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Foreword
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1 Introduction and 
Objectives

A. Hart, D. Farrar, D. Urban, D. Fischer, 
T. La Point, K. Romijn, and S. Ferson

1.1 inTroducTion

Current methods used in ecological risk assessments for pesticides are largely 
“deterministic.” These methods generally produce simple measures of risk (e.g., 
risk quotients) and do not quantify the influence of variability and uncertainty in 
exposure and effects. “Probabilistic” methods do quantify and analyze variability 
and uncertainty. They can also provide more meaningful measures of risk (e.g., 
the frequency and magnitude of impacts). Consequently, probabilistic methods are 
attracting growing interest from both industry and government, especially in North 
America (USEPA 2000), but also in Europe (e.g., Hart 2001), and elsewhere.

Uncertainty analysis is increasingly used in ecological risk assessment and was 
the subject of an earlier Pellston workshop (Warren-Hicks and Moore 1998). The 
US Environmental Protection Agency (USEPA) has developed general principles 
for the use of Monte Carlo methods (USEPA 1997), which provide one of several 
approaches to incorporating variability and uncertainty in risk assessment.

This chapter considers the role of variability and uncertainty in ecological risk 
assessment and discusses whether it is necessary to quantify them. It concludes 
by setting out the objectives and key issues that were considered at the Pellston 
workshop in February 2002, which are addressed in the following chapters of this 
book.

1.2 VariabiLiTy and uncerTainTy

A variety of terms are used in the statistical literature to define and describe the 
general concept of imperfect knowledge. Many authors prefer specific terms that are 
explicitly defined, while others use more general terminology that can be applied in 
a broad context. Two terms that are of general use are (Suter and Barnthouse 1993):

Stochasticity: the inherent randomness of the world,
Ignorance: imperfect or incomplete knowledge of things that could be known.

There are many ways of classifying the various types of uncertainty and variabil-
ity that are associated with these two terms. In the peer-reviewed literature, it is 
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2 Application of Uncertainty Analysis to Ecological Risk of Pesticides

not uncommon to find different authors and practitioners using various terms for 
describing stochasticity and ignorance. Table 1.1 indicates some approaches.

Norton (1998) offers one approach from an ecological risk assessor’s perspec-
tive. Various experts in statistics and risk assessment at the workshop preferred 
specific terms over others. The majority of the workshop participants were com-
fortable with distinguishing between uncertainty and variability in a manner that 
is consistent with US Environmental Protection Agency (USEPA) guidance. Other 
experts, particularly those associated with bounding analyses (see Chapter 6 of this 
book), preferred the word incertitude instead of uncertainty based on theoretical 
considerations associated with the bounding methods discussed in the chapter.

In order to simplify the terminology in this book, most chapters will use the term 
uncertainty to refer to doubt or ignorance, due to imperfect or incomplete knowl-
edge of things that could be known; for example, uncertainty about the true mean 
of a population when only a small sample of the population has been measured, or 
incomplete understanding of the mode of action of a toxicant. And, all chapters will 
use the term variability to refer to stochasticity and heterogeneity; the existence of 
natural and anthropogenic variation in the real world, including differences between 
individuals, spatial variation, and changes over time.

Readers of this book are encouraged to consult the references shown in Table 1.1 to  
obtain additional information on the concepts of variability, uncertainty, incertitude, 
imprecision, chance, ambiguity, and other terms that arise in ecological uncertainty 
analysis.

1.3  imporTance oF VariabiLiTy and 
uncerTainTy in risk assessmenT

Variability and uncertainty affect every element of every risk assessment. For exam-
ple, participants in the European Workshop on Probabilistic Risk Assessment for the 
Environmental Impacts of Plant Protection Products (EUPRA) were asked to list sources 
of uncertainty affecting current procedures for assessing pesticide risks to aquatic 

TabLe 1.1
authors’ terms for stochasticity, tandomness, ignorance, or doubt

reference
stochasticity or 

randomness
ignorance or 

doubt
combination of 

both

Hattis and Burmaster (1994) Variability Uncertainty Variability and 
uncertainty

Apostolakis (1994, 1999) Aleatory 
uncertainty

Epistemic 
uncertainty

Uncertainty

Ferson and Ginzburg (1996) Variability Incertitude Uncertainty

Hoffman and Hammonds (1994) Type A uncertainty Type B uncertainty Uncertainty

Klir and Yuan (1995) Conflict Nonspecificity Ambiguity

Walley (1991) Chance Imprecision Imprecise 
probability
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Introduction and Objectives 3

organisms, terrestrial vertebrates, terrestrial invertebrates, and plants (Hart 2001). The 
resulting lists include many diverse sources of uncertainty and variability in both expo-
sure assessment and effects assessment for all 3 groups of organisms (Table 1.2).

Many sources of stochasticity and uncertainty are large enough to change the 
level of risk by orders of magnitude. For example, pesticide residues on terrestrial 
invertebrates after spraying vary over 2 orders of magnitude (Figure 1.1). If such 
important sources of variation were ignored, the resulting assessment would give a 
very misleading picture of the true range of risks.

TabLe 1.2
some key sources of uncertainty affecting current risk 
assessments for pesticides in europe, as listed by the 
eupra workshop (Hart 2001)

aquatic organisms
Extrapolation from individuals in single species tests to populations

Extrapolation from individuals of single species to communities

Input parameters for modeling pesticide fate

Discrepancy between exposure in laboratory studies and in the field

Uncertainties in the exposure scenario and variability in the landscape

Variation in sensitivity between species

Extrapolation of sensitivity from laboratory studies to the field

Representativeness of species used in risk assessment

Level of effect that is acceptable

Influence of indirect effects

Terrestrial vertebrates
Intraspecies and interspecies variation in sensitivity

Behavior and natural history

Spatial distribution of residues

Residues dynamics (dissipation, bioaccumulation, etc.)

Avoidance or attraction of contaminated food

Effects on populations and communities

Mismatch between exposure pattern over time in laboratory and field

Nondietary routes of exposure (e.g., dermal exposure and inhalation)

Terrestrial invertebrates and plants
Level of effect that is acceptable

Factors affecting exposure

Interspecies variation in sensitivity

Extrapolation from effects on individuals (lab) to populations (field)

Extrapolating acute to chronic effects

Regional variation in sensitivity or concern for nontarget organisms

Errors in the structure of risk assessment models

Presence of sensitive life stages
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Similarly, uncertainty can also have substantial implications for assessment out-
comes. For example, there is uncertainty about the importance of exposure of birds 
to pesticides via dermal absorption. This route of exposure is generally ignored in 
regulatory assessments, but there is evidence that it may be as important as dietary 
exposure, at least in some circumstances (Driver et al. 1991; Mineau 2002). This 
uncertainty, therefore, implies a potential 2-fold error in the assessment of exposure.

It is therefore important to take account of variability and uncertainty in risk 
assessment. The question is, how?

1.4  currenT meTHods For deaLing wiTH VariabiLiTy 
and uncerTainTy are inadequaTe

The most common methods for dealing with variability and uncertainty in the past 
have been the use of conservative assumptions, safety factors, and assessment sce-
narios. Each of these approaches has limitations that may often lead to inappropri-
ate decisions.

1.4.1 Conservative assumptions

Conservative or “worst-case” assumptions are very commonly used. However, 
the degree of conservatism varies between assumptions and is rarely quantified 
(Figure 1.2). Furthermore, when many assumptions are combined in the same assess-
ment, the overall degree of conservatism is difficult to determine.

1.4.2 safety faCtors

Safety or uncertainty factors are often applied at the end of an assessment, for example, 
as a “level of concern” to which a risk quotient or toxicity-exposure ratio is compared.
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Figure 1.1 Variation in residues of pesticides on terrestrial invertebrates (D. Fischer, pers. 
comm.).
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Often, the basis for safety factors is obscure and/or arbitrary. They are typically 
based on order of magnitude decisions, for example, determining a “safe” concentra-
tion and dividing it by 10. It may not be clear which sources of uncertainty they are 
intended to address. Even when they have been based on an explicit assessment of 
uncertainty, this probably will not have included more than a few sources of uncer-
tainty. Therefore, it is not known whether the safety factors provide an appropriate 
level of protection against all the uncertainties affecting the assessment.

1.4.3 assessment sCenarios

Sometimes, different assessment scenarios are used, for example, to assess risk 
under contrasting environmental conditions in different geographical areas, or to 
assess risk to different receptors (e.g., insectivorous vs. herbivorous species of birds). 
However, it is rarely practical to use more than a small number of scenarios and it is 
very difficult to determine how well the chosen scenarios represent the full range of 
true scenarios, especially if the scenarios differ with respect to many variables.

1.5  VariabiLiTy and uncerTainTy Hinder 
THe reguLaTory process

The inadequacy of current approaches for dealing with variability and uncertainty is 
currently causing significant practical difficulties in regulatory procedures, including

Disputes among stakeholders about just how conservative the assessments •	
are
Difficulty in identifying what types of additional data are required to reduce •	
uncertainty

Literally worst-case

Extreme but not
worst-case

Mildly conservative

Neutral

Unconservative

Birds obtain 100% of food from contaminated areas

Water-bodies affected by pesticide drift are static,
30 cm deep and 1 metre away from the crop

Test toxicity to two species and use the lower result

Expected mean values used for avian food intake 

Potentially-important routes of exposure ignored

Figure 1.2 Examples of differing degrees of conservatism in assumptions used in pesti-
cide risk assessments.
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6 Application of Uncertainty Analysis to Ecological Risk of Pesticides

Lack of agreement about whether and how much to alter safety factors, •	
when extra data are provided

These problems cause delays in regulatory decision making, which have significant 
implications for all the stakeholders.

1.6  undersTanding uncerTainTy and VariabiLiTy is 
criTicaL wHen deVeLoping a credibLe risk assessmenT

Ineffective or unconvincing approaches to uncertainty can affect the credibility of 
individual risk assessments or the regulatory process as a whole.

This has been highlighted by a number of food safety issues. For example, lack of 
confidence that uncertainties were being adequately dealt with has been an impor-
tant factor in recent public concerns about bovine spongiform encephalopathy and 
genetically modified crops, especially in Europe. Uncertainty was also a factor in 
the earlier controversy over alar in apples (e.g., Ames and Gold 1989; Groth 1989; 
Thayer 1989).

Uncertainty may also affect the credibility of ecological risk assessment pro-
cedures. In the late 1970s, the USEPA presented a risk assessment for the use of 
granular carbofuran on corn, including a detailed list of field studies and incidents. 
The Federal Insecticide, Fungicide, and Rodenticide Act Science Advisory Panel 
concluded there was insufficient information to justify restricted use labeling and 
recommended further testing. Nearly 20 years later, the accumulation of additional 
field studies and incidents provided sufficient evidence such that approvals for use of 
carbofuran were withdrawn.

1.7  quanTiTaTiVe anaLysis oF VariabiLiTy 
and uncerTainTy can HeLp

Quantitative analysis can help by

Identifying and quantifying known sources of variability and uncertainty•	
Showing the consequences of known sources of variability and uncertainty •	
for the overall assessment
Focusing attention on the most important known sources of variability and •	
uncertainty

A previous Pellston workshop listed the benefits of uncertainty analysis in regulatory 
programs as follows (Warren-Hicks and Moore 1998):

Improved transparency•	
Improved credibility•	
Better focusing of data collection•	
Avoidance of worst-case assumptions•	
Improved basis for decision making•	
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1.8  wHen is quanTiTaTiVe anaLysis oF VariabiLiTy 
and uncerTainTy required?

The issues considered in the preceding sections imply that variability and uncer-
tainty should be considered in some way in every risk assessment.

Screening assessments incorporate variability and uncertainty implicitly, by using 
worst-case assumptions and safety factors. As mentioned earlier, these have rarely 
been based on a quantitative analysis and may not take account of the full range of 
uncertainties, so in principle they should be reviewed to determine whether they 
provide adequate margins of safety.

In higher tier assessments, the question is not so much whether uncertainty analy-
sis is required, but rather whether it should be quantitative and what methods should 
be used for it. The previous Pellston workshop made the following recommendations 
as a general guide (Warren-Hicks and Moore 1998):

Quantitative uncertainty analysis is not appropriate when in a worst-case •	
approach, risk is found to be negligible; when field evidence indicates obvi-
ous and severe effects; when information is insufficient to adequately char-
acterize the model equation, input probability density functions (PDFs), and 
the relationships between the PDFs; or when it is more cost-effective to take 
action than to conduct more analyses.
Quantitative uncertainty analysis is appropriate when it is essential to set •	
priorities among sites, contaminants, exposure pathways, receptors, or 
other risk factors, given limited resources; the consequences of an incorrect 
decision are high; and available or obtainable information is insufficient to 
conduct a defensible analysis.

A variety of methods are available for analyzing variability and uncertainty quanti-
tatively. Later chapters describe the main approaches and provide guidance on how 
to decide which is appropriate for a particular case.

1.9  wHaT iF THe bounds are Very wide?

A potential concern about quantifying uncertainty has been that it may generate 
such wide bounds on risk estimates as to make them unusable for decision mak-
ing. This, together with the greater complexity of quantitative methods, has led 
to suggestions that it might be better to use simple hazard assessment with large 
safety factors. However, using simple safety factors will not produce narrower 
bounds on risk estimates unless the safety factors understate the true level of 
uncertainty. On the contrary, a specific quantitative analysis will often produce 
narrower bounds than generalized safety factors, because the latter should be suf-
ficiently large to take appropriate account of all cases. When the bounds on risk 
are wide, decision makers can either ask for further research to reduce uncertainty 
or make a decision (either precautionary or otherwise, as appropriate) that takes 
account of the uncertainty.
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1.10 need For consensus on appropriaTe meTHods

There are many methods of analyzing variability and uncertainty and many ways of 
presenting the results. Inappropriate use of these methods gives misleading results, 
and experts differ on what is appropriate. Disagreement about which methods are 
appropriate will lead to wasted resources, conflict over results, and reduced cred-
ibility with decision makers and the public. There is, therefore, a need to reach a 
consensus on how to choose and use appropriate methods, and to present this in the 
form of guidance for prospective users.

1.11 worksHop objecTiVes and key issues

The Pellston workshop in February 2002, which produced this book, aimed to 
develop guidance and increased consensus on the use of uncertainty analysis meth-
ods in ecological risk assessment. The workshop focused on pesticides, and used 
case studies on pesticides, because of the urgent need created by the rapid move 
to using probabilistic methods in pesticide risk assessment. However, it was antici-
pated that the conclusions would also be highly relevant to other stressors, espe-
cially other contaminants.

1.11.1 Workshop objeCtives

Promote wider understanding of uncertainty analysis, especially in the pes-•	
ticides arena, by providing an accessible review of the main approaches
Provide guidance on how to select appropriate methods of uncertainty anal-•	
ysis, and how to use them
Develop case studies to explore the application of alternative methods of •	
uncertainty analysis to the ecological risks of pesticides
Identify priorities for further development, implementation, and training•	

1.11.2 key issues

In addressing its objectives and developing the case studies, the workshop gave par-
ticular consideration to the following key issues.

Which methods for analyzing variability and uncertainty are appropriate under 
what circumstances? Which methods are appropriate when data are limited? What 
are the strengths and weaknesses of different methods? What are their main prin-
ciples and pitfalls?

What are the implications of probabilistic methods for problem •	
formulation?
How can uncertainty analysis methods be used to help achieve the desired •	
level of certainty efficiently?
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When and how should we separate variability and incertitude, or partition •	
uncertainty in other ways?
How can we take account of uncertainty concerning the structure of the •	
conceptual model for the assessment?
How should we select and parameterize input distributions when data are •	
limited?
How should we deal with dependencies, including nonlinear dependencies •	
and dependencies about which only partial information is available?
How can we take account of uncertainty when combining different types of •	
information in an assessment (e.g., quantitative data and expert judgment, 
laboratory data and field data)?
How can we detect and avoid misleading results?•	
How can we communicate methods and outputs effectively to decision •	
makers and stakeholders?
What are the priorities for further development, implementation, and •	
training?
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2 Problem Formulation for 
Probabilistic Ecological 
Risk Assessments

A. Hart, S. Ferson, J. Shaw, G. W. Suter II, 
P. F. Chapman, P. L. de Fur, 
W. Heger, and P. D. Jones

2.1 inTroducTion

Problem formulation is an early phase of risk assessment, where the assessment 
problem is defined and the assessment itself is planned. It provides the foundation 
for the entire assessment; any deficiencies in problem formulation will compromise 
all subsequent work on the assessment (USEPA 1998).

Other terms used to describe this phase of the risk assessment process include 
“problem definition,” “problem characterization,” “risk profiling” (EC 2000), and 
“scoping phase.”

Extensive general guidance for problem formulation exists already (e.g., USEPA 
1998). This chapter reviews the main steps in problem formulation and discusses 
issues that require special consideration because of the use of uncertainty analysis in 
probabilistic risk assessment.

2.2 main sTeps in probLem FormuLaTion

The US Environmental Protection Agency (USEPA 1998) describes problem for-
mulation as an iterative process with 4 main components: integration of available 
information, definition of assessment endpoints, definition of conceptual model, and 
development of an analysis plan. These 4 components apply also to probabilistic 
assessments. In addition, it is useful to emphasize the importance of a 5th compo-
nent: definition of the assessment scenarios. The relationships between all 5 com-
ponents are depicted in Figure 2.1. Note that the bidirectional arrows represent the 
interdependency of the different components and imply that they may need to be 
revised iteratively as the formulation of the problem is refined.

The following sections discuss each of the components of problem formulation in 
turn, with particular attention to the needs of probabilistic assessments.
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12 Application of Uncertainty Analysis to Ecological Risk of Pesticides

2.3  inTegraTion oF aVaiLabLe inFormaTion 
For probabiLisTic assessmenTs

Integration of available information is an iterative process that normally occurs 
throughout problem formulation (USEPA 1998). In general, for probabilistic assess-
ments there will be a greater emphasis on obtaining information in quantitative rather 
than qualitative forms. In particular, probabilistic assessments require increased 
attention to obtaining information on

Variability•	
Uncertainty•	
The limits to knowledge•	
The quality of studies and data•	

For example, existing databases and risk assessment publications often omit statis-
tical measures of variability or uncertainty and sample sizes and rarely report the 
underlying data. These types of information are rarely used in deterministic assess-
ments but are a fundamental requirement for probabilistic assessments.

Conceptual
Model

Integrate Available Information

Analysis
Plan

Problem Formulation

Risk Analysis

Assessment
Endpoints

Assessment
Scenarios

Figure 2.1 The main components of problem formulation (adapted from USEPA 1998).
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2.4  deFiniTion oF assessmenT endpoinTs 
For probabiLisTic assessmenTs

Assessment endpoints are measurable ecosystem characteristics that represent man-
agement goals (USEPA 1998). They should define

The entity to be protected•	
An attribute of it that is potentially at risk, important to protect, measurable, •	
and has easily discernible meaning

Often the management goal is not defined in legislation in a specific way, for exam-
ple, it may refer to prevention of unacceptable adverse effects and not define spe-
cifically what is to be protected, nor what measures should be used to represent the 
magnitude of effects. In this situation, risk assessors and decision makers (or, as 
sometimes termed, “risk managers”) need to agree on assessment endpoints that 
enable the risk managers to fulfill the requirements of the legislation in an appro-
priate way.

The assessment endpoint should be not only measurable (at least potentially) but 
also “modelable.” Defining a modelable endpoint is likely to require close discussion 
between an assessor (who knows what they can model) and a risk manager (who 
knows what they want to protect). Sometimes the assessment endpoint is only indi-
rectly related to the management goal, for example, if the assessment endpoint is a 
risk to individuals, but the aim is to protect population sustainability. In such cases, 
qualitative inference will be required to interpret the assessment result. This infer-
ence will need to be done jointly by the risk assessor and risk manager. It is likely 
to involve substantial uncertainty, which will have to be taken into account qualita-
tively when producing a narrative description of the assessment outcome. This step 
should be identified as part of the conceptual model.

If the assessment is to be probabilistic, the risk assessor and risk manager should 
consider together how this influences the definition of the assessment endpoint. Suter 
(1998) suggests 5 questions for the risk assessor to ask the risk manager to help define 
the assessment endpoint:

 1) Should any assessment endpoints be expressed as probabilities? Suter (1998) 
points out that it can be confusing to use the term probability in defining 
assessment endpoints because it is unclear whether it relates to variability 
or uncertainty, so it will be helpful to distinguish these in the discussion 
with the risk manager.

 2) If effects are expressed as a threshold value, should the risk be expressed as 
the magnitude of exceedance, the frequency of exceedance, or the certainty 
of exceedance?

 3) If effects are expressed as some measurement in the field, should they be 
expressed as the best estimate of the effect, the frequency of exceeding 
some threshold, or as the certainty that some threshold is exceeded?

 4) Would it be useful to know the likelihood that additional data would change 
the conclusion of the assessment?
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14 Application of Uncertainty Analysis to Ecological Risk of Pesticides

 5) Should uncertainties other than those concerning the values of parameters 
simply be listed, listed and scored, or listed and assigned approximate mag-
nitudes based on expert judgment?

Questions 2 and 3 imply a choice between expressing effects in terms of magnitude, 
frequency, and certainty. In practice, the assessment endpoint may often need to be 
defined in terms of 2 or 3 of these dimensions. For example, it may be desirable to 
estimate the proportion of species (frequency) that will experience different levels of 
mortality (magnitude), and to provide confidence limits (certainty). Indeed, the risk 
manager’s questions may imply an assessment endpoint with more than 3 dimen-
sions, for example, if it is desired to express frequency in terms of space (e.g., number 
of hectares) and time (proportion of years). The dimensionality of the assessment 
endpoint will have major implications for all aspects of the analysis and for com-
munication of results, so it is essential to discuss it carefully with the risk manager at 
the outset to ensure it meets their needs.

If the assessment endpoint is a distribution, or a statistic from a distribution 
(e.g., 95th percentile), it is essential to be clear how the distribution is interpreted 
(Suter 1998, p 129). If it is a frequency distribution, to what statistical population 
does the distribution refer? For example, does the distribution represent a popula-
tion of individuals, an assemblage of species, a number of locations treated with 
pesticides, or a series of time periods? The answer to this question has substan-
tial implications for the structure of the assessment model and the types of data 
required.

2.5 deFiniTion oF assessmenT scenarios

It is essential to define the assessment scenario within which the assessment end-
point will be assessed. The assessment scenario should specify the spatial, temporal, 
and ecological boundaries within which the endpoint is assessed, since these have 
substantial implications for the structure of the assessment model and the scope of 
the input data. The assessment scenario should also describe those aspects of the 
ecosystem that are relevant to the assessment, that is, those aspects that have an influ-
ence on the mechanisms of exposure and effects that will be assessed. This step is 
important in all ecological risk assessments; it places the assessment activity into the 
real context of an ecosystem, helps to prevent construction of inappropriate models, 
and helps with interpretation and communication of results.

The choice of assessment scenario, like the assessment endpoint, is likely to be 
implied by the management goal and should be made in close consultation with the 
risk manager, to ensure it meets their needs.

For pesticide risk assessments, it may often be necessary to assess impacts of the 
same pesticide used in different crops, in different seasons, in different geographic 
regions, and on different species and ecosystems. This will require the use of mul-
tiple scenarios and possibly multiple assessment endpoints.

Multiple scenarios may also be necessary to allow assessment of endpoints at 
different levels of temporal, spatial, and biological scale (US SAP 1999). This is 
because both the risks and their acceptability to stakeholders may differ markedly 
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between levels (e.g., the frequency of bird kills versus the risk of sustained popula-
tion decline).

Another important reason for using multiple scenarios is to represent major 
sources of variability, or what-if scenarios to examine alternative assumptions about 
major uncertainties. This can be less unwieldy than including them in the model. 
Also, the distribution of outputs for each separate scenario will be narrower than 
when they are combined, which may aid interpretation and credibility. A special case 
of this occurs when it is desired to model the consequences of extreme or rare events 
or situations, for example, earthquakes. An example relevant to pesticides might 
be exposure of endangered species on migration. This use of multiple scenarios in 
ecological risk assessment has been termed “scenario analysis,” and is described in 
more detail in Ferenc and Foran (2000).

2.6  deVeLoping concepTuaL modeLs For 
probabiLisTic assessmenTs

Conceptual models consist of 2 principal components (USEPA 1998):

A set of risk hypotheses that describe predicted relationships among stres-•	
sor, exposure, and assessment endpoint response, along with the rationale 
for their selection
A diagram that illustrates the relationships presented in the risk hypotheses•	

Examples of risk hypotheses given by USEPA (1998) are textual (e.g., “birds die 
when they consume recently applied granulated carbofuran”). For a quantitative risk 
assessment it will be preferable to express risk hypotheses using formal mathemati-
cal equations.

Various approaches and graphical conventions have been used in drawing con-
ceptual model diagrams. Consideration could be given to recommending a standard-
ized approach for use in probabilistic assessments.

Suter (1999) makes a number of recommendations that may be helpful:

That conceptual model diagrams be constructed as a cascade of alternating •	
processes and states
That exposure–response relationships be shown as distinct components of •	
model diagrams
That more complex problems be represented by a hierarchy of concep-•	
tual models, with each lower level containing states and processes that are 
aggregated at the next higher level
That conceptual models be developed in a modular way, standard modules •	
being developed to represent states and processes that occur repeatedly in 
many assessments

In addition, it may be useful to extend the conceptual model to show the relation-
ships between the modeled states and processes and the types of information that 

© 2010 by Society of Environmental Toxicology and Chemistry (SETAC)



16 Application of Uncertainty Analysis to Ecological Risk of Pesticides

will be used to quantify them. This is useful because, generally, model parameters 
are not measured directly but are estimated from other information. Including this 
in the conceptual model makes the extrapolation explicit, and recognizes the atten-
dant uncertainty.

It may also be useful to include in the conceptual model other lines of evidence 
that are relevant to the assessment endpoint. This may help to highlight the contribu-
tion that other lines of evidence can make and promote more effective gathering and 
use of such information.

2.6.1 Defining an appropriate struCture for the ConCeptual moDel

Some important criticisms encountered by pioneering efforts to apply probabilistic 
methods to pesticides could have been avoided by appropriate structuring of the 
conceptual model. These criticisms have included

Exposure should usually be evaluated and effects predicted initially for •	
individuals, not at higher levels (US SAP 1999).
Inappropriate averaging and/or aggregation of exposure or effects to higher •	
levels can create misleading results (US SAP 1999).
For each probabilistic component of an analysis, it is essential to be clear •	
what is distributed, and with respect to what variable it is distributed, and to 
ensure that the data used for the distribution are consistent with that inter-
pretation (Suter 1998, p 129–130).
When distributions are combined, for example, in joint probability curves, •	
it is important to ensure that the resulting distribution is meaningful, again 
in terms of what is distributed and with respect to what variable (Suter 
1998, p 129).

To help address these issues, we define a new component for use in conceptual mod-
els: the “units of analysis.” These are the lowest levels of biological, spatial, and 
temporal scale used in the quantitative part of the risk assessment (e.g., individual 
iterations in a simulation model). They also define the biological, spatial, and tempo-
ral units of the measures that will be needed as inputs to the assessment model.

The relationships between this concept and other concepts used in the USEPA’s 
Risk Assessment Framework (USEPA 1998) are illustrated in Figure 2.2. The arrows 
indicate how the elements are related. The management goal defines the assessment 
endpoint. The nature and dimensionality of the assessment endpoint in turn defines 
the units of analysis, i.e., the lowest levels of biological, spatial, and temporal scale 
that need to be identified in the assessment model. The units of analysis represent 
real units of scale in real-world processes of exposure and effects, e.g., individual 
animals, their ranges of movement, their daily food intakes, and their life spans. 
Measurements of relevant quantities in the real world are used to estimate the mea-
sures that are processed by the risk assessment model to produce a risk estimate. 
If the model aggregates the units of analysis correctly, the risk estimate will be an 
estimate of the assessment endpoint. The risk estimate will often be used to produce 
a textual risk description; these two together are then used to inform the management 
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decision, which is aimed at achieving the management goal. The diagram also 
includes other lines of evidence. These may be other types of information about 
exposure and effects in the real world. They may be incorporated quantitatively in 
the risk estimate (e.g., by Bayesian updating) or subjectively in the risk description 
(e.g., by weight of evidence).

The criticisms listed at the start of this section should be avoided by

Defining the units of analysis at appropriate levels•	
Ensuring the units of analysis represent real-world processes appropriately•	
Defining an appropriate relationship between the units of analysis and the •	
assessment endpoint

The following sections discuss how to define the unit of analysis, and how to define 
the relationship between the unit of analysis and the assessment endpoint.

2.6.2 Defining the units of analysis

The units of analysis should be determined by the needs of the assessment, not by the 
data that happen to be available. Careful consideration is required to identify which 
biological, spatial, and temporal units are appropriate for each assessment. This will 
depend on the nature and degree of spatial and temporal variation in the many fac-
tors that affect exposure and effects, including the following:

The source of the stressor•	
The behavior or fate of the stressor in the environment•	
The behavior of the receptor organisms in the environment•	
The relationship between the temporal pattern of exposure and the level of •	
effects for receptor organisms

It has been argued that exposure of birds should usually be evaluated and effects 
predicted initially for individuals, and then used to evaluate consequences at larger 
scales (US SAP 1999), because it is individuals that experience mortality or fail to 
reproduce. Also, spatial and temporal variation in pesticide residues combined with 

Management
Goal

Assessment
Endpoint Unit of

Analysis
Measures

Real-World
Processes of

Exposure and
EffectsManagement

Decision
Other Lines of Evidence

Approximates

Model

defines

informs

aimed at
Defines

Risk Assessment

Measured
Risk

Estimate &
Description

Figure 2.2 How the unit of analysis relates to other components of the assessment 
process.
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variation in the foraging behavior of individual birds means that a single pesticide 
application event results in widely varying exposure for different individuals. In this 
situation, it may be appropriate to define the biological unit of analysis at an indi-
vidual level, as suggested by the USEPA Science Advisory Panel (US SAP).

In some assessments it may be reasonable to assume that all individuals are 
affected in the same way. For example, it is usually assumed that all fish in a water 
body are exposed to the same concentration of pesticide. In this case, it is unneces-
sary to model the exposure of each individual; modeling the group as a whole is 
simpler and will give the same result.

In principle avian exposure could be modeled at very fine levels of spatial and 
temporal scale: e.g., estimating residues of pesticides on individual seeds and insects 
and then modeling individual choices of a bird feeding on them — an analysis in 
units of centimeters and seconds. This level of analysis is very cumbersome, and 
usually unnecessary. If the results would be the same, the analysis may be done at 
larger scales (e.g., in units of fields and days).

However, a finer level of detail may be required in some situations. For exam-
ple, predatory birds feeding on rodents in an area partly treated with rodenticides 
may encounter a bimodal distribution of residues in their prey, such that most prey 
contain no residues but others contain a lethal dose for the predator. If the unit of 
analysis were defined as a whole day’s foraging, with residues being averaged over 
all available prey items, the model might indicate that all the predators experience 
a sublethal exposure. In reality, most predators would experience zero exposure, but 
those that ate a contaminated prey item would die: a significantly different result. 
Therefore, the unit of analysis in this case should be individual foraging events for 
individual predators.

These examples illustrate the care that is required in defining units of analysis, 
and suggest 2 general principles. First, defining the unit of analysis at a higher level 
is inappropriate if including variability or uncertainty at a lower level would give a 
different result. Second, it is desirable to avoid defining the unit of analysis at a lower 
level than necessary (an example of “Occam’s razor”). Vose (2000, p 203) offers 
guidance that incorporates both these principles: “a model should be disaggregated 
as much as is necessary … to express any significant logic between input variables; 
and to model each uncertain variable as accurately as is necessary for the efficient 
but accurate modeling of the problem.” Vose also suggests that models should be 
evenly disaggregated, i.e., the variables should be broken down so that each compo-
nent has about the same effect on the uncertainty of the output. This seems reason-
able, provided that the 1st principle is not violated.

In defining units of analysis it is also important to take account of Vose’s (2000, p 
201) cardinal rule of risk analysis modeling: “every iteration of a risk analysis model 
must be a scenario that could physically occur.”

Finally, it is essential that the units of the analysis are suitable for generating the 
assessment endpoint.

Tabulating the temporal, spatial, and biological scales of each component of the 
assessment may help to identify appropriate units of analysis, show how they relate 
to real-world processes, and check their compatibility with the assessment endpoint 
and hence the management goal (e.g., Table 2.1).
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TabLe 2.1
a tabular approach to identifying appropriate biological, spatial, and temporal scales for different components of the 
assessment process, illustrated for a hypothetical assessment of risks to birds from a corn insecticide (see also 
Figure 2.2)

management goal assessment endpoint unit of analysis real-world processes
Biological entity Birds of all the species 

present in corn-growing 
areas

Local populations of single “focal” 
species, chosen to represent a range of 
similar species around cornfields

Individual of the “focal” 
species

Individual birds in a number 
of species with differing 
behavior and ecology

Biological attribute “No unreasonable adverse 
effects” (FIFRA); no 
regularly repeated bird kills 
(USEPA 1998)

Likelihood, frequency, and magnitude of 
bird kills caused by pesticide exposure 

Mortality (yes or no) Intoxication and mortality or 
recovery

Spatial scale Corn-growing regions Cornfields and adjacent habitats in a 
representative corn-growing region

Individual’s feeding 
range; divided into corn, 
drift zone, and other 
habitat

Centimeters (insects from 
different locations within 
cornfield canopy carry 
different residues)

Temporal scale Years 1 year 1 day Seconds (interval between 
successive foraging 
choices)
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2.6.3   Defining the relation betWeen units of 
analysis anD the assessment enDpoint

The management goal will often require that the assessment endpoint is defined at 
higher levels of biological, spatial, and temporal scales than the units of analysis. 
In some cases, it may be appropriate to generate the assessment endpoint by simple 
averaging or aggregation of the units of analysis, but in other cases this may require 
modeling of complex population processes.

Inappropriate averaging or aggregation creates misleading results. For example, aver-
aging exposure over space, time, and species before predicting effects will dilute higher 
levels of exposure and can cause gross underestimation of effects (US SAP 1999).

Careful construction of the conceptual model diagram, and the use of a tabular 
approach such as Table 2.1, should help to avoid these problems. The diagram should 
show clearly the point at which individual exposure is used to predict individual 
effects and the process by which individual effects are aggregated to generate the 
risk estimate. In addition, it should be remembered that the risk estimate may be 
combined quantitatively or qualitatively with other lines of evidence to address the 
assessment endpoint.

2.6.4 iDentifying unCertainties in the ConCeptual moDel

Two common failings of probabilistic assessments (Warren-Hicks and Moore 1998; 
US SAP 1999) are

Failure to identify and address key uncertainties•	
Failure to identify and include dependencies•	

It is useful to distinguish between variability, parameter uncertainty, and model 
uncertainty, since they require different treatment in risk analysis (Suter and 
Barnthouse 1993). Variability refers to actual variation in real-world states and pro-
cesses. Parameter uncertainty refers to imprecise knowledge of parameters used to 
describe variability or processes in a risk model; this can arise from many sources 
including measurement error, sampling error, and the use of surrogate measurements 
or expert judgment. Model uncertainty refers to uncertainty about the structure of 
the risk model, including what parameters should be included and how they should 
be combined in the model equations.

Model uncertainty is often overlooked. It results when there is disagreement within 
the scientific community about the underlying processes, when the underlying mech-
anisms are poorly characterized, when extrapolation beyond existing data or theory is 
necessary, or when the conceptual model is poorly formulated. Examples include

Lack of knowledge about how the ecosystem functions•	
Omission of relevant stressors, routes of exposure, types of effect•	
Overlooking secondary effects•	
Incorrect boundaries for the assessment (spatial, temporal, or biological)•	
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Inappropriate assumptions about representation, extrapolation, or func-•	
tional forms
Inappropriate selection, averaging, or aggregation of variables•	
Failure to identify and interrelate temporal and spatial parameters•	
Overuse or misuse of independence assumptions•	

Useful strategies for identifying and characterizing uncertainties:

Systematically examine each risk hypothesis for each type of analytical •	
uncertainty, include them in the description of the risk hypothesis, and state 
in which direction they are expected to affect the assessment endpoint.
Prioritize or rank the uncertainties affecting each risk hypothesis.•	
Show at least the major uncertainties in the diagram of the conceptual •	
model, linked to the model components they affect (e.g., Figure 2.3).
Rank the model components in terms of their uncertainty.•	
Try drawing alternative model diagrams to identify structural uncertainties.•	
Produce a summary description of nature of uncertainties at the close of •	
problem formulation.

2.6.5 iDentifying DepenDenCies in the ConCeptual moDel

Dependencies among the input variables of a risk model can have pronounced effects 
on the output distribution, especially in the tails (Warren-Hicks and Moore 1998; 
US SAP 1999). Rainfall is fully independent of the intrinsic chemical properties of 
the pesticide, so that neither one depends on the other. But field conditions will most 
certainly affect the fate and transport of a pesticide once it is applied to the field. For 
example, the evaporation of the chemical from the field or plant surface depends on 
ambient temperature. Types of dependency include the familiar cases of indepen-
dence and linear correlation, but also more complex relationships (Figure 2.4).

Insecticide
Application

Insecticide
Concentrations

in Insects 

Consumption of
Contaminated

Insects per Unit
Time

Tolerance:
Dose per

Unit Time

Exposure:
Dose per

Unit Time

Mortality of
Individual

Birds

Number of
Bird Kills

D1

D2

U5

V1, U1

V2, U2

V3, U3

V4, U4

Figure 2.3 A simple approach to identifying variables, uncertainties, and dependencies 
in a conceptual model diagram. For key, see Table 2.2.
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Figure 2.4 Examples of four types of dependency. In the bottom left-hand graph the 2 
groups of points might represent males and females, for example, including random, linear, 
parallel, and curvilinear relationships.

TabLe 2.2
key to variables (V), uncertainties (u), and dependencies (d) in Figure 2.3 
(note that the lists are illustrative, not exhaustive)
V1 Variation over space and time in the concentrations of pesticide in insects

U1 Extrapolation from field studies with other pesticides, and/or sampling uncertainty due to 
limited numbers of field sites

V2 Intraspecies variation in food requirement and dietary composition; variation between 
individuals and over time in the proportion of food that is contaminated

U2 Uncertainty in estimating food intake from body weight and energy content of food; 
assumptions in estimating proportion of food that is contaminated

V3 Variation in dietary exposure between individuals and over time (due to V1 and V2)

U3 Uncertainty about the contribution of nondietary routes of exposure (assumed in the model to be 
zero)

V4 Intraspecies variation in toxicological sensitivity

U4 Uncertainty in extrapolating toxicity from laboratory species to focal species; uncertainty in 
estimating intraspecies variation

U5 Uncertainty about relationship between individual mortality rate and number of “kills” (local 
episodes of mortality)

D1 Intake may be negatively correlated with residues due to repellency or avoidance; positive 
relation between insect abundance and decision to use insecticide; negative relation between 
use of insecticide and subsequent insect abundance; positive relation between insect abundance 
and bird foraging behavior

D2 Food consumption and tolerance are both functions of body weight
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Perhaps most easy to overlook are spatial and temporal dependencies. For exam-
ple, the hydrologic component of the pesticide root zone model–exposure analysis 
modeling system (PRZM–EXAMS) treats multiple field plots over whole watersheds 
as independent, uncoupled, simple, 1-dimensional flow systems. In reality, the field 
plots are coupled systems that exhibit complex 3-dimensional water flow and pesti-
cide transport (US SAP 1999). These higher order processes introduce spatial depen-
dencies that may need to be considered in the assessment. Temporal autocorrelations 
are also likely when assessing exposure.

To reduce the risk of overlooking dependencies, it may be useful to

Systematically examine all model components for possible interdependencies•	
Describe the form of each dependency and identify which risk hypotheses •	
it affects
Show major interdependencies in the model diagram (e.g., Figure 2.3)•	

When using empirical data to check for dependencies, it is important to remember 
that they are hard to measure, especially when sample sizes are low. In addition, 
zero correlation does not necessarily imply independence, and pairwise indepen-
dence does not imply mutual independence, since more complex dependencies may 
be present.

2.7 anaLysis pLans For probabiLisTic assessmenT

As risk assessments become more complex, the importance of a good plan increases 
(USEPA 1998). The plan should identify

Which risk hypotheses will be assessed•	
Which new and existing data will be used•	
What methods of analysis will be used•	
How uncertainties will be dealt with•	
Whether and how the analysis will be phased or tiered•	

When planning probabilistic assessments, the following issues require special attention.

2.7.1 seleCtion anD parameterization of Distributions

A critical extra phase to be included when planning probabilistic assessments is the 
selection and parameterization of distributions, to represent the sources of variability 
and uncertainty that have been identified in the conceptual model. The issues and 
approaches involved are discussed elsewhere in this book.

The resource consumed by this activity may be reduced if standard distributions 
can be adopted for parameters that are required for many different assessments. 
However, caution should be exercised to avoid applying default distributions outside 
the range of problems for which they are appropriate.
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2.7.2 propagating variability anD unCertainty

A 2nd critical addition when planning a probabilistic assessment is the choice of 
methods for propagating variability and uncertainty. The workshop reviewed a range 
of contrasting methods of analyzing uncertainty in risk assessments:

Interval analysis•	
Probability bounds analysis•	
First-order error analysis•	
First-order (nonhierarchical) Monte Carlo•	
Second-order (hierarchical or 2-dimensional) Monte Carlo•	
Bayesian methods•	

From the standpoint of practical regulatory assessment, it would be desirable to reach 
a consensus on the selection of methods for routine use for pesticide risk assessments 
while recognizing that there may be scientific reasons for preferring alternative 
methods in particular cases. Such a consensus does not yet exist. Further case stud-
ies are required, covering a range of contrasting pesticides and scenarios, to evaluate 
the available methods more fully. While a consensus is lacking, it is important that 
reports on probabilistic assessments clearly explain how their methods work and 
why they were selected.

2.7.3 separation of variability anD unCertainty

An important question when planning a probabilistic assessment is whether to sepa-
rate variability and uncertainty in the analysis and results. This is one of the “key 
issues” that were given special consideration at the Pellston workshop that devel-
oped this book. While there was not a consensus, the majority view was that there 
are potential advantages to separating variability and uncertainty, but further case 
studies are needed to evaluate the benefits and practicality of this for routine pesti-
cide assessment.

2.7.4 Dealing With DepenDenCies

Another important question when planning a probabilistic assessment is how to deal 
with dependencies. This also is one of the “key issues” that were identified for the 
Pellston workshop. Further work is needed to evaluate these options. Some addi-
tional points are made here.

Even if a correlation is below the conventional level of significance, consideration 
should be given to whether it might alter the risk estimate, and it may be prudent to 
include it. When measured or estimated correlations are used to specify dependen-
cies in Monte Carlo models, it is important to check that the matrix of correlations 
satisfies mathematical constraints (Table 2.3).

If there are significant spatial or temporal dependencies, it may be necessary to 
use a spatially or temporally explicit model in order to avoid misleading results.
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2.7.5 Dealing With moDel unCertainty

The workshop recognized the importance of dealing with model uncertainty but did 
not evaluate the alternative approaches in detail. Further work is required to identify 
instances of model uncertainty for pesticide risk assessment and to develop guidance 
on how to deal with it. Some possible approaches are briefly discussed below.

2.7.5.1 model weighting
Model uncertainty can be represented by formulating 2 or more different models to 
represent alternative hypotheses or viewpoints and then combining the model out-
puts by assigning weights representing their relative probability or credibility, using 
either Bayesian and non-Bayesian approaches.

Model weighting is considered inappropriate and misleading by many. Morgan 
and Henrion (1990) point out that while we may be able to say 1 model produces 
more accurate predictions than another, we cannot say that 1 model is more probable 
than another because, ultimately, every model is definitely false. Combining models 
probabilistically using Monte Carlo simulation treats uncertainty as though it were 
variability. It may also have the effect of averaging together 2 different theories to 
generate an outcome that is actually compatible with neither. For example, sup-
pose we don’t know whether a widely distributed substance is carcinogenic. Model 
weighting treats uncertainty about the carcinogenicity as though it were variability 
in the carcinogenicity. But the situation of having either a lot of people getting 
cancer or none getting cancer is very different from having a moderate number of 
people get cancer, or a lot of people getting, say, nonmalignant tumors.

2.7.5.2 scenario analysis
A conceptually simple approach that avoids the difficulties of model weighting is 
scenario analysis or the “1-at-a-time” method, where the alternative models are ana-
lyzed separately and the results are compared. In the example of the previous sec-
tion, this might produce a conclusion of the type “If model A is true then 0 people 
will get cancer; if model B is true then 200 people will get cancer.” However, this 

TabLe 2.3
correlation coefficients used to 
define dependencies in risk models 
must be positive–definite: e.g., for the 
variables A, B, and C, if the 
correlations r and s are big and 
positive, t must be positive too

A B C

A 1 r s

B r 1 t

C s t 1
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approach becomes laborious to implement and complex to interpret when many 
separate aspects of the model structure are uncertain, requiring large numbers of 
alternative models and multiple comparisons of outputs.

2.7.5.3 model enveloping
Multiple comparisons of alternative models can be avoided by use of model envelop-
ing. This can be done relatively simply using bounding methods such as probability 
bounds analysis. Continuing the example of the previous sections, model enveloping 
might produce a conclusion such as “Between zero and 200 people will get cancer.” 
However, this can still give the impression that all intermediate points are possible 
when in fact some of them are compatible with none of the competing theories.

2.7.5.4 meta-models
Another approach is to develop a global model that contains plausible models as 
special cases, defined by alternative values of particular parameters. This converts 
model uncertainty into uncertainty about the model parameters. Again this can be 
done using either Bayesian or non-Bayesian approaches. This approach is favored by 
Morgan and Henrion (1990), who describe how it can be applied to uncertainty about 
dose–response functions (threshold versus nonthreshold, linear versus exponential).

2.7.6 sensitivity analysis

Some sources of uncertainty and variability may have so little influence on risk that 
they can be held constant and not treated probabilistically in the assessment. The 
analysis plan should state the rationale for deciding which variables and hypotheses 
this applies to (USEPA 1998).

Sensitivity analysis provides a good tool for this purpose (USEPA 1997). It quan-
tifies the change in model outputs as a function of changes in each model input and 
enables the influence of different inputs to be compared.

Different methods of sensitivity analysis will produce different results, so they 
should be chosen carefully (Warren-Hicks and Moore 1998). A comprehensive 
account of alternative approaches is provided by Saltelli et al. (2000).

As well as guiding problem formulation, sensitivity analysis can be valuable in 
optimizing the use of resources. By revealing which uncertainties have the most 
influence on the results of the assessment, sensitivity analysis can also help target 
additional research or monitoring; and by revealing which of the controllable sources 
of variability have the most influence, sensitivity analysis can help identify and eval-
uate practical options for managing risk.

2.7.7 inCorporating other lines of eviDenCe

Probabilistic models will normally not be the sole basis for decision making but 
will be considered together with other lines of evidence (see Figure 2.2). The way in 
which this will be done should be considered at the outset as part of problem formu-
lation and specified in the analysis plan.
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Before deciding to treat a line of evidence separately, consideration should be 
given to whether it can in fact be directly incorporated into the quantitative assess-
ment. For example, it may be possible to use Bayesian updating to incorporate infor-
mation from field studies or monitoring if they provide direct measurements of the 
assessment endpoint, or of the intermediate model.

Usually, some lines of evidence will not be suitable for direct incorporation into 
quantitative analysis. Semiquantitative or qualitative methods will then be needed 
to weigh the different lines of evidence, including the quantitative assessment, and 
integrate them for decision making. Methods for assessing weight of evidence were 
outside the scope of the workshop that developed this book but are discussed by 
Suter et al. (2000) and were recently the focus of another workshop (Chapman et al. 
2002). Whatever method is used for weighing different lines of evidence, it will be 
important to characterize uncertainties in each line of evidence and show their effect 
on the overall assessment outcome.

2.7.8 hoW to present the results

The analysis plan should specify not only how the analysis will be conducted, but 
also how the results will be presented. Indeed, the way results will be communicated 
will usually influence the choice of both model structure and analysis method and is 
ultimately driven by the information needs of risk managers and other stakeholders 
and their management goals (see Figure 2.2). Careful advance planning for the com-
munication of results is especially important for probabilistic assessments because 
they are more complex than deterministic assessments and less familiar to most 
audiences. It may be beneficial to present probabilistic and deterministic assess-
ments together, to facilitate familiarization with the newer approaches.

2.7.9 tiering the risk assessment proCess

Tiers are widely used to help improve the efficiency of the risk assessment process. 
They generally start with a simplified assessment to screen out scenarios with obvi-
ously high or low risks.

An approach that is sometimes used in deterministic assessments is to set some 
variables to “realistic worst case” values in early tiers and gradually introduce 
more “typical” (but still deterministic) values in later tiers. Some current proposals 
for probabilistic assessment of pesticides have adopted a modified version of this 
approach, suggesting that worst case assumptions should gradually be replaced with 
distributions as the assessment is refined (ECOFRAM 1999; USEPA 2000). This 
makes the assessment output conservative (i.e., tending to overestimate risk) because 
it refers to conditions that are partly worst case. However, the degree of conservativ-
ism will be unclear. Nevertheless, this approach may still provide sufficient informa-
tion for a decision to be made, if the results show that the risk is acceptable despite 
the bias toward worst case. The main advantage of this approach is that it requires 
less time and resources than would be needed to quantify all sources of variabil-
ity and uncertainty. However, others have argued that no conservative assump-
tions should be included in a probabilistic assessment and that the proper place for 
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conservatism is in the risk manager’s decision process (Moore et al. 1999). Which of 
these approaches is appropriate is an important issue that may vary between jurisdic-
tions and assessments depending on the objectives of the risk managers.

Optimizing the use of probabilistic methods within the regulatory assessment pro-
cess, and especially within tiered assessments, was recognized as one of the “key issues” 
that were given special consideration at the Pellston workshop that developed this book.

2.7.10 DeCiDing When to stop the assessment

To avoid wasting resources by overrefining assessments, avoid “paralysis by anal-
ysis,” and reassure stakeholders that the assessment process is finite, criteria are 
needed for deciding when to stop.

A risk assessment can be considered complete when risk managers have sufficient 
information and confidence in the results of the risk assessment to make a decision 
(either positive or negative) that they can defend (USEPA 1998). Identifying when 
this point is reached will require repeated consultation between risk assessors and 
risk managers as the assessment progresses, unless they can define stopping rules in 
advance. Such stopping rules would need to specify what frequency and magnitude 
of impact is acceptable, and also define acceptable limits on decision errors (equiva-
lent to Step 6 of the USEPA’s Data Quality Objectives [DQO] process; Suter 1998). 
The Ecological Committee on FIFRA Risk Assessment Methods (ECOFRAM 1999) 
proposed defining a “threshold of acceptable risk” as a stopping rule.

Defining stopping rules in advance is undoubtedly difficult: in 1998 Suter wrote 
that Step 6 of the DQO process had never been completed for an ecological risk 
assessment. Unless this obstacle can be overcome, frequent consultation between 
risk assessors and managers will be needed during each assessment to avoid over-
refining it (ECOFRAM 1999).

2.7.11 neeD for Dialogue

It is essential to have a clear vision of roles of the different parties to risk assessment, 
including risk assessors, risk managers, and other stakeholders, and to ensure they interact 
efficiently throughout the process (National Research Council 1983, 1996; US Presidential/
Congressional Commission on Risk Assessment and Risk Management 1997).

This need for dialogue applies to all phases of the risk analysis process, includ-
ing problem formulation. The parties to a risk assessment need to communicate and 
cooperate during problem formulation and agree on each component (see Figure 2.1) 
before proceeding to the analysis phase (USEPA 1998; US SAP 1999). The need is 
greater for probabilistic assessments because they are less well established and more 
complex than deterministic assessments. Without dialogue, there is a high risk of 
mistakes, disagreements, and wasted effort.

2.7.12 generiC problem formulations

It will be apparent from this chapter that problem formulation for a probabilistic 
assessment can be a substantial undertaking, and perhaps the most difficult and 
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critical part of the whole process. Therefore, there would be great benefits if it were 
possible to create “generic” problem formulations, or generic components for prob-
lem formulation, that were genuinely appropriate for a number of different assess-
ments without having to repeat the whole process.

The prospects for creating such generic assessments are good, at least for pes-
ticides. There is a high level of consistency in the assessment endpoints and sce-
narios that are relevant for different pesticides with similar use patterns (especially 
if they have similar chemistry and mode of action), and therefore a high consis-
tency in the conceptual models and analysis plans that are appropriate. This is 
reflected in the high level of standardization that is typical of current deterministic 
pesticide assessment in both Europe and North America and contrasts with the 
more case-by-case approach that is necessary for contaminated land assessments 
(e.g., Superfund). The tiered assessment procedures laid out in guidance docu-
ments and regulations for pesticides, and the use of standardized computer models 
such as PRZM–EXAMS, imply generic problem formulations even if they are not 
described as such. The tiered approach for estimating pesticide concentrations in 
surface waters, recently developed in Europe, explicitly defines 9 different assess-
ment scenarios (FOCUS 2001).

Creating generic problem formulations for probabilistic assessments is, because 
of their greater complexity, both more challenging and more worthwhile. The 
USEPA has already begun this process for both aquatic and terrestrial pesticide risks 
(USEPA 2000). More generally, consideration has been given to the development of 
modular conceptual models for complex ecological assessments (Suter 1999) and of 
generic assessment endpoints (USEPA 2003).

It is important to note that if generic problem formulations are to be used, it is 
especially important that they are developed very carefully in the first place, that 
their domains of applicability are carefully defined, and that users should double-
check on every occasion that they are fully appropriate to the case in hand or adjust 
them as necessary.

2.7.13 DoCumenting problem formulation

Finally, it is essential to document all components of problem formulation fully and 
clearly, so that the basis of every assessment is explicit and open to review, and so 
that assessments can if necessary be duplicated by different assessors. For the sake 
of transparency and public trust, it may also be desirable to document the process 
that developed the problem formulation, including the nature of interactions between 
risk assessor and risk manager and the involvement of stakeholders. Recording all 
this information clearly without generating unmanageable amounts of documenta-
tion may be a challenge, but was not discussed at the workshop that produced this 
book. Figure 2.3 and Tables 2.1 and 2.2 might be useful starting points for developing 
some types of summary presentation, but it will also be important to express every 
model using formal mathematical equations. Further work is required to develop 
effective approaches for both developing and communicating problem formulation 
for probabilistic assessments.
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3 Issues Underlying the 
Selection of Distributions

D. Farrar, T. Barry, P. Hendley, M. Crane, 
P. Mineau, M. H. Russell, and E. W. Odenkirchen

3.1 inTroducTion

To develop a probabilistic model, one has to assign probability distributions to model 
inputs such as degradation rates, partition coefficients, dose–response parameters (or 
dose–time–response parameters), exposure values, and so on, for a model relating 
impacts to exposure. This chapter is concerned with several kinds of technical deci-
sions involved in the selection of distributions.

The simplest situation is represented by most 1-dimensional (1D) models in 
which the distributions are taken to represent variability, and where there are 
adequate data to characterize the distributions. More complicated situations may 
involve 1D modeling with data that are inadequate or problematic (e.g., because 
of availability of only summary statistics), or the inclusion of uncertainties in 
2-dimensional (2D) models.

For distributions that represent variability, initial decisions may relate to the selec-
tion of data on which to base distributions. The problem formulation must identify 
meaningful populations. Ideally, the data are a random sample from the populations 
of interest; in practice, one may be happy to establish that the data are representative. 
In addition, data should represent a spatiotemporal scale appropriate for the model.

Having selected an appropriate data set, we must select a type of distribution and 
fit the distribution to the data, or else use an empirical or other nonparametric distri-
bution. There appears to be some mechanistic basis for the log-normal distribution, 
for environmental concentrations (Ott 1990, 1995). However, in a given situation 
there may not be very strong theoretical support for a specific type of distribution, 
log-normal or otherwise. Alternative distributions may need to be considered based 
on the quality of fit of the distribution to data. Therefore, it is desirable to have quan-
titative indices that can be used to compare or rank distributions based on agreement 
with data. The fit of the log-normal distribution (or whatever distributions we may 
choose) should be evaluated in particular situations, using graphical as well as sta-
tistical procedures.

An alternative to choice of a parametric distribution is to rely on a “nonpara-
metric” distribution. The simplest such distribution is the “empirical” distribution, 
which assigns equal probability to each datum in a specified dataset. Considerable 
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discussion among environmental risk assessors has focused on use of empirical ver-
sus parametric distributions.

Regarding the distribution-fitting step, a good point of departure is the 2-param-
eter log-normal distribution. The distribution has a probability density function (pdf) 
of the following form:

 
f x( )= − ( )−( )











1 1
2

1
2 2

2

x
x

σ π σ
µexp log

  (3.1)

Here x represents a specific value of the “distributed” (or random) variable. The 
quantities µ and σ are the parameters of the distribution. In this case the 2 param-
eters are interpreted as the mean and standard deviation of the logarithms of the 
variable. However, distributions in general do not need to be represented in terms of 
parameters that include a mean and variance in any scale.

If we are to use a log-normal distribution (or any other parametric distribution), 
values have to be assigned to the parameters, based on data or some rational argu-
ment. For the log-normal distribution, given the characterization of µ and σ as log-
scale mean and standard deviation, an obvious approach is to transform values in 
some suitable dataset to logarithms and use the sample mean (of the logarithms) to 
estimate µ, and sample standard deviation to estimate σ. However, as for distribu-
tions of many types, there is more than 1 reasonable approach for estimating log-
normal parameters. Below, a brief account is provided of estimation procedures and 
criteria for evaluation of estimation procedures.

A probabilistic model will typically require distributions for multiple inputs. 
Therefore, it is necessary to consider the “joint” distribution of multiple variables 
as well as the individual distributions, i.e., we must address possible dependencies 
among variables. At least, we want to avoid combinations of model inputs that are 
unreasonable on scientific grounds, such as the basal metabolic rate of a humming-
bird combined with the body weight of a duck.

In practice, various complications may be encountered for which the simplistic 
description above will not be adequate. First, still within the realm of 1D variability 
modeling, the measurements may be in some sense partially missing, e.g., censored or 
available only as summary statistics. In addition, methods may be applicable for specify-
ing distributions based on professional judgment, particularly where the probabilities of 
interest do not represent relative frequencies, or the probabilities of interest do represent 
relative frequencies, but there are inadequate data to justify particular distributions.

This chapter is structured as follows. Section 3.2 provides a refresher on some 
principles of distribution theory and estimation theory. The approach is didactic, and 
practical issues are put off until Section 3.3. Concepts such as skewness and kurtosis 
are reviewed, useful for characterizing and comparing different distribution types. 
Some special distributions are mentioned, which are possibly useful in environmen-
tal risk assessment.

Also in Section 3.2, several estimation procedures are defined, such as method of 
moments (MOM), maximum likelihood (ML), and least squares (LS). Criteria are 
reviewed that can be used to evaluate and compare alternative estimators.
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In Section 3.3, the background material developed in Section 3.2 is used in a 
discussion of practical issues involved in the selection of distributions, particularly 
for models of pesticide ecological risk. The topics discussed include data represen-
tativeness, preliminary data exploration, selection of distribution type, estimation of 
distribution parameters (distribution fitting), and evaluation of distribution fit.

Finally, Section 3.4 discusses a range of procedures that may be applicable in situ-
ations where the information available is less than one would like. The data available 
may be too few, subject to various kinds of censoring or absence, or available only 
in summary form.

3.2 TecHnicaL background

3.2.1 unDerstanDing Distributions

3.2.1.1  characterizing distribution shape in 
Terms of skewness and kurtosis

Indices of distribution central tendency and spread are not reviewed here (see Vose 
2000, Section 3.2.1). The concept of skewness of a distribution relates to deviations 
from symmetry of the pdf. The normal distribution has a skewness of zero (the dis-
tribution is symmetric, with the familiar bell-shaped pdf). For a distribution with 
positive skewness the right tail of the distribution is more extended than the left tail; 
a distribution with the left tail more extended has negative skewness. In many cases, 
it seems that skewness is associated with a constraint on the permissible values of a 
variable (Vose 2000, Section 6.7). The idea is that the distribution tail can be more 
extended in the direction opposite to a bound than in the direction of the bound.

Some literature has defined kurtosis in terms of pdfs that are relatively flat versus 
relatively peaked at the mode. A tendency in more recent literature is to empha-
size the idea of “tail weight.” “Leptokurtic” distributions have relatively heavier 
pdf tails, while platykurtic distributions have relatively lighter tails (Balanda and 
MacGillivray 1998).

Leptokurtic distributions are more “outlier-prone.” When fitting distributions to 
data, it may sometimes be difficult to decide whether one should assume a lepto-
kurtic distribution (say, a Student t distribution with relatively few degrees of free-
dom) or assume the presence of a few outliers.

Environmental concentrations and other environmental variables tend to have 
positive skewness. Therefore, environmental statistics texts often focus on positive 
skew distributions such as the log-normal, gamma, and Weibull. Discussions of dis-
tributions with nonnormal kurtosis are somewhat more scarce.

Skewness and kurtosis can be characterized using familiar formulae, based on 
3rd and 4th centered moments. Alternative, outlier-resistant statistics can be based 
on quantiles (e.g., Helsel and Hirsch 1992; Hoaglin et al. 1983).

3.2.1.2 parametric distributions useful for environmental risk assessment
For the most part, the distributions that have been used in risk assessment are well-
studied distributions discussed in probability texts, and used in stochastic modeling 
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in many disciplines (this applies in particular to the log-normal, gamma, exponen-
tial, Weibull, and beta distributions). Useful overviews may be found in texts on 
environmental statistics and risk assessment such as Gilbert (1987), Ott (1995), 
and Vose (2000). Some additional types may be of interest in certain situations. In 
particular,

Finite mixture distributions may be valuable when a distribution appears •	
to result from mixing of somewhat distinct subpopulations, e.g., if there 
appear to be multiple modes in a distribution.
Zero-modified distributions may be useful if concentration data contain more •	
nondetections than can be accounted for by censoring at the level of detection.
Transformations of the data may be used to extend the applicability of a •	
particular standard distribution, in practice usually the normal distribution. 
For example, a log-normal random variable is a random variable that is 
normal after logarithmic transformation. Power transformations are also 
widely used, e.g., with Box–Cox transformations.
Systems of distributions, such as the Pearson system (Pearson 1894) and •	
the Johnson system (Johnson et al. 1994), can be used to select a distribu-
tion based on the skewness and kurtosis, as well as mean and variance. The 
Student t and logistic distributions are symmetric (like the normal distribu-
tion) but have heavier tails than the normal distribution.
An example of a nonparametric distribution is the empirical distribution •	
(assign probability 1/n to each of n values in a sample). A 2nd popular non-
parametric approach involves smoothing the empirical distribution by the 
kernel density estimation approach. The approach is often used for graphi-
cal exploration of data (providing a smooth graph analogous to a histogram) 
but has also been suggested in a risk assessment context (flood prediction as 
reviewed by Lall 1995).

3.2.2 fitting Distributions to Data

In the problem of selecting a distribution for a 1D model of variation, there are 
2 kinds of variables, namely, 1) the data, which we know; and 2) distribution 
parameters, which will be assigned values based on the data. Here we will often 
follow statistical terminology by using the term “estimation” (of parameters) 
instead of “fitting.” In statistical terminology, the values assigned to distribution 
parameters are termed “estimates”; the expressions used to compute estimates 
are “estimators.”

3.2.2.1 setting parameters equal to statistics, method of moments (mom)
The most familiar estimation procedure is to assume that the population mean and 
variance are equal to the sample mean and variance. More generally, the method of 
moments (MOM) approach is to equate sample moments (mean, variance, skewness, 
and kurtosis) to the corresponding population. Software such as Crystal Ball (Oracle 
Corporation, Redwood Shores, CA) uses MOM to fit the gamma and beta distributions 
(see also Johnson et al. 1994). Use of higher moments is exemplified by fitting of the 
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log Pearson III distribution using the sample skewness, a procedure widely used in 
hydrology to represent the distribution of flood magnitudes.

The general strategy of equating parameters to statistics is of course not restricted 
to moments. Reliance on sample percentiles (e.g., sample median) can lead to estima-
tors that are not excessively sensitive to outliers. In general, to fit a distribution with k 
parameters, k parameters must be equated to distinct sample statistics.

3.2.2.2 maximum Likelihood (mL)
Maximum likelihood (ML) is the approach most commonly used to fit a parametric 
distribution (Madgett 1998; Vose 2000). The idea is to choose the parameter values 
that maximize the probability of the data actually observed (for fitting discrete dis-
tributions) or the joint density of the data observed (for continuous distributions). 
Estimates or estimators based on the ML approach are termed maximum-likelihood 
estimates or estimators (MLEs).

3.2.2.3  Least squares (Ls) and generalizations 
(weighted Ls and generalized Ls)

Least squares (LS) estimation minimizes the sum of squared deviations, comparing 
observed values to values predicted by a curve with particular parameter values. 
Weighted LS (WLS) can take into account differences in the variances of residuals; 
generalized LS (GLS) can take into account covariances of residuals as well as dif-
ferences in weights. Cases of LS estimation include the following:

Species sensitivity distributions are sometimes fitted by minimizing the •	
sum of squared deviations between the empirical cumulative distribution 
function (cdf) and the fitted cdf.
A special case of LS is the computation of an arithmetic average (the arith-•	
metic average is the single value that minimizes the sum of squared devia-
tions for the data). A weighted arithmetic average is the WLS solution in 
that situation.
In meta-analysis, weighted averages are often used in order to incorporate •	
standard errors (SEs) from measurements of parameters from independent 
studies. The weight for a given estimate is set equal to 1/SE2.

3.2.2.4  unbiased and minimum-Variance unbiased 
estimation, particularly for Variances

Bias corrections are sometimes applied to MLEs (which often have some bias) or 
other estimates (as explained in the following section, [mean] bias occurs when the 
mean of the sampling distribution does not equal the parameter to be estimated). A 
simple bootstrap approach can be used to correct the bias of any estimate (Efron and 
Tibshirani 1993). A particularly important situation where it is not conventional to 
use the true MLE is in estimating the variance of a normal distribution. The conven-
tional formula for the sample variance can be written as s2 = SSR/(n − 1) where SSR 
denotes the sum of squared residuals (observed values, minus mean value); s2 is an 
unbiased estimator of the variance, whether the data are from a normal distribution 
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or otherwise. If the data are from a normal distribution, the MLE is actually SSR/n, 
which will tend to underestimate the variance. For a normal distribution, s2 can be 
characterized as a bias-adjusted MLE. Alternatively, s2 can be characterized as the 
minimum-variance unbiased (MVU) estimator of the variance for a normal distribu-
tion (the estimator with minimum variance, among unbiased estimators).

In the formula for s2 the denominator quantity n − 1 is termed the “degrees of 
freedom.” Comparing this to the denominator for the MLE, the subtraction of 1 in 
the s2 expression is viewed as accounting for the estimation of a single fixed-effect 
parameter (the mean of the distribution). It is conventional to apply the same general 
idea in the case of more complex normal-theory statistical models including nonlin-
ear regression, multiple regression, variance components models, and mixed models 
(McCulloch and Searle 2001). For these models, the procedures that are conven-
tional for estimating variances and covariances (in contrast to the MLEs) account 
for the number of estimated, fixed-effects parameters (e.g., grand mean or regression 
coefficients). This is considered to reduce the bias, but the estimators are not always 
strictly unbiased for all statistical models where the approach is applied.

The relationships among these procedures are complex, and the methods are not 
necessarily mutually exclusive. For example, MOM and WLS estimators will turn 
out to be ML estimators in some situations.

3.2.2.5 random effects, empirical bayes, and shrinkage
Empirical Bayes methodology and other kinds of shrinkage estimation may be con-
sidered in situations where there is some, perhaps limited information for a situation 
of specific interest, but also a desire to give some weight to data from situations less 
representative. The term “shrinkage” expresses the idea that an estimate from the 
situation of specific interest is “shrunk” toward some prior estimate such as an esti-
mate from less strictly representative situations. As yet the methods have seen little 
or no use for pesticide ecological risk assessment in regulatory contexts.

A model-based shrinkage approach can be based on a “random-effects” statisti-
cal model. Such models can take into account differences among subsets of the data 
representing different situations, by assuming higher order frequency distributions. 
Examples are mixed models and variance components models. Estimates of model 
parameters can be used to compute weights that can be used in shrinkage estima-
tion. For a particular, important case (the linear mixed model) the estimates are the 
so-called “best linear unbiased predictors” (BLUPs) (Robinson 1991; Littell et al. 
1996). Approaches of this general type have been adopted in a number of disciplines 
(Robinson 1991). One important example is the Kriging procedure used in spatial 
statistics. A prediction is made at a location for which a measurement is not avail-
able, weighting the available data according to distance from the point of interest.

3.2.3 evaluating anD Comparing estimators

For a given distribution there may be more than 1 reasonable way to estimate the 
parameters. We might like to use the “optimal” approach. While different defini-
tions of optimality can lead to different estimators, it seems useful to consider the 
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profile of optimality properties of competing estimators. Many useful properties are 
documented in texts on mathematical statistics. However, simulation studies will 
sometimes be useful for comparing the performance of alternative procedures. We 
suggest that a good rule of thumb may be to use estimators that appeal to common 
sense, are expected to make good use of the information, and are reasonably easy 
to compute. With regard to “use of information” we note the theoretical sufficiency 
argument possessed by certain estimators, namely, maximum-likelihood estimators 
(in many familiar cases) and minimum-variance unbiased estimators.

3.2.3.1  Frequentist criteria for evaluating estimators, 
the sampling distribution

In classical statistics, the most important type of criterion for judging estimators is 
a high probability that a parameter estimate will be close to the actual value of the 
parameter estimated. To implement the classical approach, it is necessary to quantify 
the “closeness” of an estimate to a parameter. One may rely on indices of absolute, 
relative, or squared error. Mean squared error (MSE) has often been used by statisti-
cians, perhaps usually because of mathematical convenience. However, if estimators 
are evaluated using Monte Carlo simulation it is easy to use whatever criterion seems 
most reasonable in a given situation.

The classical, frequentist approach in statistics requires the concept of the “sam-
pling distribution” of an estimator. In classical statistics, a data set is commonly 
treated as a random sample from a population. Of course, in some situations the data 
actually have been collected according to a probability-sampling scheme. Whether 
that is the case or not, processes generating the data will be subject to stochastic-
ity and variation, which is a source of uncertainty in use of the data. Therefore, 
sampling concepts may be invoked in order to provide a model that accounts for the 
random processes, and that will lead to confidence intervals or standard errors. The 
“population” may or may not be conceived as a finite set of individuals. In some situ-
ations, such as when forecasting a future value, a continuous probability distribution 
plays the role of the population.

Parameter estimates are computed from more or less random samples, and there-
fore are also random. Thus, we associate with an estimator a particular distribution, 
its “sampling distribution.” The sampling distribution of an estimator is the distribu-
tion that results from basing estimates on random samples. Sometimes the sampling 
distribution of an estimator can be derived analytically. For example, if the data are 
from a normal distribution then the sample mean also has a certain normal distribu-
tion. For the sample variance, the distribution is scalable to a chi-square distribution 
with appropriate degrees of freedom. In general, we can use Monte Carlo and boot-
strap simulation to characterize any sampling distribution of interest. It is hoped that 
the sampling distribution of an estimator will be such that there is a high probability 
of a parameter estimate close to the actual value of the parameter.

3.2.3.2 mean squared error (mse) of estimators, and alternatives
In statistical literature, it is common to quantify the performance of an estimator 
using mean squared error (MSE). MSE is the average squared deviation of estimates 
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from the actual parameter value (averaging over the sampling distribution). MSE is 
frequently the default index in evaluation of estimators, perhaps due to mathematical 
convenience. However, if we rely on Monte Carlo simulation to evaluate estimators 
we are free to use whatever index seems most meaningful for a particular situation. 
For example, we can evaluate the probability of a given relative error, expressed as 
a percentage of the parameter value, or we can evaluate the probability of an error 
exceeding some critical magnitude.

One often encounters a distinction between “precision” and “accuracy.” Accuracy 
relates to systematic deviation between parameter estimates and actual parameter 
values; precision relates to the spread in the distribution of estimates. This terminol-
ogy is not often used explicitly in the estimation theory literature, but the concepts 
are often implicit.

MSE reflects a combination of the accuracy and precision of an estimator. A con-
venient feature is that MSE can be decomposed into parts that correspond to accu-
racy and precision.

3.2.3.3 statistical bias and parameter invariance
In general, bias refers to a tendency for parameter estimates to deviate systematically 
from the true parameter value, based on some measure of the central tendency of the 
sampling distribution. In other words, bias is imperfect accuracy. In statistics, what 
is most often meant is “mean-unbiasedness.” In this sense, an estimator is unbiased 
(UB) if the average value of estimates (averaging over the sampling distribution) is 
equal to the true value of the parameter. For example, the mean value of the sample 
mean (over the sampling distribution of the sample mean) equals the mean for the 
population. This chapter adheres to the statistical convention of using the term bias 
(without qualification) to mean mean-unbiasedness.

The criterion of mean-unbiasedness seems to be occasionally overempha-
sized. For example, the bias of an MLE may be mentioned in such a way as to 
suggest that it is an important drawback, without mention of other statistical 
performance criteria. Particularly for small samples, precision may be a more 
important consideration than bias, for purposes of an estimate that is likely to 
be close to the true value. It can happen that an attempt to correct bias results in 
lowered precision. An insistence that all estimators be UB would conflict with 
another valuable criterion, namely “parameter invariance” (Casella and Berger 
1990). Consider the estimation of variance. As remarked in Sokal and Rohlf 
(1995), the familiar sample variance (usually denoted s2) is UB for the popula-
tion variance (σ2). However, the sample standard deviation (s = √ s2) is not UB 
for the corresponding parameter σ. That unbiasedness cannot be eliminated for 
all transformations of a parameter simply results from the fact that the mean of a 
nonlinearly transformed variable does not generally equal the result of applying 
the transformation to the mean of the original variable. It seems that it would 
rarely be reasonable to argue that bias is important in one scale, and unimportant 
in any other scale.

The use of mean-unbiasedness is often mathematically convenient as a means 
to represent accuracy. However, it seems just as useful to define bias by comparing 
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the median of the sampling distribution to the parameter, rather than comparing the 
mean, as suggested by various authors (e.g., Cox and Hinkley 1974; Lehmann and 
Casella 1998; Kendall et al. 1987, Volume 2). With a median-unbiased estimator 
there is equal probability for underestimation and overestimation. It is easy to evalu-
ate median bias of an estimator using simulation. Usually where one encounters a 
complaint about the (mean) bias of an estimator, no attempt has been made to evalu-
ate median bias.

3.2.3.4 robustness and outlier resistance
There is often a particular concern for the effects of outliers or heavy-tailed distribu-
tions when using standard statistical techniques. To address this type of a situation, 
a parametric approach would be to use ML estimation assuming a heavy-tailed dis-
tribution (perhaps a Student t distribution with few degrees of freedom). However, 
simple ad hoc methods such as trimmed means may be useful. There is a large sta-
tistical literature on robust and outlier-resistant methods. (e.g., Hoaglin et al. 1983; 
Barnett and Lewis 1994).

As with many terms used in the section, the term “robust” is often used differently 
by statisticians, relative to use by other scientists. In statistical terminology, the term 
robust denotes that a procedure will perform well under different situations (not only 
if a single particular model is assumed to be true). Often the term refers to outlier resis-
tance, particularly relative to methods that are optimal under normality assumptions.

3.2.3.5 consistency
The statistical concept of “consistency” embodies the idea we can obtain as much 
accuracy and precision as desired by collecting enough data. Technically, there 
are different definitions of consistency recognized by mathematical statisticians. 
Consistency is one example of an “asymptotic property.”

3.3  some pracTicaL aspecTs oF THe seLecTion 
oF uniVariaTe disTribuTions

3.3.1 Data for CharaCterizing variation

3.3.1.1 evaluating data representativeness
Data used to describe variation are ideally representative of some population of risk 
assessment interest. Representativeness was a focus of an earlier workshop on selec-
tion of distributions (USEPA 1998). The role of problem formulation is emphasized. 
In case of representativeness issues, some adjustment of the data may be possible, 
perhaps based on a mechanistic or statistical model. Statistical random-effects mod-
els may be useful in situations where the model includes distributions among as well 
as within populations. However, simple approaches may be adequate, depending 
on the assessment tier, such as an attempt to characterize quantitatively the conse-
quences of assuming the data to be representative.
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3.3.1.2 preliminary data exploration
The data should be explored using tabulations, summary statistics, and graphs, before 
any distributions are fitted. Exploratory data analysis can help us to uncover unan-
ticipated aspects of the data as soon as possible and may suggest appropriate types of 
distributions. Graphs that may be particularly useful include box plots (or box-and-
whisker plots), stem-and-leaf plots, histograms, and kernel density plots (Hoaglin et 
al. 1983; Helsel and Hirsch 1992). While distribution fitting is not emphasized in the 
exploratory step, it may be useful to assess the distribution with reference to some 
default distribution such as a normal or log-normal distribution, perhaps using a P–P 
plot.

Some remarks are in order regarding the use of skewness and kurtosis statistics as 
reported by statistical software:

An accurate estimate of skewness or kurtosis requires a large sample size •	
(e.g., Kendall et al. 1987, Volume 1).
There may be variation among definitions of skewness and kurtosis statis-•	
tics in various sources. For example, the reported skewness may or may not 
be adjusted to have a value of zero for a symmetric distribution.
In situations where the log-normal distribution may be viewed as a default •	
distribution (e.g., concentration measurements that tend to have positive 
skewness), it may be of interest to compute skewness for logarithms of the 
variable.

3.3.2 seleCting a Distribution type

3.3.2.1 development of default distributions
Pesticide regulation makes use of measurements of specific fate and effects prop-
erties, as specified in laws such as the US Federal Insecticides Fungicides and 
Rodenticides Act (FIFRA). Studies are conducted according to relatively standard-
ized designs. Particularly in this type of situation, it seems reasonable to develop 
default distributions for particular variables, as measured in particular, standardized 
studies. Default assumptions may relate to default distribution types, or default dis-
tribution parameters such as a coefficient of variation, skewness, or kurtosis. Default 
distributions may be evaluated in comparative studies that draw from multiple lit-
erature sources. Databases of pesticide fate and effects properties, such as those 
maintained by the USEPA Office of Pesticide Programs, may be useful for such 
comparative analyses.

Default distributions can be evaluated at 2 levels: 1) in comparative studies, one 
may compare how often alternative distributions better describe the data, e.g., based 
on goodness-of-fit statistics, and 2) before applying a default distribution in a particu-
lar situation, one should evaluate whether the distribution agrees with whatever data 
are available for that situation.

It is good to keep in mind that there will be a certain rate of false positives, i.e., 
incorrect rejection of an appropriate distribution, and a certain rate of false negatives. 
It is sometimes suggested that one should routinely evaluate some set of distributions 
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and always use the one that fits best according to some criterion. This will result in 
the use of different distribution families for a given variable, when the variable is 
evaluated on different occasions, particularly with small datasets.

3.3.2.2 quantifying support for a distribution Type
Indices are needed that can be used to rank or select alternative distributions based 
on how well they agree with a sample of data. Such indices may be particularly use-
ful for comparative analyses designed to select default distribution types. There are 
various possibilities for useful indices:

Use the results of a goodness-of-fit test.•	
Use the •	 R2 statistic comparing the fitted cdf to the cdf of the empirical 
distribution.
ML estimation optimizes the likelihood function. Use the optimized value •	
of the log-likelihood function.

There will be some tendency for distribution types with more adjustable param-
eters to fit the data better, just because of the greater flexibility. The number 
of fitted parameters can be taken into account when ranking or selecting dis-
tributions, by applying a penalty that accounts for the number of parameters 
estimated from the data. The most popular procedure of this type is the Akaike 
information criterion (AIC), a penalized log likelihood. In the case where a 
distribution with fewer parameters is obtained by fixing the values for some 
parameters, in a distribution with more parameters, the statistical significance of 
additional parameters can be evaluated using a likelihood-ratio test (for example, 
an exponential distribution is a special case of the gamma distribution and also 
a special case of the Weibull distribution, obtained by setting gamma or Weibull 
parameters equal to particular values). In such a test, the null hypothesis is the 
distribution with fewer fitted parameters, the alternative the distribution with 
more fitted parameters.

3.3.2.3 parametric versus empirical distributions
When enough data are available, the need to assume a specific parametric distribu-
tion can be avoided by using the empirical distribution. The empirical distribution 
based on n observations is the distribution that assigns equal probability (1/n) to each 
observed value. A particular focus of a workshop on distribution selection (USEPA 
1998) was “considerations for choosing between the use of parametric distribu-
tion functions ... and empirical distribution functions.” That report of the workshop 
emphasizes case-specific criteria.

The cdf of the empirical distribution converges in probability to the true cdf, as n 
increases. However, in small samples the empirical distribution may have some fea-
tures that we do not want to extrapolate to the population. The empirical distribution 
is discrete (with positive probability only for observed values), whereas the popula-
tion distribution may be conceived as continuous. With n too small there may actu-
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ally be substantial probability of real-world values outside the range observed in our 
data, e.g., some real-world exposures larger than the largest observed concentration.

An approach suggested in USEPA (1998) is to supplement the empirical distribu-
tion with an exponential tail (the “mixed exponential approach”). An approach not 
mentioned is to use a smoothed empirical distribution (a continuous nonparametric 
distribution). The most likely approach would be to use a kernel smoother, e.g., as 
sometimes used in flood prediction to provide a distribution for flood magnitudes 
(review in Lall 1995). These procedures have the effect of adding a continuous tail to 
the distribution, extending beyond the largest observed value.

When a parametric distribution is fitted, each datum contributes to the estimate 
of each parameter or percentile. Whether this is good or not depends on whether 
the distribution to be fitted is reasonable. If it is assumed that one can identify the 
“true” distribution, the data will be used in a way that is in some sense optimal. 
In the real world, where the best distribution is uncertain, it may happen that esti-
mated frequencies for one tail of a distribution are sensitive to observations on the 
other tail, e.g., estimates of high concentration percentiles are sensitive to observed 
low concentrations.

3.3.3 fitting a Distribution of a partiCular type

3.3.3.1 choice of estimation procedure
Some workshop participants suggested that the choice of a fitting procedure (e.g., 
MOM or ML) is not likely to be the most critical decision in a risk assessment. For 
relatively standardized analyses, one may wish to use relatively refined methods, even 
if those are not the easiest to implement. This may reduce inconsistencies among 
analyses, caused by use of different fitting procedures. In any case, the computations 
can be automated by software development. For analyses that are not very standard-
ized, it is understood that cost-effectiveness will be a consideration and that fitting 
techniques will often be selected based on convenience. In practice, a general-purpose 
software package such as Crystal Ball is likely to be used without much emphasis on 
distribution-fitting criteria. Using appropriate statistical and graphical methods, one 
can determine whether a fitted distribution adequately represents the data.

ML is the approach most commonly used to fit a distribution of a given type 
(Madgett 1998; Vose 2000). An advantage of ML estimation is that it is part of 
a broad statistical framework of likelihood-based statistical methodology, which 
provides statistical hypothesis tests (likelihood-ratio tests) and confidence inter-
vals (Wald and profile likelihood intervals) as well as point estimates (Meeker and 
Escobar 1995). MLEs are invariant under parameter transformations (the MLE 
for some 1-to-1 function of a parameter is obtained by applying the function to the 
untransformed parameter). In most situations of interest to risk assessors, MLEs are 
consistent and sufficient (a distribution for which sufficient statistics fewer than n do 
not exist, MLEs or otherwise, is the Weibull distribution, which is not an exponen-
tial family). When MLEs are biased, the bias ordinarily disappears asymptotically 
(as data accumulate). ML may or may not require numerical optimization skills (for 
optimization of the likelihood function), depending on the distributional model.
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An approach that is sometimes helpful, particularly for recent pesticide risk 
assessments, is to use the parameter values that result in best fit (in the sense of LS), 
comparing the fitted cdf to the cdf of the empirical distribution. In some cases, such 
as when fitting a log-normal distribution, formulae from linear regression can be 
used after transformations are applied to linearize the cdf. In other cases, the resid-
ual SS is minimized using numerical optimization, i.e., one uses nonlinear regres-
sion. This approach seems reasonable for point estimation. However, the statistical 
assumptions that would often be invoked to justify LS regression will not be met 
in this application. Therefore the use of any additional regression results (beyond 
the point estimates) is questionable. If there is a need to provide standard errors or 
confidence intervals for the estimates, bootstrap procedures are recommended.

In case of a need to compare alternative estimators, the preceding section pro-
vides information on criteria for evaluation of estimators. The performance of alter-
native estimators can be characterized using Monte Carlo simulation (e.g., Gilliom 
and Helsel 1986).

3.3.3.2  possible problems with estimators That rely 
on Logarithmic Transformation

When ML or MVU criteria are applied with the log-normal or gamma distributions, 
the computations involve logarithmic transformation of the data. In practice, it seems 
that effects of logarithmic transformation may be a particular concern when there 
are rounding problems or other complications associated with the smallest observa-
tions. In this type of situation, logarithmic transformation may be avoided by use of 
MOM estimation, with moments computed in the original scale. For the log-normal 
and gamma distributions it may be convenient to make use of the sample coefficient 
of variation, computed without logarithmic transformation (McCulloch and Nelder 
1989, p 296; Millard and Neerchal 2000).

3.3.3.3 correcting parameter estimates for statistical bias
Based on the discussion of criteria for parameter estimation, it is not necessarily 
important to use estimators that are “unbiased” in the statistical sense. The empha-
sis should be on the overall performance of the estimator, considering precision as 
well as accuracy. If bias is known to be large for practical purposes, bias correction 
may improve performance (bootstrap bias correction is easy). However, in practice, 
precision may be a greater concern than bias, particularly with few data, and bias 
correction may result in lower precision.

A particular situation where bias may be important is in statistical meta-analysis, 
where statistical estimates are combined across studies. When estimates from indi-
vidual studies may be averaged arithmetically, it is better to average unbiased esti-
mates (Rao 1973, Section 3a). In case of biases that are consistent across studies, 
an arithmetic average would have a bias of the same sign, regardless of the number 
of studies included in the analysis. The average of biased estimates could fail to be 
consistent (in the statistical sense).
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3.3.3.4 bounding a distributed Variable

For certain distributions, the set of values for which the pdf is positive (the support) 
is unbounded. For example, the pdf of the log-normal distribution is positive for all 
positive real numbers. Ordinarily, there will be values too extreme to be reasonable, 
and so it is common to place bounds on the support. However, selecting precise val-
ues for the bounds may be a difficult decision.

Supposing that one has decided on bounds for a variable, one can fit a distri-
bution that has a bounded support, such as the beta distribution or Johnson SB 
distribution. Alternatively, in a Monte Carlo implementation, one may sample the 
unbounded distribution and discard values that fall beyond the bounds. However, 
then a source of some discomfort is that the parameters of the distribution trun-
cated in this way may deviate from the specification of the distribution (e.g., the 
mean and variance will be modified by truncation). It seems reasonable for Monte 
Carlo software to report the percentage discarded, and report means and vari-
ances of the distributions as truncated, for comparison to means and variances 
specified.

3.3.4 assessing the fit of a Distribution

A fitted distribution should be evaluated using graphical methods as well as statis-
tical goodness-of-fit (GoF) tests. Appropriate procedures are available in texts on 
environmental statistics and risk assessment (e.g., Gilbert 1987; Helsel and Hirsch 
1992; Millard and Neerchal 2000). It is suggested that USEPA (1998) be consulted 
regarding a number of practical considerations.

Some statistical tests are specific for evaluation of normality (log-normality, 
etc., normality of a transformed variable, etc.), while other tests are more broadly 
applicable. The most popular test of normality appears to be the Shapiro–Wilk test. 
Specialized tests of normality include outlier tests and tests for nonnormal skewness 
and nonnormal kurtosis. A chi-square test was formerly the conventional approach, 
but that approach may now be out of date.

According to USEPA (1998), “the group fully agreed that visualization/graphic 
representation of both data and the fitted distribution is the most appropriate and 
useful approach for ascertaining adequacy of fit. In general, the group agreed that 
conventional GoF tests have significant shortcomings and should not be the primary 
method for determining the adequacy of fit.”

For graphical evaluation of distribution fit, probability (P–P) plots and quan-
tile (Q–Q) plots are particularly helpful. Sometimes the R2 statistic has been 
used to quantify the linearity of a P–P plot or Q–Q plot; however, in practice 
it appears that there may be substantial deviation between the observed and 
expected frequencies, despite an R2 that would be viewed as large in many sta-
tistical contexts.
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3.3.5 DeteCting anD aDDressing DepenDenCies

Information on ways to handle dependencies and the consequences of ignoring 
dependencies are reviewed in risk assessment texts (e.g., Warren-Hicks and Moore 
1998; Vose 2000).

3.3.5.1 detecting dependencies
Dependencies may be detected using statistical tests and graphical analysis. Scatter 
plots may be particularly helpful. Some software for statistical graphics will plot 
scatter plots for all pairs of variables in a data set in the form of a scatter-plot matrix. 
For tests of independence, nonparametric tests such as Kendall’s τ are available, as 
well as tests based on the normal distribution. However, with limited data, there will 
be low power for tests of independence, so an assumption of independence should be 
scientifically plausible.

3.3.5.2 dependent actual Values or dependent statistical errors?
When a distribution has multiple parameters estimated from the data, statistical 
errors associated with estimates of different parameters will not generally be inde-
pendent (an important exception is that when sampling from a normal distribution, 
the sample mean and sample variance are independent). A familiar example of 
dependent errors in statistical estimation is the correlation of slope and intercept esti-
mates in linear regression. The correlation is negative unless the independent vari-
able is centered, in which case the correlation is zero. Similarly, in probit analysis 
one often observes a negative estimated covariance for the probit slope and intercept. 
This does not necessarily indicate a correlation of true slope and intercept across a 
population of chemicals or species, or of slope and LC50, in the real world (there 
has been some controversy regarding whether any “real” dependence is anticipated). 
A rigorous treatment of all sources of variation should be possible, making use of 
a random-effects model with different correlation structures at different levels of 
variation. Statistical software for such modeling is increasingly accessible.

3.3.5.3 accommodating dependencies
Once it is decided that an assumption of independence is not supported, there are a 
number of approaches for building dependencies into the probabilistic model (Monte 
Carlo per se does not assume independence):

Members of the Chapter 3 work group particularly emphasized avoidance •	
of implausible combinations of variables. Some conjectured that substan-
tial benefit may be had just by excluding combinations of variables that 
are unreasonable, i.e., dependencies in the tails may be substantially more 
important for practical purposes than dependencies close to the center of a 
distribution.
Parametric techniques based on the multivariate normal (MVN) distribu-•	
tion are particularly well developed. Parameters of the MVN distribution 
include a covariance or correlation for each pair of variables, as well as a 
mean and variance for each variable.
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Methods based on the MVN distribution have been used particularly for •	
autocorrelated data, for example, in time series analysis and geostatistics. 
Autocorrelation occurs when the same variable is measured on different 
occasions or locations. It often happens that measurements taken close 
together are more highly correlated than measurements taken less close 
together. Environmental data often have some type of autocorrelation.
A nonparametric approach can involve the use of synoptic data sets. In a •	
synoptic data set, each unit is represented by a vector of measurements 
instead of a single measurement. For example, for synoptic data useful for 
pesticide fate, assessment could take the form of multiple physical–chemi-
cal measurements recorded for each of a sample of water bodies. The mul-
tivariate empirical distribution assigns equal probability (1/n) to each of n 
measurement vectors. Bootstrap evaluation of statistical error can involve 
sampling sets of n measurement vectors (with replacement). Dependencies 
are accounted for in such an approach because the variable combinations 
allowed are precisely those observed in the data, and correlations (or other 
dependency measures) are fixed equal to sample values.
Capabilities are available in risk assessment software for inducing rank cor-•	
relations among variables with arbitrary parametric distributions (Warren-
Hicks and Moore 1998; Vose 2000). Also see Vose for a discussion of the 
envelope method for handling dependencies.

3.4 using scanTy and FragmenTary daTa
The data available may be too few, nonrepresentative, censored, or available only in 
summary form.

3.4.1 some statistiCal ConsequenCes of small sample sizes

Possible effects of too-small n include the following:

Statistical tests will have relatively low power. In particular, there will be •	
low power for testing the fit of a parametric distribution.
The probability of selecting the most appropriate parametric distribution •	
from a set of candidate distributions will be comparatively low.
Use of the empirical distribution may be problematic in particular because •	
of a relatively high probability of encountering values in the real world that 
are beyond the range observed in our data.
Certain methods associated with normality, such as the •	 t interval for the mean, 
are equally valid at all sample sizes, so long as normality and other assumptions 
are accurate, and in most situations will improve in performance with increas-
ing n. With small n one has low power for testing distributional assumptions.
Parameter estimates will have high statistical error. In principal, this can be •	
accounted for by use of 2D methods, which make use of a parameter uncer-
tainty distribution. However, approximations of the sampling distribution 
may be relatively poor at small sample sizes.
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As a rule, accurate estimation of lower distribution moments will require fewer •	
data than accurate estimation of higher moments (e.g., fewer data are needed for 
a decent estimate of the mean than for a decent estimate of kurtosis).
There may be particular difficulties in characterizing the tails of distribu-•	
tions, because the distribution tails relate to relatively infrequent events.
Bayesian analyses may be relatively more dependent on the prior and less •	
dependent on the data.

3.4.2 using relatively generiC information

When the data for a situation of specific interest are inadequate, a common approach 
is to make some use of more generic information, including possibly information less 
representative of the situation of specific interest. For example, if the information for 
a specific pesticide is inadequate, then some features of an analysis may be based on 
information from a set of other pesticides, considered to be comparable. This can be 
appropriate particularly for an early-tier assessment, in which case the criteria may 
be designed to be protective, so far as we can judge.

With regard to relevant statistical methodologies, it is possible to define 2 situ-
ations, which can be termed a meta-analysis context and a shrinkage estimation 
context. Similar statistical models, in particular random-effects models, may be 
applicable in both situations. However, the results of such a model will be used some-
what differently.

In the first situation we hope to define a generic distribution based on information 
from multiple studies, and no study is treated as more representative than another, for 
the situations where the distribution will be used. Generic assumptions may relate to 
type of distribution or to distribution parameters (e.g., coefficient of variation, skew-
ness, or kurtosis). An important case is the determination of multiplicative safety 
factor based on a generic coefficient of variation, and assuming log-normality.

Methods of statistical meta-analysis may be useful for combining information 
across studies. There are 2 principal varieties of meta-analytic estimation (Normand 
1995). In a “fixed-effects” analysis the observed variation among estimates is attrib-
utable to the statistical error associated with the individual estimates. An important 
step is to compute a weighted average of unbiased estimates, where the weight for an 
estimate is computed by means of its standard error estimate. In a “random-effects” 
analysis one allows for additional variation, beyond statistical error, making use of a 
fitted random-effects model.

There is some USEPA precedent for use of statistical meta-analysis in a regulatory 
context, including the recent meta-analysis of organophosphate-related acetylcholin-
esterase inhibition data and meta-analysis of epidemiological studies on effects of 2nd 
hand tobacco smoke exposure. Warren-Hicks and Moore (1998) provide some discus-
sion of the potential applicability of meta-analysis to ecological risk assessments.

In the 2nd situation there is a desire to give greater weight to some data that are con-
sidered representative for the situation of interest. However, particularly if those data 
are limited, there may be a desire to give some weight to less representative data.

An approach that is sometimes adopted in this type of situation is to rely on 
a “data trigger” such that too few data will result in use of generic distributional 
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assumptions, while adequate data will result in use of only the more specific data. 
Alternatively, some average of specific and generic information may be used. For 
example, in hydrology the log Pearson III distribution is often used for flood mag-
nitudes. A parameter of the distribution is the skewness. Because the skewness is 
subject to high statistical error, it is sometimes recommended to average the skew-
ness for a specific locality with a skewness characteristic of a wider area. Rigorous 
approaches that make use of random-effects modeling results to compute weights for 
different subsets of the data are possible.

3.4.3 maximum entropy anD other representations of ignoranCe

A relatively flat distribution can represent a situation of relative uncertainty. For 
example, when one has only a maximum and minimum, the conventional default 
distribution is uniform between those values. The main difficulty in determining the 
flat distribution, to be used in a situation of relative ignorance, is that a distribution 
that is flat in one scale may be far from flat in another.

Suppose, for example, we are given that a half-life for a 1st-order dissipation 
curve will be between 1 and 2 days. An equally valid way to describe degradation in 
this context is with the degradation rate (= (ln 2)/half-life). Therefore the informa-
tion available can be represented just as appropriately by saying that the degrada-
tion rate will be 0.347 to 0.693 per day. However, the 2 approaches for applying the 
uniform default distribution (for rates versus for half-lives) seem to be drastically 
different for practical purposes. For example, according to the assumption of uni-
formly distributed half-life, the probability is 0.25 that the half-life exceeds 1.75; 
according to the assumption of uniformly distributed rate the probability of the 
same event is 0.14.

The maximum-entropy (maxEnt) approach involves the use of a measure of the 
uncertainty in a distribution (Shannon–Weaver entropy). The idea is to choose the 
distribution type that has maximum uncertainty subject to specification of some 
features of the distribution such as the range or a few moments or percentiles. 
Warren-Hicks and Moore (1998) list maxEnt solutions for a number of situations. In 
particular when only a min and max is available the maxEnt solution is the uniform 
distribution. The solution when the information available is the mean and variance, 
and the min and max are infinite, is the normal distribution.

The maxEnt approach suffers from the scale dependence problem. Nevertheless, 
perhaps a distribution may be judged to be better than not assigning a distribution. 
Consequences of using uniform or maxEnt distributions for different scales can be 
explored in a sensitivity analysis. An additional difficulty is that in order to apply 
the maxEnt approach, particular features of a distribution may need to be assumed 
known when those features may actually be substantially uncertain.

Special uninformative distributions are often used in Bayesian analysis to rep-
resent prior parameter uncertainty, in cases of minimum prior information on the 
parameters. The idea is often to select a prior distribution such that the results of the 
analysis will be dominated by the data and minimally influenced by the prior.
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3.4.4 juDgment-baseD Distributions anD bayesian methoDology

The topic of eliciting probability distributions that are based purely on judgment 
(professional or otherwise) is discussed in texts on risk assessment (e.g., Moore 
1983; Vose 2000) and decision theory or Bayesian methodology (e.g., Berger 1985). 
Elicitation methods may be considered with 1D models in case no data are available 
for fitting a model. In the 2D situation, elicitation may be used for the parameter 
uncertainty distributions. In that situation, it may happen that no kind of relative fre-
quency data would be relevant, simply because the distributions represent subjective 
uncertainty and not relative frequency.

One sometimes encounters remarks on Bayesian methodology suggesting that 
the essence of the approach is a substitution of professional judgment for data, used 
in case the latter is substantially lacking. While this viewpoint contains a kernel 
of truth, the chapter on Bayesian methods provides a more complete picture of the 
approach (see Chapter 5 of this book). Bayesian methodology does provide tools for 
integration of information, possibly for very different types. Thus, the approach may 
be valuable for ensuring use of as much as possible of the (possibly limited) informa-
tion available.

Elicitation of judgment may be involved in the selection of a prior distribution 
for Bayesian analysis. However, particularly because of developments in Bayesian 
computing, Bayesian modeling may be useful in data-rich situations. In those situa-
tions the priors may contain little prior information and may be chosen in such a way 
that the results will be dominated by the data rather than by the prior. The results 
may be acceptable from a frequentist viewpoint, if not actually identical to some 
frequentist results.

3.4.5 measurements entirely or partially missing

This category of difficulties includes the following:

For some units, we know only that the value of interest falls beyond a cer-•	
tain value (right or left censoring).
The range of the data takes the form of counts for “bins” associated with •	
ranges of the variable (interval censoring).
Units meeting certain conditions have been deleted from the data, without •	
a record of how many units have been deleted (truncation).
It is desirable to characterize dependencies by fitting a multivariate distri-•	
bution. However, some measurements are missing for some units.

In general, these types of problems can be handled parametrically by formulating a 
stochastic model of how the data have been generated, including the mechanism of 
missingness (censoring, etc.), and then fitting the distribution using ML. Statistical 
error can be addressed using likelihood-based standard errors or confidence inter-
vals. In addition to ML, various special methods may be applicable, depending on 
the context. For example, the presence of nondetections has no effect on percentiles 

© 2010 by Society of Environmental Toxicology and Chemistry (SETAC)



50 Application of Uncertainty Analysis to Ecological Risk of Pesticides

above the detection limit(s), and so those may suffice for point estimates of model 
parameters.

It is common to suggest using ML and related procedures to model nondetections 
in concentration measurements. The missing-data mechanism is assumed to be that 
a nondetection occurs if and only if the value happens to fall below the detection 
limit, i.e., we assume left censoring (however, see Lambert et al. 1991). Methods are 
reviewed in texts on environmental statistics (e.g., Gilbert 1987; Helsel and Hirsch 
1992; Gibbons 1994; Newman 1995; Millard and Neerchal 2000). The computer pack-
age UnCensor (Newman, Greene, and Dixon) is available on the World Wide Web.

Implementation of ML is straightforward in many cases. More difficult situations 
may involve a need to incorporate random effects, covariates, or autocorrelation. The 
likelihood function may involve difficult or intractable integrals. However, recent 
developments in statistical computing such as the EM algorithm and Gibbs sampler 
provide substantial flexibility for such cases (in complicated situations, a specialist 
in current statistical computing may be helpful). Alternatively, the GLS approach 
described below may be applicable.

3.4.6 using summary statistiCs, partiCularly by ls, Wls, anD gls

In some cases the only information available may be a table of summary statistics. 
This type of situation is especially prevalent in regulatory contexts, where decisions 
may be made from data from different sources, summarized in different ways. The 
statistics available may be means and variances, confidence bounds, ranges, per-
centiles, and so on. The procedures that can be applied will depend on the statis-
tics available and the distribution to be fitted, but it is possible to sketch a general 
approach. ML provides a relatively refined approach that may be practical in some 
situations. However, in many cases ML will be difficult because of the presence in 
the likelihood function of high-dimensional integrals. A more practical approach 
can be based on LS, WLS, or GLS; however, some skill with numerical methods and 
software will still be helpful. Assume availability of ns summary statistics computed 
from n original data values. The statistics should be mathematically independent, 
that is, it should not generally be possible to compute one statistic precisely given 
values of the others, but they need to be statistically independent. These summaries 
will be used to assign values to p distribution parameters. We assume p ≤ ns < n. [If 
ns < p we do not have enough information to estimate all distribution parameters. If 
ns ≥ n, then we can reconstruct the raw data using n independent summary statistics, 
using a nonlinear equation solver if necessary.] If ns = p then the parameters are esti-
mated by solving (using a nonlinear solver if necessary) a system of p equations in p 
unknowns. If ns > p then we can we have an “overspecified” problem. Assuming that 
each statistic has an obvious parametric analogue (as for means or quantiles) we may 
use LS to compute a set of parameter estimates close to the corresponding statistics. 
Refinements based on WLS or GLS can account for sampling correlations of the 
different statistics, or differences in the respective sampling variances. If necessary, 
variances and covariances of statistics may be based on some form of simulation. 
Once an estimation procedure has been devised, the sampling error of the estimate 
may be evaluated using parametric bootstrap.
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A Monte Carlo, Bayesian 
Monte Carlo, and First-
Order Error Analysis 

W. /. Warren-Hicks, 5. Qian, 7. Toll, D. L Fischer, 
E. Fite, W. C. Landis, M. Hamer, and E. P. Smith 

4.1 INTRODUCTION 

Monte Carlo is a deceptively simple method that has gained prominence in the eco
logical risk sciences in recent years. Its appeal is warranted because the method is 
a straightforward approach for generating probability distributions and conducting 
uncertainty analyses in all aspects of a typical risk assessment. Using Monte Carlo 
techniques, the analyst can perform the basic mathematical requirements of a proba
bilistic risk assessment, including propagating parameter uncertainty in exposure or 
effects models into prediction uncertainty, generating distributions of exposure and 
effects, and combining exposure and effects distributions into a joint distribution 
of risk. Monte Carlo is relatively easy to use, and several interactive and easy-to-
use commercial software programs are available. Monte Carlo is certainly the most 
popular statistical method currently in use for probability-based risk assessments, 
and from a broad perspective, it is an excellent choice for most applications. Because 
of its flexibility and range of application, Monte Carlo is an excellent uncertainty 
analysis tool. 

The underlying theory of Monte Carlo analysis is grounded in the long-run fre
quency interpretation of statistics. In this sense, Monte Carlo analysis is an inher
ently frequentist (i.e., classical statistics) concept. In Monte Carlo analysis, samples 
are drawn from a distribution (the sampling distribution of the random parameter) 
that represents the uncertainty of a random parameter, like an input to a multiparam
eter exposure model. As more and more samples are drawn, the mean of the samples 
is assumed to converge to the most likely value of the parameter (expected value). 
This convergence assumption is the basis for Monte Carlo theory and, in practice, is 
implemented by the repeated drawing of samples from the random parameter sam
pling distribution (see Figure 4.1). 

Uncertainty analysis for multiparameter models may require assigning sam
pling distributions to many random parameters. In which case, a single value is 
drawn from each of the respective sampling distributions during each Monte Carlo 
iteration. After each random draw, the generated values of the random parameters 
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FIGURE 4.1 Monte Carlo analysis. 

are plugged into the model, the model is run, and the model prediction(s) are col
lected. At the end of the Monte Carlo analysis, a histogram of the model pre
dictions can be generated to view the output distribution (frequently termed the 
predictive distribution or Monte Carlo distribution) and descriptive statistics of the 
outputs can also be generated (median, mean, percentiles, range, and variance). 
The shape of the Monte Carlo output distribution can take on many forms and 
is directly dependent upon the choice of the input sampling distributions. In the 
case of a model-based uncertainty analysis, the Monte Carlo output distribution 
represents the uncertainty in model predictions, given the uncertainty in the model 
inputs. If the probability density function of the exposure distribution (generated, 
say, from a Monte Carlo analysis of uncertain model inputs) and effects distribu
tion (generated, say, from a species sensitivity distribution) are available, Monte 
Carlo can be used to create a joint distribution of risk. The mathematical form of 
the sampling distribution(s) is not required, a simple column of values for each 
random parameter can be used as the basis for sampling (termed an empirical 
Monte Carlo analysis). 

The popularity of Monte Carlo for risk-based uncertainty analysis is some
what driven by the fact that Monte Carlo is fundamentally easy to implement, 
particularly with the advent of the personal computer, and graphically based 
software like Crystal Ball (www.decisioneering.com) and @Risk (www.palisade. 
com/risk.html). The availability of such software systems generally promotes the 
use of uncertainty analysis in ecological risk assessments, reducing the amount 
of mathematical and statistical knowledge required of the user to implement the 
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method. While this development has mostly positive aspects, a danger arises for 
those users of the method that are not statistically trained. Statistically naive 
users are prone to making fundamental mathematical mistakes without the 
ability to judge the effect of such blunders. This issue is particularly relevant 
when choosing from the large number of available sampling distributions, use of 
advanced features such as 2nd-order Monte Carlo, or properly interpreting the 
output. Monte Carlo may be one of the most misunderstood uncertainty analysis 
approaches in common use, with many users captivated by the technique and 
graphics, disregarding the underlying theory and ramifications for interpretation 
once the analysis is complete. 

In recent years, a large volume of literature has been produced on Monte Carlo 
analysis as an uncertainty method in ecological risk assessment (Warren-Hicks and 
Butcher 1996; Warren-Hicks and Moore 1998). This chapter does not attempt to 
review or summarize all of this information because so much of the current literature 
is inconsistent and the motivations for using the method are diverse. In the following 
narrative, we present the basics for the underlying theory of Monte Carlo and argue 
that informed users are better able to judge the validity of the Monte Carlo output 
than mathematically naive users. Monte Carlo is a practical and useful method, with 
an underlying statistical theory that has been proven over the years. In most standard 
ecological risk assessments, any major issue with Monte Carlo analysis is associated 
with the naivete' of the users of the technique, and not with any inherent limitations 
of the procedure. 

4.2 PRACTICAL ASPECTS OF A MONTE CARLO ANALYSIS 

As practiced, Monte Carlo is not only a statistical method, but also a process that 
involves numerous cascading decisions involving statisticians, toxicologists, and risk 
assessors. The degree of belief inherent in the Monte Carlo outputs is as much a 
function of the numerous decisions the investigator makes during the course of the 
analysis as it is the correct selection of the sampling distributions. 

In most real-world problems, uncertainty is inherent in the choice of the anal
ysis data set, treatment of outlying data points, choice of model, choice of spatial 
and temporal scales, choice of sampling distribution and associated parameters, 
etc. The analyst is faced with many decisions before implementing the Monte 
Carlo analysis and is subsequently faced with the challenge of interpreting the 
final output. Each choice the investigator makes plays a role in the interpretation 
of the Monte Carlo predictive distribution and in the expectation that decisions 
made based on the analysis are indeed correct. Because of the large number of 
decisions made by the investigator, the degree of belief that can be afforded the 
final prediction distribution that results from Monte Carlo is in large measure a 
function of the investigator's ability to implement the method and make appro
priate decisions. In many cases, a poor Monte Carlo analysis can be attributed to 
the investigator's choices, rather than poor data quality. All investigators, after 
performing a Monte Carlo analysis, should ask: "Do I believe the answer?" "Does 
the shape of the distribution seem appropriate?" "Is the distribution skewed in 
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the wrong direction?" "Is too much weight given to particular values of the 
predictions?" Because Monte Carlo is driven by the expertise of the investigator, 
all users of the software should look for ways to increase their degree of belief 
in the Monte Carlo result. 

Monte Carlo sampling is discussed extensively in Hammersley and Morton 
(1956), Hammersley and Handscomb (1964), Kloek and Van Dijk (1978), and 
Wilson (1984). For Monte Carlo results to be believable, the convergence proper
ties of the Monte Carlo estimators must be met. Several statistical and practical 
limitations exist in this regard. The most important practical limitations of Monte 
Carlo are the following: 

1) Misspeciflcation of the sampling distribution 
2) Use of Monte Carlo sampling with a large number of assumed independent 

parameters, particularly when the parameters are highly correlated 
3) Implementation with a relatively small number of iterations 

For example, the distribution from which the samples are drawn is assumed to be 
the true distribution of the parameter of interest. To the degree that the sample dis
tribution differs from the actual distribution (which is generally assumed unknown 
by the classical statistician), the confidence in the Monte Carlo results is decreased. 
Just how close these distributions must be is a complicated statistical issue that is 
frequently unclear. In a practical sense, if misspeciflcation of a sampling distribution 
occurs for a very sensitive parameter in a multiparameter model, then the confidence 
in the Monte Carlo results is greatly diminished because the model prediction is 
greatly influenced by that parameter. 

What is clear, however, is that the "garbage in, garbage out" adage applies. 
Two very important assumptions of Monte Carlo are the following: 1) the sam
pling distributions are the "true" distribution of the random parameter and 2) the 
Monte Carlo procedure is run to convergence. If the investigator uses incorrect 
sampling distributions (e.g., makes them up with little or no knowledge), the 
Monte Carlo results will effectively be incorrect. In addition, the underlying sta
tistical theory behind Monte Carlo assumes that "enough" iterations are imple
mented for the convergence properties of the Monte Carlo estimators to hold. 
Again, the number of iterations required is not clear, particularly with disparate 
distributional assumptions among a large number of parameters. In hindsight, 
the investigator may actually have greater confidence in decisions based on a 
small number of measured data points in lieu of performing Monte Carlo analy
sis on a model for which basic parameterization and verification studies have not 
been implemented. 

Burmaster and Anderson (1994) have proposed 14 "principles of good practice" 
for using Monte Carlo techniques. They suggest that before an analyst undertakes a 
Monte Carlo risk assessment, the growing literature on probabilistic risk assessment 
should be thoroughly examined. Principles for a properly conducted Monte Carlo 
analysis have also been proposed by the USEPA (1997). 
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4.3 MATHEMATICAL AND STATISTICAL UNDERPINNINGS 
OF MONTE CARLO METHODS 

Many analysts do not understand the mathematics underlying the Monte Carlo 
method. While simple in concept, the underlying theory is somewhat complex. An 
understanding of the theory is important from the following perspectives: 

1) The analyst is better able to judge the effect of decisions made during the 
course of the analysis. 

2) The analyst is better able to explain and communicate the results of the 
Monte Carlo analysis and the statistical endpoints. 

3) The analyst is better equipped to combine the Monte Carlo results with 
other analyses in a complex risk framework (e.g., combining exposure and 
effects distributions into a risk distribution). 

The Monte Carlo method provides approximate solutions to a variety of mathemati
cal problems by performing statistical sampling experiments on a computer. The 
modern Monte Carlo method originated during the development of atomic energy 
in the post-World War II era, when it was used to provide solutions to integral-dif
ferential equations. Later, the concept of using sampling experiments on a computer 
came to prevail in many scientific disciplines. Compared with other numerical meth
ods, the Monte Carlo method is efficient with regard to computing time and easy to 
implement and understand. Using Monte Carlo methods for simulating the propaga
tion of input errors through model predictions was initiated by O'Neill (1973) and 
McGrath and Irving (1973). 

The most common applications of the Monte Carlo method in numerical compu
tation are for evaluating integrals. Monte Carlo methods can also be used in solving 
systems of equations. All instances of Monte Carlo simulation can be reduced to the 
evaluation of a definite integral like the following: 

""J. fMdX (4.1) 

Formally, suppose we have a random variable, JC, which has measurements over the 
range a to b. Also, assume that the probability density function of JC can be written as 
p(x). In addition, assume a second function g, such that g(x) p(x) =flx). For example, 
g(x) could represent a dose-response function on concentration and p(x) is the prob
ability density function of concentration. The expected value (which is the "most 
likely" value or the mean value) of g(x) is/* 
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E(g(X))=J g(x)p(x)dx 

= j f(x)dx 
(4.2) 

= u, 

Notice that Equation (4.2) can be reduced to the same form as Equation (4.1). 
Estimating the expected value of g(x) is a familiar statistical problem. A natural way 
of doing this is to take a random sample from xt with distribution p(x) and use the 
sample mean of g(jCj) as an estimate of u, that is, 

Step 1. Draw random samples from p(x): x, ~ p(x), for /=1 , . . . , n 
Step 2. Calculate the sample mean: 

1 ^ - ^ 

(4.3) 

This estimate has a variance of 

Var(,l) = -!- f (g(x)-itfdx 
ft *J a (4.4) 

As a simple example, suppose that JC is a random variable with a uniform density over 
the interval [a, b] with p(x) = l/(b - a). As a result, g(x) = (b- a)flx). The integral is 
estimated by 

fi = (b-a)E(fiX)) (4.5) 

The sample mean is calculated as 

^-rz^fM (4.6) 

where xt are values of a random sample of size n from a uniform distribution over fo, 
b). The estimate is unbiased, and the variance of the estimate is 

Var(A) = ^ f V w - A ) ^ 
(4.7) 
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The estimate of/i is based on a sample of simulated data; as a result, sampling error 
is always associated with the estimate. The law of large numbers states that the sam
ple mean converges to the true mean in probability as the sample size increases: 

limPr(|/i-^|<e) = l (4.8) 
« - • 0 0 

In other words, a large sample size is necessary to reduce this sampling error. 
In addition to increasing the sample size, reducing the sampling error can be done 

through efficient sampling. The Latin hypercube sampling is the most frequently 
used sampling technique for reducing Monte Carlo sampling error (Beckman and 
McKay 1987; Stein 1987; Tang 1993). 

This method is designed to reduce sampling variance when sampling from several 
covariates. The technique uses a balanced or partially balanced fractional factorial 
design to sample, such that the sampling variance would be small at a given sample 
size. The Latin hypercube method was developed by McKay et al. (1979) for provid
ing input to a computer experiment. Many researchers show that using Latin hyper
cube sampling can reduce the variance of the Monte Carlo estimator (Beckman and 
McKay 1987; Stein 1987; Tang 1993). 

4.4 BAYESIAN MONTE CARLO ANALYSIS 

Bayesian Monte Carlo analysis is a refinement of generalized sensitivity analysis, 
a modeling technique developed by Hornberger and Spear (1980) for their work on 
eutrophication modeling of Peel Inlet, Western Australia. In generalized sensitivity 
analysis (Figure 4.2), an investigator parameterizes a multisite model with data from 
sites that are "generically similar" to a particular site of interest, runs the model using 
site-specific inputs, and calibrates the model with site-specific output data. Calibration 
is based on an acceptance-rejection procedure that compares the site-specific output 

> Site-specific 
model output data 

I 
Use acceptance-rejection 

procedure (e.g., Bayes' rule) 
to evaluate predictions' ^ Model calibrated for Model 

consistence with the site- ' the specific site * application 
specific model output data 

t 
Monte Carlo predictions 

of output variable(s) 

Environmental 
data from 

"generically 
similar" sites 

Multisite model 
& site-specific 

model input data 

FIGURE 4.2 Generalized sensitivity analysis. 
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data to each realization of a Monte Carlo simulation and asks how well each of the 
model's predictions corresponds to the site-specific data. The generalized sensitivity 
analysis process uses Bayes's rule for the acceptance-rejection procedure 

Hornberger and Spear's original application of generalized sensitivity analysis 
(GSA) used a binary acceptance-rejection procedure, i.e., they discarded a Monte 
Carlo realization if they thought that the prediction was inconsistent with the site-
specific data (a "nonbehavior") or kept it if they thought it was consistent (a "behav
ior"). The prior probability on each Monte Carlo realization was the reciprocal of the 
total number of realizations. After the acceptance-rejection procedure was applied, 
the updated (posterior) probability on each realization that was classified as a behav
ior was the reciprocal of the number of behaviors, and the posterior probability on 
nonbehaviors was zero. 

Variations on this simulation-based approach have been used to estimate model 
accuracy in water quality forecasts (Fedra 1983; Rose et al. 1991; van Straten and 
Keesman 1991), to compare chemical reaction model structures (Walter et al. 1986), 
and to estimate parameter values that produce a system response that satisfies given 
design criteria (Auslander et al. 1982). Related methods have descriptive names such 
as Monte Carlo filtering (Rose et al. 1991), Monte Carlo set-membership estimation 
(van Straten and Keesman 1991), range checking (Janse et al. 1992), feasible param
eter space expansion (Li et al. 1994), and generalized likelihood uncertainty estima
tion (Beven and Binley 1992). 

Although they did not make the link to generalized sensitivity analysis, Dilks 
et al. (1989, 1992) proposed using Bayes's rule to define the acceptance-rejection 
procedure for evaluating Monte Carlo simulation results. They coined the term 
Bayesian Monte Carlo analysis (BMC) for what amounted to doing generalized 
sensitivity analysis using Bayes's rule as the acceptance-rejection procedure. 
Subsequent applications of BMC include Patwardhan and Small (1992), Small and 
Escobar (1992), Brand and Small (1995), Dakins et al. (1996), Linkoff et al. (1999), 
and USEPA (2000). Other investigators were using Bayesian techniques in the late 
1980s and early 1990s (e.g., Erdy 1989; Iman and Hora 1989; Wolpert et al. 1992), 
but the techniques were computationally limited until combined with Monte Carlo 
analysis. 

By Bayes's rule, the posterior probability on a Monte Carlo realization of a model 
equals the probability of observing the site-specific output data if the realization is 
correct, times the prior probability that the realization is correct, normalized such 
that the sum of the posterior probabilities of the Monte Carlo realizations equals 1. 
In Monte Carlo analysis, all realizations are equally likely (i.e., the prior probability 
on each realization of an n-realization Monte Carlo simulation is 1/n). Therefore, the 
BMC acceptance-rejection procedure boils down to the following: The probability 
that a model realization is correct, given new data, equals the relative likelihood of 
the having observed the new data if the realization is correct. 

The posterior probabilities on the Monte Carlo realizations of the model are 
determined by the error structure in the data. 

Consider, for example, a model that is being used to predict the log-concentration 
of a chemical in some environmental medium (e.g., the average log-transformed con
centration in the muscle tissue of fish exposed to the chemical at a particular site). 
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A probabilistic model is available for predicting the average log-tissue residue as a 
function of the water concentration at the site, and a set of site-specific tissue residue 
measurements is available. The water concentration to which the fish were exposed 
is known, so the average log-tissue residue can be predicted with the model. A Monte 
Carlo simulation will provide a set of equally probable predictions of the average 
log-tissue residue. The BMC acceptance-rejection procedure then boils down to 
estimating, for each model prediction, the probability of getting the observed sample 
average log-tissue residue concentration if the model prediction is correct. 

In this example, the likelihood function is the distribution on the average of a 
random sample of log-transformed tissue residue concentrations. One could assume 
that this likelihood function is normal, with standard deviation equal to the standard 
deviation of the log-transformed concentrations divided by the square root of the 
sample size. The likelihood function assumes that a given average log-tissue residue 
prediction is the true site-specific mean. The mathematical form of this likelihood 
function is 

l(log(MTCfc))=/ -•S>*(^) 
obs 7=1 

MTC = MTQ 

42nsUn •exp 
obs 

^.Viog(rcobs)-iog(Mfc,) 
"obs j r f 

V5ote/"obs 

(4.9) 

where A 

log MTCk = log-transformed mean tissue residue concentration prediction 
7Cobs = measured site-specific tissue residue concentration 
s ^ = sample variance of the log-transformed tissue concentration data 
n^ = number of site-specific tissue residue samples 

j = index variable for site-specific tissue residue samples 
k = index variable for MTC predictions 

It answers the question "What is the probability of having obtained the observed 
site-specific sample average, if the prediction is the true site-specific mean?" The 
posterior probabilities on the Monte Carlo realizations of the model are given by 

f(MTCt) = -
f'(MTCk)-L\\og(MTCk)\ 

MTCk)-L\\og(Mick)] 

(4.10) 
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The prior probability/ on each prediction (l/npretl) cancels out, and the likelihood is 
given by Equation (4.9), leaving 

V27rS*s/"c 
exp 

f"(MTCk) = 

1 •Vlog(TCobs)-log(MfQ) 
'obs ^ ~ 

^ 1 
/ < -exp 
*=l V27lW«obS 

-L«2;iog(rcobs)-iog(MfQ) 

VSote/"c 

(4.11) 

Equation (4.11) is a useful form of the Bayesian acceptance-rejection procedure for 
generalized sensitivity analysis, in that it applies whenever one's model is predicting 
an average of a measured quantity. 

Additional work on Bayesian Monte Carlo is found in Qian et al. (2003). This 
study examines the efficiency of Bayesian Monte Carlo techniques when a large 
number of unknown parameters are present in the model. 

4.5 FIRST-ORDER ERROR ANALYSIS 

First-order error analysis is a method for propagating uncertainty in the random 
parameters of a model into the model predictions using a fixed-form equation. 
This method is not a simulation like Monte Carlo but uses statistical theory to 
develop an equation that can easily be solved on a calculator. The method works 
well for linear models, but the accuracy of the method decreases as the model 
becomes more nonlinear. As a general rule, linear models that can be written 
down on a piece of paper work well with lst-order error analysis. Complicated 
models that consist of a large number of pieced equations (like large exposure 
models) cannot be evaluated using lst-order analysis. To use the technique, each 
partial differential equation of each random parameter with respect to the model 
must be solvable. 

In the equation, Yis the model output,/is the model, and (JC„ ..., Jtp) are random 
model parameters with standard error (5, , . . . , 5p). The variance of model output Sy

2 

is given by the lst-order Taylor expansion: 

5U -tm df 
dx ** $

Xi P. X,Xj (4.12) 

where pXiX is the correlation of x, and Jtj. 
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While the technique does require the analyst to remember simple calculus, the 
technique has numerous advantages over standard Monte Carlo approaches. The 
advantage of using the lst-order error analysis is that we know the relative con
tribution of each uncertain variable to the uncertainty in the result. This relative 
contribution can be used to prioritize data collection efforts to reduce uncertainty in 
the parameter. In addition, we can easily see the effect of correlation on the model 
prediction variance. In the case where the model has 2 random parameters, notice 
that if pXiX) is negative (negative correlation), the resulting prediction error is smaller 
in the presence of correlation. If the correlation is positive, the resulting prediction 
error is larger in the presence of correlation. Another advantage of the method is 
that the exact sampling distribution is not required by the statistical theory. The 
variances are combined through the equation, regardless of the sampling distribu
tion. Therefore, the investigator need not spend much time worrying about the exact 
sampling distribution. The investigator need only know the variance of the random 
parameter (in the proper units), for the underlying theory to hold. 

As an example, in the following derivation the lst-order error analysis equation 
for a simple model with both constants and random variables is found. The random 
terms are X and Z, with constants a, b, and c. The model is 

Y = a+bX+cZ 

The lst-order error analysis equation is then 

(4.13) 

Var(y) = 

The equation reduces to 

f \2 

dY 
dX 

cl + 
t \2 

dY 
dZ 

0j+2 
[dX] [dz\ °X

C2Px,Z (4.14) 

Var(Y) = fr2a£+c2a£+2&cpx>z (4.15) 

Values for the variance of X and Z, including the correlation of X and Z, can easily 
be plugged into Equation (4.15) and solved. 

4.6 A MONTE CARLO CASE STUDY: DERIVATION OF 
CHRONIC RISK CURVES FOR ATRAZINE IN TENNESSEE 
PONDS USING MONTE CARLO ANALYSIS 

Virtually no atrazine monitoring data exist for ponds. Many landscape factors 
affect atrazine concentrations in ponds, including the ratio of drainage area to 
water body volume, the proximity of treated fields to water, the percentage of crop 
area, tillage practices, soil property influences on atrazine degradation, and the 
geometry of the water bodies themselves. A Monte Carlo analysis was conducted to 
incorporate some of this variability into a pond water exposure model (Giddings et 
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FIGURE 4.3 Exceedence curve for annual maximum atrazine concentrations in Tennessee 
pond water, based on exposure simulation using Monte Carlo analysis. 

al. 2000,2005). Model simulations linked the pesticide root zone model (PRZM), 
simulating surface runoff from treated fields; a runoff buffer model (RBUFF), 
simulating loss of atrazine between the edge of field and the water body; and a 
pond water quality model (PONDWQ) analogous to the exposure analysis model
ing system (EXAMS) but able to simulate non-steady state hydrology. Scenarios 
were configured for a watershed in Tennessee for which field runoff data were 
available as benchmarks. The Monte Carlo analysis involved 14 000 simulations. 
Values for input parameters were selected from probability distribution functions. 
Model output for each simulation consisted of daily atrazine concentrations over 
a 36-year period, from which annual maximum values were determined. The dis
tribution of the annual maximum concentrations (504 000 values) is shown as an 
exceedence curve in Figure 4.3. 

Reliable chronic toxicity data were available for 21 species of plants (13 phy-
toplankton and 8 macrophytes) and 15 species of animals. The species sensitivity 
distributions (SSDs) for atrazine chronic toxicity (no observed effect concentrations 
[NOECs]) to plants and animals are shown in Figure 4.4. A log-normal distribution 
model was fitted to each SSD by least-squares regression. 

The exposure distribution and species sensitivity distributions were integrated 
to generate risk curves for chronic effects. From the 504 000 values in the expo
sure exceedence curve, annual maximum concentrations corresponding to each 
0.5th percentile were determined. The percentage of plant or animal species 
whose chronic NOEC would be exceeded at each of these concentrations was 
calculated from the log-normal SSD model. The percentage of plant or animal 
species affected at each exposure exceedence percentile was plotted as shown in 
Figure 4.5. 
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FIGURE 4.4 Species sensitivity distributions for chronic toxicity of atrazine to plants 
(upper panel) and animals (lower panel). 
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Tier 4, Monte Carlo, Tennessee Pond, Annual Maxima, Chronic 
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FIGURE 4.5 Risk curves based on exposure distribution for annual maximum atrazine 
concentrations in Tennessee ponds and chronic species sensitivity distributions for aquatic 
plants and animals. 

4.7 CONCLUSIONS 

Monte Carlo analysis, Bayesian Monte Carlo analysis, and lst-order error analysis 
are useful tools for uncertainty analysis in risk assessment. Monte Carlo analysis 
may be the most flexible, user-friendly method available to risk assessors for error 
propagation. The method is useful for a wide range of applications, including error 
propagation, numerical evaluation of integrals, and combining exposure and effects 
distributions. First-order error analysis works well with simple models and has the 
distinct advantage of allowing the user to easily discern which random parameter is 
contributing most to the model prediction uncertainty. The method has a theoretical 
advantage in that the user is not required to predetermine the form of the sampling 
distribution for each random variate. 

Based on our experience with Monte Carlo, we offer the following guiding prin
ciples for its use: 

1) Use models that have been formally calibrated and validated for the site 
of interest. 

2) Ensure the sampling distributions for uncertain model parameters are site 
specific and represent the actual quality and type of information available. 
For example, if only the possible ranges of a random parameter are avail
able, do not select a distribution that places a large weight on the center of 
the parameter values. In this case, no information to justify the selected 
distribution is available. Distributions should reflect the available data. If no 
data or information about the distribution is available, consider not running 
Monte Carlo and finding alternative approaches for expressing uncertainty 
in the risk analysis. 
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3) Practice defending the chosen sampling distribution to a panel of experts. If 
you cannot think of quality reasons for the choice of distribution, do not use it. 

4) Keep it simple. Generally, uncertainty analyses need not be complex, 
although many investigators tend to make them so. While available software 
enables rather complicated Monte Carlo approaches, simple approaches usu
ally provide defendable results that can be easily communicated to others. 

5) Determine whether or not actual measurements fall within the model pre
diction error. This may be the best way to justify the Monte Carlo result. 

6) With simple linear models, try several uncertainty methods, like lst-order 
error analysis, and judge whether the results are consistent. 

7) Always perform a sensitivity test on the choice of sampling distribution and 
judge the degree to which the choice of distribution affects decisions made 
with the resulting Monte Carlo information. 

8) If you can perform an uncertainty analysis with a calculator, do not use 
Monte Carlo analysis or at least compare the calculator and simulation 
method for consistency. 

9) All choices should be questioned before the final analysis result is adopted. 
This includes data manipulation; methods for dealing with outliers; choice 
of sampling distribution, statistic, or model; implementation approaches; 
and number of samples in the simulation. These choices should be well 
documented in the description of the analysis. 

In conclusion, we believe that error propagation methods like Monte Carlo, Bayesian 
Monte Carlo, and lst-order error analysis should be promoted and extensively used 
in pesticide risk assessments implemented in both the United States and Europe. 
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5 The Bayesian Vantage for 
Dealing with Uncertainty

D. A. Evans, M. C. Newman, 
M. Lavine, J. S. Jaworska, J. Toll, 
B. W. Brooks, and T. C. M. Brock

5.1 inTroducTion

Bayesian approaches are discussed throughout this book. Unfortunately, because 
frequentist methods are typically presented in introductory statistics courses, most 
environmental scientists do not clearly understand the basic premises of Bayesian 
methods. This lack of understanding could hamper appreciation for Bayesian 
approaches and delay the adaptation of these valuable methods for analyzing uncer-
tainty in risk assessments.

Bayesian statistics are applicable to analyzing uncertainty in all phases of a risk 
assessment. Bayesian or probabilistic induction provides a quantitative way to estimate 
the plausibility of a proposed causality model (Howson and Urbach 1989), including 
the causal (conceptual) models central to chemical risk assessment (Newman and 
Evans 2002). Bayesian inductive methods quantify the plausibility of a conceptual 
model based on existing data and can accommodate a process of data augmentation 
(or pooling) until sufficient belief (or disbelief) has been accumulated about the pro-
posed cause–effect model. Once a plausible conceptual model is defined, Bayesian 
methods can quantify uncertainties in parameter estimation or model predictions 
(predictive inferences). Relevant methods can be found in numerous textbooks, e.g., 
Carlin and Louis (2000) and Gelman et al. (1997).

Bayesian fundamentals are reviewed here because several chapters in this volume apply 
these methods in complex ways to assessing uncertainty. The goal is to create enough 
understanding so that methods described in later chapters can be fully appreciated.

5.2 conVenTionaL (FrequenTisT) inFerence meTHods

The standard tools of statistical inference, including the concept and approaches of 
constructing a null hypotheses and associated p values, are based on the frequentist 
view of probability. From a frequentist perspective, the probability of an event is 
defined as the fraction of times that the event occurs in a very large number of trials 
(known as a probability limit). Given a hypothesis and data addressing it, the classi-
cal procedure is to calculate from the data an appropriate statistic, which is typically 
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a single number. Based on the hypothesis being true and other assumptions, the 
probability distribution of this statistic is a known function.

This distribution, together with the numerical value of the statistic, allows an 
assessment of how “unusual” the data are, assuming that the hypothesis is valid. The 
p value is the probability that the observed value of the statistic (or values even more 
extreme) occur. The data are declared significant at a particular level (α); if p < α, the 
data are considered sufficiently “unusual” relative to the hypothesis and the hypoth-
esis is rejected. Standard, albeit arbitrary, values of α are taken as 0.05 and 0.01. Let 
us suppose that a particular data set gives p = 0.02. From the frequentist vantage, 
this means that, if the hypothesis were true and the whole experiment were to be 
repeated many times under identical conditions, in only 2% of such trials would the 
value of the statistic be “more unusual or extreme” than the value actually observed. 
One then prefers to believe that the data are not, in fact, “unusual”* and concludes 
that the assumed hypothesis is untenable.

It is important to note that the conclusion drawn from the observed data is based 
on a comparison with virtual data that might have been collected in other identical 
experiments but were never really observed. In fact, a judgement is made on the 
data rather than directly on the model or hypothesis. No consideration is given to 
the plausibility of the original hypothesis or specific alternatives. It is an erroneous 
assumption that the p value is a measure of the validity of the null hypothesis. As 
noted, p merely makes a statement about the data on the assumption that the hypoth-
esis is valid.

While this is an almost universally used technique for testing hypotheses, the 
procedure can produce some odd or ambiguous conclusions. The following example, 
from the suggestion of Lindley and Phillips (1976), is quoted by Carlin and Louis 
(2000). We test the null hypothesis H0:θ = 0.5 for the probability that a given coin 
will turn up “heads” after a toss; the alternative hypothesis is Ha:θ > 0.5, i.e., the coin 
is biased toward “heads.” Twelve independent tosses result in 9 heads and 3 tails. In 
this case, the choice of test statistic is simple; it is the number of heads, denoted by 
r. The binomial distribution gives the probability of obtaining r heads in 12 tosses 
as the following:

 

p r n
r

r r
θ θ θ, =( )=
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 (5.1)

The p value is given by

 

p r n
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r

θ= =( )=
=

=

∑ 0 5 12 0 073
9

12

. , .
  (5.2)

* That is, the observed statistic is considered to be a sample from the “center” of some (unknown) distri-
bution whose form depends upon the true (unknown) hypothesis.
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This is the probability of obtaining the observed number of heads, or more extreme 
(i.e., larger) values, when H0 is assumed true (θ = 0.5). Thus, H0 is not rejected at the 
5% level; to observe 9 heads, or more, in 12 tosses, is not sufficiently unusual for a 
coin with θ = 0.5.

The above treatment has implicitly assumed that the experimental design was 
such that the number of trials was fixed at 12 and the observation was the number of 
heads. However, an alternative design could have been to continue tossing the coin 
until 3 tails were obtained, and the observation would be n, the number of tosses 
required to produce the 3 tails. In this case, the statistic for judging the data is just 
n. But the distribution of n, the number of tosses to produce 3 tails, is given by the 
negative binomial:

 

p n r
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  (5.3)

and the p value for the experiment is given by

 

p n θ= =( )=
=
∑ 0 5 3 0 033

12

. , .r
n

∞

 (5.4)

This is the probability of a result of n = 12, or more extreme values, given that θ = 0.5 
(H0 assumed true). The result calls for rejection of H0 at the 5% level.

The difference arises because the identification of which of the data element is the 
random variable differs between the 2 designs. It is r, the number of heads, in the first 
case and n, the number of tosses, in the second. The p values compare the actually 
observed data with the data from an infinite number of virtual experiments (the fre-
quentist approach). In the first case, all these experiments have 12 tosses and varying 
numbers of heads: in the second, they all have 3 tails and varying numbers of tosses.

Critics of the frequentist approach consider this disturbing. The actual observa-
tions: “in 12 tosses of a coin, 9 heads and 3 tails were observed” should not lead to 2 
different conclusions dependent only upon the choice of when to stop the experiment 
(at 12 tosses or at 3 tails).

5.3 experimenTs cHange THe sTaTe oF knowLedge

The basic premise of the Bayesian approach is that observations change the state 
of knowledge of a system. Let us suppose for simplicity that the item of interest is 
some parameter, θ, describing a state of nature (as in the above example, where θ 
was a property of the coin and the conditions under which it was tossed). Figure 5.1 
indicates symbolically the development of knowledge.

The extent of knowledge about θ can be quantified by showing that probability 
also can be interpreted as “degree of belief” (Lindley 1965), “measure of plausibil-
ity” (Loredo 1990), or “personal probability” (O’Hagan 2001). Early workers such as 
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Bernoulli (1713) held this view of probability. Laplace (1812, 1820, 1951) described 
probability theory as “commonsense reduced to calculation.” And, in Laplace’s 
epistemic context, probability “expresses numerically degrees of uncertainty in light 
of data” (Howson and Urbach 1989). A large part of the motivation for the initial 
studies by workers such as Bernoulli and Laplace derived from the sponsorship of 
gambling noblemen. In fact, the problems addressed might now be called risk assess-
ment because the noblemen wished to conduct their gaming so as to reduce their risk 
of loss and increase the “risk” of winning. Probability theory was intended to assist 
such decision making.

The above approach, which was attacked as being too vague to be the starting 
point of any theory of probability, led eventually to the frequentist approach, where 
probability was defined in a manner that assigns a numerical value, albeit a value that 
cannot ever be measured, since it requires an infinite number of trials

The numerical properties of probability and degrees of belief can be defined 
effectively and sensibly using a few axioms.

5.4 ruLes oF probabiLiTy

Probability can be defined as a limiting case of a frequency ratio, and from this 
view the various rules of probability can be derived. An alternative approach is 
an axiomatic one that states that there is a quantity called probability associated 
with events and that it possesses assigned properties. The former is largely the 
frequentist point of view, the axiomatic approach is shared by Bayesians and non-
Bayesians alike.

Probability values lie continuously in the range 0 to 1 inclusive, where the end-
points zero and unity are identified with impossibility and certainty, respectively. 
This follows immediately for the frequentist; for the axiomatic approach it is adopted 
as an axiom, but one imbued with Laplace’s “commonsense.” Any other range could 
be chosen at the cost of greater difficulty of interpretation.

Suppose A and B are events, then,

 
p AB p A B p B( ) = ( ) ⋅ ( )   (5.5)

where “AB” means that both events occur, or both propositions are valid. The 
notation introduces p(A|B), the probability of A conditional on B. For the frequen-
tist, it means lim

N
n AB n B

→∞
( ) ( )( ) , being the frequency ratio of occurrence of A on 

all the occasions when B occurred (n => N). If p(B) ≠ 0 then, as the total number 
of trials (N) tends to infinity, so does n(B). The above relationship then follows 
quite directly:

Prior knowledge of θ Better knowledge of θ 
Observations

Figure 5.1 Observations contribute to knowledge.
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For the Bayesian, the relationship is taken as an axiom, but its motivation reflects the real 
world with the foreshadowing of rules implied by the above frequentist treatment.

Given the 2 events or propositions, A and B, then

 
p A B p A p B p AB or ( ) = ( ) + ( ) − ( )   (5.7)

where “A or B” means the inclusive “or,” i.e., at least 1 of A and B occur. In Figure 5.2, 
it corresponds to the union of the 2 areas. The frequentist’s numbers are shown in the 
various categories. From the figure it can be seen that

 

n A B n A n AB n B n AB n AB

n

 or ( ) = ( ) − ( ){ } + ( ) − ( ){ } + ( )
= AA n B n AB( ) + ( ) − ( )   (5.8)

from which the result follows. The Bayesian takes the result as an axiom, motivated 
by the real world.

5.5 bayes’ THeorem

The result p AB p A B p B( ) = ( ) ⋅ ( )  is symmetrical in A and B on the left side. It 
could equally well be written p(BA), but

n(B) – n(AB)

n(AB)
n(A) – n(AB)

Figure 5.2 Venn diagram illustrating the development of conditional probability.
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thus

 

p A B p B p B A p A

p A B
p B A p A

p B

( ) ⋅ ( ) = ( ) ⋅ ( )

( ) =
( ) ⋅ ( )

( )   (5.10)

Equation (5.10) is a statement of Bayes’ theorem. Since the theorem is proved using 
results or axioms valid for both frequentist and Bayesian views, its use is not limited 
to Bayesian applications. Note that it relates 2 conditional probabilities where the 
events A and B are interchanged.

Bayesian interpretation and application of the theorem quantifies the development 
of information. Suppose that A is a statement or hypothesis, and let p(A) stand for 
the degree of belief in the statement or hypothesis A, based on prior knowledge, it 
is called the prior probability. Let B represent a set of observations, then p(B|A) is 
the probability that those observations occur given that A is true. This is called the 
“likelihood” of the data and is a function of the hypothesis. The left side, p(A|B), 
is the new degree of belief in A, taking into account the observations B, it is called 
the posterior probability. Thus Bayes’ theorem tracks the effect that the observa-
tions have upon the changing knowledge about the hypothesis. The theorem can be 
expressed thus:

 posterior probability  likelihood function∝    prior probability ×   (5.11)

Figure 5.3 is a copy of Figure 5.1 showing the portions of the Bayes formulation 
pertaining to each part of the development of knowledge.

The argument can be extended to treat multiple hypotheses. Suppose A1 and A2 
are competing hypotheses. Then Bayes’ theorem gives the following:

 
p A B

p B A p A
p B

p A B
p B A p A

1
1 1

2
2 2( ) =

( ) ⋅ ( )
( ) ( ) =

( ) ⋅ ( )
;

pp B( )   (5.12)

Prior knowledge of θ
p(A)

Posterior knowledge of θ
p(A|B) 

Observations
p(B|A)

p(B)

Figure 5.3 The contributions of the components of Bayes’ theorem to the development 
of knowledge.
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giving the ratio
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which can be written in words as

 posterior odds ratio = likelihood ratio × prior odds ratio.

The coin-tossing experiment can be analyzed using this approach. As before, let θ be 
the probability of “heads.” The hypothesis θ = 0.5 is essentially meaningless because 
θ is a continuous parameter. Let the 2 hypotheses A1 and A2 be θ < 0.5 and θ > 0.5, 
respectively. The “prior odds ratio” represents an initial assessment of the relative 
probabilities or degree of belief of the 2 hypotheses. In the absence of any previous 
knowledge, a “noninformative prior” is used; in this case, we may assume it equally 
likely that the coin is biased to heads or tails, i.e., p (A1) = p(A2). Consequently, the 
prior odds ratio is unity. Recognizing the earlier ambiguity whether the binomial or 
negative binomial distribution is applicable, we shall calculate the likelihood func-
tion, p(B|Ai) using each.

For the binomial distribution the likelihood function is
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and for the negative binomial it is

 
p r12 3
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The functional dependence upon θ is identical for the 2 distributions. The coef-
ficients cancel out when the likelihood is used in Bayes’ theorem since they also 
appear in

  p B p B d( ) ( )=∫ θ θ

0

1

they also cancel out in the likelihood ratio. The approach does not suffer from ambi-
guity depending upon the design of the experiment; only the data are important in 
conformance with the likelihood principle, which states that the likelihood function 
expresses all the information that can be inferred about the parameter, θ, from the 
observed data.
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Suppressing the unimportant coefficients, the likelihoods for the 2 hypotheses are 
obtained by integrating over the values of θ covering the appropriate range:

 

A p r n d1
9 3

0

0 5

9 12 0 5 1,

1.613 1

= = < ∝ −

= ×

( ) ( )∫, .
.

θ θ θ θ

00

3.3

−

= = > ∝ −

=

( ) ( )∫

5

2
9 3

0 5

1

9 12 0 5 1A p r n d, , .
.

θ θ θ θ

335 10× −4

  (5.16)

Thus the likelihood ratio is 0.048. The new state of knowledge concerning θ is then 
expressed by the posterior odds:
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This is a statement of the relative plausibility of the 2 hypotheses based on the obser-
vations. If one were a betting person, one would offer odds of 19 to 1 against the coin 
being biased toward “tails.”

5.6  exampLes reLeVanT To uncerTainTy in risk assessmenT 
quanTiFying pLausibiLiTy oF a cause–eFFecT modeL

Central to any risk assessment is a model of causality. At the onset, a conceptual 
model is needed that identifies a plausible cause–effect relationship linking stressor 
exposure to some effect. Most ecological risk assessments rely heavily on weight-
of-evidence or expert opinion methods to foster plausibility of the causal model. 
Unfortunately, such methods are prone to considerable error (Lane et al. 1987; 
Hutchinson and Lane 1989; Lane 1989), and attempts to quantify that error are rare. 
Although seldom used in risk assessment, Bayesian methods can explicitly quantify 
the plausibility of a causal model.

Let’s use a fictitious example to illustrate the application of Bayes’ theorem to 
quantifying the level of belief warranted in a causal model. A fishkill is observed 
below a discharge and the question is asked, “Did a toxic release (e.g., greater than 
LC10) from the point source cause the fishkill?” From the literature, one gathers 
evidence to assess this causal hypothesis. From a toxicological study of the major 
chemical of concern in the discharge, the likelihood of a fishkill if the discharge 
concentration was greater than LC10 (i.e., p(Fishkill|Release) > LC10) is calculated 
to be 0.400. From historical discharge records, it is also calculated that the prob-
ability of a discharge toxicant concentration greater than LC10 (i.e., p(Release) > 
LC10) is 0.005. From records of fishkills in this and similar streams of the region, the 
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likelihood of a fishkill (p(Fishkill)) is 0.003. This information can be applied with 
Bayes’ theorem (Equation (5.10) to estimate the probability that there was a toxic 
discharge (>LC10) given the observed fishkill:

 

p
p p

( | )
( | ) (

Release Fishkill
Fishkill Release R

=
⋅ eelease

Fishkill
)

( )p

Inserting the above estimates into the right side of the equation gives a 
p(Release|Fishkill) of 0.666. Based on the evidence, the odds are 2 to 1 that the dis-
charge caused the fishkill. Is this evidence sufficient to take regulatory action? Likely, 
it is not. One would need to gather more information in order to produce a level of 
belief sufficient to decide whether or not regulatory action was required. Assume 
that a characteristic lesion was found on the dead fish and that we know from the 
literature that p(Lesion|No Toxicant Exposure) = 0.010 and that p(Lesion|Exposure 
to the Discharge Toxicant) = 0.540. The likelihood ratio is 0.54:0.01 or 54:1. The 
posterior odds of 2:1 just calculated can become our new prior odds, and, based on 
this new evidence and Equation (5.11), new posterior odds of the toxic release having 
caused the fishkill can be calculated:

 Posterior Odds = Likelihood Ratio × Prior Odds = 54 × 2 = 108:1

Based on this evidence, the odds that a toxic release caused the fishkill is a convinc-
ing 108 to 1. The level of belief is now sufficiently high for a reasonable person to 
take regulatory action. Bayes’ theorem allowed optimal use of evidence to define 
the belief warranted in the causal hypothesis that a toxic release caused the fishkill: 
evidence changed our state of knowledge about the fishkill.

5.6.1 estimating inDoor raDon exposure

Empirical Bayes methods were applied to estimate geometric means (GM) of 
indoor radon concentrations for Minnesota counties (Price et al. 1996). Data 
were collected unevenly among counties, with some counties having very low 
numbers of samples. Consequently, counties with low sample numbers had more 
error in GM estimates than adequately sampled counties. Bayesian methods 
allowed estimation of GM and associated variance despite these differences in 
county sample sizes. Even if no measurements were available for a given county, 
there is nonetheless some knowledge about the county GM. Denoting the loga-
rithm of the GM by θ, the GM were assumed to be log-normally distributed 
among the counties based on existing data, i.e., the state of knowledge of θ is 
represented by p(θ) = N(µ, σ²), where µ = the “true” mean of the logarithm of 
radon concentration over all counties. The p(θ) is the informative prior distri-
bution. Also, radon concentrations were judged to be log-normally distributed 
within counties based on results for amply sampled counties: N(µ, σ²) for the 
logarithm of radon concentration. New estimates of county GM were then esti-
mated with Bayes’ theorem,
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where p(θ|y) = the probability that the true mean is θ given the data y, and p(y|θ) = 
the likelihood or probability of the data set, y, given θ. The p(y) is a constant that, 
in practice, is estimated such that the right side of the equation integrates to unity 
(O’Hagan 2001). The “true” GM’s of county radon concentrations were estimated 
with a modification of this equation and sample-size weighting of county geomet-
ric means. The informative prior distribution as modified by the likelihood of get-
ting the data, y, for a county given θ and a better estimate of θ was produced: one 
“learned” from a particular county’s data to produce a better estimate. The value of 
θ that maximizes Equation 5.18 can be considered a “best guess” of the true value 
of θ.

5.6.2 speCies sensitivity example

Suppose that we wish to know the species sensitivity distribution (SSD) for a new 
pesticide, chemical A. Specifically, we wish to know the collection of LC50 values 
for many species. Unfortunately, chemical A has been tested on only a very limited 
number of species. For each species, an LC50 value has been estimated. Suppose also 
that pesticide B, having similar chemical structure and identical mode of action, has 
been tested on many species. Can we use the information about B to help us estimate 
the SSD for A and, if so, how? One way, of course, is informal. We take our knowl-
edge of B and our subject matter knowledge, cogitate for a while, and come up with 
our best guess for the species sensitivity curve for A. However, a Bayesian approach 
provides a more formal, quantitative method for using the information about B.

We begin with a model for the shape of the SSD. For the sake of argument, we will 
assume that the SSD of B is approximately normal. That is, the histogram of the LC50 
values for pesticide B looks approximately like a normal density with mean µB and vari-
ance σB

2 . We may reasonably expect the SSD of A also to be normal with unknown mean 
µA but the same variance, σ σA B

2 2= . Standard statistical theory tells us how to estimate µA 
and σA

2  from the few species that have been tested with A. But Bayesian statistics goes a 
bit further by telling us also how to use the information about pesticide B.

The fact that A and B are so similar chemically suggests that their SSDs will also 
be similar. We can model that by saying that µA is likely to be within a range of µB 
plus or minus, for example, 200. This is formally expressed by a statement such as

 
µ µA BN~ ,1002( )   (5.19)

i.e., µA has a normal distribution with mean µB and variance 1002. The 1002 arises 
because we treat the range of ±200 as about 2 standard deviations; so 1 standard 
deviation is 100 and the variance is 1002. Equation 5.19 is the prior probability distri-
bution for µA. Suppose that each species tested with chemical A yields an LC50 value. 
Then Bayes’ theorem and Bayesian statistics provide the formula for combining the 
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prior distribution of µA with the data to yield the posterior distribution. Suppose that 
there were 4 species tested with A that yielded LC50 values of y1, y2, y3, y4.

The likelihood function, p(data|µA), for these data is
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where y y y y y= ( ) + + +( )1 4 1 2 3 4 , i.e., the mean of the observations. It is assumed 
that the observations are independent samples from a normal distribution with vari-
ance σB

2 . The likelihood function of µA is a normal curve with the maximum at y , 
and a variance of σB

2 4 . Bayes’ theorem gives the posterior distribution of µA as
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Some algebra reveals that the posterior distribution of µA is normal with mean
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and variance

 

1
4 1 1002 2σB( ) + ( )   (5.23)

These equations illustrate a common feature of Bayesian analysis: the posterior mean 
is a compromise between the prior mean and the data. In our example, as in every 
simple example with normally distributed data, the posterior mean is a weighted 
average of the prior mean and the data points. Each data point is weighted by the 
reciprocal of its variance, 1 2/ σB , just as the prior mean is weighted by the reciprocal 
of its variance, 1/1002. Because the reciprocal of a variance is such a useful concept, 
it is given a special name, precision. The posterior mean is just the weighted average 
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of the prior mean and the data; the weights are the precisions. The general formula 
is the following:

posterior mean
data precision data value

=
×( )+pprior precision prior mean

data precision

×

(
∑

))+∑ prior precision

 

posterior precision data precision prior = × +N pprecision

posterior variance
posterior pre

= 1
ccision

  (5.24)

Terms in the formula get more or less weight according to their precision, i.e., accord-
ing to how accurate they are as measures of µA. The posterior precision measures 
how accurately we know µA. It is the sum of the prior precision and the precisions of 
each of the data points. In our example that is

 

1
100

1 1 1 1
2 2 2 2 2+ + + +

σ σ σ σB B B B   (5.25)

This simple example illustrates principles of Bayesian analysis and how it accom-
modates information from different sources. Real situations and real analyses can 
be more complicated than our example. For example, when species are tested with 
chemical A, we might not know their LC50 values exactly; instead, we might have 
estimates of LC50 values. Or we may have data on another similar chemical C. 
In each case, we would adjust the analysis to accommodate the more complicated 
situation.

5.6.3 inferenCe about ConfiDenCe intervals

Confidence intervals are interpreted differently by frequentists and Bayesians. The 
95% confidence interval derived by a frequentist suggests that the “true” value of 
some parameter (θ) will be contained within the interval 95% of the time in an 
infinite number of trials. Note that each trial results in a different interval because 
the data are different. This statement is dependent on the assumed conditions under 
which the calculations were done, e.g., an infinite number of trials and identical con-
ditions for each trial (O’Hagan 2001). Nothing can be said about whether or not the 
interval contains the “true” θ.

The Bayesian approach reverses the role of the sample and model: the sample 
is fixed and unique, and the model itself is uncertain. This viewpoint corresponds 
more closely to the practical situation facing the individual researcher: there is only 
1 sample, and there are doubts either what model to use, or, for a specified model, 
what parameter values to assign. The model uncertainty is addressed by considering 
that the model parameters are distributed. In other words Bayesian interpretation of 
a confidence interval is that it indicates the level of belief warranted by the data: the 
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posterior probability is 0.95 that the “true” θ is within the stated 95% confidence 
interval. Statements are made about θ based on the data alone, not an infinite number 
of virtual trials.

The classical or frequentist approach to probability is the one most taught in uni-
versity courses. That may change, however, because the Bayesian approach is the 
more easily understood statistical philosophy, both conceptually as well as numeri-
cally. Many scientists have difficulty in articulating correctly the meaning of a 
confidence interval within the “classical” frequentist framework. The common mis-
interpretation: the probability that a parameter lies between certain limits is exactly 
the correct one from the Bayesian standpoint.

Apart from this pedagogical aspect (cf. Lee 1989, preface), there is a more techni-
cal reason to prefer the Bayesian approach to the confidence approach. The Bayesian 
approach is the more powerful one eventually, for extending a model into directions 
necessary to deal with its weaknesses. These are various relaxations of distributional 
assumptions. The conceptual device of an infinite repetition of samples, as in the 
frequentist viewpoint, does not yield enough power to accomplish these extensions.

Confidence intervals using frequentist and Bayesian approaches have been com-
pared for the normal distribution with mean μ and standard deviation σ (Aldenberg 
and Jaworska 2000). In particular, data on species sensitivity to a toxicant was fitted 
to a normal distribution to form the species sensitivity distribution (SSD). Fraction 
affected (FA) and the hazardous concentration (HC), i.e., percentiles and their confi-
dence intervals, were analyzed. Lower and upper confidence limits were developed 
from t statistics to form 90% 2-sided classical confidence intervals. Bayesian treat-
ment of the uncertainty of μ and σ of a presupposed normal distribution followed the 
approach of Box and Tiao (1973, chapter 2, section 2.4). Noninformative prior distri-
butions for the parameters μ and σ specify the initial state of knowledge. These were 
constant c and 1/σ, respectively. Bayes’ theorem transforms the prior into the pos-
terior distribution by the multiplication of the classic likelihood function of the data 
and the joint prior distribution of the parameters, in this case μ and σ (Figure 5.4).

The Bayesian equivalent to the frequentist 90% confidence interval is delineated 
by the 5th and 95th percentiles of the posterior distribution. Bayesian confidence 
intervals for SSD (Figures 5.4 to 5.5), 5th percentile, i.e., HC5 and fraction affected 
(Figures 5.4 to 5.6) were calculated from the posterior distribution. Thus, the uncer-
tainties of both HC and FA are established in 1 consistent mathematical frame-
work: FA estimates at the log10 HC lead to the intended protection percentage, i.e., 
FA50(log10 HCp

50 ) = p where p is a protection level. Further full distribution of HC 
and FA uncertainty can be very easily extracted from posterior distribution for any 
level of protection and visualized (Figures 5.5 to 5.7).

For the normal distribution there are analytical solutions allowing the assessment of 
both FA and HC using frequentist statistics. In contrast, Bayesian solutions are numer-
ical. This highlights the flexibility of the Bayesian approach since it can easily deal 
with any distribution, which is not always possible with the frequentist approach.

Aldenberg and Jaworska (2000) demonstrate that frequentist statistics and the 
Bayesian approach with noninformative prior results in identical confidence intervals for 
the normal distribution. Generally speaking, this is more the exception than the rule.
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Figure 5.4 Bayesian normal density “spaghetti plot”: random sample of 100 normal prob-
ability density functions (pdfs) drawn from the posterior distribution of μ and σ, given 7 
cadmium NOEC toxicity data (dots) from Aldenberg and Jaworska (2000).
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Figure 5.5 Bayesian posterior normal probability density function values for SSD for 
cadmium and its Bayesian confidence limits: 5th, 50th, and 95th percentiles (black) and 
Bayesian posterior probability density of the HC5 (gray).
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Figure 5.6 Bayesian confidence limits of the fraction affected: percentiles (5th, 50th, and 
95th) of posterior normal cdfs for cadmium. Data plotted cumulatively at (i − 0.5)/n , with i 
rank order, and n the number of species tested.
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Figure 5.7 Bayesian posterior probability density of the fraction affected at median log 
(HC5) for cadmium.
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For those who feel more confident with the frequentist approach and find the 
Bayesian approach controversial to some extent, it is advantageous that both 
approaches yield the same answers in this simplest case. This might add confidence 
in the Bayesian approach for some practitioners.

5.7 concLusion

The general Bayesian context is presented in this brief chapter with the intent of 
building sufficient understanding so that the reader can fully appreciate the meth-
ods presented with more complexity in following chapters. The distinction between 
the frequentist and Bayesian vantages was made using contrasting analyses of the 
outcomes of simple coin-toss trials. Then, the Bayesian theorem and associated con-
cepts were explored briefly. Three examples relevant to uncertainty in risk assess-
ments were given: estimation of the level of belief warranted for a causal model, 
estimation of exposure concentrations based on uneven sampling of a study area, and 
interpretation of confidence intervals. Hopefully, more involved Bayesian methods 
applied in later chapters will now be more easily understood.
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6 Bounding Uncertainty 
Analyses

S. Ferson, D. R. J. Moore, P. J. Van den Brink,  
T. L. Estes, K. Gallagher, R. O’Connor, 
and F. Verdonck

6.1 inTroducTion

Risk analysts emphasize the differences between variability and incertitude, which 
are fundamentally different kinds of uncertainty. Variability is heterogeneity and sto-
chasticity, such as spatial variation in chemical concentration, temporal fluctuations 
in weather, and genetic differences in susceptibility among individuals. Incertitude, 
on the other hand, is incomplete knowledge such as that arising from measurement 
error, doubt about the model or abstraction that should be used, limited sample sizes, 
possible biases in empirical design, and use of surrogate data. Incertitude can gen-
erally be reduced by additional empirical effort, but this is not true for variability. 
Although variability can perhaps be better characterized by the collection of more 
data, its amount and patterns are usually objective facts of nature that are not dimin-
ished by empirical effort. Most analysts agree that it is essential to keep these 2 kinds 
of uncertainty separate in any assessment for the sake of planning effective remedia-
tion or management strategies.

6.1.1 Why bounDing?

There are basically 2 approaches for making calculations in the face of uncertainty. 
One approach is to approximate an estimate. Much of the machinery of modern 
analysis and statistics is focused on getting good approximations. Another approach 
is to bound the value being sought. These 2 approaches are clearly complementary 
to each other.

Rowe (1988) reviewed the following advantages of bounding over approximation 
as a strategy for calculation under uncertainty. Bounds are

Possible even when estimates are impossible•	
Rigorous rather than approximate•	
Possible to make optimally tight•	
Usually easier to compute than approximations•	
Very simple to combine with other bounds•	
Often sufficient for decisions•	
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It is generally possible to obtain bounds on a quantity even when reasonable 
approximations are impossible. For some variable, we may have no reasonable 
basis to say what its value is in a particular situation, yet be entirely confident of 
bounds on it. Averaging upper and lower bounds to make an estimate destroys 
this confidence in order to construct an approximation of unknown reliability. If 
handled consistently, bounding can yield rigorous mathematical results, rather than 
mere approximations. Such calculations allow us to be sure, which can be more 
useful in practical settings than being, say, 95% sure, as statistical confidence pro-
cedures permit us to be. In many cases, bounding estimates can be shown to be 
the best possible. In other words, it may be possible to prove that the bounds could 
not be any tighter given the available information. Such a finding would give an 
analyst an excellent argument for gathering more data if the bounds were too wide 
to support clear decisions.

Bounds are often easier to compute than approximate estimates, which, in con-
trast, commonly require the solving of integrals. This simplicity of calculation 
extends to the combination of bounds. If, for instance, one set of information tells 
us that A is in a particular interval and another set tells us that A is in a different 
interval, it is straightforward to compute what the aggregate data set is implying 
simply by taking the intersection of the 2 intervals. When we have 2 estimates from 
separate approximations, on the other hand, we would have to invoke a much more 
complicated meta-analysis to combine the estimates.

In many cases, determining the correct decision does not require perfect preci-
sion. Analysis can reveal whether the uncertainty makes it unclear what the best 
decision is. Because the bounds on uncertainty tend to tighten as we collect more 
data, as soon as the best decision is obvious, one can stop gathering data. For approx-
imations that contain no associated statement about their own reliability, scientists 
tend to always clamor for more data no matter how much they already have. For 
approximations, it takes an explicit uncertainty analysis to discern whether the data 
are essential to make the decision at hand.

6.1.2 Why Worst Case anD intervals are not enough

The crudest form of bounding analysis is just interval arithmetic (Moore 1966; 
Neumaier 1990). In this approach the uncertainty about each quantity is reduced 
to a pair of numbers, an upper bound and a lower bound, that circumscribe all the 
possible values of the quantity. In the analysis, these numbers are combined in such 
a way to obtain sure bounds on the resulting value. Formally, this is equivalent to a 
worst case analysis (which tries to do the same thing with only 1 extreme value per 
quantity). The limitations of such analyses are well known. Both interval arithmetic 
and any simple worst case analysis

Cannot take account of distributions•	
Cannot take account of correlations and dependencies•	
Can be hyperconservative•	
Do not express likelihood of extremes•	
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With an assessment as crude as interval or worst case analysis, it is impossible to 
make use of detailed empirical information, which is sometimes available, about 
a quantity beside its potential range. It wouldn’t help, for instance, to know that 
most values are close to some central tendency, or that the variation in the quan-
tity expressed through time follows a normal distribution. Knowledge about the sta-
tistical associations between variables is also useless in crude bounding analyses. 
For instance, if we know that large organisms drink more contaminated water than 
small ones and thus receive larger exposures, we may not be able to account for this 
association to gain more specific information about the final risk to the population. 
Because these methods do not use all the available information, they can produce 
results that are more conservative than is necessary given what is known. This leads 
to wasted resources in cleanup or unnecessary restrictions on pesticide applications. 
The central problem with crude bounding is that it addresses only the bounds on 
risks. It makes no statement about how likely such extreme risks are. Even if the 
upper bound represents an intolerable risk, if the chance of it actually occurring is 
vanishingly small, it may be unreasonable to base regulation on this value. Effective 
management requires that we somehow estimate these chances.

6.1.3 limitations of traDitional appliCations of probability

Probability theory is, of course, designed precisely to estimate these chances. 
Because of this, probabilistic assessment is regarded by many as the heir apparent to 
worst case analysis. However, traditional applications of probability theory also have 
some severe limitations. As it is used in risk assessments today, probability theory

Requires a lot of information, or else subjective judgment•	
Cannot address shape or model uncertainty•	
Makes back calculation cumbersome or impossible•	
Has an inadequate model of ignorance•	
Confounds variability with incertitude•	

That probabilistic assessment requires a lot of data to parameterize is obvious to 
anyone who has attempted to use it. Once one has established the mathematical 
expression to evaluate, one must come up with estimates for the statistical distribu-
tion for each parameter in the expression. This implies knowledge not only of the 
means and variances, but in principle, of all of the moments and of all details about 
each distribution. One then is responsible for specifying the multivariate dependen-
cies among all the parameters as well. This task is well beyond specifying all pos-
sible pairwise correlations (which, by itself, is so hard that virtually no one has the 
requisite empirical information). As a consequence of this need, analysts routinely 
make assumptions or use subjective judgments about quantitative details, which are, 
of course, difficult to justify when the assessment is scrutinized in public review.

There are also some technical problems with current probabilistic assessments. 
Notably, there is no satisfactory way to handle uncertainty about the proper mathe-
matical model to use. (Is this the correct expression to compute in the first place? Are 
these assumptions appropriate?) Just as important is the lack of effective strategies 
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for inverting the equations involving uncertainty to find solutions to various back 
calculation problems. (What distribution of environmental concentrations can be 
allowed given constraints on the resulting doses that can be tolerated in organisms?) 
Traditional probabilistic assessments conducted for pesticides have no robust and 
comprehensive strategies to answer these kinds of questions.

The fundamental limitation of probability theory, at least in the way it is usually 
applied in practical assessments, is that it has an inadequate model of ignorance. For 
instance, when all that is known about a quantity is its theoretical range, probabilists 
traditionally employ a uniform distribution over this range to represent this uncer-
tainty. This approach dates back to Laplace himself and his “principle of insufficient 
reason.” The approach is also justified by modern reasoning appealing to the “maxi-
mum entropy criterion” (Jaynes 1957; Lee and Wright 1994). But not knowing the 
value of a quantity is not the same as having it vary randomly. When probabilists do 
not distinguish between equiprobability and ignorance, they are confounding vari-
ability with incertitude.

6.1.4 DisaDvantages of 2nD-orDer monte Carlo simulation

Some analysts suggest the use of 2nd-order probabilistic methods to overcome the 
limitations outlined above. The idea is to strictly separate variability from incerti-
tude. Second-order Monte Carlo simulation is often offered as a way to effect this 
separation. Unfortunately, this approach is not without its own problems. Second-
order Monte Carlo simulation

Is expensive to compute (involving squared effort)•	
Can be daunting to parameterize•	
Has ugly displays that can be hard to explain•	
Encounters some technical problems in computations•	
Cannot handle shape or model uncertainty•	
Is cumbersome in a back calculation•	
Does not handle incertitude correctly•	

Second-order Monte Carlo simulation consists of a Monte Carlo simulation in which 
each iteration represents an entire Monte Carlo simulation. The calculation thus 
usually demands a squared calculational effort. Because 2nd-order Monte Carlo 
simulation requires the analyst to specify a distribution for each parameter of the 
primary distributions (and, one supposes, the ancillary dependencies as well), ana-
lysts who were already heavily taxed in simple simulations can find it overwhelming 
to parameterize the full 2-dimensional effort. The graphical displays that result from 
2nd-order Monte Carlo simulations are sometimes called by the evocative names 
of “spaghetti plots” or even “bad hair day plots.” These outputs can be confusing to 
interpret even for professionals and often engender distrust or even laughter among 
nontechnical decision makers to whom they are shown.

There are also some technical difficulties with this approach. For instance, if 
the distributions for the minimum and maximum of a uniform distribution overlap 
at all, then there is a possibility that the selected minimum exceeds the selected 
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maximum. It is unclear what analysts should do in such a situation. The problem is 
actually rather general, because, for many statistical distributions, there are logical 
constraints that govern the relations between the parameters (see Frey and Rhodes 
1998). Other technical problems include the fact that this approach, like simple 
Monte Carlo simulation, has no comprehensive strategy for addressing model uncer-
tainty or solving back calculations. Although back calculations have been attempted 
in the context of 2nd-order simulations (cf. Parysow and Tazik 2001), they are at best 
rather cumbersome because they must be done via trial and error with trials that are 
computationally expensive to start with.

Finally, we argue that this approach does not handle incertitude correctly. 
Although a 2nd-order Monte Carlo simulation does conscientiously separate vari-
ability from incertitude, it still applies the methods of Laplace to incertitude. As a 
result, it can produce estimates that are inappropriate or unusable in risk analysis 
(Ferson and Ginzburg 1996).

6.1.5 What is neeDeD?

We suggest that what is needed is a bounding approach that marries the advantages 
of interval analysis with those of probability theory while sidestepping the limita-
tions of both. In the following sections, we describe 2 very different approaches that 
do just this in different ways.

6.2 robusT bayes

In a regular application of Bayes’s rule, a prior estimate of probability and a likeli-
hood function are combined to produce a posterior estimate of probability, which 
may then be used as an input in a risk analysis. Bayes’s rule is

 p(θ|E) = p(θ) p(E|θ)/p(E)

where p denotes probability mass or density, θ is the value of the quantity in ques-
tion, E denotes the evidence being considered, p(θ) is the prior probability for a value 
θ, p(E|θ) is the conditional likelihood function that expresses the probability of the 
evidence given a particular value of θ, and p(E) is the probability of having obtained 
the observed evidence. For most Bayesians, the prior estimate represents the opin-
ion or belief of the analyst, obtained through reflection or self-examination. It is 
intended to represent, at least initially, the analyst’s subjective knowledge before any 
specific evidence is considered. It may be the result of amorphous preconceptions or 
mechanistic reasoning or a combination of the 2. It may also be the posterior from an 
earlier application of Bayes’s rule conducted with a separate collection of data from 
a previous prior estimate. The likelihood function represents a model, also perhaps 
taken from the subjective knowledge of the analyst, of what data would imply about 
the variable in question. Traditionally, Bayesians assume ideal precision, that is, that 
both the prior and the likelihood are perfectly well-specified probabilities.

When there are many possible values of θ and the prior p(θ) is a probabil-
ity distribution and the likelihood function p(E|θ) is defined on the same axis, 
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then Bayes’s rule can be used to obtain a probability distribution for the poste-
rior p(θ|E). This is done by applying the rule for each value of θ. For example, 
Figure 6.1 depicts the application of Bayes’s rule to a prior distribution to obtain 
a posterior distribution. The probability of the evidence p(E) in such cases is the 
same for all values of θ and is sometimes called the normalization factor because 
it’s the divisor that makes the posterior distribution end up with unit area. This 
divisor is the sum or integral with respect to θ of the product of the prior and the 
probability of observing a value if the value were actually θ. The rule is applied 
for all values of θ to obtain p(θ|E), which is the distribution of θ given the evi-
dence. When the normalization factor is computed via an integral expression, the 
computational burdens associated with applying Bayes’s rule for distributions can 
be substantial. There is usually no closed-form solution available for computing 
the integral in the denominator, unless the prior and likelihood happen to con-
stitute a “conjugate pair” for which the analytical details work out nicely. For 
instance, under particular assumptions, the following pairs of prior and likeli-
hood (from which observations are drawn) yield the posterior distribution shown 
in Table 6.1.

–5 0 5 10
θ

15 20

Likelihood

Posterior (normalized)

Prior

Figure 6.1 Bayes combination of a prior distribution and a likelihood function to obtain a 
posterior distribution for θ. The vertical axis (not shown) is probability density.

TabLe 6.1
posterior distribution

prior Likelihood posterior

Beta Bernoulli Beta

Beta Binomial Beta

Gamma Poisson Gamma

Beta Negative binomial Beta

Normal Normal Normal

Gamma Normal Gamma

Inverse-gamma Exponential Inverse-gamma
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For these pairs, updating rules permit the immediate specification of the poste-
rior’s parameters from those of the prior and statistics from the data. For the assump-
tions underlying the use of these conjugate pairs and details on exactly how the 
calculations are to be made, consult standard references on Bayesian methods (e.g., 
DeGroot 1970; Berger 1985; Sander and Badoux 1991; Gelman et al. 1995; Lee 1997). 
Naturally, the existence of these conjugate pairs greatly simplifies the demands of 
applying the rule and are widely used for the sake of convenience, but of course they 
are very restricted in scope and obviously require distributional assumptions.

Robust Bayes methods (Berger 1985; Insua and Ruggeri 2000) acknowledge that 
it is sometimes very difficult to come up with precise distributions to be used as 
priors. Likewise, the appropriate likelihood function that should be used for a par-
ticular problem may be in doubt. In a robust Bayesian analysis, a standard Bayesian 
analysis is applied to a prior distribution and a likelihood function selected from 
classes of priors and likelihoods considered empirically plausible by the analyst. 
This approach has also been called “Bayesian sensitivity analysis.” It is depicted 
in Figure 6.2, in which a class of priors and a class of likelihoods together imply a 
class of posteriors by pairwise combination through Bayes’s rule. A result is said to 
be robust if it’s approximately the same for each such pair. If the answers differ sub-
stantially, then their range is taken as an expression of how much (or how little) can 
be confidently inferred from the analysis. Robust Bayes also uses a similar strategy 
to combine a class of probability models with a class of utility functions to infer a 
class of decisions. A decision analysis is robust if all the possible combinations lead 
to the same decision. Because robustness reflects the insensitivity of the quantitative 
result to small changes in the underlying assumptions of the analysis, it has impor-
tant relevance for the overall reliability of the analysis whenever those assumptions 
are tenuous or in contention.

The classes specified in a robust Bayesian analysis can be defined in a variety of 
ways, depending on the nature of the analyst’s uncertainty. For instance, one could 
specify parametric classes of distributions in one of the conjugate families (e.g., all 
the beta distributions having parameters in certain ranges). Alternatively, one could 
specify parametric classes of distributions but not take advantage of the conjugacies. 

Likelihoods

Posteriors

Priors

–5 0 10
θ

15 205

Figure 6.2 Robust Bayes combination of several prior distributions and likelihood func-
tions to obtain many possible posterior distributions. The vertical axis (not shown) is prob-
ability density.
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The subsequent calculations would probably be a lot harder in this case. There are 
also various other approaches based on density ratios (bounded density distributions), 
ε-contamination models, mixtures, quantile classes, and bounds on cumulative dis-
tribution functions. See Berger (1985, 1994) for an introduction to these ideas.

6.2.1 numeriCal example

Suppose that a prior distribution is within the class of all normal distributions having 
a mean between −1 and +1 and a variance between 1 and 2.5. Suppose further that 
the likelihood function is also characterized by a normal shape, with an unknown 
mean observed to be in the interval [14, 16] and specified variance in the interval 
[1.7, 3]. In Figure 6.2, several prior distributions and likelihood functions from their 
respective classes are drawn on a θ-axis in terms of probability density. Also shown 
on the same axis are several representatives of the class of posterior distributions that 
are obtained by applying Bayes’s rule to every possible pair of prior distribution and 
likelihood function. These are shown as gray curves. Because the priors and likeli-
hoods are conjugate pairs, it is easy in this example to compute the posteriors, which 
will also be normally distributed. The result is a class of normal distributions having 
a mean in the interval [2.75, 9.93] and a variance in the interval [0.63, 1.36]. This 
class of posteriors reflects the incertitude of the result given the professed incertitude 
about the prior and the likelihood. (The wide discrepancy in this example between 
the priors and the likelihoods was used so the reader could visually distinguish the 3 
classes of curves. One might typically expect the priors and the likelihoods to over-
lap much more broadly.) The details of this numerical example depend in part on the 
use of normality assumptions and could differ if other assumptions were made.

6.2.2 aDvantages of the approaCh

In robust Bayesian analysis, the insistence on having a single, precise prior distri-
bution and a single, specific likelihood function is relaxed. In their places, entire 
classes of distributions and functions are used. Although this approach is clearly 
inconsistent with the Bayesian idea that uncertainty should be measured by a single 
additive probability measure and that personal attitudes and values should always 
be measured by a precise utility function, the robust approach can be justified as 
a matter of convenience because arriving at precise statements that encapsulate an 
analyst’s beliefs can be difficult and time consuming. Some analysts also suggest 
that robust methods extend the traditional approach by recognizing incertitude as a 
different kind of uncertainty (Insua and Ruggeri 2000; cf. Berger 1994).

Robust Bayes redresses some of the most commonly heard criticisms of the 
Bayesian approach. For instance, robust Bayes relaxes the requirement for an analyst 
to specify a particular prior distribution and reflects the analyst’s confidence about 
the choice of the prior. Bayesian methods generally preserve zero probabilities. That 
is, any values of the real line for which the prior distribution is surely zero will 
remain with zero probability in the posterior, no matter what the likelihood is and 
no matter what new data may arrive. This preservation of zero probabilities means 
that an erroneous prior conception about what is possible is immutable in the face of 
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any new evidence or argument. In the case of robust Bayesian analysis, only those 
regions of the real line where all the prior distributions in the permissible class are 
identically zero would be preserved at zero.

6.2.3 limitations of the approaCh

There are, however, other limitations of Bayesian methods that are not obviated or 
relaxed by a robust approach. The zero-preservation problem is an extreme case of 
a more general problem of Bayesian methods having to do with their possible insen-
sitivity to surprise in the form of unanticipated data (Hammitt 1995). For instance, 
in the numerical example above, the posterior substantially disagrees with both the 
prior and the new data. When expectation and evidence are in conflict, an analyst 
might prefer fidelity to either one or the other, rather than seeming to split the dif-
ference to a compromise neither supports. Another somewhat troublesome feature 
of Bayesian calculations illustrated by the example is that, despite the apparently 
surprising nature of the evidence, the posterior distributions can be tighter (that is, 
have smaller variance) than the prior distributions. In the case of extreme surprise 
such as this, one might prefer a result that represented more uncertainty, rather 
than less.

Another potentially serious limitation of robust Bayes methods is that their com-
putational costs can be large. The complexity of the requisite calculations depends 
on how the class of priors and the class of likelihoods are specified. In some cases, 
the use of computers may lessen the burden on human analysts, although there does 
not yet exist convenient software for this purpose.

The definition of the classes that characterize one’s uncertainty about the correct 
prior distribution or likelihood function to use can be a rather subtle business. There 
are various ways to construct the classes. Berger (1994) suggests that desirable prop-
erties of the classes would be that they are

Easy to understand and elicit•	
Easy to compute with•	
Sufficiently big to reflect one’s uncertainty•	
Generalizable conveniently to multiple dimensions•	

It is possible that one could specify a class that seems broad and yet does not really 
circumscribe the true uncertainty. For instance, suppose we define a class of prior 
distributions by reference to the parameters of a named probability distribution. This 
would be a very natural thing to do, for instance, if we wanted to use the conjugate 
pairs to simplify the calculations. We might talk about a class of normal distribu-
tions that all have the same variance but different means. A caricature of this class 
is shown in the left set of cumulative distribution functions depicted in Figure 6.3. 
Alternatively, we could talk about a class of prior distributions that all have the same 
mean but different variances (depicted on the right of the figure). We could also talk 
about the much larger class of all normal distributions having a mean in some range 
and a variance in some range. This class would be much harder to depict because 
it has so many elements. However, all of the elements are still very special because 
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of their normality. The class, although it could be very wide if the ranges of the 
parameters are wide, is still extremely sparse in the sense that it excludes almost 
all distributions that have roughly similar distribution shapes. Being normal means 
that each distribution is perfectly symmetrical and balances its mass in the tails in a 
very special way. An analyst needs to decide whether the class is sufficiently rich to 
express the true breadth of uncertainty.

In some situations where uncertainty is great, an analyst might want to define 
classes that are nearly vacuous so that they say as little as possible about what the 
true prior and true likelihood function are. There is one important caveat, however, 
about specifying the classes too broadly. If the class of priors is specified only by 
bounds on the cumulative distribution function (cdf) and the class of likelihood 
functions is likewise specified only as bounds on cumulative probability, then all 
one can conclude about the posterior is its range (which turns out to be the intersec-
tion of the ranges of the prior and the likelihood). Thus, in this highly uncertain 
situation, a robust Bayesian analysis will always produce a trivial result that says 
essentially nothing about the class of posteriors. There is something of an art to 
picking the right classes that fully capture uncertainty but yet do not swerve into 
triviality.

6.3 probabiLiTy bounds anaLysis

Probability bounds analysis is a related strategy for making probabilistic inferences 
in the face of incertitude. It is a method for computing bounds on the distribution 
of a sum, product, or arbitrary mathematical expression, given only bounds on the 
distributions of the addends, factors, or inputs. The bounds are expressed on cumu-
lative distributions (rather than densities). This approach permits analysts to make 
risk calculations without requiring overly precise assumptions about parameter val-
ues, dependence among variables, or distribution shape. Probability bounds analysis 
gives the same answer as interval analysis does when only range information is avail-
able. It also gives the same answers as Monte Carlo analysis does when information 
is abundant enough to precisely specify input distributions and their dependencies. 
Thus, it is a generalization of both interval analysis and probability theory. In sum-
mary, probability bounds analysis

Distinguishes variability and incertitude•	
Makes use of available information•	
Supports all standard mathematical operations•	

0

1
C

D
F

Figure 6.3 Two parametric classes of prior distributions having constant variance (left) or 
constant mean (right) shown as cumulative distribution functions (cdfs). The horizontal axis 
is some value for a random variable and the vertical axis is (cumulative) probability.
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Is computationally faster than Monte Carlo•	
Is guaranteed to bound answer•	
Often produces optimal solutions•	

6.3.1 What is a p-box?

Probability bounds analysis takes as inputs structures called “p-boxes,” which 
express sure bounds on a cumulative distribution function. One p-box is depicted in 
Figure 6.4.

The upper and lower bounds touch at the point 0.25 for x = 20. The bounds are 
also coincident for values of x below 10 and above 60. P-boxes need not be com-
posed of step functions such as shown in Figure 6.4. The bounds may be smooth or, 
indeed, can be any shape as long as they are monotonically increasing and do not 
cross each other. A p-box is designed to simultaneously express both variability and 
incertitude. Probability distributions, intervals, and scalar numbers are all special 
cases of p-boxes. Because a probability distribution expresses variability and lacks 
incertitude, the upper and lower bounds of its p-box are coincident for all x values at 
the value of the cumulative distribution function (which is a nondecreasing function 
from 0 to 1). An interval expresses only incertitude. Its p-box looks like a rectangular 
box whose upper and lower bounds jump from 0 to 1 at the endpoints of the interval. 
A precise scalar number lacks both kinds of uncertainty. Its p-box is just a step from 
0 to 1 at the value of x corresponding to the scalar value.

There is a duality in the way that a p-box can be interpreted. It can be understood 
as bounds on the cumulative probability associated with any x value. For instance, 
in the p-box depicted in Figure 6.4, the likelihood the value will be 15 or less is 
between 0 and 25%. A p-box can also be understood as bounds on the value at any 
particular probability level. In the figure, the 95th percentile is sure to be between 
40 and 60.

In risk analyses, p-boxes serve as models of the total uncertainty about individual 
variables. There are several ways to obtain p-boxes from data and analytical judg-
ment. But, before we consider where p-boxes come from, let’s first review what we 
can do with them, in particular, how we can use p-boxes in risk calculations.
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Figure 6.4 A probability box or p-box.

© 2010 by Society of Environmental Toxicology and Chemistry (SETAC)



100 Application of Uncertainty Analysis to Ecological Risk of Pesticides

6.3.2 hoW Do you Compute With p-boxes?

Probability bounds analysis combines p-boxes together in mathematical operations 
such as addition, subtraction, multiplication, and division. This is an alternative to 
what is usually done with Monte Carlo simulations, which usually evaluate a risk 
expression in one fell swoop in each iteration. In probability bounds analysis, a com-
plex calculation is decomposed into its constituent arithmetic operations, which are 
computed separately to build up the final answer. The actual calculations needed 
to effect these operations with p-boxes are straightforward and elementary. This is 
not to say, however, that they are the kinds of calculations one would want to do by 
hand. In aggregate, they will often be cumbersome and should generally be done on 
computer. But it may be helpful to the reader to step through a numerical example 
just to see the nature of the calculation.

Suppose we have 2 p-boxes corresponding to 2 random variables, say A and B, 
shown in Figure 6.5, and we wish to compute bounds on the distribution of the sum 
A + B.

The 1st step is to partition the p-boxes of the addends into sets of intervals and 
associated probability masses. The p-box for A can be partitioned into the following 
3 interval-mass pairs:

 A ∈ [1, 2], prob = 1/3

 A ∈ [2, 4], prob = 1/3

 A ∈ [3, 5], prob = 1/3

(The symbol ∈ is read “is an element of.” When we write A ∈ [1, 2], we mean that 
the value of A is some value between 1 and 2, inclusive.) This partitioning means 
that the probability is one-third each a value of the random variable is in each of the 
3 intervals. In fact, this p-box could also be partitioned into more pairs. For instance, 
we could divide the 1st pair into 2, such as ([1, 2], 1/6) and ([1, 2], 1/6). This would 
make no essential difference in the calculation, nor have any consequence for the 
final result. Whatever the partition, the sum of the masses must be unity. A natural 
partition for the 2nd p-box in Figure 6.5 is

P-Box for the Random Variable A P-Box for the Random Variable B

Value of Random Variable A Value of Random Variable B
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Figure 6.5 P-boxes for uncertain random variables A and B.
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 B ∈ [2, 4], prob = 1/3

 B ∈ [3, 5], prob = 1/3

 B ∈ [4, 6], prob = 1/3

We are now ready to combine the 2 p-boxes. To do so, we construct the Cartesian 
product of the 2 collections of interval-mass pairs in the matrix shown in Table 6.2.

For each cell inside this matrix, there is an interval, which is the range of pos-
sible values for the sum given the ranges of the marginal intervals for A and B, and a 
probability, which is the product (under independence) of the 2 marginal probabili-
ties. Notice that the elements inside the matrix are another collection of intervals 
with associated probability masses. Because the probabilities add up to 1, they also 
specify a p-box. Figure 6.6 shows this p-box reassembled from the 9 interval-mass 
pairs in the matrix.

It turns out that, given the variability and incertitude in the inputs, this is the best 
possible p-box for the sum A + B. This means that we could not tighten the bounds 
in any way and still have it include all possible distributions that could arise as a sum 
of distributions from inside the p-boxes of the inputs.

TabLe 6.2
cartesian product of 2 collections of interval–mass pairs
A + B
independence

A ∈ [1, 2]
prob = 1/3

A ∈ [2, 4]
prob = 1/3

A ∈ [3, 5]
prob = 1/3

B ∈ [2, 4]
prob = 1/3

A + B ∈ [3, 6]
prob = 1/9

A + B ∈ [4, 8]
prob = 1/9

A + B ∈ [5, 9]
prob = 1/9

B ∈ [3, 5]
prob = 1/3

A + B ∈ [4, 7]
prob = 1/9

A + B ∈ [5, 9]
prob = 1/9

A + B ∈ [6, 10]
prob = 1/9

B ∈ [4, 6] A + B ∈ [5, 8] A + B ∈ [6, 10] A + B ∈ [7, 11]

prob = 1/3 prob = 1/9 prob = 1/9 prob = 1/9

P-Box for A + B Assuming Independence

0 1 2 3 4 5 6 7 8 9 10 11 12
A + B
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Figure 6.6 Sum of the uncertain numbers depicted in Figure 6.5.
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Obviously, we’ve picked the inputs for this example so that they would partition 
easily into small collections of paired intervals and probabilities. When the input 
p-boxes are smooth or complicated continuous structures, the partitions are discreti-
zations that will often need to be much finer. The precision of the result depends on 
the fineness of these partitions, which can be arbitrarily increased to achieve what-
ever precision is required.

6.3.3 What about Correlation anD other DepenDenCies?

This calculation was performed under the assumption of mutual independence 
between the 2 variables. What about other sorts of dependencies? Excluding the 
case where one variable is a direct function of the other (which should be modeled 
directly in the assessment), the following statistical situations are commonly encoun-
tered in analyses:

Independence•	
Perfectly positive relation (maximal correlation)•	
Opposite relation (minimal correlation)•	
Particular nonlinear dependence (copula)•	
Particular correlation coefficient•	
Positively associated•	
Negatively associated•	
Unknown dependence•	

Convolutions with the first 4 of these dependencies can be computed with a table 
calculation similar to that illustrated in the previous section (Williamson and 
Downs 1990; Berleant 1993, 1996; Ferson and Long 1995). These dependencies 
introduce no further incertitude beyond what is already expressed by the input 
p-boxes. This means that if the inputs are precise probability distributions, the 
output will be too. In the case of the last 4 dependencies, on the other hand, 
further incertitude is introduced by not specifying the dependence fully. Thus, 
even if we start with precise distributions, the result will be a p-box. This is true 
even when we know a precise correlation coefficient. The reason is there are 
actually many different dependencies that correspond to any particular correla-
tion coefficient. The last case of not knowing anything about the dependence 
is surprisingly common in risk assessments. Indeed, it is rare that available 
information includes the paired data necessary to make empirical statements 
about dependencies. Fortunately, Frank et al. (1987) showed how to compute 
best possible bounds on the distribution of sums and similar operations given 
only information about the marginal distributions without information about 
their dependence. Williamson and Downs (1990) showed how to extend these 
calculations to p-boxes to obtain sure bounds without making any assumption 
about the dependence between the variables. Their algorithms were not based 
on a table approach, but Berleant and Goodman-Strauss (1998) described such 
a table algorithm that used mathematical programming to obtain the same best 
possible bounds.
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6.4 numericaL exampLe

In this section, we describe an exposure assessment for a hypothetical contact avi-
cide involving 4 exposure pathways: maternal transfer A, ingestion B, imbibition 
(drinking) C, and dermal absorption D. In this example, we compute bounds on 
the sum A + B + C + D from only partial information about each of the respective 
random variables. This example illustrates that it is easy to mix very different kinds 
of knowledge together in a bounding analysis. In this example, suppose that the dis-
tributional shape of A is known, but its parameters are in doubt. Suppose that a few 
parameters of B are known, but the shape or family of the statistical distribution is 
not known. Further suppose that sparse data were used to form the 95% confidence 
limits for the distribution of C. And the variable D is known to be well described by 
a precise distribution. Shown in Figure 6.7 are the bounds on each of the 4 inputs 
and bounds on the sum, both with an assumption of independence and without any 
assumption about the dependence among the variables. The dotted curves represent 
the inputs and answers that might have been associated with a traditional probabilis-
tic assessment that did not acknowledge the uncertainty about the distributions and 
dependencies. Compare them with the solid edges of the p-boxes to quantify how 
much the tail risks would have been underestimated.

Table 6.3 lists the summary statistical measures yielded by 3 analyses of this 
hypothetical calculation. The 2nd column gives the results that might be obtained 
by a standard Monte Carlo analysis under an independence assumption (the dotted 
lines in Figure 6.7). The 3rd and 4th columns give results from probability bounding 
analyses, either with or without an assumption of independence.

Maternal Transfer Ingestion Imbibition Dermal Absorption 

A

A + B + C + D
Under Independence

A = {lognormal, mean = [0.5, 0.6], variance = [0.001, 0.01]}
B = {min = 0, max = 0.4, mode = 0.3}
C = {data = (0.2, 0.5, 0.6, 0.7, 0.75, 0.8)}
D = {shape = uniform, min = 0, max = 1}
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Figure 6.7 Example calculation of a sum of 4 addends characterized by p-boxes.
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Notice that, while the Monte Carlo simulation produces point estimates, the 
bounding analyses yield intervals for the various measures. The intervals represent 
sure bounds on the respective statistics. They reveal just how unsure the answers 
given by the Monte Carlo simulation actually were. If we look in the last column 
with no assumption, for instance, we see that the variance might actually be over 6 
times larger than the Monte Carlo simulation estimates.

6.5 How To use bounding resuLTs

Risk assessment is often marshaled in support of decision making. The kinds 
of decisions commonly addressed include questions about whether to regulate a 
new chemical or ban an old one, or how much to clean up a contaminated site. 
How will the results of bounding analyses be used in decision making? When the 
uncertainty makes no difference to the decision (because the results are clearly 
high or low), the bounding analysis gives confidence in the reliability of the deci-
sion. When, on the other hand, uncertainty makes the result so wide that the 
proper decision to make is obscured, one has 2 options. The first option is to use 
the results to demonstrate to managers which inputs need to be studied further 
to reduce the uncertainty enough to make a decision of appropriate reliability. 
When, as is the case in the numerical example above, the results are known to 
be best possible in the sense that they could not be tightened without further 
empirical information or theoretical assumption, then the argument for collecting 
further data is bolstered to the strongest it could possibly be. The manager can be 
shown that which decision is best is not knowable without the needed empirical 
investment.

The 2nd option when uncertainty swamps the decision is to use a secondary crite-
rion to make the decision based on the possibilities within the probabilistic bounds. 
For instance, in environmental regulation, one may want to be conservative and ask 
about the worst case scenario. In the numerical example above, because large values 
of the sum represent adverse conditions, then one may choose to look at the right tail 
of the p-box and plan for the worst it suggests. This would mean, in this case, that 
we would act as though the right bounds of intervals estimating the mean and 95th 
percentile, etc., give their true values.

TabLe 6.3
summary statistical measures resulting from 
hypothetical calculations

summary monte carlo independence general

95th percentile 2.45 [2.1, 2.9] [1.3, 3.2]

Median 1.87 [1.4, 2.3] [0.79, 2.8]

Mean 1.88 [1.4, 2.3] [1.4, 2.3]

Variance 0.135 [0.086, 0.31] [0, 0.90]
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In other cases, one may elect to use the best case scenario and make plans based 
on the left bound within the p-box. Which criterion one might use is outside the scope 
of probability bounds analysis. However, it should be emphasized that the possibili-
ties within the bounds are not equivalent. And the analyst should not pick any answer 
from within these bounds. We recall the case of the engineers who designed Kansai 
International Airport on an island constructed with fill in a harbor near Kobe, Japan. 
They were reportedly told by geologists that the island would settle between 19 and 
25 feet. They chose to plan for 19-foot subsidence, supposedly because planning for 
25 feet would have been prohibitively expensive. One needs not be a student of Greek 
tragedy to anticipate the fate of such hubris.

6.6 seVen cHaLLenges in risk anaLyses

Most of the rest of this chapter is devoted to reviewing how bounding methods 
can address the following challenges routinely faced by analysts in pesticide risk 
assessments:

Input distributions unknown•	
Measurement error large•	
Censoring•	
Sample sizes small•	
Correlation and dependency ignored•	
Mathematical structure questionable•	
Back calculation very difficult•	

6.6.1 input Distributions unknoWn

As suggested in the numerical example above, p-boxes can be constructed for a 
variety of states of knowledge. The graphs in Figure 6.8 illustrate several cases. The 
ordinate for each graph is cumulative probability. The abscissa for each graph is the 
X value for the variable of interest. The depictions are analogous to and generaliza-
tions of cumulative distribution functions (cdfs).

In the top, left graph of Figure 6.8 we see a p-box for the case when we know, 
perhaps from mechanistic reasoning, that the variable should be log-normally dis-
tributed, but we can only give bounds on the mean and standard deviation for the 
distribution. In this case, we knew the mean had to be between 0.5 and 0.6, and the 
standard deviation had to be between 0.05 and 0.1. Obviously, when the intervals are 
very tight, the p-box becomes equivalent to a precise distribution. When the intervals 
are very wide, the p-box becomes broad. The p-box shown represents the best pos-
sible bounds. That is, the box is as tight as possible without excluding any log-normal 
distribution with the prescribed mean and standard deviation. Best possible p-boxes 
have been worked out for many distribution families. In particular, we can specify 
any of the following named distribution families and give intervals (or scalar num-
bers) to parameterize them:
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Bernoulli exponential logistic Rayleigh

beta extreme value log-normal reciprocal

binomial F (Fisher-Snedecor) log-triangular rectangular

Cauchy Fréchet log-uniform Student’s t

chi squared (Χ²) gamma normal trapezoidal

discrete uniform Gaussian Pareto triangular

Dirac delta geometric Pascal uniform

double exponential Gumbel Poisson Wakeby

Erlang Laplace power function Weibull

In general, this is the case for any distribution function for which one can compute 
the quantile (inverse distribution) function.

We can also construct a p-box if we can estimate the mean and some mea-
sure of dispersion, even if we have no idea at all what shape the distribution is or 
what distribution family it comes from. For instance, the p-box shown in the top, 
right graph depicted of Figure 6.8 illustrates the best possible p-box we’d get if we 
know the mean and standard deviation. The p-box is a consequence of the classical 
Chebyshev inequality. The middle, left graph depicts the best possible p-box when 
we know only the mean and the possible range of the variable. When we know the 
median, this “waist” pinches to a precise point at that value. This is because all dis-
tribution functions must pass through this particular point. Other cases, illustrated 
by the graphs in the bottom row of Figure 6.8, represent the case where we know 
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Figure 6.8 Several kinds of p-boxes for different states of knowledge about a random 
variable.
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the variable’s distribution is unimodal and the degenerate case, in the bottom right 
graph, of knowing only the minimum and maximum possible values of the variable. 
Contrast this box with the straight line that a uniform distribution would exhibit on 
the same axes.

In principle, one can fashion a p-box that represents the best possible limits on 
the distribution of a variable given any specific state of knowledge about the vari-
able (Ferson 2002). Such optimal p-boxes have already been worked out for cases in 
which the following information is available. (Note that the values can be specified 
as precise scalar values or as interval bounds.)

Minimum, maximum•	
Minimum, maximum, mean•	
Minimum, maximum, mode•	
Minimum, maximum, any number of percentiles (e.g., median or 95th)•	
Mean, 1 bound (minimum or maximum)•	
Mean, dispersion (e.g., variance, standard deviation, coefficient of variation)•	
Mean, dispersion, 1 bound (minimum or maximum)•	
Minimum, maximum, mean, dispersion•	

The bounds can generally be tightened, sometimes considerably, by knowledge that 
the random variable is nonnegative or that the distribution function is symmetric or 
unimodal, or that it has a convex or concave hazard rate. The resulting p-boxes can 
also be combined using simple intersection as Rowe (1988) mentioned, although 
intersection does not necessarily guarantee that the result will continue to be the 
best possible result. It should be clear how using these kinds of p-boxes can allow an 
analyst to express uncertainty about input distributions — whether it is uncertainty 
about the parameters or uncertainty about the distribution shape — and propagate 
this uncertainty through the calculations of a risk assessment.

6.6.2 measurement errors large

This and the next 2 subsections address how sample data can be used to construct 
p-boxes. Suppose that for a certain variable we have sampling data. These might 
be chemical concentrations measured in a laboratory. Suppose 15 such samples be 
represented as triangles distributed along an x-axis shown in Figure 6.9. The peaks 
of the triangles are the best estimates as point values, and their bases are the plus–
minus ranges associated with the measurements. (In the illustration, we’ve shown the 
peaks to be centered over their bases, but this is not necessary.) The cumulative form 
of the empirical distribution function (edf) associated with these samples is shown as 
a gray stair-step function on the lower graph in Figure 6.9. It is formed by increment-
ing a step function by 1/15 at the location of each point value (triangle peak).

Also shown in black on the same scale is the p-box formed as 2 cumulative dis-
tribution functions, 1 based on the left endpoints of the triangle bases, and 1 based 
on the right endpoints. If the measurement errors associated with the samples are 
negligible, then the p-box will approach the gray edf. If measurement errors are 
large, the p-box will be wide. Measurement error, whether small or large, is almost 
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always ignored by analysts when they construct EDFs. Notice that the p-box, on 
the other hand, comprehensively expresses the measurement error exhibited in the 
sample data.  

6.6.3 Censoring

This construction of p-boxes is general enough to incorporate the uncertainty arising 
from data censoring. Suppose the laboratory that produced the data sample tells us 
that 4 of the 15 measurements were below detection limit. This means that, because 
of the dilutions they used and the analytical resolution of the devices they employed, 
they cannot be sure that the true values were not zeros.

The strategies used in traditional statistical analyses to handling such censoring 
range from simple substitution methods (e.g., replace each censored value by half the 
detection limit) to rather elaborate distributional models that attempt to reconstruct 
the now dubious values based on the patterns shown by the remaining values. Helsel 
(1990) reviews these strategies and points out the limitations of each. He notes that 
the current statistical methods

Break down when censoring is prevalent•	
Become cumbersome or unworkable with multiple detection limits•	
Need assumptions about distribution shapes•	
Yield approximations only•	

P-boxes, on the other hand, can readily express the uncertainty that arises from cen-
soring, and they have none of these limitations mentioned by Helsel (1990). Suppose 
that 4 of the data values depicted in Figure 6.9 were identified by the lab as being 
below detection limit. Figure 6.10 shows how these data values would then be repre-
sented by triangles whose left endpoints are set to zero. The right endpoints are the 
respective detection limits. In this case, the detection limits are all 2.0, but they could 
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Figure 6.9 Empirical distribution function (gray, below) and p-box (black, below) cor-
responding to a data set (triangles, above) containing measurement error.
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be any value, and they could be different values for different estimates. The respec-
tive endpoints are then cumulated just as before. This p-box is trivial to compute, yet 
it obviously captures in a comprehensive way what censoring does. Moreover, this 
strategy can be used for right censoring as well as left censoring, or indeed for almost 
any kind of fundamental or happenstance limitation on mensuration.

In contrast to the limitations of traditional approaches to censoring, an approach 
based on p-boxes

Works regardless of amount of censoring•	
Handles multiple detection limits with no problem•	
Makes no distribution assumptions•	
Uses all available information•	
Yields rigorous answers•	

Obviously, this kind of approach to data censoring does not result in a precise distri-
bution, no matter how many data measurements are accumulated. By being conser-
vative about measurement uncertainty, analysts can discern its consequences. If the 
effect of censoring is small, then the p-box will not be much wider on account of it.

6.6.4 sample sizes small

In the sampling example considered in the previous 2 sections, if there are only 15 
elements in the population, then forming the empirical bounding cumulative histo-
grams as described above is a complete description of the uncertainty in that small 
population. The more typical situation, however, is that these 15 data values are just a 
small sample from a much larger population. If we collected another sample of mea-
surements, the picture of variation and incertitude would probably be different. How 
should we account for sampling error that arises from measuring only a portion of 
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Figure 6.10 Empirical p-box (bottom) corresponding to a data set (triangles, top) with 
measurement error including 4 nondetect values.
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the population? It would seem reasonable to inflate the uncertainty about the empiri-
cal histograms in some way.

The sampling theory for probability bounds analysis needs more development, 
but 1 strategy suggests itself. Kolmogorov–Smirnov (KS) confidence limits (Crow 
et al. 1960, p 90f; cf. Sokal and Rohlf 1980, p 721) are distribution-free bounds on 
a (precise) empirical distribution function as a whole. These limits are computed 
as edf(x) ± Dα,n where edf is the empirical distribution function for any value x of 
the random variable, and Dα,n is the 1-sample Kolmogorov–Smirnov critical statistic 
for confidence level 100(1−α)% and sample size n. The values for D are tabled by 
Crow et al. (1960, Table 11 on p 248) and by Rohlf and Sokal (1981, table 32 on p 
203). This formula can be extended to the p-boxes described in the previous sections 
that were formed by integrating left or right endpoints of plus–minus measurement 
intervals. For instance, the 95% KS confidence limits applied to the original interval 
sampling data are shown in black on Figure 6.11. It was derived from the gray p-box 
by simply adding and subtracting D0.05,15 = 0.338 to the upper and lower bounds, 
respectively. With only 15 data points, we would expect fairly low confidence in the 
precise empirical distribution function, but as the number of samples becomes large, 
the confidence limits get closer together. Note, however, that even for very large 
samples, the bounds cannot get closer than the incertitude from measurement error 
prescribes.

The KS limits make no distributional assumptions, but they do require that 
the samples are independent and identically distributed. Additional distributional 
assumptions can be made that could tighten the KS limits. For instance, assuming 
the underlying distribution from which the samples came is normal yields a much 
tighter p-box. In practice, the assumption about independence of the individual sam-
ples may sometimes be hard to justify, such as when contamination hotspots are the 
focus of targeted sampling efforts. Techniques to account for nonrandom sampling 
are a topic of current research.

The KS limits are certainly a standard idea in probability theory and have been 
used in traditional risk analyses, for instance as a way to express the reliability of the 
results of a simulation. However, it has not heretofore been possible to use KS limits 
to characterize the statistical reliability of the inputs. There has been no way to propa-
gate KS limits through calculations. Probability bounds analysis allows us to do this 
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Figure 6.11 Kolmogorov–Smirnov confidence limits (black) accounting for both mea-
surement uncertainty and sampling uncertainty about the p-box (gray) from Figure 6.9.
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for the first time in a convenient way. Notice, however, that a p-box defined by KS 
confidence limits is different from the sure bounds formed by knowledge of moments 
or shape information that we discussed above. The KS bounds are not certain bounds, 
but statistical ones. The associated statistical statement is that 95% (or whatever) of 
the time the true distribution will lie inside the bounds. Using KS confidence limits 
as a p-box in probability bounds analysis amounts to assuming that the underly-
ing unknown distribution is surely within the KS limits. Such an assumption is, in 
essence, no different than other assumptions analysts make in constructing p-boxes, 
such as that the moments or shape information is known or can be strictly bounded.

6.6.5 Correlations anD DepenDenCies ignoreD

As mentioned above, calculations with p-boxes can be made under an assumption of 
independence, assuming perfect or opposite dependence, or any specific dependence, 
or without making any assumption at all about the dependence. Figure 6.12 illustrates 
possible distributions of products AB, where A is uniformly distributed over the interval 
[2, 5] and B is normally distributed with mean 4 and standard deviation 1, under vari-
ous assumptions about the dependence between A and B. If the variables are perfectly 
associated so that their correlation is maximal, i.e., as close as possible to +1 given the 
stated marginal distributions for A and B, then the cumulative distribution function for 
the product AB is the shallowest cumulative distribution in the figure (depicted with a 
dotted curve). If the correlation is opposite so it’s as close to −1 as possible given the 
marginal distributions, then the distribution of the product is the steepest distribution 
(shown as a dashed curve). This cumulative distribution function has an interesting 
little hook around the value of 12. If the 2 variables are mutually independent, the dis-
tribution of their product is given by the cumulative distribution function shown with 
an intermediate slope (thin solid curve). The general bounds (thick solid curves), which 
make no assumption about the dependence between A and B, enclose all 3 distributions. 
As proven by Frank et al. (1987), these general bounds are the best possible bounds on 
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Figure 6.12 Different estimates about the distribution of products given different assump-
tions about the dependence between the factors.

© 2010 by Society of Environmental Toxicology and Chemistry (SETAC)



112 Application of Uncertainty Analysis to Ecological Risk of Pesticides

the product. This means that these bounds could not be any tighter and still contain all 
the distributions that could arise under some dependency between A and B.

If an analyst conducted a sensitivity study to determine the effect of ignorance 
about the dependence between A and B by varying a correlation coefficient between 
+1 and −1, the results would sweep out the region between the perfect (dotted) and 
opposite (dashed) distributions. Notice however that this would not be sufficient to 
show the full range of uncertainty arising from such ignorance. That full range is 
given only by the enclosing (thick) general bounds and the methods of probability 
bounds analysis. In this case, the answer given by the p-box is both comprehensive 
and optimal.

6.6.6 mathematiCal struCture of the moDel questionable

There are many situations in which even the correct form of the mathematical 
model to use in a risk analysis is in doubt. For instance, in population-level ecologi-
cal assessments one must describe the prevailing density dependence that governs 
how population abundance approaches carrying capacity. There are several popular 
models, including the logistic model, Ricker function, Beverton–Holt function, ceil-
ing model, and Shepard function. We do not have enough empirical information to 
distinguish among these possible models for most species of interest in ecological 
risk assessments. Thus there is model uncertainty that really ought to be propagated 
through an assessment. In practice, however, most analysts simply pick 1 of the den-
sity dependence models to use and ignore their uncertainty about the choice.

Some risk analysts have tried to address uncertainty about the model form within 
a Monte Carlo simulation (e.g., Morgan and Henrion 1990; Apostolakis 1995; cf. 
Cullen and Frey 1999). They first list a variety of possible models and then, inside the 
simulation, use a discrete random number to select which model from the list will be 
used in a particular simulation iteration. Within the iteration, this model is assumed 
to be true. This is repeated for many iterations, each time assuming a model selected 
at random from among those possible. Sometimes analysts weigh the selection of the 
discrete random variable according to their belief or judgment about likelihoods that 
the true model form is one or the other choices. This simulation strategy represents 
model uncertainty as a stochastic mixture of the possible models. In doing this, it 
effectively averages together incompatible theories. The approach is equivalent in 
this respect to the Laplacian approach to modeling what is fundamentally incertitude 
as an equiprobable stochastic mixture (the uniform distribution), and, as a result, it 
can underestimate the true tail risks in an assessment.

The probability bounding approach to this problem is to form the stochastic enve-
lope of the possible models. For instance, suppose that we think that either model I 
or model II represents the fact of the matter, but we don’t know which it is. Let’s say 
these 2 models lead to 2 different distributions. Suppose they are the probability 
density functions labeled “I” and “II” in the upper graph of Figure 6.13.

If we cumulate each density function and form the envelope of their cdfs as shown 
in the lower graph in the figure, we create a p-box (labeled “I or II”) that expresses 
the model uncertainty about whether model I or model II is the correct function 
to use. This approach is clearly more comprehensive than the traditional approach 
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based on averaging of the 2 distribution functions (whose result is shown as the 
dark line within the shaded region of the lower graph). We note that the bounding 
approach can even handle nonstationarity of distributions, which is another impor-
tant source of uncertainty that is usually ignored in traditional assessments for lack 
of a reasonable strategy to address it. This approach to model uncertainty works 
whenever the possible models imply different distribution functions for 1 or more 
variables. It works for more than 2 possible models, or even when there are infi-
nitely many or innumerable possible models, or when the models cannot be explicitly 
listed. However, this approach can be overly conservative if the differences between 
the models are very great because it includes as possibilities a lot of intermediate 
models among the possible ones.

6.6.7 baCk CalCulation very DiffiCult

Planning remediation (cleanup) strategies often involves solving back calculation 
problems (Burmaster et al. 1995; Burmaster and Thompson 1995; Ferson 1995; 
Ferson and Long 1997). Back calculations are problems such as solving for B, given 
you know that C = A × B, from an estimate of A and desired constraints on C. One 
common example is solving for limits on the distribution of environmental concen-
trations given some constraints on acceptable doses and the fact that dose = intake 
× concentration. Because the variables are not real numbers but uncertain quanti-
ties involving incertitude and/or variability, we cannot simply solve the equation 
using grade school algebra. To get the right answer, we need a special operation, 
called back calculation, that essentially untangles the convolution implied by the 
specified forward equation. Similar problems involving the untangling of operations 
other than multiplication or more complicated mathematical expressions composed 
of several operations are called back calculations too, and they also need special 
solution strategies.
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Figure 6.13 Use of a p-box (shaded region in lower graph) to represent uncertainty 
between models I and II summarized as distribution functions.
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The existing algorithms for doing back calculations or deconvolutions with prob-
ability distributions have notorious numerical problems (Jansson 1984). When given 
arbitrary inputs, such as might be defined by regulatory constraints, they usually 
crash and yield no answer at all. The problem is that probability distributions are 
overspecified. When A and C are precise distributions, it is usually the case that 
there simply is no distribution B that satisfies the equation. By design, p-boxes are a 
relaxation of the strictures of precise probability distributions. Because their interval 
nature relaxes the numerical problems, solutions to back calculation problems are 
easier to obtain for p-boxes. There is no guarantee that there will be a solution to 
an arbitrary equation involving uncertain numbers (i.e., quantities that harbor incer-
titude, variability, or both). But the severe algorithmic difficulties associated with 
precise distributions evaporate if the quantities are p-boxes, and this makes it far 
more likely that a solution exists.

P-boxes are also a much more natural way to express regulatory constraints in the 
first place. For instance, it is strange for regulators to offer a particular statistical dis-
tribution for exposures as the target for remediation or management (cf. Burmaster 
and Thompson 1995). Are they insisting that the remediation not be so effective that 
the frequencies of high exposures are lower than planned? Surely regulators would 
be even happier with any distribution whose graph is further to the left (representing 
decreases in all percentiles), just because it means that all exposures will generally 
be lower. Perhaps what a precise distribution really means when specified by regula-
tors is an average target or an upper bound on the distribution of exposures. Viewed 
in this way, it is clear that p-boxes are the appropriate and natural way to express 
regulatory constraints.

6.7 wHaT bounding cannoT do

There are 3 important limitations of probability bounds analysis. The 1st limitation 
is that, being only bounds on a distribution, a p-box cannot show what distribution is 
most likely within the box. A p-box provides no shades of gray or 2nd-order infor-
mation that could tell us which distributions are the most probable. This is essentially 
the same problem, albeit at a higher level, that intervals had. It may, however, be pos-
sible to nest probability bounds analyses to get at the internal structure of the result. 
It is also often useful to simultaneously conduct a traditional Monte Carlo assess-
ment, which will produce output distributions inside the output p-boxes. Together, 
these results characterize central and bounding estimates of the output distribution.

The 2nd limitation is that maintaining the optimality of answers may be hard 
when there are repeated variables or when there is a lot of empirical information 
about complex dependencies among the variables. Although the individual arithme-
tic operations yield best possible results at each step in the calculation, when these 
operations are chained together to compute the full risk expression, this optimality 
may be lost when variables appear multiple times in the expression, or when there are 
subtle intervariable dependencies present. Repeated variables are a problem essen-
tially because they introduce their uncertainty more than once into the calculation. 
For this reason, the resulting bounds may not be as narrow as they should be. It is 
always possible to guarantee that the results will enclose the true result distribution, 
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but to maintain the claim that the bounds are also best possible may require special 
calculation with brute-force algorithms.

The 3rd limitation is that all outputs must be expressed in terms of cumula-
tive probability. It is usually not possible to depict results in terms of probability 
densities. This may not be a serious limitation, however, because, as reviewed 
in Morgan and Henrion (1990), pyschometric studies suggest humans are actu-
ally most facile at interpreting cumulative displays anyway. Nevertheless, some 
analysts may be annoyed that probability bounds cannot express results in terms 
of densities.

Robust Bayes methods share some of the same disadvantages of Bayesian meth-
ods in general. These include the tolerance of, or reliance on, subjective judgments. 
Although Bayesians regard this as an important feature of their approach, it has been 
hard to convince regulators that personal beliefs should play any role in assessments 
conducted to justify public policy. A persisting technical issue with Bayesian analy-
ses is the zero-preservation problem, which is the total insensitivity of the posterior 
to data wherever the prior distribution is zero. In a sense, it is the mathematical 
analog of uneducable prejudice. By relaxing the focus from single distributions and 
precise functions, robust Bayes methods should tend to redress both of these disad-
vantages. The most serious limitation of robust Bayes methods is the practical one 
that no convenient software exists that makes it easy to apply in real-world problems. 
It is not always straightforward to specify or work with all the prior distributions (or 
likelihood or utility functions) in a class. This perhaps explains why there have not 
yet been any applications of robust Bayes methods to pesticide risk assessments.

Finally, although both probability bounds analysis and robust Bayes methods are 
fully legitimate applications of probability theory and, indeed, both find their foun-
dations in classical results, they may be controversial in some quarters. Some argue 
that a single probability measure should be able to capture all of an individual’s 
uncertainty. Walley (1991) has called this idea the “dogma of ideal precision.” The 
attitude has never been common in risk analysis, where practitioners are governed by 
practical considerations. However, the bounding approaches may precipitate some 
contention because they contradict certain attitudes about the universal applicability 
of pure probability.

6.8 exampLe: insecTiVorous birds’ exposure To pesTicide

Consider the following purely hypothetical example assessment for the exposure of 
an insectivorous bird to a new agricultural insecticide. This insecticide degrades 
very quickly after application, so that its toxicity dissipates after 24 hours. It does 
not bioaccumulate, and nonlethal doses are metabolized with no long-term conse-
quences for the bird. These features imply a fairly simple assessment, involving the 
following expression for computing exposure of a bird to the insecticide within 1 day 
of its field application

 

Dose FIR Conc
BW

Frac= ×
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where FIR is the bird’s food intake rate in grams per day, Conc is the concentration in 
the bird’s diet in micrograms of insecticide per gram of insect tissue, BW is body mass of 
the bird, and Frac is the proportion of a bird’s intake that occurs within the treated area.

There are abundant data on the body masses of the receptor birds, which are well 
modeled by a normal distribution with mean 14.5 g and a standard deviation of 3 g. 
No individuals smaller than 7 g or larger than 22 g have been observed. This distri-
bution is depicted in the upper left graph in Figure 6.14. In this and all the graphs in 
this figure, the ordinate is exceedance risk (complementary cumulative probability). 
It is the chance that the random variable is as large as or larger than the value given 
on the abscissa. In the case of BW, this chance is known rather precisely for all pos-
sible values. It’s convenient to show the p-boxes upside down like this when we want 
to focus on or emphasize the risks of high values.

Less is known about the distribution for food intake rate. One study reported 
in the literature suggests that the mean for daily consumption by this species in 
this region was 5.23 g insect tissue per day, with variance of 2.3 g. The published 
report suggested that these statistics were based on many observations, but it did not 
give any of the raw data or other information about the distribution. To model the 
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Figure 6.14 Input p-boxes for the example assessment of bird exposure to insecticide.
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uncertainty about this variable, we can use the p-box shown in the upper right graph 
of Figure 6.14. It is the envelope of all possible (complementary) distribution func-
tions for a positive random variable having the given mean and variance.

Fate and transport modeling was used to estimate the concentration of the insec-
ticide in insect tissue consumed by birds. The details of this modeling effort, which 
we omit here, are rather complex and involve characteristics of the field application 
of the insecticide, local weather, multiple pathways of exposure to insects, sequestra-
tion of insecticide by mortality of insects, and integration over 0- to 20-g pools of 
insect tissue that would compose a bird’s daily diet. The model of the pesticide’s fate 
and transport made a prediction about the concentration variable, which is charac-
terized by the p-box shown in the lower left graph of Figure 6.14. This p-box syn-
thesizes all of the knowledge and uncertainty captured in the modeling effort. The 
model predicts the distribution function for concentrations, whatever it is, surely lies 
within the bounds shown.

The least well known variable in this assessment is Frac, the proportion of forag-
ing a bird might do in a treated area. Local biologists admit that any estimate of it 
would be just a guess. Inferring from the foraging ranges observed for this species, 
they conclude that it could not be 100%, but that it could be as high as 75% for some 
or even most birds. They believe, however, that the lower bound for this variable 
could be zero. We represent this poor information as an interval depicted in the lower 
right graph of Figure 6.14. This interval is a degenerate p-box that represents all pos-
sible distribution functions over that range.

Analysts anticipate that these variables are statistically independent of each other, 
with the exception that FIR is likely to be positively correlated to BW, although no 
specific empirical evidence is available about the magnitude of this possible correla-
tion. To account for this possibility, the quotient FIR/BW was first computed under 
the assumption that the 2 variables are positively correlated, but making no other 
assumption about their actual interdependency. The quotient was then multiplied by 
the p-boxes for Conc and Frac, assuming independence. The calculations were done 
with the Risk Calc software (Ferson 2002). The resulting p-box for the distribution 
of doses to birds is displayed in Figure 6.15. It suggests that doses are almost cer-
tainly smaller than 2 µg of insecticide per gram bird tissue over the course of the day 
following an application. The upper 95th percentile on such doses is surely less than 
0.414 µg g−1 day−1, and the median dose is in the interval [0, 0.142] µg g−1 day−1. The 
mean dose is sure to be no larger than 0.092 µg g−1 day−1. It could be as low as 0 (as 
would occur if Frac is 0). The standard deviation of doses is somewhere between 0 
and 0.186 µg g−1 day−1.

6.8.1 Comparison With a preCise assessment

The insectivorous bird assessment can be compared to a more traditional proba-
bilistic assessment based on precise distribution functions and particular depen-
dence assumptions. For comparison purposes, we conducted such a simulation. 
The variable BW was modeled by the same normal distribution with mean 14.5 g 
and standard deviation 3 g. The variable FIR, on the other hand, was modeled by 
a log-normal distribution with mean 5.23 and variance 2.3 g per day. The choice of 
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the log-normal family reflected the analyst’s best guess about the likely shape of the 
distribution but was not specifically supported by available empirical evidence. The 
distribution of Conc was also modeled with a log-normal distribution with mean 
0.25 µg g−1 and standard deviation 0.1 µg g−1. This choice obviously neglects the 
uncertainty about the distribution shape that was explicitly modeled for this variable. 
The parameter Frac was modeled with a uniform distribution ranging between 0 and 
0.75. A uniform distribution is commonly used to represent interval uncertainty. All 
variables were assumed to be independent, except that BW and FIR were assumed to 
be perfectly correlated (Spearman rank correlation coefficient equal to 1). Of course 
these various modeling choices contain arbitrary elements, but these are necessary 
to specify the estimation problem completely.

The resulting distribution is shown as the black curve in Figure 6.16. For com-
parison, the p-box from Figure 6.15 is shown again in Figure 6.16 as a gray curve. 
The 95th percentile of the black dose distribution is 0.078 µg g−1 day−1, and the 
median dose is 0.029 µg g−1 day−1. Both of these values are about one-fifth of the 
upper estimates for the respective percentiles from the probability bounds analysis. 
In other words, given the professed uncertainty about the assessment, the true per-
centiles could be as much as 5 times larger than the values predicted by a Monte 
Carlo assessment based on unjustified assumptions. Likewise, the mean is 0.033 µg 
g−1 day−1 and the standard deviation is 0.025 µg g−1 day−1. The upper limits on these 
statistics obtained by probability bounds analysis are roughly 2.5 and 7.5 times 
larger, respectively.

6.8.2 baCk CalCulation

The insectivorous bird assessment might also require a back calculation seeking a 
characterization of concentrations that could ensure the doses of insecticide received 
by the birds are no larger than can be physiologically tolerated. Suppose the toxi-
cologists have collected evidence that doses lethal for the birds occur above 100 µg 
g−1 day−1. Suppose also that regulators have concluded from this information that 
prudent environmental protection will require that all doses received by birds be less 

Dose [µg/g/day]

1

0.5

1
0

0 2

Figure 6.15 Output p-box for dose received by insectivorous birds.
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than 50 µg g−1 day−1, and that at least 95% be less than 10 µg g−1 day−1, and that the 
median dose received by birds be no more than 1 µg g−1 day−1. (This conservativism 
is not an essential part of the example.) The p-box displayed on the left of Figure 6.17 
circumscribes these constraints. Any complementary cumulative dose distribution 
lying entirely within this p-box will clearly satisfy the 3 constraints specified by 
the regulators. Given this p-box and the p-boxes in Figure 6.14 for the variables 
FIR, BW, and Frac, back calculation can compute a p-box that characterizes a set 
of distributions for Conc that will always be allowable. The details of this calcula-
tion are beyond the scope of this chapter, but the right p-box in Figure 6.17 displays 
its result. This p-box is interpreted as a “kernel” (rather than an envelope), which 
is to say that any distribution that lies entirely within the p-box will ensure that the 
resulting distribution of doses that arise from the environmental concentrations will 
surely satisfy the regulators’ 3 constraints, no matter what the actual distributions 
for FIR and BW are within their respective p-boxes. There might be other concen-
tration distributions that do not lie entirely within the kernel p-box that also satisfy 
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Figure 6.16 Output from traditional Monte Carlo assessment (black) compared to p-box 
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the constraints and yield a tolerable distribution of doses, but such distributions can-
not be guaranteed a priori to do so given the expressed incertitude about the other 
variables. Tucker and Ferson (2003) describe back calculation with p-boxes and give 
algorithms to compute them.

6.9 concLusion

Pesticide risk assessments must account for a variety of sources of uncertainty such as 
laboratory measurement error, small sample size, data censoring, and model uncer-
tainty. The available techniques that account for these uncertainties in traditional 
probabilistic approaches are limited and usually require untestable assumptions. 
Bounding approaches have been developed to glean what can be reliably inferred 
from established scientific knowledge without recourse to unjustified assumptions, 
mathematical convenience, or wishful thinking. These bounding approaches are 
designed to retain the advantages of both probabilistic and worst case approaches to 
risk assessment but to sidestep their respective limitations.

6.10 appendix

Following is the run stream used to make the calculations described in Section 6.8. 
Comments are delimited by double slashes. Output is shown in boldface type. 
Vertical bars around arithmetic operators mean they should be applied under an 
independence assumption.

// insectivorous birds’ exposure to fast-decaying insecticide
// probability bounds analysis
BW = normal(14.5 grams, 3 grams)
FIR = posmeanstddev(5.23 grams per day, sqrt(2.3)*units(“grams per day”))
Conc = lognormal([0.2,0.3] µg per g, 0.1 µg per g)
Frac = [0, 0.75]
Dose = convolution(FIR, BW, positive, divide) |*| Conc |*| Frac
Dose
 ~(range=[0,1.93614], mean=[0,0.092], var=[0,0.035]) day−1 µg g−1

sd(Dose)
 [ 0, 0.1856] day−1 µg g−1

cut(Dose, 95%)
 [ 0, 0.4145] day−1 µg g−1

median(Dose)
 [ 0, 0.1423] day−1 µg g−1

// compare against a precise probabilistic assessment
BW0 = normal(14.5 grams, 3 grams)
FIR0 = lognormal(5.23 grams per day, sqrt(2.3)*units(“grams per day”))
Conc0 = lognormal(0.25 µg per g, 0.1 µg per g)
Frac0 = uniform(0, 0.75)
Dose0 = (convolve(FIR0, BW0, perfect, divide)) |*| Conc0 |*| Frac0
mean Dose0
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 [ 0.03325, 0.03336] day−1 µg g−1

cut(Dose0, 95%)
 [ 0.0739, 0.08288] day−1 µg g−1

median(Dose0)
 [ 0.02736, 0.02966] day−1 µg g−1

// back calculation
// lethal doses occur above 100 micrograms per gram per day
MIN = 0 µg per g per day
MAX = 50 µg per g per day
MAX95 = 10 µg per g per day
MAX50 = 1 µg per g per day
Dose1 = constrainpercentiles(MIN, MAX, 50%, MAX50, 95%, MAX95)
Conc1 = factor((FIR / BW) |*| Frac, Dose1)
Conc1
 ~(range=[0,16.9585], mean=[0,2.55], var=[0,14.4]) µg g−1
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7 Uncertainty Analysis 
Using Classical 
and Bayesian 
Hierarchical Models

D. R. J. Moore, W. J. Warren-Hicks, 
S. Qian, A. Fairbrother, T. Aldenberg, 
T. Barry, R. Luttik, and H.-T. Ratte

7.1 inTroducTion

Uncertainty is a term that embraces a variety of concepts (Morgan and Henrion 
1990). It may arise because of vaguely stated policy goals, e.g., continued use of 
pesticides should not affect the sustainability of raptor populations. Uncertainty may 
arise because of differences in our preferences, e.g., what exactly is “acceptable” 
risk. It may refer to lack of knowledge about model structure, e.g., how should pes-
ticide intake via preening be estimated, or lack of knowledge about a quantity like 
Henry’s law constant for pesticide X. Uncertainty can sometimes be combined with 
the concept of variability, e.g., food intake rates among individuals in a flock of 
birds. Uncertainty also exists at different scales (e.g., spatially, temporally, levels 
of biological organization, etc.). These and other types of uncertainty can gener-
ate considerable confusion and often rancorous debate. As a result, there have been 
several attempts to classify types or sources of uncertainty (Finkel 1990; McNeill 
and Freiberger 1993; Hoffman and Hammonds 1994; Rowe 1994; Smith and Shugart 
1994). Morgan and Henrion (1990) argue that it is crucial to distinguish between 
different types and sources of uncertainty, at least partly because they need to be 
treated in different ways in risk analyses.

In this chapter, we describe 2 approaches for classifying types of uncertainty 
and the hierarchical methods for propagating uncertainties that may be used with 
each classification scheme. We begin by providing an overview of the concepts of 
variability and uncertainty. Next, 2nd-order Monte Carlo is described because it is 
the technique most often used to propagate variability and uncertainty separately. 
The last section introduces a compatible method for dealing with uncertainty arising 
from incomplete data sets or partially relevant information: Bayesian hierarchical 
modeling. Simple case studies are provided to illustrate both techniques.
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7.2 VariabiLiTy and uncerTainTy

There are many sources or components of uncertainty in an ecological risk assess-
ment of a pesticide. For example, we may be uncertain about the identity of the spe-
cies at highest risk of exposure, possible routes of exposure, the appropriate exposure 
model, ingestion rates, concentrations in different media, species sensitivity to the 
chemical of interest, and importance of modifying factors (e.g., proportion of time 
spent foraging in contaminated area). These sources of uncertainty generally belong 
to 1 of 4 general types of uncertainty: variability, uncertainty arising from lack of 
knowledge about parameter values, model structure, and decision rules. For a more 
in-depth discussion of these types of uncertainty, see Finkel (1990).

Variability refers to observed differences in a population or parameter attributable 
to true heterogeneity (Brusle 1991). It is the result of natural random or stochastic 
processes and stems from, for example, environmental, lifestyle, and genetic differ-
ences. Examples include variation between individuals in pesticide sensitivity and 
foraging behavior (e.g., time spent foraging in the agroenvironment) and between 
locations (e.g., soil type, climate, chemical concentration).

Parameter uncertainty refers to our uncertainty about the true values of the 
parameters or variables in a model (Smith and Shugart 1994). Parameters are typi-
cally estimated from laboratory, field, or other studies. This type of uncertainty is 
introduced because the estimated value may be based on insufficient, unreliable, or 
partially relevant information for the parameter of interest. Several processes con-
tribute to parameter uncertainty including measurement errors, random errors, and 
systematic errors (Finkel 1990). Measurement error often arises from the impreci-
sion of analytical devices used to, for example, quantify pesticide levels in different 
media. Errors in measurement, however, are not necessarily restricted to analytical 
hardware. Reconstructing pesticide use patterns in a region may be subject to mea-
surement error because historical data can be faulty or ambiguous. Random error or 
sampling error is a common source of uncertainty in ecological risk assessment; it 
arises when one infers a quantity from a limited number of observations. For sample 
means, the importance of sampling error can be estimated by calculating the standard 
deviation (Sokal and Rohlf 1981). Sample means based on 3000 observations will 
have a standard deviation 1/10 that of means based on 30 observations. Systematic 
error occurs when the errors in the data are not truly random, such as might occur 
when the sample population is not representative of the entire population (e.g., when 
sampling is biased toward more contaminated areas in a crop field). Systematic error, 
unlike random error, does not decrease with more observations and is not accounted 
for when calculating sample statistics (e.g., mean, standard deviation). When sys-
tematic error is pervasive, sample statistics such as 95% confidence intervals can be 
quite misleading. For example, nearly half of the 27 measures of the speed of light 
measured between 1875 and 1958 had 95% or 99% confidence intervals that did not 
bracket the most accurate value available today (c = 299 792.458 km sec−1) (Henrion 
and Fishhoff 1986).

In ecological risk assessment, we use mathematical models to determine which 
variables to measure, specify how they relate, and to estimate the values of variables 
we cannot measure directly. Model uncertainty is a serious challenge in ecological 
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risk assessment (Finkel 1990; Reckhow 1994). Different dose–response models, for 
example, commonly lead to 2-fold or more differences in estimated low toxic effects 
doses (e.g., ED5 or LD10), even when the list of models is restricted to those that fit 
the data reasonably well (p < 0.05) and are theoretically plausible (Moore and Caux 
1997). The problem of model uncertainty will be much more serious with complex 
models such as those used to estimate pesticide runoff, drift, and eventual fate in 
aquatic and terrestrial systems. Most applications of uncertainty analysis in ecologi-
cal risk assessment do not propagate uncertainties associated with model structure, 
rather the model structure is assumed reasonable and only parameter uncertainties 
are propagated. Beck (1987), Reckhow (1994), Oreskes et al. (1994), and others dis-
cuss the issue of model uncertainty and describe the process for selecting, evaluat-
ing, calibrating, and validating models that, if followed, can substantially reduce this 
source of uncertainty in ecological risk assessment.

Decision rule uncertainty comes into play during risk management, i.e., after a 
risk estimate has been generated. This type of uncertainty arises when social objec-
tives, economic costs, and value judgments are part of the decision-making process 
for determining which actions to take to remediate a problem. Individual decision 
makers are likely to be highly uncertain about how to best represent the complex 
preferences of their constituents. Such uncertainty can be quantified by collection 
of empirical data (e.g., opinion polls) and formally treated via decision analysis, but 
rarely is. Even with the availability of formal analytical tools, controversial judg-
ments remain about how to value life, distribute costs, evaluate benefits and risks 
among individuals and groups, and decide whether to reduce risks now or some time 
in the future (Finkel 1990).

Most probabilistic assessments have tended to combine variability and parameter 
uncertainty, and not consider model or decision rule uncertainty. Recent guidance 
from the US National Academy of Sciences (NRC 1994), USEPA (1997), US DOE 
(Bechtel Jacobs Company 1998), and others (Hattis and Burmaster 1994; Hoffman 
and Hammonds 1994) has emphasized the importance of tracking variability and 
parameter uncertainty separately. Indeed, the USEPA (2000) states that “the risk 
assessor should strive to distinguish between variability and uncertainty.” Two major 
advantages of tracking variability and parameter uncertainty separately in an uncer-
tainty analysis are

Precisely specifying the parameters of an input distribution is difficult and •	
lacks credibility when the available information is limited. The alternative 
of using higher order techniques to represent uncertainty about the distribu-
tion parameters (see below) allows the assessor to be more forthright about 
what is known and what is not.
The relative importance of variability and uncertainty can be quantified. •	
This information can be used to determine whether further research would 
be useful (e.g., when uncertainty is much more important than variabil-
ity) and to target that research. When variability is the dominant source 
of uncertainty, further research will be of limited use and the assessment 
should proceed to decision making.
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The following section describes the most commonly used technique for propagat-
ing variability and parameter uncertainty separately, 2nd-order Monte Carlo analy-
sis. A brief case study illustrating the technique is included in Section 7.3.

Second-order Monte Carlo analysis consists of 2 loops, the inner loop represent-
ing variability and the outer loop representing parameter uncertainty. To conduct an 
analysis, the following steps are required (also see Figure 7.1):

Specify the model equation and identify which model inputs are 1) well-•	
characterized constants (e.g., water solubility of a pesticide where there is 
little variation between a number of well conducted studies), 2) constants 
that have uncertainty (e.g., water solubility of a pesticide where only lim-
ited or poor quality data are available), 3) well-characterized random vari-
ables (e.g., pesticide concentration in a field from which numerous samples 
have been collected and analyzed), and 4) random variables for which 
there is uncertainty about the shape and/or parameters of the distribution 
(e.g., pesticide concentration in a field for which limited or poor quality 
data are available).
In software systems such as Crystal Ball, well-characterized constants are •	
assigned a single value that will be used in all simulations. Constants with 
uncertainty are assigned to the outer loop, and well-characterized random 
variables to the inner loop. For both situations, a distribution is selected 
(e.g., normal distribution for body weight) and the parameter values for the 
distribution specified (e.g., mean = 500 g, standard deviation = 100). For 
constants with uncertainty, the distribution and parameter values will likely 
be based on considerable professional judgment. Data-fitting techniques 
may be used to parameterize well-characterized random variables. Random 
variables with uncertainty must be included in both loops. To do this, a 
distribution is selected for the random variable (e.g., log-normal distribution 
for pesticide concentration) for the inner loop. Instead of specifying exact 
parameters for the random variable, however, distributions are assigned. In 
the case of a normal distribution in the inner loop, one would assign a distri-
bution for the mean and/or a distribution for the standard deviation. These 
latter distributions would reflect our uncertainty about what the mean and/
or standard deviation are for the random variable of interest.
Specify the number of inner and outer loop simulations for the 2nd-order •	
Monte Carlo analysis. In the 1st outer loop simulation, values for the param-
eters with uncertainty (either constants or random variables) are randomly 
selected from the outer loop distributions. These values are then used to 
specify the inner loop constants and random variable distributions. The 
analysis then proceeds for the number of simulations specified by the ana-
lyst for the inner loop. This is analogous to a 1st-order Monte Carlo analysis. 
The analysis then proceeds to the 2nd outer loop simulation and the process 
is repeated. When the number of outer loop simulations reaches the value 
specified by the analyst, the analysis is complete. The result is a distribution 
of distributions, a “meta-distribution” that expresses uncertainty both from 
uncertainty and from variability (Figure 7.1).
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Figure 7.1 Use of 2nd-order Monte Carlo approach to distinguish between variability 
and uncertainty for mathematical expressions involving constants and random variables. Five 
hypothetical values or distributions from the outer loop simulation are shown for the inputs 
and output. For the well-characterized input constants and random variables, the values and 
distributions, respectively, do not change from one outer loop simulation to the next.
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There are some issues associated with 2nd-order Monte Carlo analysis. 
Computational time can be a problem because the necessary number of replicates is 
squared with 2nd-order Monte Carlo analyses (i.e., number of inner loop simulations 
times number of outer loop simulations). In practice, specifying variability and uncer-
tainty with random variables is a difficult exercise because the analyst is essentially 
trying to quantify what he or she does not know or only partially understands.

Issues involving dependencies become more complex in a 2nd-order Monte Carlo 
analysis (Hora 1996). As with 1st-order Monte Carlo analysis, dependencies can 
arise between different input variables (e.g., intake rates for air, water, and food) in 
2nd-order Monte Carlo analysis. In 2nd-order Monte Carlo analysis, however, depen-
dencies may also need to be specified between distribution parameters of a particular 
random variable. For example, means and standard deviations are typically corre-
lated in nature; thus, for a normally distributed random variable, analysts must not 
only quantify what they do not know about the mean and standard deviation, but also 
what they do not know about the relationship between these parameters.

The major benefit of 2nd-order Monte Carlo analysis is that it allows analysts to 
propagate their uncertainty about distribution parameters in a probabilistic analysis. 
An analyst need not specify a precise estimate for an uncertain parameter value simply 
because one is needed to conduct the simulation. The relative importance of our inabil-
ity to precisely specify values for constants or distributions for random variables can be 
determined by examining the spread of distributions in the output. If the spread is too 
wide to promote effective decision making, then additional research is required.

7.3 simpLe 2nd-order monTe carLo anaLysis case sTudy

To illustrate the application of 2nd-order Monte Carlo analysis, we estimated expo-
sure of Carolina wrens to a hypothetical pesticide in cotton fields in the southwest 
United States. For this case study, the pesticide is assumed to be persistent, and the 
goal is to estimate chronic exposure (i.e., total daily intake) at the local field scale. 
The input data are representative of the kinds of data available during reregistration 
but, for this case study, are entirely hypothetical.

The Carolina wren is primarily an insectivorous bird (94% of diet). It is nonmi-
gratory and common in the cotton belt area of the southeastern United States. This 
species has been frequently observed foraging in or near cotton fields. Total daily 
intake of the hypothetical pesticide was estimated using the equation
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where
TDI  = Total daily intake (mg (kg·bw)−1 day−1)
IRw  = Intake rate for water (L day−1)
IRd  = Dietary intake rate (kg day−1)
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Cfw  = Concentration in field water (mg L−1)
Cew  = Concentration in edge water (mg L−1)
Cfx  = Concentration in field dietary items (mg kg−1): plants (x = 1), insects (x = 2), 

  and soil (x = 3)
Cex  = Concentration in edge dietary items (mg kg−1): plants (x = 1), insects (x = 2), 

  and soil (x = 3)
Pf  = Proportion of time spent in the field
Pe  = Proportion of time spent in the edge area (i.e., 50 m from field)
Fx  = Fraction of diet for plants (x = 1), insects (x = 2), and soil (x = 3)
BW  = Body weight (kg)

The state of the input knowledge can be summarized as follows (see also Table 7.1).

TabLe 7.1
inputs for a 2nd-order monte carlo analysis to estimate exposure of 
carolina wrens to a hypothetical pesticide (random variables are included in 
the inner loop of the monte carlo analysis, while random variables with 
uncertainty are included in both the inner and outer loops of the monte 
carlo analysis)

input variable Type of variable distribution andparameters

IRw Random variable Log-normal, mean = 0.0041, SD = 0.001

IRd Random variable Log-normal, mean = 0.0049, SD = 0.0009

Cfw Random variable with 
uncertainty

Log-normal, mean = [normal, mean = 2.91, SD = 0.5], 
SD = [normal, mean = 0.34, SD = 0.05]

Cew Random variable Log-normal, mean = 0.29, SD = 0.03

Cf1 (plants) Random variable with 
uncertainty

Log-normal, mean = [normal, mean = 0.18, SD = 
0.03], SD = [normal, mean = 0.2, SD = 0.02], r = 0.3 
(Cf1:Cf3)

Cf2 (insects) Random variable with 
uncertainty

Log-normal, mean = [normal, mean = 2.92, SD = 0.5], 
SD = [normal, mean = 3.47, SD = 0.5]

Cf3 (soil) Random variable with 
uncertainty

Log-normal, mean = [normal, mean = 0.09, SD = 
0.02], SD = [normal, mean = 0.05, SD = 0.01]

Ce1 (plants) Random variable Log-normal, mean = 0.0018, SD = 0.002, r = 0.35 
(Ce1:Ce3)

Ce2 (insects) Random variable Log-normal, mean = 0.04, SD = 0.04

Ce3 (soil) Random variable Log-normal, mean = 0.0009, SD = 0.0009

Pf Random variable with 
uncertainty

Beta, alpha = [normal, mean = 3, SD = 1], beta = 
[normal, mean = 3, SD = 1], scale = 0.6, r = −0.9 
(Pf:Pe)

Pe Random variable with 
uncertainty

Beta, alpha = [normal, mean = 5.2, SD = 1], beta = 
[normal, mean = 3, SD = 1], scale = 1

F1 (plants) Constant 0.94

F2 (insects) Constant 0.04

F3 (soil) Constant 0.02

BW Random variable Normal, mean = 0.0186, SD = 0.0019
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 1) The diet exhibits little variability and is well characterized. In this case study, 
the dietary fractions for insects, plants, and soil are treated as constants.

 2) Body weight is a well-characterized random variable.
 3) Some data are available from several fields and field edges to estimate spa-

tial and temporal variability around 30-day mean concentrations. In this 
case study, the concentration variables for the field are treated as random 
variables with uncertainty. Because the concentration variables for the edge 
are minor contributors to total daily intake, the uncertainty about these 
variables is ignored.

 4) The time individuals spend foraging in fields and field edges is expected to 
be variable, but data are scant. The foraging behavior variables are treated 
as random variables with large uncertainty.

 5) The intake rates are based on well-characterized allometric relationships. In this 
example, these variables are treated as random variables without uncertainty.

Table 7.1 shows the input variables derived from the above state of knowledge for 
the 2nd-order Monte Carlo analysis. Correlations between pesticide concentrations 
in soil and plants in the field and edge were also specified for this analysis, as was a 
strong negative correlation between the variable, proportion time spent in the field, 
and proportion time spent in the edge habitat. For simplicity, no correlations were 
specified between the 2nd-order input parameters (e.g., 2nd-order mean and standard 
deviation for concentration in insects in the field, 2nd-order alpha and beta for pro-
portion of time spent in the field) even though they are unlikely to be independent. 
The analysis was run with 500 inner loop simulations and 250 outer loop simulations 
(500 × 250 = 125,000 simulations) using Latin Hypercube sampling.

The results of the 2nd-order Monte Carlo analysis are shown in Figure 7.2. 
Rather than show the output distributions for all 250 outer loop simulations, the 
figure shows the 5th, 25th, 50th, 75th, and 95th percentile distributions for total 
daily intake (TDI) of the hypothetical pesticide by Carolina wrens. The results 
indicate that, because of uncertainty about some of the input parameter distribu-
tions, there is a 5% probability that the median TDI is less than 0.224 mg/kg bw/
day and a 95% probability that the median TDI is less than 0.557 mg/kg bw/day 
(in Figure 7.2, read over from the cumulative probability of 50% on the y-axis to 
the 5th percentile and 95th percentile output distributions). Similarly, there is a 
5% probability that the 10th percentile TDI is less than 0.103 mg/kg bw/day and 
a 95% probability that the 10th percentile TDI is less than 0.313 mg/kg bw/day. 
Finally, there is a 5% probability that the 90th percentile TDI is less than 0.484 
mg/kg bw/day and a 95% probability that the median TDI is less than 1.09 mg (kg 
bw)−1 day−1. If the corresponding effects benchmark or distribution is well left of 
the 5th percentile output distribution or well right of the 95th percentile output 
distribution, then the uncertainty about the input distributions is inconsequential. 
If, however, the effects benchmark or distribution lies between the 5th and 95th 
percentile output distributions, then additional research effort may be needed to 
reduce uncertainty about the TDI distribution.
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7.4 bayesian HierarcHicaL modeLing

In many risk assessments, assessors are faced with the challenge of incomplete data 
sets, a small number of tests on the chemical of interest, inconsistent information 
between studies, and other issues that lend uncertainty to the risk assessment results. 
Bayesian hierarchical models provide a tool for minimizing the effect of these issues 
(see Gelman et al. 1998 for a discussion of Bayesian methods and Bayesian hierar-
chical models in particular). For example, the Bayesian concept of exchangeability 
(Gelman et al. 1998) effectively minimizes the loss of information associated with 
small sample sizes by allowing the exchange of information among samples. A model 
based on small data sets can effectively “learn” from data conducted on similar tests 
(i.e., exchangeable tests), thus effectively maximizing the information content in the 
entire data set. Also, information can be output at each hierarchical level, thus com-
municating information at various levels of aggregation. Moreover, the methods enable 
direct incorporation of subjective information through the use of Bayes’ theory (see 
Chapter 5 of this book). In this section, we illustrate the use of Bayesian hierarchical 
models as an alternative to 2nd-order Monte Carlo or other higher order methods for 
tackling problems with high uncertainty. The concept of Bayesian hierarchical model-
ing is illustrated for the problem of estimating species sensitivity distributions (SSDs).

SSDs are being routinely used for the display and interpretation of effects data 
(Parkhurst et al. 1996; Posthuma et al. 2002). An SSD for atrazine (shown in 
Figure 7.3) displays the typical S-shaped curve associated with many chemical dose–
response relationships. Each point on the curve represents an LC50 for a particular 
species exposed to atrazine under standard toxicity test protocols. The SSD approach 
uses only a single statistically derived endpoint from each available toxicity test (e.g., 
the LC50 or EC50). In contrast, all data collected during any specific toxicity test can 
be used in a hierarchical model. The ability to use all available data to make inferen-
tial decisions is a marked improvement over the standard SSD effects distribution.
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Figure 7.2 Total daily intake for Carolina wrens exposed to a hypothetical pesticide.
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7.4.1 Case stuDy example of bayesian hierarChiCal moDeling

Sixteen nontarget plant trials using various study designs were conducted with a 
herbicide, its degradates, and formulations under growth chamber and greenhouse 
conditions. Each study or trial included tests with multiple species. Among the 16 
studies, a total of 17 species were tested, some of them tested in multiple studies. 
Where multiple tests on a single species were available, the data were combined into 
a single dose–response analysis as described in Section 7.4.1.2.

Shoot weight from vegetative vigor studies was chosen as the primary measure-
ment endpoint to assess the risk to standing vegetation. Shoot weight is more reliable 
than root weight and clearly more sensitive than shoot length under the vegetative 
vigor study design. Shoot length data from seedling emergence studies were selected 
as a measurement endpoint to assess the risk to emerging vegetation. In both study 
designs, mortality was too infrequent to use as a measurement endpoint. Vegetative 
vigor shoot weight and seedling emergence shoot length are sensitive and reliable 
measures of phytotoxicity and are widely accepted in the regulatory and scientific 
community (Davy 2001).

Seventeen species (42 tests) were tested with the vegetative vigor study design: 
alfalfa, beets, cabbage, canola, corn, cotton, cucumber, lettuce, navy bean, oat, onion, 
radish, ryegrass, soybean, sunflower, tomato, and turnip. Ten species (25 tests) were 
evaluated using the seedling emergence study design: cabbage, corn, cucumber, let-
tuce, oat, onion, ryegrass, soybean, tomato, and turnip.

7.4.1.1 bayesian inference
Two very different approaches to inferential statistics exist: the “classical” or “fre-
quentist” approach and the Bayesian approach. Each approach is used to draw conclu-
sions (or inferences) regarding the magnitude of some unknown quantity, such as the 
intercept and slope of a dose–response model. The key difference between classical 
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and Bayesian statistics lies in the concept of probability used by each approach. 
In the classical approach, probability represents the frequency with which an event 
would occur in repeated trials. In Bayesian statistics, probability represents a degree 
of reasonable belief based on existing information. Bayesian inference assumes that 
the parameters of interest are random. Available data are used to make inferences 
(e.g., probability statements) about the random parameters. This information assumes 
2 forms: sample information and prior information. Each must be available for the 
Bayesian paradigm to be implemented. Probability statements about the parameters 
of interest are made based solely on these 2 sets of information. Sample information 
and prior information are combined through the equation underlying Bayes’s theory. 
The final product of the Bayesian procedure is a probability distribution (called the 
posterior distribution) of the random parameter. Area under the curve of the poste-
rior distribution is used to make probability statements about the random variable. 
These areas are called credible intervals to reflect the concept of probability repre-
sented by the distribution.

In this section, the sample information was the raw toxicity test data for each spe-
cies and test. Prior information was not available outside the data set, so vague prior 
information was used as a basis for implementing the procedures.

A major advantage of the Bayesian framework for this risk assessment was the 
ability to make probability statements across a hierarchy of data levels. Probability 
distributions of the random parameters could be easily combined (integrated) across 
data levels. For example, information could be combined across tests within a labo-
ratory or across laboratories to make inferences about the random parameters of 
interest. The hierarchical model used in this project is described in Section 7.4.1.3. 
Software systems such as WinBugs (Spiegelhalter et al. 2000) facilitate the process. 
The advent of the new software reduces the level of mathematical and programming 
skill historically required to implement the Bayesian paradigm. For more on Bayes’s 
theory and decision-theoretic approaches, see Gelmen et al. (1998) and Congdon 
(2001).

7.4.1.2 development of dose–response Functions for individual species
The effects information was derived from toxicity tests in which replicate pots con-
taining multiple plants were exposed to a range of herbicide doses. Exposure in the 
toxicity tests was expressed as mass of active ingredient (a.i.) applied per horizontal 
surface area (lb a.i. A−1 or equivalent g a.i. ha−1). Pots, or groups of pots, were treated 
as replicates under the study designs used. The measured test endpoint used in the 
effects assessment for each replicate was shoot weight for vegetative vigor studies 
or shoot length for seedling emergence tests. The replicate values were used in all 
statistical analyses.

A number of issues influenced the selection of the dose–response model form 
and the treatment of the data prior to fitting the model. First, shoot weight and shoot 
length are continuous response measurements; therefore, use of a standardized logis-
tic model form is not appropriate. Second, the natural variation in plant growth often 
resulted in apparent increased shoot weight and shoot length measurements relative 
to the control at low herbicide application rates. A dose–response model needs to 
perform well even when some measurements in treatment levels exceed the controls. 
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Third, between-test variability can be attributed to many conditions, including dif-
ferences in soil and nutrient conditions, as evidenced by differences in control perfor-
mance. Therefore, a method was needed to normalize the toxicity test results so they 
could be combined across tests. Finally, the physical nature of the test ensures that 
100% inhibition can never be reached, because a plant experiencing 100% inhibition 
would be counted as a mortality. As a result, no measured data points were available 
near the 100% inhibition level. For most tests, the greatest measurable response was 
70% to 80% inhibition. Some standard dose–response models will not fit the result-
ing test data well, and will result in biased estimators of the true EC25 and EC50 
values for specific tests. The following paragraphs describe the approaches that were 
selected to resolve these issues.

A standard approach was used to model the data after normalization relative to 
the appropriate control. The raw shoot weight or shoot length data were normalized 
by dividing by the control mean for each test to transform the endpoint to the fraction 
of the control (which was used as the response endpoint in the model). This transfor-
mation is presented as:

 

yi j k l
i j k l

, , ,
, , ,=

dose response
control mean respoonse j l,   (7.2)

where i is the index of individual replicates, j is the index of test, k is the index of 
dose level, and l is the index of species. Each test had from 3 to 10 replicates at each 
dose. The control mean response for each test was calculated using values from all 
control replicates in the test. When there were multiple tests, shoot weight or shoot 
length data from each test were rescaled by their respective control means to adjust 
for possible differences in test conditions between studies. The rescaled data were 
modeled as a function of the dose level:
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  (7.3)

R0,l is the rescaled response at the control, Cj,k,l is the dose or rate, and ε is the 
error term, and α and β are regression coefficients. W0,l is the expected lowest shoot 
weight (or length) value, and effectively rescales the model predictions over the 
dose–response range. Both R0,l and W0,l were calculated for each species-specific 
dose–response curve.

7.4.1.3 bayesian Hierarchical model
A Bayesian hierarchical modeling framework was used to evaluate the effects data for 
each species and test endpoint (Figure 7.4). Hierarchical models reduce the effect of 
incomplete data sets, small numbers of tests, inconsistent information on effects among 
species, and other issues that lend uncertainty to the risk characterization results.

Dose–response models were fit individually for each species. Sources of uncer-
tainty inherent in these models include differences among individual plants used 
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in the tests, differences among species responses, and the uncertainty about model 
parameters. In the hierarchical framework, differences among species can be treated 
as the result of another “super” distribution. The dose–response curves for individual 
species can be treated as samples from a distribution at a higher level, with each 
individual dose–response curve representing a random realization from this super 
distribution.

To summarize, let θ be the parameters R0, W0, α, and β; and π be a probability 
density function. The distribution π describes the variability of the model param-
eters. The objective of a Bayesian hierarchical model is to generate the distributions 
of these parameters, based on all available information.

The mathematics underlying the hierarchical model (Figure 7.4) are described in 
the following discussion.

The hierarchical model can be described in 4 levels. For convenience, the model 
in Equation (7.3) is expressed in short form as a function of unknown coefficients 
and the dose concentrations: f(θj,l, Ci,j,k). The unknown coefficients

 
θ α βj,l j,l j,l j,l j,l= R ,W , ,0, 0,( )   (7.4)

and the dose concentrations, Ci,j,k define the mean of individual data points at the 
1st level:

 
y ~ N f Ci,j,k,l j,l i, j,kθ σ, , 2( )( )   (7.5)

Intuitively, we assume that individual data points are generated by a normal distribution. 
A common variance is assumed for model error as in a conventional regression analysis.

At the second level, coefficients θj,l are modeled as random variables from spe-
cies-specific distributions:

 
θ θ τj,l l~ N , 2( )   (7.6)

where θl = (R0,l, W0,l, αl, βl), representing model coefficients at the species level. The 
variance parameter τ2 represents the within-species variance in model coefficients.

The species-level coefficients are further modeled as random variables from a 
common hyperdistribution at the 3rd level:

Dataijkl

θ1 [ ] … [ ]

[ ] [ ]

θ Parmeters for integrated
species model

Parameters for 
species-specific models
Data for each of l species,
j tests, k doses, and i replicates

Figure 7.4 Bayesian hierarchical framework.
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θ θ λl ~ N , 2( )   (7.7)

where θ = (R0, W0, α, β) is the hyperparameter vector representing the overall means 
of model coefficients, and the variance λ2 is the between-species variance of the 
model coefficients.

In the 4th level, prior distributions are defined for the variance parameters and 
the hyperparameter:
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Under this hierarchical model, the joint posterior distribution of all coefficients and 
parameters can be expressed as the product of the probability density functions at 
the 4 levels:
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From this joint distribution, it is possible to integrate out coefficients and parameters 
at selected levels to summarize information at a given level. For example, the distri-
bution ∫∫π(θl|λ2, θ)π(θ)π(λ2)dλdθ summarizes the behavior of model coefficients for 
species l, which can be used to summarize possible test-level outcomes. Likewise, 
when all other coefficients are integrated out of the joint distribution, the posterior 
distribution of π(θ|Y) represents information from all species.

Equations (7.5) to (7.8) represent the general structure of the model. Equation 
(7.9) is a mathematical picture for the entire framework and indicates how numerical 
integration can be used to generate parameter distributions at any level. At any point 
in the framework, we can calculate the EC25 and EC50 as

 log (EC50) = −α/β and log (EC25) = [−α/β − log(3)/_]  (7.10)

Output from the hierarchical model can be produced at any level. For this analysis, 
these outputs can be presented in both graphical and tabular form. For example, the 
median value of the model parameters for each species can be output and used to 
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create graphics of the resulting dose–response curves that are generated using these 
coefficients. Also at this level, test endpoints like the EC25 for each pair of model 
coefficients generated during the statistical estimation process (see above equations) 
can be calculated. Because the Bayesian software uses a random sampling procedure 
to solve the Bayes rule, many sets of model parameters for each species-specific 
dose–response model are produced. For each randomly generated set of parameters, 
the corresponding EC25 and EC50 is calculated. These values are random samples 
from the posterior distribution of the EC25 or EC50. At the various hierarchical lev-
els, these values provide information that can be statistically evaluated or plotted.

For example, a cumulative distribution of the EC25 values integrated across all 
species (for shoot length or shoot weight) can be readily created. While this distri-
bution is derived based on the available data and model parameters, it represents 
the entire range of EC25 values that could be encountered. The distribution repre-
sents among-species variability and incorporates all associated sources of variance, 
including species sensitivity, model fit, and random error. From the generated EC25 
values, a cumulative distribution of EC25 values that is consistent with the concept 
of SSDs currently in the literature can be developed. The advantage of the Bayesian 
hierarchical model approach is that the resulting distribution of EC25 values incor-
porates many sources of variability, without loss of information.

The WinBugs software system (Spiegelhalter et al. 2000) was used to solve the 
Bayesian framework equations. These solutions result in posterior distributions of 
the random parameters that are effectively 1) the model parameters for the dose–
response models at both the among-species and superpopulation levels, 2) used to 
calculate measures of variability in the EC25s and EC50s, and 3) used to calculate 
the expected values of the model parameters at each level. WinBugs uses Markov 
Chain Monte Carlo (MCMC) techniques to solve the integrals found in Bayes’s theo-
rem, conditional on the distributional form of the parameters. To run WinBugs, the 
user supplies 1) the model form, 2) the distributional form of all random parameters 
at each level of the hierarchical model, 3) prior distributions of the parameters, and 
4) any calculations involving the random parameters that the user wants the com-
puter to generate. The software system uses random sampling of the conditional 
distributions to solve Bayes’s theorem, resulting in the posterior distribution of the 
random parameters, conditional on the data. The user can output sufficient statistics 
of the random parameters at any point in the model hierarchy. Details on the MCMC 
approach for solving the Bayesian equations are given in Congdon (2001).

7.4.1.3 species sensitivity distributions
A species sensitivity distribution (SSD) is a statistical distribution describing the 
variation in toxicity among a set of species. The set of species can be composed of 
a specific taxon, a selected species assemblage, or a natural community. Because 
the true interspecies distribution of toxicity is unknown, the SSD is generated from 
existing toxicity information and is presented as a cumulative distribution function. 
A basic assumption in ecological risk assessment is that laboratory-generated sin-
gle-species toxicity data provide useful information about the communities to be 
protected. In practice, however, not all species can be tested due to experimental 
or financial limitations. The SSD provides a statistical tool for extrapolating from 
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limited data sets to other species and situations not directly available from existing 
toxicity test information.

Bayesian models were used to generate the EC25 values for use in the SSDs 
because the Bayesian approach generates the most complete expectation of EC25 
values that can be developed from the available information. The Bayesian-derived 
SSD represents the entire range of EC25 values that could be encountered. Standard 
SSDs depend only on the specific species EC25 (or EC50) values available, reflecting 
interspecies variability for a fixed number of species. Uncertainty in the species-
specific EC25 values is not represented in standard SSDs. The Bayesian-derived 
SSD, however, is influenced not only by the species in the effects data set, but also 
by the uncertainty due to random error, intraspecies and interspecies variation, and 
model fit. Incorporation of additional sources of variability into the SSD is a major 
advantage of the Bayesian hierarchical framework relative to the classical approach. 
The Bayesian framework begins with the raw data and its inherent variability and 
uses that variability to calculate the EC25 values for each test and endpoint. From 
the generated EC25 values, a cumulative distribution of EC25 values is developed 
that is consistent with the concept of SSDs currently in the literature (Posthuma et 
al. 2002). The Bayesian hierarchical approach therefore results in a complete repre-
sentation of the information inherent in the toxicity database.

7.4.1.4 results
Examples of the model fit for shoot weight and shoot length are shown in Figures 7.5 
and 7.6, respectively. The models fit the data well, particularly at the low concentra-
tions where risk-based decisions are typically focused. The benefit of the additional 
model parameter, W0,l,, is evident by the “floor” effect seen in the raw data at higher 
concentrations. Both data-rich and relatively data-poor data sets followed the shape 
of the model curve.

Figures 7.7 and 7.8 show the dose–response curves generated at the species level 
for shoot weight and shoot length, respectively. Each dotted curve on the plot is spe-
cies specific. For many species, multiple toxicity tests are available. The random 
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Figure 7.5 Cucumber shoot weight dose–response data and model.
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Figure 7.6 Turnip shoot length dose–response data and model.
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parameters in the species-specific dose–response model are generated by integrating 
their respective probability distributions across the test-specific parameter distribu-
tions. Using Equation (7.10), the MCMC sampling techniques provide random sam-
ples of the EC25 and EC50 that reflect the scale (the center) and shape (the variance) 
of the parameter distributions. Therefore, the shape and spread of the species-spe-
cific distributions EC25 and EC50 distributions shown in Figures 7.7 and 7.8 reflect 
the relative scale and shape of the parameters that are lower in the hierarchical model 
framework. The species-specific parameter distributions effectively reflect several 
sources of variation including model error and between-test variability.

The solid line in the center of Figures 7.7 and 7.8 represents the integrated effects 
model, reflecting the average expected effects for all species based on the avail-
able shoot weight information. The darker dotted lines on either side are the 95% 
credible intervals around the integrated effects curve, and the dotted lines are the 
individual species-specific dose–response curves. Although not used in this risk 
assessment, the upper 95% credible interval provides a conservative measure of 
risk. It could be interpreted as an upper bound or a hypothetical species that has a 
95% chance of occurring (although not directly measured). The solid horizontal line 
indicates the EC25 values. The graphic, which is easily output from the Bayesian 
hierarchical procedures, provides a clear perspective on the among-species varia-
tion in sensitivity.

The advantages of this method are 1) the approach provides a visual interpreta-
tion of the relative effects of each species on the integrated model, 2) all of the raw 
data can be used to develop the integrated curve, 3) specific test endpoints (e.g., 
EC25) can be taken from the curves for each species (either mathematically or visu-
ally), resulting in a data representation similar to the SSD, and 4) a formal math-
ematical representation of the curves and probability model is available, unlike the 
SSD approach. Visually, an SSD-type representation can be seen by first picking an 
effects level on the y-axis (inhibition) and moving horizontally across the graph. The 
points on each dose–response curve are those typically included in an SSD.
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8 Interpreting and 
Communicating Risk 
and Uncertainty for 
Decision Making

J. L. Shaw, K. R. Tucker, K. Corsten, 
J. M. Giddings, D. M. Keehner, and C. Kriz

8.1 inTroducTion

Effective communication of ecological risk assessment results, and the uncertainty 
around these “predictions” of ecological risk, is essential for producing the best 
possible risk management decisions and for ensuring a quality dialogue among all 
stakeholders regarding risk management options. The complexity and unfamiliarity 
of probabilistic methods and the nature of the results for these audiences presents a 
particular challenge to risk assessors. They must not only master the analysis and 
accurately interpret results but be able to communicate results and process in precise 
nontechnical language that adequately describes uncertainty, as well as science pol-
icy options, and choices made along the way. Ambiguous, inexplicit, or inaccurate 
interpretations of science policy choices and risk assessment results contribute to 
poor decision making and an inefficient use of societal resources. In this chapter, we 
provide guidance for practitioners of risk assessment, particularly risk assessors and 
decision makers on effective communication throughout the ecological risk assess-
ment process. Good communication among practitioners is not only essential for 
informed regulatory decisions on pesticides, but lays the groundwork for effective 
communication with stakeholders and ultimately with the public about risk assess-
ment results and risk management options and decisions.

Many differences exist among regulatory agencies in different countries. For 
ease of presentation, we generalize our discussion based on the separation of asses-
sor and manager or decision-maker roles in the United States while recognizing 
that they may be dealt with in other countries via a more consensus-based system 
that combines assessor and risk manager roles. Other differences exist where some 
regulatory agencies require a balancing of ecological risk with pesticide benefits (in 
terms of impacts on crop yield and quality) prior to making regulatory decisions, 
while others may simply require that the decision maker be aware of the pesticide’s 
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benefits to crop production. Regardless of the various legal and statutory frame-
works for pesticide regulation across and within countries, or the designated roles 
and responsibilities of the people involved, clear interpretation and communication 
of risk assessment methods and results by experts remains an essential part of effec-
tive decision making.

8.2 parTicipanTs in risk communicaTion

Risk communication is defined as an interactive process of risk information and 
opinion among individuals, groups, and institutions (NRC 1989). The process is 
critical to effective decision making and to the exchange of accurate information 
within and between several, often overlapping, categories of participants. Table 8.1 
provides an example of participants involved in this process and their roles. For the 
purposes of this chapter, we use the term practitioner to refer to the regulators who 
are responsible for initiating, leading, and implementing ecological probabilistic risk 
assessments for pesticide registration, and those registrants who develop ecologi-
cal risk assessments. Most narrowly, practitioners engage in 2 interrelated activities: 
assessment and decision making. The latter role may be filled by risk assessors, risk 
managers, or some combination of these or other personnel.

Stakeholders may include individuals with a variety of affiliations or personal 
interests, including academic institutions, nonprofit organizations, other government 
agencies not directly engaged in the practice of pesticide registration, and the public. 
Stakeholders feel a mutual responsibility for the nature of any assessment outcome 
and a need to share resources and information to ensure a fully informed decision. 
For the most part, the public and many NGOs, government agencies, trade groups, 
public interest groups, and others remain removed from the implementation of the 
process of probabilistic risk assessment itself and focus more on the anticipated 
outcomes and effects of the decision. However, they are participants and potential 
stakeholders because their views or interests are represented in theory by the stake-
holders, particularly government decision makers who are mandated to represent the 
citizenry they serve, and yet they may become invested economically, professionally, 
or personally and choose to take a more active role in the process.

Participants, stakeholders, and practitioners interact in the stakeholder process. 
Each group is inclusive of the other, and each group is responsible for applying, 
interpreting, and reviewing the ecological assessments and the uncertainty analysis 
methods where they are used.

8.3  communicaTing uncerTainTy To 
sTakeHoLders and parTicipanTs

There are many reasons why communicating risk and uncertainty to stakeholders and 
participants is critical to an informed assessment but 3 are, perhaps, most fundamental. 
First, participants (especially stakeholders with expertise in topics germane to probabi-
listic risk assessment or a particular assessment), if given opportunities to interact with 
practitioners, can contribute information and perspectives that could help focus and 
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Table 8.1 an example of participants that could be involved in the risk 
communication process for pesticides

Type of participant role in process communication

Regulator–risk assessors 
(directly involved or peer-
reviewers)

Preparation of a scientifically 
valid risk assessment

Technical experts with 
responsibility for 
communicating results to 
decision makers and other 
stakeholders

Regulator or registrant–benefits 
assessors

Responsible for benefits 
evaluation (where the law 
requires this)

Technical experts with 
responsibility for 
communicating results to 
others

Regulator–decision makers Compliance with laws 
regulating pesticides; 
consideration of input from 
all stakeholders; makes 
decision to register or 
reregister the pesticide based 
on risk assessment and 
benefits analyses; makes 
decision on mitigation 
measures necessary to 
support registration decision

Assist in communication to all 
nonregulator stakeholders 
— understanding of risk 
assessment necessary

Registrant–risk assessors 
(directly involved or peer-
reviewers)

Preparation of a scientifically 
valid risk assessment

Technical experts with 
responsibility for 
communicating results to 
regulators, registrant–decision 
makers, and others

Registrant–decision makers Makes decision to develop the 
pesticide and to submit 
pesticide for registration 
based on risk assessment and 
benefits analyses conducted 
by the registrant; makes 
decision on mitigation 
measures

Assists in communication to 
regulators, and other 
stakeholders — understanding 
of risk assessment necessary

Regulators at a local level or 
public authorities

Compliance with laws at local 
level

Recipients for communication 
who may have limited 
knowledge of risk assessment

Food, feed, or fiber processors Focus on potential benefits and 
need for low-risk pesticide

Recipients of communication 
with limited knowledge of risk 
assessment

Universities or researchers May be consulted in decision 
making

Recipients of communication 
who may have limited 
knowledge of risk assessment 
assuming they are not 
practitioners of risk assessment

—continued
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refine the assessment. Second, effective communication of uncertainty gives partici-
pants an appreciation of the limits of the data and of the scientific tools employed. This 
transparency can build trust and help dispel fears that the scientific findings regarding 
risk are being misrepresented. Third, greater awareness of the treatment of uncertainty 
in the assessment, and the limits of the science, enlightens decision makers when mak-
ing policy choices in the face of uncertainty. That is, with increased transparency and 
clarity around the limits of our best estimates of risk, it will become increasingly clear 
that science informs but does not dictate risk management decisions.

Regulatory agencies bear the primary responsibility for risk communication to 
stakeholders and participants, including the public. Regulators and registrants are 
most involved in initiating risk communication. Other federal agencies, NGOs, inter-
est groups, and regional governments may disseminate information geared to stake-
holders and the public that more often discusses risk in specific use scenarios and, in 
some cases, is deliberately biased or “protective” of a particular position or species 
deemed to be at risk.

The NRC (1989) states “risk communication is successful to the extent it raises 
the level of understanding of relevant issues or actions and satisfies those involved 
that they are adequately informed within the limits of available knowledge.” Central 
to many of these discussions is the need for participants to feel comfortable with 
the amount of information available and know they have an opportunity to use this 
information constructively.

Table 8.1 (continued) an example of participants that could be involved in 
the risk communication process for pesticides

Type of participant role in process communication

Legislators Risk communication may 
influence and facilitate the 
legislative process

Recipients of communication 
with limited knowledge of risk 
assessment but need to 
understand the role of science 
in informing policy

Consumer protection groups Represent consumer rights to 
know

Recipients of communication 
with limited knowledge of risk 
assessment

Environmental groups Represent perspectives and 
interests of environmental 
groups

Represents perspectives and 
interests of environmental 
groups

Public Individual rights and interests Recipients of communication 
with limited knowledge of risk 
assessment and focus on 
perceived risk; perceptions of 
risk based on personal 
experiences

Resource managers with 
mandate to protect resources

Represent interests of natural 
resources; may be consulted 
in problem formulation and 
decision making

Recipients of communication 
with limited knowledge of risk 
assessment
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Three generalized tasks contribute to these elements of successful risk communi-
cation. First, the goal of risk communication is not persuasion or simply delivering 
“the message,” but rather it is to provide the resources, information, and expertise 
that enable participants to make an informed decision. In the case of some partici-
pants who become only indirectly involved in the process, education on fundamental 
concepts may be necessary (Peterson 2000). Powell and Leiss (1997) warn that edu-
cating the public about science is no substitute for good risk communication practice. 
In response to this sound advice, where probabilistic risk assessment is just entering 
registration practice, regulators may consider approaches that creatively include edu-
cational opportunities (developing education or training on risk assessment) in laying 
the groundwork for effective communication.

Third, whenever possible, this communication needs to be interactive. In the regis-
tration of pesticides, legally mandated deadlines, the complexity of the assessment, the 
manifold assumptions needed to fully explore methods and their outputs, and the need 
to protect sensitive business information limits the degree to which stakeholders may 
always be able to participate interactively. Nevertheless, opportunities for meaningful 
interaction with stakeholders, especially those that can bring additional data or infor-
mation to bear and can constructively review the process, will benefit practitioners.

8.4 process For communicaTion

Risk communication is defined as an interactive process of risk information and 
opinion among individuals, groups, and institutions (NRC 1989). In other words, 
risk communication is not simply about experts communicating the results of a risk 
assessment following its completion. Instead, this interactive process requires a dia-
logue that should begin in the problem formulation stage. Problem formulation is the 
1st formal stage of communication and decision making and is the starting point for 
effective dialogue throughout the remainder of the process. An inadequate problem 
formulation will hinder communicating results of the risk characterization. Also, 
risk assessments that do not take advantage of the concerns and expertise of stake-
holders during the problem formulation phase are in danger of not providing answers 
or insights into issues of importance to stakeholder groups. For example, a key stake-
holder such as the Izaak Walton League (http://www.iwla.org/) may view potential 
impacts to fish-eating birds to be the area of greatest concern, yet the risk assessment 
may focus exclusively on songbird impacts. The problem formulation would provide 
reasoning as to why the analysis focused on songbirds and not fish-eating birds. 
Communication occurs at various stages throughout the risk assessment and prior to 
further iterations of the risk assessment (Table 8.2). The risk management step will 
integrate other information relevant to decision making (e.g., legal mandates; politi-
cal, social, and economic considerations; benefits analyses).

Stakeholders must be identified and engaged in the risk assessment during the 
problem formulation stage. Improving the flow of information and increasing oppor-
tunity for critical discussion among stakeholders involved in the risk communica-
tion process will improve the quality of the risk assessment and risk management 
decisions (Warren-Hicks and Moore 1998). Early interaction during the problem 
formulation with stakeholders will also increase trust and credibility in the process. 
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Complex risk assessments, such as those required in situations where benefits and/
or potential risks are high and/or uncertainty is great, will require greater and bet-
ter informed interaction than less complex risk assessments where risk outputs fall 
clearly within the categories of acceptable or unacceptable risk. In the complex case, 
a series of meetings may be required to ensure adequate interaction and involve-
ment of stakeholders. When a decision is made to conduct a probabilistic risk assess-
ment, it is important to help stakeholders understand the principles of probabilistic 
risk assessment (USEPA 1999) and the rationale for taking this approach. Providing 
ongoing opportunities for stakeholders to become familiar with the probabilistic risk 
assessment process will allow increased participation and broaden opportunities for 
shared, constructive debate.

Decision makers and others responsible for communication to stakeholders should 
attempt to identify the risk perceptions, concerns, level of probabilistic risk assessment 
understanding, and information requirements for each sector of stakeholders before 
and during the problem formulation stage. This knowledge can help identify the risk 
and uncertainty information to be communicated and the most effective method of 
communication. The stage of the risk assessment and risk management process at 
which each stakeholder sector can meaningfully contribute should be made clear, and 
frameworks and fora established to ensure exchange of information and dialogue.

The key information that should be communicated to each stakeholder sector needs 
to be identified together with the method of communication. Stakeholder knowledge 
and ability to assign resources for developing familiarity with probabilistic risk assess-
ment will vary greatly. Also, the interests of stakeholders may be focused on specific 
sets of information (e.g., risk to a particular resource or species). The tailoring of 
information to specific needs and level of expertise is critical to ensuring that effective 
risk communication takes place at each level of participation. At the same time, infor-
mation should be easily accessible for participants who wish to pursue greater levels 
of precision and complexity. A well thought-out communication plan is essential to 
an effective and inclusive process. Warren-Hicks and Moore (1998) detail some of the 
general rules and steps to successful communication of risk and uncertainty.

Table 8.2 process for communication at various stages of the risk 
assessment

step in process communication activities

1 Problem formulation Dialogue between risk assessor, decision maker, and stakeholders

2 Analysis Dialogue between risk assessor, decision maker, and other experts 
(e.g., academics) as necessary to complete the analyses

3 Risk characterization Risk assessor communicates results to decision maker

4 Further iterations of the 
ecological risk assessment

Risk assessor communicates results to decision maker

5 Risk management Communication from risk assessor and decision makers to 
stakeholders

6 Implementation of risk 
management

Dialogue between decision maker and stakeholders
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8.5  risk assessor and decision maker 
roLes and responsibiLiTies

Communicating in a manner that accurately portrays risk and the nature of confi-
dence in results is integral to and a major challenge for practitioners of probabilis-
tic risk assessment. Inadequate communication of scientific uncertainty about the 
effect, severity, or prevalence of a hazard tends to increase unease among decision 
makers, stakeholders, and other participants. Efforts of the risk assessors should 
provide clarity for decision makers who must in turn bear ultimate responsibility for 
communicating the parameters of any decision. The risk assessor will work within a 
framework that must be clearly communicated by decision makers during the prob-
lem formulation. Decision makers at the outset of the risk assessment process must 
articulate the following points:

Risk assessors will work within an established framework that will include 
the following:

Outlining protection goals including resources to be protected and assess-•	
ment endpoints
Instituting a regulatory decision-making process including science policy •	
relating to regulatory levels of concern and triggers for further levels of 
refinement
Defining the characteristics of each level of refinement of the risk assessment •	
and identifying which levels are deterministic and which are probabilistic
Identifying the assumptions and uncertainty factors or safety factors at each •	
level of refinement of the risk assessment
Determining whether the objective of the risk assessment is to provide the •	
most accurate assessment of risk or a protective assessment resulting from 
the inclusion of conservatively biased uncertainty factors

A risk assessor’s job has many dimensions. The 1st is to help the decision maker for-
mulate the core issues or problems in a way that best informs the decision. The deci-
sion maker needs help in translating generalized concerns about ecological impacts 
into specific assessment endpoints for the assessment. Risk assessors need to fully 
understand the questions being asked by the decision maker to ensure that the risk 
assessment analysis plan will deliver results necessary for effective decision making. 
Second, the risk assessor must use scientifically informed technical expertise and 
judgment to evaluate data and select risk assessment methods and tools appropriate 
to the problem and available data. Finally, risk assessors are responsible for commu-
nicating results, methods, and judgments made throughout the assessment process 
to the decision maker. They also must communicate to the decision maker 1) risk in 
relation to assessment endpoints, 2) what effects might occur and their likelihood 
and magnitude, 3) temporal and spatial occurrence of effects, and 4) confidence in 
the risk assessment (uncertainty) including data gaps. It is the responsibility of the 
risk assessor to ensure that uncertainty and risk are explicit and accurately portrayed 
in the final risk characterization. The decision maker’s ability to make decisions and 
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communicate them, in turn, effectively to stakeholders and participants is wholly 
dependent on interaction and exchange information with the risk assessor.

Decision makers must develop regulatory options and the consequences of these 
options, taking into consideration public health and ecological, economic, social, 
and political values. They must manage the complexity of the assessment and the 
demands of stakeholders within their own regulatory framework and legal mandate. 
They must be able to communicate the sources and causes of the risk (e.g., nature 
and intensity, spatial and temporal scale, and recovery potential), their own degree of 
confidence in the risk assessment, the rationale for risk management decisions, and 
options for reducing risks (USEPA 1995).

Risk assessors and decision makers both need to be prepared to communicate risk 
results in an understandable form to other practitioners (regulatory and registrant), 
stakeholders, and the public. This is particularly critical in the case of uncertainty 
in the assessment. Most scientists hired to perform risk assessment are thoroughly 
trained in their subject matter but less familiar with the demands of public pre-
sentation or the essentials of educating at multiple levels. Regulators must provide 
scientists and decision makers with the support and opportunity to develop skills 
necessary to effectively communicate with stakeholders and the public.

8.6  communicaTion oF uncerTainTy For 
reguLaTory decision making

Uncertainty occurs under various guises at every stage of the risk assessment and 
must be integrated during the final risk characterization. Risk practitioners respon-
sible for formalizing the assessment and the resulting decisions must ensure the 
assessment process is transparent and that risk outputs and uncertainty are effectively 
communicated. Appropriately applied, uncertainty analysis describes the degree of 
confidence in the assessment (USEPA 1998) and enables the decision maker to focus 
risk management decisions.

Irrespective of the risk, assumptions and decisions will have to be made because 
of uncertainty. Implications of attempting to characterize all variability and uncer-
tainty in the risk assessment need to be considered. For example, exaggerating uncer-
tainties can obscure the scientific basis of risk management decisions, leaving the 
impression that the decision has been arbitrary in nature (NRC 1989). The purpose 
of the uncertainty factor together with the type of assessment (e.g., deterministic or 
probabilistic, protective or best estimate) must be clearly communicated. Uncertainty 
factors can be described in 3 categories:

 1) An uncertainty factor that leads to the best estimate of a variable in an 
assessment that aims to derive the most realistic estimate of risk

 2) A conservatively biased uncertainty factor (i.e., a safety factor)
 3) An uncertainty factor that may lead to an underestimate of risk

It has been argued that the use of uncertainty factors is equivalent to having decision 
making or risk management operating within the risk assessment. Others believe 

© 2010 by Society of Environmental Toxicology and Chemistry (SETAC)



Interpreting and Communicating Risk and Uncertainty for Decision Making 151

that the proper place for safety factors is in the decision-making process because 
the objective of the risk assessment is to be credible (believable), not pessimistic or 
optimistic. Because the overall effect of integrating safety in the assessment is dif-
ficult to quantify, a practical approach for risk assessments that informs regulatory 
decision making would be to establish a reasonably conservative problem formula-
tion but then use best estimates for variables throughout the assessment. Another 
practical approach would be to use safety factors at lower levels of refinement where 
the purpose is to screen out “very safe” or “very unsafe” chemicals. Alternatively, 
this screening level assessment may bracket the true risk using uncertainty factors 
biased in 1 direction for the 1st risk assessment and then biased in the other direction 
for a 2nd comparative risk estimate. This may expedite the decision-making process 
and make the overall risk assessment process more efficient by focusing refined risk 
assessments that require greater resources on chemicals where the risk is threshold, 
i.e., not clearly acceptable or unacceptable (Figure 8.1). At higher levels of refine-
ment, where a realistic estimate of risk is necessary, there would be a conscious 
decision to eliminate safety factors from the assessment.

The decision maker needs to determine whether risks are sufficiently well defined 
(and data gaps small enough) to support a risk management decision. Also, he or she 
should determine whether the uncertainty is characterized to the extent acceptable 
for decision making. In other words, the risk management decision is influenced by 
uncertainty. Decisions made based on outputs from the risk assessment could fall 
into 3 alternative categories as shown in Figure 8.1. It is important that uncertainty 
is clearly communicated because it may be unacceptably high (wide) for effective 
decision making. In this situation, the risk assessment needs to be refined to reduce 
uncertainty unless the risk curve and its uncertainty bounds distinctly fall within the 
category of “acceptable risk” or “unacceptable risk.”

Practitioners of ecological risk assessments will frequently experience large 
uncertainty bounds on the estimates of risk. Unfortunately, characterizing and/or 
reducing uncertainty can be very costly. However, these costs must be balanced with 
the need to conduct sufficient analysis to make an informed decision.

Selection of the uncertainty analysis method to use in the risk assessment is 
affected by the utility of the method for risk management purposes, and different 
approaches may be necessary for different questions posed by the decision maker. 
The decision maker may require a certain method of uncertainty analysis depending 
on where the risk falls relative to the threshold of acceptability or unacceptability. 
Other factors influencing choice of method include the type of regulatory decision 
(registration versus reregistration) to be made, the stage in the risk assessment that 
the decision is being made, and consequences of implementing the decision. The 
method selected must provide the regulator with the necessary information for risk 
management and also for communicating risk to stakeholders. The risk assessor 
must be able to justify use of a particular uncertainty analysis method to support the 
needs of the decision maker.

The information communicated by the risk assessor needs to provide an assess-
ment of the overall degree of uncertainty and confidence in the analysis. The nature 
of the uncertainty for sensitive variables should be communicated, for example, vari-
ability, descriptive errors, data gaps, uncertainty about a quantity’s true value, and 
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Figure 8.1 The risk curve lines shown represent thresholds between different types of 
decisions (based on ECOFRAM 1999a and 1999b). These thresholds would be determined 
by decision makers and may move location subject to other factors that affect the decision 
(e.g., pesticide benefits). The bottom graph shows an example risk curve with uncertainty 
bounds. The curve clearly fits within the “acceptable risk” category; however the upper 
uncertainty bound does not, indicating a need for risk mitigation or further refinement of the 
risk assessment.
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uncertainty about model structure and detail. The decision maker must be provided 
with adequate relevant information that can be used for the purpose of decision mak-
ing. The statements made concerning risk need to be clear and accurately reflect the 
data inputs, input distributions, assumptions, and uncertainties. Accordingly, the risk 
assessors need to stay within the limitations of the supporting data and give due con-
sideration to these limitations as articulated by uncertainty analyses through each 
step of the assessment.
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9 How to Detect and 
Avoid Pitfalls, Traps, 
and Swindles

G. Joermann, T. W. La Point, L. A. Burns, 
J. P. Carbone, P. D. Delorme, S. Ferson, 
D. R. J. Moore, and T. P. Traas

9.1 inTroducTion

A probabilistic risk assessment (PRA) deals with many types of uncertainties. In 
addition to the uncertainties associated with the model itself and model input, there 
is also the meta-uncertainty about whether the entire PRA process has been per-
formed properly. Employment of sophisticated mathematical and statistical meth-
ods may easily convey the false impression of accuracy, especially when numerical 
results are presented with a high number of significant figures. But those who pro-
duce PRAs, and those who evaluate them, should exert caution: there are many pos-
sible pitfalls, traps, and potential swindles that can arise. Because of the potential 
for generating seemingly correct results that are far from the intended model of 
reality, it is imperative that the PRA practitioner carefully evaluates not only model 
input data but also the assumptions used in the PRA, the model itself, and the calcu-
lations inherent within the model. This chapter presents information on performing 
PRA in a manner that will minimize the introduction of errors associated with the 
PRA process.

Burmaster and Anderson (1994) have compiled a list of principles of good prac-
tice, which were originally aimed at Monte Carlo simulations, but are valuable also 
for other techniques in uncertainty analysis. These recommendations later appeared 
in modified and supplemented form in various handbooks and other publications, 
e.g., the USEPA Guiding Principles for Monte Carlo Analysis (USEPA 1997).

This chapter summarizes the major preconditions necessary for the conduct of an 
environmentally relevant PRA, illustrates potential sources of errors, and provides 
recommendations about how to avoid them. The chapter draws upon the Burmaster 
and Anderson (1994) principles that still form an excellent basis with regard to good 
practice. Other sources are Ferson (1996), Warren-Hicks and Moore (1998), and 
Cullen and Frey (1999). Apart from those approaches noted, there are many cross 
references to other chapters within this volume.
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The use of probabilistic techniques is rather new in ecotoxicology, and many 
issues regarding the appropriate methodology necessary to conduct a PRA are not 
yet settled. Because of the fluid nature of the process, different options regarding 
assumptions, procedures, and default values exist. Because of the developmental 
stage of PRA, there likely will not be a formally standardized approach or gener-
ally accepted method in the scientific or regulatory community from which guid-
ance can be sought. It is therefore imperative to exert well-founded expert judgment 
when making decisions about PRA parameterizations. Within that context, trans-
parency is of pivotal importance. It is always helpful to make explicit all data, 
models, tools, and procedures. Where appropriate, give references, sources, and 
documentation, which allows for an assessment of the quality of the PRA in gen-
eral. Poor input data should be noted, and weak points in models and methods 
should be fully elucidated.

9.2 meaningFuL probLem FormuLaTion

Essential prerequisites for a probabilistic risk assessment are a well thought-out prob-
lem formulation and a clear definition of the assessment endpoints. The probabilistic 
approach according to its very nature aims at making predictions on quantities or the 
occurrence of certain events. Such quantities and events must be specified precisely 
such that, at least in principle, there is no doubt on what the quantity is or whether 
the event happened (Morgan and Henrion 1990).

9.3 suiTabiLiTy oF inpuT daTa

Input data should be described in sufficient detail. That alone, of course, doesn’t 
guarantee their quality but it allows for a judgment whether the data are suitable for 
the intended purpose. Input data could be weak for a variety of reasons:

Lack of accuracy•	
  Accuracy is the distance of a measured or estimated value to its true value. 

Inaccuracies (systematic deviations or bias) may arise from inadequate sur-
vey design and processing of the samples. Expert judgment is needed to 
assess the accuracy; however, that implies that the origin and the extraction 
of the data is described (sampling design and conditions).
Data not representative•	

  Data must be representative of the scenario to be assessed. If the population 
and conditions under assessment are different from the data source, or the 
scope is broader than the data source, then caution must be exercised. In 
those cases it may be possible to demonstrate representativeness by bridg-
ing data or other supporting evidence. With regard to effects data, extrapo-
lation from lab to field is often involved, thus introducing an additional 
degree of uncertainty.
Data range exceeded•	

  Where regression statistics are involved the relationship should not be 
extrapolated beyond the observed data range for the independent variable. 
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This is particularly important if the linear regression model is used rather 
than a mechanistic model.
Small sample size•	

  With small sample sizes the uncertainty due to random sampling error usu-
ally is large and may become the dominant source of uncertainty in the 
output. This uncertainty could be reduced if there is relevant prior infor-
mation, for example, reasonable estimates for distribution parameters from 
well-described datasets (Aldenberg and Luttik 2002).

9.4  parameTerizaTion oF THe disTribuTion 
oF inpuT VariabLes

The selection of the appropriate distribution type for a model variable is of critical 
importance. Selection of spurious input parameter distributions while allowing the 
generation of sophisticated “looking” output distributions would skew the model 
outcome away from accuracy. In order to demonstrate proper parameterization of 
the input distribution, the model practitioner is urged to plot the data points versus 
the distribution function. Goodness-of-fit statistics should be reported, but it must be 
kept in mind that the power of such tests depends upon the sample size. For small 
sample sizes the null hypothesis often cannot be rejected although the fit is poor, and 
with large sample sizes the null hypothesis may be rejected although the deviation 
from the fitted curve is unimportant from a practical perspective. Therefore a visual 
check of the graph image is always helpful. There are no simple rules on how to 
choose from different distribution types; however, goodness-of-fit tests should not 
form the sole basis for decisions regarding the appropriate selection of distribution 
shape. Instead, the practitioner should consider whether PRAs have been conducted 
with similar kinds of data or whether underlying mechanisms are known that suggest 
a certain type of distribution.

Incorrect choice of distribution•	
  It is key to select distributions that appropriately represent the data. As an 

example, one should not use the Poisson distribution to describe continu-
ous data. Use of a uniform distribution when information is scant is typi-
cal; however, the approach is potentially a pitfall because it assumes a high 
degree of certainty about the distribution minimum and maximum values 
when in reality those values may not be certain.
Constraints on variables not observed•	

  Some variables cannot be negative (concentration, body weight); other vari-
ables have upper bounds (e.g., 100%). If the fitted distribution exceeds these 
bounds the tails may be truncated (draws in a Monte Carlo analysis have to 
be processed accordingly); however, distributions that have to be severely 
truncated are a poor choice. Especially proportions or fractions that range 
between 0 and 1 (0% and 100%) should only be represented by a distribu-
tion with finite tails (e.g., beta or uniform distribution).
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9.5 correLaTions and dependencies

In Monte Carlo and other techniques, correlations between input data have an influ-
ence on the shape of the output distribution, especially on the tails (positive cor-
relations usually will cause wider tails, negative correlations narrower tails). The 
tails of the output distribution are generally important with regard to the ultimate 
conclusions drawn from the analysis. Incorrect accounting for correlations can be 
a serious source of misleading results. If submodels are fitted to data (i.e., linear or 
nonlinear regression), the parameters are necessarily correlated. A good statistics 
program gives the covariance matrix (from which correlations can be calculated) or 
the correlations between the parameters of the fitted model.

Problem of dependencies ignored•	
  Input parameter dependencies are frequently ignored because typically 

there is a lack of information regarding dependencies. However, it is an 
essential requirement that input parameters are appropriately addressed 
in the PRA. If specific data are not available, the PRA practitioner must 
employ expert knowledge to judge whether a certain degree of correlation 
is plausible. Because the impact of input parameter dependencies on the 
outcome of the PRA is unknown, sensitivity analyses should be performed 
where simulations are run assuming no, moderate, and high correlations. 
Approaching the matter in this fashion will ensure that time and resources 
are used appropriately.
Known dependencies not considered•	

  Information regarding model input correlations must be accounted for if 
data or sensitivity analyses indicate that correlations are highly influen-
tial on model outcomes. In cases where there exists a strong dependence 
between variables, the model could be modified by holding 1 variable fixed 
while taking the 2nd as a random variable. For example, the fraction of a 
pesticide reaching the soil ( fs) is obviously inversely correlated with the 
fraction intercepted by the vegetation ( fi). Using that assumption, fi could be 
regarded as a random variable and fs defined as 1 − fi. There are additional 
approaches that can be employed to cope with dependencies either in the 
model or in the method for sampling in a Monte Carlo analysis.
Correlation matrix nonsensical•	

  If more than 2 variables are involved, the correlation matrix must be posi-
tive, semidefinite. That means if the correlation with A and B is a, and the 
correlation between B and C is b, then the correlation between A and C can’t 
be any number between 0 and 1; it must satisfy certain constraints. Such 
errors may occur if pairwise correlation coefficients stem from different 
data sets.

9.6 modeL uncerTainTies

The goal of any model simulation is to reasonably represent a snapshot of reality. 
With quantitative exposure or risk assessment there is typically a range of input 
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variables that are linked to give 1 or more output variables. The system may contain 
submodels where the output of one is fed to the input of another.

Validation of models is desired but can be difficult to achieve. Models are empiri-
cally validated by examining how output data (predictions) compare with observed 
data; (such comparisons, of course, must be conducted on data sets that have not been 
used to create or specify the model). However, model validations conducted in this 
manner are difficult given limitations on data sources. As an alternative approach, 
model credibility can be assessed by a careful examination of the subcomponents of 
the model and inputs. One should ask the question: Does the selection of input vari-
ables and the way they are processed make sense? Also, confidence in the model may 
be augmented by peer reviews and the opinion of the scientific community. Common 
faults and shortcomings are

Inappropriate choice of model•	
  Usually models are created for a certain purpose, and that purpose drives 

their structure, level of detail, level of complexity, etc. A model may be 
excellent, but it must not be used for inappropriate purposes. If the output of 
the model does not match the assessment endpoint and the questions raised 
in the problem formulation phase, then the model obviously is not suitable 
for the specific case.
Overparameterization of empirical models•	

  As a general rule, the number of parameters in data-based models should 
be kept at a minimum. Increased input parameterization may improve 
model accuracy, but at a cost, since it requires greater time and resource 
commitments. Increasingly, sophisticated models require greater preci-
sion with regard to input parameterization. Without the greater attention to 
input veracity, the modeling practitioner runs the very real risk of generat-
ing increasingly meaningless output. Additional parameters improve the fit, 
but that is irrelevant. Only when there is a significantly better fit are more 
parameters justified.
Model boundaries exceeded•	

  The validity of a model is always limited to a certain domain in the param-
eter space. For example, if a quantitative structure-activity relationships 
(QSAR) model is specified for nonpolar organic chemicals in the log Pow 
range from 2 to 6 and has a molecular weight below 700, then an applica-
tion to substances outside this range is an improper extrapolation. Note that 
the parameter space may be difficult to discern; for example, combinations 
of low values for one variable and high values for another could constitute 
an extrapolation if such combinations had been missing in the validation 
or specification of the model. Exceedence of model boundaries introduces 
additional uncertainty at best, but can also lead to completely incorrect 
outcomes.
Hidden assumptions•	

  If a model is based on incorrect assumptions then the output cannot reflect 
reality. Therefore, it is essential to make explicit all assumptions and set-
tings used in defining the scenarios, e.g., spatial and temporal dimensions 
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of the system, number of individuals in the system, etc. Such parameters 
should appear as design variables with fixed values in the list of input vari-
ables. It should not be assumed that design variables are without uncer-
tainty; usually they are deliberately set to fixed values in order to keep 
models simple.
Biological or ecochemical constraints ignored•	

  In addition to trivial constraints on single variables (survival rate must be 
between 0% and 100%) general biological knowledge may dictate more 
rules for data sets, e.g., in population models the number of emigrants can-
not be higher than the total population. There also may be cases where 
certain combinations of 2 inputs are nonsensical; if that is true such com-
binations should be excluded in simulations, for example, by establishing 
families of data sets (binning).
Dimensions and units not concordant•	

  Mathematical equations must balance dimensionally and permit concor-
dance among the units involved. 
Data lumped•	

  If input data are differentiated for subpopulations, the between-group vari-
ance should be examined before pooling the data.
Spatial and temporal resolution not appropriate•	

  Input variables usually have a structured pattern in space and time. It can 
be described as autocorrelation (mostly variates tend to be more similar 
to their neighbors in space and time than to distant observations) or as a 
partitioning of the variance into hierarchical levels (sample–plot–field, or 
hour–day–month). The lower limit of resolution always is dictated by the 
data sampling protocol. In a model, a fine resolution may be made coarse by 
averaging. The reverse is not true, i.e., coarse resolution can not be refined 
by dividing. In exposure models the temporal resolution is to be seen in 
relation with the response characteristic of the effect endpoint under consid-
eration (e.g., a 1-week-average concentration in surface water is inappropri-
ate for combining with a fast lethal effect). The spatial resolution is to be 
seen in relation with the home range or foraging range of the individuals or 
populations under consideration. Generally, variability should be processed 
in such a way that it matches the unit of analysis.

9.7 soFTware TooLs and compuTaTionaL issues

PRA models are usually implemented in a computer program, which can be a simple 
spreadsheet or more complex models in specific programming languages. This pro-
cess may lead to errors. There simply is the possibility that the computer program 
does not perform as it was meant to.

Computerized version of model faulty•	
  It must be ensured that the conceptual model is correctly translated into the 

mathematical notation, and that in turn into the computer code. Efforts to 
check for mistakes (test runs of example data sets, inspection of intermediate 
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results, and cross checks with other software) should be increased propor-
tionately to the complexity of the newly developed computer code.
Random number generator flawed•	

  In modern software packages random number generators should work satis-
factorily. However, if seeds are set manually, procedures should ensure that 
repetition of sequences is avoided.
Multiple instantiation of the same variable in a Monte Carlo analysis•	

  Sometimes a variable appears more than once in a model (e.g., in submodels 
or in additive terms). For all computational steps addressing the same unit 
of analysis (e.g., exposure of an individual bird) a single instantiation of the 
variable should be used, that means a variate must be drawn only once in 
each replicate of the Monte Carlo simulation.
Sampling method in Monte Carlo analysis inappropriate•	

  There are several sampling techniques in Monte Carlo analyses, the most 
common being random, median Latin hypercube and random Latin hyper-
cube. Latin hypercube techniques are usually preferred because they need 
fewer iterations and thus are more efficient. They are, however, inferior to 
random sampling if high percentiles of the output are of interest and if the 
exact shape of the output distribution is important (Cullen and Frey 1999).
Number of iterations in Monte Carlo analysis too low•	

  The number of sampling iterations must be sufficient to give stable results 
for output distributions, especially for the tails. There are no simple rules, 
because the necessary number of runs depends on the number of variables 
entered as distributions, model complexity (mathematical structure), sam-
pling technique (random or Latin hypercube), and the percentile of interest 
in the output distribution. There are formal methods to establish the num-
ber of iterations (Cullen and Frey 1999); however, the simulation iterations 
could simply be increased to a reasonable point of convergence.
Incorrect scale conversions•	

  If, for example, an exposure estimate is scaled down by a factor of 2 (because 
the application rate per ha is halved), then it is correct to divide arithmetic 
means and standard deviation by 2, but it is not correct to divide logarithms 
of mean and standard deviation by 2.

9.8 presenTaTion and inTerpreTaTion oF resuLTs

The output of a PRA is always conditional with regard to the input data. That is the 
reason why it is so important to mention all data assumptions and not to withhold 
limitations and information gaps. The description of the results and the interpreta-
tion should be kept apart. The former is the faithful translation of the mathematical 
outcome into plain language, the latter is a discussion on what the result means and 
what conclusions can be drawn.

Uncertainty and variability confused•	
  Uncertainty and variability should be treated as distinct entities. Both 

can be handled in 1 assessment, and can be represented as the result of a 
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2-dimensional simulation in 1 graph, but interpretations should be clear-
cut.
Missing details•	

  Available information regarding subpopulation probabilities should be 
always included. As an example, a certain effect evident on aquatic organ-
isms in 2% of all water bodies may or may not be significant. However, 
indicating that that same effect is apparent in 80% of water bodies of a 
certain type may influence the significance of that data.
Verbal description of the results unprecise•	

  Results should be described precisely. It is important for which entity a 
certain probability holds. Assume surface water intake is represented by 
a distribution. The mere information that there is a 2% probability that a 
predefined ecologically acceptable concentration is exceeded is too scanty. 
Rather, it must be stated whether 2% of all water bodies in a certain area 
receive that intake, or 2% of the water bodies adjacent to any agricultural 
fields, or 2% of the water bodies adjacent to treated fields, or whether 2% of 
treatments will result in a contamination of any water body. Furthermore, 
results should not be overly condensed.

9.9 concLusions

A probabilistic risk assessment is a complex undertaking that typically involves 
a multitude of input data, assumptions, models, and computational tools. That is 
why the execution of such analyses is error prone. In order to avoid mistakes and 
pitfalls successfully, assessors should first provide a detailed documentation of 
data, models, and procedures. Although this will not ensure reliability, it helps 
both creators and reviewers of a PRA to identify potential shortcomings. While it 
always should be possible to remove technical faults, there might be issues where 
it is difficult or expensive to find a remedy because information, e.g., on dependen-
cies, simply is lacking or because input data and assumptions, although recognized 
as crude already, are the best available. The minimum requirement in such cases 
is to analyze to what degree the result of a PRA is influenced by the parameter in 
question, and if it turns out to be an uncertainty then carry on this information up 
to the result.
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10 Conclusions

A. Hart, T. Barry, D. L. Fischer, J. M. Giddings, 
P. Hendley, G. Joermann, R. Luttik, D. R. J. Moore, 
M. C. Newman, E. Odenkirchen, and J. L. Shaw

10.1 inTroducTion

In the Introduction to this book, we listed several key issues addressed at the work-
shop in Pensacola. This chapter presents our conclusions.

In some cases, the workshop produced a near consensus on how to resolve the 
issue, but further work is required to confirm and implement the conclusion. In 
most cases, however, the workshop has identified a range of possible solutions and 
further work is required to evaluate them. Uncertainty analysis in pesticide risk 
assessment is highly encouraged; however, uncertainty analysis should be used and 
interpreted with caution. The methods used should be justified and described in 
detail in every assessment.

10.2  wHicH meTHods oF uncerTainTy anaLysis are 
appropriaTe under wHaT circumsTances?

The workshop reviewed 7 contrasting methods of analyzing uncertainty in risk 
assessments:

Bayesian inference•	
First-order error analysis•	
First-order (nonhierarchical) Monte Carlo•	
Second-order (hierarchical or 2D) Monte Carlo•	
Bayesian Monte Carlo•	
Interval analysis•	
Probability bounds analysis•	

Other methods exist and may deserve more consideration.
The workshop did not reach firm conclusions on which methods of uncertainty anal-

ysis are suitable for use in pesticide risk assessment, or when they should be used.
Experts in uncertainty analysis hold differing opinions on the merits of the vari-

ous methods, partly as a result of differing theoretical perspectives. These differ-
ences are likely to continue and may be healthy from a scientific standpoint, e.g., as 
a stimulus to further advances.
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Nevertheless, from the standpoint of practical regulatory assessment, it would be 
desirable to reach a consensus on the selection of methods for routine use. Although 
there are practical benefits to agreeing on a limited number of methods for routine use, 
there may be scientific reasons for preferring alternative methods in particular cases. 
In order to avoid unusual demands on regulators to absorb a wide array of uncer-
tainty methods, novel approaches should only be presented alongside more familiar 
(conventional) approaches with an explanation of how the new approach improves 
the risk assessment. In addition, it should be recognized that novel approaches are 
likely to take longer for regulatory review.

10.3  wHaT are THe impLicaTions oF probabiLisTic 
meTHods For probLem FormuLaTion?

Formulating the assessment problem well is an essential foundation for risk assess-
ment. The workshop considered how the use of probabilistic models and uncertainty 
analysis affects problem formulation and its main components: the integration of 
available information, definition of the assessment endpoint, specification of the con-
ceptual model, and planning of the analysis phase.

The workshop concluded that the use of probabilistic methods requires increased 
attention to the following aspects of problem formulation:

 1) Define the assessment endpoint precisely, in terms of probabilities, e.g., the 
probability of a given level of mortality in the exposed population.

 2) Ensure that the assessment endpoint is capable of being modeled and has 
attributes that are measurable.

 3) Ideally, define the assessment endpoint so that it relates directly to the man-
agement goal. If this is not practical, (e.g., if the management goal refers to 
population sustainability but the assessment endpoint refers to individual mor-
tality), define in advance how the assessment endpoint will be interpreted. If 
this involves subjective judgments then consider the use of formal methods.

 4) Explicitly define the mechanisms and spatial, temporal, and biological 
dimensions of the system assessed to an appropriate, but not excessive, 
level of detail. Beware of inappropriate aggregation that may distort or hide 
important effects.

 5) Systematically identify, evaluate, and incorporate the major sources of 
uncertainty, including model uncertainty. Initially, all potentially signifi-
cant routes of exposure and types of effect should be included. Identify 
models to represent these processes. Use sensitivity analysis to identify 
insignificant variables, exposure routes, and effects.

 6) Take advantage of opportunities to reduce the variability in individual 
assessments by defining separate scenarios. Make the specification of sce-
narios a distinct step in problem formulation.

 7) Choose appropriate methods of uncertainty analysis and consider their 
implications for other aspects of problem formulation.

 8) Be more effective in gathering and incorporating other lines of evidence.
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 9) Plan at the outset how one will communicate the results, both to decision 
makers and other stakeholders.

 10) Have a clear vision of the roles of the risk assessor and decision maker and 
ensure they interact efficiently throughout the process.

 11) Take advantage of opportunities to devise generic problem formulations, 
but check their appropriateness for each individual assessment.

 12) Consider with stakeholders the uncertainties in risks, costs and benefits, 
and the consequences of false positives and false negatives when establish-
ing decision rules.

10.4  How can uncerTainTy anaLysis meTHods be used 
eFFicienTLy and eFFecTiVeLy in decision making?

Reducing uncertainty is usually expensive. Therefore, an iterative process should be 
used to conduct the minimal amount of analyses that are necessary to characterize 
and reduce uncertainty to the point where an informed decision can be made. The 
point where a decision can be made with acceptable uncertainty will depend on the 
“threshold of acceptability” and “threshold of unacceptability.”

The type of decision that needs to be made will influence the choice of uncer-
tainty analysis method. Consequently, the process must include a dialogue between 
the risk assessor and decision maker throughout the risk assessment. The uncertainty 
associated with the risk assessment must be clearly communicated so that all parties 
involved in the risk assessment process understand it.

In a screening-level risk assessment, interval or bounding analyses, which put 
upper and lower bounds on risk, may be sufficient to reach a decision of “acceptable 
risk” or “unacceptable risk” provided the bounds are a reflection of the true limits 
of uncertainty.

A process is outlined for reaching the desired level of certainty while minimizing 
resource requirements and maximizing efficiency:

 1) A carefully planned problem formulation needs to be developed and imple-
mented. The analysis plan of the problem formulation will outline the 
uncertainty analysis methods to be used.

 2) Use sensitivity analysis to determine which parameters are the driver of the 
model (e.g., Dakins et al. 1994).

 3) Determine where additional data will reduce uncertainty the most. The 
process of Monte Carlo and 1st-order error analysis can help with sen-
sitivity analysis and help to identify variables that need refinement and 
better data.

 4) Determine whether there are more cost-effective alternatives to additional 
data generation and risk assessment refinements. What-if analyses can be 
used to examine the savings in risk management that might result from 
additional data generation. Techniques that may be suitable for this include 
Bayesian Monte Carlo and expected value of information (EVOI) analysis 
(Dakins et al. 1996).
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 5) Conduct risk assessment refinements using appropriate uncertainty analy-
sis methods based on output from the sensitivity analysis. Use appropriate 
experts in this process.

10.5  wHen and How sHouLd we separaTe 
VariabiLiTy and uncerTainTy?

There is variability in exposure and effects of pesticides in the real world: they vary 
over space and time, and between biological entities (between individuals, between 
species, etc). There is uncertainty* in our knowledge of exposure and effects and of 
the parameters used to model them.

Some approaches to uncertainty analysis (e.g., 2D Monte Carlo and P-bounds) 
enable the assessor to separate variability and uncertainty. Other approaches do not 
separate them, and some schools of thought regard the distinction between variabil-
ity and uncertainty as artificial or unhelpful.

Risk managers are interested in both variability and uncertainty: they want to 
know how the expected impacts will vary (how frequent and widespread will impacts 
be?), and they want to know how certain the assessment is (how sure are you, what 
are the confidence limits?).

Risk managers may need assessors to separate variability and uncertainty explic-
itly, if they have different implications for decision making. For example, 100% cer-
tainty that 10% of individuals will die is likely to have different implications from a 
10% chance that 100% of individuals will die.

Furthermore, separating variability and uncertainty can help risk managers and 
assessors to decide whether to collect additional information and, if so, on which 
parameters. This is because uncertainty can be reduced by obtaining additional 
information, but variability cannot. If there is little uncertainty, then the effects 
are already well characterized and obtaining further data will make little differ-
ence to the assessment outcome. If there is much uncertainty, then priority should 
be given to obtaining better information about those parameters from which it 
mostly derives.

Therefore, from a practical regulatory viewpoint, there are substantial advan-
tages in separating variability and uncertainty. These advantages apply generally, 
with 1 exception. If a screening assessment shows that the likelihood of effects is 
acceptably low even when variability and uncertainty are combined, then there is 
no benefit in separating them because the interpretation is clear already, and no 
further data collection is required. In all other assessments, separation is poten-
tially helpful.

In assessments where variability and uncertainty are separated, it may not be neces-
sary to separate them for every input parameter. If sensitivity analysis shows a param-
eter has little influence on the assessment output, then variability and uncertainty for 
that parameter need not be separated (indeed, it could be treated as a constant).

* Some authors use “incertitude” for limitations on knowledge, and “uncertainty” as a collective term 
that includes both variability and incertitude. Most of the workshop participants preferred to use the 
term “uncertainty” in the more specific sense, referring to limitations on knowledge.
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Currently, approaches that separate variability and uncertainty have rarely been 
used for pesticide assessments, so further evaluation is needed to determine whether 
they are unsuitable for other reasons (e.g., complexity or cost). Also, it can be dif-
ficult to separate variability and uncertainty in real datasets, so the development of 
guidance on this would be helpful.

10.6  How can we Take accounT For uncerTainTy 
concerning THe sTrucTure oF THe 
risk modeL For THe assessmenT?

Uncertainty about the form of a model results when there is disagreement within the 
scientific community about the underlying processes, when the underlying mecha-
nisms are poorly characterized, or when extrapolation beyond existing data or theory 
is necessary.

Several approaches exist for dealing with model uncertainty:

One-at-a-time (OAT) method or scenario analysis: alternative models are •	
analyzed separately and the results are compared.
Model weighting: different models are combined by assigning weights rep-•	
resenting their relative probability, using either Bayesian and non-Bayesian 
approaches.
Meta-models: a global model is developed that contains plausible models as •	
special cases, converting model uncertainty into uncertainty about model 
parameters. Again, this can be done using either Bayesian and non-Bayes-
ian approaches.
Model enveloping: the outputs from alternative models can be combined •	
using bounding methods (e.g., probability bounds analysis).

The workshop recognized the importance of dealing with model uncertainty but did 
not evaluate the alternative approaches in detail. Further work is required to identify 
instances of model uncertainty for pesticide risk assessment and to develop guidance 
on how to deal with it.

10.7  How sHouLd we seLecT and parameTerize 
inpuT disTribuTions wHen daTa are LimiTed?

Risk assessors often encounter situations in which the available datasets may appear, 
on 1st consideration, to be of limited capacity to support the parameterization of 
distributions for a given risk assessment model variable.

An initial step in addressing such situations should be the performance of an 
analysis of the sensitivity of a risk assessment model to changes in the variable. If 
the model proves relatively insensitive to conservative bounds to the variable, then 
further consideration of uncertainty for this variable may be unnecessary and a point 
estimate may suffice.
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If the risk assessment model is found to be sensitive to the variable in question, 
a number of options are available to address its parameterization and may include 
the following:

Refer to well-described distributions from other cases in order to understand •	
default shape characteristics and use this information to develop bounds or 
parameter estimates for the present case.
When information is severely limited (e.g., range data, summary statistic, •	
or limited quantiles), 1 option is to apply a maximum entropy approach to 
distribution parameterization.
Consider use of Kolmogorov–Smirnov intervals to explicitly calculate •	
uncertainty.
Consider statistical approaches to estimate variance on the basis of sample •	
size.
Apply information regarding underlying mechanistic processes associated •	
with the variable (chemical, physical, or biological) that may suggest appro-
priate distribution families.
Implement hierarchical approaches, along with professional judgment, and •	
reference to other cases, to account for uncertainty in the estimation of 
distribution parameters.

10.8  How sHouLd we deaL wiTH dependencies, 
incLuding nonLinear dependencies 
and dependencies abouT wHicH onLy 
parTiaL inFormaTion is aVaiLabLe?

The possibility of dependencies should be considered in every assessment. Where 
dependencies are highly unlikely, assume independence. If you have enough infor-
mation, then include the dependencies in the model. Where dependencies are possi-
ble, but information to quantify them is limited, conduct what-if analyses to explore 
their possible consequences.

Possible approaches include

Rewrite the model, modifying the structure so as to reduce the number of •	
variables that are highly correlated with one another.
Run the model several times, once assuming independence and again •	
assuming plausible types and degrees of correlation, based on prior knowl-
edge or possible mechanisms. Compare the results.
Model different scenarios separately, or use families of information (“bin-•	
ning” of inputs, e.g., soil properties) so as to ensure that dependencies are 
accounted for.
Use Bayesian or non-Bayesian updating to infer the correlation structure.•	
Use methods such as bounding analysis that do not require assumptions •	
about dependencies among inputs.
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10.9  How can we Take accounT oF uncerTainTy wHen 
combining diFFerenT Types oF inFormaTion in an 
assessmenT (e.g., quanTiTaTiVe daTa and experT 
judgmenT, LaboraTory daTa, and FieLd daTa)?

A key issue is how to account for uncertainty when diverse types of evidence are 
being applied to a single parameter or the entire assessment. Field data and labora-
tory data are combined in complex ways. For example, predictions based on labora-
tory-derived 1st-order constants for the degradation of a pesticide might be combined 
with observations from a field-based time course study of pesticide disappearance 
from a pond. Quantitative estimates with defined uncertainties might be combined 
with qualitative insight. As an illustration, Monte Carlo simulation of avian exposure 
to a pesticide might be conducted with an informed opinion that imbibing pesticide 
in drinking water may or may not be important.

This issue was generally agreed to be important, and several suggestions were 
made. An overarching recommendation was that formal methods are preferred to 
ad hoc procedures. All relevant information should be provided, including graphi-
cal representations where possible, in order to maximize understanding during the 
melding of information.

Several examples of applicable formal methods were discussed. Nonhierarchical 
quantitative models can be applied several times based on plausible scenarios emerg-
ing from a qualitative informed opinion. Expanding on the example above, a Monte 
Carlo simulation of pesticide ingestion rates may be conducted with and without 
consideration of water sources. Hierarchical Monte Carlo methods can be used in a 
similar manner.

Bayesian methods are very amenable to applying diverse types of information. 
An example provided during the workshop involved Monte Carlo predictions of pes-
ticide disappearance from a water body based on laboratory-derived rate constants. 
Field data for a particular time after application was used to adjust or update the 
“priors” of the Monte Carlo simulation results for that day. The field data and labora-
tory data were included in the analysis to produce a posterior estimate of predicted 
concentrations through time. Bayesian methods also allow subjective weight of evi-
dence and “objective” evidence to be combined in producing an informed statement 
of risk.

Regardless of the method used, the basis of the final risk characterization must 
be explicit. All components and sources of evidence should be described. The 
explicit linkage between the analysis results and the assessment endpoints must 
be clearly but adequately stated. Tandem presentation of conventional methods 
(e.g., ad hoc weight of evidence) and formal methods (e.g., Bayesian, meta-anal-
ysis) are recommended to enhance understanding. This is intended to facilitate 
acceptance of unfamiliar approaches, not to imply that the conventional methods 
are a touchstone.
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10.10 How can we deTecT and aVoid misLeading resuLTs?

Uncertainty analyses often employ complex models and sophisticated mathematical 
and statistical techniques. That is why the execution of such analyses is error prone 
and the results are susceptible to misinterpretation.

In order to avoid misleading results some key recommendations can be given:

Clear concept•	
  Make sure that the problem is thoroughly formulated and the assessment 

endpoints precisely stated.
Documentation•	

  It is essential to make explicit all data, models, tools, and procedures. Where 
appropriate, references and sources should be given. That alone, of course, 
does not ensure an appropriate risk estimate (quality of input data satisfac-
tory, models appropriate, etc.), but it helps both creators and reviewers to 
identify weak points.
Clear communication of results•	

  It is essential to fully and precisely describe the characterizations of effects, 
exposure, and risk to avoid misconceptions about the scope of the final 
results.
Other lines of evidence•	

  Check whether they are consistent with the analysis, and combine them 
formally where possible.
Plausibility•	

  Check whether any assumptions, conclusions, or intermediate outputs con-
flict with common sense or biological plausibility.
Apply best practice principles.•	

10.11  How can we communicaTe meTHods and ouTpuTs 
eFFecTiVeLy To decision makers and sTakeHoLders?

Effective communication among risk assessment practitioners, decision makers, 
and other stakeholders is essential and is the responsibility of all parties involved 
in the risk assessment process. Poor communication together with ambiguous, 
inexplicit, or inaccurate interpretations of risk assessment outputs result in 1) an 
erosion of scientific credibility, 2) ineffective decision making, and 3) futile use 
of resources.

Communication between risk managers, risk assessors, and analysts is essen-
tial from the start of the assessment process, not just in communicating results. For 
example, the choice of uncertainty analysis methods will be dependent on 1) the 
questions posed by decision makers, 2) the closeness of the risk estimate and its 
bounds to thresholds of acceptability or unacceptability, 3) the type of decision that 
must be made, and 4) the consequences of the decision.

The workshop favored the use of graphical representations that combine the 
key elements of the assessment outcome: the magnitude and frequency of effects, 
together with appropriate confidence bounds. This should always be accompanied 
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by text explaining what the risk estimate and its bounds represent and listing any 
mechanisms, dependencies, or uncertainties it excludes.

Successful communication will be dependent on the output from the risk assess-
ment being modified and presented in different ways as appropriate for the recipients 
of the information (i.e., their interests, questions, perspectives, type of involvement 
in the process, and technical knowledge). The objective is to provide recipients of 
the message with adequate information to enable them to make their own decision.

Probabilistic techniques are relatively new in the pesticides arena and are prone 
to criticism and debate. It is therefore especially important to clearly communicate 
the approach taken, and to explain to decision makers how the risk estimates were 
quantified.

10.12  wHaT are THe prioriTies For FurTHer 
deVeLopmenT, impLemenTaTion, and Training?

 1) Further evaluation of alternative methods of uncertainty analysis
 For the purposes of practical regulatory assessment, it is desirable to 

reach a consensus on which methods of uncertainty analysis should be 
adopted for routine use. This has not yet been achieved. We therefore 
recommend that further case studies should be conducted, covering a 
range of contrasting pesticides and scenarios. Consideration should be 
given to undertaking this as a cooperative research activity involving 
government, business, and academia. Risk managers as well as risk 
assessors and analysts should participate in the development of the case 
studies. In addition, efforts should be made to determine the practical 
significance of differences between competing theoretical approaches 
and to decide how these differences should be resolved for practical 
purposes.

 2) Training in uncertainty analysis
 There is a general need for increased training in uncertainty analy-

sis, including a) basic training for all involved in the assessment and 
decision–making process; b) detailed training for risk assessors in 
using those methods that are adopted for routine use; and c) compre-
hensive training for risk analysts, so that they can use a broader range 
of methods and advise risk assessors and risk managers on their relative 
strengths and weaknesses.

 3) Improvements in problem formulation
 The use of uncertainty analysis and probabilistic methods requires sys-

tematic and detailed formulation of the assessment problem. To facili-
tate this, a) risk assessors and risk managers should be given training in 
problem formulation, b) tools to assist appropriate problem formulation 
should be developed, and c) efforts should be made to develop generic 
problem formulations (including assessment scenarios, conceptual 
models, and standard datasets), which can be used as a starting point for 
assessments of particular pesticides.
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 4) Standard distributions for pesticide assessments
 There seems to be a desire among the workshop participants to 

develop a series of standard distributions, or distribution parameters, 
for exposure and effects variables that are generally used in risk 
assessments. In the case of toxicity data, for example, investigations 
leading to the quantification of a generic variance for between-species 
variation from pooled data for many pesticides may be useful (Luttik 
and Aldenberg 1997).

 5) Improved methods for limited datasets
 Limitations on data availability are a recurrent concern in discussions 

about uncertainty analysis and probabilistic methods, but arguably 
these methods are most needed when data are limited. More work is 
required to develop tools, methods, and guidance for dealing with lim-
ited datasets. Specific aspects that require attention are the treatment of 
sampling error in probability bounds analysis, and the use of qualitative 
information and expert judgment.

 6) Improved methods and data for spatial and temporal variation
 Spatial and temporal variation are major drivers of variability in risk. 

Research is required to develop the databases, models, and methods 
required to quantify their influence in risk assessment.

 7) Evaluate the performance of probabilistic assessments
 Methods for evaluating the performance and utility of uncertainty anal-

ysis in the context of probabilistic pesticide assessments are needed. 
This should include comparisons between assessment outputs and 
existing field data (e.g., avian field studies) to evaluate whether deci-
sion makers can rely on the assessment methods. Consideration should 
also be given to existing field data to refine generic assessment models, 
using Bayesian updating methods.

 8) Improved processes for communication
 Improved processes of communication among risk assessors, risk man-

agers, and other stakeholders is needed.
 9) Improved software

 Efforts should be made to provide and improve user-friendly software, 
especially for those approaches where it currently appears to be lacking 
(e.g., Bayesian methods and Monte Carlo with more than 2 dimensions).

 10) Improved access to resources for uncertainty analysis is needed
 The internet should be used to maximize accessibility of software, 

databases, case study examples, and guidance and training materials.
 11) International cooperation

 International cooperation and, if possible, harmonization is desirable in 
developing new approaches, implementing the approaches, and using 
the approaches.
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2D Monte Carlo: A kind of nested Monte Carlo simulation in which distribu-

tions representing both incertitude and variability are combined together. 
Typically, the outer loop selects random values for the parameters specify-
ing the distributions used in an inner loop to represent variability.

Accuracy: The degree of agreement between observed or measured values and the 
true value. Accuracy includes a combination of random error (precision) 
and systematic error (bias) components.

Aleatory uncertainty: The kind of uncertainty resulting from randomness or 
unpredictability due to stochasticity. Aleatory uncertainty is also known as 
variability, stochastic uncertainty, Type I or Type A uncertainty, irreducible 
uncertainty, conflict, and objective uncertainty.

Alpha error: See Type I error.
Arithmetic mean: A measure of central tendency. It is calculated as the sum of all 

the values of a set of measurements divided by the number of values in the 
set. 

Assessment endpoint: An explicit expression of the environmental value that is 
to be protected, operationally defined by an ecological entity and its attri-
butes. For example, salmon are valued ecological entities; reproduction and 
age-class structure are some of their important attributes. Together “salmon 
reproduction and age-class structure” form assessment endpoints.

Bayes’ theorem: Original work by Sir Thomas Bayes, 1763. Composed of three 
pieces: 1) the prior distribution indicates the degree of belief about a ran-
dom variable that exists before data are collected, 2) the likelihood function 
indicates the functional relationship of the data (experimental results) at the 
time of collection, and 3) the posterior distribution indicates the updated 
degree of believe. Thus, Bayes’ theorem is a mathematical procedure for 
updating prior belief about a random variable, subsequent to observing new 
information. Bayes’ theorem provides the underpinnings of decision-theo-
retic methods. Inferences drawn from Bayesian methods are fundamentally 
different than those derived from sampling theory, thus Bayes’ theorem is a 
distinct paradigm for statistical inference and decision.

Beta error: See Type II error.
Bias: The systematic or persistent distortion of an estimate from the true value. From 

sampling theory, bias is a characteristic of the sample estimator of the suf-
ficient statistics for the distribution of interest. Therefore, bias is not a func-
tion of the data, but of the method for estimating the population statistics. 
For example, the method for calculating the sample mean of a normal dis-
tribution is an unbiased estimator of the true but unknown population mean. 
Statistical bias is not a Bayesian concept, because Bayes’ theorem does not 
relay on the long-term frequency expections of sample estimators.
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Bootstrap sample: A sample (e.g., 5000) obtained from an original data set by ran-
domly drawing, with replacement, 5000 values from the original sample or 
a distribution estimated for that sample.

Bound: An upper bound of a set of real numbers is a real number that is greater than 
or equal to every number in the set. A lower bound is a number less than 
or equal to every number in the set. In this book, we also consider bounds 
on functions. These are not bounds on the range of the function, but rather 
bounds on the function for every function input. For instance, an upper 
bound on a function F(x) is another function B(x) such that B(x) ≥ F(x) for 
all values of x. B(x) is a lower bound on the function if the inequality is 
reversed. If an upper bound cannot be any smaller, or a lower bound cannot 
be any larger, it is called a best possible bound.

Composition: The formation of one function by sequentially applying two or more 
functions. For example, the composite function f(g(x)) is obtained by apply-
ing the function g to the argument x and then applying the function f to this 
result.

Confidence interval: The numerical interval constructed around a point estimate 
of a population parameter. It is combined with a probability statement link-
ing it to the populations’ true parameter value, for example, a 90% confi-
dence interval. If the same confidence interval construction technique and 
assumptions are used to calculate future intervals, they will include the 
unknown population parameter with the same specified probability. For 
example a 90% confidence interval around an arithmetic mean implies that 
90% of the intervals calculated from repeated sampling of a population will 
include the unknown (true) arithmetic mean.

Conjugate pair: In Bayesian estimation, when the observation of new data changes 
only the parameters of the prior distribution and not its statistical shape 
(i.e., whether it is normal, beta, etc.), the prior distribution on the estimated 
parameter and the distribution of the quantity (from which observations are 
drawn) are said to form a conjugate pair. In case the likelihood and prior 
form a conjugate pair, the computational burden of Bayes’ rule is greatly 
reduced.

Convolution: The mathematical operation that finds the distribution of a sum of 
random variables from the distributions of its addends. The term can be 
generalized to refer to differences, products, quotients, etc. It can also be 
generalized to refer to intervals, p-boxes and Dempster-Shafer structures as 
well as distributions. 

Copula: The function that joins together marginal distributions to form a joint dis-
tribution function. For the bivariate case, a copula is a function C: [0,1] × 
[0,1]®[0,1] such that C(a, 0) = C(0, a) = 0 for all a ∈ [0,1], C(a, 1) = C(1, a) 
= a for all a ∈ [0,1], and C(a2, b2) − C(a1, b2)−C(a2, b1) + C(a1, b1) ≥ 0 for all 
a1, a2, b1, b2 ∈ [0,1] whenever a1 ≤ a2 and b1 ≤ b2. For any copula C, max(a + 
b − 1,0) ≤ C(a,b) ≤ min(a,b).

Credible interval: In a Bayesian analysis, the area under the posterior distribution. 
Represents the degree of belief, including all past and current information, 

© 2010 by Society of Environmental Toxicology and Chemistry (SETAC)



Glossary 179

of the random variable of interest. This term should not be confused with 
the confidence interval used in classical statistics.

Cumulative distribution function (CDF): The CDF is referred to as the “distribu-
tion function,” “cumulative frequency function,” or the “cumulative prob-
ability function.” The cumulative distribution function, F(x), expresses the 
probability that a random variable X assumes a value less than or equal to 
some value x, F(x) = Prob (X > x). For continuous random variables, the 
cumulative distribution function is obtained from the probability density 
function by integration, or by summation in the case of discrete random 
variables.

Degree of belief: A Bayesian statistical concept that represents the state of informa-
tion available to the investiagator concerning a random variable of interest. 
Belief is strengthened when past and current information are combined to 
give the investigator a good understanding of the random variable. Belief 
is measured as the area under the posterior distribution resulting from the 
implementation of Bayes’ theorem.

Dempster-Shafer structure: A kind of uncertain number representing indistinguish-
ability within bodies of evidence. In this book, a Dempster-Shafer structure 
is a finite set of closed intervals of the real line, each of which is associated 
with a nonnegative value m, such that the sum of all such m’s is 1.

Deterministic methods: Methods in which all biological, chemical, physical, and 
environmental parameters are assumed to be constant and accurately 
specified.

Ecological risk assessment: The process that evaluates the likelihood that adverse 
ecological effects of differing magnitudes may occur or are occurring as a 
result of exposure to one or more stressors.

Epistemic uncertainty: The kind of uncertainty arising from imperfect knowledge. 
Epistemic uncertainty is also known as incertitude, ignorance, subjective 
uncertainty, Type II or Type B uncertainty, reducible uncertainty, nonspeci-
ficity and state-of-knowledge uncertainty.

Expert: A person who has 1) training and experience in the subject area resulting 
in superior knowledge in the field; 2) access to relevant information; 3) an 
ability to process and effectively use the information; and 4) is recognized 
by his or her peers or those conducting the study as qualified to provide 
judgments about assumptions, models, and model parameters at the level 
of detail required.

Expert judgment: A critical source of information based upon the collective expe-
rience of a scientist or expert in a particular field of study. For Bayesians, 
expert judgement is frequently used to form the prior distribution, thus for-
mally incorporating an expert’s degree of belief into statistical procedures.

Fuzzy arithmetic: Fuzzy arithmetic is the arithmetic embodied in operations such as 
addition, subtraction, multiplication, and division of fuzzy numbers. Fuzzy 
numbers are unimodal distribution functions of the real line that grade all 
real numbers according to the possibility that each might be a value the 
fuzzy number could take on. The minimum of the function is 0, which rep-
resents impossible values, and the maximum is 1, which represents those 
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values that are entirely possible values that the fuzzy number might repre-
sent. Fuzzy numbers can be represented as a stack of intervals at each of 
infinitely many levels from 0 to 1, and fuzzy arithmetic can be thought of 
as a tool that permits propagation of the uncertainty represented by fuzzy 
numbers through mathematical models.

Hierarchical model: A model consisting of multiple parameters that can be regarded 
as related or connected in some way by the structure of the problem, imply-
ing that a joint probability model for these parameters should reflect the 
dependence among them.

Hypothesis testing: In classical statistics, a formal procedure for testing the long-
term expected truth of a stated hypothesis. The statistical method involves 
comparison of two or more sets of sample data. On the basis of an expected 
distribution of the data, the test leads to a decision on whether to accept the 
null hypothesis (usually that there is no difference between the samples) or 
to reject that hypothesis and accept an alternative one (usually that there is 
some difference between the samples).

Imprecise probabilities: Any of several theories involving models of uncertainty 
that do not assume a unique underlying probability distribution, but instead 
correspond to a set of probability distributions. An imprecise probability 
arises when one’s lower probability for an event is strictly smaller than one’s 
upper probability for the same event. Theories of imprecise probabilities 
are often expressed in terms of a lower probability measure giving the lower 
probability for every possible event from some universal set, or in terms of 
closed convex sets of probability distributions (which are generally much 
more complicated structures than either probability boxes or Dempster-
Shafer structures).

Incertitude: The kind of uncertainty arising from imperfect knowledge. Incertitude 
is also known as epistemic uncertainty, ignorance, subjective uncertainty, 
Type II or Type B uncertainty, reducible uncertainty, nonspecificity, and 
state-of-knowledge uncertainty.

Interval: A kind of uncertain number consisting of the set of all real numbers lying 
between two fixed numbers called the endpoints of the interval. In this 
book, intervals are always closed so that the endpoints are always consid-
ered part of the set.

Latin hypercube sampling (LHS): In Monte Carlo analysis, 1 of 2 sampling 
schemes are generally employed: simple random sampling or Latin hyper-
cube sampling. Latin hypercube sampling may be viewed as a stratified 
sampling scheme designed to ensure that the upper or lower ends of the 
distributions used in the analysis are well represented. Latin hypercube 
sampling is considered to be more efficient than simple random sampling, 
that is, it requires fewer simulations to produce the same level of precision. 
Latin hypercube sampling is generally recommended over simple random 
sampling when the model is complex or when time and resource constraints 
are an issue.
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Measurement endpoint: A measurable ecological characteristic that is related to 
the valued characteristic chosen as the assessment endpoint. Also known 
as “measure of effect.”

Measurement error: The error inherent in the inability of a measuring device or 
procedure to provide an accurate representation of reality.

Median: The middle value for an ordered set of n values. It is represented by the 
central value when n is odd or by the mean of the two most central values 
when n is even.

Monte Carlo analysis: A modeling technique where parameter values are drawn at 
random from defined input probability distributions, combined according 
to the model equation, and the process repeated iteratively until a stable 
distribution of solutions results.

Nonparametric technique: A statistical technique that does not depend for its valid-
ity upon the assumption that the data were drawn from a specific distribu-
tion, such as the normal or lognormal. A distribution-free technique.

Parameter: Two distinct definitions for parameter are used. In the first usage (pre-
ferred), parameter refers to the constants characterizing the probability 
density function or cumulative distribution function of a random variable. 
For example, if the random variable W is known to be normally distributed 
with mean μ and standard deviation σ, the constants μ and σ are called 
parameters. In the second usage, parameter can be a constant or an inde-
pendent variable in a mathematical equation or model. For example, in the 
equation Z = X + 2Y, the independent variables (X, Y) and the constant (2) 
are all parameters.

Population: In statistics and sampling design, the total universe addressed in a sam-
pling effort.

Power: The probability of rejecting the null hypothesis in a statistical test when a 
particular alternative hypothesis happens to be true. 

Precision: The degree to which a set of observations or measurements of the 
same property, usually obtained under similar conditions, conform to 
themselves.

Probability: The Bayesian or subjective view is that the probability of an event is 
the degree of belief that a person has, given some state of knowledge, that 
the event will occur. In the classical or frequentist view, the probability of 
an event is the frequency of an event occurring given a long sequence of 
identical and independent trials. 

Probability box: A kind of uncertain number representing both incertitude and 
variability. A probability box can be specified by a pair of functions serving 
as bounds about an imprecisely known cumulative distribution function. 
The probability box is identified with the class of distribution functions that 
would be consistent with (i.e., bounded by) these distributions.

Probability density function (PDF): The PDF is referred to as the “probability func-
tion” or the “frequency function.” For continuous random variables, that is, 
the random variables that can assume any value within some defined range 
(either finite or infinite), the probability density function expresses the prob-
ability that the random variable falls within some very small interval. For 
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discrete random variables, that is, random variables that can only assume 
certain isolated or fixed values, the term “probability mass function” (PMF) 
is preferred over the term “probability density function.” PMF expresses the 
probability that the random variable takes on a specific value. 

Propagation of error: Mathematical technique for computing the total error of a 
model prediction by calculating the error for each term in the model, and 
propagating the errors through the model into the total error of prediction.

Quantile: The value in a distribution that corresponds to a specified proportion of 
the population distribution or distribution function. Quartiles (25th, 50th, 
and 75th percentiles), the median (50th percentile), and other percentiles are 
special cases of quantiles.

Random: A chance event.
Risk: Two definitions are commonly used. The 1st states that risk is the probability 

of a prescribed undesired effect. The 2nd states that risk is the relationship 
between probability and magnitude of effect.

Risk management: A decision-making process that considers political, social, eco-
nomic, and technological information in conjunction with risk assessment 
information to select an appropriate response to a particular problem.

Robust Bayes: A school of thought among Bayesian analysts in which epistemic 
uncertainty about prior distributions or likelihood functions is quantified and 
projected through Bayes rule to obtain a class of posterior distributions.

Safety factor: A factor applied to an observed or estimated toxic concentration or 
dose to arrive at a safe level.

Sampling error: In surveys, investigators frequently take measurements (or sam-
ples) on the parameters of interest, from which inferences to the true but 
unknown population are inferred. The inability of the sample statistics to 
represent the true population statistics is called sample error. There are 
many reasons why the sample may be inaccurate, from the design of the 
experiment to the inability of the measuring device. In some cases, the 
sources of error may be separated (see Variance components).

Screening-level risk assessment: A risk assessment methodology that identifies 
stressors of potential concern and eliminates from further consideration 
those not posing any significant risk.

Sensitivity, sensitivity analysis: Mathematical technique for determining the rela-
tive influence of an individual model parameter(s) on the predicted value. A 
related term, elasticity, is defined as the relative change in model prediction 
over the relative change in the parameter value. In a broader sense, sensi-
tivity can refer to how conclusions change if models, data, or assessment 
assumptions are changed.

Standard deviation: A common measure of the dispersion or imprecision of 
observed values expressed as the positive square root of the variance.

Statistic: A computed or estimated quantity such as the mean, standard deviation, 
or correlation coefficient.

Stochastic: A process involving a random variable.
Type I error (alpha error): An incorrect decision resulting from rejecting the null 

hypothesis when the null hypothesis is true. A false positive decision.
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Type II error (beta error): An incorrect decision resulting from failing to reject 
the null hypothesis when the alternative hypothesis is true. A false negative 
decision.

Uncertainty: Imperfect knowledge concerning the present or future state of the 
system under consideration; a component of risk resulting from imperfect 
knowledge of many kinds including the degree of hazard or of its spatial 
and temporal pattern of expression. Generally, uncertainty can be reduced 
with further information and knowledge. 

Uncertainty analysis: Determination of the sources of uncertainty in the measure-
ment or prediction of environmental parameters. The analysis can be both 
quantitative (computation of variances) or qualitative (lists of uncertain 
methods and procedures). The total uncertainty in the parameters of inter-
est is typically a function of all of the individual sources of uncertainty.

Uncertainty factor: A factor applied to an exposure or effects concentration or dose 
to correct for identified sources of uncertainty.

Variability: Variability refers to observed differences attributable to true heteroge-
neity or diversity in a population or exposure parameter. Variability is the 
result of natural random processes and stems from environmental, lifestyle, 
and genetic differences. Examples include physiological variation (e.g., 
natural variation in body weight, height, breathing rates, drinking water 
intake rates), weather variabilty, variation in soil types, and differences in 
contaminant concentrations in the environment. From statistical sampling 
theory, the true variability is fixed, but the sample estimate of the popula-
tion variance can be reduced by further measurement or study.

Variance: A measure of the dispersion of a set of values. It is calculated by taking 
the difference between each individual value of a set and the arithmetic 
mean of the set, squaring each difference, summing the squares, and then 
dividing the sum by one less than the number of values in the set.

Variance components: A statistical technique for factoring the total variance in a 
random parameter into its component parts. Typically, a model is defined 
that represents the experimenter’s understanding of the variance compo-
nents. This model is used to separate the variance components. The model 
is called a variance components model.

Weight of evidence: The result of an evaluation of multiple lines of evidence in an 
ecological risk assessment. A weight of evidence approach reduces many 
of the biases and uncertainties associated with using only one approach 
to estimate risk. The lines of evidence that may be considered in a weight 
of evidence approach include comparing levels in the environment to the 
results of laboratory bioassays, field observations, in situ tests, ecoepide-
miology, and population and ecosystem modeling. Each line of evidence is 
evaluated for relevance of the evidence to the exposure scenario of interest, 
relevance of the evidence to the assessment endpoint, confidence in the evi-
dence or risk estimate, and likelihood of causality. 
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