa 1965),
and it is still the much-used tried-and-true algorithm. However, other algorithms
have also appeared on the scene since 1965, and perhaps the most notable of these
are the 1969 solution by Fraser and Potter (19, 20), and the complementary model
scheme byWienert, et al, in 1983 (21). All of the mentioned solutions are equivalent
in accuracy performance, so they cannot be compared on that basis. Rather, the

Table 6.1 Fixed-interval error
covariance for Example 6.1

k P(kj50)
0 0.1653

1 0.1434

2 0.1287

3 0.1189

4 0.1123

5 0.1079
..
. ..

.

25 0.0990
..
. ..

.

45 0.1079

46 0.1123

47 0.1189

48 0.1287

49 0.1434

50 0.1653

Figure 6.4 Profiles of error variances for filter and smoother estimates for a random bias

process (with measurement noise variance of 1m2).
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6.3
DISCRETE FIXED-POINT SMOOTHING

Algorithms for the fixed-point smoothing problem are given in the Meditch (1) and
Grewal/Andrews (2) references. They are somewhat more complicated than the
straightforward RTS algorithm, so we will be content here to present a simpler (but
not quite as general) method than those in the cited references. In our solution the
fixed point will always be at t¼ 0, and we will let the measurement stream progress
positively, with no particular upper bound. With each new measurement we wish to
recompute the optimal estimate at t¼ 0 based on the whole measurement stream
from t¼ 0 up to and including the measurement at the end point. Clearly, this
problem can be solved treating it as a sequence of RTS probems with ever-
increasing upper end points. An example will illustrate the RTS procedure step-
by-step; and, as a reminder, in using the RTS algorithm we must be very careful
about observing the “parenthesis” notation, because both a priori and a posteriori
variables appear in Eqs. (6.2.1), (6.2.2), and (6.2.3).

EXAMPLE 6.2

In this example, we will demonstrate the step-by-step procedure for solving the
fixed-point smoothing problem with the RTS algorithm. The parameters are the
same as those in Example 6.1.

Step 1. Assimilate the firstmeasurement at t¼ 0 (i.e., z0). Use the usualKalman filter
algorithm. The initial conditions at t¼ 0 (in the absence of prior measurements) are:

x̂ 0j � 1ð Þ ¼ 0; P 0j � 1ð Þ ¼ 1:0

The result of the first update is then:

x̂ 0j0ð Þ ¼ 0:5z0; P 0j0ð Þ ¼ 0:5

(We will identify x̂ 0j0ð Þ only as 0.5z0 and not give it a random numerical value.)

Now project ahead using the filter projection equations:

x̂ 1j0ð Þ ¼ fx̂ 0j0ð Þ; P 1j0ð Þ ¼ f2P 0j0ð Þ þ Q ¼ 0:5196045

Save these results for use in the next step.

Step 2. Assimilate the second measurement at k¼ 1 (i.e., z1). This becomes a
two-point fixed-interval smoothing problem.We can now use the RTS directly here.

comparison has to be made on the basis of ease of conceptual understanding and
difficulty in implementation. Arguably, the RTS algorithm is conceptually the
simplest of the three, and its inclusion here follows a recommendation that the
beginning student should concentrate on it first. After all, what could be simpler than
extending the usual Kalman filter (as learned from Chapter 4), save the results, and
then do a second (backward) pass using those results in the two simple recursive
equations, Eq. (6.2.1) and Eq. (6.2.3).

&
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6.4
DISCRETE FIXED-LAG SMOOTHING

The fixed-lag smoothing problem was originally solved by Wiener in the 1940s.
However, he considered only the stationary case; that is, the smoother was assumed
to have the entire past history of the input available for weighting in its determina-
tion of the estimate. This steady-state solution is certainly interesting in its own
right, but it lacks generality. The transient part of the solution is also very much
of interest.

Of the three smoothing categories mentioned in Section 6.1, the fixed-lag
problem is generally considered to be the most complicated (1, 2). This is mostly
due to the start-up problem. If the measurement stream begins at t¼ 0, we have no
nontrivial measurements or corresponding estimates for a few steps back in time
where we want to do the estimation. Thus some of the essential variables are
missing at the start-up when we try to use the RTS algorithm. An effective (but not
very general) solution to the start-up problem is simple avoidance. Say we want to

We must first update the prior state estimate and its error covariance at k¼ 1 using
the usual filter equations. The results are:

x̂ 1j1ð Þ ¼ x̂ 1j0ð Þ þ K1 z1 � x̂ 1j0ð Þ½ �
P 1j1ð Þ ¼ 1� K1½ �P 1j0ð Þ ¼ 0:341934

These now become the “initial” conditions for the backward sweep to k¼ 0.

To do the backward sweep and get the smoother estimate at k¼ 0, we first need to
compute the smoother gain. It is, from Eq. (6.2.2):

A 0ð Þ ¼ P 0j0ð Þf=P 1j0ð Þ ¼ 0:5 � 0:980199=0:5196045 ¼ 0:9432164

The smoother error covariance is given by Eq. (6.2.3) and is:

P 0j1ð Þ ¼ P 1j1ð Þ þ A 0ð Þ P 1j1ð Þ � P 1j0ð Þ½ �A 0ð Þ ¼ 0:341934

and the smoother estimate is given by Eq. (6.2.1):

x̂ 0j1ð Þ ¼ x̂ 0j0ð Þ þ A 0ð Þ x̂ 1j1ð Þ � x̂ 1j0ð Þ½ �
where x̂ 1j0ð Þ; x̂ 0j0ð Þ; and x̂ 1j1ð Þ have all been computed previously and saved for
the backward sweep.

Step 3. We are now ready to move on to the third measurement at k¼ 2. Here we
repeat the filter projection and update steps that assimilate the z2 measurement. We
are then ready for the backward sweep to k¼ 0. Here, though, we will need to make
the sweep in two stages rather than just one. The first stage takes us from k¼ 2 to
k¼ 1; then the second stage takes us from k¼ 1 to k¼ 0, which is the point of special
interest. On the way back to k¼ 0 we must compute the smoother estimate at k¼ 1,
whether we want it or not; it is needed in the final stage of the sweep.
Steps 4, 5, . . . etc. This procedure can then be continued indefinitely to assimilate
the measurements z3, z4, . . . , etc. Obviously the computational effort keeps
increasing without bound.

&
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do two-steps-back fixed-lag smoothing, and the measurements begin at t¼ 0. Then
all we have to do is run the filter for three steps (i.e., k¼ 0, 1, 2) without any
backwards sweeps. This will “fill up” the missing filter quantities that are needed to
compute x̂ 0j2ð Þ using the RTS algorithm. This can then be repeated when z3 arrives,
and x̂ 1j3ð Þ can be computed, and so forth. Also, it is obvious that the “older”
filtering results that are no longer needed in the two-steps-back sweep can be
discarded, so there is no growing memory problem. This process using the RTS
algorithm can be continued indefinitely without any special problems. This solution
does, of course, beg the issue of the start-up smoother results, but they may not be of
great interest in some applications anyway.

There is an alternative to the RTS algorithm that can be applied to the fixed-lag
problem when the number of lags is not excessive. In this method we augment the
original state vector x(k) with the delayed (i.e., lagged) states x(k� 1), x(k� 2), . . .
x(k�m) where m is the lag of primary interest. The new augmented state vector then
becomes

X kð Þ ¼

x kð Þ
x k � 1ð Þ
x k � 2ð Þ

..

.

x k � mð Þ

2
6666664

3
7777775

We then treat the m-lag smoothing problem as an enlarged filter problem, and
no new algorithms are needed. Example 6.3 will illustrate the procedure in detail.

EXAMPLE 6.3 AUGMENTED-STATE METHOD FOR FIXED-LAG
SMOOTHING

Let us return to the Kalman filter model used for Example 6.1. The filter parameters
will be repeated for easy reference:

s ¼ 1.0m (x process sigma)

b¼ 1.0 rad/s (reciprocal time constant)

Dt¼ 0.02 s (step size)

h¼ 1 (measurement connection)

r¼ 1 (measurement error variance)

q¼ s2 (1� e�2bDt) (variance of process wk)

f¼ e�bDt

Now let us say that we want the solution for the two-steps-back smoothing problem.
The measurement stream begins at k¼ 0 (i.e., t¼ 0). First, we define a new “super”
state vector as the three-tuple:

X kð Þ ¼
x kð Þ

x k � 1ð Þ
x k � 2ð Þ

2
64

3
75
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Then, using the scalar difference equation for x and the definitions of the second and
third elements of the super state X, we have the discrete process equation:

x k þ 1ð Þ
x kð Þ

x k � 1ð Þ

2
664

3
775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
X k þ 1ð Þ

¼
f 0 0

1 0 0

0 1 0

2
664

3
775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
F kð Þ

x kð Þ
x k � 1ð Þ
x k � 2ð Þ

2
664

3
775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
X kð Þ

þ
w kð Þ
0

0

2
664

3
775

|fflfflfflfflffl{zfflfflfflfflffl}
W kð Þ

(6.4.1)

The measurements have a direct connection to only the first element of X(k), so the
measurement equation for the super filter is:

z kð Þ ¼
1 0 0½ �|fflfflfflfflfflffl{zfflfflfflfflfflffl}
H kð Þ

x kð Þ
x k � 1ð Þ
x k � 2ð Þ

2
664

3
775þ v kð Þ (6.4.2)

Note that Eqs. (6.4.1) and (6.4.2) are in the exact form required for a Kalman filter.
(see Eqs. 4.2.1 and 4.2.2 in Chapter 4.) TheF and H parameters for the super filter
are specified in Eqs. (6.4.1) and (6.4.2). It should also be apparent that the Q and R
parameters for the super filter are:

Q kð Þ ¼ E W kð ÞWT kð Þ� � ¼
q 0 0

0 0 0

0 0 0

2
64

3
75 (6.4.3)

R kð Þ ¼ E v kð ÞvT kð Þ� � ¼ r

We need one more parameter before running a filter covariance analysis in
MATLAB. This is the initial a priori error covariance. Here we can use the same
arguments for the super filter that we would use for any Kalman filter. Initially, we
have no knowledge about x, other than its autocorrelation function and that it is
Gaussian. In the example at hand the initial estimate is zero, and the error
covariance is just the same as for the process itself. Therefore,

P� 0ð Þ ¼ s2

1 e�bDt e�2bDt

e�bDt 1 e�bDt

e�2bDt e�bDt 1

2
664

3
775 (6.4.4)

The augmented filter just described was run for 31 steps in MATLAB, and the
results are shown in Table 6.2. Perhaps the first thing to notice in the table is that the
entries in the first two rows contain nontrivial values for negative time (i.e., when
k� 1 and k� 2 are negative). This is the start-up region that was alluded to in the
discussion of theRTS solution.Here, the augmented filter yieldsmeaningful results in
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6.5
ADAPTIVE KALMAN FILTER (MULTIPLE MODEL
ADAPTIVE ESTIMATOR)

In the usual Kalman filter we assume that all the process parameters, that is,fk,Hk,
Rk, and Qk, are known. They may vary with time (index k) but, if so, the nature of
the variation is assumed to be known. In physical problems this is often a rash
assumption. There may be large uncertainty in some parameters because of
inadequate prior test data about the process. Or some parameter might be expected
to change slowly with time, but the exact nature of the change is not predictable. In
such cases, it is highly desirable to design the filter to be self-learning, so that it can

the start-up region automatically without any special effort. For example, it is
interesting to note that for k¼ 0 the one-step-back smoother estimate is poorer
than the filter estimate. One might then ask, “How can that be? Isn’t smoothing
supposed to be better than filtering?” Answer: Themost relevantmeasurement occurs
at a later time t¼ 0, and its connection to x at an earlier time is only statistical, not
direct one-to-one. Thus, the t¼ 0 filter estimate is better than the corresponding one-
step-back estimate.

Note also that the augmented filter has converged to steady-state nicely by the
end of the 31-step run. It is worthwhile mentioning that the three entries in the last
row of Table 6.2 correspond exactly to the last three entries in the P(kj50) column of
Table 6.1, which was for the RTS fixed-interval run. This is as it should be, because
the parameters are the same for both examples, and both runs have reached steady-
state by the ends of their respective runs.

&

Table 6.2 Error Covariance Results for Fixed-Lag Smoother Exercise

k P(kjk) P(k� 1jk) P(k� 2jk)
0 0.5000 0.5196 0.5384

1 0.3419 0.3419 0.3677

2 0.2689 0.2589 0.2689

3 0.2293 0.2153 0.2153

4 0.2061 0.1892 0.1839
..
. ..

. ..
. ..

.

15 0.1657 0.1439 0.1293
..
. ..

. ..
. ..

.

26 0.1653 0.1434 0.1287

27 0.1653 0.1434 0.1287

28 0.1653 0.1434 0.1287

29 0.1653 0.1434 0.1287

30 0.1653 0.1434 0.1287
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adapt itself to the situation at hand, whatever that might be. This problem has
received considerable attention since Kalman’s original papers of the early 1960s.
However, it is not an easy problem with one simple solution. This is evidenced by
the fact that 50 years later we still see occasional papers on the subject in current
control system journals.

Wewill concentrate our attention here on an adaptive filter scheme that was first
presented byD. T.Magill (5).Wewill see presently thatMagill’s adaptive filter is not
just one filter but, instead, is a whole bank of Kalman filters running in parallel. At the
time that this scheme was first suggested in 1965, it was considered to be impractical
for implementation on-line. However, the spectacular advances in computer tech-
nology over the past few decades have made Magill’s parallel-filter scheme quite
feasible in a number of applications (6, 7, 8, 9, 10, 11). Because of the parallel bank of
filters, this scheme is usually referred to as the multiple model adaptive estimator
(MMAE). In the interest of simplicity, we will confine our attention here to Magill’s
original MMAE scheme in its primitive form. It is worth mentioning that there have
been many extensions and variations on the original scheme since 1965, including
recent papers by Caputi (12) and Blair and Bar-Shalom (11). (These are interesting
papers, both for their technical content and the references contained therein.)Wewill
now proceed to the derivation that leads to the bank of parallel filters.

We begin with the simple statement that the desired estimator is to be the
conditional mean given by

x̂k ¼
Z
x

x p xjz�k
� �

dx (6.5.1)

where z�k denotes all themeasurements up to and including time tk (i.e., z1, z2, . . . , zk),
and p xjz�k

� �
is the probability density function of xk with the conditioning shown in

parentheses.* The indicated integration is over the entire x space. If the x and z
processes are Gaussian, we are assured that the estimate given by Eq. (6.5.1) will be
optimal by almost any reasonable criterion of optimality, least-mean-square or other-
wise (1).Wealsowish to assume that someparameter of the process, say,a, is unknown
to the observer, and that this parameter is a randomvariable (not necessarily Gaussian).
Thus, on any particular sample run it will be an unknown constant, but with a known
statistical distribution. Hence, rather than beginning with p xjz�k

� �
, we really need to

begin with the joint density p x;ajz�k
� �

and sum out on a to get p xjz�k
� �

. Thus, we will
rewrite Eq. (6.5.1) in the form

x̂k ¼
Z
x

x

Z
a

p x;að Þjz�k
� �

da dx (6.5.2)

But the joint density in Eq. (6.5.2) can be written as

p x;ajz�k
� � ¼ p xja; z�k

� �
p ajz�k
� �

(6.5.3)

* Throughout this section we will use a looser notation than that used in Chapter 1 in that pwill be used for both
probability density and discrete probability. In this way we avoid the multitudinous subscripts that would
otherwise be required for conditioned multivariate random variables. However, this means that the student must
use a little imagination and interpret the symbol p properly within the context of its use in any particular
derivation.
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Substituting Eq. (6.5.3) into (6.5.2) and interchanging the order of integration lead to

x̂k ¼
Z
a

p ajz�k
� �Z

x

x p xja; z�k
� �

dx da (6.5.4)

The inner integral will be recognized as just the usual Kalman filter estimate for a
given a. This is denoted as x̂k að Þ where a shown in parentheses is intended as a
reminder that there is a dependence. Equation (6.5.4) may now be rewritten as

x̂k ¼
Z
a

x̂k að Þp ajz�k
� �

da (6.5.5)

Or the discrete random variable equivalent to Eq. (6.5.5) would be

x̂k ¼
XL
i¼1

x̂k aið Þp aijz�k
� �

(6.5.6)

where p aijz�k
� �

is the discrete probability for ai, conditioned on the measurement
sequencez�k .Wewillconcentrateonthediscreteformfromthispointoninourdiscussion.

Equation (6.5.6) simply says that the optimal estimate is a weighted sum of
Kalman filter estimates with each Kalman filter operating with a separate assumed
value of a. This is shown in Fig. 6.5. The problem now reduces to one of
determining the weight factors p a1jz�k

� �
, p a2jz�k
� �

, etc. These, of course, change
with each recursive step as the measurement process evolves in time. Presumably,
as more and more measurements become available, we learn more about the state of
the process and the unknown parameter a. (Note that it is constant for any particular
sample run of the process.)

We now turn to the matter of finding the weight factors indicated in Fig. 6.5.
Toward this end we use Bayes’ rule:

p aijz�k
� � ¼ p z�k jai

� �
p aið Þ

p z�k
� � (6.5.7)

Figure 6.5 Weighted sum of Kalman filter estimates.
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But

p z�k
� �¼XL

j¼1

p z�k ;aj

� �

¼
XL
j¼1

p z�k jaj

� �
p aj

� � (6.5.8)

Equation (6.5.8) may now be substituted into Eq. (6.5.7) with the result

p a1jz�k
� � ¼ p z�k jai

� �
p aið ÞPL

j¼1

p z�k jaj

� �
p aj

� �
2
664

3
775; i ¼ 1; 2; . . . ;L (6.5.9)

The distribution p aið Þ is presumed to be known, so it remains to determine p z�k jai

� �
in Eq. (6.5.9). Toward this end we will write p z�k jai

� �
as a product of conditional

density functions. Temporarily omitting the ai, conditioning (just to save writing),
we have

p z�k
� �¼ p zk; zk�1; . . . z0ð Þ

¼ p zk; zk�1; . . . z1jz0ð Þp z0ð Þ
¼ p zk; zk�1; . . . z2jz1; z0ð Þp z1jz0ð Þp z0ð Þ
..
.

¼ p zkjzk�1; zk�2; . . . z0ð Þp zk�1jzk�2; zk�3; . . . z0ð Þ . . . p z1jz0Þpðz0ð Þ; k ¼ 1; 2; . . .

(6.5.10)

We now note that the first term in the product string of Eq. (6.5.10) is just p ẑ�k
� �

, and
that the remaining product is just p z�k�1

� �
. Thus, we can rewrite Eq. (6.5.10) in the

form

p z�k
� � ¼ p ẑ�k

� �
p z�k�1

� �
(6.5.11)

We now make the Gaussian assumption for the x and z processes (but not
for a). Also, to simplify matters, we will assume z�k to be a sequence of scalar
measurements z0, z1, . . . zk. Equation (6.5.11) then becomes

p z�k
� � ¼ 1

2pð Þ1=2 HkP
�
k H

T
k þ Rk

� �1=2 exp � 1

2

zk �Hkx̂
�
k

� �2
HkP

�
k H

T
k þ Rk

� �
" #

p z�k�1

� �
;

k ¼ 1; 2; . . .

(6.5.12)

Bear in mind that p z�k
� �

will, in general, be different for each ai. For example, if the
unknown parameter is Rk, each filter in the bank of filters will be modeled around a
different value for Rk.

It should be helpful at this point to go through an example step by step (in
words, at least) to see how the parallel bank of filters works.

1. We begin with the prior distribution of a and set the filter weight factors
accordingly. Frequently, we have very little prior knowledge of the
unknown parameter a. In this case we would assume a uniform probability
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distribution and set all the weight factors equal initially. This does not have
to be the case in general, though.

2. The initial prior estimates x̂�0 for each filter are set in accordance with
whatever prior information is available. Usually, if x is a zero-mean process,
x̂�0 is simply set equal to zero for each filter. We will assume that this is true
in this example.

3. Usually, the initial estimate uncertainty does not depend on a, so the initial
P�
0 for each filter will just be the covariance matrix of the x process.

4. Initially then, before any measurements are received, the prior estimates
from each of the filters are weighted by the initial weight factors and
summed to give the optimal prior estimate from the bank of filters. In the
present example this is trivial, because the initial estimates for each filter
were set to zero.

5. At k¼ 0 the bank of filters receives the first measurement z0, and the
unconditional p(z0) must be computed for each permissible ai. We note that
z ¼ Hxþ v, so p(z0) may be written as

p z0ð Þ ¼ 1

2pð Þ1=2 H0CxH
T
0 þ R0

� �1=2 exp � 1

2

z20
H0CxH

T
0 þ R0

� �
" #

(6.5.13)

whereCx is the covariance matrix of x. We note again that one or more of the
parameters in Eq. (6.5.13) may have a dependence; thus, in general, p z0ð Þ
will be different for each ai.

6. Once p z0ð Þ for each ai has been determined, Eq. (6.5.9) may be used to find
p aijz0ð Þ. These are the weight factors to be used in summing the updated
estimates x̂0 that come out of each of the filters in the bank of filters. This
then yields the optimal adaptive estimate, given the measurement z0, and we
are ready to project on to the next step.

7. Each of the individual Kalman filter estimates and their error covariances is
projected ahead to k¼ 1 in the usual manner. The adaptive filter must now
compute p z�1

� �
for each ai, and it uses the recursive formula, Eq. (6.5.12), in

doing so. Therefore, for p z�1
� �

we have

p z�1
� � ¼ 1

2pð Þ1=2 H1P
�
1 H

T
1 þ R1

� �1=2 exp � 1

2

z1 �H1x̂
�
1

� �2
H1P

�
1 H

T
1 þ R1

� �
" #

p z�0
� �
(6.5.14)

Note that p z�0
� �

was computed in the previous step, and the prior x̂�1 and P�
1

for each ai are obtained from the projection step.

8. Now, thep z�1
� �

determined inStep7canbeused inBayes’ formula,Eq. (6.5.9),
and theweight factorsp aijz�1

� �
for k¼ 1 are thus determined. It shouldbe clear

now that this recursive procedure can be carried on ad infinitum.

We are now in a position to reflect on the whole adaptive filter in perspective.
At each recursive step the adaptive filter does three things: (1) Each filter in the
bank of filters computes its own estimate, which is hypothesized on its own
model; (2) the system computes the a posteriori probabilities for each of the
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hypotheses; and (3) the scheme forms the adaptive optimal estimate of x as a
weighted sum of the estimates produced by each of the individual Kalman filters.
As the measurements evolve with time, the adaptive scheme learns which of the
filters is the correct one, and its weight factor approaches unity while the others
are going to zero. The bank of filters accomplishes this, in effect, by looking at
sums of the weighted squared measurement residuals. The filter with the smallest
residuals “wins,” so to speak.

TheMagill scheme just described is not without some problems and limitations
(12). It is still important, though, because it is optimum (within the various
assumptions that were made), and it serves as a point of departure for other less
rigorous schemes. One of the problems of this technique has to do with numerical
behavior as the number of steps becomes large. Clearly, as the sum of the squared
measurement residuals becomes large, there is a possibility of computer underflow.
Also, note that the unknown parameter was assumed to be constant with time. Thus,
there is no way this kind of adaptive filter can readjust if the parameter actually
varies slowly with time. This adaptive scheme, in its purest form, never forgets; it
tends to give early measurements just as much weight as later ones in its
determination of the a posteriori probabilities. Some ad hoc procedure, such as
periodic reinitialization, has to be used if the scheme is to adapt to a slowly varying
parameter situation.

By its very nature, the Magill adaptive filter is a transient scheme, and it
converges to the correct ai in an optimal manner (provided, of course, that the
various assumptions are valid). This is one of the scheme’s strong points, and it
gives rise to a class of applications that are usually not thought of as adaptive
filter problems. These are applications where we are more interested in the a
posteriori probabilities than in the optimal estimate of the vector x process. The
Magill scheme is an excellent multiple-hypothesis testor in the presence of
Gauss–Markov noise. In this setting the main objective of the bank of filters is to
determine which hypothesized model in the bank of filters is the correct one, and
there have been a number of applications of this type reported in the literature
(7, 8, 9). We will discuss one of these briefly at the end of this section. Before
doing so, though, we wish to emphasize the assumptions that were used in
deriving Magill’s parallel filter scheme. These assumptions are most important
in understanding the limitations of the scheme. The key assumptions are as
follows:

1. We assume Gaussian statistics for the x and z processes, but not for a.

2. The unknown parameter a is assumed to be a discrete random variable with
a known distribution. Thus, for any sample run, awill be constant with time.
If, in fact, a is an unknown deterministic parameter (in contrast to being
random), then we must be cautious about our conclusions relative of
optimally.

3. It is tacitly assumed that the process and measurement models are of the
proper form for a linear Kalman filter for each allowable ai. (Note that finite-
order state models will not exist for all random processes, band-limited
white noise being a good example.)

We will now look at an application of the Magill adaptive filter where both the
hypothesis and the optimal estimate are of interest.
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EXAMPLE 6.4

The use of carrier phase measurements for accurate relative positioning has brought
about one of the more exciting uses of GPS in its three decades of existence thus far.
One of the main challenges that come with using the carrier phase measurement is
the introduction of an integer ambiguity. Fig. 6.6 shows the notional picture of the
measurement geometry that relates the difference between carrier phase measure-
ments to the physical separation between the antennas of the two receivers.

If we simplify this illustration to be a one-dimensional problem, the measurement
model may be written as follows (measurements are in units of cycles):

fA � fB ¼ h � 1
l
Dxþ N þ vf (6.5.15)

where h¼ cos u and we choose u, the satellite elevation angle, to be p
6
radians (30�).

Assume also for this simplified example that the receivers have perfect clocks.
The unknown states to solve for in Eq. (6.5.15) are the one-dimensional physical
baseline separation Dx and some ambiguity N that is an unknown integer number of
cycles. Clearly, this one measurement is not enough to resolve the two associated
states. In GPS, carrier phase measurements made at its two carrier frequencies can be
combined to form a lower beat frequency with a longer wavelength than either of the
two individual ones—this hybrid carrier is often referred to as having a widelane
wavelength. At the same time, coarser code phase (pseudorange) measurements that
are not complicated by any cycle ambiguities are also used to bound the range of
ambiguity uncertainties.

Our combined measurement model now becomes:

rA � rB

f
L1L2ð Þ
A � f

L1L2ð Þ
B

" #
¼

h

h

lL1L2

2
4

3
5Dxþ 0

NL1L2

" #
þ

vr

vf

" #

¼
h 0

h

lL1
1

2
4

3
5 Dx

NL1L2

" #
þ

vr

vf

" #
(6.5.16)

Receiver A Receiver B

Δxθ

φBφA

Figure 6.6 Difference between carrier phases measured between

receivers, with an additional an integer cycle ambiguity, is an accurate

representation of slant range difference that can be related to Dx via the

geometry.
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In the state vector, we have an integer ambiguity state NL1L2 that is associated
with the widelane carrier phase wavelength.NL1L2 is constant and so is modeled as a
random bias. For this example, we allow the two receivers to wander so the Dx state
is modeled as a random walk with a one-step uncertainty of (1.0m)2. Therefore, the
process noise covariance matrix is given by:

Q ¼ 1:0mð Þ2 0

0 0

" #

The measurement noise n vector is associated with the error covariance matrix
given by:

R ¼ 1mð Þ2 0

0 0:02 cycleð Þ2
" #

The discrete nature of the multiple hypothesis space of theMagill scheme lends
itself well to solving problems with integer constraints. The approach we take in this
example is to use the Magill adaptive filter to process the available set of noisy
measurements with various hypotheses of the correct integer ambiguity. Eventually,
one particular hypothesis will win out and its filter estimate will represent the
correct answer as well. As we have seen earlier, the a parameter (see Fig. 6.5) of the
Magill adaptive filter represents the discrete hypothesis. So here, in this example, a
represents an integer ambiguity, NL1L2. Each hypothesis in the parallel bank of
Kalman filters will assume a specific integer value. What is interesting is that the
error covariance is common to all the hypotheses so the gain and the error
covariance computations do not need to be replicated among the various hypothe-
ses, but rather computed just once for each measurement cycle.

The state updates and projection, however, are different for each hypothesis
since each ambiguity modifies the measurements to give rise to residuals differ-
ently. Fig. 6.7 shows a representation of this particular Magill adaptive filter. The
a priori and a posteriori state estimates must be computed for each hypothesis. Or
so it seems!

– u3

z1, z2, . . ., zk

KF #L
α = uL

Max
(p)

KF #2
α = u2

KF #1
α = u1

p(uL|zk
*)

p(u2|zk
*)

p(u1|zk
*)

+

– u2

+

– uL

+

– u1

+

Figure 6.7 The Magill adaptive filter as a multiple hypothesis tester for finding the

correct set of integer ambiguities.
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It turns out that there is a very clear connectedness that exists between all the
hypotheses as a result of the linear connection of the ambiguity within the mea-
surement model. In other words, even the state updates and projections need not be
separately accounted for in each hypothesis. Amaximum likelihoodmethodology is
outlined in Ref. (13) for a similar problem that involves integer ambiguities in GPS
carrier phase relative positioning. In this example, we will consider a slightly
different approach that expands the Kalman filter to take the place of the maximum
likelihood estimator.

The associated P matrix of this Kalman filter is a 2�2 matrix:

P ¼
PDx PDx;N

PT
Dx;N PN

" #
(6.5.17)

The lower-right term represents the error variance of the ambiguity state
estimate. Together with the relevant state from the updated state estimate vector, we
can reconstruct these relationships:

W ¼ P�1
N P�1

N N̂L1L2

N̂L1L2P
�1
N wnn

" #
(6.5.18)

where wnn is arbitrary and thus can be set to zero.
The a priori conditional probability p z�jað Þ is computed for each sample in the

a-space, which in this case is the ambiguity NL1L2. Let us designate u to represent
the ambiguity. Then, we have

p z�juð Þ ¼ exp � 1

2
ua
TWua

� �
(6.5.19)

where ua ¼ u
1

	 

and u ¼ . . .�1; 0;þ1;þ2; . . .

The a posteriori conditional probability p ajz�ð Þ still follows Eq. (6.5.9).
For each ambiguity u, we can also extract a unique updated state estimate that

is constrained by the given u. Note that the state estimate vector from the model

given in Eq. (6.5.2) is a 2-tuple consisting of ½Dx̂ N̂L1L2�T .
To obtain the state estimate ofDx that has been constrained with fixed values of

the ambiguity, we can take the 2-tuple state estimate vector and its associated error
covariance and run a one-step update of a Kalman filter where the “measurement” is
simply a given integer ambiguity value. For this Kalman filter, the “measurement”
model is:

u ¼
0 1½ �|fflfflffl{zfflfflffl}
Hc

Dx̂

N̂L1L2

	 

þ 0 (6.5.20)

Kalman gain: Kc ¼ P�HT
c ðHcP

�HT
c Þ�1

Note in the Kalman gain computation here that we have zeroed out the R
matrix in a clear indication that the integer constraint we are imposing is a
“perfect measurement.” Generally, it is never a good idea to zero out the Rmatrix
in a Kalman filter as it tends to lead to numerical instability. Here, however, the
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problem is diminished as we are only carrying this out for only the state estimate
update step.

State update: x̂c ¼ I-KcHcð Þx̂� þKczc

The second term of the updated state estimate vector will end up with the exact
value of the integer ambiguity input as a “perfect measurement” in zc. Only the first
term of the updated state estimate vector is of interest since this represents the Dx
estimate for the given integer ambiguity that represents this hypothesis.

Covariance update: Pc ¼ ðI-KcHcÞP�

Theupdated error covariance only needs to be computed if one is interested in the
error variance associated with the first term. The variances associatedwith the second
term is nominally zero as might be expected from this process of constraining the
solution to the specific integer ambiguity associated with the given hypothesis.

For the two GPS frequencies at 1575.42MHz and 1227.6MHz, the widelane
wavelength is given by:

lL1L2 ¼ c

f L1 � f L2
¼ 0:861918m

Fig. 6.8 shows the weight factor (or probability) associated with the correct
ambiguity in this example. After a few processing steps, the probability quickly
approaches one indicating overwhelming certainty on the correctness of this
hypothesis. During this time, the probabilities associated with all other hypotheses
correspondingly diminish to zero.

Fig. 6.9 shows the weighted state estimate of Dx. For this example, the true
value of Dx is 100m. Quite clearly, the solution becomes dominated by the weight
of the state estimate from the correct hypothesis as it converges to the true value
over time.
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Figure 6.8 Probability or weight factor associated with the

correct hypothesis rightly converges to one after processing

several measurements.
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6.6
CORRELATED PROCESS AND MEASUREMENT NOISE FOR THE
DISCRETE FILTER—DELAYED-STATE FILTER ALGORITHM

Physical situations occasionally arise where the discrete process and measurement
noises are correlated. This correlation is not accounted for in the usual Kalman filter
equations given in Chapter 4. It can be, though, so this modification and an appli-
cation are considered further in this section.

Discrete Filter—Correlated Process and Measurement Noise

Just as for the continuous filter, we first define the process and measurement models.
They are as follows:

xkþ1 ¼ fkxk þ wk

zk ¼ Hkxk þ vk

�
as before in Chapter 4ð Þ (6.6.1)

(6.6.2)

where

E wkw
T
i

� � ¼ Qk; i ¼ k

0; i 6¼ k

�
ðas before in Chapter 4Þ (6.6.3)

E vkv
T
i

� � ¼ Rk; i ¼ k

0; i 6¼ k

�
ðas before in Chapter 4Þ (6.6.4)

and

E wk�1v
T
k

� � ¼ Ck newð Þ (6.6.5)

Before we proceed, an explanation is in order as to why we are concerned with
the crosscorrelation of vk with wk�1 rather than wk, which one might expect from
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Figure 6.9 State estimate associated with the correct

hypothesis converges to the true value of Dx¼100m.

226 CHAPTER 6 SMOOTHING AND FURTHER INTERMEDIATE TOPICS



C06 12/09/2011 12:4:1 Page 227

just a casual look at the problem. Rewriting Eq. (6.6.1) with k retarded one step
should help in this regard:

xk ¼ fk�1xk�1 þ wk�1 (6.6.6)

Note that it is wk�1 (and not wk) that represents the cumulative effect of the
white forcing function in the continuous model in the interval tk�1; tkð Þ. Similarly,
vk represents the cumulative effect of the white measurement noise in the continu-
ous model when averaged over the same interval tk�1; tkð Þ (provided, of course, that
we begin with a continuous model). Therefore, if we wish to have a correspondence
between the continuous and discrete models for small Dt, it is the crosscorrelation
between vk andwk�1 that we need to include in the discrete model. This is, of course,
largely a matter of notation, but an important one. We will continue with the
assumption that we have the discrete model given by Eqs. (6.6.1 through 6.6.5), and
we begin with the usual update equation

x̂k ¼ x̂�k þKk zk �Hkx̂
�
k

� �
(6.6.7)

Next, we form the expression for the estimation error.

ek ¼ xk � x̂k

¼ xk � x̂�k þKk zk �Hkx̂
�
k

� �� �
¼ I�KkHkð Þe�k �Kkvk

(6.6.8)

We anticipate now that e�k and vk will be correlated, so we will work this out as
a side problem:

E e�k v
T
k

� �¼ E xk � x̂�k
� �

vTk
� �

¼ E fk�1xk�1 þ wk�1 �fk�1x̂k�1ð ÞvTk
� � (6.6.9)

Note that vk will not be correlated with either xk�1, or x̂k�1 because of its
whiteness. Therefore, Eq. (6.6.9) reduces to

E e�k v
T
k

� � ¼ E wk�1v
T
k

� � ¼ Ck (6.6.10)

We now return to the main derivation. By using Eq. (6.6.8), we form the
expression for the Pk matrix:

Pk ¼ E eke
T
k

� �
¼ E I�KkHkð Þe�k �Kkvk

� �
I�KkHkð Þe�k �Kkvk

� �Tn o (6.6.11)

Now, expanding Eq. (6.6.11) and taking advantage of Eq. (6.6.10) lead to

Pk ¼ I�KkHkð ÞP�
k I�KkHkð ÞT þKkRkK

T
k

� I�KkHkð ÞCkK
T
k �KkC

T
k I�KkHkð ÞT

(6.6.12)
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This is a perfectly general expression for the error covariance and is valid for
any gain Kk. The last two terms in Eq. (6.6.12) are “new” and involve the
crosscorrelation parameter Ck.

We now follow the same procedure used in Section 4.2 to find the optimal gain.
We differentiate trace Pk with respect to Kk and set the result equal to zero. The
necessary matrix differentiation formulas are given in Section 4.2, and the resulting
optimal gain is

Kk ¼ P�
k H

T
k þ Ck

� �
HkP

�
k H

T
k þ Rk þHkCk þ CT

kH
T
k

� ��1
(6.6.13)

Note that this expression is similar to the gain formula of Chapter 4 except for
the additional terms involvingCk. Let Ck go to zero, and Eq. (6.6.13) reduces to the
same gain as in the zero crosscorrelation model, which is as it should be.

We can now substitute the optimal gain expression, Eq. (6.6.13), into the
general Pk equation, Eq. (6.6.12), to get the a posteriori Pk equation. After some
algebraic manipulation, this leads to either of the two forms:

Pk ¼ P�
k �Kk HkP

�
k H

T
k þ Rk þHkCk þ CT

kH
T
k

� �
KT

k (6.6.14)

or

Pk ¼ I�KkHkð ÞP�
k �KkC

T
k (6.6.15)

The projection equations are not affected by the crosscorrelation betweenwk�1

and vk because of the whiteness property of each. Therefore, the projection equa-
tions are (repeated here for completeness)

x̂�kþ1 ¼ fkx̂k (6.6.16)

P�
kþ1 ¼ fkPkf

T
k þQk (6.6.17)

Equations (6.6.7), (6.6.13), (6.6.15), (6.6.16), and (6.6.17) now comprise the
complete set of recursive equations for the correlated process and measurement
noise case.

Delayed-State Measurement Problem

There are numerous dynamical applications where position and velocity are chosen
as state variables. It is also common to have integrated velocity over some Dt inter-
val as one of the measurements. In some applications the integration is an intrinsic
part of the measurement mechanism, and an associated accumulative “count” is the
actual measurement that is available to the Kalman filter (e.g., integrated doppler in
a digital GPS receiver. Other times, integration may be performed on the velocity
measurement to presmooth the high-frequency noise. In either case, these mea-
surement situations are described by (in words):

Discrete measurement observed at time tkð Þ
¼
Z tk

tk�1

velocityð Þdt þ discrete noiseð Þ
¼ position at tkð Þ � position at tk�1ð Þ þ discrete noiseð Þ

(6.6.18)
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Or, in general mathematical terms, the measurement equation is of the form

zk ¼ Hkxk þ Jkxk�1 þ vk (6.6.19)

This, of course, does not fit the required format for the usual Kalman filter
because of the xk�1 term. In practice, various approximations have been used to
accommodate the delayed-state term: some good, some not so good. (One of the
poorest approximations is simply to consider the integral of velocity divided by Dt
to be a measure of the instantaneous velocity at the end point of the Dt interval.)
The correct way to handle the delayed-state measurement problem, though, is to
modify the recursive equations so as to accommodate the xk�1, term exactly (14).
This can be done with only a modest increase in complexity, as will be seen
presently.

We begin by noting that the recursive equation for xk can be shifted back one
step, that is,

xk ¼ fk�1xk�1 þ wk�1 (6.6.20)

Equation (6.6.20) can now be rewritten as

xk�1 ¼ f�1
k�1xk �f�1

k�1wk�1 (6.6.21)

and this can be substituted into the measurement equation, Eq. (9.2.19), that yields

zk ¼ Hk þ Jkf
�1
k�1

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

NewHk

xk þ �Jkf
�1
k�1wk�1 þ vk

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

New vk

(6.6.22)

Equation (6.6.22) now has the proper form for a Kalman filter, but the new vk
term is obviously correlated with the process wk�1, term. We can now take
advantage of the correlated measurement-process noise equations that were derived
in the first part of this section. Before doing so, though, we need to work out the
covariance expression for the new vk term and also evaluate Ck for this application.

We will temporarily let the covariance associated with new vk be denoted as
“New Rk,” and it is

NewRk ¼ E �Jkf
�1
k�1wk�1 þ vk

� � �Jkf
�1
k�1wk�1 þ vk

� �Th i
(6.6.23)

We note now that vk and wk�1 are uncorrelated. Therefore,

NewRk ¼ Jkf
�1
k�1Qk�1f

�1
k�1J

T
k þ Rk (6.6.24)

Also, with reference to Eq. (6.6.5), we can write Ck as

Ck ¼ E wk�1 �Jkf
�1
k�1wk�1 þ vk

� �Th i
¼ �Qk�1f

�1
k�1J

T
k (6.6.25)
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In this application, we can now make the following replacements in Eqs. (6.6.7),
(6.6.13), and (6.6.14):

Hk ! Hk þ Jkf
�1
k�1 (6.6.26)

Rk ! Rk þ Jkf
�1
k�1Qk�1f

�1
k�1J

T
k (6.6.27)

Ck ! �Qk�1f
�1
k�1J

T
k (6.6.28)

where! means “is replaced by.” After the indicated replacements are made in the
recursive equations, the result is a relatively complicated set of equations that in-
volve, among other things, the inverse of fk�1. This is a computation that is not
required in the usual recursive equations, and it can be eliminated with appropriate
algebraic substitutions. The key step is to eliminate Qk�1, by noting that

Qk�1 ¼ P�
k �fk�1Pk�1f

T
k�1 (6.6.29)

and that the inverse of the transpose is the transpose of the inverse. The final re-
sulting recursive equations for the delayed-state measurement situation can then be
written in the form:

Estimate update:

x̂k ¼ x̂�k þKk zk � ẑ�k
� �

(6.6.30)

where

ẑ�k ¼ Hkx̂
�
k þ Jkx̂k�1 (6.6.31)

Gain:

Kk ¼ P�
k H

T
k þfk�1Pk�1J

T
k

� �
HkP

�
k H

T
k

� þ Rk þ JkPk�1f
T
k�1H

T
k

þHkfk�1Pk�1J
T
k þ JkPk�1J

T
k

��1

(6.6.32)
Error covariance update:

Pk ¼ P�
k �KkLkK

T
k (6.6.33)

where

Lk ¼ HkP
�
k H

T
k þ Rk þ JkPk�1f

T
k�1H

T
k þHkfk�1Pk�1J

T
k þ JkPk�1J

T
k (6.6.34)

Projection:

x̂�kþ1 ¼ fkx̂k (6.6.35)

P�
kþ1 ¼ fkPkf

T
k þQk (6.6.36)

Equations (6.6.30) through (6.6.36) comprise the complete set of recursive
equations that must be implemented for the exact (i.e., optimal) solution for the
delayed-state measurement problem.* Note that the general form of the equations is

* It is of interest to note that Eqs. (6.6.30) through (6.6.36) can also be derived by a completely different
method. See Section 9.4 of (15).
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the same as for the usual Kalman filter equations. It is just that there are a few
additional terms that have to be calculated in the gain and P-update expressions.
Thus, the extra effort in programming the exact equations is quite modest.

6.7
DECENTRALIZED KALMAN FILTERING

In our previous discussions of Kalman filtering, we always considered all of the
measurements being input directly into a single filter. This mode of operation is
usually referred to as a centralized or global Kalman filter. Before we look at
alternatives, it should be recognized that the centralized filter yields optimal esti-
mates. We cannot expect to find any other filter that will produce any better MMSE
(minimummean-square error) estimates, subject, of course, to the usual assumptions
of linear dynamics andmeasurement connections, and the validity of the state models
that describe the various random processes. Occasionally, though, there are appli-
cationswhere, for one reason or another, it is desirable to divide the global filtering job
among a bank of subfilters, each of which is operating on a separate subset of the total
measurement suite. This is shown in Fig. 6.10where the separate filters are denoted as
Local KF1, and Local KF2, etc. Note that the local filters are all operating
autonomously. We now wish to develop a way of combining the results of the local
filters such as to obtain a better estimate than would be obtained with any of the
individual filters—“better” here meaning as close to the optimal as possible.

We begin with four basic assumptions:

1. The state vector x is the same for all local filters and the master (fusion)
filter.

2. There is no information sharing among the local filters, and there is no
feedback from the master filter back to the local filters.

3. The measurement errors in z1, z2, . . . zN (see Fig. 6.10) are mutually
uncorrelated. Thus the global R matrix is block diagonal.

4. None of the measurements z1, z2, . . . zN are fed to the master filter directly.

We note in passing that there are no constraints on the dimensionality of the z1,
z2, . . . zN measurement vectors.

Local
Kalman
filter 1

Local
filter

outputs

Master
filter
(also
called
fusion

filter, or
combiner)

Local
Kalman
filter 2

Master
filter

estimate

Measurement
sequence z1

Measurement
sequence z2

Measurement
sequence zN

Local
Kalman
filter N

Figure 6.10 Decentralized filter—No feedback.
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Basic Decentralized Filter Development

To facilitate the development, we use the information form of the Kalman filter for
the error covariance update, but retain the usual equations for state estimate update
and the state and covariance projection. This mixture of the key equations is
repeated for convenience (see Sections 5.1 and 5.2).

1. Information matrix update:

P�1
k ¼ P�

k

� ��1 þHT
kR

�1
k Hk (6.7.1)

2. Gain computation:

Kk ¼ PkH
T
kR

�1
k (6.7.2)

3. Estimate update:

x̂k ¼ x̂�k þKk zk �Hkx̂
�
k

� �
(6.7.3)

4. Project ahead to next step:

x̂�kþ1 ¼ fkx̂k (6.7.4)

P�
kþ1 ¼ fkPkf

T
k þQk (6.7.5)

Recall that P�1 is called the information matrix. In terms of informa-
tion, Eq. (6.7.1) says that the updated information is equal to the prior
information plus the additional information obtained from the measurement
at time tk. Furthermore, if Rk is block diagonal, the total “added” informa-
tion can be divided into separate components, each representing the contri-
bution from the respective measurement blocks. That is, we have (omitting
the k subscripts for convenience)

HTR�1H ¼ HT
1R

�1
1 H1 þHT

2R
�1
2 þ � � �HT

NR
�1
N HN (6.7.6)

Note especially the additive property of the information that is being accumu-
lated by the master filter from the local filters. We also note that the estimate update
equation at time tk can be written in a different form as follows:

x̂ ¼ I�KHð Þx̂� þKz

¼ P P�ð Þ�1x̂þ PHTR�1z

¼ P P�ð Þ�1x̂þHTR�1z
h i (6.7.7)

When written in this form, it is clear that the updated estimate is a linear blend
of the old information with the new information.

For simplicity, we will start with just two local filters in our decentralized
system, and we will continue to omit the k subscripts to save writing. Both filters are
assumed to implement the full-order state vector, and at step k both are assumed to
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have available their respective prior estimatesm1 andm2 and their associated error
covariancesM1 andM2. For Gaussian processes,m1 andm2 will be the means of x
conditioned on their respective measurement streams up to, but not including, time
tt. The measurements presented to filters 1 and 2 at time tk are z1 and z2, and they
have the usual relationships to x:

z1 ¼ H1xþ v1 (6.7.8)

z2 ¼ H2xþ v2 (6.7.9)

where v1 and v2 are zero mean random variables with covariances R1 and R2. The
state x and noises v1 and v2 are assumed to be mutually uncorrelated as usual.

If we assume now that local filters 1 and 2 do not have access to each other’s
measurements, the filters will form their respective error covariances and estimates
according to Eqs. (6.7.1) and (6.7.7).

Local filter 1:

P�1
1 ¼ M�1

1 þHT
1R

�1
1 H1 (6.7.10)

x̂1 ¼ P1 M�1
1 m1 þHT

1R
�1
1 z1

� �
(6.7.11)

Local filter 2:

P�1
2 ¼ M�1

2 þHT
2R

�1
2 H2 (6.7.12)

x̂2 ¼ P2 M�1
2 m2 þHT

2R
�1
2 z2

� �
(6.7.13)

Note that the local estimates will be optimal, conditioned on their respective
measurement streams, but not with respect to the combined measurements.
(Remember, the filters are operating autonomously.)

Now consider the master filter. It is looking for an optimal global estimate of x
conditioned on both measurement streams 1 and 2. Let

m¼ optimal estimate of x conditioned on both measurement streams up to but not
including tk

M¼ covariance matrix associated withm

The optimal global estimate and associated error covariance are then

P�1 ¼ HT
1H

T
2

� � R�1
1 0

0 R�1
2

" #
H1

H2

" #
þM�1

¼M�1 þHT
1R

�1
1 H1 þHT

2R
�1
2 H2

(6.7.14)

x̂ ¼ P M�1mþHT
1R

�1
1 z1 þHT

2R
�1
2 z2

� �
(6.7.15)

However, the master filter does not have direct access to z1 and z2, so we will
rewrite Eqs. (6.7.14) and (6.7.15) in terms of the local filter’s computed estimates
and covariances. The result is

P�1 ¼ P�1
1 �M�1

1

� �þ P�1
2 �M�1

2

� �þM�1 (6.7.16)

x̂ ¼ P P�1
1 x̂1 �M�1

1 m1

� �þ P�1
2 x̂2 �M�1

2 m2

� �þM�1m
� �

(6.7.17)
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It can now be seen that the local filters can pass their respective x̂i, P
�1
i , mi,

M�1
i i ¼ 1; 2ð Þ on to the master filter, which, in turn, can then compute its global

estimate. The local filters can, of course, do their own local projections and then
repeat the cycle at step kþ 1. Likewise, the master filter can project its global
estimate and get a newm andM for the next step. Thus, we see that this architecture
permits complete autonomy of the local filters, and it yields local optimality with
respect to the respective measurement streams. The system also achieves global
optimality in the master filter. Thus, with this system, we have the “best of both
worlds.” We maintain the independence of the local filters; and at the same time, we
also have the global optimal solution.

6.8
DIFFICULTY WITH HARD-BANDLIMITED PROCESSES

It should be apparent at this point in our filtering discussion that we are severely
limited in the type of random processes that can be estimated with Kalman filtering.
The restriction is imposed right at the start with the assumption that x must satisfy
the difference equation

xkþ1 ¼ fkxk þ wk (6.8.1)

If the continuous x(t) has a spectral function that is rational in form (i.e.,
the PSD is represented by a ratio of polynomials in v2), then we can usually
find a sampled form of x(t) that will fit the form required by Eq. (6.8.1). There
are, though, other random process models that are not rational, but yet they fit
certain physical situations reasonably well. One example is hard-bandlimited
noise. This appears frequently in communications applications, usually as a
special case of bandlimited white noise. This process is discussed briefly in
Chapter 3, Section 3.4, but is defies estimation using Kalman filtering methods.
However, do not despair. Some of the ideas of Wiener filtering (20) can
sometimes be brought to bear on bandlimited noise problems, and this will now
be explored further.

The Wiener approach to least-squares filtering is basically a weighting
function approach. When viewed this way, the problem always reduces to:
How should the past history of the input be weighted in order to yield the
best estimate of the variable of interest (i.e., the signal)? We will only consider
the discrete case here. We will assume that the input is a sequence of noisy
measurements, z1, z2, . . . , zk, much the same as we have in Kalman filtering,
and we will now proceed to illustrate the Wiener approach with a specific
example.

EXAMPLE 6.5 BANDLIMITEDWHITE NOISE

Consider the following scenario in the content of least-squares filtering. Both the
signal and the noise are bandlimited white noises, but they have significantly
different bandwidths. The signal has mostly low-frequency components, whereas
the noise is more high frequency in character. Denote the signal as x and the noise
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as n. The measurement is an additive combination of x and n, i.e.,

z1 ¼ x1 þ n1

z2 ¼ x2 þ n2

..

.

zk ¼ xk þ nk

(6.8.2)

where k is the “present” sample time. There will be a total of k measurement
samples being considered, with z1 being the “oldest” sample in the weighted sum.
We are seeking the steady-state least-squares estimate, and the total number of
samples used in the estimate will be adjusted as needed.

The key parameters are as follows:

Signal (Bandlimited White)

s2
x ¼ 16:0m2

Wx¼ 1.0 Hz (bandwidth)
PSDx¼ 8m2/Hz (power spectral density)

Noise (Bandlimited White)

s2
n ¼ 2:0m2

Wn¼ 10.0 Hz (bandwidth)
PSDn¼ 0.1m2/Hz (power spectral density)

Sampling Parameters

Dt¼ 1/2Wn¼ 0.05 s (sampling interval)
Sampling rate¼ 20 samples/s (Nyquist rate for noise process)
Total number of samples¼ 50

We now proceed with the minimization. We arbitrarily say that the estimate at
tk is to be the weighted sum

x̂k ¼ w1z1 þ w2z2 þ � � � þ wkzk (6.8.3)

Thus, the error is

ek ¼ xk � x̂k

¼ xk � w1z1 þ w2z2 þ � � � þ wkzkð Þ (6.8.4)

and the mean-square error is

E e2k
� � ¼ E xk � w1z1 þ w2z2 þ � � � þ wkzkð Þ½ �2 (6.8.5)

We wish to minimize E e2k
� �

with respect to the weight factors w1;w2; � � �wk.
Thus, using ordinary differential calculus, we can differentiate Eq. (6.8.5) accord-
ingly and set the respective derivatives equal to zero. Omitting the routine algebra,
this leads to the following set of linear equations in the weight factors:

E z21
� �

E z1z2ð Þ � � �
E z2z1ð Þ

..

.
}

E zkz1ð Þ E z2k
� �

2
666664

3
777775

w1

w2

..

.

wk

2
66664

3
77775 ¼

E z1xkð Þ
E z2xkð Þ

..

.

E zkxkð Þ

2
666664

3
777775 (6.8.6)
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Or

Tw ¼ f (6.8.7)

Equation (6.8.7) is easily solved for w once the parameters are specified, and
they are known from the correlation structure assumed for signal and noise, x and n.
Recall that x and n are mutually uncorrelated, and the respective samples of n are
mutually uncorrelated among themselves because of the Nyquist sampling rate.
Thus, the terms in T are given by

E z21
� �¼ E z22

� � ¼ � � � ¼ s2
x þ s2

n

� �
E z1z2ð Þ ¼ E x1x2ð Þ ¼ Rx Dtð Þ
E z1z3ð Þ ¼ E x1x3ð Þ ¼ Rk 2Dtð Þ

..

.

E z1zkð Þ ¼ E x1xkð Þ ¼ Rx k � 1ð ÞDtð Þ

(6.8.8)

and the terms in f are specified by

E z1xkð Þ ¼ Rx k � 1ð ÞDtð Þ
E z2xkð Þ ¼ Rx k � 2ð ÞDtð Þ

..

.

E zkxkð Þ ¼ Rx k � kð ÞDtð Þ ¼ Rx 0ð Þ

(6.8.9)

and Rx is the autocorrelation function for the signal x. [Recall that Rx(t)¼
F�1 (PSDx). See Section 2.7.]

The square matrix T is especially easy to program in MATLAB because it
works out to be a Toeplitz matrix. (A Toeplitz matrix is real and symmetric and has
further special symmetry: All terms on the major diagonal are equal; then further, all
terms on each of the respective sub-diagonals below and above the major diagonal
are also equal. Thus, an n � n Toeplitz matrix may be completely defined by
specifying all the terms in the first column vector of the matrix.)

Equation (6.8.7) was solved using MATLABwith the number of measurements
set at 50 for this example, and a plot of the calculated weights is shown in Fig. 6.11.
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Figure 6.11 Plot of measurement weights for Example 6.5.
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6.9
THE RECURSIVE BAYESIAN FILTER

In the Conditional Density Viewpoint given in Section 4.7, it was shown that the
Kalman filter’s estimate that achieves minimum mean-square error can be
represented by Eq. (4.7.3). In the general case, this estimate comes from a
conditional probability density function of the state xk conditioned on the set of
measurements z�k that include all measurements up to and including zk. We will
now proceed to develop the corresponding recursive equations while keeping the
conditions general, i.e., without limiting the problem to Gaussian and linear
assumptions.

Thus, the measurement model will simply be

zk ¼ H xk; vkð Þ (6.9.1)

with a corresponding probabilistic model given by the density function p zkj xkð Þ.
The measurement information are all contained in the measurement set

z�k ¼ z0; z1; . . . ; zkð Þ

Similarly, we write the system process model as a nonlinear function but,
without loss of generality, include the process noise as an additive term:

xk ¼ f xk�1ð Þ þ wk (6.9.2)

Its probabilistic model is represented by the density function p xkj xk�1ð Þ.

Measurement Update

We start with the measurement update by seeking a relationship between the
conditional density p xkjz�k

� �
based on the measurement set z�k and a similar

conditional density p xkjz�k�1

� �
based on the measurement set z�k�1. The updated

Recall that, in the numbering scheme used her, the beginning weight on the right side
of the plot is the weight given to the current measurement. Then, moving toward the
left endof the plot, wehave theweights given to the respective “older”measurements.
As might be expected, the weights oscillate and diminish as we proceed further into
the past measurements. The oscillations are due to the sinc autocorrelation functions
in Eq. (6.8.7).

If this batch scheme were to be programmed in real time, the weights would
be held fixed, and they would be applied to the measurement stream according to
age (relative to the “present”) on a running time basis. This would be easy to
program. The steady-state mean-square error can also be calculated without
undue difficulty, but this will not be done here. It will be left as an exercise (see
Problem 6.8).

&
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conditional density function is given by (15)

p xkjz�k
� �¼ p xkjzk; z0; . . . ; zk�1ð Þ ¼ p xkjzk; z�k�1

� �
¼ p zkjxk; z�k�1

� �
p xkjz�k�1

� �
p zkjz�k�1

� �
¼ p zkjxkð Þp xkjz�k�1

� �
p zkjz�k�1

� �
(6.9.3)

(One of two fundamental Markov properties provides that p zkjxk; z�k�1

� � ¼
p zkjxkð Þ (16).)

As for the prediction, we seek a relationship between the conditional density of
the future state p xkþ1jz�k

� �
and that of the present state p xkjz�k

� �
, both conditioned on

the same measurement set z�k:

p xkþ1jz�k
� �¼ Z p xk; xkþ1jz�k

� �
dxk

¼
Z

p xkþ1jxk; z�k
� �

p xkjz�k
� �

dxk

¼
Z

p xkþ1jxkð Þp xkjz�k
� �

dxk

(6.9.4)

(The second of two fundamental Markov properties provides that p xkþ1jxk; z�k
� � ¼

p xkþ1jxkð Þ (16).)
We can rewrite the update equation of (6.9.3) as:

p xkjz�k
� � ¼ kkp zkjxkð Þp xkjz�k�1

� �
(6.9.5)

where, as described in words, the conditional density of the state xk given the mea-
surement set z�k is related to the conditional density of the state xk given the mea-
surement set z�k�1 as a product with the conditional density p zkjxkð Þ that describes the
measurement model of Eq. 6.9.1 and somemultiplier kk. Related to the Kalman filter
languagewehave already established, p xkjz�k

� �
is the a posteriori conditional density,

while p xkjz�k�1

� �
is the a priori conditional density.

State Prediction

The prediction equation extended from Eq. (6.9.4) can be rewritten as (17):

p xkþ1jz�k
� � ¼ Z p xkþ1jxkð Þp xkjz�k

� �
dxk (6.9.6)

where the conditional density of the future state xkþ1 is related to the conditional
density of the present state xk, both given the same measurement set z�k , through a
product with the conditional density p xkþ1jxkð Þ that describes the system process
model of Eq. 6.9.2, and an integral over changes in the state xk.

Equations (6.9.5) and (6.9.6), along with an initial condition p x0ð Þ, therefore
make up what is known as a recursive Bayesian filter, which is a generalized
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formulation of the Kalman filter. The recursive Bayesian filter, for good reason, is not
particularly useful in its general form because real solutions to Eqs. (6.9.5) and (6.9.6)
are hard to come by analytically. Only with the assumption of Gaussian probabilistic
models and the imposition of linearity to both the process and measurement models
did we end up with a very useful result in the Kalman filter, a solution that has been
used to tackle a virtually endless variety of real-world problems.

The Gaussian Approximation

Let us explore some simplifications to be had when the probability density in
Eq. (6.9.5) can be assumed to be Gaussian. With this, we only need to represent it
with a mean and covariance, the two terms that are the essential parameters of the
Kalman filter:

E xkjz�k
� � ¼ x̂k (6.9.7)

Cov xkjz�k
� � ¼ Pk (6.9.8)

We rewrite Eq. (6.9.3) by converting the conditional density on the right-hand
side of the equation into a joint probability density:

p xkjz�k
� � ¼ p zk; xkjz�k�1

� �
p zkjz�k�1

� � (6.9.9)

With the Gaussian assumption just invoked, we can also rewrite this as a
relationship of Gaussian probability density functions (and, for convenience, drop
the time index k as this is implied presently):

N x̂;P~x~xð Þ ¼
N

x̂�

ẑ�

" #
;

P�
~x~x P�

~x~z

P�
~z~x P�

~z~z

" # !

N ẑ�;P�
~z~z

� � (6.9.10)

where P�
~x~x is the a priori error covariance matrix (seen before as P�

k ) associated with
the a priori state estimate x̂�, P�

~z~z is the measurement residual covariance matrix
associated with the predicted measurement ẑ�, and P�

~x~z is the cross-covariance
between x̂� and ẑ�. On the left-hand side of Eq. (6.9.10), x̂ is the a posteriori state
estimate with an error covariance of P~x~x also denoted elsewhere as Pk.

Note that Eq. (6.9.10) essentially relates the a priori state estimate x̂� and the
associated predicted measurement ẑ� on the right-hand side of the equation to the
a posteriori state estimate x̂ on the left-hand side of the equation, via the relevant
covariance matrices. But to extract the direct relationships, we equate the essen-
tial part of the exponential terms in the Gaussian densities on both sides of
Eq. (6.9.10):

~xð ÞT P~x~x½ ��1~x ¼
~x�

~z�

" #T
P�
~x~x P�

~x~z

P�
~z~x P�

~z~z

" #�1
~x�

~z�

" #
� ~z�ð ÞT P�

~z~z

� ��1
~z� (6.9.11)
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We deconstruct the equation by first addressing the joint covariance matrix
using the following matrix inversion lemma:

A U

V C

" #�1

¼
A� UC�1V
� ��1 � A� UC�1V

� ��1
UC�1

�C�1V A� UC�1V
� ��1

C�1V A� UC�1V
� ��1

UC�1 þ C�1

2
4

3
5

¼ B�1 �B�1UC�1

�C�1VB�1 C�1VB�1UC�1 þ C�1

" #

(6.9.12)

where B ¼ A� UC�1V
� �

Therefore,
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where we define B ¼ P�
~x~x � P�

~x~z P�
~z~z

� ��1
P�
~z~x

h i
.

Now, to extend the right-hand side of Eq. (6.9.11),
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If we then equate this with the left-hand side of Eq. (6.9.11), we get the
following relationship for the a posteriori state estimate:

~x ¼ ~x� � P�
~x~z P�

~z~z

� ��1
~z�

x� x̂ ¼ x� x̂� � P�
~x~z P�

~z~z

� ��1
~z�

Now reapplying the time index k, it should be evident that, lo and behold, this is
the state estimate update equation of the Kalman filter:

x̂k ¼ x̂�k þ P�
~x~z

� �
k
P�
~z~z

� ��1

k|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Kk

~z�k (6.9.15)

where P�
~x~z

� �
k
P�
~z~z

� ��1

k
is the Kalman gain Kk.

240 CHAPTER 6 SMOOTHING AND FURTHER INTERMEDIATE TOPICS



C06 12/09/2011 12:4:5 Page 241

The error covariance of the a posteriori Gaussian density function found in its
exponent, given by (Eq. 6.9.14), is B:
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To recall how we got here, this section first introduced the generalized
estimator known as the Bayesian filter. With that representation using general
probability distribution or density functions, its analytical solution is very difficult
to obtain. However, by invoking a Gaussian assumption to the random processes,
the recursive Bayesian filter was simplified to a form that we can recognize as the
Kalman filter, at least for the update equations:

Kalman gain: Kk ¼ P�
~x~z

� �
k
P�
~z~z

� ��1

k
(6.9.17)

State update: x̂k ¼ x̂�k þKk~z
�
k (6.9.18)

Error covariance update : P~x~xð Þk ¼ P�
~x~x

� �
k
�Kk P�

~z~z

� �
k
KT

k (6.9.19)

For the prediction equation, the projected state estimate is the expected value of
the probability density given by Eq. (6.9.6):

x̂�kþ1 ¼ E xkþ1jz�k
� � ¼ E F xkð Þ þ wkð Þjz�k
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� �
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Z
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� �

dxk

where
p xkjz�k
� � � N x̂k;P~x~xð Þ

The error covariance projection to the next step ahead is given by (18):
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(6.9.20)

At this stage, we have still not invoked any linear assumptions. When we do,
Eqs. (6.9.17)–(6.9.19) can then be further reduced ultimately to the linear Kalman
filter equations given by Eqs. (4.2.17), (4.2.8), and (4.2.21). Under such
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circumstances, the following correspondences apply:

P�
~x~x

� �
k
	 P�

k

P�
~x~z

� �
k
	 P�

k H
T
k

P�
~z~z

� �
k
	 HkP

�
k H

T
k þ Rk

� �
P~x~xð Þk 	 Pk

The recursive loop for the Bayesian filter is summarized in Fig. 6.12. In problems
where nonlinearity is a particularly severe condition, there has been a growing bodyof
work that leans on this generalized form of the recursive Bayesian filter we have
presented in this section, as well as the more accessible formwhere an approximation
of Gaussian statistics was invoked while still avoiding linear assumptions. We defer
further discussion on nonlinear filter problems until Chapter 7.

PROBLEMS

6.1 Consider the following elementary statistical estimation problem. Suppose we
have two independent measurements of a random variable x, and we know nothing
about x other than it isGaussian.Wewill call the twomeasurement z1 and z2; and their
errors e1 and e2 are zero-mean Gaussian, independent, and with rms values s1 and s2.
Our objective is to combine the z1 and z2 measurements such as to obtain a minimum-
mean-square-error estimate of x, whichwewill call x̂ (without a subscript for brevity).
We know from the discussion in Section 4.7 that x̂ will be a linear combination of z1
and z2, and we demand that x̂ be unbiased. Therefore, we can write x̂ as

x̂ ¼ k1z1 þ k2z2 (P6.1.1)
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Figure 6.12 The recursive Bayesian filter with Gaussian approximation.
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where

k1 þ k2 ¼ 1 (P6.1.2)

Or

x̂ ¼ k1z1 þ 1� k1ð Þz2 (P6.1.3)

Also,we know that z1 ¼ xþ e1 and z2 ¼ xþ e2, so the error in the combined estimate
of x is

e ¼ k1 e1 � e2ð Þ þ e2 (P6.1.4)

and

E e2
� � ¼ E k1 e1 � e2ð Þ þ e2½ �2

n o
(P6.1.5)

We wish to minimize E e2ð Þ, so this reduces to a simple problem in differential
calculus.

Show that k1 and k2 are given by

k1 ¼ s2
2

s2
1 þ s2

2

; and k2 ¼ s2
1

s2
1 þ s2

2

(P6.1.6)

and that the variance of the combined estimation error is

E e2
� � ¼ s2

1s
2
2

s2
1 þ s2

2

(P6.1.7)

The variance expression in Eq. (P6.1.7) is sometimes referred to as the
“product over sum” formula. Remember: Knowing nothing about the sigma of
x is an important condition in deriving the product-over-sum formula. If we were to
assume that the sigma of xwas known and did not put a constraint between k1 and k2,
then the result would be entirely different.

6.2 In 1969, D.C. Fraser and J.E. Potter presented a novel solution to the fixed-
interval smoothing problem (19). Their approach was to filter the measurement data
from both ends to the interior point of interest and then combine the two filter
estimates to obtain the smoothed estimate. Application of this forward/backward
filtering method is fairly straightforward for the continuous smoother, but it is
considerably more complicated for the corresponding discrete problem. Therefore,
in this exercise we will look at a simpler method which is approximate, but it is still
useful in certain special scenarios.

First of all, the random process x in question must be stationary, and the
measurement process must be uniform throughout the fixed interval of interest.
Secondly, we will assume that the x process variance is large relative to the
measurement error variance. This is equivalent to saying that we know very little
about the amplitude of the x process. This assumption will enable us to use the
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product-over-sum formula in blending the forward and backward estimates together
(see Problem 6.1).

Now consider the same fixed-interval smoothing scenario in Example 6.1, except
that the sigmaof theMarkovprocess is specified tobe30m rather than1m.Thismakes
the x process variance roughly three orders ofmagnitude greater than themeasurement
noise variance. This being the case, we should be able to use the simple product-over-
sum formula in combining the forward and backward estimates. To be more specific,
let us say that we are especially interested in the smoothed estimate at k¼ 25. This is
the exact midpoint of the 51-point fixed interval. Now proceed as follows:

(a) First, program and run the RTS covariance solution with the x process
sigma set at 30 m. The other parameters are the same as in Example 6.1.
Save both the a priori and a posteriori filter P’s for future reference. Also
save the RTS smoother Ps. (Note we will only be doing covariance analysis
here, so there is no need to generate Monte Carlo measurements. Also,
note that the RTS algorithm is “tried-and-true,” and it is exact—no
approximations.)

(b) Now consider the forward-filter part of the forward/backward smoother
method. This is to be the usual Kalman filter run from k¼ 0 to k¼ 25, 26
recursive steps in total. Of course, this is just a subset of the data saved from
the RTS run. All we need to do here is identify P25j25 and save it for use
later with the corresponding result from the backward filter run.

(c) Next, consider the backward filter going from k¼ 50 back to k¼ 26. The filter
parameters and recursive procedure here are the same as for the forward filter,
except at the endpoints. (After all, the correlation structure is the samegoing in
either direction timewise.) Note that the “initial” P� should be set at an
extremely large value in order that thefilterwill ignore any apriori estimate on
the first backward step. (It would be redundant to use this information in both
forward and backward filters.) Also, note that we stop this filter at k¼ 26. We
thenproject the estimate (conceptually) and its error covariance backonemore
step without benefit of an update at k¼ 25. In this way, we avoid using the z25
measurement twice (conceptually) which would be redundant. Thus, the error
covariance thatwe save from thebackwardfilter isP(25j”measurement stream
from k¼ 50 to k¼ 26”), which we will identify as P(25j50! 26).

(d) We now have two error covariances: the forward one accounting for the
measurements z0, z1, . . . z25, and the backward one accounting for z50,
z49, . . . z26. We then combine them for the final result

P 25j50ð Þ ¼ P 25j25ð Þ � P 25j50 ! 26ð Þ
P 25j25ð Þ þ P 25j50 ! 26ð Þ

(e) Carry out the procedure described in (a) through (d), and then compare the
final result with the corresponding result using the RTS algorithm. You
should find that the two error covariances match within a fraction of a
percent.

6.3 In Problem 6.2 the parameters were such that the smoother covariance plot
was nearly constant within most of the interior portion of the 51-point interval. This
indicates that the initial conditions imposed at either end had very little influence on
the smoother results at the midpoint of the interval. Therefore, in the interest of
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assessing the effect of the “initial” conditions on the backward filter at k¼ 50,
compute the smoother error covariance P(49j50) using the forward/backward filter
method, and compare the result with the corresponding result obtained with the RTS
algorithm. Note that the filter parameters are to be the same here as in Problem 6.2.
Note also that the RTS results worked out in Problem 6.1 still apply here, and they
may be considered as “truth,” not approximations.

6.4 A second-order Gauss-Markov Kalman filter was described in Example 4.4,
Section 4.5, and a plot of the filter rms error is shown in Fig. 4.7. Using the
same numerical values as in Example 4.4, do a 50-second fixed-interval smoother
covariance run for this stochastic setting, and compare the smoother rms error with
the corresponding filter error. Are the smoother results significantly better than the
filter results; and if so, over what region of the fixed-interval is this true?

6.5 The Magill adaptive Kalman filter can be effectively used to handle a random
process model with unknown tuning parameters. Suppose we are given an
integrated random walk process model described as

x1

x2

" #
kþ1

¼
1 Dt

0 1

" #
x1

x2

" #
k

þ
w1

w2

" #
k

Qk ¼ Ewkw
T
k ¼

1

3
SDt3 1

2
SDt2

1

2
SDt2 SDt

" #

(P6.5.1)

and its corresponding measurement model described as

zk ¼ 1 0½ �
x1

x2

" #
k

þ vk Rk ¼ Evkv
T
k (P6.5.2)

We do know that the measurement noise variance R¼ 1 unit, but that the
process noise covariance Q has an unknown spectral amplitude S that can take on a
value of either 0.01 or 1 unit.

(a) Let Dt¼ 1 second. Arbitrarily starting the state vector at x0¼ [0 0]T,
generate a 20-second sequence of the dynamic process along with a
20-second record of noisymeasurements. For the true process, let S¼ 1 unit.

(b) Construct a Magill adaptive Kalman filter that consists of two models, both
with the same structure given above, except differing in the value of S that
defines each Q matrix. Initialize both models with the same initial
conditions:

x̂1

x̂2

" #
0

¼
0

0

" #
P�
0 ¼ 104 0

0 104

" #

(c) Process the 20-second measurement sequence that had been generated
before and plot the composite output of the Magill adaptive Kalman filter.

(d) Repeat Parts (a), (b), and (c), except using S¼ 0.01 unit in the true process.
When comparing the results for S¼ 0.01 and S¼ 1, note that the resolution
of the correct model, i.e., the speed of convergence of the probability, is
noticeably different between the two cases. What might be a qualitative
explanation for this difference?
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6.6 The Magill adaptive Kalman filter is sometimes used to differentiate between
hypotheses that have different discrete bias values of a state, even though their
random models are identical. Consider the following two-state process model that
combines a random walk and a random bias.

Process model:

x1

x2

" #
kþ1

¼
1 0

0 1

" #
x1

x2

" #
k

þ
w

0

" #
k

(P6.6.1)

At t¼ 0,
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0
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N 0; 100ð Þ

4

" #
k
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w

0

" #
k

(P6.6.2)

Measurement model:

zk ¼ cos
pk

100

� �
1

	 

x1

x2

" #
k

þ vk (P6.6.3)

Instead of putting together a parallel bank of two-state Kalman filters for the
Magill structure, the measurement model can be rewritten as

zk � a ¼ cos
pk

100

� �
xk þ vk (P6.6.4)

where x¼ x1 is the sole remaining state, and a¼ x2 is the hypothesized random bias.
With this the different elemental models in the Magill filter bank are all 1-state
processes.

(a) Generate a sequence of noisymeasurements using the following parameters:
Ew2

k ¼ 1; Ev2k ¼ 1; x0 ¼ N 0; 1ð Þ
(b) Construct a Magill Kalman filter where each element is a one-state Kalman

filter describing the random walk process given above, and consisting of
five elements over the range of a¼ 1, . . . , 5

(c) Plot the conditional probabilities associated with each of the five hypothe-
ses. Does the correct hypothesis win out after 100 steps?

(d) Replace the measurement connection parameter in Eq. (P6.6.4) from the
time-varying cosine function to a fixed constant of 1 instead, and rerun
Parts (b) and (c). Explain the outcome of your results.

6.7 Consider the following vehicle positioning scenario. We have two position
sensors that operate independently to provide a user with two separate measures of
horizontal position. The internal workings of the individual sensors are not made
available to the user. Only the measured x and y positions and their respective
estimated accuracies are reported out to the user at periodic intervals (i.e., the raw
measurements are not made available to the user). It is desired to merge the two
sensor outputs together in such a way as to obtain the best possible estimate of
vehicle position in an rms sense. Make reasonable assumptions for vehicle motion
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and instrument accuracies, and demonstrate that the decentralized Kalman filter
described in Section 6.7 will yield the same results as a hypothetical optimal
centralized filter, which is not possible in the described restrictive circumstances.
One set of reasonable assumptions for this demonstration would be as follows:

(a) The motions in both the x and y directions are random walk and indepen-
dent. The Q for a Dt interval of 1 second is 0.01m2.

(b) The initial uncertainty in the x and y position estimates is 1m rms in each
direction, and the assumed initial position estimate is [0, 0]T for the local as
well as the global filter.

(c) Let the true vehicle position be [1, 1]T in the x-y coordinate frame at t¼ 0.
(d) The measurement errors for the local Kalman filters are white and 1m2 for

Sensor No. 1 and 4m2 for Sensor No. 2.

6.8 In Example 6.5, Section 6.5, we illustrated how measurement weight factors
can be computed to yield a minimummean square estimation error on a batch basis.
Now complete this example by computing the mean square error associated with the
resulting estimate.
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7
Linearization, Nonlinear
Filtering, and Sampling
Bayesian Filters

Many of the early applications of Kalman filtering were in navigation where the
measurements were nonlinear. Thus, linearization has been an important consider-
ation in applied Kalman filtering right from the start, and it continues to be so to
this very day. Linearization is the main topic of Sections 7.1 and 7.2, and it is the
authors’ recommendation that the student just new to Kalman filtering should begin
with these sections, because they are very basic. In particular, the extended Kalman
filter that is discussed in Section 7.2 was one of the early means of coping with
nonlinear measurements, and it is still the method of choice in many applications.
However, there are some newer extensions of basic Kalman filtering that have been
introduced in recent years that are also important. Three of these, namely the
ensemble, unscented, and particle filters have been selected for discussion here in
Sections 7.4, 7.5, and 7.6. Research in Kalman filtering is still quite active, so it is
reasonable to expect to see further extensions and variations on the basic filter in
the years ahead.

7.1
LINEARIZATION

Some of the most successful applications of Kalman filtering have been in
situations with nonlinear dynamics and/or nonlinear measurement relationships.
We now examine two basic ways of linearizing the problem. One is to linearize
about some nominal trajectory in state space that does not depend on the measure-
ment data. The resulting filter is usually referred to as simply a linearized Kalman
filter. The other method is to linearize about a trajectory that is continually
updated with the state estimates resulting from the measurements. When this is
done, the filter is called an extended Kalman filter. A brief discussion of each will
now be presented.
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Linearized Kalman Filter

We begin by assuming the process to be estimated and the associated measurement
relationship may be written in the form

_x ¼ f x; ud; tð Þ þ u tð Þ (7.1.1)

z ¼ h x; tð Þ þ v tð Þ (7.1.2)

where f and h are known functions, ud is a deterministic forcing function, and u and
v are white noise processes with zero crosscorrelation as before. Note that
nonlinearity may enter into the problem either in the dynamics of the process or
in the measurement relationship. Also, note that the forms of Eqs. (7.1.1) and (7.1.2)
are somewhat restrictive in that u and v are assumed to be separate additive terms
and are not included with the f and h terms. However, to do otherwise complicates
the problem considerably, and thus, we will stay with these restrictive forms.

Let us now assume that an approximate trajectory x�(t) may be determined by
some means. This will be referred to as the nominal or reference trajectory, and it is
illustrated along with the actual trajectory in Fig. 7.1. The actual trajectory x(t) may
then be written as

x tð Þ ¼ x� tð Þ þ Dx tð Þ (7.1.3)

Equations (7.1.1) and (7.1.2) then become

_x� þ D _x ¼ f x� þ Dx; ud; tð Þ þ u tð Þ (7.1.4)

z ¼ h x� þ Dx; tð Þ þ v tð Þ (7.1.5)

We now assume Dx is small and approximate the f and h functions with Taylor’s
series expansions, retaining only first-order terms. The result is

_x� þ D _x � f x�; ud; tð Þ þ @f

@x

� �
x¼x�

� Dxþ u tð Þ (7.1.6)

z � h x�; tð Þ þ @h

@x

� �
x¼x�

� Dxþ v tð Þ (7.1.7)

Figure 7.1 Nominal and actual trajectories for a linearized

Kalman filter.
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where

@f

@x
¼

@f 1
@x1

@f 1
@x2

� � �
@f 2
@x1

@f 2
@x2

� � �
..
.

2
666664

3
777775;

@h

@x
¼

@h1
@x1

@h1
@x2

� � �
@h2
@x1

@h2
@x2

� � �
..
.

2
666664

3
777775 (7.1.8)

It is customary to choose the nominal trajectory x�(t) to satisfy the deterministic
differential equation

_x� ¼ f x�; ud; tð Þ (7.1.9)

Substituting this into (7.1.7) then leads to the linearized model

D _x ¼ @f

@x

� �
x¼x�

� Dxþ u tð Þ linearized dynamicsð Þ (7.1.10)

z� h x�; tð Þ½ � ¼ @h

@x

� �
x¼x�

� Dxþ v tð Þ linearized measurement equationð Þ
(7.1.11)

Note that the “measurement” in the linear model is the actual measurement less that
predicted by the nominal trajectory in the absence of noise. Also the equivalent
F and H matrices are obtained by evaluating the partial derivative matrices (Eq.
7.1.8) along the nominal trajectory.We will now look at two examples that illustrate
the linearization procedure. In the first example the nonlinearity appears only in the
measurement relationship, so it is relatively simple. In the second, nonlinearity
occurs in both the measurement and process dynamics, so it is somewhat more
involved than the first.

EXAMPLE 7.1

In many electronic navigation systems the basic observable is a noisy measurement
of range (distance) from the vehicle to a known location. One such system that has
enjoyed wide use in aviation is distance-measuring equipment (DME)� (1). We do
not need to go into detail here as to how the equipment works. It suffices to say that
the airborne equipment transmits a pulse that is returned by the ground station, and
then the aircraft equipment interprets the transit time in terms of distance. In our
example we will simplify the geometric situation by assuming that the aircraft and
the two DME stations are all in a horizontal plane as shown in Fig. 7.2 (slant range�
horizontal range). The coordinates of the two DME stations are assumed to be
known, and the aircraft coordinates are unknown and to be estimated.

� It is of interest to note that the DME land-based system has survived into the satellite navigation age. It is the
U. S. government’s current policy to keep the DME system operational within the continental U.S. as a backup
to GPS.
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We will look at the aircraft dynamics first. This, in turn, will determine the
process state model. To keep things as simple as possible, we will assume a nominal
straight-and-level flight condition with constant velocity. The true trajectory will be
assumed to be the nominal one plus small perturbations due to random horizontal
accelerations, which will be assumed to be white. This leads to random walk in
velocity and integrated random walk in position. This is probably unrealistic for
long time spans because of the control applied by the pilot (or autopilot). However,
this would be a reasonable model for short intervals of time. The basic differential
equations of motion in the x and y directions are then

€x ¼ 0 þ ux
€y ¼ 0

Deterministic
forcing

function

þ uy

Random
forcing

function

(7.1.12)

The dynamical equations are seen to be linear in this case, so the differential
equations for the incremental quantities are the same as for the total x and y, that is,

D€x ¼ ux

D€y ¼ uy
(7.1.13)

We now define filter state variables in terms of the incremental positions and
velocities:

x1 ¼ Dx; x2 ¼ D _x
x3 ¼ Dy; x4 ¼ D _y

(7.1.14)

Figure 7.2 Geometry for DME example.

}}
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The state equations are then

_x1
_x2
_x3
_x4

2
664

3
775 ¼

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

2
664

3
775

x1
x2
x3
x4

2
664

3
775þ

0

ux
0

uy

2
664

3
775 (7.1.15)

The state variables are driven by the white noise processes ux and uy, so we are
assured that the corresponding discrete equations will be in the appropriate form for
a Kalman filter.

We now turn to the measurement relationships. We will assume that we have
two simultaneous range measurements, one to DME1 and the other to DME2. The
two measurement equations in terms of the total x and y are then

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� a1ð Þ2 þ y� b1ð Þ2

q
þ v1

z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� a2ð Þ2 þ y� b2ð Þ2

q
þ v2

(7.1.16)

where v1 and v2 are additive white measurement noises.We see immediately that the
connection between the observables (z1 and z2) and the quantities to be estimated
(x and y) is nonlinear. Thus, linearization about the nominal trajectory is in order.
We assume that an approximate nominal position is known at the time of the
measurement, and that the locations of the two DME stations are known exactly.We
now need to form the @h=@x matrix as specified by Eq. (7.1.8). [We note a small
notational problem here. The variables x1, x2, x3, and x4 are used in Eq. (7.1.8) to
indicate total state variables, and then the same symbols are used again to indicate
incremental state variables as defined by Eqs. (7.1.14). However, the meanings of
the symbols are never mixed in any one set of equations, so this should not lead to
confusion.] We now note that the x and y position variables are the first and third
elements of the state vector. Thus, evaluation of the partial derivatives indicated in
Eq. (7.1.8) leads to

@h

@x
¼

x1 � a1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � a1ð Þ2 þ x3 � b1ð Þ2

q 0
x3 � b1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � a1ð Þ2 þ x3 � b1ð Þ2
q 0

x1 � a2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � a2ð Þ2 þ x3 � b2ð Þ2

q 0
x3 � b2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � a2ð Þ2 þ x3 � b2ð Þ2
q 0

2
666664

3
777775

(7.1.17)

or

@h

@x
¼ �cos u1 0 �sin u1 0

�cos u2 0 �sin u2 0

� �
(7.1.18)

Finally, we note that Eq. (7.1.18) can be generalized even further, since the sine and
cosine terms are actually direction cosines between the x and y axes and the
respective lines of sight to the two DME stations. Therefore, we will write the
linearized H matrix in its final form as

H ¼ @h

@x

����
x¼x�

¼ �cos ux1 0 �cos uy1 0

�cos ux2 0 �cos uy2 0

� �
(7.1.19)
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where the subscripts on u indicate the respective axes and lines of sight to the DME
stations. Note that H is evaluated at a point on the nominal trajectory. (The true
trajectory is not known to the filter.) The nominal aircraft position will change with
each step of the recursive process, so the terms of H are time-variable and must be
recomputed with each recursive step. Also, recall from Eq. (7.1.11) that the
measurement presented to the linearized filter is the total z minus the predicted
z based on the nominal position x�.

Strictly speaking, the linearized filter is always estimating incremental quan-
tities, and then the total quantity is reconstructed by adding the incremental estimate
to the nominal part. However, we will see later that when it comes to the actual
mechanics of handling the arithmetic on the computer, we can avoid working with
incremental quantities if we choose to do so. This is discussed further in the section
on the extended Kalman filter. We will now proceed to a second linearization
example, where the process dynamics as well as the measurement relationship has
to be linearized.

&

EXAMPLE 7.2

This example is taken from Sorenson (2) and is a classic example of linearization of
a nonlinear problem. Consider a near earth space vehicle in a nearly circular orbit. It
is desired to estimate the vehicle’s position and velocity on the basis of a sequence
of angular measurements made with a horizon sensor. With reference to Fig. 7.3, the
horizon sensor is capable of measuring:

1. The angle g between the earth’s horizon and the local vertical.

2. The angle a between the local vertical and a known reference line (say, to a
celestial object).

In the interest of simplicity, we assume all motion and measurements to be within a
plane as shown in Fig. 7.3. Thus, the motion of the vehicle can be described with the
usual polar coordinates r and u.

Figure 7.3 Coordinates for space vehicle example.
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The equations of motion for the space vehicle may be obtained from either
Newtonian or Lagrangian mechanics. They are (see Section 2.10, ref. 3):

€r � r _u
2 þ K

r2
¼ urðtÞ (7.1.20)

r €u þ 2_r _u ¼ uuðtÞ (7.1.21)

where K is a constant proportional to the universal gravitational constant, and ur and
uu are small random forcing functions in the r and u directions (due mainly to
gravitational anomalies unaccounted for in the K/r2 term). It can be seen that the
constant Kmust be equal to gR2

e if the gravitational forcing function is to match the
earth’s gravity constant g at the surface. The random forcing functions ur and uuwill
be assumed to be white. We will look at the linearized process dynamics first and
then consider the nonlinear measurement situation later.

The equations of motion, Eqs. (7.1.20) and (7.1.21), are clearly nonlinear so we
must linearize the dynamics if we are to apply Kalman filter methods. We have
assumed that random forcing functions ur and uu are small, so the corresponding
perturbations from a circular orbit will also be small. By direct substitution into Eqs.
(7.1.20) and (7.1.21), it can be verified that

r� ¼ R0 a constant radiusð Þ (7.1.22)

u� ¼ v0t v0 ¼
ffiffiffiffiffi
K

R3
0

s !
(7.1.23)

will satisfy the differential equations. Thus, this will be the reference trajectory that
we linearize about.

We note that we have two second-order differential equations describing the
dynamics. Therefore, we must have four state variables in our state model. We
choose the usual phase variables as state variables as follows:

x1 ¼ r; x2 ¼ _r

x3 ¼ u; x4 ¼ _u
(7.1.24)

The nonlinear state equations are then

_x1 ¼ x2

_x2 ¼ x1x
2
4 �

K

x21
þ urðtÞ

_x3 ¼ x4

_x4 ¼ � 2x2x4
x1

þ uuðtÞ
x1

(7.1.25)
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We must now form the @f=@xmatrix indicated in Eq. (7.1.8) to get the linearized F
matrix.

@f

@x
¼

0 1 0 0

x24 þ
2K

x31

� �
0 0 2x1x4

0 0 0 1

2x2x4
x21

�2x4
x1

0
�2x2
x1

2
66666664

3
77777775

¼

0 1 0 0

_u
2 þ 2K

r3

� �
0 0 2r _u

0 0 0 1

2_r _u

r2
�2 _u

r
0

�2_r

r

2
66666664

3
77777775

(7.1.26)

Next, we evaluate @f=@x along the reference trajectory.

@f

@x

���� r ¼ R0

u ¼ v0t

¼

0 1 0 0

3v2
0 0 0 2R0v0

0 0 0 1

0
�2v0

R0

0 0

2
666664

3
777775 (7.1.27)

Equation (7.1.27) then defines the F matrix that characterizes the linearized
dynamics. Note that in the linear equations, Dr; D_r; Du; and D _u become the four
state variables.

We now turn to the measurement model. The idealized (no noise) relationships
are given by

z1

z2

� �
¼ g

a

� �
¼ sin�1 Re

r

� �
a0 � u

2
4

3
5 (7.1.28)

We next replace r with x1 and u with x3, and then perform the partial derivatives
indicated by Eq. (7.1.8). The result is

@h

@x

� �
¼

� Re

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � R2

e

q 0 0 0

0 0 �1 0

2
64

3
75 (7.1.29)

Finally, we evaluate @h=@x along the reference trajectory

@h

@x

���� r ¼ R0

u ¼ v0t

¼
� Re

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 � R2

e

q 0 0 0

0 0 �1 0

2
664

3
775 (7.1.30)

256 CHAPTER 7 LINEARIZATION, NONLINEAR FILTERING



C07 12/09/2011 14:36:44 Page 257

7.2
THE EXTENDED KALMAN FILTER

The extended Kalman filter is similar to a linearized Kalman filter except that the
linearization takes place about the filter’s estimated trajectory, as shown in Fig. 7.4,
rather than a precompiled nominal trajectory. That is, the partial derivatives of
Eq. (7.1.8) are evaluated along a trajectory that has been updated with the filter’s
estimates; these, in turn, depend on the measurements, so the filter gain sequence
will depend on the sample measurement sequence realized on a particular run of the
experiment. Thus, the gain sequence is not predetermined by the process model
assumptions as in the usual Kalman filter.

A general analysis of the extended Kalman filter is difficult because of the
feedback of the measurement sequence into the process model. However, qualita-
tively it would seem to make sense to update the trajectory that is used for the
linearization—after all, why use the old trajectory when a better one is available?
The flaw in this argument is this: The “better” trajectory is only better in a statistical
sense. There is a chance (and maybe a good one) that the updated trajectory will be
poorer than the nominal one. In that event, the estimates may be poorer; this, in turn,
leads to further error in the trajectory, which causes further errors in the estimates,
and so forth and so forth, leading to eventual divergence of the filter. The net result
is that the extended Kalman filter is a somewhat riskier filter than the regular
linearized filter, especially in situations where the initial uncertainty and measure-
ment errors are large. It may be better on the average than the linearized filter, but it
is also more likely to diverge in unusual situations.

This then becomes the linearized H matrix of the Kalman filter. The linearized
model is now complete with the determination of the F and H matrices. Before we
leave this example, though, it is worth noting that the forcing function uuðtÞmust be
scaled by 1/R0 in the linear model because of the 1/x1 factor in Eq. (7.1.25).

&

Figure 7.4 Reference and actual trajectories for an extended

Kalman filter.
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Both the regular linearized Kalman filter and the extended Kalman filter have
been used in a variety of applications. Each has its advantages and disadvantages,
and no general statement can be made as to which is best because it depends on
the particular situation at hand. Aided inertial navigation systems serve as good
examples of bothmethods of linearization, and this is discussed further in Chapters 8
and 9.

Keeping Track of Total Estimates in an Extended Kalman Filter

It should be remembered that the basic state variables in a linearized Kalman filter
are incremental quantities, and not the total quantities such as position, velocity, and
so forth. However, in an extended Kalman filter it is usually more convenient to
keep track of the total estimates rather than the incremental ones, so we will now
proceed to show how this is done and why it is valid to do so.

We begin with the basic linearized measurement equation, Eq. (7.1.11)

z� h x�ð Þ ¼ HDxþ v (7.2.1)

Note that when working with incremental state variables, the measurement pre-
sented to the Kalman filter is ½z� hðx�Þ� rather than the total measurement z. Next,
consider the incremental estimate update equation at time tk

Dx̂k ¼ Dx̂�k þKk½zk � hðx�kÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Inc: meas:

�HkDx̂
�
k � (7.2.2)

Now, in forming the measurement residual in Eq. (7.2.2), suppose we associate the
h x�k
	 


term with HkDx̂
�
k rather than zk. This measurement residual can then be

written as

Measurement residual ¼ zk � ẑ�k
	 


(7.2.3)

because the predictive estimate of the measurement is just the sum of h x�k
	 


and
HkDx̂

�
k . Note that the measurement residual as given by Eq. (7.2.3) is formed

exactly as would be done in an extended Kalman filter, that is, it is the noisy
measurement minus the predictive measurement based on the corrected trajectory
rather than the nominal one.

We now return to the update equation, Eq. (7.2.2) and add x�k to both sides of
the equation:

x�k þ Dx̂k|fflfflfflfflffl{zfflfflfflfflffl}
x̂k

¼ x�k þ Dx̂�k|fflfflfflfflffl{zfflfflfflfflffl}
x̂�k

þKk zk � ẑ�k
	 


(7.2.4)

x̂k ¼ x̂�k þKk zk � ẑ�k
	 


(7.2.5)

Equation (7.2.5) is, of course, the familiar linear estimate update equation written in
terms of total rather than incremental quantities. It simply says that we correct the
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a priori estimate by adding the measurement residual appropriately weighted by the
Kalman gain Kk. Note that after the update is made in the extended Kalman filter,
the incremental Dx̂k is reduced to zero. Its projection to the next step is then trivial.
The only nontrivial projection is to project x̂k (which has become the reference x
at tk) to x̂�kþ1. This must be done through the nonlinear dynamics as dictated by
Eq. (7.1.1). That is,

x̂�kþ1 ¼
Solution of the nonlinear differential equation

_x ¼ f x; ud; tð Þ at t ¼ tkþ1; subject to the

initial conditon x ¼ x̂k at tk

8><
>:

9>=
>; (7.2.6)

Note that the additive white noise forcing function u(t) is zero in the projection step,
but the deterministic ud is included in the f function. Once x̂�kþ1 is determined, the
predictive measurement ẑ�kþ1 can be formed as h x̂�kþ1

	 

, and the measurement

residual at tkþ1 is formed as the difference zkþ1 � ẑ�kþ1

	 

. The filter is then ready to

go through another recursive loop.
For completeness, we repeat the familiar error covariance update and projec-

tion equations:

Pk ¼ I�KkHkð ÞP�
k (7.2.7)

P�
kþ1 ¼ fkPkf

T
k þQk (7.2.8)

wherefk,Hk, andQk come from the linearized model. Equations (7.2.7) and (7.2.8)
and the gain equation (which is the same as in the linear Kalman filter) should serve
as a reminder that the extended Kalman filter is still working in the world of linear
dynamics, even though it keeps track of total estimates rather than incremental ones.

Getting the Extended Kalman Filter Started

It was mentioned previously that the extended Kalman filter can diverge if the
reference about which the linearization takes place is poor. The most common
situation of this type occurs at the initial starting point of the recursive process.
Frequently, the a priori information about the true state of the system is poor. This
causes a large error in x̂�0 and forces P�

0 to be large. Thus, two problems can arise in
getting the extended filter started:

1. A very large P�
0 combined with low-noise measurements at the first step will

cause the Pmatrix to “jump” from a very large value to a small value in one
step. In principle, this is permissible. However, this can lead to numerical
problems. A non-positive-definite P matrix at any point in the recursive
process usually leads to divergence.

2. The initial x̂�0 is presumably the best estimate of x prior to receiving any
measurement information, and thus, it is used as the reference for linear-
ization. If the error in x̂�0 is large, the first-order approximation used in the
linearization will be poor, and divergence may occur, even with perfect
arithmetic.
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With respect to problem 1, the filter designer should be especially careful to use
all the usual numerical precautions to preserve the symmetry and positive definite-
ness of the P matrix on the first step. In some cases, simply using the symmetric
form of the P-update equation is sufficient to ward off divergence. This form,
Eq. (4.2.18), is repeated here for convenience (sometimes called the Joseph form)

Pk ¼ I�KkHkð ÞP�
k I�KkHkð ÞT þKkRkK

T
k (7.2.9)

Another way of mitigating the numerical problem is to let P�
0 be considerably

smaller than would normally be dictated by the true a priori uncertainty in x̂�0 . This
will cause suboptimal operation for the first few steps, but this is better than
divergence! A similar result can be accomplished by letting Rk be abnormally large
for the first few steps. There is no one single cure for all numerical problems. Each
case must be considered on its own merits.

Problem 2 is more subtle than problem 1. Even with perfect arithmetic, poor
linearization can cause a poor x̂�0 to be updated into an even poorer a posteriori
estimate, which in turn gets projected on ahead, and so forth. Various “fixes” have
been suggested for the poor-linearization problem, and it is difficult to generalize
about them (4–7). All are ad hoc procedures. This should come as no surprise,
because the extended Kalman filter is, itself, an ad hoc procedure. One remedy that
works quite well when the information contained in z0 is sufficient to determine x
algebraically is to use z0 to solve for x, just as if there were no measurement error.
This is usually done with some tried-and-true numerical algorithm such as the
Newton-Raphson method of solving algebraic equations. It is hoped this will yield a
better estimate of x than the original coarse x̂�0 . The filter can then be linearized
about the new estimate (and a smaller P�

0 than the original P�
0 can be used), and the

filter is then run as usual beginning with z0 and with proper accounting for the
measurement noise. Another ad hoc procedure that has been used is to let the filter
itself iterate on the estimate at the first step. The procedure is fairly obvious. The
linearized filter parameters that depend on the reference x are simply relinearized
with each iteration until convergence is reached within some predetermined
tolerance. P�

0 may be held fixed during the iteration, but this need not be the
case. Also, if x is not observable on the basis of just one measurement, iteration may
also have to be carried out at a few subsequent steps in order to converge on good
estimates of all the elements of x. There is no guarantee that iteration will work in all
cases, but it is worth trying.

Before leaving the subject of getting the filter started, it should be noted that
neither the algebraic solution nor the iteration remedies just mentioned play any role
in the basic “filtering” process. Their sole purpose is simply to provide a good
reference for linearization, so that the linearized Kalman filter can do its job of
optimal estimation.

7.3
“BEYOND THE KALMAN FILTER”

Even though the linearized and extended forms of the Kalman filter have served the
navigation community very well for the past half century, a healthy amount of
research on more general forms of nonlinear filtering has steadily persisted
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alongside for quite sometime now. More recently, there has even been a considera-
ble upsurge of interest in nonlinear and non-Gaussian filtering. While some of these
results can be quite interesting in their own right, our treatment of this subject here
can only be brief but one at a tutorial pace.

When dealing with a nonlinear function, either in the process or the measure-
ment model or both, the results of the linearized or extended Kalman filter strays
from the theoretical optima and, depending on the severity of the nonlinearity, can
lead to misleading performance or, worse, divergence. With its linear assumption,
the Kalman filter is an elegant, almost minimalist, recursive algorithm. Formula-
tions of Kalman filters that accommodate second- or higher-order relationships in
the nonlinear (process or measurement) functions do exist (8, 9), but they naturally
involve solutions with extra complexity. These belong in the same class as the
extended Kalman filter where the nonlinear function is being approximated, except
with higher degrees of complexity.

Another class of methods that has proven even more popular of late involves
the random sampling of the a posteriori conditional density function (see Sec-
tion 6.9) whose expected value would represent the optimum state estimate, in a
minimum mean square error sense. Of course, this class of methods is also
suboptimal because it is an approximation as well, albeit of the density function
instead of an approximation of the nonlinear function(s) in the model that is what
the Extended Kalman filter uses. In the later sections of this chapter, we will be
delving into several of the nonlinear methods from this sampling class. At first
glance, they may appear daunting due to their use of a whole new and unfamiliar
approach to Kalman filtering but we shall first broadly outline how they are related
to each other. The first two to be discussed, the Ensemble Kalman filter and the
Unscented Kalman filter, both invoke the Gaussian approximation of the Bayesian
filter. In contrast, the more general Particle filter does not do so. Of the two Gaussian
approximation methods to be discussed next, the Ensemble Kalman filter is a form
of a Monte Carlo-type filter and depends on random sampling of the probability
density function. The Unscented Kalman filter, on the other hand, uses a determi-
nistic sampling scheme.

We begin by revisiting the recursive Bayesian filter that was first introduced
back in Chapter 6, in particular, the form derived under the Gaussian approximation.
Even with the Gaussian assumption, we still face the non-trivial task of deriving the
associated covariance matrices to obtain an analytical solution. Rather, the idea
behind the sampling methods is to approximate these parameters via Monte Carlo
sampling. From the recursive loop of Fig. 6.12, we shall insert Gaussian random
number generators into the loop at two junctures, one before the projection
computations and one after thus resulting in Fig. 7.5. This is the basic Monte
Carlo Kalman filter (10) where the associated gains and error covariances are
derived, not analytically, but statistically via the random samples generated.

One notable deviation from our usual flow diagram here, and for subsequent
cases in this section, is that the initial conditions feed into the loop just before
projection step to the next cycle as opposed to at the measurement update step, as
have been seen before in earlier chapters. This convention appears to have been
widely adopted in the nonlinear filtering literature so we will follow it here as well.
The Monte Carlo Kalman filter provides a good intuitive stepping stone but we will
not dwell on it any further and move on next to another similar and more popular
sampling method called the Ensemble Kalman filter in the next section.
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7.4
THE ENSEMBLE KALMAN FILTER

The Ensemble Kalman filter method grew out of research activities from the world
of geophysical sciences and is finding use in large-scale systems such as those found
in dynamic meteorological forecasting and ocean systems (11,12). In place of
inserting the two Gaussian random number generators shown in Fig. 7.5, we modify
the scheme utilize a Gaussian random number generator at the very start to generate
random samples representing the initial state estimate with its associated error
covariance and then two for the additive process and measurement noise sequences
encountered in the recursive loop. Fig. 7.6 shows the modifications (gray blocks) for
the Ensemble Kalman filter.

After generating ½XXð1Þ�
k . . .XX

ðNÞ�
k �, we compute the following:

ẑ�k ¼ 1

N

XN
i¼1

h XX
ðiÞ�
k

� �
(7.4.1)

P�
~z~z

	 

k
¼ 1

N

XN
i¼1

h XX
ðiÞ�
k

� �
h XX

ðiÞ�
k

� �h iT( )
� ẑ�k ẑ�k

	 
T þ Rk (7.4.2)

P�
~x~z

	 

k
¼ 1

N

XN
i¼1

XX
ðiÞ�
k � x̂�k

h i
h XX

ðiÞ�
k

� �
� ẑ�k

h iT
(7.4.3)

Then, the Kalman gain:

Kk ¼ P�
~x~z

	 

k
P�
~z~z

	 
�1

k
(7.4.4)

Figure 7.5 The Monte Carlo Kalman filter.

262 CHAPTER 7 LINEARIZATION, NONLINEAR FILTERING



C07 12/09/2011 14:36:48 Page 263

The state estimate update equation is given by:

XX
ðiÞ
k ¼ XX

ðiÞ�
k þKk zk þ eðiÞv � ẑ�k

� �
(7.4.5)

where

eð1Þv ; eð2Þv . . . eðNÞv

h i
k
� NN 0;Rkð Þ

At the stage of the processing cycle, if we wish to extract an updated state estimate,
we would simply reconstruct it as a mean of the sampled distribution:

x̂k ¼ 1

N

XN
i¼1

XX
ðiÞ
k (7.4.6)

And, to avoid the explicit use of any linearized measurement connection, H, we
revert to an equivalent form of Eq. () for the error covariance update:

P~x~xð Þk ¼ P�
~x~x

	 

k
�Kk P�

~z~z

	 

k
KT

k (7.4.7)

The projection of the samples to the next step is made individually but also with
random perturbations for each sample:

x̂�kþ1 ¼
1

N

XN
i¼1

F XX
ðiÞ
k

� �
þ eðiÞw
� �

k

h i
(7.4.8)

Figure 7.6 The Ensemble Kalman filter.
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where

eð1Þw ; eð2Þw . . . eðNÞw

h i
k
� NN 0;Qkð Þ

The projected error covariance matrix becomes:

P�
x̂x̂

	 

kþ1

¼ 1

N

XN
i¼1

F X
ðiÞ
k

� �
F X

ðiÞ
k

� �h iT( )
� x̂�k x̂�k

	 
T
(7.4.9)

EXAMPLE 7.3

To illustrate the workings of the Ensemble Kalman filter, we will revisit an earlier
example of the Kalman filter involving the first-order Gauss–Markov process in
Example 4.3. Even though the Gauss–Markov model is linear in nature, the
Ensemble Kalman filter touted as a nonlinear filter should be able handle a linear
model as well. What better way to make a comparison between the two so that one
can get a better understanding of their associated similarities and differences.

If we implement the Ensemble Kalman filter as outlined by Eqs. (7.4.1)–(7.4.9)
and simply let the measurement equation be

h XX
ðiÞ�
k

� �
¼ HkXX

ðiÞ�
k where Hk ¼ 1 ðsee Eq: 4:5:6Þ;

and the state transition be

F XX
ðiÞ
k

� �
¼ fkX

ðiÞ
k where fk ¼ e�0:1

while adopting all the remaining parameters from Example 4.3, we should expect to
get state estimates from the Ensemble Kalman filter that are nearly the same as from
the results of Example 4.3, when working off the same true first-order Gauss–
Markov process. Fig. 7.7 shows a comparison between the results from the two
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Figure 7.7 Comparing state estimates from regular Kalman filter versus Ensemble

Kalman filter (for N¼ 100 samples) processing identical measurements from same

first-order Gauss-Markov process.

264 CHAPTER 7 LINEARIZATION, NONLINEAR FILTERING



C07 12/09/2011 14:36:50 Page 265

There are many other variations that are similar to the Ensemble Kalman filter
but we leave the reader to explore these, bearing in mind that this remains a very
dynamic field of study.

7.5
THE UNSCENTED KALMAN FILTER

Now that we have a better understanding of what a sampling method is all about
from the preceding discussion, we will take a look next at a popular Gaussian
sampling method called the Unscented Kalman filter. Rather than picking out a
bunch of random samples that represent the state estimate’s conditional density, a
deterministic choice of sampling points, usually called sigma points. These samples
have something to do with the sigma of a distribution although they are not
necessarily at exactly “one sigma.” The name of this filter solution takes after the
Unscented Transform, a method for calculating the statistics of a random variable
that has been subject to a nonlinear transformation (13,14). This method provides
estimates of the mean and covariance of the random variable based on discrete
samples projected exactly through the associated nonlinear transform.

Consider a nonlinear function f (�) that propagates a random variable x to result
in another random variable y¼ f(x). Given relevant parameters of x (mean ofmx and
covariance of Cx), we seek to determine the mean and covariance of y, i.e., my

filters, when the Ensemble Kalman filter uses N¼ 100 samples. The rms error from
the P matrix, shown in Fig. 7.8, reflects the random aspect of the sampling method
used in theMonte Carlo Kalman filter, unlike the analytical nature of the same result
from Example 4.3 as depicted in Fig. 4.5. It compares the cases where N¼ 100 and
1,000 samples to the analytical result of the regular Kalman filter.

Clearly, a linear example was chosen to demonstrate a method that is capable
of handling nonlinear models. Nevertheless, what is important is that the compari-
son of results helps validate the method. More importantly, the example was
intended for readers to make the connection between the newer method to the more
familiar Kalman filter seen before.
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Figure 7.8 Comparing rms error from Pmatrix, for the Ensemble Kalman filter with

different sampling sizes and for linear Kalman filter.
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and Cy. With the Unscented Transform, a set of samples are deterministically
selected from the probability distribution of x. Specifically, these include the mean
sample, i.e. mx, plus two samples for each dimension of the associated distribution.
Each of these two samples, per dimension, is approximately related to one standard
deviation away (i.e., the sigma points) from the mean sample. These points, a total
of 2Nþ 1 for an N-dimensional distribution, are chosen to be a minimal yet well-
distributed sample set XX over the probability distribution domain of x. (An even
more general filter called the Gauss-Hermite Kalman filter utilizes more than just
three sigma points per dimension.) Then, each of these sample points in XX are
propagated through the nonlinear transformation of f to a corresponding set of
samples points in YY ¼ f ðXXÞ. From the statistical samples in YY, we can derive the
estimates of mean and covariance for y.

The entire procedure can be summarized as follows (15):

(a) Selecting the unscented samples:

XXi ¼
mx i ¼ 0

mx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ lð ÞCx

p
i ¼ 1; . . .N

mx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ lð ÞCx

p
i ¼ N þ 1; . . . 2N

8>><
>>: (7.5.1)

where

l¼ a2 (N þ k) � N

N¼ dimension of state x

a¼ determines spread of the unscented samples about the mean sample

b¼ dependent on knowledge of distribution (for Gaussian, b¼ 2)

k¼ scaling factor, usually equal to 3-N

(b) Transforming the unscented samples: YY ¼ f ðXXÞ
(c)

Define weights :

vm
0 ¼ l

lþ N

vm
0<i�2N ¼ 1

2 lþ Nð Þ
vC
0 ¼ vm

0 þ 1� a2 þ b

vC
0<i�2N ¼ 1

2 lþ Nð Þ

8>>>>>>>>>><
>>>>>>>>>>:

(7.5.2)

(d)

m̂y ¼
X2N
i¼0

vm
i YYi (7.5.3)

and

Cy ¼
X2N
i¼0

vC
i YYi � m̂y

	 

YYi � m̂y

	 
T
(7.5.4)
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The reconstitution of the estimates in Step (d) based on the unscented samples
derived in Step (b) require the derivation of weights (Eq. 7.5.2) outlined by Step (c).
The choice of tuning parameters that make up the weights is not an exact one but
nominal values can be found for use from various reference sources (15).

EXAMPLE 7.4

Consider a one-dimensional random variable x that is subject to a nonlinear
transformation with the following function:

y ¼ 0:1x cos ð0:01 x2Þ; where x is a Gaussian random variable : x � N 48:0; 0:752
	 


:

In a comparison of the statistics derived for the nonlinear function output y, we can
derive a mean and standard deviation (sigma) from the true probability density
function, from the linearized method, and from the Unscented Transform, all shown
in Fig. 7.9.

For the linearized method, we would simply approximate the nonlinear
function in the form of a Taylor Series to the first order, ignoring higher order terms:

y ¼ f xð Þ ffi f x0ð Þ þ df

dx

����
x¼x0

Figure 7.9 Example of a one-dimensional nonlinear transformation showing differences in

the result output between the true (distorted) probability density function and an

approximated one (undistorted) projected through the linearized form of the nonlinear

function.
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As the Example 7.4 shows, the Unscented Transform can do a slightly better job of
estimating the mean and sigma of a random variable that has been subject to a
nonlinear transformation over a linearized approach. Note that the Unscented
Transform really only involves selecting the mean and “sigma point” (from the
covariance matrix) samples prior to the transformation, transforming them through
the correspondingnonlinear function and then estimating themean and the covariance
of the resulting transformation. Clearly, its application to the Kalman filter will
concern strictly the process model or the measurement model or maybe both:

Process Update: xkþ1 ¼ F xkð Þ þ wk (7.5.5)

Measurement Update: zk ¼ h xkð Þ þ vk (7.5.6)

Eqs. (7.5.5) and (7.5.6) show a general nonlinear relationship with the noise
inputs, w and v respectively, being additive.

The state estimate is Gaussian distributed according to x̂k � NN xk;Pkð Þ and we
enter the recursive loop, of course, at k¼ 0. Based on this probability density, we
choose deterministic “samples” based on those so-called sigma points:

XXk�1 ¼ x̂k�1 x̂k�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ lð ÞPk�1

p
x̂k�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ lð ÞPk�1

p �
(7.5.7)

For the prediction step of the Unscented Kalman filter, we project the set of samples
individually through the nonlinear process function XX�

k ¼ F XXk�1ð Þ, and then
reconstitute the a priori state estimate and its error covariance accordingly, with
the following equation:

x̂�k ¼
X2N
i¼0

vm
i XX

ðiÞ�
k (7.5.8)

P�
k ¼

X2N
i¼0

vC
i XX

ðiÞ�
k � x̂�k

� �
XX

ðiÞ�
k � x̂�k

� �T( )
þQk (7.5.9)

The two terms in the approximation, the nonlinear function f and its derivative, are
evaluated at the mean of the input density function, i.e., x0¼ 48.0.

f 48:0ð Þ ¼ �2:393;
dy

dx

����
x¼48:0

¼ 3:945

This derivative serves as the multiplier for any variation in x that results in the same
for y:

sy � sx � dy
dx

����
x¼48

¼ 0:75 � 3:945 ¼ 2:958

The Unscented Transform estimates were obtained with Eqs. (7.5.1) to (7.5.4) using
the following parameters: N¼ 1; a¼ 1; b¼ 2; k¼ 3-N

&
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We are now ready to re-sample new sigma points for the remainder of the
recursive cycle.

XX�
k ¼ x̂�k x̂�k þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ lð ÞP�
k

p
x̂�k � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ lð ÞP�
k

p �
(7.5.10)

To prepare the measurement update step of the Unscented Kalman filter, we project
the sigma point samples through the nonlinear measurement function and evaluate
the associated covariances needed to compute the gain:

XX�
k ¼ h XX

ið Þ�
k

� �
(7.5.11)

ẑ�k ¼
X2N
i¼0

vm
i XX

ið Þ�
k (7.5.12)
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Kk ¼ P�
~x~z

	 

k
P�
~z~z

	 
�1

k
(7.5.15)

The Kalman gain Kk is used to update the state estimate in the usual way:

x̂k ¼ x̂�k þKk zk � ẑ�k
	 
 ¼ x̂�k þKk~z

�
k (7.5.16)

For the error covariance update, as was from the Bayesian filter, we use the
following form to avoid a need to linearize the measurement connection matrix H:

Pk ¼ P�
k �Kk P�

~z~z

	 

k
KT

k (7.5.17)

At this point, the recursive cycle then repeats itself by returning back to Eq. (7.5.7).
To close this sub-section, there are other variants of the Unscented Kalman

filter that have been proposed and used. We can only refer the reader to other
references for notes on these (16,17).

7.6
THE PARTICLE FILTER

With its random samples being treated as “particles,” some would consider the
Ensemble Kalman filter as belonging to the family of Particle filters. In most
instances, however, the Particle filter referred to in the contemporary literature
takes one step further in generalization to detach itself from the Gaussian assump-
tion. In that regard, Particle filters have become very popular when there is a need to
handle non-Gaussian problems, not just nonlinear ones, and particularly multimodal
density functions and not just unimodal ones.Whole books have been devoted to the

7.6 THE PARTICLE FILTER 269



C07 12/09/2011 14:36:54 Page 270

different variations of the Particle filter so this is an expansive topic in and of itself
(18,19). Our treatment of this subject here cannot be much beyond an introductory
tutorial treatment of one commonly-used variation with an accompanying example.
For those attempting to learn about the rudiments of the Particle filter for the first
time, the terminology can be rather confusing so we shall pay careful attention to
clarifying seemingly ambiguous terms.

Beingmore like the Ensemble Kalman filter than the Unscented Kalman filter, the
Particle filter goes to great lengths at approximating the relevant probability distribu-
tions involved in the estimation process except in an even more elaborate manner. The
utility of a Particle filter lies in its ability to approximate a continuous probability
density function with discrete weights and at sample points that are generally unevenly
spaced, rather as the very particles being associated with the filter name.

Fig. 7.10 shows an example of how a continuous probability density function can
be approximated by a set of suchweights. If the samples were in fact uniformly spaced,
then onemight be inclined to think that theweights have some direct relationship to the
value of the density function at the location of the samples. However, it is incorrect to
think that the weights and density function have such a direct relationship only because
the samples are not uniformly spaced, in general. Therefore, the “weights” of the
particles, which account for both the value of the density function and the sparseness or
compactness of the other particles surrounding it, are often depicted, here in Fig. 7.10
and elsewhere, in terms of relative size of circles.

In a Particle filter, this discrete approximation is used to represent the a
posteriori conditional density:

p xkjz�k
	 
 �XN

i¼1

v
ðiÞ
k d xk � x

ðiÞ
k

� �
(7.6.1)

where d (�) is the Dirac delta function.
Recall from Section 6.9 on the recursive Bayesian filter that we can derive from

this conditional density, among other things, an expected value that represents the
optimal estimate of a Kalman filter.

However, unlike a Monte Carlo-type Ensemble Kalman filter that assumes a
Gaussian approximation in which we are able to count on drawing random samples
from an easily-accessible distribution such as the Gaussian, the Particle filter must
deal with a dynamic set of random samples that may represent just about any
distribution andmost likely one that we cannot easily draw random samples from, or
worse, one that we may not be able to even describe analytically!

Figure 7.10 Approximate representation of a general probability

density function using appropriately-weighted random samples.
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This leads to another important concept we use to construct the Particle filter as
something called Importance Sampling. This concept allows us to work around the
difficulty of not always being able to directly generate random samples where we
need to do so. Rather, for a general density function, we attempt to do the same thing
but indirectly via what is called a proposal function that we are assured of generating
such samples (e.g., Gaussian, uniform probability density function). This proposal
function is known as the Importance Density and so the process of drawing samples
from a general density function is known accordingly as Importance Sampling.
Used in the Particle filter, its recursive nature results in an algorithm to determine
the weight sequence wk, called Sequential Important Sampling or SIS:

vi
k / vi

k�1

p zkjxðiÞk
� �

p x
ðiÞ
k jxðiÞk�1

� �
q x

ðiÞ
k jxðiÞk�1; zk

� � (7.6.2)

where

p zkjxðiÞk
� �

is known as the likelihood function;

p x
ðiÞ
k jxðiÞk�1

� �
is known as the transition prior; and

q x
ðiÞ
k jxðiÞk�1; zk

� �
is the proposal Importance Density that is to be sampled from.

When it comes to choosing the density function q, one suboptimal choice that has

been favored is to choose q x
ðiÞ
k jxðiÞk�1; zk

� �
to equal p x

ðiÞ
k jxðiÞk�1

� �
, the density function

that describes the state projection from one time step to the next, i.e., the transition

prior. In that particular case, vi
k / vi

k�1p zkjxðiÞk
� �

. This is sometimes known as the

“bootstrap filter.” If we use such a scheme and also a special condition that the
weights are resampled every cycle such that they turn into uniformly-distributed

weights, we end up with the rather concise expression ofvi
k ¼ p zkjxðiÞk

� �
. (Note that

the weights are normalized so that they sum to one.) We shall explore this notion of
resampling next.

There are many variants of the Particle filter but one that uses the above choice
is a relatively popular scheme called the Sequential Importance Resamplingy or SIR
Particle filter. A detrimental effect commonly associated with the SIS Particle filter
is known as the “degeneracy phenomenon” where the normalized weights tend to
concentrate into one particle, after a certain number of recursive steps, leaving all
other particles to be essentially degenerate. An example of this can be seen in
Fig. 7.11, which depicts what might happen to 20 particles without resampling after
only two cycles of a particular sample realization of a given problem. Even though
the particles are still spread around in their locations (x), the weight of one particular
particle has become dominant (Particle 10 highlighted with the square) along with
another one slight less so (Particle 19 highlighted with the circle). Both Particle 10

y The acronym “SIR” is sometimes found in the literature to be “Sampling Importance Resampling” which is
somewhat confounding. It is related to the SIS Particle filter, where the “SIS” stands for “Sequential Importance
Sampling,” so we follow Wikipedia’s use of “Sequential Importance Resampling” as the most cogent
alternative.
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and Particle 19 are strongly weighted because they carry values that are near the
mean of the conditional density function (i.e., the true value). After resampling, the
particles are remapped with more meaningful weights, in most cases uniformly
distributed (Fig. 7.12).

Made once every recursive cycle, usually, the process of resampling generally
uses the cumulative profile of the discrete weights for the remapping procedure.
Fig. 7.13 shows how a new drawing for all particles from a uniform distribution will
end up favoring usurping the values from the very few dominant particles from before.

Figure 7.11 After two cycles without resampling using the SIS Particle filter, we see two particle

weights dominate over the others.

Figure 7.12 Immediately after resampling, the state estimates of the particles are remapped and

their weights rebalanced, usually equalized by a uniform density function.

Figure 7.13 Explanation of how the particles are remapped during Resampling from those shown

in Figure 7.11 to those in Figure 7.12.
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Since the SIR filter was first introduced in 1993 (20), many other variants have
been spawned. One such class of variants include the use of the Extended Kalman
filter or Unscented Kalman filter with local linearization (for individual particles) to
generate the Importance Density needed in Eq. (7.6.2). Although the subject of the
Particle filter has, in someways, veered from the original topic of this book, we shall
take one last look at a Particle filter that actually uses a parallel set of Kalman filters
for its inner workings. We do so in the form of an example.

EXAMPLE 7.5

In terrain-referenced navigation or TRN, the position of an aircraft is determined by
comparing a series of height measurements against an accurate database of terrain
heights above a reference frame. In its simplest form, measurements from a radar
altimeter provide information of aircraft height above the terrain while measure-
ments from a baro-altimeter provide information about the aircraft altitude above
the reference frame. Flat terrain presents the worst conditions for solving position
while rugged terrain with distinct height variations are the best to work with (21).

Our example deals with a one-dimensional case so we only need to deal with a
single position state. We will also process only the radar altimeter measurement and
assume the baro-altimeter measurement is perfect. We can describe the process and
measurement models according to the following:

xkþ1 ¼ xk þ uk þ wk (7.6.3)

zk ¼ h xkð Þ þ vk (7.6.4)

Our process model here is entirely linear, but the measurement model is nonlinear
with additive measurement noise:

hradalt � hbaro|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
zk

¼ hterrain xkð Þ þ vk (7.6.5)

Many descriptions of the various Particle filter implementations in the published
literature are often generalized, almost overly so. We will dissect a particular
implementation of a Particle filter where the Importance Density is derived from

Figure 7.14 Terrain-referenced navigation example illustrating a Particle

filter implementation to address a nonlinear measurement situation.
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local linearization made independently for each particle with the use of an Extended
Kalman filter. The algorithm used is shown in Fig. 7.15.

We enter the loop shown in Fig. 7.15 with an initial estimate of x0 and its
probability density p(x0). In this problem, we assume p(x0) to be uniformly
distributed over the range of [3,000m, 7,000m]. The true initial value is 5,100m.
We then project and update each particle through its own EKF before redrawing the
particles to update the weights and forming the updated state estimate and error
covariance. The densities involved in calculation of the weights are given by:
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Figure 7.15 Particle filter using Extended Kalman filters for Local

Linearization.
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The previous example is simply one out of a myriad of Particle filter variants.
However, its use of the EKF for local linearization of the particles warrants its
introduction here. There is also another type of Particle filter, very similar to one
we have just examined, that uses an Unscented Kalman filter instead of the EKF. The
Unscented Particle filter is also popular choice in being able to handle the local
linearization approximation slightly better than an EKF at the expense of even more
algorithmic complexity (22). Fewproblems contain nonlinear functions in their entirety
for both process and measurement models. Many may contain a mixture such that the
state vector can be partitioned into nonlinear and linear states. For such situations, there
is a popular variant called the Rao-Blackwellized (or Marginalized) Particle Filter to
exploit what can be a substantial reduction in computational burden (23).

Clearly, the many different variants of Particle filters all have their strengths
and weaknesses, whether in numerical terms or in informational terms. However,
one has to be a little circumspect when evaluating the usefulness of any form of
particle filter depending on the problem that is being solved for. One can always
contrive a problem to maximize the strengths of the solution but the realism of that
particular problem should be fairly weighed against the extra computational burden
undertaken. This subject is still very dynamic today even though there are some
schemes that work better than others for certain problems, and the potential for even
more innovative variations remains to be uncovered. We shall leave this topic at
this point in time by saying that the end of the story of the Particle filter is far from
being settled!

PROBLEMS

7.1 Consider a two-dimensional problem where the position of an observer is
moving in an oscillatory pattern, and it is to be determined based on ranging
measurements from two known references A and B. See Fig. P7.1.

The weights are resampled and then the entire cycle is repeated for subsequent steps.
The profile of the estimation error for this example is shown in Figure 7.16.

&

Figure 7.16 Estimation error of the Particle filter using

EKF for local linearization.
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Given that the motion occurs entirely along the x-axis, let us assume a two-state
position-velocity model for the process dynamics along the x-dimension. Since the
motion is somewhat deterministic where the maximum acceleration is just slightly
less than 20m/s2, we can assume a spectral amplitude S for the position-velocity
driving process noise of 400 (m/s2)2/Hz.

The measurement model will be nonlinear and must be linearized to a nominal
position that is approximately near the true position. Assume that the measurement
noise associated with ranging to each reference station to have a variance of (4m)2.
Choose appropriate initial uncertainties for the position and velocity states.

Write out the parameters of this two-state Kalman filter for f, Q, H, R, and P�
0 .

(a) Generate noisy ranging measurements from the two references to the true
position of the moving observer for 100 steps. The step size is 1 second.

(b) To formulate an Extended Kalman Filter (EKF), a nominal position must be
assumed for linearization to generate the time-varying H matrix. Without
any external help, this nominal position is determined by the best prediction
solution of the filter.Recall that theEKFworksoff the difference between the
noisy range measurements and the predicted range measurements (based on
the nominal position). At each step, what the EKF estimates then is the
difference between the total position and the nominal position. This estimate
gets recombined with the nominal position into a best estimate of the total
position, which then gets projected ahead to form the next nominal position.
At the start of the next cycle, the a priori state estimate for the position error
starts out at zero again. Run the filter over 100 steps and plot out the position
error. Note the characteristic of the error profile.

(c) The non-trivial oscillations seen in the error profile is due to the severe
nonlinearity of the measurement model. Find a way to run the EKF such that
this effect due to the nonlinear measurement situation is drastically reduced.
(Hint: The degree of approximation in the linearization of the nonlinear
measurement model is dependent on the choice of the nominal position used
for the point of linearization. Choose a better nominal position after a given
processing cycle to do that same cycle over with.) Run your improved filter
over 100 steps and plot out the position error.

Figure P7.1
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7.2 Consider a simple one-dimensional trajectory determination problem as
follows. A small object is launched vertically in the earth’s atmosphere. The
initial thrust exists for a very short time, and the object “free falls” ballistically for
essentially all of its straight-up, straight-down trajectory. Let y be measured in the
up direction, and assume that the nominal trajectory is governed by the following
dynamical equation:

m€y ¼ �mg� D _yj _yj
where

m¼ .05 kg (mass of object)

g¼ 9.087m/s2 (acceleration of gravity)

D¼ 1.4
 10�4 n/(m/s)2 (drag coefficient)

The drag coefficient will be assumed to be constant for this relatively short
trajectory, and note that drag force is proportional to (velocity)2, which makes the
differential equation nonlinear. Let the initial conditions for the nominal trajectory
be as follows:

y 0ð Þ ¼ 0

_y 0ð Þ ¼ 85m/s

The body is tracked and noisy position measurements are obtained at intervals of
.1 sec. The measurement error variance is .25m2. The actual trajectory will differ
from the nominal one primarily because of uncertainty in the initial velocity.
Assume that the initial position is known perfectly but that initial velocity is best
modeled as a normal random variable described by NN (85m/sec, 1 m2/sec2).
Work out the linearized discrete Kalman filter model for the up portion of the
trajectory.
(Hint: An analytical solution for the nominal trajectory may be obtained by
considering the differential equation as a first-order equation in velocity. Note j _yj ¼
_y during the up portion of the trajectory. Since variables are separable in the velocity
equation, it can be integrated. The velocity can then be integrated to obtain position.)

7.3 (a) At the kth step of the usual nonadaptive Kalman filter, the measurement
residual is ðzk �Hkx̂

�
k Þ. Let zk be scalar and show that the expectation of

the squared residual is minimized if x̂�k is the optimal a priori estimate of
xk, that is, the one normally computed in the projection step of the Kalman
filter loop.
(Hint: Use the measurement relationship zk ¼ Hkxk þ vk and note that vk
and the a priori estimation error have zero crosscorrelation. Also note that
the a priori estimate x̂�k , optimal or otherwise, can only depend on the
measurement sequence up through zk�1 and not zk.)

(b) Show that the time sequence of residuals zk �Hkx̂
�
k

	 

,

zkþ1 �Hkþ1x̂
�
kþ1

	 

, . . . , is a white sequence if the filter is optimal. As

a matter of terminology, this sequence is known as an innovations
sequence. See Section 5.3.
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7.4 This problem is a variation on the DME example given in Section 7.1
(Example 7.1 with a simplification in the model of the aircraft dynamics).
Suppose that the two DME stations are located on the x-axis as shown in the
accompanying figure, and further suppose that the aircraft follows an approxi-
mate path from south to north as shown. The aircraft has a nominal velocity of
100m/s in a northerly direction, but there is random motion superimposed on this
in both the x and y directions. The flight duration (for our purposes) is 200 s, and
the initial coordinates at t¼ 0 are properly described as normal random variables
as follows:

x0 � NNð0; 2;000m2Þ
y0 � NNð�10;000m; 2;000m2Þ

The aircraft kinematics are described by the following equations:

xkþ1 ¼ xk þ w1k; k ¼ 0; 1; 2; . . . ; 200

ykþ1 ¼ yk þ w2k þ 100Dt; k ¼ 0; 1; 2; . . . ; 200

where w1k and w2k are independent white Gaussian sequences described by

w1k � NNð0; 400m2Þ
w2k � NNð0; 400m2Þ

DME1

(–10,000 m, 0)

DME2

(10,000 m, 0)0

Run starts here

End of run

Typical trajectory

(x0, y0)

x

y

Figure P7.2
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The sampling interval Dt is 1 s. The aircraft motion will be recognized as simple
random walk in the x-coordinate, and random walk superimposed on linear motion
for the y-coordinate.

The aircraft obtains simultaneous discrete range measurements at 1 s intervals
on both DME stations, and the measurement errors consist of a superposition of
Markov and white components. Thus, we have (for a typical range measurement)

Total

noisy

measurement

2
664

3
775 ¼

true

total

range

2
664

3
775þ

Markov

error

component

2
664

3
775þ

white

error

component

2
664

3
775

Wehave twoDME stations, so themeasurement vector is a two-tuple at each sample
point beginning at k¼ 0 and continuing until k¼ 200. TheMarkov errors for each of
the DME stations are independent Gaussian random processes, which are described
by the autocorrelation function

Rm tð Þ ¼ 900e�0:01jtj m2

The white measurement errors for both stations have a variance of 225m2.
(a) Work out the linearized Kalman filter parameters for this situation. The

linearization is to be done about the nominal linear-motion trajectory
exactly along the y-axis. That is, the resultant filter is to be an “ordinary”
linearized Kalman filter and not an extended Kalman filter.

(b) After the key filter parameters have been worked out, run a covariance
analysis for k¼ 0, 1, 2, . . . , 200, and plot the estimation error variances
for both the x and y position coordinates.

(c) You should see a pronounced peak in the y-coordinate error curve as the
aircraft goes through (or near) the origin. This simply reflects a bad
geometric situation when the two DME stations are 180 degrees apart
relative to the aircraft. One might think that the estimation error variance
should go to infinity at exactly k¼ 100. Explain qualitatively why this is
not true.

7.5 Recall from Chapter 1 that the linear transformation of a Gaussian distribution
results in another Gaussian distribution. We will demonstrate this here by Monte
Carlo sampling. The linear transformation equation we will use in this problem is
the Kalman filter state and covariance projection equations:

True process of a random sample xk:

xkþ1 ¼ fkxk þ wk (P7.5.1)

Linear transformation of a Gaussian distribution:

x̂�kþ1 ¼ fkx̂k

P�
kþ1 ¼ fkPkf

T
k þQk

(P7.5.2)
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To begin with, we are given the mean and covariance of the Gaussian distribution,

x̂k ¼
�16:5

�6:6

2:9

2
64

3
75 Pk ¼

3:2 �1:2 0:2

�1:2 4:5 0:02

0:2 0:02 1:2

2
64

3
75 (P7.5.3)

The transformation parameters given are

fk ¼
1 1 0

0 1 0

0 0 0:98

2
64

3
75 Qk ¼

1=3 1=2 0

1=2 1 0

0 0 0:01

2
64

3
75 (P7.5.4)

(a) With the distribution parameters given by Eq. (P7.5.3), compute the mean
and covariance of the random variable after the linear transformation given
by Eq. (P7.5.2).

(b) Alternatively, we can determine approximate values for this by way of a
Monte Carlo experiment. To begin, generate a set of 10,000 samples of the
distribution (a process called “drawing”) whose parameters are given by
Eq. (P7.5.3).

(c) Project these 10,000 samples with the transformation equation of Eq.
(P7.5.1) to obtain a resulting set of 10,000 samples. Evaluate the mean and
covariance of the transformed set. Note that Eq. (P7.5.1) also involves
another random variablew. This is a zero-mean random vector that must be
generated separately from its distribution, as specified by the covariance
matrix Q.

(d) Compare your results from Part (c) with the theoretical results of Part (a). Is
the error within 10% of the magnitude of the values?

(This Monte Carlo exercise is continued in a nonlinear setting in Problem 7.6.)

7.6 Let the measurement model be the nonlinear function given by:

z1

z2

� �
¼ x1cos x2ð Þ

x1sin x2ð Þ

� �
þ v1

v2

� �
(P7.6.1)

Let the state estimates and associated covariance be

x̂1

x̂2

� �
¼ 100 units

0:3 radians

� �
P ¼ E

x̂1

x̂2

� �
x̂1 x̂2½ �

� �
¼ 45 0:2

0:2 0:001

� �

(a) Assuming that the state estimates have a bivariate Gaussian probability
distribution with mean and covariance specified above, use a Monte Carlo
method with 10,000 samples to compute the measurement residual
covariance (Eq. 7.4.2) and the Kalman gain (given by Eq. 7.4.4).

(b) Repeat Part (a) with the Unscented Transform (Eqs. 7.5.13 and 7.5.15).
Choose the relevant parameters for the transform to be the same as those
used in Example 7.4, except N¼ 2 (for the two-state problem at hand). The
other parameters are a¼ 1, b¼ 2, k¼ 3-N.
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(c) Finally, linearize the measurement equation of Eq. (P7.6.1) and compute
the measurement residual covariance and Kalman gain in the usual way.
How does this compare to the results of Parts (a) and (b)?

7.7 The resampling process described for the particle filter in Section 7.6 shows an
example of a sample realization in Fig. 7.11 (before resampling) and Fig 7.12 (after
resampling). The table below lists the 20 particle samples of weights and values as
depicted in Fig. 7.11.

N Weight Value

1 0.0000 68.0845

2 0.0000 73.5830

3 0.0000 65.8939

4 0.0000 74.2335

5 0.0000 34.3776

6 0.0000 86.4921

7 0.0000 69.3185

8 0.0000 36.5419

9 0.0000 37.5836

10 0.7266 22.0238

11 0.0000 83.5249

12 0.0000 73.3241

13 0.0000 55.4148

14 0.0000 82.0355

15 0.0000 59.0248

16 0.0338 27.6553

17 0.0000 49.1076

18 0.0000 38.9061

19 0.2396 19.1080

20 0.0000 27.5404

Write a program function that will perform a resampling of these particles using the
idea of remapping shown in Fig. 7.13. Since the resampling process involves
drawing random numbers, your results might differ slightly from the outcome
shown in Fig. 7.12, but they should nevertheless turn out to be very similar.

7.8 This problem re-creates the terrain-referenced navigation example given by
Example 7.5. Recall that this is a one-dimensional problem where the state to be
estimated is horizontal position. The measurement is related to the height of the
rotorcraft over the known undulating terrain.

(a) First, we need to generate a representative terrain profile. Use a second-
order Gauss-Markov model with s¼ 20m and v¼ 0.01 rad/m. Note that
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the independent variable in this random process model is now space instead
of time, hence, the units of rad/m for v. Generate profile with a discrete-
space interval of 1m over the range from 0 to 25,000m.

(b) Next, generate the rotorcraft’s motion profile. Use a second-order Gauss-
Markov model for the horizontal and another for the vertical axis to
generate a bounded random process model. Use a sampling interval of
Dt¼ 1s, and the parameters s¼ 10m and v¼ 0.51 rad/s. Then add this
random process to a nominal motion that moves horizontally at 100m/s
(in the positive x-direction) but remains at a fixed altitude, starting at
coordinates (5,000m, 200m). Generate the profile for a 150-s duration. At
each sampling time, compute the radar altimeter measurement by
differencing the appropriate terrain height from the rotorcraft altitude.
The terrain height required will, in general, need to be computed by linear
interpolation between samples generated in Part (a). To each radar
altimeter measurement, add a measurement noise random sample from
a Gaussian distribution with zero mean and a sigma of 1meter.

(c) When processing the radar altimeter measurements generated in Part (b), the
true altitude of the rotorcraft should be known. Assume that this information
comes from a perfect barometric altitude measurement. The difference
between this “perfect” baro-altitude measurement and the radar altimeter
measurement feeds the nonlinear measurement model described by Eq.
(7.6.5). Design a one-state particle filter based on the flowchart of Fig. 7.15
using N¼ 100 particles. Assume that, in the processing, the 100m/s true
nominal motion is nearly fully compensated for with a predicted nominal
motion of 101m/s. For the partial derivative associated with the local
linearization of each particle, use the finite-difference approximation:

@h

@x
¼ h x� dð Þ � h xþ dð Þ

2d

(d) Process the measurements generated in Part (b) with the design of Part (c)
to generate the solution estimates of x. The initial estimates of the set of
particle filters are uniformly distributed over a range of [�50m, 50m]
centered at 5,000m, the true horizontal position at t¼ 0. Compute the
horizontal position error by differencing the solution from true value of x,
for the 150-s sequence. Plot this horizontal position error over time.
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8
The “Go-Free” Concept,
Complementary Filter, and
Aided Inertial Examples

In the usual form of Kalman filtering we are forced to make assumptions about the
probabilistic character of the random variables under consideration. However, in
some applications we would like to avoid such demanding assumptions, to some
extent at least. There is a methodology for accomplishing this, and it will be referred
to here as the go-free concept.

The examples usedhere are taken frommodernnavigation technology, especially
those involving satellite navigation systems such as GPS. (A detailed description of
GPS is given in Chapter 9.) All such systems operate bymeasuring the transit times of
the signal transmissions from each of the satellites in view to the user (usually
earthbound). These transit times are then interpreted by the receiver as ranges via the
velocity-of-light constant c. However, the receiver clockmay not be in exact synchro-
nism with the highly-stable satellite clocks, so there is a local clock offset (known as
clock bias) that has to be estimated as well as the local position in an earth-fixed xyz
coordinateframe.So,forourpurposeshere,afterlinearizationasdiscussedinChapter7,
we simply pick up the estmation problem as one where we need to estimate three
unknownposition coordinates and a clock bias based on nmeasurementswhere n� 4.
Normallyn is greater than4.So, in its simplest form,wehave anoverdetermined linear
system of noisy measurements to work with in the estimation problem.

In Sections 8.1 through 8.4, the go-free idea is discussed in detail, and comple-
mentary filtering follows in Sections 8.5 through 8.9. Then a much-used comple-
mentary filtering example in aided inertial navigation technology is presented in
Sections 8.10 through 8.12.

8.1
INTRODUCTION: WHY GO FREE OF ANYTHING?

The idea of going free of certain unknowns in the suite of measurement equations is
certainly not new. Differencing out the clock bias in LORAN and also in precision
GPS applications are good examples of this. However, the go-free concept as used
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here is a generalization of the simple “differencing out” idea. As used here, go-free
means that we readjust, by algebraic manipulation or otherwise, the measurement
equations such that the resulting filter estimates become completely free of any
assumptions regarding the statistics of the go-free variables. The key words here are
“free of any assumptions.” The go-free variables are not lost or discarded. They
remain in the overall estimation scheme, but we are relieved of making any rash
assumptions about their dynamical behavior.

In the context of Kalman filtering the go-free filter is suboptimal when
compared with the hypothetical optimal filter which uses the original measurement
suite; provided, of course, that we have accurate stochastic models in the full-state
optimal filter. So the obvious question arises, “Why go free of anything?” The
answer to this question lies mainly in the qualifying words accurate stochastic
models. In many applied situations we simply do not have reliable random models
for one or more of the variables in the measurement equations. Vehicle motion is a
good example. Rather than being truly random, the motion is often better described
in deterministic terms like: steady acceleration for a short period, then a coasting
constant-velocity period, then more acceleration, and so forth. This kind of motion
defies accurate stochastic modeling as required by the Kalman filter. Thus, it might
be better, if measurement redundancy permits, to go free of making any assump-
tions about the dynamic behavior of the vehicle. In this way we would avoid the
possibility of large estimation errors induced by mismodeling. Some loss in rms-
error performance would be the price of “going-free,” but this might well be better
than accepting very large errors in unusual situations.

8.2
SIMPLE GPS CLOCK BIAS MODEL

Consider a simple “snapshot” GPS pseudorange example where we have six-in-
view, and the problem has been linearized about some nominal position. The
measurement equation then has the form:

z ¼ Hxþ v (8.2.1)

where

z ¼ z1 z2 z3 z4 z5 z6½ �T
x ¼ x1 x2 x3 x4½ �T
H ¼ 6� 4 linear connection matrix

v ¼ 6� 1 random measurement noise vector

We will have occasion to use numerical values for comparison later, so we will let
H be:

H ¼

h11 h12 h13 h14

h21 h22 h23 h24

..

. ..
. ..

. ..
.

h61 h62 h63 h64

2
66664

3
77775 ¼

�0:7460 0:4689 �0:4728 1:000

0:8607 0:3446 �0:3747 1:000

�0:2109 �0:3503 �0:9126 1:000

0:0619 0:4967 �0:8657 1:000

0:7249 �0:4760 �0:4980 1:000

0:4009 �0:1274 �0:9072 1:000

2
666666664

3
777777775

(8.2.2)
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This is a “typical” GPS geometry in that it is neither especially good nor especially
poor for positioning purposes.

We have six measurements and four unknowns in this example, so we have the
necessary redundancy to go free of something, if we choose to do so. Clock bias
modeling is usually not very reliable, so suppose we say that we want to go com-
pletely free of clock bias (i.e., state x4). It is obvious in this case that x4 can be
removed from the measurement equations by simple differencing. One way of
doing this is to let z1 be the reference and then subtract each of the other mea-
surements from z1. This then results in the reduced model:

z0 ¼ H0xþ v0 (8.2.3)

where

z0 ¼

z1 � z2

z1 � z3

z1 � z4

z1 � z5

z1 � z6

2
666664

3
777775 x0 ¼

x1
x2
x3

2
4

3
5

H0 ¼

h11 � h21 h12 � h22 h13 � h23

h11 � h31 h12 � h32 h13 � h33

..

. ..
. ..

.

h11 � h61 h12 � h62 h13 � h63

2
66664

3
77775 v0 ¼

v1 � v2
v1 � v3
v1 � v4
v1 � v5
v1 � v6

2
66664

3
77775

(8.2.4)

We are now in a position to do a one-step Kalman filter solution for the reduced
model. Note that we do not have to make any prior assumptions about the clock bias
x4. It does not appear anywhere in the reduced model. Also note that there will be
nontrivial correlation among the elements of v0, and this must be accounted for
properly in the Kalman filter R0 matrix. To be specific:

R0 ¼

E v1 � v2ð Þ2 E v1 � v2ð Þ v1 � v3ð Þ � � �
E v1 � v3ð Þ v1 � v2ð Þ E v1 � v3ð Þ2

..

.
} ..

.

E v1 � v6ð Þ2

2
666664

3
777775 (8.2.5)

For simplicity in this example we will assume that the s ’s for all of the original e’s
are equal and that we have independence. Then the R matrix for the go-free model
will be:

R0 ¼ s2

2 1 1 1 1

1 2 1 1 1

1 1 2 1 1

1 1 1 2 1

1 1 1 1 2

2
66664

3
77775 (8.2.6)
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To complete our numerical example, we will let

s ¼ 5m; (pseudorange measurement sigma)

and

P�
0 ¼ 1002I3x3; (initial rms uncertainty in position components is 100 m)

Using the specified numerical values, the go-free filter yields the following updated
error covariance:

P0 ¼
17:0400 9:4083 �13:6760

9:4083 33:6975 �19:5348

�13:6760 �19:5348 96:2486

2
4

3
5 (8.2.7)

or the rms position errors are:

rms ðx1Þ ¼ 4:1280m
rms ðx2Þ ¼ 5:8050m
rms ðx3Þ ¼ 9:8106m

There are no surprises in these results. The Kalman filter only goes one step, so there
is no benefit of time averaging here.

Note that the filter per se does not provide an estimate of clock bias. However,
if this is of secondary interest, an estimate of sorts can be obtained by substituting
the go-free position estimates back into any one of the original six measurement
equations. We will not elaborate on this further here, because it does make a
difference as to which original measurement equation is used in the “back subs-
titution.” And further more, calculating the variance of the clock estimate so
obtained is a bit of a hassle, so we will defer discussion of this until Section 8.4.

8.3
EULER/GOAD EXPERIMENT

In the early days of GPS, H-J Euler and C. Goad published an interesting paper on
resolving the carrier phase integer ambiguities (1). This may have been the first
paper to use the go-free principle in the context of Kalman filtering. Specifically, the
objective of their experiment was to resolve N1, N2, and the wide lane (N1 – N2)
integers on the basis of four measurements, code and carrier, on both L1 and L2
frequencies. Furthermore, this was to be done without precise knowledge of the
satellite’s orbital trajectory. This was a relatively simple single-receiver experi-
ment. No single- or double-differencing was involved, as in the usual integer
resolution scenario.

The states in the Euler/Goad experiment were:

r ¼ pseudorange to the satellite

i
�
f 21 ¼ iono code delay on L1 frequency ðf 1 ¼ 1575:42MHzÞ
N1 ¼ integer ambiguity of L1 carrier phase

N2 ¼ integer ambiguity of L2 carrier phase ðf 2 ¼ 1227:6MHzÞ
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The measurement model was:

r1
f1

r2
f2

2
6664

3
7775

|fflffl{zfflffl}
z

¼

1 1 0 0

1 �1 l1 0

1
f 21
f 22

0 0

1 � f 21
f 22

0 l2

2
66666664

3
77777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

c

i
.
f 21

N1

N2

2
6664

3
7775

|fflfflfflffl{zfflfflfflffl}
x

þ
er1
ef2
er2
ef2

2
6664

3
7775

|fflfflffl{zfflfflffl}
e

(8.3.1)

We note here that the ratio f 1=f 2 is exactly 154=120. Also, the tropo and clock bias
errors are common to all four measurements, so they can be lumped in with the
pseudorange variable.

In this experiment Euler and Goad wanted the filter estimates ofN1 andN2 to be
completely free of modeling uncertainties in pseudorange and the iono error. There
are four linear equations in the four unknowns in this measurement situation. So,
with a modest pencil-and-paper effort, one can do algebraic elimination of the
unwanted states and reduce the measurement model to two measurements with two
unknowns of N1 and N2. This is a bit of a hassle, so Euler and Goad chose a different
route. They reasoned that the same immunity to modeling uncertainties in States 1
and 2 could be achieved by artificially, with each recursive step, resetting the (1,1)
and (2,2) terms of the P� matrix to very large values, say “near infinity.” This is the
same thing as saying that the information content associated with prior estimates of
States 1 and 2 is zero. So, for convenience (and to avoid the “near infinity” problem)
Euler and Goad chose to use the alternative form of the Kalman filter (see Chapter 5,
Section 5.1). Here, the P matrix update is done with the inverse of P rather than P
itself. So, to effect the go-free constraint on States 1 and 2, they simply zeroed out
the first two rows and columns of P� with each recursive step. To quote Euler and
Goad exactly, “This means that the previous information of r and i is effectively
neglected in the update of the new state vector.” And it worked! It is easily verified
that algebraic elimination yields the same error covariance results as the Euler/Goad
method, provided that the four measurement errors are assumed to be mutually
independent, and the same sigmas are used in making the comparison.

The numerical results of the experiment just described were interesting but not
very encouraging. Evenwithmeasurement spans exceeding 2 hours, Euler andGoad
were not able to resolve the N1 and N2 integers with a high degree of confidence.
However, the widelane (N1 – N2) integer was resolvable, which was some conso-
lation. Perhaps the more important and lasting contribution of the Euler/Goad paper
is the method used to achieve the go-free constraint, and not the integer ambiguity
results per se.

This whole business of artificially increasing the uncertainty of certain
estimates to achieve the go-free constraint is an ad hoc procedure. It is without
mathematical rigor and must be done carefully. If we are working directly with P�

rather than (P�)�1 (i.e., the usual Kalman filter), then we must pay attention to the
cross terms in P� as well as the diagonal ones. For example, if we have a dynamic
situation where we wish to go free of vehicle motion, we usually need to worry
about velocity and acceleration states as well as position, and these three states are
correlated and this must be accounted for properly.
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It is best not to think in terms of increasing elements of P� directly. It is better
to effect the desired increase in P� by increasing the appropriate terms in the Q
matrix. Here we are concerned with the statistics of the process noise vectorwk, and
it will be obvious there if there are cross correlations among the elements that need
to be accounted for. Therefore, we suggest here that we effect the desired increase in
P� with Q, and not P� directly. Thus, the go-free method suggested here will be
called the Boosted Q method.

8.4
REPRISE: GPS CLOCK-BIAS MODEL REVISITED

We now return to the clock bias example in light of the go-free method introduced in
the Euler/Goad experiment. In Section 8.2 we used algebraic elimination to go free
of the clock bias. Now we will see if we can accomplish the same result using the
Boosted-Q method. In the clock-bias example the prediction step is trivial because
we only do a single update, conceptually at t¼ 0. So, in this case, boosting will be
done on the (4,4) term of the initial P� matrix. Therefore, leaving the initial (1,1),
(2,2), and (3,3) terms at 1002 just as before, we will set the (4,4) term at the
outrageously large value of 1012 and see what happens. That is, let

P� ¼
104 0 0 0

0 104 0 0

0 0 104 0

0 0 0 1012

2
6664

3
7775m2 (8.4.1)

We now do the error covariance update with the Joseph update formula

Pþ ¼ I�KHð ÞP� I�KHð ÞT þKRKT (8.4.2)

Where H is the original 6�4 matrix (from Section 8.2), R¼ 52 as before, and K is:

K ¼ P�HT HP�HT þ R
� ��1

(8.4.3)

The result is (using MATLAB):

Pþ ¼
17:0400 9:4083 �13:6760 �12:8469

9:4083 33:6975 �19:5348 �16:8381

�13:6760 �19:5348 96:2486 68:3107

�12:8469 �16:8381 68:3107 53:9796

2
6664

3
7775 (8.4.4)

Note that the upper left 3�3 submatrix of Pþ is the same identical error covariance
that was obtained in Section 8.2 using algebraic elimination (at least within four
decimal places). Furthermore, note that the (4,4) term of the Boosted-Q Pþ matrix
gives a meaningful mean-square estimation error for the go-free clock-bias state.
That is, it is the best we can hope to do in a minimum-mean-square-error sense,
subject to the condition that we have no prior information as to the rms value of this
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random variable. It is also worth noting that even though the clock bias may not be
of prime interest, its error variance is of the same order as that of the position errors.
Finally, note that this “extra” estimate of the clock bias comes “for free,” so-to-
speak, with the Boosted-Q method. And certainly, from a programming viewpoint,
it is easier to just boost the Q matrix than to do the algebraic elimination.

8.5
THE COMPLEMENTARY FILTER

We will not look at a go-free filtering application that is best described first in terms
of classical frequency-response methods. We will then show the connection to
Kalman filtering later.

We begin with the simple block diagram shown in Fig. 8.1. We can now pose
the following filter optimization problem: Given the spectral characteristics of the
signal y(t) and the additive measurement noises n1(t) and n2(t) and any cross-
correlations that may exist, find the transfer functions G1(s) and G2(s) that will
minimize the mean-square error in the estimate ŷðtÞ. This will be recognized as an
extension of the single-input Wiener problem (2). To keep things simple, we will
assume that all processes are stationary and we are looking for the stationary
solution. Also, if we assume Gaussian statistics throughout, there is no loss in
generality in saying that the optimal solution is simply a superposition of the two
noisy measurements after being passed through their respective transfer functions as
shown in Fig. 8.1.

Now, in applied applications we can see an immediate difficulty in the two-
input problem as just posed. Even though we can usually assume reasonable spectral
models for the noises n1(t) and n2(t), more often than not the signal y(t) is more of a
deterministic nature, and it defies modeling as a legitimate random process. For
example, in dynamic terrestrial positioning applications, the position and velocity
are usually not random, but yet the filter is expected to respond faithfully to a variety
of deterministic-type inputs. So, this immediately suggests a filter design where we
go completely free of the dynamics of y(t). With this in mind consider next the block
diagram of Fig. 8.2.

Here we have the same two inputs as before, but we have imposed a constraint
between the two transfer functions, namely that one be the complement of the other.
With a little block diagram algebra we can easily show that the output (in the
complex s domain) can be written as

XðsÞ ¼ YðsÞ|{z}
Signal term

þ N1ðsÞ 1� GðsÞ½ � þ N2ðsÞ GðsÞ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Error term

(8.5.1)

Figure 8.1 The general two-input Wiener problem.
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Clearly, with the complementary constraint in place the signal component goes
through the system completely undistorted by the choice of G(s), and the error term
is completely free of the signal y(t). So, the go-free condition has been achieved in
the sense that the signal goes through the system undistorted, and it is estimated
without making any assumptions about its spectrum or deterministic nature in any
way. There is no assurance of optimality though until we consider the choice ofG(s)
more critically.

With the choice of G(s) in mind, consider the signal processing arrangement
shown in Fig. 8.3.

The purpose of G(s) here is to separate one noise from another and yield a good
estimate of n1 tð Þ. We can then subtract n̂1 tð Þ from the raw z1 tð Þ measurement and,
hopefully, get a good estimate of y tð Þ, which is the ultimate goal. Of course, the
better the estimate of n1 tð Þ, the better the estimate of y tð Þ. Mathematically, with a bit
of block diagram algebra, we can write the output x tð Þ as (in the complex s domain):

XðsÞ ¼ YðsÞ þ N1ðsÞ 1� GðsÞ½ � þ N2ðsÞ GðsÞ½ � (8.5.2)

Lo and behold, this is the same identical expression for the signal estimate that was
obtained from the “total” model shown in Fig. 8.2. Thus, we have two imple-
mentations that yield the same identical result for the two-input complementary
filter. The first of these we call the total configuration because each filter operates
directly on its respective total noisy measurements, whereas in the error configura-
tion theG(s) filter operates only on the subtractive combination of the measurement
errors. One of the beauties of the error model shown in Fig. 8.3 is that it provides
some insight into the choice of G(s). Clearly, if we are to effect a meaningful
separation of n1(t) from n2(t) there must be a significant difference in their
respective spectral characteristics. Otherwise, the two transfer functions degenerate
to positive constants that sum to unity. (This is correct, but not a very interesting
optimization result.) In the nontrivial case we can either take a formal optimization
approach using Kalman filtering methods, or we can use more intuitive methods
where we simply guess the form of G(s) for the spectral situation at hand and then,
perhaps by trial-and-error, optimize with respect to parameters ofG(s). We will now

Figure 8.2 Complementary filter.

Figure 8.3 Error-state version of a complementary filter.
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proceed to a simple example using the intuitive approach and then follow it with a
Kalman filtering example.

8.6
SIMPLE COMPLEMENTARY FILTER: INTUITIVE METHOD

In this simple example we will assume that the power spectral densities (PSD) of the
two measurement noises are as shown in Fig. 8.4. PSD1 will be recognized as a
relatively low-frequency second-order Markov process with an undamped natural
frequency of v0 and a damping ratio of 1=

ffiffiffi
2

p
. (See Example 2.12, Chapter 2,

Section 2.9.) PSD2 is band-limited white noise where the truncation frequency is
large relative to v0. The measurements in this example are both assumed to be
distance in meters. Note that we make no assumptions about the character of the
signal y(t).

For the noise scenario just presented there is a significant difference in the
spectral characteristics of n1 and n2. Therefore, just by looking at the error model in
Fig. 8.3, it can be seen thatG(s) should be some sort of low-pass filter; that is, think of
n1 as the “signal” and n2 as the “noise” in this sub-problem. Suppose we begin our
intuitive trial-and-error analysis with the simplest of simple low-pass filters:

G sð Þ ¼ 1

1þ Ts
¼ 1=T

sþ 1=T
(8.6.1)

This filter has unity gain at zero frequency and “rolls off” at 20 dB/decade at high
frequency. Now, of course, having specifiedG(s) for the z2 channel, the filter for the
z1 channel is constrained to be:

1� G sð Þ ¼ 1� 1

1þ Ts
¼ s

sþ 1=T
(8.6.2)

We only have the filter time constant T left to be specified in our analysis, and we
want to adjust this to yield the minimum mean-square error in the complementary
filter’s estimate of y(t). We can now use the methods given in Chapter 3 to evaluate
themean-square values of the two error terms in Eq. (8.5.1). Call these e1 and e2, and

Figure 8.4 PSDs of n1 and n2. The amplitude constants k1
2 and k2

2 are chosen such that

the mean-square values of n1 and n2 are 100m2 for each. Using the methods of Chapter 2

the constants work out to be k2
1 ¼ 200

ffiffiffi
2

p
v3
0 m

2 and k2
2 ¼ 100p

vc
m2. Also, the cutoff

frequency vc for S2 is 20v0 where v0 is the bandwidth parameter associated with S1.
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their mean-square values work out to be (k1
2 and k2

2 are specified in the caption of
Fig. 8.4):

Eðe21Þ ¼
200v2

0T
2

1þ ffiffiffi
2

p
v0T þ v2

0T
2
m2 (8.6.3)

Eðe22Þ ¼
5

T
tan�1 20v0Tð Þm2 (8.6.4)

If we now assume independence for n1 and n2, the total mean-square error for the
complementary filter is just the sum of Eðe21Þ and Eðe22Þ. It is this sum that is to be
minimized by adjusting T. Here, we can think of T in units of 1=v0 wherev0 is fixed,
and then search for the best value ofT by trial-and-error. Table 8.1 gives the results of
such a search for a few values of T within the range of interest.

Clearly, the best value for the time constant T is about 0.30 on a normalized
basis and the corresponding mean-square error is about 35 m2. As a check on the
reasonableness of this result, recall that the raw unfiltered z1 and z2 measurements
were specified to have mean-square errors of 100 m2 each, so the complementary
filter does provide a considerable reduction of the error when compared with either
of the measurements when considered separately with no filtering. Also, we can
compare our optimized low-pass filter result with a trivial complementary filter
where G(s) and [1-G(s)] are each set at 0.5. (This is simply averaging z1 and z2,
which is trivial, but still legitimate.) The simple averaging filter results in a mean-
square error of 50m2, so our low-pass filter yields a significant improvement over
simple averaging, but the improvement is not overly dramatic.

We could no doubt improve on the end result presented here by considering
more complex low-pass filters. However, the main point of this simple example
is the methodology, not the numerical result. To summarize, the methodology is:
(1) choose a filter functional form that is appropriate for the spectral characteristics
of the noises in the problem at hand; then (2) adjust the filter parameters to minimize
the mean-square error as determined from the error term in Eq. (8.5.1).

We will leave the intuitive approach now and proceed on to a more formal
optimal approach, namely Kalman filtering. For purpose of comparison we will use
the same noise scenario in the Kalman filter example as was used in the intuitive
example.

Table 8.1 Total Mean-Square Error for Various T

T (in 1=v0 units) E(e21) (m
2) E(e22) (m

2) Total Mean-Square Error

0.20 6.048 33.14 39.19

0.25 8.824 27.47 36.29

0.30 11.88 23.44 35.32

0.35 15.15 20.40 35.55

0.40 18.55 18.08 36.63

0.50 25.54 14.71 40.25
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8.7
KALMAN FILTER APPROACH—ERROR MODEL

When Kalman filtering is viewed from the “total” configuration shown in Fig. 8.2, it
is obvious where the name “complementary” comes from. The two transfer
functions (i.e., filters) are complements of each other in the complex frequency
domain. However, Kalman filtering has often been referred to as time-domain
filtering. So, it is not at all obvious how to apply the complementary constraint
shown in Fig. 8.2 to a corresponding Kalman filter. On the other hand, if we look at
the equivalent error configuration in Fig. 8.3, we see no special problem in doing
something similar with a Kalman filter. The purpose of G(s) in the error configura-
tion is to estimate one random variable (say n1) in the presence of another (say n2),
and that is exactly what a Kalman filter does best! So, to begin with, we will make
our complementary filter mimic the error configuration shown in Fig. 8.3. Then we
will come back to the “total” configuration later.

For a Kalman filter we first need the mathematical equations for the filter states
and measurements. In the error configuration n1(t) plays the role of “signal,” and
n2(t) is the corrupting measurement noise.We will look at n2 first; it is the simpler of
the two. It is bandlimited white noise. So, if we sample n2 at the Nyquist rate, the
samples will automatically be uncorrelated, and all will have the same mean-square
value, namely 100 m2 (as in the intuitive filter example). Therefore, the Rk

parameter of the Kalman filter will be the scalar:

Rk ¼ 100m2

and the sampling rate will be:

f sample ¼ 2
vc

2p

� �
¼ vc

p
Hz

If we let v0¼ 1 rad/s (so we can compare with the intuitive filter), the Dt interval for
the Kalman filter works out to be

Dt ¼ p

vc
¼ p

20v0

¼ p

20
s

Next, consider the signal variable n1(t). Its spectral function is (for v0¼ 1)

S1 sð Þ ¼ k21
s4 þ 1

; k21 ¼ 200
ffiffiffi
2

p
m2 rad/sð Þ3 (8.7.1)

As discussed in Chapter 3, we can factor the spectral function into left- and right-
half plane parts as follows:

S1 sð Þ ¼ k1

s2 þ ffiffiffi
2

p
sþ 1

� k1

s2 � ffiffiffi
2

p
sþ 1

(8.7.2)

We can now think conceptually of n1(t) being the result of putting unity white noise
into a shaping filter as shown in Fig. 8.5.
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The block diagram in Fig. 8.5 then defines the differential equation for n1(t)
to be

€n1 þ
ffiffiffi
2

p
_n1 þ n1 ¼ w tð Þ (8.7.3)

If we choose phase variables as our states (i.e., x1¼ n1 and x2 ¼ _n1), the state
equation for n1(t) becomes

_x1
_x2

	 

¼ 0 1

�1 � ffiffiffi
2

p
	 


x1
x2

	 

þ 0

k1

	 

w tð Þ (8.7.4)

We have already specified Dt to be p=20, so we can now find fk and Qk for our
Kalman filter using the Van Loan method given in Chapter 3. Also, the Hk for the
measurement situation in the error model is

Hk ¼ 1 0½ �

We now have all the key filter parameters to do covariance analysis except for the
initial P0

�. Here the prior knowledge of x1 and x2 needs to be compatible with our
spectral assumptions for n1(t). Using the analysis methods of Chapter 3 and the
knowledge that x2 is the derivative of x1, we find that

E½x21ð0Þ� ¼ 100m2

E½x22ð0Þ� ¼ 100 ðm/sÞ2

and that x1(0) and x2(0) are uncorrelated. Then, without benefit of any measurement
information at t0, the estimation error covariance must be

P�
0 ¼ 100 0

0 100

	 

m2

We have now specified all the needed parameters for covariance analysis. The filter
recursive equations are easily programmed in MATLAB, and the filter is found to
reach a steady-state condition after about 40 steps. The resultant mean-square error
for x1 (which is n1) is

Pð1; 1Þ ¼ 21:47m2

This compares favorably with the 35.32 mean-square error achieved with the
intuitive 1=ð1þ TsÞ analog filter. Also, note from the error configuration of Fig. 8.3
that this (i.e., 21.47m2) is also the mean-square estimation error for the go-free
variable y(t). It is especially important to remember that we do not “throw away”

Figure 8.5 Conceptual shaping filter to

produce n1(t).
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the go-free variable in the complementary filter arrangement. It is “go-free” only in
the sense that we go free of any assumptions about the character of y(t), be it
random, deterministic or whatever.

8.8
KALMAN FILTER APPROACH—TOTAL MODEL

We now return to the “total” complementary filter configuration shown in
Fig. 8.2, but we wish to do the filtering in the time domain (i.e., Kalman filtering)
rather than in the frequency domain. We will present this discussion as a student
exercise with generous hints along the way. First note that the signal y(t) is not
differenced out in the total model, so it must remain as a state in the filter. Also, note
that the filter has two explicit measurements here, rather than just one as in the error
model. We are forced then to make some assumptions about the random process for
y(t). So, for simplicity, let us assume (temporarily) that y(t) is a first-order Gauss-
Markov process with a known s and b, and this will be designated as State 3. The
differential equation for x3 is then (see Chapter 3)

_x3 þ bx3 ¼
ffiffiffiffiffiffiffiffiffiffi
2s2b

p
w3 tð Þ (8.8.1)

where w3(t) is the unity white noise that is independent of the white noise driving
the n1(t) process. Now append the x3 differential equation to the second-order
differential equation describing the n1(t) noise process. This leads to a pair of
equations describing our system:

€n1 þ
ffiffiffi
2

p
_n1 þ n1 ¼ k1w1 tð Þ ðAs before withv0 ¼ 1Þ (8.8.2)

_x3 þ bx3 ¼
ffiffiffiffiffiffiffiffiffiffi
2s2b

p
w3 tð Þ

Or, in state-space form we have:
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2
4

3
5 ¼

0 1 0

�1 � ffiffiffi
2

p
0

0 0 �b
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F
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3
5þ

0 0

k1 0

0
ffiffiffiffiffiffiffiffiffiffi
2s2b

p
2
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5

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
G

w1

w3

	 

(8.8.3)

The measurement equation is obvious from Fig. 8.2, and in matrix form it is:

z1
z2

	 

k

¼ 1 0 1

0 0 1

	 

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Hk

x1
x2
x3

2
4

3
5
k

þ 0

n2

	 

k

(8.8.4)

where the subscript k indicates discrete-time samples. As before in the error model,
the sampling is done at the Nyquist rate. Therefore, the filter Dt interval is

Dt ¼ p=20 forv0 ¼ 1 andvc ¼ 20v0ð Þ
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The filter Rk parameter is a two-tuple in the total model and is:

Rk ¼ 0þ 0

0 100

	 

m2

where 0þmeans a very small positive number introduced for numerical stability (for
example, 1e-8). The fk and Qk parameters are determined numerically using the
Van Loan method as before. But, before doing so, the s and b for the s(t) process
must be specified (temporarily, at least). Say we choose s¼ 10m and b¼ 1/(5Dt)
initially, which makes y(t) similar to (but not the same as) the n1(t) and n2(t)
processes. Finally, we note thatW in the Van Loan method is a 2� 2 identity matrix
because we have accounted for the noise scale factors in the G matrix.

We are now ready to run the three-state total filter except for specifying the
initial P�matrix. Using the same reasoning as before with the error-model filter, we
will let the initial P� be:

P�
0 ¼

100 0 0

0 100 0

0 0 s2

2
64

3
75m2

We are assuming here that we have no prior knowledge of the states initially, other
than the process model assumptions.

Now run the total filter error covariance equations for about 40 steps. The filter
will reach a steady-state condition, and the error covariance for the x3 estimate
works out to be (with s set at 10)

Pð3; 3Þ ¼ 17:53m2

Note that this is somewhat better than the 21.47 value that was found for the
error-state complementary filter. This is to be expected because the present filter is
optimal with the assumption that s¼ 10 m; i.e., there is no go-free constraint on the
x3 variable at this point. This filter with s¼ 10 m takes advantage of this extra
information and gives better results than the complementary filter with the go-free
constraint. It is important to remember that the 17.53m2 result for the mean-square
error is very much dependent on the accuracy of the assumedMarkov model for y(t)
with s set at 10m.

Now to get to the total complementary filter, we return to the “Boosted Q” idea
that was presented earlier in the Euler/Goad example of Section 8.3. In the present
example the x3 signal state is completely decoupled from the x1 and x2 states, so the
value assigned to s only affects the 3,3 term of Qk. Therefore, in this case all we
have to do to boost the go-freeQ term is to increase the s parameter. To demonstrate
this, try doubling s to 20, and then rerun the error covariance program for 40 steps
and observe the P(3, 3) term. Note that it increases. Then double s again to 40 and
repeat the run. Then keep doubling s and making successive runs until the P(3, 3)
term approaches (asymptotically) a limiting value. The results of this “successive
doubling” operation are shown in Table 8.2.

Note that the limiting value appears to be about 21.47m2, and this occurs when
sigma is increased to 640m. This limiting mean-square error (i.e., 21.47m2) is the
same as the mean-square error that was obtained with the error-state model in
Section 8.7.
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Thus, we see that the optimal total filter morphs into the go-free (of y(t)) com-
plementary filter as we increase the assumed s associated with x3 to an outrageously
large value. The total complementary filter always involves more states than the
corresponding error-states filter implementation, but boosting the Q is easy to do,
and this provides an alternative way of accomplishing the desired go-free condition.

8.9
GO-FREE MONTE CARLO SIMULATION

This example is intended to illustrate the difficulty that theKalmanfilter encounters in
estimating a deterministic-type time function, and it also demonstrates how the go-
free constraint can be used to mitigate the difficulty. Consider a simplified one-
dimensional aided inertial navigation system (INS) where the primary purpose of the
INS is to provide good near-continuous outputs of vehicle position, velocity, and
acceleration.This information is to be outputted at the relatively high rate, say 100Hz.
It is well known though that pure inertial systems have unstable error characteristics,
so they must be aided (i.e., corrected) with some external source of position infor-
mation such as GPS. The aiding can be done via a Kalman filter, and the updating can
be done at a much slower rate (say 1Hz) than the internal workings of the INS. For
analysis purposes, wewill also say that the filter’s corrections to the INS are done on a
feedforward basis, so we can avoid the complications of the extended Kalman filter*.

The primary error source in the INS will be assumed to be additive acceler-
ometer bias, and the internal integrations that produce velocity and position will be
assumed to be implemented perfectly. Also, we want the accelerometer bias error to
be reasonable and bounded, so we will model it as a first-order Markov process with
specified s and b parameters. Note especially, in this simulation exercise we are
modeling errors as truly random processes, but the true vehicle motion will be
assumed to be deterministic. The assumed truth trajectories for acceleration, velocity,
and position are shown in Fig. 8.6. Note that the true initial position and velocity are

* The setting for this tutorial one-dimensional INS updated with position updates is due to J. Farrell (3).
However, the solution presented here is due to the present authors.

Table 8.2 Results of successive increases in the signal sigma
variable

Signal sigma
variable (s)

Mean Square Error of y(t)
Estimate (m2)

10 17.53

20 20.32

40 21.17

80 21.39

160 21.45

320 21.46

640 21.47

1280 21.47

2560 21.47
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both zero and this is known to the filter. However, the accelerometer bias is a random
variable, and the only thing the filter knows about it is its s and b.

The aiding source in this exercise will be position measurements (say, from
GPS), and the sampling rate will be 1Hz. The aiding source errors will be assumed
to be white.

We will consider the total Kalman filter model first and see where it leads. It is
more complicated than the error-state filter, but there are lessons to be learned from
it. The total filter state variables are as follows:

x1 ¼ True position

x2 ¼ True velocity

x3 ¼ True acceleration

x4 ¼ Double integral of accelerometer bias error

x5 ¼ Integral of accelerometer bias error

x6 ¼ Accelerometer bias error ðMarkov processÞ

Note that we need successive integrals of the accelerometer bias errors just as
we do with the true kinematic variables. In both cases the variables are connected by
differential equations, so they must be included in the state model. The state vector
differential equation is then:

_x1

_x2

_x3

_x4

_x5

_x6

2
666666664

3
777777775
¼

0 1 0

0 0 1 0

0 0 �ba

0 1 0

0 0 0 1

0 0 �bb

2
666666664

3
777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F

x1

x2

x3

x4

x5

x6

2
666666664

3
777777775
þ

0 0

0 0ffiffiffiffiffiffiffiffiffiffiffiffi
2s2

aba
p

0

0 0

0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffi
2s2

bbb

p

2
666666664

3
777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G

wa

wb

	 


(8.9.1)

Figure 8.6 True vehicle dynamics for simulation example.
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Note that the total Kalman filter forces us to model the true vehicle motion as a
random process even though we know this is not truth. Just to keep it simple, we
have chosen to let the vehicle acceleration be a Markov process with parameters sa
and ba. We accept somemodeling error here and we wish to examine its effect. Also
note that wa and wb are independent unity white noise processes, and the respective
amplitude factors are accounted for with the scale factors in the G matrix.

There are four measurements in the total Kalman filter model. First, the INS
provides three rawuncorrectedmeasurements: acceleration, its integral (i.e., velocity),
and its second integral (i.e., position). Each of these is contaminated with the additive
respective accelerometer bias effects. (They too get integrated.) The fourth measure-
ment is theGPSpositionmeasurement. Note in the total filter, thismeasurement is not
differenced with the raw INS position directly. Rather, it is just included in the total
measurement suite as the fourth element in the z vector, and it gets assimilated in the
Kalman filter in a more subtle way than simple differencing.

The total Kalman filter operates at a 1 Hz rate using all four measurements as a
block. The intervening 99 INS measurements in between filter updates are not used
directly by the filter. They are assimilated internally in the INS operating in the pure
inertial mode. The total Kalman filter measurement model is then:

z1

z2

z3

z4

2
6664

3
7775 ¼

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 0 0 0

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

x1

x2

x3

x4

x5

x6

2
666666664

3
777777775
þ

v1

v2

v3

vGPS

2
6664

3
7775

|fflfflfflffl{zfflfflfflffl}
v

(8.9.2)

R ¼

0þ 0 0 0

0 0þ 0 0

0 0 0þ 0

0 0 0 RGPS

2
6664

3
7775

where 0þ means a very small number (like 1E-8) inserted for numerical stability.
We now wish to do a Monte Carlo simulation and inspect the system errors for
various choices of parameters. To get the simulation exercise started, we will use the
following set of parameters:

sa ¼ 0:10m/s2

ba ¼ 1/3 s�1

)
Markov parameters for the modeled vehicle acceleration

sb ¼ 0:015m/s2

bb ¼ 1/60 s�1

)
Markov parameters for the accelerometer bias�

RGPS ¼ 25m2 Mean-square GPS measurement errorð Þ

�More representative of a tactical grade INS than a precision navigation grade system.
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We will also assume that the INS integrators are zeroed at t¼ 0, and assume
that the first filter measurement occurs at t¼ 1.

The six-state total Kalman filter model is now complete.We begin by assuming
that the vehicle’s assumed acceleration sigma is relatively small (e.g., 0.1m/s2). We
are saying here that most of the time the vehicle has very mild dynamics. This is a
reasonable assumption for the “coast” periods in the true dynamics. However, this
Markovmodel will be considerably in error during the short bursts of acceleration in
the specified true dynamics (see Fig. 8.6). Thus, this is where wewould expect to see
the most pronounced mismodeling effect. Also, the GPS position updates dominate
the position error, but not so much so in velocity. Thus, it will be the velocity error
where we would expect to see the most mismodeling effect.

The total Kalman filter is easily programmed in MATLAB using simulated
noisy measurements. The resulting velocity error for a typical run is shown in
Fig. 8.7. It is clear from the plot that the velocity error becomes large every time
there is an abrupt change in acceleration (which, of course, is not properly
accounted for in the model). In effect, the vehicle dynamics “bleeds through”
into the total filter’s velocity error.

Along with the total filter’s error plot in Fig. 8.7 is a plot of velocity estimation
error for the corresponding complementary filter driven by the same measurement
used for the total filter. Actually, the plot was obtained by boosting theQ associated
with the assumed vehicle dynamics. This was done by increasing sa from 0.1m/sec2

to an outrageously large value of 1000m/sec2. As mentioned previously in
Section. 8.8, this accomplishes the complementary constraint just as if we would
have implemented the error-state filter initially. Note that with the complementary
constraint imposed, there is no noticeable effect of the vehicle dynamics “bleeding
through” into the velocity estimation error. This is the principal advantage of the
complementary filter.

Figure 8.7 Velocity errors for total and complementary filters.
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The actual three-state error-state Kalman filter can also be easily implemented
using MATLAB. The model parameters are as follows:

States:

x1 ¼ Pure uncorrected INS position error

x2 ¼ Pure uncorrected INS velocity error

x3 ¼ Pure uncorrected INS acceleration error ðMarkov biasÞ

State Model Differential Equations:

_x1
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2
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3
775 ¼
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0 0 �ba
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|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
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|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
G

w (8.9.3)

Measurement Equations:

z ¼ 1 0 0½ �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
H

x1

x2

x3

2
664

3
775þ vGPS|{z}

v

R ¼ EðvGPSÞ2 (8.9.4)

The feedforward block diagram in Fig. 8.8 shows the implementation of a com-
plementary filter. In this configuration the three-tuple output estimates from the
filter are subtracted from the raw INS position, velocity, and acceleration outputs to
yield the corrected INS outputs. Then, it is the corrected INS velocity output that we
are especially concerned with, and we difference it with truth velocity to get the final
INS velocity error. This works out to be the same velocity error that we see in
Fig. 8.7 and labeled as complementary filter velocity error.

In summary, the error-state version of a complementary filter has been
eminently successful in integrated navigation applications, and this will be contin-
ued in more detail in the remaining sections of this chapter. The main message in the
preceding sections is that the same go-free condition can also be implemented with a
total-state Kalman filter using the “boosted Q” method of effecting the comple-
mentary constraint, and this may be more convenient in some applications.

Figure 8.8 Complementary filter for one-dimensional INS aided with position

updates.
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8.10
INS ERROR MODELS

An INS is made up of gyroscopes (gyros, for short) and accelerometers for basic
sensors. A gyro senses rotational rate (angular velocity) that mathematically
integrates to give overall change in attitude over time. Similarly, an accelerometer
senses linear acceleration that integrates to give velocity change, or doubly inte-
grates to give position change over time. An INS sustains attitude, position, and
velocity accuracy by accurately maintaining changes in those parameters from their
initial conditions. However, due to the integration process, errors in the attitude,
position, and velocity data are inherently unstable but the growth characteristics of
these errors depend on the type of sensors used. The level of complexity needed for
the error modeling depends on the mix of sensors in the integration and the
performance expected of it.

In our previous discussion of complementary filtering, we only considered
linear models for both the “total” and “error-state” filters. However, in real-life
aided inertial systems we often encounter nonlinear measurements. Coping with
such situations was discussed at some length in Chapter 7 where we presented the
concept of an extended Kalman filter. Here we linearize about some nominal
trajectory in state space, and then the filter estimates the perturbations from the
reference trajectory. In aided inertial systems the INS usually provides the reference
trajectory, and its deviation from truth forms the states of the Kalman filter. The
filter then estimates these states (based on the aiding measurements and the INS
error model). Then the estimated INS errors are subtracted from the raw INS outputs
to yield the best estimates of position, velocity, and attitude. Note that this mode of
operation is exactly the same as the error-state complementary filter discussed
previously in Section. 8.5. Thus, this accomplishes the go-free condition that was
presented earlier in the chapter.

Before proceeding to the aided INS/DME example, we need to develop some
INS error models. The ones presented here are basic “no frills” models, but yet they
are still reasonably accurate and are useful in a variety of terrestrial applications.

Single-Axis Inertial Error Model

We shall begin by looking at a simple model that contains the physical relationship
between the gyro and the accelerometer in one axis. The following notation will be
used:

Dx ¼ position error

D _x ¼ velocity error

D €x ¼ acceleration error

f ¼ platform ðor attitudeÞ error relative to level

g ¼ gravitational acceleration

Re ¼ earth radius

a ¼ accelerometer noise

e ¼ gyro noise in terms at angular rate

The single-axis model is instructive for the relationship it describes between the
accelerometer sensor and the gyro sensor. Both sense inertial quantities, one linear
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acceleration and the other angular velocity. The differential equations that describe
the accelerometer and the gyro errors are given as follows:

D€x ¼ a� gf (8.10.1)

_f ¼ 1

Re
D _xþ e (8.10.2)

(The block diagram for these equations is shown in Fig. 8.9.)
In Eq. (8.10.1), the error in acceleration is fundamentally due to a combination of

accelerometer sensor noise and a component of gravity the accelerometer senses as a
result of platformerror. The platformerror rate, describedbyEq. (8.10.2), results from
gyro sensor noise and velocity error that, when projected along the earth’s surface
curvature, gets translated into an angular velocity error. An accelerometer error that
integrates into a velocity error gives rise to a misalignment in the perceived gravity
vector due to the earth’s curved surface. This misalignment results in a horizontal
component that fortuitously works against the effects of the initial accelerometer
error. The resulting oscillation known as the Schuler oscillation provides some
stability to the horizontal errors. Note that g is assumed to be the usual earth’s
gravitational constant. Thus, this simple model is restricted to low dynamics.

Three-Axes Inertial Error Model

In progressing from a single-axis to a level-platform three-axes INS additional
complexities arise from interaction among the three sensor pairs (4, 5). A sensor pair
aligned in the north-south direction is shown in Fig. 8.10 as a transfer function block
diagram denoted as the north channel. A very similar model exists for the east
channel as shown in Fig. 8.11. Just as with the single-axis error model, the three-
axes model is restricted to low dynamics. (See Problem 8.2 for more on this.)

The differential equations that accompany the transfer functions of Figs. 8.10
and 8.11 are given below. In the following notation, the platform rotation rate v is
an angular velocity. Bear in mind, however, thatv is not the same as the platform tilt
rate error _f, which is an angular velocity error.

North channel:

D€y ¼ ay � g �fxð Þ (8.10.3)

� _fx ¼
1

Re
D _yþ vyfz � ex (8.10.4)

Figure 8.9 Single-axis INS error model.
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East channel:

D€x ¼ ax � gfy (8.10.5)

_fy ¼
1

Re
D _xþ vxfz þ ey (8.10.6)

Vertical channel:

D€z ¼ az (8.10.7)

Platform azimuth:

_fz ¼ ez (8.10.8)

The north and east channel models take into account the previously described
phenomenon that is due to the earth curvature. The vertical channel does not benefit
from the Schuler phenomenon and is governed by a simpler model as shown in
Fig. 8.12.*

* It can be shown that the characteristic poles for the vertical channel do not lie exactly at the origin in the
s-plane. They are actually symmetrically located on the real axis, one slightly to the left of the origin and the
other to the right (3). When the vertical error is observable, it is a good approximation in the Kalman filter
model to assume that both poles are coincident at the origin.

  y
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Figure 8.10 North channel error model (x is east, y is north, z is up, and

vy¼platfrom angular rate about y-axis).
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Figure 8.11 East channel error model, (x is east, y is north, z is up, and

vx¼platform angular rate about x-axis).
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A basic nine-state dynamic model can be used as a foundation for an aided INS
Kalman filter model. For our use here, the nine variables in the state vector will be
ordered as follows:

x1 ¼ east position error ðmÞ
x2 ¼ east velocity error ðm/sÞ
x3 ¼ platform tilt about y axis ðradÞ
x4 ¼ north position error ðmÞ
x5 ¼ north velocity error ðm/sÞ
x6 ¼ platform tilt about ð�xÞ axis ðradÞ
x7 ¼ vertical position error ðmÞ
x8 ¼ vertical velocity error ðm/sÞ
x9 ¼ platform azimuth error ðradÞ

(8.10.9)

Based on Eqs. (8.10.3) through (8.10.8), we can write out the nine-dimensional
vector first-order differential equation:
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(8.10.10)

From the parameters of Eq. (8.10.10), the discrete-time nine-dimensional
vector first-order difference equation for the process model can be derived.
Closed-form solutions for the process noise covariance matrix Q or the state
transition matrix fINS are not easily derived. These parameters are usually
computed using the Van Loan method as discussed in Chapter 3.

The INS process model has nine states in total comprising a position, a
velocity, and a platform tilt state in each of three dimensions. This is a minimal
system that accounts for platform misorientation, but only allows for very little
complexity in errors associated with the accelerometers and gyros. In other words,
the instrument errors are grossly simplified and modeled as white noise forcing

Acceleration
white noise az

Velocity
error Δ z·

Position
error Δz

1––s
1––s

Figure 8.12 Vertical channel error model.
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functions that drive the INSerror dynamics.Also, platformangular errors are assumed
to be small, and platform torquing rates are assumed to change very slowly such that
they can be treated as constants. Small acceleration (relative to 1-g) is also assumed in
the 9-statemodel given byEq. (8.10.10). Even though themodel is relatively simple, it
is nonetheless workable and can be found in use in some real-life systems.

8.11
AIDINGWITH POSITIONINGMEASUREMENTS—INS/DME
MEASUREMENTMODEL

We shall consider here an integrated navigation system that is updated with position-
ing measurements from a positioning system. One of the few terrestrial positioning
systems still in operation today is the DME (distance-measuring equipment) system,
mentioned previously in Chapter 7. The DME is a two-dimensional (horizontal)
ranging system of signals traveling to and from ground-based transmitters.

Positioning systems provide position updates to an aided inertial system that
suppresses position error growth to levels commensurate with the uncertainty of the
position updates. Velocity error growth is naturally suppressed in the presence of
position updates. The one thing that most positioning systems do not provide
directly is orientation updates (of attitude and heading). In aided inertial systems,
the coupling between position (and/or velocity) updates to its platform tilt states is a
loose and indirect one, but nevertheless exists. More of this will be covered in
Chapter 9.

INS/DME Measurement Model

The linearization of a DME measurement was discussed in Section 7.1 (Exam-
ple 7.1). There, the direct slant range from the aircraft to the DME ground station
was considered to be the same as horizontal range. This approximation that can be in
error by a few percent for short to medium ranges is usually absorbed into the
measurement noise component of the model. Once the horizontal range is obtained,
it is then compared with the predicted horizontal range based on the INS position
output, and the difference becomes the measurement input to the Kalman filter. The
difference quantity has a linear connection to Dx and Dy as discussed in Example
7.1. Based on the same ordering of the state vector as in Eq. (8.10.9), the rows of the
Hk matrix corresponding to the two DME stations would then be

zk ¼ �sin a1 0 0 �cos a1 0 0 0 0 0

�sin a2 0 0 �cos a2 0 0 0 0 0

	 

xk þ vk (8.11.1)

where we have written the direction cosines in terms of the bearing angle to the
station a rather than u as used in Eq. (7.1.18) (see Fig. 7.2). Note that the bearing
angle is the usual clockwise angle with respect to true north, and the x-axis is
assumed to be east. It is assumed, of course, that the coordinates of the DME station
being interrogated are known and that the aircraft’s position is known approxi-
mately from the INS position output. Thus, sin a and cos a are computable on-line
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to a first-order approximation. Range measurements from more than one DME
station could be made either sequentially or simultaneously. The Kalman filter can
easily accommodate to either situation by setting up appropriate rows in the Hk

matrix corresponding to whatever measurements happen to be available.

EXAMPLE 8.1 SIMULATION OF STANDALONE AND
INTEGRATED INS AND DME

For the following simulation exercise, we shall look at the performance of three
different systems: (a) an integrated INS/DME system, (b) an INS-only system with
initial alignment, (c) a DME-only system. The nominal aircraft motion and the
DME station locations are as shown in the figure accompanying Problem 7.5 in
Chapter 7. For the INS/DME system, we shall use the basic nine-state process
model described in Eq. (8.10.10) and choose the following parameters for it:

Dt step size ¼ 1 sec

Accelerometer white noise spectral density ¼ 0:0036 ðm/s2Þ2/Hz
Gyro white noise spectral density ¼ 2:35 ð10�11Þ ðrad/sÞ2=Hz
Re ¼ 6; 380;000m
g-axis angular velocityvy ¼ 0:0000727 rad/s ðearth rate at the equatorÞ
X-axis angular velocityvx ¼ � 100m/s

Re
¼ �0:0000157 rad/sec

Initial position variance ¼ 10m2

Initial velocity variance ¼ ð0:001m/sÞ2
Initial attitude variance ¼ ð0:001 radÞ2
DME white measurement error ¼ ð15mÞ2

The INS-only system uses the same inertial sensor parameters and the same
initial alignment conditions. The main difference between the INS-only system
and the integrated INS/DME system is that the DME measurements are never
processed, whereas the INS errors are allowed to propagate according to the
natural dynamics modeled.

For the DME-only system, the aircraft motion is modeled as a random walk
(in both x- and y-positions) superimposed on constant-velocity motion in the y-
direction. The filter in this case is a simple two-state Kalman filter linearized about
the nominal trajectory. The following parameters are used:

Dt step size ¼ 1 sec

Process noise variance ðin each position axisÞ ¼ 400m2

Initial position variance ¼ 10m2

DME white measurement error ¼ ð15mÞ2

In the 200-sec run, the aircraft starts out at the location (0, �10,000) and flies
north at 100m/sec and nominally ends up at the location (0, 10,000). Fig. 8.13
shows a comparison of the standard deviations of the position error for all three
systems described above, for the east component (a) and the north component (b).
Although the INS position error grows without bound, the position errors are stable
and smaller for the integrated INS/DME system. The cresting of the north position
error near the 100-sec time mark is due to the poor DME observability in the north
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8.12
OTHER INTEGRATION CONSIDERATIONS
AND CONCLUDING REMARKS

To put our treatment of the Aided Inertial Navigation system here into perspective,
we should point out that gimbaled inertial systems are generally a thing of the past
while most inertial systems today belong to the strapdown variety. In gimbaled
systems, the three dimensions of the instrument cluster are mechanically kept fixed

direction when the aircraft crosses the x-axis (see Problem 7.5). The position error
for the DME-only system has characteristics similar but much larger in magnitude
by comparison to those of the integrated INS/DME position error. (Note that the
vertical scale is logarithmic, so the difference is larger than it appears at first
glance.)
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relative to the navigation reference frame. Therefore, the instrument errors (e.g.,
gyro and accelerometer biases and scale factors) of the north, east and vertical
channels are truly decoupled and can be treated separately. This is, of course, not
true in strapdown systems where the instrument cluster is simply “strapped down”
to the body of the platform and information relevant to the north, east and vertical
channels are extracted via analytically transformations from such sensors. Never-
theless, we have chosen to retain the tutorial treatment here with a gimbaled
viewpoint for obvious reasons of clarity in how to approach the modeling problem.
Beyond that, the physical implementation of the models in practical processing
systems are further details that should be gleaned from other more specialized text
references (6).

The integration philosophy discussed here has found wide use in navigation
systems over the past three decades, it is clearly a philosophy that is centered around
the use of an INS primarily because this type of sensor, better than any other, is
capable of providing a reference trajectory representing position velocity and
attitude with a high degree of continuity and dynamical fidelity. It is logical to
then ask: If an INS is not available, can this integration philosophy still be useful? In
general, any sensor that is capable of providing a suitable reference trajectory with a
high level of continuity and dynamical fidelity can be used in place of the INS. In
some applications, the reference trajectory need only consist of subsets of position,
velocity, and attitude. An example of a reference sensor for a land vehicle is a wheel
tachometer that senses speed, integrated with a compass that senses direction, to
produce a velocity measurement and position through integration; attitude is not
available, nor perhaps, necessary. In an aircraft, a suitable reference sensor might be
derived from a combination of true air speed data with a magnetic compass for some
applications. In summary, the integration philosophy presented here can be applied
to a wide variety of sensor combinations.

To close, one final comment is in order. It should be apparent that the system
integration philosophy presented in this chapter is not the only way of integrating
inertial measurements with noninertial data. One only has to peruse navigation
conference proceedings over the years to find countless integration schemes, each
with a little different twist because of some special circumstance or choice. The
scheme presented here is optimal though (within the constraint of dynamic exact-
ness in the use of inertial measurements), and it represents the best way of managing
the system integration theoretically. However, the systems engineer often does not
have the luxury of designing a truly optimal system, and must at times settle for
something less because of equipment constraints, cost, and so forth. Even so, the
optimal methodology presented here is still valuable for analysis purposes, because
it provides a lower bound on system errors for a given mix of sensors. That is, the
optimal system serves as a “yardstick” that can be used for comparison purposes in
evaluating the degree of suboptimality of various other candidate integration
schemes.

PROBLEMS

8.1 The block diagram shown in Fig. P8.1 takes us back to the pre-digital age. It
was taken from thewell-knownAvionics Navigation Systems book byKayton and
Fried (6), and it describes a means of blending together barometrically-derived
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and inertially-derived altitude signals in such a way as to take advantage of the
best properties of both measurements. The baro-altitude signal has fairly good
accuracy in steady-state conditions, but it has sluggish response to sudden
changes. The inertially-derived signal is just the opposite. Its response to sudden
change is virtually instantaneous, but the steady-state error is unstable because of the
double integration required in going from acceleration to position.

(a) Assume that the G1(s) and G2(s) in the diagram are simply constant gains,
and that the g, A, and Coriolis corrections can be lumped together as a
calculated “bias” term that makes the accelerometer output a reasonably
accurate measure of vertical acceleration. Then show that the implemen-
tation shown in the figure does in fact cause the final system error to be
independent of the true vertical dynamics. That is, this is truly a comple-
mentary filter implementation. Or, in terms introduced in Chapter 8, this is
a “go free” implementation where the go-free variable is vertical dynami-
cal motion. TheG1 andG2 gain parameters can be adjusted to yield the best
compromise among the contributing error sources.

[Note: In order to show the complementary-filter property, you must
conceptually think of directly integrating the accelerometer signal twice
ahead of the summer to obtain an inertially derived altitude signal
contaminated with error. However, direct integration of the accelerometer
output is not required in the final implementation because of cancellation of
s’s in numerator and denominator of the transfer function. This will be
apparent alter carrying through the details of the problem. Also note that
the ge, A, and Coriolis corrections indicated in the figure are simply the
gravity, accelerometer-bias, and Coriolis corrections required in order that
the accelerometer output be €h (as best possible). Also, the initial conditions
indicated in the figure may be ignored because the system is stable and we
are interested in only the steady-state condition here.]

(b) Next, bring the analog implementation in the figure into today’s digital
world and develop a go-free Kalman filter model for this application. In
order to keep it simple, use the boosted Q method discussed in Chapter 8.
The state variables will then be true total vertical position, velocity and
acceleration, and the three instrument measurement errors. First-order

he
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Markov processes (with appropriate parameters) will suffice for the
instrument errors.

8.2 In Problem8.1,we sawhowaltitude can be complementary filtered by combining
vertical acceleration measured by inertial sensors with an altitude measured by a
baroaltimeter. In a novel method proposed in 2002 (7), ground speed for an aircraft is
derived on precision approach along an Instrument Landing System (ILS) glideslope
based on vertical speed. The motivation for such a method was, of course, to provide a
source of ground speed that is independent ofGPS so that it can be used tomonitorGPS
speed for a flight operation (i.e., for precision approach guidance) that is deemed safety
critical and requires very high integrity.

The block diagram for this vertical and glideslope-derived ground speed is
shown below. This is a rare example of the use of two complementary filters in one
system. The first, designated the “Altitude Complementary Filter” block, is what
was described in Problem 8.1, except that the desired output is vertical speed and not
altitude. The a priori knowledge of the glidepath and the measured glideslope
deviations combine to provide the dynamic projection vector that transforms
instantaneous vertical speed to instantaneous ground speed. However, the resultant
ground speed becomes very noisy because of the scale magnification of the
transformation. So a second “Ground Speed Complementary Filter” block com-
bines horizontal acceleration from inertial sensors with the noisy glideslope-derived
ground speed to ultimately produce a smoothed ground speed.

(a) Write out the transfer function for the first complementary filter that
produces the smoothed vertical speed. Its inputs will be vertical accelera-
tion and an altitude (from baro or pressure).

(b) Assuming the glidepath angle to be nominally three degrees, and that the
pilot is able to steer the aircraft right down the glideslope with zero
deviation, write out the transfer function for the second complementary
filter that combines the noisy ground speed derived from the glidepath
transformation and the horizontal acceleration.

Figure P8.2
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8.3 Of the many advances made to improve the accuracy of GPS, one of the
more important and yet relatively simple idea has been something called carrier
smoothing (of the code measurements) that involves the use of a complementary
filter.

As with any complementary filter, there are at least two measurements of the
same quantity, in this case the signal dynamics, which we will call c. The code
phase (or pseudorange) measurement r has a direct connection to c but it has a
somewhat high level of noise hr:

r ¼ cr þ hr (P8.3.1)

The second measurement is a carrier phase measurement f also has a
connection to c and it has a much lower noise level hf but has an initial unknown
bias N:

f ¼ cf þ N þ hf (P8.3.2)

(a) Assuming that cr ffi cf, draw up a block diagram for a complementary
filter that will process both code phase and carrier phase measurements to
produce a low-noise estimate of the code phase r̂. Write out the transfer
function (in terms of s) for the complementary filter.

(b) The assumption of cr ffi cf, however, is not quite true because one of its
constituent components, the effect of the ionosphere on the signal, has
opposite signs between the two types of measurements, i.e., cr ¼ cþ i,
and cf ¼ c� i. Show that the ionospheric term i does not get eliminated
so that the complementary filter is limited by the dynamics of i.

(c) With GPS, we can also get another pair of code phase and carrier phase
measurements from a given satellite at a different frequency. Suppose now
that we have a set of four measurements written as follows (a is a multiplier
that represents a scaling change in the size of the iono component when
measured at a different frequency):

r1 ¼ cþ iþ hr1
f1 ¼ c� iþ N1 þ hf1
r2 ¼ cþ aiþ hr2
f2 ¼ c� aiþ N2 þ hf2

(P8.3.3)

How can these measurements be combined for a complementary filter that fully
eliminates the dynamics of c and i (8).
(Hint: Note that N1 and N2 are biases).

8.4 The approximate INS error equations of (8.10.8) through (8.10.8) are for a
slow-moving vehicle. In this model, the observability of the azimuth error fz is poor
because it can only depend on earth motion (gyrocompassing). Hence, for an INS
with poor gyro stability, its steady-state azimuth error can be quite large. For a
faster-moving vehicle that occasionally encounters horizontal acceleration, the
improved observability of fz under such conditions actually provides a substantial
reduction in the error, thus momentarily stabilizing it. The INS error equations for
the east and north channels (Eqs. 8.10.3 through 8.10.6.) are rewritten here with the
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inclusion of the lateral acceleration components Ax and Ay tie-in to the azimuth error
in the horizontal acceleration error equations (additional terms are indicated with a
double underscore).

East channel:

D€x ¼ ax � gfy þ Ayfz

_fy ¼
1

Re
D _xþ vxfz þ ey

(P8.4.1)

North channel:

D€y ¼ ay � g �fxð Þ�Axfz

� _fx ¼ 1

Re
D _yþ vyfz þ ex

(P8.4.2)

Using the parameters for Example 8.1 in the integrated INS/DME navigation
system, perform a covariance analysis to determine the time profile for the variance
of the azimuth error fz for the following dynamic scenario: The nominal y-axis
acceleration and velocity profiles are as shown in the accompanying figure.

The y(t) profile for linearization of the H matrix may be approximated as
constant-velocity (100m/s) for the first 95 sec; then a constant 10-sec deceleration
period; and, finally, a constant velocity of 60m/s for the remaining 95 sec of the
profile. (Note that we are not assuming this to be the actual flight path. This is
simply the approximate reference trajectory to be used for the linearization.)

The parameter values given in Example 8.1 are to be used here, except that the
gyro white noise power spectral density is to be increased to 2.35 (10�9) (rad/s)2/Hz
and the initial azimuth error is to be set at 1 degree rms. This is intended to simulate
a less-stable INS as compared with the one considered in Example 8.1.

The gravity constant g and the earth radius Re may be assumed to be 9.8 m/s2

and 6.37 (106) m for this problem.

8.5 Instrument errors are often found to be simple quasibiases that wander over
long time constants. These can simply be modeled’ with a single-state Gauss-
Markov process. Some instrument errors, however, are related in a deterministic
way to the magnitude of the measured variable, the most common type being
known as scale factor errors. We shall look at the nature of a scale factor error in
combination with a bias error in this problem that involves barometric-derived
altitude. Suppose that the principal relationship between the internally sensed
barometric reading and the reported altitude is given by the following equations:

H0 ¼ b0 g 0 (P8.5.1)
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where

H0 ¼ reported altitude

b0 ¼ barometric reading

g0 ¼ barometric altitude scale factor

Consider that the barometric reading b0 is made up of the correct value b plus a
bias error be: b

0 ¼ bþ be. Consider also that the scale factor g0 is made up of the
correct value g plus an error ge: g

0 ¼ gþ ge.
(a) Show that we can use the 2-state measurement model shown below to

account for the bias and scale factor errors (neglect second-order effects):

H0 � H ¼ zk ¼ 1 H0½ � be
ge

	 

k

þ vk (P8.5.2)

(b) Suppose that the two error states are modeled as random constants:

be
ge

	 

kþ1

¼ 1 0

0 1

	 

be
ge

	 

k

þ 0

0

	 

(P8.5.3)

Let H0 ¼ 50. Do the variances of be and ge go to zero in the limit? Under what
condition will the variances of be and ge go to zero in the limit?
(c) Suppose that the two error states are modeled individually as single-state

Gauss-Markov processes:

be
ge

	 

kþ1

¼ 0:9999 0

0 0:9999

	 

be
ge

	 

k

þ w1

w2

	 

k

(P8.5.4)

where

E wwT
� � ¼ 2 0

0 2

	 

(P8.5.5)

Let H0 ¼ 50. Do the variances of be and ge go to zero in the limit? Why?

8.6 Suppose that the integrated INS/DME situation given in Example 8.1 involves a
locomotive instead of an aircraft. The locomotive is constrained to railroad tracks
aligned in the north–south direction. In place of an INS, the integrated navigation
system uses wheel tachometer data to provide the reference trajectory in the
complementary filter arrangement. A tachometer monitors wheel revolutions to
determine the relative distance traveled. In words,

Relative distance ¼ number of wheel revolutions� wheel circumference

The model for the position error in the relative distance takes on the same form
as that of a scale factor error (see Problem 8.5).

The locomotive kinematics are described by the following equations:

x ¼ 0

ykþ1 ¼ yk þ wk þ 10Dt; k ¼ 0; 1; 2; . . . ; 2000
(P8.6.1)
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where wk is an independent Gaussian sequence described by

wk 	 NN 0; 1m2
� �

The sampling interval Dt is 1 sec.
(a) Formulate a process model that includes bias and scale factor error states

using random constant models for each. Also formulate a linearized mea-
surement model using the scenario setup from Problem 7.5; use only DME
stationNo. 2. For simplicity, a linearizedKalmanfilter should be used, not an
extended Kalman filter. Let the initial estimation error variances for the bias
and scale factor states be (100m)2 and (0.02 per unit)2.

(b) Run a covariance analysis using the filter parameters worked out in (a) for
k¼ 0, 1, 2, . . . , 2000, and plot the rms estimation errors for each of the
error states. Also plot the rms position error.

(c) Make another run of (b) except that, between k¼ 1000 and k¼ 1800, DMF.
measurement updates are not available.

8.7 In a single-channel inertial model such as that described by the differential
equation of Eq. (8.9.1), the state transition matrix computed for the discrete-time
process may be simply approximated by f 
 Iþ FDt. This same first-order
approximation for f can also be used in the integral expression for Qk given by
Eq. (3.9.10). When F is constant andf is first order in the step size, it is feasible to
evaluate the integral analytically and obtain an expression for Qk in closed form.
(Each of the terms in the resulting Qk are functions of Dt.)

(a) Work out the closed-form expression for Qk using a first-order approxi-
mation for f in Eq. (3.9.10). Call this Q1.

(b) Next, evaluateQkwithMATLAB using the “Van Loan” numerical method
given by Eqs. (3.9.22–3.9.25). Do this for Dt¼ 5 sec, 50 sec, and 500 sec.
These will be referred to as Q2 (different, of course, for each Dt).

(c) Compare the respective diagonal terms of Ql with those of Q2 for Dt¼ 5,
50, and 500 sec.

This exercise is intended to demonstrate that one should be wary of using first-
order approximations in the step size when it is an appreciable fraction of the natural
period or time constant of the system.
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9
Kalman Filter Applications
To The GPS And Other
Navigation Systems

The Global Positioning System (GPS) has established itself over more than two
decades of operation as a reliable and accurate source of positioning and timing
information for navigation applications (1). Perhaps the clearest mark of its
resounding success is found in the widespread use of low-cost GPS modules
embedded in many modern-day utilities such as smartphones and car navigators.
“GPS” is now a well-recognized acronym in our cultural lexicon. Ironically, a
testament to its technological maturity actually lies in a growing emphasis of
advanced research work into navigation areas beyond GPS, i.e., into so-called
“GPS denied” situations. Without a doubt, the usefulness of GPS has far
surpassed what had originally been envisioned by its early designers, thanks
in large part to a creative and competitive community of navigation users,
practitioners and developers (2). As we venture nearer a new dawn of multiple
global navigation satellite systems (GNSS), that will have largely drawn from the
GPS experience, we may yet see even more new and exciting concepts that take
advantage of what will be a bountiful abundance of satellite navigation signals
in space.

9.1
POSITION DETERMINATION WITH GPS

An observer equipped to receive and decode GPS signals must then solve the
problem of position determination. In free space, there are three dimensions of
position that need to be solved. Also, an autonomous user is not expected to
be precisely synchronized to the satellite system time initially. In all, the
standard GPS positioning problem poses four variables that can be solved
from the following system of equations, representing measurements from four
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different satellites:

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1 � xð Þ2 þ Y1 � yð Þ2 þ Z1 � zð Þ2

q
þ cDt

c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � xð Þ2 þ Y2 � yð Þ2 þ Z2 � zð Þ2

q
þ cDt

c3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3 � xð Þ2 þ Y3 � yð Þ2 þ Z3 � zð Þ2

q
þ cDt

c4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X4 � xð Þ2 þ Y4 � yð Þ2 þ Z4 � zð Þ2

q
þ cDt

(9.1.1)

where

c1;c2;c3;c4 ¼ noiseless pseudorange

Xi;Yi; Zi½ �T ¼ Cartesian position coordinates of satellite i

x; y; z½ �T ¼ Cartesian position coordinates of observer

Dt ¼ receiver offset from the satellite system time

c ¼ speed of light

The observer position x; y; z½ �T is “slaved” to the coordinate frame of reference
used by the satellite system. In the case of GPS, this reference is a geodetic datum
called WGS-84 (for World Geodetic System of 1984) that is earth-centered earth-
fixed (3). The datum also defines the ellipsoid that crudely approximates the surface
of the earth (see Fig. 9.1) Although the satellite positions are reported in WGS-84
coordinates, it is sometimes useful to deal with a locally level frame of reference,
where the x0 � y0 plane is tangential to the surface of the earth ellipsoid. As depicted
in Fig. 9.1, we shall define such a locally level reference frame by having the x0-axis
pointing east, the y0-axis north, and the z0-axis pointed up locally. It suffices here
to say that the coordinate transformations to convert between the WGS-84

y

y′

x

x′

φ

θ

z

z′

Figure 9.1 The WGS-84 coordinate reference frame

(x, y, z) used by GPS and a locally level coordinate

reference frame (x0, y0, z0).
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coordinates and any other derived reference frame, including the locally level one
given here, are usually quite straightforward.

Measurement Linearization

Themeasurement situation forGPSisclearlynonlinear fromEq. (9.1.1).Linearization
of a measurement of this form has already been covered in Section 7.1 and will not be
reiterated here. We will simply evaluate the partial derivatives necessary to obtain
the linearized equations about an approximate observer location x0 ¼ x0; y0; z0½ �T .
This nominal point of linearization x0 is sometimes based on an estimate of the true
observer location x although, in general, its choice may be arbitrary.

@ci

@x
¼ � Xi � x0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xi � x0ð Þ2 þ Yi � y0ð Þ2 þ Zi � z0ð Þ2
q

@ci

@y
¼ � Yi � y0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xi � x0ð Þ2 þ Yi � y0ð Þ2 þ Zi � z0ð Þ2
q

@ci

@z
¼ � Zi � z0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xi � x0ð Þ2 þ Yi � y0ð Þ2 þ Zi � z0ð Þ2
q

(9.1.2)

for i¼ 1, . . . , 4.
From a geometrical perspective, the partial derivative vector for each satellite i,

@ci

@x

@ci

@y

@ci

@z

� �T

as given in Eq. (9.1.2) is actually the unit direction vector pointing from the satellite
to the observer, the direction being specified by the negative sign in the equation. In
classical navigation geometry, the components of this unit vector are often called
direction cosines: The resulting measurement vector equation for pseudorange as
the observable is then given by (without noise):

c1

c2

c3

c4

2
6664

3
7775�

ĉ1 x0ð Þ
ĉ2 x0ð Þ
ĉ3 x0ð Þ
ĉ4 x0ð Þ

2
6664

3
7775 ¼

@c1

@x

@c1

@y

@c1

@z
1

@c2

@x

@c2

@y

@c2

@z
1

@c3

@x

@c3

@y

@c3

@z
1

@c4

@x

@c4

@y

@c4

@z
1

2
66666666666664

3
77777777777775

Dx

Dy

Dz

cDt

2
6664

3
7775 (9.1.3)
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where
c1 ¼ noiseless pseudorange

x0 ¼ nominal point of linearization based on x0; y0; z0½ �T
and predicted receiver time

ĉ1 x0ð Þ ¼ predicted pseudorange based on x0
Dx;Dy;Dz½ �T ¼ difference vector between true location x and x0

cDt ¼ range equivalent of the receiver timing error

9.2
THE OBSERVABLES

Useful information can be derived from measurements made separately on the
pseudorandom code and the carrier signal. There are many diverse signal processing
schemes for the GPS signal in the commercial and military products and the block
diagram shown in Fig. 9.2 is intended to represent a generic scheme. In all of these,
we ultimately end up with the same types of measurements that are processed by the
navigation function: pseudorange, carrier phase, and delta range (the carrier phase
and delta range are related). When the measurements are formed, their noise
characteristics are dependent on their respective signal-to-noise ratios after signal
integration plus some pre-filtering made in the signal processing.

The observable known as pseudorange (sometimes also called code phase) is a
timingmeasurement of the delay from the point of transmission to the point of receipt.
Thisdelaymanifests itself in the timeshift of thepseudorandomcodeposition since the
timeoftransmission.Thismeasurement ideallyrepresentsthegeometricrangefromthe
transmitting satellite to the receiver plus the receiver clock offset from satellite time.
However, it also contains error components that affect the resulting solution.

Code (rf in meters) and carrier phase (ff in cycles) measurements are
represented by the following equations:

rf ¼ cþ jþ t þ if|fflfflfflfflfflffl{zfflfflfflfflfflffl}
br

þ mr þ nr|fflfflfflffl{zfflfflfflffl}
hr

(9.2.1)

lff
f ¼ cþ jþ t � if|fflfflfflfflfflffl{zfflfflfflfflfflffl}

bf

þ mf þ nf|fflfflfflffl{zfflfflfflffl}
hf

þ lf N
f (9.2.2)

Figure 9.2 Generic GPS receiver functional block diagram.
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where

c ¼ ideal pseudorange consisting of geometric range and range-equivalent

receiver clock error

j ¼ satellite broadcast error ðephemeris and clock parametersÞ
t ¼ tropospheric refraction error

if ¼ ionospheric refraction error

mr ¼ code multipath error

nr ¼ pseudorange measurement noise

mf ¼ carrier multipath error

nf ¼ carrier phase measurement noise

lf ¼ wavelength at frequency f

Nf ¼ integer cycle ambiguity

Both types of measurements contain the ideal pseudorange plus various other error
components.We can lump some of these error components together into at least two
categories: signal-in-space (b) and receiver tracking (h).

The main differences between the two types of measurements are:

1. The carrier phase noise due to receiver tracking and multipath error are
small but the carrier phase contains an integer ambiguity uncertainty that
must be resolved for it to be useful. If Nf can be fully resolved, the resulting
hf is very small compared to hr.

2. There is a slight variation between the signal-in-space error components in
that the ionospheric refraction term between the two are of opposing signs.

The processing of the code phase is straightforward and we shall see an
example of this later in the chapter. Due to its associated cycle ambiguity, the carrier
phase measurement is used in more specialized ways to take advantage of its high
precision. Here, we list the variety of ways that the carrier phase measurement is
used in different GPS applications:

1. Delta range
The difference in carrier phase over a short time interval tends to approxi-
mate a measurement of the Doppler frequency, which is related to a measure
of velocity.

lff
f
t � lff

f
t�Dt ¼ ct � ct�Dtð Þ þ bf

t � bft�Dt

� �þ hft � hft�Dt

� �
(9.2.3)

The ambiguity is assumed to be the same between the two carrier phases at
beginning and end of this short time interval so it cancels out. This assumes
no undetected cycle slip occurs in the carrier tracking over this interval. This
is perhaps the original use of carrier phase in GPS—to estimate the doppler
frequency as a measure of the user velocity. Other innovative uses of the GPS
carrier phase have since been spawned and they extend the present.

2. Carrier smoothing of code
Code phase and carrier phase are two measurements of the same “signal,”
i.e., ideal pseudorange, so they may be combined with a complementary
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filter (see Chapter 8). In the first step of a complementary filter, we
difference the two different types of measurements and the result is Kalman
filtered:

rf � lff
f ¼ �lf N

f þ 2if þ mr þ nr|fflfflfflffl{zfflfflfflffl}
hr

� mf þ nf|fflfflfflffl{zfflfflfflffl}
hf

The filtered estimate (with estimation error eCS) would be:�lf N
f þ 2if þeCS

Note that Nf is static but ifmay gradually drift as a result of ionospheric
refraction changes over time. The reconstituted code phase measurement
corrected by the filter estimated then turns out to be:

r̂
f
CS ¼ cþ jþ t � if þ mf þ nf þ lf N

f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Original carrier phase

�lf N
f þ 2if þ eCS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Filter estimate

¼ cþ jþ t þ if þ mf þ nf þ eCS

(9.2.4)

When compared to the raw code phase (Eq. 9.2.1), the carrier smoothed code
measurement has a smaller level of measurement noise in mf þ nf þ eCS

� �
as

opposed to the original in mr þ nr
� �

. Much of this reduction in noise, hence
“smoothing,” is owed to the time constant of the filter that then hinges on
how much drift the ionospheric refraction is going through. This limitation is
virtually eliminated by the use of dual-frequency carrier smoothing (see
Problem 8.3).

3. Carrier phase differential
The differencing of measurements between two locations, one a known
location and the other to be solved relative to the known location, contains
relative position information between the two locations.

lff
f
A � lff

f
B ¼ cA � cBð Þ þ hfA � hfB

� �þ lf Nf
A � Nf

B

� 	
(9.2.5)

Here, the relative position information resides in cA � cBð Þwhile the signal-
in-space error bf is eliminated but an additional integer ambiguity,
lf ðNf

A � Nf
BÞ, is introduced. When this ambiguity is fully resolved, the

solution has very high precision because its error is dictated by carrier
phase measurement noises hfA � hfB

� �
that are small as compared to code

phase measurement noise.

4. Standalone positioning with precise satellite ephemeris/clock parameters
One of the more intriguing variations of GPS techniques to come along
within the past 10 years is NASA’s Global Differential GPS system (4). As
an extreme form of wide-area differential GPS, the GDGPS exploits vastly
advanced techniques and extensive monitoring to obtain highly-accurate
determination of satellite position and clock parameters. Unlike con-
ventional differential techniques that attempt to correct for the lumped
unknown of b (Eqs. 9.2.1–9.2.2), the GDGPS solution attempts to corrects
for individual components. The extensive monitoring network provides
corrections for satellite orbits and clock to correct for j. The iono refraction
error is eliminated by a proper linear combination of the carrier phases made
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at the two GPS frequencies:

lf1f
f1 ¼ cþ jþ t � if1 þ hff1 þ lf1N

f1

lf2f
f2 ¼ cþ jþ t � if2 þ hff2 þ lf2N

f2

lf 3 f f1 � lf1

lf2
f f2


 �
¼ cþ jþ tð Þ þ lf3 hff1 �

lf1

lf2
hff2


 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hff3

þ lf3 Nf1 � lf1

lf2
Nf2


 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a

(9.2.6)

where the wavelength of a composite frequency f3 is given by:

lf3 ¼
lf1l

2
f2

l2f2 � l2f1

In Eq. (9.2.6), after minimizing the errors in j and eliminating the iono
refraction, we are left with estimating out the tropo refraction error t and the
initial ambiguity a to get the best estimate of the ideal pseudorange c.

9.3
BASIC POSITION AND TIME PROCESS MODELS

The primary state variables given in the linearized measurement model of the ideal
pseudorange in Eq. 9.1.3 are three position states (Dx, Dy, Dz) and one clock (time)
bias state (Dt), which is better represented in its range-equivalent form when
multiplied by the speed-of-light constant (cDt).

Whenwe use a Kalman filter tomake the best estimate of position and time from
available GPS measurements and nothing else, this problem is sometimes called
Standalone or unaided GPS, the second term being contrasted to a system where
aiding generally comes from an inertial source. The process model of such a set of
three-dimensional position states is very much dependent on the dynamics encoun-
tered and, as Chapter 8 had previously made abundantly clear, such dynamics are not
always easy tomodel because they are not all randombut rather partly deterministic in
nature. However, to make the best of a sometimes less-than-ideal situation, process
models can be concocted to reasonably approximate the conditions at hand. But first
we address the process model of a typical receiver clock.

Receiver Clock Modeling

The GPS receiver clock introduces a timing error that translates into ranging error
that equally affects measurements made to all satellite (Eq. 9.1.1). This error is
generally time-varying. If the satellite measurements are made simultaneously, this
receiver clock error is the same on all measurements. Due to this commonality, the
clock error has no effect on positioning accuracy if there are enough satellites to
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solve for it and so is not included as a source of positioning error. Even so, there are
advantages to properly model the receiver clock. This is illustrated in an example
given at the end of the section.

A suitable clock model that makes good sense intuitively is a two-state random-
processmodel. It simply says thatwe expect both the oscillator frequency and phase to
random walk over reasonable spans of time. We now wish to look at how the Q
parameters of the state model may be determined from the more conventional Allan
variance parameters that are often used to describe clock drift (5). We begin by
writing the expressions for the variances and covariances for the general two-state
model shown in Fig. 9.3.

The clock states xp and xf represent the clock phase and frequency error,
respectively. Let the elapsed time since initiating the white noise inputs be Dt.
Then, using the methods given in Chapter 3, we have

E x2p Dtð Þ
h i

¼
ZDt
0

ZDt
0

1 � 1 � Sf � d u� vð Þdu dv

þ
ZDt
0

ZDt
0

u � v � Sg � d u� vð Þdu dv

¼ SfDt þ SgDt
3

3

(9.3.1)

E x2f Dtð Þ
h i

¼
ZDt
0

ZDt
0

1 � 1 � Sg � d u� vð Þdu dv ¼ SgDt (9.3.2)

E xp Dtð Þxf Dtð Þ�  ¼ ZDt
0

ZDt
0

1 � v � Sg � d u� vð Þdu dv ¼ SgDt
2

2
(9.3.3)

Now let us concentrate on the variance of state xp. In particular, let us form the rms
value of xp time-averaged over the elapsed time Dt.

Avg: rms xp ¼ 1

Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SfDt þ SgDt

3

3

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sf
Dt

þ SgDt

3

r (9.3.4)

Figure 9.3 General two-state model describing clock errors. The independent white noise

inputs uf and ug have spectral amplitudes of Sf and Sg.
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Drift characteristics of real clocks have been studied extensively over the
past few decades. Figure 9.4 shows a timing stability plot for a typical ovenized
crystal clock. Such plots are known as Allan variance plots that depict the amount
of rms drift that occurs over a specified period Dt, normalized by Dt. Note that
over the time interval range shown in Fig. 9.4, there are three distinct asymptotic
segments, the middle one of which is flat and associated with what is known as
flicker noise. This segment, however, is missing from the response of the two-
state model described by Eq. (9.3.4).

There was good reason for this omission in the two-state model. Flicker
noise gives rise to a term in the variance expression that is of the order of Dt2,
and it is impossible to model this term exactly with a finite-order state model.
To resolve this modeling dilemma, an approximate solution is to simply
elevate the theoretical V of the two-state model so as to obtain a better match
in the flicker floor region. This leads to a compromise model that exhibits
somewhat higher drift than the true experimental values for both small and
large averaging times. The amount of elevation of the V depends on the width
of the particular flicker floor in question, so this calls for a certain amount of
engineering judgment.

We then compare terms of similar order in Dt in 9.3.1 and the q11 term

q11 ¼
h0
2
Dt þ 2h�1Dt

2 þ 2

3
p2h�2Dt

3

By completely ignoring the flicker (second) term, we arrive at the following
correspondence:

Sf � h0
2

Sg � 2p2h�2

(9.3.5)

Figure 9.4 Square root of Allan variance (or Allan deviation) plot with

asymptotes for a typical ovenized crystal oscillator (6).
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While there are various methods to make up for ignoring the flicker term, we
introduce one such approximation method that is also new, in Problem 9.4.

Precision clocks can have widely diverse Allan variance characteristics. Thus,
one must treat each case individually and work out an approximate model that fits
the application at hand. Table 9.1 gives typical values of h0, h�1, and h�2 for various
types of timing standards widely used in GPS receivers. Note that the numbers given
in Table 9.1 correspond to clock errors in units of seconds. When used with clock
error in units of meters, the values of Table 9.1 must be multiplied by the square of
the speed of light (3� 108)2.

Dynamic Model for Position States

The dynamic process used in Fig. 9.3 for the clock also works reasonably well for a
moving observer. Instead of phase and frequency, we replace the states with
position and velocity and Fig. 9.5 depicts a Position-Velocity (PV) model for
one-dimension of position. We typically represent the three dimensions of position
with three such independent models.

This model simply accommodates a non-zero velocity condition whenever
there is motion. The white noise u driven through the first integrator results in a
random walk process for the velocity state. The position state is simply the integral
of the velocity state, as shown in Fig. 9.5.

Table 9.1 Typical Allan Variance Coefficients for Various Timing Standards (for clock
error in seconds) (7)

Timing Standard h0 h�1 h�2

TCXO (low quality) 2� 10�19 7� 10�21 2� 10�20

TCXO (high quality) 2� 10�21 1� 10�22 3� 10�24

OCXO 2� 10�25 7� 10�25 6� 10�25

Rubidium 2� 10�22 4.5� 10�26 1� 10�30

Cesium 2� 10�22 5� 10�27 1.5� 10�33

TCXO – Temperature compensated crystal oscillator

OCXO – Ovenized crystal oscillator (temperature controlled)

Figure 9.5 Position-velocity (PV) model.

EXAMPLE 9.1

In the PV model of Fig. 9.5, each spatial dimension will have two degrees of
freedom, one of position and the other of velocity. Therefore, for the GPS problem
where there are three spatial dimensions and one time dimension, the state vector
now becomes an eight-tuple. The PV dynamic process can be described by the
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following vector differential equation:

_x1
_x2
_x3
_x4
_x5
_x6
_x7
_x8

2
666666666664

3
777777777775
¼

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

2
666666666664

3
777777777775

x1
x2
x3
x4
x5
x6
x7
x8

2
666666666664

3
777777777775
þ

0

u1
0

u2
0

u3
uf
ug

2
666666666664

3
777777777775

(9.3.6)

where

x1 ¼ east position

x2 ¼ east velocity

x3 ¼ north position

x4 ¼ north velocity

x5 ¼ altitude

x6 ¼ altitude rate

x7 ¼ range ðclockÞ bias error
x8 ¼ range ðclockÞ drift error

and the spectral densities associated with the white noise driving functions are Sp for
u1, u2 and u3, Sf for uf and Sg for ug (see Figs. 9.3 and 9.5).

From 9.3.6, the state transition matrix can be derived as

F ¼

f 0 0 0

0 f 0 0

0 0 f 0

0 0 0 f

2
66664

3
77775 wheref ¼ 1 Dt

0 1

" #
(9.3.7)

To obtain the process noise covariance matrixQ, we resort to the methods given in
Chapter 3. Note from Eq. 9.3.6 that we can treat the three position-velocity states
variable pairs independently.

E x2i Dtð Þ�  ¼ ZDt
0

ZDt
0

u � v � Sp � d u� vð Þdudv ¼ SpDt
3

3
(9.3.8)

E x2iþ1 Dtð Þ�  ¼ ZDt
0

ZDt
0

1 � 1 � Sp � d u� vð Þdudv ¼ SpDt (9.3.9)

E xi Dtð Þxiþ1 Dtð Þ½ � ¼
ZDt
0

ZDt
0

1 � v � Sp � d u� vð Þdudv ¼ SpDt
2

2
(9.3.10)

for i¼ 1, 3, and 5.
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The determination of the spectral amplitude Sp for the position random process is at
best a “guesstimate” based roughly on expected vehicle dynamics. The PV model
also becomes inadequate for cases where the near-constant velocity assumption
does not hold, that is, in the presence of severe accelerations. To accommodate
acceleration in the process model, it is appropriate to add another degree of freedom
for each position state. Although we can easily add one more integrator to obtain a
Position-Velocity-Acceleration (PVA) model, a stationary process such as the
Gauss-Markov process is perhaps more appropriate than the nonstationary random
walk for acceleration (Fig. 9.6). This goes in accordance with real-life physical
situations where vehicular acceleration is usually brief and seldom sustained. The
state vector for this PVA model then becomes 11-dimensional with the addition of
three more acceleration states.

The equations involving the clock states x7 and x8 were derived from Eqs. (9.3.1)
through (9.3.3). With these, the process noise covariance matrix is as follows:

Q ¼

QPV 0 0 0

0 QPV 0 0

0 0 QPV 0

0 0 0 QClk

2
66664

3
77775

where

QPV ¼
SpDt

3

3

SpDt
2

2

SpDt
2

2
SpDt

2
664

3
775 QClk ¼

SfDt þ SgDt
3

3

SgDt
2

2

SgDt
2

2
SgDt

2
664

3
775

Thecorrespondingmeasurementmodel for pseudorange is anextensionofEq. (9.1.3)
and is quite straightforward:

r1
r2

..

.

rn

2
66664

3
77775�

r̂1
r̂2

..

.

r̂n

2
66664

3
77775 ¼

hð1Þx 0 hð1Þy 0 hð1Þz 0 1 0

hð2Þx 0 hð2Þy 0 hð2Þz 0 1 0

..

. ..
. ..

. ..
.

hðnÞx 0 hðnÞy 0 hðnÞz 0 1 0

2
666664

3
777775

x1

x2

x3
x4

x5

x6

x7

x8

2
6666666666664

3
7777777777775
þ

vr1
vr2

..

.

vrn

2
66664

3
77775

(9.3.11)

&

Figure 9.6 Position-velocity-acceleration model for high (acceleration) dynamics

observer.
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Derivation of the corresponding state transition and process noise covariance
matrices will be left as part of an exercise in Problem 9.2. It should be pointed out
here that although acceleration is being accounted for in some stochastic form, the
exercise is an approximation at best. There is no exact way to fit deterministic
accelerations into any of the random-process dynamics suitable for a Kalman
filter model. With the PVA model, the Kalman filter will do a better job of
estimation than the PV model, but it may still be inadequate by other measures
of optimality.

9.4
MODELING OF DIFFERENT CARRIER PHASE MEASUREMENTS AND
RANGING ERRORS

Delta Range Processing

Delta range (or delta pseudorange) is an approximate measurement of position
change or, in the limit, of velocity (8). Since it is derived from the GPS signal carrier
phase that has very low measurement noise, the quality of the information is very
high and its exploitation to improve the estimation of position and velocity cannot
be overemphasized. We will now look at one proper way (but not the only way) to
model the delta range measurement.

We revisit the position-velocitymodel shown in Fig. 9.5. For an example in one
spatial dimension (also ignoring any clock error states), let us define three states:

x1ðkÞ ¼ position at time tk

x2ðkÞ ¼ velocity at time tk

x3ðkÞ ¼ position at time tk�1 ½or x1ðk � 1Þ�

The position and velocity states are related by the following differential equation:

_x1

_x2

� �
¼ 0 1

0 0

� �
x1

x2

� �
þ 0

u

� �

The discrete-time solution to the differential equation is:

x1

x2

� �
kþ1

¼ 1 Dt
0 1

� �
x1

x2

� �
k

þ w1

w2

� �
k

(9.4.1)

We then augment the x3 state to the two-tuple process model of Eq. (9.4.1) to get (9):

x1

x2

x3

2
64

3
75
kþ1

¼
1 Dt 0

0 1 0

1 0 0

2
4

3
5 x1

x2

x3

2
64

3
75
k

þ
w1

w2

0

2
4

3
5
k

(9.4.2)
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The Q matrix is given by:

Q ¼

SDt3

3

SDt2

2
0

SDt2

2
SDt 0

0 0 0

2
66664

3
77775 (9.4.3)

(By the very definition of x3(kþ1)¼ x1(k), w3 is zero. Thus, the third row and
column of Q are zero.)

At this time, we write out a simplified measurement model that consists of a
code phase-like measurement and a delta range-like measurement.

r

d

� �
k

¼ h 0 0

h 0 �h

� �
k

x1

x2

x3

2
64

3
75
k

þ vr
vd

� �
k

(9.4.4)

where dk ¼ lff
f
k � lff

f
k�1 is the delta range measurement as defined in Eq. (9.2.3).

This delta range model paints a more realistic picture than the simple
approximation of treating it as a direct measure of velocity, as given as follows
for comparison:

r

d

� �
k

¼ h 0

0 h

� �
k

x1

x2

� �
k

þ
vr
vd
.
Dt

2
4

3
5
k

(9.4.5)

whose dynamic process model is given by Eq. (9.4.1). Here the measurement noise
variance

R ¼
Evrv

T
r 0

0
1

Dt2
Evdv

T
d

2
4

3
5

Table 9.2 compares the steady state error (standard deviation) of the delta range
model of Eqs. (9.4.2)–(9.4.4) for different values of Dt, while assuming h¼ 1,

Table 9.2 Relative comparison of velocity estimation errors as a function of sampling

interval and chosen model for a given high dynamics-type environment

Delta range
(and sampling)
interval Dt (sec)

Steady state velocity rms estimation error (m/s)

Optimal delta
range model
(realistic)

Approx. velocity delta range as
computed by suboptimal model

(overoptimistic)

0.02 0.210 0.164

0.1 0.247 0.042

0.2 0.341 0.021

0.5 0.537 0.009

1.0 0.760 0.004
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S¼ 2 (m/s2)2/Hz. (Note that the value of S is typically much smaller if inertial aiding
is available.) The table also includes the steady state error derived for the approxi-
mate delta range model of Eqs. (9.4.1) and (9.4.5). Note the gross optimism of the
latter as compared to themore realistic values of the former. Although these numbers
are for a simplified one-dimensional model, the comparison itself gives a qualitative
feel for the differences between the models and, thus, useful insights.

The basic message here is simply that when dynamical uncertainties are
relatively large, as when encountered in unaided (standalone) situations, the best
we can do is with the optimal delta range model of Eqs. (9.4.2)–(9.4.4). And yet,
when the delta range interval is larger than even a sizable fraction of a second, the
system becomes incapable of accurately estimating instantaneous velocity. All the
approximate model of Eqs. (9.4.1) and (9.4.5) is doing is fooling itself into
“thinking” it has observability into the instantaneous velocity and therefore
accounts for an overoptimistic velocity error covariance when in fact it can do
no better than the optimal model.

Ambiguity Resolution

The usefulness of carrier phase data for high-accuracy positioning is due to the high
precision measurement associated with it. The measurement model of Eq. (9.2.2)
suggests that if the integer ambiguityN can be fully resolved, then the carrier phase is
essentially a high precision measurement of the ideal pseudorange c plus a low-
frequency systemerrorbf butwith very small high-frequencynoisehf.bf is similar in
size and effect to the term br that corrupts its code phase counterpart of Eq. (9.2.1).

This notion has been the essential foundation to an application area called Real-
Time Kinematic (RTK) GPS. RTK GPS came through some wondrous innovation
and evolution in the field of terrestrial surveying in the late 80s and early 90s, and has
gone from its terrestrial surveying roots to dynamic positioning applications, such as
automatic control of tractors in farming and precision landing of aircraft. To rid itself
of the low-frequency system error bf, RTK GPS is based on differential principles
where the solution obtained is only for the position of one observer with respect to
another reference observer. The errors that corrupt the observations of two observers
that are relatively close together are strong correlated and differenced out. The usual
practice inRTK then is to forma “double” difference, consisting of a first and a second
difference of nearly simultaneously measured carrier phases. (Fortunately, highly
accurate GPS time tagging satisfies the need to do this with microsecond-level
precision to avoid any dynamical compensation). Thefirst difference of carrier phases
is made for each satellite seen commonly at the two observers, and the second
difference is made between first differences associated with any pair of satellites. The
second difference removes the receiver clock term entirely.

We begin by re-examining Eq. (9.2.2), first leaving out its frequency argument
f, then introducing indices of receiver location (A orB) and satellite ID (SV1 or SV2),
and also expanding out the ideal pseudorange term cA:

lf
ð1Þ
A ¼ hð1Þ � dxA þ dtA|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

cA

þ lN
ð1Þ
A þ bð1Þ þ h

ð1Þ
A
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After forming the “double difference” combination associated with a pair of
satellites, 1 and 2 say, the resulting measurement equation becomes:

l Df
ð1Þ
A � Df

ð1Þ
B

� 	
� Df

ð2Þ
A � Df

ð2Þ
B

� 	h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rDf1;2

¼

hð1Þx � hð2Þx

� 	
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

rhð1;2Þx

� DxAB þ hð1Þy � hð2Þy

� 	
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

rhð1;2Þy

� DyAB þ hð1Þz � hð2Þz

� 	
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

rhð1;2Þz

� DzAB

þ l N
ð1Þ
A � N

ð1Þ
B

� 	
� N

ð2Þ
A � N

ð2Þ
B

� 	h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rDN1;2

þ h
ð1Þ
A � h

ð1Þ
B

� 	
� h

ð2Þ
A � h

ð2Þ
B

� 	h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rDhf1;2

(9.4.6)

Mostly notably, this equation is now devoid of a receiver clock bias term and the
integer character of cycle ambiguity, given by rDN1;2, is still maintained. The
pairing for the double difference can be formed in many ways, but one popular
method is to difference the single difference carrier phases of all satellites from one
chosen reference satellite (such a scheme was illustrated in Section 8.2).

If we choose a PVmodel such as that adopted in Example 9.3, we would use the
same first six states (position and velocity states in three spatial dimensions) but
ignore the two clock states because these have been eliminated in the double
difference measurement model.

rDf1;2

rDf1;3

..

.

rDf1;n

2
666664

3
777775l ¼

rhð1;2Þx 0 rhð1;2Þy 0 rhð1;2Þz 0 l 0 � � � 0

rhð1;3Þx 0 rhð1;3Þy 0 rhð1;3Þz 0 0 l

..

. ..
. ..

. ..
.

}

rhð1;nÞx 0 rhð1;nÞy 0 rhð1;nÞz 0 0 l

2
666664

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

x1

x2

x3

x4

x5

x6

x7

x8

..

.

xn

2
66666666666666666664

3
77777777777777777775

þ

rDhf1;2

rDhf1;3

..

.

rDhf1;n

2
666664

3
777775

(9.4.7)

States x7 through xn are now ambiguity states whose dynamics are trivial because
these ambiguities represent some fixed initial unknown quantity, and in this
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particular case, even integer in nature. Therefore, these states are modeled as
random biases and the portion of the Q matrix associated with them is simply zero.

TheRmatrix associated with the measurement noise vector term in Eq. (9.4.7)
depends somewhat on the double differencing scheme that is used. In general,
even if the original measurement noise covariance matrix associated with the single

difference vector h
1ð Þ
A � h

1ð Þ
B

� 	
� � � h

nð Þ
A � h

nð Þ
B

� 	h iT
is diagonal, the double diffe-

rence version in Eq. (9.4.7) will not be due to non-zero cross-correlation terms.
The system of equations in Eq. (9.4.7) is not observable at a single instant in

time. Very simply, there are not enough measurements to solve the given number of
variables in the state vector. Rather, observability is strictly achieved over a period
of time with more than one set of measurements, and actually comes from changing
values of the H matrix over that period of time. If GPS had been made up of a
constellation of geostationary satellites, we would never obtain any observability
into the ambiguity states in this manner.

In practice, the ambiguities can be resolved faster by invoking an integer
constraint on seeking their solution. The most widely-known and efficient search
method used in practice today is the LAMBDA method (10). The Magill adaptive
scheme (11) is another useful integer-constrained ambiguity estimator but does not
have any kind of a search strategy that has made the LAMBDA method a far more
efficient alternative. However, these methods typically do incorporate the best
estimates of the integer states and their associated error covariance that may come
from a Kalman filter processing model such as that described above, which is used
as a starting point in the ambiguity resolution process. It should be noted that such
methods can also be prone to incorrect resolution particularly if residual errors in the
double difference measurements become significant, such as when processing
measurements from two observers that are separated by long distances. (In such
cases, their errors are no longer as strongly correlated and do not fully cancel out in
the differencing.)

Tropospheric Delay Estimation

Unlike ionospheric refraction, which is frequency dependent and can largely be
removed with dual-frequency measurements, Eq. (9.2.6) is an example of iono-free
carrier phase, tropospheric refraction that cannot easily be observed while the mea-
surements themselves are being used for positioning. From the early days of GPS,
the tropo delay was corrected by a basic prediction model usually with Mean Sea
Level altitude and satellite (local) elevation angle as inputs. Over the past decade
or so, such prediction models have been tweaked with more refined data from
substantial study efforts that have led to even more accurate tropo delays character-
istics. Ultimately, the best prediction models require environmental measurements
such as temperature, pressure and water vapor content. However, operational real-
time systems would consider extra environmental sensors an unwarranted burden so
the preferred solution is partly in using good predictionmodels that do not need such
sensors and partly in estimating the residual error.

The tropospheric delay is a function of the path length through atmospheric
conditions that refract the signal and the amount of delay is partially dependent on
user altitude. Also, at a given user location, the tropospheric delay ti varies with
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satellite elevation ui roughly as a cosecant multiplier of the base tropospheric delay
at zenith, tz (12):

ti ¼ f t ui; hð Þ � 1

sin ui
tz hð Þ (9.4.6)

Eq. (9.4.6) can be linearized about a predicted tropospheric delay that nearly
approximates the true value. The residual difference can then be defined as
Dti ¼ ti � t̂i, where the predicted tropospheric delay is t̂i ¼ f̂ t ui; hð Þ.

Thus,

Dti ¼ ti � f̂ t ui; hð Þ
¼ e uið ÞDtz

(9.4.7)

We can then insert Eq. (9.4.7) into the pseudorange measurement model of
Eq. (9.2.1) to get

ri � f̂ t ui; hð Þ ¼ ci þ ti � f̂ t ui; hð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Dti

þ ji þ if i þ hri

and in terms of the zenith tropospheric delay error Dtz,

ri � f̂ t ui; hð Þ ¼ ci þ e uið ÞDtz þ ji þ if i þ hri (9.4.8)

The beauty of relating all the tropo delay errors along each line-of-sight through a
map function to a term that is related to the tropo at zenith is this makes the tropo
estimation observable. Where independently associating tropo delay states along
each line-of-sight with each measurement would have introduced too many
unrelated states. The connection through the map function to one zenith tropo
error state simply introduces only one additional state.

Figure 9.7 Tropospheric delay is roughly dependent on the length of the signal

propagation path exposed to the atmosphere. An approximate trigonometric

relationship may be used to relate the elevation-dependent tropo delays from each

and every visible satellite to estimate a reference tropo delay at the local zenith.
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For its process dynamics, we know thatDtz varies very slowly over time because
of atmospheric dependencies, but can changemore quicklywhen varyingwith altitude
h. A suitable model might be a Gauss-Markov process with a time constant that
depends on the rate of change of h or the vertical speed. As one might expect, any
significantmotion in the verticalwould likelymeana change in the zenith tropospheric
delayerror, so the timeconstant for theGauss-Markovstatebeingestimatedwillneedto
be shortened momentarily to facilitate a quicker resettling to a new steady-state level.

Relative Positioning

There are GPS applications where the positioning solution is ultimately determined
with respect to another reference location. In that regard, the solution accuracy is
assessed as being relative to that reference location. Such applications include
differential code phase GPS, real-time kinematic GPS, and time-relative GPS. In
many cases where the relative distance between the reference location and the
observer location (also called the baseline length) is very short as compared to the
distances to the orbiting GPS satellites, the localized geometry becomes very
simplified and linearized (Fig. 9.8).

However, if the baseline length increases to a point of significance, subtle
complications with the measurement geometry will arise. It is important to
understand what these subtleties are about and how the Kalman filter measurement
should be properly modeled. For illustrative purposes then, we choose an example
of relative positioning between two locations where the baseline length is indeed
quite large. For simplicity’s sake, we keep the illustration to a one-dimensional
model involving one satellite that captures the essence of the problem at hand.

Figure 9.8 Geometric relationship between range difference

and relative position between A and B.

EXAMPLE 9.2

The measurement geometry is summarized in Fig. 9.9 (13). Unlike the simpler
geometry of Fig. 9.8 the ray traces from the satellite seen at both locations A and B
are no longer parallel so the connection between baseline distance dAB and the
measured range difference (rA – rB) is no longer linear for this example. How then
would we formulate the measurement model, when faced with angular relation-
ships at the two locations, to the same satellite, that are different, i.e., uA 6¼ uB.

The proper way to handle this measurement situation is to first separate out
the different geometries seen at A and at B, and then to linearize each one:

rA � rBð Þ � r̂A � r̂Bð Þ ¼ rA � r̂Að Þ � rB � r̂Bð Þ
¼ cos uA � DxA � cos uB � DxB ¼ cos uA �cos uB½ � DxA

DxB

� �
þ h

(9.4.9)
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In doing so, we need two states instead of one, where each state represents the
linearized error at each location.

Suppose that the two locations are static and we are attempting to estimate
their positions relative to one another. There will be an initial uncertainty in the
state estimates given by:

P�
o ¼ E

DxA

DxB

� �
DxA DxB½ �

� �
¼ 200mð Þ2 0

0 200mð Þ2
" #

k

But, the process model will be trivial:

D _xA

D _xB

� �
¼ 0

0

� �
, DxA

DxB

� �
kþ1

¼ DxA

DxB

� �
k

In Fig. 9.10, although it takes the filter some length of time to finally converge to the
truevaluesofDxAandDxB(80mand30mrespectively), the relativepositionestimate
formed from Dx̂A � Dx̂B converges to the true value of 50m almost immediately.

If we look at the Kalman filter error covariance matrix P, clearly the square
root of the two variance terms in its diagonal will not reflect the quality of the
relative position estimate error, i.e., the profile in Fig. 9.10(a) is associated with
Fig. 9.11(a). To obtain an error profile for Fig. 9.10(b), we need to compute it from
all the terms in that P matrix:

Cov Dx̂A � Dx̂Bð Þ ¼ Var Dx̂Að Þ þ Var Dx̂Bð Þ � 2 � Cov Dx̂A;Dx̂Bð Þ
¼ P11 þ P22 � 2P12

When this is plotted out in Fig. 9.11(b), the convergence of the relative position
estimate error can now be clearly seen to happen rather quickly after initialization.

In all relative positioning problems, the result that is of most interest is truly
the estimate of (DxA � DxB). However, the point of the example was to illustrate
that, based on the geometry of Fig. 9.9, if we had lumped (DxA � DxB) into one

Figure 9.9 General model for relative position between A and B allowing for linearized

perturbations at both locations.
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state variable, that would have been tantamount to insisting that either location A
or location B is perfectly known, i.e., DxA¼ 0 or DxB¼ 0, while there is just one
unknown state to solve for at the other baseline end. This incorrect proposition
would then lead to the dilemma of choosing which of the two measurement

Figure 9.10 (a) Convergence of solutions for position A and position B; (b) Convergence of

the difference between position A and position B.

Figure 9.11 (a) Error profile for position A and position B; (b) error profile for the difference

between position A and position B.
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9.5
GPS-AIDED INERTIAL ERROR MODELS

GPS is inherently a positioning system that can also derive velocity and acceleration
from its code and carrier phase measurements. With a single antenna, a GPS is
incapable of producing any attitude or heading information without imposing
special kinematic constraints. (Multi-antenna GPS systems though can be contrived
to determine attitude and/or heading of the platform). An inertial navigation system,
on the other hand, senses acceleration and rotational rates and can derive position,
velocity, and attitude/heading from them. An INS yields very high fidelity short-
term dynamical information while GPS provides noisy but very stable positioning
and velocity information over the long term.

Figure 9.12 depicts a high-level block diagram that represents themechanization
of many typical GPS/INS systems. An inertial measurement unit generates accelera-
tion (Dv) and rotation rate (Du) data at high rates typically in the range of tens or
hundreds of hertz. A strapdown algorithm then accumulates these incremental
measurements ofDv andDu to generate a reference trajectory consisting of position,
velocity and attitude/heading with high dynamic fidelity. The GPS generates data at
lower rates typically one to ten hertz. These two sensors are intrinsically very
complementary in nature and so the integration of these types of sensors seems
very much a natural fit. In Chapter 8, we pointed out that the complementary filter
structure has been used extensively for Aided Inertial systems of many kinds of
navigation applications, and the GPS-Aided Inertial system is no exception.

Incorporating Inertial Error States

We can build on the core nine-state process model introduced in Section 8.10—the
model is described by Eqs. (8.10.9) and (8.10.10). The reference trajectory is nine-
dimensional, consisting of three states each of position, velocity, and attitude
obtained from the accumulation of inertial measurements through the strapdown
algorithm. In the complementary arrangement, the Kalman filter’s role is to estimate
the deviation of the reference trajectory from the truth trajectory. This is then the
established state space. Hence, it is important to note that the state model for the

connections, cos uA or cos uB be used. In the formulation of Eq. (9.4.9), this dilemma
does not exist. If the baseline is short and cos uA� cos uB, then this issue is moot and
the lumped state of (DxA � DxB) can indeed be used. This example has provided a
notion of joint estimation of multiple states that have strong geometric connectivity.
There are a few applications in the field of navigation that utilize this notion and we
reserve some of these as exercises for the reader at the end of this chapter.

&

Figure 9.12 High-level block diagram of GPS/INS mechanization.
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Kalman filter here consists of inertial error quantities, rather than “total” dynamical
quantities as in the stand-alone GPS case. Correspondingly, the random-process
model should reflect the random character of the errors in the inertial sensor.

For the inertial error model, the chosen navigation reference frame will follow
the locally level convention established in Section 9.1, where x points east, y points
north, and z is the altitude above the reference WGS-84 ellipsoid. The error models
are represented by block diagrams in Figs. 8.10, 8.11, and 8.12 showing separate
channels for the north, east, and altitude. These can be regarded, in part, as generic
models that are representative of a typical north-oriented locally-level platform INS
subject to modest dynamics.

We now consider the augmentation of additional INS error states to the process
model. The acceleration and gyro error terms are simple white noise inputs in Figs.
8.10.2 through 8.10.4. To add more fidelity to the model, additional error terms with
a time-correlation structure can also be included. Generally, a first-order Gauss-
Markov model is sufficient for each of these types of error. To do so, an additional
six states, three for accelerometer and three for gyro errors, are needed for
augmenting the state vector. They are all of the form:

Error process: xkþ1 ¼ fxk þ wk (9.5.1)

where the state transition parameter f ¼ e�Dt=t, Dt being the discrete-time interval
and t the time constant of the exponential autocorrelation function that governs this
process (see Example 4.3). The variance of the process noise w, if it is time-
invariant, is related to the steady-state variance of the x by the following:

Var ðwkÞ ¼ ð1� f2ÞVar ðxkÞ (9.5.2)

When these additional error states are augmented to the basic 9-state model, the
process model can be written in the following partitioned way:

x1�9

x10�15

� �
kþ1

¼ FINS CDt

0 Fsens

� �
x1�9

x10�15

� �
k

þ w1�9

w10�15

� �
(9.5.3)

whereFINS is from Eq. (8.10.10), 0 is a submatrix of zeros,Fsens is a state transition
submatrix for the six error states of accelerometer and gyro biases in three axes, and
C is a submatrix that provides the appropriate additive connections of the aug-
mented error states (x10 through x15) to the INS dynamic equations:

Fsens ¼

fax 0 0 0 0 0

0 fay 0 0 0 0

0 0 faz 0 0 0

0 0 0 fgx 0 0

0 0 0 0 fgy 0

0 0 0 0 0 fgz

2
6666664

3
7777775

C ¼

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

2
6666666666664

3
7777777777775
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Table 9.3 gives a comparison of sensor error characteristics found in different
inertial systems of varying qualities. The table was assembled with data taken from
various sources. Here, high-quality refers to systems capable of standalone naviga-
tion and attitude sensing with excellent accuracy for extended durations of time
(typically, hours). By comparison, medium-quality systems require external aiding
to attain the performance offered by high-quality systems. Otherwise, medium-
quality systems are capable of standalone operation over shorter durations. Auto-
motive grade sensors require external aiding to provide useful performance and can
only offer brief standalone operation.

Another level of sophistication that may be added to the accelerometer and
gyro error models is that of accounting for scale factor error. The mathematical
relationship that translates the physical quantity a sensor measures to the desired
value representing that quantity generally involves a scale factor that may vary due
to instrumentation uncertainties. This error may be estimated when the integrated
system is in a highly observable state. Whether it is worthwhile to estimate this error
depends on how significant the error is and its impact on the overall performance
(see Problem 8.5).

Measurement Model And Integration Coupling

With the inclusion of GPS receiver clock states and inertial sensor bias errors (for
gyro and accelerometers), we now have a 15-state dynamical process model. More
sophisticated error effects, such as scale factor and misalignment, may be included
that will raise the state vector dimensionality even more, but for most inertial sensor
systems used today, in the medium- and low-quality categories, this model serves
adequately as a foundation. From this, we now define a companion measurement
model for an integrated GPS/INS system.

Of the 15 states, GPS is only able to provide information for position and
velocity. We now consider two ways of integrating the GPS information into the
Aided Inertial system. In one that we refer to as a Loosely Coupled integration,
the GPS information is integrated directly in the form of position and velocity. The
measurement model for this is given as follows:

Table 9.3 Comparison of different stability classes of inertial systems

INS Quality

Tactical Grade

Navigation
grade

High
quality

Low
quality

Automotive
grade

Gyro bias (deg/h) < 0.01 0.1–1.0 10.0 > 100

Gyro white noise* ðdeg=s= ffiffiffiffiffiffi
Hz

p Þ 3� 10�5 10�3 10�2 5� 10�2

Accelerometer bias (milli-g) 0.01–0.05 0.2–0.5 1.0–10.0 > 10

Accelerometer white noise*
ðmilli-g=

ffiffiffiffiffiffi
Hz

p Þ
0.003–0.01 0.05 0.1 > 0.1

The various inertial sensors categories listed in the table above are largely accepted industry definitions although the

performance boundaries are less well defined. The choice of performance ranges represented in the table above result from a

survey of various industry sources and paper references (14,15,16). (*Note: The units for the white noises are specified here in

terms of the square root of the power spectral density.)
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Measurement Model (Loosely Coupled Integration)

zpos x

zpos y

zpos z

zvel x

zvel y

zvel z

2
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3
777777775
¼

1 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 1 0
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3
777777775

x1
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x3

x4

x5

x6

x7

x8

x9

x10�15

2
6666666666666666664

3
7777777777777777775

þ

vpos x

vpos y

vpos z

vvel x

vvel y

vvel z

2
666666664

3
777777775

(9.5.4)

In this arrangement, the position and velocity may be prefiltered especially if comes
from an autonomous function such as in the form of a GPS receiver. Care must be
taken to account for correlation between the x-y-z components of the position and
velocity due to the satellite geometry and, if prefiltered, the time correlation
structure of the measurement noise that will not be a “white” sequence.

This straightforward form of integration may be contrasted with another form
called Tightly Coupled integration where GPS pseudorange and delta range
measurements are processed instead of GPS position and velocity. The obvious
advantage to this approach over the Loosely Coupled one is that individual satellite
measurements can still contribute valuable information to the Kalman filter even if
there are less than the requisite number to form a position and velocity solution in a
given sampling cycle. The added complexity of a Tightly Coupled approach comes
in the form of extra dimensionality in the state vector: two clock states and if the
formulation for delta range similar to Eqs. (9.4.2)–(9.4.4) is chosen, three additional
delayed position states. This is a small price to pay for the improved performance of
a Tightly Coupled integration, unless one is faced with a situation where the raw
GPS pseudorange and delta range measurements, usually made within a GPS
receiver, is not made available outside of it.

Over the past 10 years, there has been another class of aided inertial solutions
known as Ultra Tight Coupled integration where the “raw” measurements come
from one step further up the signal chain within a GPS receiver, in the form of in-
phase and quadrature signal samples (commonly called I-Q samples). The Ultra
Tightly Coupled integration philosophy exploits the Aided Inertial solution to also
support and extend the signal tracking oftentimes beyond the regular limits of
signal-to-noise ratios or interference-to-signal ratios (17,18).

EXAMPLE 9.6

Let us consider a simplified one-dimensional GPS/INS example by revisiting the
single-axis INS error model described by Fig. 8.9. For the accelerometer noise a
and the gyro noise e shown in the block diagram, we specify each process to be a
combination of white noise plus a first-order Gauss-Markov processes. Accelerom-
eter and gyro sensors tend to have offset errors that are bias-like, an effect that can
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be captured by choosing a reasonably long time constant (t¼ 10,000 s) for the
Gauss-Markov process and the appropriate standard deviation. For this example,
we will choose a high-quality tactical grade IMU with representative values as
given in Table 9.3.

Therefore, state process model is given as follows:

x1 ¼ position error

x2 ¼ velocity error

x3 ¼ platform tilt

x4 ¼ accelerometer bias

x5 ¼ gyro bias

_x1

_x2

_x3

_x4

_x5

2
666664

3
777775 ¼

0 1 0 0 0

0 0 �g 1 0

0
1

Re
0 0 1

0 0 0 � 1

ta
0

0 0 0 0 � 1

tg

2
666666666664

3
777777777775

x1

x2

x3

x4

x5

2
666664

3
777775þ

0

ua

ug

ubias a

ubias g

2
6666664

3
7777775

(9.5.7)

In the given process model, g is the gravitational acceleration and Re is the Earth
radius. We need to specify the white noise amplitudes of ua, ug, ubias_a, and ubias_g.
FromTable 9.3 for thehigh-quality tactical grade column,wechoose the accelerome-

ter error white noise ua to be 0.05milli-g/
ffiffiffiffiffiffi
Hz

p
(or 5� 10�4m/s�2/

ffiffiffiffiffiffi
Hz

p
) and the

gyro error white noise ug to be 0.001 deg/s/
ffiffiffiffiffiffi
Hz

p
(or 1.75� 10�5 rad/s/

ffiffiffiffiffiffi
Hz

p
).

Since x4 and x5 are first-order Gauss-Markov processes, according to Eq.
(4.2.11), we must specify s and b¼ 1/t separately for the accelerometer and gyro
bias processes.

ubias a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2s2

aba

q
¼

ffiffiffiffiffiffiffiffi
2s2

a

ta

s

and

ubias g ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2s2

gbg

q
¼

ffiffiffiffiffiffiffiffi
2s2

g

tg

s

From Table 9.3 for the high-quality tactical grade column, we shall choose the
accelerometer bias sa to be 0.5 milli-g or 0.005m/s2 and the gyro bias sg to be
1.0 deg/h or 4.85� 10�6 rad/s. We choose ta¼ tg¼ 10,000 s.

Let the measurement model follow the Loosely Coupled Integration form:

zpos
zvel

� �
¼ 1 0 0 0 0

0 1 0 0 0

� � x1
x2
x3
x4
x5

2
66664

3
77775þ vpos

vvel

� �
(9.5.8)
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The R matrix consists of specifying the variance for the position and velocity
measurements. In this example, we choose Ev2pos ¼ 2mð Þ2 and Ev2vel ¼ 0:1m=sð Þ2.
The time profiles for accelerometer error (square root of the 4,4 term of the P
matrix) and for gyro error (square root of the 5,5 term of the Pmatrix) are shown in
Fig. 9.13. One quickly infers that the gyro error is very observable in this
dynamical system and its associated measurements, but that the accelerometer
error is much less so, owing to their different rates of convergence. An error in the
accelerometer results in a horizontal acceleration error but we also see a horizontal
acceleration error if there is a tilt (i.e., an error in attitude) because of gravity. While
at rest or under low dynamics the system, as represented by Eqs. (9.5.7)-(9.5.8),
cannot easily separate these two contributions to horizontal acceleration error.

In order for the system to obtain better observability into the accelerometer
bias error, it must derive a more accurate estimation of attitude from the external
aiding source. However, since GPS is unable to render a direct measurement of
attitude (multi-antenna systems notwithstanding), the best alternative to improve
attitude estimation accuracy is to subject the platform to vertical acceleration,
something only a flying platform is capable of.

We recall the accelerometer error equation from Eq. (8.10.1) for slow-
moving platforms, and embellish it with a “hidden” term that represents the
nominal acceleration (Az being the vertical component of acceleration) at a given
instance in time:

D€x ¼ a� gf�Azf (9.5.9)

or,

D€x ¼ a� gþ Azð Þf
When there exists such a vertical acceleration in the platform motion and this is
properly taken into account by the dynamicalmodel, Eq. (9.5.9) in effect represents a
variation from the usual gravity and its ability to sense platform tilt.

If we now consider this same example subjected to two spells of vertical
acceleration that reach 1 g (9.8m/s2) at T¼ 300 s and T¼ 600 s, the attitude error
significantly improves at the first maneuver and just slightly more at the second
(see Fig. 9.14).

The primary message of this example is that while accelerometer bias is less
observable than gyro bias under low dynamics conditions, high dynamic
maneuvers can help raise the observability to accelerometer bias errors.

Figure 9.13 Error profiles of accelerometer error in m/s2 (left) and gyro error rad/s (right).
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9.6
COMMUNICATION LINK RANGING AND TIMING

There is a close relationship between communication and navigation systems.Many
modern-day navigation systems involve electronic radio-frequency transmissions
which are fundamental to communications systems. However, few communications
systems, whose primary function is to communicate, are designed with the rigorous
timing coherency needed to achieve meaningful performance desired by navigation
systems. We shall explore the basic principles used by such systems and the use of
Kalman filtering for their applications.

Ranging Determination

The fundamental measurement made between two communication radios is the
time difference between the time of transmission and the time of arrival of the
communication message. In general, the timing bases between the two radios are
different on account of independent clocks. This timing difference then represents
the propagation delay of the message taken over the physical range between the
radios plus the difference between the two independent clocks. This is, in effect, a
pseudorange just like the type of measurement discussed in earlier for GPS. Of
course, a single measurement of pseudorange between two radios is of little use. In
order to separate the range from the timing difference, a return measurement in the
reverse direction between the radios is needed (Fig. 9.16). This usually happens after a

&

Figure 9.14 Time profile of vertical acceleration in the platform motion (left) and the

resulting attitude error profile (right).

Figure 9.15 Error profile of accelerometer error in m/s2 (left) and gyro error in rad/s (right)

with the presence of vertical acceleration maneuvers as indicated by Figure 9.14.
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short transponding delay. The larger the transponding delay, the greater the amount of
uncertainty that will be introduced by dynamical motions and an undisciplined clocks
over that interval. However, we can manage this as well as we can model random
processes when we use a Kalman filter to estimate the relevant states.

Based on the timelines shown in Figure 9.16, the first pseudorange is formed as
the range equivalent of the receive time at B minus the transmit time at A, i.e.,
rAB¼ c (B’R – AT), where c is the speed of light. Similarly, the second pseudorange
is rBA¼ c (AR – B’T). Both pseudoranges are connected differently to the relevant
parameters of interest, R and DT. Thus, we can form the following two-tuple
measurement model:

rAB
rBA

� �
¼ 1 1

1 �1

� �
R
DT

� �
(9.6.1)

This method is sometimes called round trip timing or two-way time transfer. If the
communication ranging and timing is beingmadebetween twomobile platforms, then
the range R is dynamic as is the timing difference DT due to the real nature of clocks.
And oftentimes, the two pseudorange measurements cannot be made simultaneously
one after the other. All of this can be elegantly handled by a Kalman filter as we shall
see in the next example.

Figure 9.16 Timelines for two independent radios (Transmitter A and Transponder B)

on transmit-receive events for round trip timing.

EXAMPLE 9.7

For this example, suppose that we have a specific need to synchronize the timing
between an aircraft and a ground station so the method used is a two-way time
transfer as described above. In our example, the clock that is timing the radio in the
aircraft is a temperature compensated crystal (TCXO) while the clock in the
ground station unit is a highly-stable rubidium. We are therefore entitled to break
up the DT state found in Eq. (9.6.1) into separate representations of two distinct
clocks. Also for R, we can capture the dynamics of the two nodes but in our present
example, the dynamics of the ground node is trivial so we only need to represent
the dynamics of the aircraft.

Therefore, we choose for simplicity, a one-dimensional inertial aided aircraft
system that is equipped with a TCXO-type clock for a communication ranging
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radio. On the ground, the radio is timed by a rubidium standard and its dynamics
are modeled to be stationary.

The process model can be formulated then to be:
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_x5

_x6

2
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3
777777775
¼

0 1 0 0

0 0
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0 0 0 0
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2
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3
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(9.6.2)

where

x1 ¼ inter-node range

x2 ¼ inter-node range rate

x3 ¼ aircraft clock bias error

x4 ¼ aircraft clock drift error

x5 ¼ ground clock bias error

x6 ¼ ground clock drift error

The corresponding measurement model then becomes:

rAB
rBA

� �
¼ 1 0 1 0 �1 0

1 0 �1 0 1 0

� �
x1
x2
x3
x4
x5
x6

2
6666664

3
7777775
þ vAB

vBA

� �
(9.6.3)

Oftentimes, the two measurements are not made simultaneously but rather sequen-
tially. The beauty of processing communication link ranging and timing measure-
ments in a Kalman filter model is that the sequential nature of these paired
measurements are easily handled by the filter that also takes into account the time
variation of the states according to the assumed dynamical model.

In a simulation, we choose a model with the following parameters:

Su ¼ 0:01 ðm=s2Þ2=Hz
Sf1 ¼ 1:348� 10�4 ðm=sÞ2=Hz
Sg1 ¼ 3:548� 10�6 ðm=s2Þ2=Hz
Sf2 ¼ 9� 10�6 ðm=sÞ2=Hz
Sg2 ¼ 1:8� 10�12 ðm=s2Þ2=Hz

The measurement noise variance for each pseudorange is (2m)2. The initial error
covariancewas set tobeat 106 for eachof the six states.Measurements aremadeevery
10 seconds and there is a 5-second interval between each pair of measurements.

The rms error from the Kalman filter covariance analysis is shown over a
period of 120 seconds in Fig. 9.17. The ranging rms error is obtained from the P11

term of the P matrix. However, the relative timing rms error needs to be obtained
from: P33þP55 – 2P35 (see Example 9.5 for a similar evaluation of the relative
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9.7
SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM)

Robotic vehicles of many forms are beginning to permeate our world in a variety of
situations. Unmanned airborne, ground, and underwater vehicles have developed
capabilities to autonomously roam, explore and monitor their environments. One of
the many enabling technologies that have given these vehicles their autonomous
capabilities is robotic navigation. Over the past two decades, this burgeoning field
has developed some innovative concepts, most of which are based on a rather simple
notion called Simultaneous Localization And Mapping, or SLAM (19). At its most
fundamental level, autonomous robots are expected to operate in unknown environ-
ments. With SLAM, robots learn about their environment through mapping while
navigating in them. The mapping of its own immediate environment requires the
robot to determine the locations of definable objects or landmarks in their vicinity
based on knowledge of its position and orientation. Then, as the robot moves within
this environment, the locations of those very same objects and landmarks are used to
determine the robot’s position in a process called localization. The ego-sensor sees
an egocentric point of view so the determination of the robot’s position is
sometimes known as an estimation of ego-motion (20).

Visual SLAM

While the concept of SLAM can encompass the use of any kind of sensor with the
appropriate capability to determine the location of landmarks from the ego-sensor
platform, it is the visual sensors that have dominated recent developments in this
field. In particular, optical image sensors in the form of videocameras have become

difference between two states, which is what the estimation error of relative timing
is all about). The ranging and timing errors are at their lowest at each 30-second
update except for the very first pair of measurements at t¼ 0 and t¼ 4. It requires a
second pair of measurements to fully resolve all the states, including the rate states.
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Figure 9.17 Time profile of ranging (solid) and timing (dashed) error for two-way communication link

measurements with 30-second updates, with 5-second interval between paired measurements.
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exceedingly affordable while delivering progressively increasing quality. It is the
result of such high-quality imagery that allows the ego-sensor to identify landmarks
and track each and every one without ambiguity over time from sequential images
and obtain precise angular measurements when doing so. The sensor used must be
able to derive range and bearing to the various landmarks in the local scenery. For
example, stereo videocameras are generally needed to obtain range to the landmarks
using binocular principles of distance measurement. Scanning lidar systems that can
sweep a fine laser beam to capture the returns in order to measure the direction and
range to all objects that are nearby in the scenery, have also been considered. More
recently within the past 10 years, a single videocamera solution has been proposed
(21) although this solution, by itself, is unobservable and has stability issues but it
can be made to work reasonably well with an external piece of aiding measurement,
such as a dead-reckoning solution that is readily available from the wheeled sensors
of a robotic vehicle.

EXAMPLE 9.8: A ONE-DIMENSIONAL SLAM

To get a better understanding of SLAM behavior in terms of how its accuracy
changes over time, we simplify the model to a bare bones one-dimensional system
where the ego-motion is constrained to somewhere along a linear axis as are the
position of the landmarks. The measurement between a landmark and the ego-
sensor is that of range (see Fig. 9.18).

1D SLAM Process Model:
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1D SLAMMeasurement Model:

r � r̂|ffl{zffl}
z

¼ 1 0 �1½ �
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3
5þ v (9.7.2)

We specify the remaining Kalman filter parameters to be R¼ 1 and
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Figure 9.18 Measurement model for one-dimensional

SLAM.
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Note that the measurement model has similarities to the relative positioning
case of Example 9.5. In both cases, two states become strongly correlated from
what is essentially a relative measurement that connects them together. While the
relative distance between the two states is observable, the two states are
individually not so, such that we did not start the problem out by having some
known or perfect information about the initial position.

As the ego-sensor moves along its one-dimensional degree of freedom, the
availability of that landmark for a measurement has a limited window. As the local
environment changes, such as when a robotic platform wanders about an
unfamiliar building, new landmarks continually appear to replace visible land-
marks after a brief sequence of measurements. To simulate a similar condition with
our one-dimensional model formulated above, we introduce a “buffer” of N
discrete but limited landmarks, each one represented by one element of the state
vector (Fig. 9.19). With the original two states for our PV model for the ego-
motion, our state vector now becomes Nþ2 dimensional. Now, we can conduct an
error covariance analysis to see how it behaves over time.

If our scenario is contrived to replace a fixed number of older, existing
landmarks, say b, with the same number of new ones at every measurement update,
we can simulate this by simply resetting b number of state of the error covariance
matrix P at every cycle. The reset of each state involves initializing the diagonal
term associated with that state to be a large value, signifying a lack of a priori
knowledge of the landmark location. At the same time, the row and column criss-
crossing that particular state should be zeroed to nullify any built-up correlation
the state of the obsolete landmark had established with all the other states. With
each measurement update, we would reset b number of states, uniformly cycling
through all the landmark states as if the new landmarks enter the “visible set,”
remain in it for the longest possible time, and then predictably exit it just like all
the other landmarks. In this case, we describe this as a “turnover” of b landmarks
(i.e., the discarding of the oldest landmarks in the “buffer” set in favor of being
replaced by a new one) at every measurement cycle.

When we perform a covariance analysis for varying N and b, the estimation
error for the position of the ego-sensor are shown in Fig. 9.20. From this, we see a
not-entirely-surprising behavior. The ego-motion error grows because it gets its
position from a changing set of landmarks, where locations of new landmarks are
determined from the ego-sensor itself. This bootstrapping effect leads to an
accumulation of error that is the hallmark of dead-reckoning systems, a class to
which SLAM, when operating without the benefit of a known map of landmarks,
truly belongs. Due to their growing error, such systems are not considered fully
observable in the rigorous sense but rather are considered partially observable (22).

Figure 9.19 Conceptual picture shows seven landmarks being

available to range from at each measurement sampling time and

two landmarks are “turned over” between every cycle; hence,

this example represents N¼7, b¼ 2.
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Directional Uncertainty and Other Complexities

Our simplistic one-dimensional SLAM model example introduced before only
considered the range relationship between the ego-sensor and the landmarks lined
up along the constrained course of travel. Of course, the complexity of the problem
increases considerably when we also account for orientation. In SLAM, the
directional location of the landmarks with respect to the ego-sensor depends on
the ego-sensor’s own correct sense of orientation. Any misorientation of this ego-
sensor would directly add to the directional and leveling error of the landmarks from
the ego-sensor. We leave this next layer of complexity as a problem of 2D SLAM at
the end of this chapter.

In the real 3D world, the mis-orientation can have up to three degrees of
freedom requiring as many states to be added to three position states. However, it
should be apparent that the bulk of the states are made up to represent landmark
positions, three states each. If we extend the 2D model into the 3D world, the error
state vector we need would consist of 3 position, 3 velocity, 3 orientation, and
3 position per landmark, or (9þ 3N) where N is the maximum number of landmarks
we can choose to track at once. If we are to accommodate tracking 20 landmarks, the

Yet, a partially observable system can still be very useful in its own right if its error
growth only gradually increases over time from its initial value.

Figure 9.20(a) show the case of replacing landmarks but where the “buffer” of
persisting landmarks was of different sizes (N), even as we keep the number of
landmark turnover to be one for every measurement cycle, i.e., b¼ 1. Then in
Fig. 9.20(b), we fixed the number of landmarks to be 20 (N¼ 20) and varied the
number of landmarks that turn over every cycle. These two plots simply affirm the
advantage of having numerous landmarks with as small a number of turnovers as
possible. The position error growth is minimized, when doing so.

The constant error growth is a result of the introduction of new landmarks with
unknown locations as older landmarks are lost. If motion stops and the scenery
remains constant, the landmarks will stop turning over so the position error will no
longer grow. If previously-established landmarks are revisited, the position error
may actually be lowered because the landmark position error determined at an
earlier time would be lower than if established for the first time at the time of the
revisit. All these different conditions can be easily analyzed using the Kalman filter.

&

Figure 9.20 Error growth profiles.
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number of states would be 69 in total. It would grow even more if there is a need to
track “dormant” landmarks that are lost, after being viewed, and may be viewed
again. Clearly, the brute force way of accounting for everything will lead to
substantial processing loads that are simply too prohibitive for real-time operations.
A variety of other computational schemes that are simplifications of the optimal
models have been proposed and demonstrated in the research literature.

In addition to the navigation algorithms we have addressed here using the
Kalman filter, there are considerable challenges beyond these navigation algorithms.
Oneof the foremost challenges is the problemof data associationwhere the landmarks
must be identified and correctly and re-associated every processing cycle.With vision
sensors for example, this may involve intensive image processing algorithms. For the
navigation processing, the extensive body of research work on SLAM produced over
the years has produced innovative algorithms that provide improved computational
efficiency and robustness to nonlinear conditions, including the growing use of
Particle filter methods, an introductory treatment of which was given in Chapter 7.
With the foundation laid by our tutorial treatment here, we leave the reader to pursue
the finer details of such works in the published literature (23,24,25).

9.8
CLOSING REMARKS

There can be no doubt that the Kalman filter has had a long and fruitful history in
enhancing navigation performance in real-world applications. GPS, and the subse-
quent current pursuit to find non-GPS alternatives to deliver similar levels of GPS
performance, have continued this reliance on this useful tool and, especially, the
systems methodology that comes with it.

The Kalman filter remains an important tool whether used for first-order
analysis in defining a solution concept or for real-time computational processing in
navigation implementations. In this chapter, we have kept the treatment of the
various issues to a tutorial pace. Readers interested in delving further and deeper
into other applications of Kalman filtering can find numerous references in other
text books, trade journals, and on the Internet.

PROBLEMS

9.1 Oftentimes, the analysis of a positioning problem with GPS can be simplified
considerably by reducing it to a one-dimensional problem to capture just its essence.
In this problem, we will consider such a simplified scenario. See the figure showing
where the coordinates of two satellites are given as a function of time T. Also, the
coordinates of “nominal position” of the GPS receiver are fixed at [0 , 6,378,000] m.

(a) Formulate theHmatrix for a two-state Kalman filter (consisting of position
Dx and clock error Dt). Assume that both states are independent random
walk processes, with

Q ¼ 2:0mð Þ2 0

0 0:1mð Þ2
� �
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and a measurement noise covariance matrix for the uncorrelated pseudorange
measurements from both satellites to be

R ¼ 10:0mð Þ2 0

0 10:0mð Þ2
� �

Then, run an error covariance analysis with the Kalman filter for 10,000 seconds
starting with the following initial P matrix:

P�
0 ¼ 100mð Þ2 0

0 10; 000mð Þ2
� �

Plot the standard deviation of the position state (square root of the 1,1-term of
the updated error covariance matrix) as a function of time.
(b) To perform aMonte Carlo simulation of the same scenario, we need to first

generate a random process of the changing position and clock error over
time and then to next generate noisy pseudorange measurements based on
this random “truth” states and the moving but known satellite locations.
Generate samples for a time window from T¼ 0 to T¼ 10,000 s. Use a step
size of 1 second.

Generate the position and clock error random walk processes accord-
ing to:

x1
x2

� �
kþ1

¼ 1 0

0 1

� �
x1
x2

� �
k

þ w1

w2

� �
k

where

w1 � N 0; 2mð Þ2
� 	

and w2 � N 0; 0:1mð Þ2
� 	

Figure P9.1

PROBLEMS 353



C09 12/10/2011 15:57:12 Page 354

and

x1
x2

� �
0

¼
� N 0; 100mð Þ2

� 	
� N 0; 10; 000mð Þ2

� 	
2
4

3
5

The pseudoranges are generated according to:

r1
r2

� �
k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xsv1 � x1ð Þ2 þ Ysv1 � 6; 378; 000ð Þ2

q
þ x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xsv2 � x1ð Þ2 þ Ysv2 � 6; 378; 000ð Þ2
q

þ x2

2
4

3
5þ v1

v2

� �
k

where

v1 and v2 � N 0; 10mð Þ2
� 	

Process the measurements with a two-state Kalman filter and plot the estimate
for the position state along with the truth position over the 10,000-second
window. Then, plot the position estimation error, i.e., difference between the
position estimate and the truth position. Plot the standard deviation obtained
from the position variance term of the error covariance matrix to compare the
reasonableness of the one-sigma bound to the estimation error samples.

9.2 The geometric dilution of precision (commonly called GDOP) is a well known
measure used in the satellite navigation community to specify the solution accuracy
based on the geometry of a given set of visible satellites. In essence, it is the “snapshot”
rms error of the combined three-dimensional position and time solution that results
from a one-meter rms error in the measurements. The term snapshot implies that the
solution is entirely dependent on the satellite measurements made at one specific
instance of time. In other words, the solution is unfiltered.

If an H matrix is set up as the linear connection between an n-tuple measure-
ment vector and a four-tuple state vector that consists of three position error states
and one range (clock) error state, then GDOP is the square root of the trace of a
covariance matrix formed from (HTH)�1.

We can similarly compute GDOP from a Kalman filter set up with the same
four-tuple state vector and H matrix, and choose the other filter parameters
appropriately. Show that the Kalman filter’s updated P covariance matrix, after
the first measurement update step, is equivalent to (HTH)�1.

(Hint: Review the use of the Information Filter measurement update for this.)

9.3 The usual two-state clockmodel is given by the transfer function block diagram
of Fig. 9.3. To generate a random sequence of samples that would be representative
of the clock model, we must first write out a discrete-time process model that
specifies the state transition matrix f and the process noise covariance matrix Q,
from which a pair of random number sequences can be generated to drive the
process model.

(a) Generate a random sequence of two-tuple vectors (representing clock phase
and frequency errors) by choosing Sf¼ 1.0� 10�21 (s/s)2/Hz and Sg¼ 1.2
� 10�22 (s/s2)2/Hz, the relevant spectral amplitudes given by Eqs. 9.3.1 to
9.3.3. (Be careful to note that the units of the clock random process in this
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case are seconds, and not in the range equivalent form of meters for
the clock description in Section 9.3. They are, of course, related through the
square of the speed of light.) Use a sampling time Dt¼ 0.1 s, and set the
initial values of the clock phase to 0 s and the clock frequency to 10�8 s/s.

(b) The empirical Allan variance plot is generated by computing a certain type
of statistics of the same data record for different averaging intervals t.

Intuitively, the figure depicts the Allan variance to be a characteriza-
tion of the statistical variation in the fractional frequency approximated by
successive estimates of y. Also, the original Allan variance formula (called
the two-sample variance in reference to the paired successive estimates)
was somewhat wasteful in not taking advantage of all the data available
especially in the calculations involving large t intervals. A later version
known as the overlapping Allan variance remedied that shortcoming.

When working with the clock phase x, however, the direct equation to
compute the overlapping Allan variance is given by (26):

s2
y tð Þ ¼ 1

2 N � 2mð Þt2
XN�2m

i¼1

xiþ2m � 2xiþm þ xi½ �2

where N is the total number of samples, and m is the integer number of
samples making up the averaging interval t. If t0 is the intrinsic sampling
interval, then t¼mt0.

The square root of the Allan variance (or Allan deviation) is usually
plotted on a log-log scale. Compute the Allan deviation of the random
process generated in Part (a) for the different values of t from 0.1 to 100 s
and plot it out.

(c) Compute and plot the theoretical Allan deviation from asymptotic param-
eters related to the noise spectral amplitude given for the clock in Part (a).
Does your plot here compare well against the empirical plot for Part (b)?

9.4 In the “Receiver Clock Modeling” subsection in Section 9.3, it was pointed
out that a finite-order state model cannot adequately account for the flicker noise

Figure P9.3
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component. The relationships given by Eq. (9.3.5) were derived by simply ignoring
the flicker noise term. When comparing the figures below for a particular clock
model (h0¼ 2� 10�21, h�1¼ 9� 10�22, h�2¼ 6� 10�24), the Allan deviation curve
droops more than it should in the approximate model that ignores the flicker noise
component. There have been various suggestions to compensate for the missing term
(27) but they are poor approximations at best unless one is willing to invest in one or
more additional states to represent the clock.

In this problem, we will explore the use of an additive component to the usual
clock model that will approximately capture the effect of bumping up the curve near
the valley where the flicker noise component resides.

(a) To determine the most suitable additive component to use, choose one of
the following models by generating a random sequence with each and then
evaluating its Allan deviation with the processing algorithm written in
Problem 9.3:
(i) First-order Gauss-Markov model with s¼ 1 and b¼ 1/3
(ii) Second-order Gauss-Markov model with s¼ 1 and v0¼ 1/3
(iii) Integrated Gauss-Markov model with s¼ 1 and b¼ 1/3
Which of these will work best to “boost” the V-shaped curve of the
approximate Allan deviation curve to emulate the flicker noise component?

(b) Form a new clock model that additively combines the two-state approxi-
mate model with the chosen “boost” model from Part (a) with appropriately
tuned parameters to achieve the desired results, i.e., as close as possible to
the true Allan deviation.

(c) What is the minimum number of states needed to represent this combined
model?

9.5 Unlike most real-life positioning problems, the positioning of a train is
unique in being essentially a one-dimensional measurement situation—its one
degree of freedom is along the track to which it is constrained. To take advantage
of this reduction in the model dimensionality, the exact trajectory of the railroad
track must be known and linearized for the approximate vicinity of the train’s
location.

Figure P9.4
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(a) Begin by assuming the standard four-variable GPS measurement model:

�z ¼ r� r̂ ¼ hx tð Þ hy tð Þ hz tð Þ 1½ �

Dx

Dy

Dz

cDt

2
6664

3
7775

Let the rail track (see the figure) be described by the set of parametric equations:

x ¼ A cosc

y ¼ B sinc cos b

z ¼ B sinc sin b

where c is the parametric variable and b is a fixed angle of inclination of the
elliptical track whose semimajor and semiminor axes are A and B. Using a
linearized approximation of the above set of parametric equations, rewrite the
measurement model such that the state varibles comprise justc and cDt. How is
the new linear measurement connection vector h written in terms of
hx tð Þ; hy tð Þ; hz tð Þ?

(b) What is the minimum number of satellites required to solve the positioning
problem of the train with given track trajectory information, as is the case
here?

(c) Formulate a similar measurement model that allows for dynamical motion
(start out with the position-velocity model of Eqs. 9.3.6 and 9.3.11) by also
assuming the same track described above.

(d) What is the random-process model (specify f and Q matrices) for the
modified state vector that corresponds to the position-velocity model.

9.6 In differential carrier phasemethods, there is a set of unknowncycle ambiguities
that must be resolved in order to extract the high precision positioning that the
carrier phasemeasurement is ultimately capable of providing (see Section 9.2).When

y

x

β

Β

Α

Observer

[ hx hy hz ]

Rail track

z

Figure P9.5
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these so-called double differenced measurements are formed (differencing across
receivers followed by differencing across satellites), the ambiguities embedded in
these measurements are therefore associated, not with individual satellites, but rather
with pairs of satellites. For example, a double differenced carrier phase might be
written out as

f
pqð Þ
AB ¼ f

pð Þ
A � f

pð Þ
B

� 	
� f

qð Þ
A � f

qð Þ
B

� 	
(P9.6.1)

where the carrier phase measurements made at Receivers A and B for satellites p and
q are combined as shown.

When processing a particular double differenced measurement with a Kalman
filter, the cycle ambiguity estimated using this measurement is therefore associated
with a pair of satellites. Over time, given the dynamic nature of satellite tracking, we
must be able to accommodate a seamless transition when the pairing of satellites is
changed in the event a satellite is lost from the tracking list.

Consider the following scenario. From t¼ 0 to 300 seconds, the tracking list of
satellites consist of: SV1, SV2, SV3, SV4, and SV5. During this time, we chose the
following pairing of satellites for the differencing scheme: (SV1-SV2), (SV1-SV3),
(SV1-SV4), and (SV1-SV5). For this, the associated ambiguity states are N12, N13,
N14, and N15. The Kalman filter would provide estimates of these states and a 4� 4
submatrix of the error covariance P matrix. Then, at t¼ 300, tracking of SV1 was
discontinued so we would then choose next to rearrange the pairings to be (SV2-
SV3), (SV2-SV4), and (SV2-SV5), and form new ambiguity states N23, N24, and
N25. Write out the steps to form the state estimates and the associated error
covariance submatrix for these newly-defined ambiguity states, from the state
estimate and error covariance information that already exist for the previously-
defined ambiguity states at t¼ 300.

9.7 Example 6.4 showed a simplified illustration of GPS differential carrier phase
positioning where the integer ambiguity was resolved with a Magill scheme that
treated the problem as a multiple hypothesis test. It is common practice in the GPS
community to use the dual frequency carrier phases for forming a composite carrier
phase that has an effective beat frequency that is lower, i.e., a wavelength that is
longer than either of the wavelengths of each of the component frequencies. The
widelane wavelength combined with a coarse bound provided by the pseudoranges
permitted the eventual resolution of the widelane integer ambiguity.

In this problem, we take a different tack at solving the problem by leaving the
two frequencies as separate measurements and, therefore, as separate integer
ambiguities to resolve. Formulate a Magill scheme where the hypothesis space
is two-dimensional.

(a) Write out the three-tuple measurement equation that includes a pseudor-
ange measurement, a carrier phase measurement at the L1 frequency, and
another carrier phase measurement at the L2 frequency.

(b) Complete a Kalman filter description by specifying f, Q, and R.
(c) Generate a measurement sequence using random numbers for the Gaussian

noise corrupting the measurements according to the geometry given in
Example 6.4. Design a Magill Kalman filter to process the measurements.
Demonstrate the successful convergence of the hypothesis that represents
the correct pair of integer ambiguities.
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(d) Letting the initial uncertainty of the position and ambiguity states to be
large, say, 106, run a 10-second solution of the Magill hypothesis tester.
Plot the convergence of the a posteriori probability of the correct hypo-
thesis and the profile of the weighted state estimates associated with all
hypotheses.

9.8 In this problem, we will first re-create the two-way comm ranging and timing
model of Example 9.7 but with a Monte Carlo simulation where noisy measure-
ments are generated and processed by the Kalman filter and the states estimated
accordingly.

(a) First generate a simple two-dimensional aircraft dynamic profile as given
in the accompanying figure. The scenario starts with the aircraft being at
(�10,000m, 0), flying for 200 seconds at 100 meters per second due north
(i.e., positive y direction). Generate a 200-second sequence of line-of-sight
range from the aircraft to the ground station. Also, generate a 200-second
sequence of clock bias errors for both independent clocks using two-state
clock models and parameters given in Example 9.7. Form a one-way
pseudorange measurement from the aircraft to the ground station once
every 30 seconds, and then form a return one-way pseudorange measure-
ment from the ground station to the aircraft 5 seconds after each aircraft-to-
ground transmission.

(b) Formulate a Kalman filter that cycles through once every second (i.e.,
Dt¼ 1 s) for 200 seconds of the flight profile and for processing the
measurements whenever they are available. Compute the difference of
the clock bias error estimates made between the aircraft and the ground and
subtract this from the truth values of the clock bias error difference that had
been simulated in Part (a). This represents the error in the relative timing
between the aircraft and ground receivers. Plot this relative timing error
together with the standard deviation bounds derived from the error
covariance P matrix of the Kalman filter.

Figure P9.8
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9.9 One of the main features of GPS that has made it so versatile and useful is its
allowance for the receiver clock to run independently of system timing, which
makes GPS a pseudoranging-type system. In 1996, Misra presented a profound
finding about a certain weakness of pseudoranging-type systems in terms of yielding
slightly poorer measurement geometries (28). Essentially, the key point is that this
issue goes away if the receiver clock is known perfectly. Later on, Hwang, et al. (29)
extended this finding to differentialGPS systems and the use of two-way time transfer
via a communication link to synchronize a receiver to its reference base station. It
should be pointed out while this degradation of the measurement geometries
associated with pseudoranging systems is small in nominal conditions, it can also
quickly deteriorate with marginal conditions.

In this problem, we explore the use of accurate relative timing between two
receivers and show how one viewing good satellite geometry can assist the other
viewing poor satellite geometry. Consider an observer at Location A solving for his
GPS position and time with a five-state model consisting of three position states and
two clock states. Define the first two position states to be related to the horizontal
dimensions and the third state to the vertical dimension. Each position state is a
randomwalk process with a process noise variance of 10m2 per step, each time step
interval being one second in duration. Let the clock take on the model represented
by Fig. 9.3 and whose process noise covariance is defined by Eqs. (9.3.1)–(9.3.3).
Let Sf¼ 1.348� 10�4 (m/s)2/Hz and Sg¼ 3.548� 10�6 (m/s2)2/Hz. Set the initial
uncertainties of all states to be equally large, say 104.

Now formulate a Kalman filter model with a state vector that is made up of two
five-state subvectors that would represent two observers, one a Location A and the
other at Location B. The state vector now has 10 states. Suppose that the observers at
the two locations have different local environments such that the observer at A sees
eight satellites while the observer at B sees only four of the eight satellites seen at A.
The unit direction vectors from the satellites to the observer at A are given by:

uSV1 ¼ �0:2031 0:6498 �0:7325½ �
uSV2 ¼ �0:5305 0:0999 �0:8418½ �
uSV3 ¼ 0:6336 �0:7683 �0:0913½ �
uSV4 ¼ 0:4705 0:0745 �0:8792½ �
uSV5 ¼ 0:0955 0:6480 �0:7557½ �
uSV6 ¼ 0:7086 �0:4356 �0:5551½ �

uSV7 ¼ �0:6270 �0:4484 �0:6371½ �
uSV8 ¼ �0:8651 �0:4877 �0:1170½ �

At the same time, the observer at B only sees four of the eight satellites: SV1, SV2,
SV4, and SV5. Assume the measurement noise variance of each satellite pseudo-
range measurement be R¼ 10m2.

(a) Write out the f, Q, H, and R parameters of this Kalman filter. Letting the
initial a priori P matrix be diagonal with large values of 104, run this
Kalman filter in the covariance analysis mode over 100 seconds, storing
away the updated position variances for Observer A and Observer B. Form
an rms 3D position error separately for each observer and plot the result
over the 100-second duration.

360 CHAPTER 9 KALMAN FILTER APPLICATIONS



C09 12/10/2011 15:57:13 Page 361

(b) Suppose that a two-way ranging and timing set of measurements is made
over a communication link between Observer A and Observer B once a
second, only after the initial 100-second period prescribed in Part (a).
Assume that the two-way ranging and timing process outlined in Eq. (9.6.1)
is computed separately, but that the outcome of completing one pair of two
way measurements is an estimate of the relative timing error between the
clocks biases maintained at Observer A and Observer B’s radios. To
process this scalar relative timing measurement in the 10-state Kalman
filter formulated in Part (a), what is the H matrix (which is truly a 1� 10
vector in this case) for this? Assuming that the measurement noise variance
R for this scalar measurement is 4m2, rerun the Kalman filter of Part (a) for
100 seconds followed by another 20 seconds where the relative timing
measurement is processed once a second as well. Plot the rms 3D position
error for each observer noting the improvement achieved when the relative
timing measurement started contributing to the estimation solution. What
is the percentage improvement in the rms 3D position error of Observer B
after 120 seconds as compared to the error after 100 seconds, just prior to
the contribution of the relative timing measurement?

9.10 If we expand the 1D SLAM model of Example 9.8 into a two-dimensional
solution space, we will use a measurement of range and direction between the ego-
sensor and the available landmarks. Assume that our state vector now consists of the
following elements:

x1 ¼ Ego-sensor x-position error

x2 ¼ Ego-sensor x-velocity error

x3 ¼ Ego-sensor y-position error

x4 ¼ Ego-sensor y-velocity error

x5 ¼ Bearing error

x6 ¼ Landmark1 x-position error

x7 ¼ Landmark 1 y-position error

..

.

x4þ2N ¼ LandmarkN x-position error

x5þ2N ¼ LandmarkN y-position error

With the ego-sensor position and the landmark positions being two-dimensional,
the measurements to each landmark would be range and bearing. Since the bearing
measurement is generally made by the ego-sensor with respect to the orientation of
the body of the platform that may not perfectly know its orientation to the outside
world, we assume a nontrivial bearing error term Du that directly relates to the
bearing measurement.

The general nonlinear measurement model is:

r
u

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xL � xð Þ2 þ yL � yð Þ2

q
þ vr

tan�1 yL � y

xL � x


 �
� Du þ vu

2
64

3
75 (P9.10.1)
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We can now fit this linearized form into the full measurement model that
connects to measurements to the state vector. Here, we show a measurement model
for two landmarks.

(a) Write out the process model for the given state vector, assuming that the
ego-sensor have two independent sets of position-velocity models for the x
and y axes each with a driving white noise function of spectral amplitude
1 m=s2=

ffiffiffiffiffiffi
Hz

p
and the states having zero initial uncertainties. Assume that

the bearing error is a random walk with a driving white noise function of
spectral amplitude 0.0001 rad=s=

ffiffiffiffiffiffi
Hz

p
and with an initial uncertainty of

0.01 radians. Also, assume each two-state landmark sub-vector to be ran-
dom constants with a suitably large initial uncertainty.

(b) Write out the measurement model after linearizing Eq. (P9.10.1). Assume
the measurement noise to have a sigma of 0.001 radians.
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APPENDIX A
Laplace and Fourier
Transforms

Both Laplace and Fourier transforms are used frequently in random signal analysis.
Laplace transforms are especially useful in analysis of systems that are governed by
linear differential equations with constant coefficients. In this application the
transformation makes it possible to convert the original problem from the world
of differential equations to simpler algebraic equations. Fourier transforms, on the
other hand, simply furnish equivalent descriptions of signals in the time and
frequency domains. For example, the autocorrelation function (time) and power
spectral density function (frequency) are Fourier transform pairs.

Short tables of common Laplace and Fourier transforms will now be presented
for reference purposes.

A.1
THE LAPLACE TRANSFORM

Electrical engineers usually first encounter Laplace transforms in circuit analysis,
and then again in linear control theory. In both cases the central problem is one of
finding the system response to an input initiated at t¼ 0. Since the time history of the
system prior to t¼ 0 is summarized in the form of the initial conditions, the ordinary
one-sided Laplace transform serves us quite well. Recall that it is defined as

FðsÞ ¼
Z 1

0þ
f ðtÞe�st dt (A.1)

The defining integral is, of course, insensitive to f(t) for negative t; but, for reasons
that will become apparent shortly, we arbitrarily set f(t)¼ 0 for t< 0 in one-sided
transform theory. The integral of Eq. (A.1) has powerful convergence properties
because of the e�st term. We know it will always converge somewhere in the
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Table A.1 Common One-Sided Laplace Transform Pairsa
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right-half s-plane, provided that we consider only inputs (and responses) that
increase no faster than at some fixed exponential rate. This is usually the case
in circuits and control problems, and hence the actual region of convergence is of
little concern. A common region of convergence is tacitly assumed to exist
somewhere, and we simply adopt a table look-up viewpoint for getting back
and forth between the time and complex s domains. For reference purposes a brief
list of common transform pairs is given in Table A.1. Note again that we have
intentionally defined all time functions in the table to be zero for t< 0.We will have
occasion later to refer to such functions as positive-time type functions. It is also
worth mentioning that the impulse function of one-sided transform theory is
considered to have all its area to the right of the origin in the limiting process.
Thus it is a positive-time function. (The word function is abused a bit in describing
an impulse, but this is common usage, so it will be continued here.)

A.2
THE FOURIER TRANSFORM

The Fourier transform is used widely in communications theory where we often
wish to consider signals that are nontrivial for both positive and negative time. Thus,

a Time functions having a discontinuity at t¼ 0 are intentionally left undefined at the origin in this table. The

missing value does not affect the direct transform.
b When n is not an integer, n! must be interpreted as the gamma function; G(nþ 1).

Table A.1 (Continued)
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a two-sided transform is appropriate. Recall that the Fourier transform of f(t) is
defined as

FðjvÞ ¼
Z 1

�1
f ðtÞe�jvt dt (A.2)

We know, through the evolution of the Fourier transform from the Fourier series,
that F(jv) has the physical significance of signal spectrum. The parameter v in Eq.
(A.2) is (2p)� (frequency in hertz), and in elementary signal analysis we usually
consider v to be real. This leads to obvious convergence problems with the defining
integral, Eq. (A.2), and is usually circumvented simply by restricting the class of
time functions being considered to those for which convergence exists for real v.
The two exceptions to this are constant (d-c) and harmonic (sinusoidal) signals.
These are usually admitted by going through a limiting process that leads to Dirac
delta functions in the v domain. Even though the class of time functions allowed is
somewhat restrictive, the Fourier transform is still very useful because many
physical signals just happen to fit into this class (e.g., pulses and finite-energy
signals). If we take convergence for granted, we can form a table of transform pairs,
just as we did with Laplace transforms, and Table A.2 gives a brief list of common
Fourier transform pairs.

For those who are more accustomed to one-sided Laplace transforms than
Fourier transforms, there are formulas for getting from one to the other. These are
especially useful when the time functions have either even or odd symmetry. Let f(t)
be a time function for which the Fourier transform exists, and let

F f ðtÞ½ � ¼ Fourier transform of f ðtÞ
FðsÞ ¼ one-sided Laplace transform of f ðtÞ

Then, if f(t) is even,

F f ðtÞ½ � ¼ FðsÞjs¼jv þ FðsÞjs¼�jv (A.3)

or if f(t) is odd,

F f ðtÞ½ � ¼ FðsÞjs¼jv � FðsÞjs¼�jv (A.4)

These formulas follow directly from the defining integrals of the two transforms.

368 APPENDIX A LAPLACE AND FOURIER TRANSFORMS



BAPP01 10/22/2011 12:41:36 Page 369

Table A.2 Common Fourier Transform Pairs

A.2 THE FOURIER TRANSFORM 369



BAPP01 10/22/2011 12:41:39 Page 370

Table A.2 (Continued)
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APPENDIX B
The Continuous Kalman Filter

About a year after his paper on discrete-data filtering, R. E. Kalman coauthored a
second paper with R. S. Bucy on continuous filtering (1). This paper also proved to
be a milestone in the area of optimal filtering. Our approach here will be somewhat
different from theirs, in that we will derive the continuous filter equations as a
limiting case of the discrete equations as the step size becomes small.� Philosophi-
cally, it is of interest to note that we begin with the discrete equations and then go to
the continuous equations. So often in numerical procedures, we begin with the
continuous dynamical equations; these are then discretized and the discrete
equations become approximations of the continuous dynamics. Not so with the
Kalman filter! The discrete equations are exact and stand in their own right,
provided, of course, that the difference equation model of the process is exact
and not an approximation.

The continuous Kalman filter is probably not as important in applications as the
discrete filter, especially in real-time systems. However, the continuous filter is
important for both conceptual and theoretical reasons, so this appendix will be
devoted to the basics of continuous filtering.

B.1
TRANSITION FROM THE DISCRETE TO CONTINUOUS
FILTER EQUATIONS

First, we assume the process and measurement models to be of the form:

Process model: _x ¼ FxþGu (B.1.1)

Measurement model: z ¼ Hxþ v (B.1.2)

� One has to be careful in applying the methods of ordinary differential calculus to stochastic differential
equations. Such methods are legitimate here only because we are dealing exclusively with linear dynamical
systems [see, e.g., Jazwinski (2)]. It is worth noting that it is only the estimate equation that is stochastic. The
error covariance equation (which is nonlinear) is deterministic. It depends only on the model parameters, which
are not random and are assumed to be known.
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where

E u tð ÞuT tð Þ� � ¼ Qd t � tð Þ (B.1.3)

E v tð ÞvT tð Þ� � ¼ Rd t � tð Þ (B.1.4)

E u tð ÞvT tð Þ� � ¼ 0 (B.1.5)

We note that in Eqs. (B.1.1) and (B.1.2), F,G, andHmay be time-varying. Also, by
analogy with the discrete model, we assume that u(t) and v(t) are vector white noise
processes with zero crosscorrelation. The covariance parametersQ andR play roles
similar to Qk and Rk in the discrete filter, but they do not have the same numerical
values. The relationships between the corresponding discrete and continuous filter
parameters will be derived presently.

Recall that for the discrete filter,

Qk ¼ E wkw
T
k

� �
(B.1.6)

Rk ¼ E vkv
T
k

� �
(B.1.7)

To make the transition from the discrete to continuous case, we need the relations
between Qk and Rk and the corresponding Q and R for a small step size Dt.
Looking at Qk first and referring to Eq. (3.9.10), we note that f � I for small Dt
and thus

Qk �
Z
small

Z
Dt

G jð ÞE u jð ÞuT hð Þ� �
GT hð Þ dj dh (B.1.8)

Next, substituting Eq. (B.1.3) into (B.1.8) and integrating over the small Dt interval
yield

Qk ¼ GQGT Dt (B.1.9)

The derivation of the equation relating Rk and R is more subtle. In the
continuous model v(t) is white, so simple sampling of z(t) leads to measurement
noise with infinite variance. Hence, in the sampling process, we have to imagine
averaging the continuous measurement over the Dt interval to get an equivalent
discrete sample. This is justified because x is not white and may be approximated as
a constant over the interval. Thus, we have

zk ¼ 1

Dt

Z tk

tk�1

z tð Þ dt ¼ 1

Dt

Z tk

tk�1

Hx tð Þ þ v tð Þ½ � dt

� Hxk þ 1

Dt

Z tk

tk�1

v tð Þ dt
(B.1.10)

372 APPENDIX B THE CONTINUOUS KALMAN FILTER



BAPP02 12/09/2011 16:23:52 Page 373

The discrete-to-continuous equivalence is then

vk ¼ 1

Dt

Z
small Dt

v tð Þ dt (B.1.11)

From Eq. (B.1.7) we have

E vkv
T
k

� � ¼ Rk ¼ 1

Dt2

Z
small

Z
Dt

E v uð ÞvT vð Þ� �
du dv (B.1.12)

Substituting Eq. (B.1.4) into (B.1.12) and integrating yield the desired relationship

Rk ¼ R

Dt
(B.1.13)

At first glance, it may seem strange to have the discrete measurement error approach
1 as Dt ! 0. However, this is offset by the sampling rate becoming infinite at the
same time.

In making the transition from the discrete to continuous case, we first note from
the error covariance projection equation (i.e., P�

kþ1 ¼ fkPkf
T
k þQk) that P

�
kþ1 !

Pk as Dt ! 0. Thus, we do not need to distinguish between a priori and a posteriori
Pmatrices in the continuous filter.We proceed with the derivation of the continuous
gain expression. Recall that the discrete Kalman gain is given by (see Fig. 4.1)

Kk ¼ P�
k H

T
k HkP

�
k H

T
k þ Rk

� ��1
(B.1.14)

Using Eq. (B.1.3) and noting that R/Dt � HkP
�
k H

T
k lead to

Kk ¼ P�
k H

T
k HkP

�
k Hk þ R/Dt

� ��1 � P�
k H

T
kR

�1Dt

We can now drop the subscripts and the super minus on the right side and we obtain

Kk ¼ PHTR�1
� �

Dt (B.1.15)

We define the continuous Kalman gain as the coefficient of Dt in Eq. (B.1.15), that is,

K , PHTR�1 (B.1.16)

Next, we look at the error covariance equation. From the projection and update
equations (Fig. 5.9), we have

P�
kþ1 ¼ fkPkf

T
k þQk

¼ fk I�KkHkð ÞP�
k f

T
k þQk

¼ fkP
�
k f

T
k �fkKkHkP

�
k f

T
k þQk

(B.1.17)
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We now approximate fk as Iþ FDt and note from Eq. (B.1.15) that Kk is of the
order of Dt. After we neglect higher-order terms in Dt, Eq. (B.1.17) becomes

P�
kþ1 ¼ P�

k þ FP�
k Dt þ P�

k F
TDt �KkHkP

�
k þQk (B.1.18)

We next substitute the expressions for Kk and Qk, Eqs. (B.1.15) and (B.1.9), and
form the finite difference expression

P�
kþ1 � P�

k

Dt
¼ FP�

k þ P�
k F

T � P�
k H

TR�1HkP
�
k þGQGT (B.1.19)

Finally, passing to the limit as Dt ! 0 and dropping the subscripts and super minus
lead to the matrix differential equation

P_ ¼ FPþ PFT � PHTR�1HPþGQGT

P 0ð Þ ¼ P0

(B.1.20)

Next, consider the state estimation equation. Recall the discrete equation is

x̂k ¼ x̂�k þKk zk �Hkx̂
�
k

� �
(B.1.21)

We now note that x̂�k ¼ fk�1x̂k�1. Thus, Eq. (B.1.21) can be written as

x̂k ¼ fk�1x̂k�1 þKk zk �Hkfk�1x̂k�1ð Þ (B.1.22)

Again, we approximatef as Iþ FDt. Then, neglecting higher-order terms inDt and
noting that Kk ¼ KDt lead to

x̂k � x̂k�1 ¼ Fx̂k�1Dt þKDt zk �Hkx̂k�1ð Þ (B.1.23)

Finally, dividing by Dt, passing to the limit, and dropping the subscripts yield the
differential equation

x̂ ¼ Fx̂þK z�Hx̂ð Þ (B.1.24)

Equations (B.1.16), (B.1.20) and (B.1.24) comprise the continuous Kalman
filter equations and these are summarized in Fig. B.1. If the filter were to be
implemented on-line, note that certain equations would have to be solved in real
time as indicated in Fig. B.1. Theoretically, the differential equation for P could be
solved off-line, and the gain profile could be stored for later use on-line. However,
the main x̂ equation must be solved on-line, because z(t), that is, the noisy
measurement, is the input to the differential equation.

The continuous filter equations as summarized in Fig. B.1 are innocent looking
because they are written in matrix form. They should be treated with respect,
though. It does not take much imagination to see the degree of complexity that
results when they are written out in scalar form. If the dimensionality is high, an
analog implementation is completely unwieldy.
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Note that the error covariance equation must be solved in order to find the gain,
just as in the discrete case. In the continuous case, though, a differential rather than
difference equation must be solved. Furthermore, the differential equation is
nonlinear because of the PHTR�1HP term, which complicates matters. This
will be explored further in the next section.

B.2
SOLUTION OF THE MATRIX RICCATI EQUATION

The error covariance equation

P_ ¼ FPþ PFT � PHTR�1HPþGQGT

P 0ð Þ ¼ P0

(B.2.1)

is a special form of nonlinear differential equation known as the matrix Riccati
equation. This equation has been studied extensively, and an analytical solution
exists for the constant-parameter case. The general procedure is to transform the
single nonlinear equation into a system of two simultaneous linear equations; of
course, analytical solutions exist for linear differential equations with constant
coefficients. Toward this end we assume that P can be written in product form as

P ¼ XZ�1; Z 0ð Þ ¼ I (B.2.2)

or

PZ ¼ X (B.2.3)

Differentiating both sides of Eq. (B.2.3) leads to

_PZþ P _Z ¼ _X (B.2.4)

Kz
(Noisy

measurement)

+

Main filter mechanization

(Gain obtained from
gain generator below)

Solve the P equation:

Matrix
multiplier Gain P

Time-variable gain generator

= F   + K(z – H  )

– Estimate
∫

+

+

H

HTR–1 K = P HTR–1

F

^ x0

x̂

·̂
x

 ·
P = FP + PFT – PHTR–1HP + GQGT

P(0) = P0

x̂ x̂

Figure B.1 On-line block diagram for the continuous Kalman filter.
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Next, we substitute _P from Eq. (B.2.1) into Eq. (B.2.4) and obtain

PFþ PFT � PHTR�1HPþGQGT
� �

Zþ P _Z ¼ _X (B.2.5)

Rearranging terms and noting that PZ¼X lead to

P FTZ�HTR�1HXþ _Z
� �þ FXþGQGTZ� _X

� � ¼ 0 (B.2.6)

Note that if both terms in parentheses in Eq. (B.2.6) are set equal to zero, equality is
satisfied. Thus, we have the pair of linear differential equations

_X ¼ FXþGQGTZ (B.2.7)

_Z ¼ HTR�1HX� FTZ (B.2.8)

with initial conditions

X 0ð Þ ¼ P0

Z 0ð Þ ¼ I
(B.2.9)

These can now be solved by a variety of methods, including Laplace transforms.
Once P is found, the gain K is obtained as PHTR�1, and the filter parameters are
determined. An example illustrates the procedure.

EXAMPLE B.1

Consider a continuous filter problem where the signal and noise are independent
and their autocorrelation functions are

Rs tð Þ ¼ e�jtj or Ss sð Þ ¼ 2

�s2 þ 1

� �
(B.2.10)

Rn tð Þ ¼ d tð Þ or Sn ¼ 1ð Þ (B.2.11)

Since this is a one-state system, x is a scalar. Let x equal the signal. The additive
measurement noise is white and thus no augmentation of the state vector is
required. The process and measurement models are then

_x ¼ �xþ
ffiffiffi
2

p
u; u ¼ unity white noise (B.2.12)

z ¼ xþ v v ¼ unity white noise (B.2.13)

Thus, the system parameters are

F ¼ �1; G ¼
ffiffiffi
2

p
; Q ¼ 1; R ¼ 1 H ¼ 1
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The differential equations for X and Z are then

_X ¼ �X þ 2Z; X 0ð Þ ¼ P0

_Z ¼ X þ Z; Z 0ð Þ ¼ 1 (B.2.14)

Equations (B.2.14) may be solved readily using Laplace-transform techniques. The
result is

X tð Þ ¼ P0 cosh
ffiffiffi
3

p
t þ 2� P0ð Þffiffiffi

3
p sinh

ffiffiffi
3

p
t

Z tð Þ ¼ cosh
ffiffiffi
3

p
t þ P0 þ 1ð Þffiffiffi

3
p sinh

ffiffiffi
3

p
t

(B.2.15)

The solution for P may now be formed as P ¼ XZ�1:

P ¼
P0 cosh

ffiffiffi
3

p
t þ 2� P0ð Þffiffiffi

3
p sinh

ffiffiffi
3

p
t

cosh
ffiffiffi
3

p
t þ P0 þ 1ð Þffiffiffi

3
p sinh

ffiffiffi
3

p
t

(B.2.16)

Once P is found, the gain K is given by

K ¼ PHTR�1

and the filter yielding x̂ is determined.
It is of special interest to look at the stationary (i.e., steady-state) filter

solution. This is obtained by letting t be large in Eq. (B.2.16). The expression for P
then reduces to (noting that P0¼ 1)

P !
1 � e

ffiffi
3

p
t þ 2� 1ffiffiffi

3
p e

ffiffi
3

p
t

e
ffiffi
3

p
t þ 1þ 1ffiffiffi

3
p e

ffiffi
3

p
t

¼
ffiffiffi
3

p
� 1 (B.2.17)

The Kalman filter block diagram for this example is then as shown in Fig. B.2.
This can be systematically reduced to yield the following overall transfer function

x
∨

z
+

–

1––s

+

+

–1

3 –1

1

Figure B.2 Stationary Kalman filter for Example B.1.
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relating x̂ to z:

G sð Þ ¼ Laplace transform of x̂

Laplace transform of z
¼

ffiffiffi
3

p � 1

sþ ffiffiffi
3

p (B.2.18)

This is the same result obtained using Wiener methods [See Ref. (3)].
&
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