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   Preface       

 The study of human chromosomes in the context of an interphase nucleus is biologi-
cally most meaningful for understanding eukaryotic DNA expression and reproduc-
tion inasmuch as the interphase comprises essential periods of normal cell activity. 
To determine the architectural organization of chromosomes inside the nuclear space 
is thereby important for understanding how the genome functions during the cell 
cycle. Moreover, variations in chromosome number and structure in humans, who 
possess more than 200 types of cells, the majority of which are usually in interphase, 
cannot be properly addressed without using interphase cytogenetics (an umbrella 
term covering techniques for analysis of interphase chromosomes). The latter is often 
viewed as an esoteric discipline that only concerns a few specialists trying to imple-
ment single-cell approaches to genome biology and medicine. However, studying 
interphase chromosomes is relevant to numerous fi elds of life sciences, including, 
but not limited to, molecular and cell biology, biomedicine, genetics (including med-
ical genetics), neuroscience, evolution, oncology, and genomics. 

 The beginning of experimental interphase cytogenetics can be attributed to sig-
nifi cant advances in human molecular genetics and cytogenetics. As the conse-
quence of experimental and theoretical research at the interface between cellular 
and molecular levels of chromosomal organization and function, high-resolution 
techniques for chromosomal analysis (molecular cytogenetic techniques) have 
become available. Molecular cytogenetics is a branch of biomedical sciences that 
explores chromosomes at molecular and single-cell resolutions at all stages of the 
cell cycle. It also comprises the techniques that operate with either the entire genome 
or specifi c DNA sequences to analyze genomic structural and functional variations 
at the chromosomal level. In the postgenomic era, molecular cytogenetics has 
appreciably transformed and has given rise to a new fi eld of genomics, called 
cytogenomics. As a result, new opportunities have emerged for analysis of human 
interphase chromosomes in almost all cell types and states at unprecedented resolu-
tion. In this volume, we have attempted to provide an overview of current develop-
ments in the study of human interphase chromosomes with special attention to 
available molecular cytogenetic technologies for basic and clinical chromosome 
research. 
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 The main body of the book is composed of 12 chapters. Chapter   1     (by Prof. Y.B. 
Yurov, Prof. S.G. Vorsanova, and Prof. I.Y. Iourov) is devoted to the basics of inter-
phase molecular cytogenetics and cytogenomics in historical perspective. Chapter   2     
(by Prof. J. Bridger and associates) considers contemporary views on interphase 
chromosome behavior in normal and diseased cells. The relationship between 
nuclear architecture and occurrence of chromosome aberrations is discussed in 
Chap.   3     (by Prof. G. Folle and Drs. Tomaso, Lafon-Hughes, and Liddle). The role 
of nuclear chromosome positioning, chromatin organization sensitivity to environ-
mental exposures, genetic damage in metaphase and interphase, DNA replication 
and chromatin remodeling, and their involvements in the generation and localiza-
tion of primary genetic damage are discussed. The unique possibility to visualize 
the interphase chromosome of the human brain and analyses of chromosome 
(genome) instability in postmitotic neuronal and glial cells are discussed in Chap.   4     
(by Prof. I.Y. Iourov, Prof. S.G. Vorsanova, and Prof. Y.B. Yurov). In this chapter, 
mosaic aneuploidy is defi ned as a new feature of the normal human brain; increased 
chromosome instability in the developing and adult human brain is shown to be 
associated with neurodevelopmental and neurodegenerative genetic brain disorders 
(autism, schizophrenia, ataxia-telangiectasia, Alzheimer’s disease); and interphase 
molecular cytogenetics is demonstrated to be the way for future studies of somatic 
genome instability and etiology (and pathogenesis) of genetic brain diseases. Taking 
into account the increased interest in somatic cell evolution mediated by genome 
alteration and its clinical signifi cance, Dr. J. Stevens and Prof. H. Heng (Chap.   5    ) 
review mechanisms of chromosome fragmentation and premature chromosome 
condensation. They also discuss the mechanisms and defi nition of premature chro-
mosome condensation and its applications to basic and clinical research. Chapter   6     
(by Prof. E. Volpi) reviews the association between pathology, large-scale chroma-
tin organization, and nuclear architecture in an enigmatic chromosome instability 
syndrome (ICF syndrome: a rare epigenetic disorder caused by autosomal recessive 
mutations, often fatal in childhood). Chapter   7     (by Prof. D. Griffi n and Drs. Fonseka, 
Tempest, Thornhill, and Ioannou) overviews interphase cytogenetics of human 
embryos, highlighting the progress and contentious pitfalls that it encounters. 
Because interphase cytogenetics has important applications in prenatal medicine, 
other chapters outlined in this book pave the way for a range of exciting new studies 
that, potentially, might emerge on human embryos and show FISH as a still useful 
tool for rapid, low-cost, and robust cell-by-cell information. Chapter   8     (by Drs. O.S. 
Mudrak, L. Solovjeva, and V. Chagin) describes experimental data of studies dedi-
cated to human spermatozoa and discusses the implications of sperm chromosome 
organization for male reproductive health. Chromosomes in human sperm nuclei 
adopt a hierarchy of structures from protamine toroids (the elementary units of 
DNA packaging) to the higher-order organization (chromosome territories), sug-
gesting that chromatin organization in sperm may have functional signifi cance. The 
intention of Chap.   9     (by Prof. I.Y. Iourov, Dr. T. Liehr, Prof. S. Vorsanova, and Prof. 
Y. Yurov) is to present the basics of interphase chromosome-specifi c multicolor 
banding (ICS-MCB) and to list its applications in different biomedical fi elds. 
Chapter   10     (by Dr. T. Liehr and his collaborators) is focused on technical limitations 
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in biomedical research of interphase chromosomes in their integrity. To overcome 
these limitations, the authors have proposed a new technology based on three- 
dimensional suspension fl uorescence in situ hybridization (3D S-FISH) with 
microdissection- based engineered DNA probes and multicolor chromosome band-
ing (MCB). Chapter   11     (by Prof. S.G. Vorsanova and her collaborators) describes 
technological aspects and numerous approaches of interphase molecular cytoge-
netic, which are all useful for chromosomal analysis in almost all human cell types. 
Regardless of numerous technological diffi culties encountered during studying 
human interphase chromosomes in health and disease, molecular cytogenetics or 
cytogenomics (“chromosomics”) does provide for high-resolution single-cell analy-
sis of genome organization, structure, and behavior at all stages of the cell cycle. 
Finally, the editors provide a list of references to websites containing regularly 
updated information on molecular cytogenetics and cytogenomics, including useful 
links to relevant websites (see Appendix).  

    Moscow ,  Russia       Yuri     B.     Yurov   
    Svetlana     G.     Vorsanova   
    Ivan     Y.     Iourov      
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Molecular cytogenetic analyses of the developing and adult human brain by ICS-MCB. Upper row 
(left) - loss of chromosome 16 (monosomy) in a cell isolated from the prefrontal cortex of the 
normal human brain; (right) - loss of chromosome 1 (monosomy) in a cell isolated from the 
 prefrontal cortex of the schizophrenia brain. Bottom row (left) - gain of chromosome 21 (trisomy) 
in a cell isolated from the prefrontal cortex of an Alzheimer’s disease brain; (right) - chromosome 
instability in the cerebellum of the ataxia-telangiectasia brain manifesting as the presence of 
 normal and a rearranged chromosome14 order (14)(14pter->14q12:)
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    Abstract     The history of interphase cytogenetics can be traced back to the  pioneering 
works on descriptions of intracellular compartments dated at the end of the nine-
teenth century. However, it was not until the development of molecular cytogenetic 
techniques that the direct analysis of human interphase chromosomes began. During 
the past three decades, tremendous efforts have been made toward the elucidation of 
how the cellular genome is organized at molecular and supramolecular (chromatin 
and chromosomal) levels. As a result, we do possess powerful molecular cytogenetic 
technologies for diagnosing chromosome abnormalities in interphase and studying 
chromosome number, structure, and behavior variations in single cells at molecular 
resolutions through the entire cell cycle. Using several seminal reviews as mile-
stones, it was possible to show the development of interphase (molecular) cytogenet-
ics in historical perspective. As one can notice, the main achievements in studying 
interphase chromosomes were made because of technological developments in 
molecular cytogenetics. Therefore, the present introduction to interphase molecular 
cytogenetics is not only limited to listing changing of concepts in studying interphase 
chromosomal architecture and molecular cytogenetic diagnosis, but also briefl y 
describes the technological basis of this dynamically developing biomedical fi eld.  

    Chapter 1   
 Introduction to Interphase Molecular 
Cytogenetics 

             Yuri     B.     Yurov     ,     Svetlana     G.     Vorsanova    , and     Ivan     Y.     Iourov    
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       Eukaryotic DNA expresses and reproduces itself only in the context of an interphase 
nucleus. It is therefore biologically most meaningful to understand chromosome organiza-
tion in this state 

(Laura Manuelidis  1990 ). 

   It is hard to disagree with Professor Manuelidis that studying interphase chromo-
somes is the only way toward real understanding of the genome organization and 
variation. Because the interphase comprises essential periods of normal cell activity, 
one has to refer to molecular interphase cytogenetics for uncovering somatic 
genome variations in different tissues and analyzing the cellular genome organiza-
tion. Originating from the pioneering works of Flemming (in 1882), Rabl (in 1885), 
Waldeyer (in 1888), and Boveri (in 1909) (for more details and references see 
Smeets  2004 ; Foster and Bridger  2005 ; Cremer and Cremer  2006 ), studies dedi-
cated to the structural and functional organization of genetic material at the chromo-
somal level in interphase remained almost completely theoretical (Comings  1968 , 
 1980 ; Vogel and Schroeder  1974 ; Manuelidis  1990 ), until molecular cytogenetic 
methods forming a fi rm technical basis for high-resolution detection of chromo-
somal regions in metaphase and interphase cells became available (Trask  2002 ; 
Levsky and Singer  2003 ; Claussen  2005 ; Iourov et al.  2006a ,  2008b ,  2012 ; Serakinci 
and Kolvraa  2009 ; Vorsanova et al.  2010a ; Pajor et al.  2012 ). Actually, the essential 
knowledge about genome behavior in the interphase (chromosome architecture, 
somatic genome variations, etc.) was gained during the past three decades, which 
can be fairly called “the era of molecular cytogenetics” from a cytogeneticist’s point 
of view. Moreover, the wide use of postgenomic molecular cytogenetic techniques 
based on data acquired by an extended number of human genome studies has given 
rise to a new fi eld of genomics: cytogenomics (Smeets  2004 ; Iourov et al.  2008a , 
 2012 ; Vanneste et al.  2012 ). Therefore, to provide an introduction to interphase 
molecular cytogenetics and cytogenomics in historical perspective, it is mandatory 
to address (i) concepts in understanding chromosome structural and functional 
organization in the interphase (genome organization and variation) and (ii) techno-
logical milestones in interphase cytogenetics. 

 The history of human cytogenetics (including molecular cytogenetics) has been 
repeatedly addressed by a series of high-quality reviews (Trask  2002 ; Levsky and 
Singer  2003 ; Smeets  2004 ; Foster and Bridger  2005 ; Gersen and Keagle  2005 ; 
Cremer and Cremer  2006 ; Gartler  2006 ; Serakinci and Kolvraa  2009 ). In this 
instance, we have preferred to focus more on changes of concepts in studying inter-
phase chromosomal architecture and molecular cytogenetic diagnosis that have 
occurred through the history of interphase cytogenetics rather than to give the well- 
known timeline of cytogenetics history. 

 The complexity of internal order in the interphase nucleus and arrangement of all 
its compartments has been long acknowledged. Furthermore, technological diffi cul-
ties in analysis of intranuclear organelles seem to be the reason why the nucleus has 
been ironically termed “the black box” (van Driel et al.  1991 ). Nonetheless, earlier 
studies (reported in the late nineteenth and early twentieth centuries) have proposed a 
hypothesis suggesting that interphase chromosomes are likely to occupy more-or-less 
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distinct territories (for more details, see Cremer and Cremer  2006 ). Formally, in the 
middle of the twentieth century, there have already been studies roughly  depicting 
interphase chromosomes or, more precisely, their specifi c behavior (i.e., visualiza-
tion of facultative heterochromatin or sex chromatin, termed later the Barr body) 
(Barr and Bertram  1949 ). In the beginning of the second half of the twentieth cen-
tury, the hypothesis suggesting the existence of chromosome territories was left 
behind as evaluations of heterochromatin by chromosome staining techniques and 
modeling of interphase chromosome behavior according to metaphase chromo-
somal analyses suggested that heterochromatic regions should be the only chromo-
somal regions that hold nonrandom intranuclear positions, whereas euchromatic 
chromosomal regions are likely to fi ll nearly completely the nuclear space apart 
from those peculiar territories occupied by heterochromatin and other non-DNA 
nuclear components (Comings  1968 ,  1980 ; Vogel and Schroeder  1974 ). Although a 
rationale for the internal order of chromatin arrangement within the nucleus was 
postulated (Comings  1968 ; Vogel and Schroeder  1974 ), some questions concerning 
the way that genome is processed and chromosomes are arranged within the nuclear 
space remained unanswered (for more details, see Comings  1980 ; Foster and 
Bridger  2005 ; Cremer and Cremer  2006 ). The introduction of in situ hybridization 
to basic chromosome biology (interphase chromosomal analysis) has changed the 
main concept in nuclear genome organization (Manuelidis  1990 ). However, sugges-
tions about heterochromatin arrangement in interphase nuclei proposed by Comings 
(Comings  1968 ) have remained actual. Fluorescence in situ hybridization (FISH) 
has provided for numerous possibilities to uncover chromosome architecture, and 
its applications resulted in a signifi cant reevaluation of concepts in nuclear genome 
organization (Leitch  2000 ; Foster and Bridger  2005 ; Cremer and Cremer  2006 ). 
Nonrandomness in interphase chromosome architecture (the existence of chromo-
some territories) has been proposed as the central point in speculations about the 
driving force of the cellular genome organization (Foster and Bridger  2005 ; Cremer 
and Cremer  2006 ; Rajapakse and Groudine  2011 ). Considering the data on the plas-
ticity of chromosomes and its associations with regulation of critical intranuclear 
processes (chromosomics) (Claussen  2005 ), it was postulated that chromosome 
architecture in interphase not only possesses a specifi c internal order, but also is the 
last hierarchical level of cellular genome organization and is the fi nal step of genome 
behavior modulation (Cremer and Cremer  2006 ; Rajapakse and Groudine  2011 ). 
Currently, interphase chromosome architecture is suggested to play an important 
role in numerous critical nuclear processes: modulation of transcriptional activity 
through chromatin organization; regulation of developmental pathways; chromo-
somal DNA replication, genome maintenance, and DNA repair; promoting somatic 
interchromosomal rearrangements; programmed cell death; and determination of 
the genomic landscape in senescent cells (mechanism for aging at the cellular level) 
(Leitch  2000 ; Foster and Bridger  2005 ; Misteli and Soutoglou  2009 ; Rouquette 
et al.  2010 ; Rajapakse and Groudine  2011 ). Additionally, it is generally accepted 
that interphase chromosome associations (somatic pairing) seem to be involved in 
regulation of transcriptional activity within specifi c chromosomal regions,  including 
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imprinted genomic loci, and are probably involved in the aforementioned nuclear 
processes as well (Göndör and Ohlson  2009 ; Dostie and Bickmore  2012 ). All these 
data become available because of technical breakthroughs in molecular cytogenet-
ics and successful combinations of interphase (molecular) cytogenetic techniques 
and specifi c microscopy/imaging approaches and more recent (on-chip or “on-
beads”) technologies probing chromatin states and interactions (for reviews, see 
Rouquette et al.  2010  and Dostie and Bickmore  2012 ). 

 In a similar way as for interphase chromosomes architecture, understanding of 
somatic genome variations was long hindered by a dogma, which is briefl y formu-
lated as follows: “with few exceptions, all the cells of an organism share identical 
genomes.” Currently, there is a plethora of data that directly show all humans to be 
somatic mosaics. Consequently, studying somatic genome variations using inter-
phase molecular cytogenetic techniques has become an appreciable part of biomedi-
cal research (for more details, see Iourov et al.  2006a ,  b ,  2010 ,  2012 ; Vorsanova 
et al.  2010b ). The latter has been the result of developments in interphase molecular 
cytogenetics [i.e., elaborations of FISH and FISH-based approaches as well as 
single- cell whole-genome scan approaches based on array comparative genome 
hybridization (array CGH)]. Here again, the technological achievements in molecu-
lar cytogenetics were the key to interphase cytogenetics relevant to somatic cell 
genetics and genomics or, more precisely, cytogenomics. Additionally, these 
achievements allowed the development of interphase molecular cytogenetic diagno-
sis, which has become an important part of the clinical workup for patients suffering 
from congenital malformations, neurobehavioral diseases, reproductive problems, 
and cancer (Vorsanova et al.  1991 ,  2010a ;  b ; Tanke et al.  1995 ; Ried  1998 ; Levsky 
and Singer  2003 ; Iourov et al.  2008b ). Interphase FISH is also found applicable in 
prenatal diagnosis of  chromosome abnormalities (Soloviev et al.  1995 ; Bui et al. 
 2002 ). In addition, numerous targeted interphase FISH assays are proven effective 
for detecting specifi c chromosome rearrangements in preimplantation and oncocy-
togenetic diagnosis (see Chap.   11    ). 

 The technological basis of FISH (or in situ hybridization) was formed during 
the 1970s and 1980s and included the development of DNA–DNA (DNA–RNA/
RNA–DNA) hybridization protocols, labeling of DNA methods (i.e., nick transla-
tion or similar methods), and elaboration of digital analysis and imaging protocols 
for fl uorescence microscopy (for more details, see Tanke et al.  1995 ; Levsky and 
Singer  2003 ; Serakinci and Kolvraa  2009 ). In 1986, in situ hybridization (FISH) 
was demonstrated to be a valuable tool for molecular diagnosis of chromosomal 
abnormalities (Cremer et al.  1986 ; Pinkel et al.  1986 ; Vorsanova et al.  1986 ). That 
year is arbitrarily considered as the starting point of the molecular cytogenetic era 
or molecular cytogenetics. During the following 10 years, several important con-
tributions were made to FISH-based technologies, resulting in the elaboration of 
CGH (Kallioniemi et al.  1992 ) and multicolor FISH (spectral karyotyping), 
 allowing differential painting of each human homologous  chromosome pair 
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(Schrock et al.  1996 ; Speicher et al.  1996 ). However, all these techniques were 
based on studying either the total DNA or metaphase chromosomes. It took 
another 10 years to make these approaches useful for studying genomes and chro-
mosomes of interphase cells (for review, see Iourov et al.  2008b ; Vorsanova et al. 
 2010a ; Vanneste et al.  2012 ). In interphase molecular cytogenetics, there have 
been  proposals to use FISH for studying specifi c chromosomal regions using 
chromosome-specifi c differentially labeled DNA probes that allowed multitarget 
interphase chromosomal analysis (Ried et al.  1992 ; Yurov et al.  1996 ). To increase 
the effi ciency of interphase FISH, a combination of FISH and immunocytochem-
istry (immuno-FISH) has been proposed (for review, see Tanke et al.  2005 ). This 
approach has been subsequently found valuable for different areas of chromo-
some biology and has been used as a method of choice in studying somatic 
genome variations and interphase chromosome architecture. FISH-based 
approaches were also used for generating a protocol of interphase multicolor 
chromosome-specifi c banding, a method for analysis of interphase chromosomes 
in their integrity at molecular resolutions (Iourov et al.  2007 ; described in 
Chap.   9    ). All these approaches are described and discussed in more detail in 
Chap.   11    . It is to be added that FISH can be used as a platform for automated 
interphase molecular cytogenetic analysis (Pajor et al.  2012 ). Finally, CGH has 
been used as a platform for an on-chip whole-genome analysis (array CGH) 
(reviewed in Trask  2002 ; Smeets  2004 ), which is considered to be the most pow-
erful molecular  cytogenetic technique for detection of constitutional chromosome 
imbalances. Recently, it has been shown that the whole-genome scan by array-
CGH or array-CGH-based technologies is applicable to single cells, providing for 
an intriguing alternative to other interphase molecular cytogenetic techniques 
used for evaluations of somatic genome variations (for review, see Vanneste et al. 
 2012 ). However, because of natural limitations, the single-cell array-CGH whole-
genome scan is hardly applicable to studying large cell populations. In conclu-
sion, interphase molecular cytogenetics does possess the technological 
opportunities for studying specifi c interphase chromosomal loci, whole interphase 
chromosomes (at a resolution comparable to or even higher than that of meta-
phase analysis), and the whole cellular genome (Table  1.1 ).

   Last, because all the high-quality research in the fi eld of interphase molecular 
cytogenetics is almost impossible to reference in a book chapter, we would like to 
apologize to authors whose papers were not discussed (cited) owing to the introduc-
tory nature of this chapter. Fortunately, a great number of such articles are discussed 
and reviewed in the next chapters, which are focused on more specifi c areas of 
interphase cytogenetics. We hope that this book, dedicated to human interphase 
chromosomes and interphase molecular cytogenetics, will serve as a valuable addi-
tion to current biomedical literature and will be useful to all who perform research 
and those who teach in the fi elds of chromosome and genome biology, medical 
genetics, and related biomedical fi elds.    
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    Abstract     Interphase chromosomes are nonrandomly positioned in the nuclei of 
normal cells. They occupy specifi c locations with respect to a radial distribution 
from the nuclear edge to the nuclear interior. Furthermore, there is some evidence 
that interphase chromosomes reproducibly have the same neighbors that can be 
involved in creating translocations which lead to cancer. Not only are chromosomes 
nonrandomly positioned but they are anchored to certain regions of the cell nucleus 
by cellular structures such as the nuclear lamina and the nucleolus. Global screening 
of the genome has identifi ed both lamina-associated domains and nucleolar- 
associated domains. Increasingly, researchers are fi nding that interphase chromo-
somes are mislocalized in disease situations. The consequences of chromosome 
mislocalization are not yet that clear, but gene expression can be affected with inter-
phase chromosomes being located in another compartment of the nucleus, changing 
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their interactions with nuclear structures. This chapter outlines how chromosomes 
behave in interphase nuclei and with what they interact. We discuss many examples 
of when chromosomes, and the genes housed upon them, change their location and 
behavior in disease situations such as cancer and the premature aging syndrome 
called Hutchinson–Gilford progeria syndrome. We also describe new fi ndings 
whereby genes in the host are relocated and expressed after a parasitic infection.  

        Introduction 

 The eukaryotic cell nucleus is a highly complex organelle that contains the cell 
genome in the form of interphase chromosome territories. Interphase chromosomes 
are described thus because as they decondense, after cell division within the new 
daughter nuclei, they remain in and interact with a particular area of the nucleus, a 
so-called territory of the nucleus. Although there is some intermingling and ‘com-
ing together’ of genes from different chromosomes, most of the body of one chro-
mosome is maintained together, and thus to all intents and purposes chromosomes 
in interphase are separate entities. The interphase chromosomes are nonrandomly 
positioned in nuclei, revealing that there must be a high level of genome reorganiza-
tion post mitosis to obtain individual chromosome territories in the right compart-
ments of the nucleus (Fig.  2.1 ). 

 The structures within nuclei are intimately involved in organizing and positioning 
interphase chromosomes to allow the coordination of a wide range of functions centred 
around the genome, such as gene expression and silencing, splicing and processing, 
and DNA replication and DNA repair. These nuclear structures are all linked and are 
part of a functionally responsive cellular network (Starr  2009 ). Such architecture com-
prises the nuclear envelope with all its components: integral membrane proteins (IMPs) 
and the nuclear lamina, nucleoli, the nucleoskeleton, and a range of nuclear bodies 
(Foster and Bridger  2005 ). All these structures interact with and anchor interphase 
chromosomes. Misorganization or disruption of this nuclear architecture can lead to 
problems in regulating normal chromosome behavior, producing compromised cells 
with the possibility that diseases such as cancer or degenerative syndromes may arise.  

    Nuclear Structures 

 The most prominent subcompartment of the nucleus is the nucleolus. The nucleoli 
are where ribosomal RNAs are synthesized and processed, thereby providing a site 
for effi cient assembly of ribosomal subunits. In humans the acrocentric chromo-
somes containing the ribosomal repeat genes are embedded in the nucleoli, provid-
ing a functional anchorage site for these genes and their chromosomes (Bridger 
et al.  1998 ). tRNA genes are also clustered at the nucleoli (Boisvert et al.  2007 ; 
Nemeth et al.  2010 ). Furthermore, other chromosomes that do not contain ribo-
somal DNA or tRNA genes are also associated with nucleoli (Bridger et al.  1998 ). 
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In genome-wide screens, two studies have revealed many sites throughout the 
genome that are anchored at the nucleoli, including chromosome 17 (van 
Koningsbruggen et al.  2010 ) and chromosome 19 (Nemeth et al.  2010 ). Both these 
chromosomes have been found to be interiorly located and associated with nucleoli 
in extracted nuclei (J. Bridger, unpublished data). These studies demonstrate that 
the nucleolus is a major player in anchoring and organizing chromosome territories 
in interphase nuclei.

   The interior of a nucleus is thought to be more conducive to transcription of 
active genes, whereas a correlation has been shown between gene repression and 
positioning at the periphery (Zink et al.  2004 ). In yeast the nuclear periphery has 
been shown to consist of two distinct compartments: a region permissive to tran-
scription near the nuclear pore complexes, and a repressive region that contains foci 
of silencing factors (Andrulis et al.  1998 ; Taddei et al.  2006 ). Components of the 
nuclear periphery, such as nucleoporins and lamin proteins, are thought to interact 
with repressors of transcription. For example, emerin interacts with the transcrip-
tional repressors germ cell-less (GCL) and barrier to autointegration factor (BAF) 
(Holaska et al.  2003 ), and the nuclear envelope protein LAP2β interacts with 
HDAC3 to cause histone H4 deacetylation and gene repression (Somech et al. 
 2005 ). Genes can become anchored at the periphery of the cell, which affects their 
local chromatin environment. For example, genes that become tethered to the 
nucleoporin Nup2p are blocked from becoming heterochromatic and therefore 
remain active, whereas tethering of telomeres to other nucleoporins results in gene 
silencing (Ishii et al.  2002 ; Feuerbach et al.  2002 )   .

   The nuclear envelope is made up of the inner and outer nuclear membranes, 
which house nuclear pore complexes, and the nuclear lamina. The inner nuclear 
membrane, facing the nuclear interior, contains a large number of IMPs (Trinkle- 
Mulcahy and Lamond  2007 ; Gomez-Cavazos and Hetzer  2012 ). By proteomic anal-
ysis, at least 67 IMPs have been identifi ed. The better known IMPs are lamin B 

  Fig. 2.1    Chromosome territories in interphase nuclei. Individual territories for human chromo-
some 10 ( green ) have been delineated using two-dimensional (2D) fl uorescence in situ hybridiza-
tion (FISH). ( a ) Normal immortalized human dermal fi broblast interphase nucleus. ( b ) 
Immortalized Hutchinson–Gilford progeria syndrome fi broblast nucleus. ( c ) Nucleus from a trans-
formed cell derived from a breast tumor. Note that the nuclei in ( a ) and ( b ) contain only two ter-
ritories whereas ( c ) displays many territories of chromosome 10 that are derived from ploidy and 
translocations       
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receptor, lamin-associated polypeptides 1 and 2, emerin, MAN1, and nesprins 
(Schirmer et al.  2003 ). Many of these IMPs have chromatin/DNA-binding capa-
bilities and are believed to be involved in anchoring interphase chromosomes to 
the nuclear periphery (Zuleger et al.  2011 ). Furthermore, the nuclear envelope 
components can be very different in different tissue types (Korfali et al.  2012 ), 
which could explain why different areas of the genome become localized to the 
nuclear envelope in different cell types (Peric- Hupkes et al.  2010 ). 

 The nuclear lamina, found subjacent to the nuclear membrane, consists of type V 
intermediate fi lament proteins nuclear lamins A, B, and C and is known as a struc-
tural scaffold under the nuclear envelope, which provides mechanical strength. 
There are three mammalian lamin genes:  LMNA ,  LMNB1 , and  LMNB2 , encoding at 
least six proteins.  LMNA  encodes four alternatively spliced mRNAs for lamin A, 
AΔ10, and C1 and C2 proteins, which are called A-type lamins.  LMNB1  encodes 
lamin B1, and the lamin B2 mRNA can be spliced to yield B2 or B3 proteins. The 
presence of lamins A and C is limited to differentiated cells; however, lamins B1 
and B2 are expressed in all cell types both in adults and in embryos. Furthermore, 
expression of certain lamin proteins such as C2 is restricted to the testis and during 
meiosis, whereas lamin B3 exists only in oocytes and spermatozoa (Rodríguez and 
Eriksson  2010 ). Lamin proteins have DNA/chromatin-binding abilities but also 
bind to a number of the IMPs of the nuclear membrane. Thus, there are a plethora 
of sites at the nuclear periphery for interphase chromosomes to bind and be 
anchored. A large study, in which the human genome was probed for lamin 
B-binding sites, revealed 1,300 lamin-associated domains (LADs); many of these 
LADs were found to be in gene-poor regions of the genome (Guelen et al.  2008 ). 
Interactions with the nuclear lamina are associated with gene silencing and repres-
sion markers such as H3K4 dimethylation (Ferrai et al.  2010 ), increasing evidence 
for the idea that the periphery of the nucleus is associated with gene repression. 
Moreover, the disregulation of expression of both types of nuclear lamin has been 
correlated with cancer and degenerative disease (Butin-Israeli et al.  2012 ), includ-
ing neurological degeneration (Coffi nier et al.  2011 ). 

 The movement of chromatin in the nuclei appears to be largely constrained and 
thus refl ects the physical attachment of chromatin to nuclear compartments, such as 
the nucleolus, nuclear periphery, and nucleoskeleton. Individual chromosomes 
occupy discrete compartments, and therefore distinct genomic regions localize to 
specifi c subnuclear positions. From several studies, it is becoming evident that 
nuclear position may have a crucial role for gene regulation. Moreover, it has been 
shown that there is a strong correlation between transcriptionally silent, late- 
replicating chromatin and a nuclear peripheral localization in several model systems 
(Boyle et al.  2001 ; Andrulis et al.  1998 ). Fluorescence recovery after photobleach-
ing (FRAP) studies on mammalian cell nuclei indicate that in time periods of more 
than 1 h, chromatin becomes immobile over distances greater than 0.4 μm. Chubb 
et al.    demonstrated that nucleoli and the nuclear envelope constrain the motion of 
interphase chromosomes that are located at these nuclear structures. In addition they 
demonstrated that the mobility of chromatin not associated with nucleoli or the 
nuclear periphery was much less constrained (Chubb et al.  2002 ).  
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    Interphase Chromosome Positioning 

 We have been discussing how gene-poor regions of the genome are associated with 
the nuclear periphery. These data come from sophisticated global screening experi-
ments. This distribution of more inactive areas of the genome at the nuclear periph-
ery fi ts with earlier studies whereby whole gene-poor chromosomes were found to 
be located at the nuclear periphery. The fi rst of these studies was performed by 
Bickmore and colleagues and demonstrated the differential distribution in inter-
phase nuclei of the similarly sized chromosomes 18 and 19 (Croft et al.  1999 ). 
Chromosome 18, a gene-poor chromosome, was located at the nuclear periphery 
whereas chromosome 19, a gene-rich chromosome, was located in the nuclear inte-
rior. This gene density-correlated chromosome positioning in interphase nuclei was 
confi rmed for all chromosomes in proliferating lymphoblastoid cells (Boyle et al. 
 2001 ). For human fi broblasts this gene density distribution is found in proliferating 
cells and not in nonproliferating cells (Bridger et al.  2000 ; Meaburn et al.  2007a , 
2008; Mehta et al.  2007 ,  2010 ). Nonproliferating cells display a size-correlated dis-
tribution with large chromosomes toward the nuclear periphery and smaller chro-
mosomes in the nuclear interior. Thus, when doing chromosome positioning studies 
it is critical to know whether the cells are proliferating. This point is especially 
important when comparing transformed and immortalized cancer cells with primary 
control cells, which will have a greater proportion of nonproliferating cells in the 
culture or tissue section. We use immune detection of the proliferation marker 
Ki-67, commonly used in neoplastic diagnostics (Kill  1996 ). The nuclei with very 
bright staining are in the proliferative cell cycle, and negative nuclei or nuclei with 
very dull staining are nonproliferating and are either quiescent or senescent. It is 
important that the cells with very dull staining are not counted as positive because 
this will lead to misinformation about proliferative status. In a primary culture of 
fi broblasts the maximum number of proliferating cells is usually never more than 
65 %, and this is for the youngest of cultures. Therefore, pKi67 is a very important 
marker to use in chromosome positioning assays, but it must be analyzed correctly. 
During the past decade there have been a number of studies that have compared 
chromosome territory position between cancer cells and suitable control cells. 
However, very few of these have taken into account proliferative status. 

 We have found that individual chromosome territories change location in the cell 
nucleus when primary fi broblasts change proliferative status (Meaburn et al.  2007a ; 
Mehta et al.  2007 ,  2010 ), meaning that some specifi c chromosomes are relocated 
whereas some stay where they are. Indeed, when cells are induced to become quies-
cent by serum starvation, interphase chromosomes either remain where they are, 
such as chromosome X, or move from a peripheral location to a more interior loca-
tion, such as chromosomes 13 and 18, or move toward the nuclear periphery, as, for 
example, chromosome 10. We have shown that energy is required for the movement 
of these chromosomes, and nuclear motor proteins actin and nuclear myosin Iβ are 
involved. Others have also found that nuclear motor proteins are involved in chro-
matin relocation in the nucleus (Chuang et al.  2006 ; Dundr et al.  2007 ; Ondrej et al. 
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 2007 ,  2008a ,  b ). The idea that chromatin and chromosomes are translocated around 
the nucleus by nuclear motor proteins is a relatively new area of study for nuclear 
biologists, and as yet very little is known about the distribution and mode of action 
of the nuclear motor proteins themselves. Our studies have shown that NM1b is 
found throughout the nucleoplasm, with a concentration around the nuclear enve-
lope and nucleoli in proliferating cells (Bridger and Mehta  2011 ; Mehta et al.  2010 ). 
It is extremely likely, given the importance and reproducibility of chromosome and 
gene positioning, that motor proteins involved in repositioning chromosomes and 
chromosomal subregions could be altered in disease states and cause issues for gene 
regulation. Indeed, we have observed in nonproliferating cells that NM1b distribu-
tion is very different, with large aggregates of the protein deep within the nucleo-
plasm. A similar distribution is apparent in cells derived from patients with the 
premature aging disease called Hutchinson–Gilford progeria syndrome (HGPS) 
(Mehta et al.  2011 ). Little or no research has been performed assessing nuclear 
myosins in cancer; however, one study correlated the presence of nuclear myosin VI 
with prognosis in renal cancer (Ronkainen et al.  2010 ) and another with nuclear 
myosin 18b in ovarian cancer (Yanaihara et al.  2004 ).  

    The Link Between Interphase Chromosome Location 
and Gene Expression 

 There is now evidence supporting the hypothesis that nuclear location of a chromo-
some and/or gene could play a role in regulating specifi c gene expression. For 
example, when resting human lymphocytes are activated by phytohemagglutinin, 
changes result in the intraorganization of chromosome territories, both in the degree 
of intermingling between territories and in their volume. More importantly, how-
ever, the radial positioning of the chromosome territories is changed. This alteration 
has been postulated to be a response to an altered transcriptional program (Branco 
et al.  2008 ). Furthermore, during ex vivo stem cell differentiation into adipocytes, 
the radial position of important genes involved in adipogenesis altered dramatically, 
with genes that become switched on when moving from the nuclear periphery 
toward the nuclear interior and back again when switched off. Control genes in this 
system that were either on or off did not respond to the adipogenic growth factors 
and did not change location (Szczerbal et al.  2009 ). In this differentiation system, 
there was little whole chromosome movement, but genes were looped out from 
chromosomes into the nuclear interior to associate with the nuclear structure SC35 
speckles (Szczerbal and Bridger  2010 ). 

 Other studies have gone further, to identify where in the nucleus and to what 
nuclear structures the genes are targeted. Genes have been found to relocate to 
structures associated with active transcription and processing of RNA. Indeed, the 
activation of gene loci can involve a repositioning of genes toward areas of the 
nucleus where RNA polymerase II molecules aggregate into superstructures called 
transcription factories (Osborne et al.  2007 ). Other studies have shown genes 
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becoming associated with other structures. For example, Dundr et al. inserted an 
artifi cial U2 snRNA array into the genome of cells and demonstrated that the array 
moved toward a stably positioned Cajal body for transcription through long-range 
chromosomal relocation. This movement was inhibited by an actin inhibitor, imply-
ing the involvement of actin in interphase chromosome repositioning (Dundr et al. 
 2007 ). Other studies have shown genes increasingly associated with SC35 domains 
upon upregulation (Brown et al.  2008 ; Szczerbal and Bridger  2010 ). It has also been 
shown that repositioning of genes from the periphery to a more interior position can 
correlate with inappropriate activation of that gene. The formation of chromatin 
loops for expression from repressed chromatin territories has been suggested as a 
mechanism of genome regulation, for example, for  Hox  gene activation (Chambeyron 
and Bickmore  2004 ). Indeed, most excitingly recent 3C (Ferraiuolo et al.  2010 ) and 
4C conformation capture experiments have shown that actively transcribing Hox 
genes in a cluster are associated with a nuclear compartment for active transcription 
and that the nontranscribing genes are all located at a region where gene silencing 
occurs (Noordermeer et al.  2011 ). When the silenced genes become activated, they 
then co-compartmentalize with the other active  Hox  genes. This strict co- 
compartmentalization of genes explains the strict co-linearity rules associated with 
the  Hox  gene clusters where position in the cluster is correlated with the expression 
zone down the developing embryo. 

 The three-dimensional (3D) structure of the chromosomes within the territories 
also plays a major role in the control of gene expression. Regions of the chromo-
somes have been shown to interact with other regions of the same chromosome, in 
 cis . For example, the locus control region (LCR) of the β-globin gene cluster acts as 
an enhancer of the β-globin genes, although it is more than 50 kb away. However, 
the LCR has been shown to be in close physical proximity to an actively transcribed 
HBB gene, suggesting a direct regulatory interaction (Carter et al.  2002 ; Tolhuis 
et al.  2002 ). This looping in 3D forms an active chromatin hub (ACH) for control of 
the expression of the β-globin genes (de Laat and Grosveld  2003 ), which dynami-
cally associate with the LCR (Gribnau et al.  1998 ). As T-helper cells differentiate 
from naïve, uncommitted CD4-positive T cells, they show a transcriptional switch. 
Initially, the cells transcribe low levels of both Th1- and Th2-specifi c loci and regu-
lators, but as they develop they become committed to either the Th1 or Th2 program 
(for review, see Murphy and Reiner  2002 ). Once a lineage has been established, it is 
retained as a heritable trait. This process of lineage commitment and differentiation 
involves the physical repositioning of regulators of gene expression. For example, it 
has been shown that during Th1 differentiation, the  GATA - 3  and  c - maf  loci, which 
encode upstream regulators of Th2 cytokines, were progressively repositioned to 
centromeric heterochromatin and/or the nuclear periphery and repressed (Hewitt 
et al.  2004 ). These fi ndings demonstrate another level of interphase chromosome 
behavior on gene expression, that is, that the intraorganization of a chromosome 
territory is also important (Fig.  2.2 ). 

 Noncoding RNAs (ncRNA) can control gene expression by establishing local 
repressive regions. For example, the  Air  ncRNA sets up a local ‘cloud’ of RNA that 
accumulates at the promoter of the imprinted  Slc22a3  gene and silences it by 
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recruiting G9a, an H3K9 histone methyltransferase (Nagano et al.  2008 ). The 
imprinted  Kcnq1  locus is also regulated by a paternally expressed repressive 
ncRNA,  Kcnq1ot1 , which regulates a domain of up to 750 kb. However, local acti-
vation of genes may be able to overcome the regional silencing effects of ncRNAs, 
as Kcnq1 transitions from monoallelic to biallelic expression during the develop-
ment of the heart, and there have recently been shown to be both tissue- and stage-
specifi c chromatin loops between the Kcnq1 promoter and newly identifi ed DNA 
regulatory elements (Korostowski et al.  2011 ). The most notable example of 
ncRNAs silencing genes is X-chromosome inactivation, where the ncRNA  Xist  
silences an entire chromosome. The  Xist  ncRNA covers the chromosome that is 
going to inactivate and condenses into a smaller, compact structure, which is associ-
ated with the periphery (Clemson et al.  1996 ). As silencing is established, a repres-
sive nuclear compartment forms that excludes RNA polymerase II and transcription 
factors. Transcriptional repression follows the formation of this compartment, pos-
sibly as genes become physically pulled down into the repressive environment, 
where they are inaccessible to the transcriptional machinery (Chaumeil et al.  2006 ). 
The few genes that remain expressed, for example, those in the pseudoautosomal 
region, loop out of the repressive compartment to be expressed (Splinter et al.  2011 ). 

  Fig. 2.2    Active genes can coassociate within the interphase nucleus. A montage panel of RNA 
FISH experiments demonstrates that the  Hbb-b1  gene loci ( green ) and the  Hba  gene loci ( red ) local-
ize together more than 20 % of the time when actively transcribing. This interaction, shown in 
embryonic day 14.5 mouse erythroblasts, occurs although they are located on different chromo-
somes and demonstrates the preferential interaction of coregulated genes within the nuclear volume       
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    Interphase Chromosome Behavior in Hutchinson–Gilford 
Progeria Syndrome 

 Hutchinson–Gilford progeria syndrome (HGPS) is a severe premature aging disease 
that affects children. First described by Jonathan Hutchinson and Hastings Gilford 
in the 1800s, this disease is recognized by a group of characteristics indicative of 
premature aging. The most common of these include alopecia (hair loss), failure to 
thrive (short stature and low weight), lipodystrophy (loss of fat), scleroderma of the 
skin, and increased visibility of blood vessels. Initially, children appear unaffected, 
but symptoms usually present around 1 year of age, leading to a mean age of diag-
nosis of 2.9 years. Another main characteristic of HGPS is heart disease. Patients 
suffer from atherosclerosis/hardening of the arteries, which is sometimes associated 
with calcifi cation. This change, in combination with loss of smooth muscle from 
blood vessels, leads to an increased risk of heart attacks and stroke. These are the 
main causes of death in this disease, with the average life expectancy of a HGPS 
patient being 13.5 years (Hennekam  2006 ). 

 HGPS is an extremely rare disease with an incidence of approximately 1 in every 
4–8 million live births. Of these cases approximately 80 % are caused by the same 
de novo mutation in the  LMNA  gene (De Sandre-Giovannoli et al.  2003    ; Eriksson 
et al.  2003 ). This gene encodes both A-type lamins, making HGPS part of a group 
of diseases known as the laminopathies. The ‘classic’ mutation found in the major-
ity of HGPS patients is the G608G mutation, which is a silent mutation at the pro-
tein level. At the DNA level, however, it causes activation of a cryptic splice donor 
site, which results in an interstitial deletion of 150 amino acids from exon 11. This 
deletion gives rise to a truncated protein, with a 50-amino-acid deletion, called 
Progerin (Eriksson et al.  2003 ). Pre-lamin A and progerin are subject to the same 
posttranslational modifi cations. The region deleted in progerin contained an impor-
tant cleavage site for the enzyme ZMPSTE24, which removes the farnesylated 
N-terminus of the protein, freeing it from the membrane. Lacking the cleavage site, 
progerin therefore remains bound to the nuclear membrane. Interestingly, homozy-
gous mutations in the ZMPSTE24 gene have also been found to cause an atypical 
form of HGPS. Progerin expression is thought to have a dominant negative effect on 
cell function; it has been shown to cause thickening of the nuclear envelope as well 
as nuclear shape abnormalities such as blebs and invaginations (Goldman et al. 
 2004 ; Bridger and Kill  2004 ). 

 The association of the nuclear lamina with the chromatin and chromosomes 
increased interest in genome organization and chromosome/chromatin localization 
in cases of disruption to the nuclear lamina through mutation in  LMNA , such as that 
seen in HGPS. Genome organization has been shown to be disrupted in a number of 
cells with lamin A mutation or that lack lamin A completely (Galiova et al.  2008 ; 
Shimi et al.  2008 : Taimen et al.  2009 ). Further, three studies have revealed misposi-
tioning of whole chromosome territories in cells with  LMNA  mutations (Meaburn 
et al.  2007a ; Mewborn et al.  2010 ; Mehta et al.  2011 ). Interestingly, using chromo-
some 10 positioning that had previously been shown to occupy different nuclear 
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locations in proliferating, quiescent, and senescent cells (Mehta et al.  2007 ,  2010 ), 
Mehta et al. ( 2011 ) revealed that HGPS cells had a quiescent-type distribution of 
this chromosome in proliferating HGPS fi broblasts. Complete reorganization of the 
genome was, however, not observed because the X chromosomes were found at the 
nuclear periphery in both control and HGPS cells. This mislocalization of chromo-
somes could be restored to normal when the HGPS cells were treated with farnesyl 
transferase inhibitors that prevent progerin from being farnesylated. A global 
genome-wide study of the sequences associated with progerin at the nuclear periph-
ery in mouse cells confi rms that A-type lamins are involved in chromatin and 
genome organization in nuclei. Kubben et al. ( 2012 ) show that in cells with progerin 
some genes have been relocated away from the nuclear periphery, whereas others 
have enhanced association.  

    Cancer 

 Cancer is a disease characterised by genomic instability, resulting in unlimited cell 
replicative potential. Transformation is a multistep process usually encompassing 
many genetic modifi cations including aneuploidy, copy number variants, gene 
mutations, aberrant DNA methylation patterns, and chromosomal rearrangements. 
The majority of these changes promote increased oncogenic transcription, which 
stimulates proliferation and inhibits apoptosis. 

 With increased understanding of chromosome territories in the interphase 
nucleus, much work has gone into understanding the differences that emerge in 
neoplastic tissue compared with normal samples. The observed changes have been 
both on the global scale, such as loss of heterochromatin, and at the gene scale, such 
as the repositioning of tumor-associated genes in cancer formation (Zhu et al.  2011 ; 
Meaburn and Misteli  2008 ). 

 The changes in the nuclear architecture of cancer cells are so robust they have 
been used in tumor diagnosis for more than 140 years. Since the fi rst patient biopsy 
was examined in 1860, many advances have been made in understanding cancer. 
However, diagnosis still relies heavily on the analysis of cell morphology. Specifi c 
nuclear markers of cancer include changes in nuclear size and shape, nucleolus 
alterations, changes in chromatin organization, aberrantly shaped nuclear lamina, 
and alterations to promyelocytic leukemia (PML) bodies (Zink et al.  2004 ). 
Common nuclear shape changes include indentations and folds that are indicative of 
a wide variety of cancers. Nuclear morphological changes with specifi city to certain 
cancer types include grooves or long clefts in the nuclear surface, which are associ-
ated with the expression of the papillary thyroid oncogene expressed exclusively in 
papillary thyroid carcinomas (Fischer et al.  1998 ). Enlarged nucleoli are associated 
with several cancer types; however, inconspicuous nucleoli are almost exclusively 
indicative of small-cell anaplastic lung carcinoma (Zink et al.  2004 ). Observed 
changes to chromatin structures include changes to heterochromatic foci, which are 
areas of the nucleus that contain highly compact chromatin structures usually 

G. Bourne et al.



19

associated with gene silencing (Hahn et al.  2010 ). The changes to heterochromatic 
foci include loss, asymmetry, coarse appearance, and spreading throughout the 
nucleus (Zink et al.  2004 ). Several studies have identifi ed silencing of tumor sup-
pressor genes in cancer in parallel with changes to chromatin structure (Hahn et al. 
 2010 ). Tumor suppressor gene promoters showing heterochromatic markers such as 
H3K9 trimethylation have been identifi ed in many cancer types (Lakshmikuttyamma 
et al.  2010 ). It is yet to be established whether changes in chromatin structure cause 
silencing of tumor suppressor genes and thus drive cancer. One study conversely 
found that knockdown mice lacking the tumor suppressor gene  BRCA1  resulted in 
changes to heterochromatin, including loss of foci from the nuclear periphery, lead-
ing to a more diffuse state of foci throughout the nucleus (Zhu et al.  2011 ). This 
fi nding suggests some sort of positive feedback whereby tumor suppressors regulate 
chromatin conformation; but once lost, aberrant chromatin changes promote 
cancer.   

    Chromosome Positioning in Cancer 

 A vast number of diseases present with genetic defects that are often visible as chro-
mosome rearrangements. The presence of chromosome abnormalities is a hallmark 
for many forms of cancer. In many cases the specifi c association of certain chromo-
some aberrations and type of tumor are considered of diagnostic and prognostic 
value. 

 Studies on interphase chromosome position in cancer cells were initiated by 
work where HT1080 fi brosarcoma cell transformation was chemically reversed. 
Acrocentric chromosomes that had been found through the nucleus were relocated 
more centrally, which seems to result from their association with the nucleoli and 
the coalescence of many smaller nucleoli to one prominent centrally located nucleo-
lus after the treatment (Krystosek  1998 ). In a study from the Cremer laboratory, the 
differential positioning of human chromosomes 18 and 19 was much less obvious in 
colon adenocarcinoma cells, cervix carcinoma cells, and Hodgkin disease-derived 
cells (Cremer et al.  2003 ). The nuclear locations of chromosomes 10, 18, and 19 
were assessed in normal thyroid tissue and compared to adenomatous goiters, papil-
lary carcinomas, and undifferentiated carcinomas. There was no difference in chro-
mosome position in the normal and goiter tissue with chromosomes 10 and 18 
positioned toward the nuclear periphery; and chromosome 19 in a central location. 
However, in the papillary carcinoma tissue chromosome 19 was located centrally in 
statistically fewer cells. Further, in undifferentiated carcinomas all the chromo-
somes assessed were mislocalized (Murata et al.  2007 ). In a breast cancer cell line 
MCFCA1a differences in the distance between chromosomes 4 and 16 were found 
when compared to the control cell line MCF10A (Marella et al.  2009 ). Wiech et al. 
( 2005 ) analyzed chromosome 8 positions in wax-embedded pancreatic cancer tis-
sue samples. Radial distance indicated the repositioning of chromosome 8 to the 
nuclear periphery, which matched roundness scores showing a change in the shape 
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of the territory. A subsequent paper also noted a reduction of the roundness of chro-
mosome 8 territories, suggesting a thinner, more elongated territory in pancreatic 
carcinomas (Timme et al.  2011 ). The centromere and the gene encoding HER2 on 
chromosome 17 were also shown to compact in neoplastic breast tissue, conferring 
the repositioning of the centromere to a more internal location (Wiech et al.  2005 ). 
A subsequent study by Wiech et al. ( 2009 ) reported repositioning of chromosome 
18 during cell differentiation of nonneoplastic cervical squamous epithelium, show-
ing a move toward the nuclear interior. This fi nding was in contrast to the observa-
tions in cervical squamous carcinomas that showed a repositioning of chromosome 
18 toward the nuclear periphery (Wiech et al.  2009 ). This study also analyzed the 
expression levels of  BCL2 , an inhibitor of apoptosis, which was shown to prolong 
cell survival and found to be unregulated in 54 % of cervical cancers. A reduction 
in  BCL2  expression has been found in the terminally differentiated cells on the outer 
layers of the cervical epithelium. In contrast, an increase in  BCL2  expression was 
found in the carcinomas, suggesting that relocation to the nuclear periphery 
increases  BCL2  transcription (Wiech et al.  2009 ).  

    Gene Repositioning in Interphase of Cancer Cells 

 A comprehensive study into the nuclear organization in breast cancer by Meaburn 
et al. ( 2009 ) found that 8 of the 20 gene loci analyzed showed signifi cant gene repo-
sitioning in cancer cells. All the gene loci studied have previously been implicated 
in cancer, with the most frequently repositioned gene locus being  HES5 , a transcrip-
tion repressor that regulates cell differentiation. As the majority of genes were not 
repositioned, this fi nding suggests that the repositioning was gene specifi c rather 
than global genome reorganization. It was also concluded that gene repositioning 
was not associated with genome ploidy because the genes analyzed in this study had 
no changes in copy number. It was also observed that some genes were only reposi-
tioned in certain cancer types, suggesting that some gene repositioning is cancer 
type specifi c (Meaburn et al.  2009 ). This idea is supported by the fi ndings of Wiech 
et al. ( 2005 ), who identifi ed  BCL2  repositioning to the periphery in  BCL2 -positive 
cervical squamous cell carcinomas but not in  BCL2 -negative cancer cells. By ana-
lyzing gene position in normal cells and cells from noncancerous disease, breast 
hyperplasia or fi broadenoma, no signifi cant difference was found (Meaburn et al. 
 2009 ). This result demonstrated that the rearrangements observed in cancer cells are 
cancer specifi c and cannot be seen in noncancerous diseased cells. The identifi ca-
tion of cancer-specifi c genes repositioned in several types of breast cancer could 
prove a useful diagnostic tool. One problem this technique faces, however, is the 
intermingling of normal and diseased cells, which reduces the statistical power. It 
has been observed that the tissue directly adjacent to the cancerous tissue in patients 
has a normal pattern of gene organization that matched with the tissue from normal 
individuals (Meaburn et al.  2009 ). This fi nding is in agreement with previous reports 
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that the organization of genes does not differ between individuals, except in the case 
of disease (Wiech et al.  2005 ). Once validated in a larger number of patient samples, 
these problems should be overcome, yielding a useful diagnostic tool. Although the 
study by Meaburn et al. ( 2009 ) failed to show a relationship between gene reposi-
tioning and transcription levels, other studies investigating this aspect have shown 
that an altered positioning of specifi c genes in the nucleus is associated with altered 
transcription levels (Wiech et al.  2009 ). This fi nding is in contrast with a previous 
report that showed that gene repositioning occurs in early tumorigenesis and does 
not affect transcription levels (Meaburn and Misteli  2008 ). More work is needed in 
this area to understand why gene repositioning occurs, especially if it is not related 
to gene function. Seminal studies aimed at understanding differentiation and matu-
ration of the lymphoid lineage have analyzed the relationship between gene posi-
tioning and activity. One of these studies showed preferential localization to the 
nuclear interior of the IGH and IGk loci during pro-B-cell lymphocyte development 
(Kosak et al.  2002 ). This repositioning event coincided with transcription, and sub-
sequent recombination of these loci is required for the production of unique anti-
bodies. This fi nding led the authors to conclude that chromatin rearrangement is a 
powerful mechanism for the control of transcription (Kosak et al.  2002 ). Further 
studies will elucidate the role of gene positioning within the nuclear architecture as 
an underlying condition for gene transcription and expression in cancer develop-
ment and progression.  

    Formation of Chromosome Translocations in the Context 
of Nuclear Organization 

 Cancer cells harbor a number of genetic abnormalities, of which chromosomal 
translocations are well-studied examples, especially in leukemia and lymphoma. 
The mechanisms of translocation formation are under study. Whether a multistep 
process or a simultaneous occurrence of several events (Forment et al.  2012 ), we 
expect an impact on genome organization and nuclear architecture. In any case, the 
exchange of chromosomal fragments requires the formation of two or more double-
strand breaks (DSB). The incorrect repair of DSB leads to the fusion of nonhomolo-
gous chromosome ends, creating derivative chromosomes. The most error prone 
pathway for the repair of DSB is nonhomologous end-joining, in which two chro-
mosome ends in close proximity are religated. Within the nucleus there are error-
free repair pathways for DSB resolution, such as homologous recombination; 
however, this process does require either a sister chromatid (post S-phase) or 
homologous chromosome (Meaburn et al.  2007b ). There is an ever-growing list of 
cancer type-specifi c translocations, with the same rearrangement arising nonran-
domly, and hence observed in the cancer cells of many individuals (Mitelman 
Database of Chromosome Aberrations in Cancer,   http://cgap.nci.nih.gov/
Chromosomes/Mitelman    ). These recurrent translocations are useful diagnostic 
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tools and are often associated with clinical outcome. A classical example is the 
Philadelphia chromosome derived from the t(9;22) and found in chronic myeloid 
leukemia (CML) and in some cases of acute lymphoblastic leukemia (ALL) 
(Goldman  2010 ). Another example is the t(12;21), found in approximately one third 
of pediatric patients with ALL and associated with a relatively good prognosis 
(Harrison et al.  2010 ). With increased understanding of the organization of the inter-
phase nucleus, a number of studies have investigated the proximity of chromosomes 
involved in common translocations as well as the 3D positioning of their derivatives 
(Meaburn et al.  2007b ) in certain cancers. There is evidence to support the hypoth-
esis that translocations occur in interphase nuclei between chromosomes that 
occupy similar nuclear space (Kozubek et al.  1999 ; Parada et al.  2002 ; Kuroda et al. 
 2004 ; Gandhi et al.  2012 ); this may also be true for intrachromosomal fusions and 
genes that are at some distance linearly but may be placed together by chromosome 
folding (Gandhi et al.  2006 ). Nuclear position was also identifi ed as a factor that 
contributed to translocation frequency, with peripherally located chromosomes such 
as 4, 13, and 18 being involved in a higher than expected number of translocations 
(Bickmore and Teague  2002 ). Later global screening studies have confi rmed that 
nuclear position is fundamental in the selection of translocation partners (Engreitz 
et al.  2012 ; Roix et al.  2003 ), but transcriptional activity is also of fundamental 
importance (Klein et al.  2011 ). A number of studies have been undertaken to under-
stand the interaction of different chromosome regions that favor the exchange of 
DNA fragments at the level of interphase nucleus, hence the formation of chromo-
some translocations (Branco and Pombo  2006 ; Murmann et al.  2005 ; Roix et al. 
 2003 ; Zhang et al.  2012 ). This point is supported by the fi nding that chromosome 
territories do not have neat borders and that neighboring territories do intermingle 
(Branco and Pombo  2006 ). It has been suggested that chromosomal translocations 
are events whose frequency is correlated to the spatial proximity of the loci involved, 
as described for some human lymphomas (Roix et al.  2003 ). One could speculate 
that a similar location in the nuclear environment is suffi cient to facilitate an encoun-
ter and an exchange of chromosome fragments, a phenomenon described as chro-
mosome kissing (Cavalli  2007 ). Also, gene loci located on the periphery of 
chromosome territories were found to be involved in more interchromosomal rear-
rangements than those deep within the territory (Gandhi et al.  2009 ). Internally 
located loci were more frequently involved in intrachromosomal aberrations 
(Gandhi et al.  2009 ). 

 Exposure to ionizing radiation results in DNA DSBs that permit nonhomologous 
chromosomes in close proximity to combine, creating complex rearrangements 
(Anderson et al.  2002 ). This rearrangement can cause several cancer types, in par-
ticular, radiation-induced thyroid tumors, such as papillary thyroid cancer. A com-
mon chromosome rearrangement observed in papillary thyroid cancer is the 
intrachromosomal inversion on chromosome 10 that creates the fusion gene 
 RET / PTC1 . Although the two genes involved in this inversion are on the same chro-
mosome, they are    30 Mb apart. One study, however, showed that at least one copy 
of each gene colocalized in 35 % of normal thyroid tissues compared with only 6 % 

G. Bourne et al.



23

in mammary epithelial tissue (Nikiforova et al.  2000 ); this explains the tendency to 
form inversions specifi cally in the thyroid. Another translocation that may arise 
from exposure to ionizing radiation is the t(9;22)(q34;q11). This translocation gives 
rise to the Philadelphia chromosome and the  BCR - ABL  fusion gene. The oncogenic 
chimeric protein produced drives the formation of CML as well as some cases of 
ALL. It has been shown that the  BCR  and  ABL  genes are found in distinct locations 
in the interphase nucleus of healthy stimulated and nonstimulated lymphocytes 
(Lukasova et al.  1997 ). In response to ionizing radiation, however, both genes were 
shown to move to a more internal location, reducing the distance between them to 
less than 1 μm in 47.5 % of healthy donors (Lukasova et al.  1997 ; Kozubek et al. 
 1997 ). This fi nding suggests that rearrangement of chromatin in response to ioniz-
ing radiation brings into close proximity two genes known to be common transloca-
tion partners. 

 Regions from different chromosomes can also be brought into close proximity 
by association with specifi c nuclear structures such as nucleoli (Sullivan et al. 
 2001 ). The acrocentric chromosomes (13, 14, 15, 21, and 22) of the human genome 
all contain nucleolar organizer regions (NOR), which are composed of ribosomal 
gene repeats. Nucleoli form around these NOR elements after mitosis, and during 
cell-cycle progression the nucleoli fuse, creating fewer larger structures. However, 
it should be noted that this process is very rarely observed in cancer (Morgan et al. 
 1987 ), whereas it is more likely to affect gamete formation and offspring as a result 
of loss of genetic material. This process does, however, demonstrate that association 
with nuclear elements can increase the occurrence of translocations. One example 
specifi c to cancer is the translocation observed between the mouse chromosomes 12 
and 15, which is present in 80 % of plasmacytomas (Osborne et al.  2007 ). The 
breakpoints in this translocation involve the  c-Myc  gene and immunoglobulin heavy 
chain locus ( IgH ). This translocation is mirrored in humans by that of t(8;14), which 
encompasses the same genes and is found in Burkitt’s lymphoma as well as other 
forms of lymphoid cancers (Haluska et al.  1987 ). These genes are found in close 
proximity in only a third of human nuclei but are neighbors in mouse cells (Parada 
et al.  2004 ; Roix et al.  2003 ). A study by Osborne et al. ( 2007 ) found that upon 
activation both genes are recruited to the same transcription factories, increasing 
their physical proximity. As proximity has been shown to be a key factor in translo-
cations, this increases our understanding of why the t(12;15) is observed so fre-
quently. In support of this realization, it was observed that  c - Myc  colocalized and 
transcribed with  IgH  at the expected frequency to give rise to the observed level of 
translocations (Osborne et al.  2007 ). The other translocation partners of  c-Myc  in 
Burkitt’s lymphoma and plasmocytoma include  IgK  and  IgL . The colocalization of 
 c-Myc  to these genes was also analyzed and found to correlate with translocation 
frequencies. Therefore, this research suggests a correlation between the number of 
times genes come into close proximity and the likelihood of translocations (Osborne 
et al.  2007 ). 

 Proximity is only one factor thought to affect translocation frequencies; other 
factors to consider include chromosome size and gene density (Bickmore and 
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Teague  2002 ). One study found a correlation between chromosome size and trans-
location frequency in response to ionizing radiation (Cafourkova et al.  2001 ). 
Another comprehensive study that analyzed more than 11,000 non-disease-causing 
chromosome aberrations found that larger chromosomes were more frequently 
involved in translocations; this could, however, be ascribed to increased opportunity 
for translocations in large chromosomes because they are bigger targets. This study 
also identifi ed that translocations appear to occur less frequently in highly dense 
regions of the genome (Bickmore and Teague  2002 ).  

    Repositioning of Genes Affected by Translocation Events 

 It has been postulated that, because of a translocation event, specifi c genes might 
alter their position in the nucleus and therefore be more or less exposed to the tran-
scription machinery. More precisely, certain genes could be activated or inactivated 
on the basis of the new environment they inhabit. This change would happen when 
two different regions characterized by different transcriptional activity become 
positioned next to one another (as in the case of a reciprocal translocation), resulting 
in an aberrant localization in the nucleus for one or both of the two regions. Studies 
on both constitutional syndromes and cancer have focused on the localization of the 
derivative chromosomes in the cell nucleus and also explored gene expression in the 
context of the newly established nuclear architecture (Ballabio et al.  2009 ; Harewood 
et al.  2010 ). A study on Ewing sarcoma cells has shown that the fusion genes derived 
from the cancer-associated rearrangement t(11;22) assume an intermediate nuclear 
position when compared to the wild type  EWSR1  and  FLI1  genes (Taslerova et al. 
 2003 ). Murmann and coworkers observed that the change in position of loci affected 
by a translocation depends on the relative gene density of the 2-Mb window of the 
region considered. The study of wild-type  MLL  and fi ve of its translocation part-
ners showed that the resulting fusion genes changed their nuclear location accord-
ing to the reciprocal gene density of the region involved (Murmann et al.  2005 ). 
More recently, a study on pediatric leukemia characterized by the presence of the 
acquired t(7;12) translocation has shown that an overexpression of the  HLXB9  gene 
(on chromosome 7q36) corresponded to an altered nuclear position of the deriva-
tive chromosome carrying the  HLXB9  gene itself (Ballabio et al.  2009 ). In this case, 
the translocated  HLXB9  gene localized more centrally than the wild-type allele. 
A larger study on the constitutional balanced translocation t(11;22) has shown on a 
larger scale that an altered spatial organization of the der(11) corresponds to an 
alteration of the expression profi le of genes localized on the der(11). In the same 
study, chromosomes other than those involved in the rearrangement have also shown 
an altered nuclear position and altered gene expression profi les (Harewood et al. 
 2010 ). This fi nding shows that the global nuclear architecture and the location of 
various chromosomes are infl uenced by specifi c rearrangements. Altogether, 
nuclear positioning plays a functional role in regulating gene expression.  
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    Aneuploidy and DNA Copy Number Alterations 

 Gain and loss of genetic material is another common feature of cancer cells. 
Microscopically, this defect can be visualized as complete loss or gain of entire chro-
mosomes caused by missegregation during mitosis and resulting in aneuploidy. Other 
imbalances are visible as loss or gain of certain chromosomal regions: these are known 
as deletions, duplications, amplifi cations, or more generally as DNA copy number 
alterations (CNA). These changes have an impact in diagnosis and are relevant at the 
prognostic level. For example, extra copies of chromosome 3q defi ne the difference 
between cervical dysplasia and invasive cervical carcinoma resulting from human 
papilloma virus (HPV) infection, whereas complete or partial loss of chromosomes 5 
and 7 are the most commonly observed alterations in acute myeloid leukaemia (AML) 
(Zhang et al.  2011 ). It is assumed that the presence of additional genetic material cor-
responds to increased expression levels of the overrepresented sequences. This 
assumption is supported by a study on highly hyperdiploid pediatric ALL, showing 
that the presence of additional chromosomal material corresponded to an increased 
expression of the amplifi ed loci (Gruszka-Westwood et al.  2004 ). 

 Very few studies have addressed the issue of chromosome organization in cases 
of aneuploidy. Croft et al. ( 1999 ) did not see any repositioning of an extra chromo-
some 18 in Edward syndrome cells with a trisomy 18 (Croft et al.  1999 ). This fi nd-
ing is supported by that of Koutna et al. ( 2000 ), who investigated specifi c trisomic 
loci within the HT-29 colon cancer cell line. They concluded that the location of the 
third copy of a specifi c locus is not signifi cantly relocated when compared to the 
two loci present in a noncancerous tissue (Koutna et al.  2000 ). Although gene 
amplifi cation resulting from aneuploidy has the ability to drive cancer formation it 
does not alter the organization of chromosome territories. Therefore, according to 
these studies, tumorigenesis appears to be independent of chromosome position. In 
another study, additional copies of chromosomes 7, 18, or 19 were artifi cially intro-
duced in immortalized or cancer cell lines, and their position in the nucleus was 
observed and correlated with altered expression levels. It was ascertained that the 
presence of additional chromosomes increased transcription from the trisomic loci. 
However, a shift in positioning was noted for chromosomes 18 and 19, but not for 
chromosome 7. The authors proposed that positioning within the nucleus is deter-
mined by a unique chromosome-specifi c ‘zip code’ that might be independent from 
the transcriptional activity of the sequences that compose it (Sengupta et al.  2007 ).  

    Other Disease Situations 

 In  1988 , Manuelidis and Borden published their seminal work demonstrating that 
specifi c chromosomal domains were located to specifi c regions of the nuclei of 
neurons and glial cells. In large neurons, probes delineating chromosomes 9, 1, and 
Y were most commonly found adjacent to nucleoli. However, in astrocytes these 
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same regions were found at the nuclear membrane and not specifi cally associated 
with nucleoli. These data indicate that nonrandom chromosome positioning is of 
importance to the cell even in terminally differentiated cells such as nerve cells. 
Manuelidis was the fi rst to show in the human cortex the spatial repositioning of 
chromosome in interphase nuclei in disease. She found that chromosome X had 
become relocated from the nuclear edge to the nuclear interior in seizure foci in 
epileptic patients. This study is signifi cant because it links chromosome positioning 
with ill health. In this study we do not know if the repositioning affects gene expres-
sion on the X chromosome. However, one of the master regulator genes for epilepsy 
has been identifi ed on the X chromosome (Stromme et al.  2002 ). 

 Very few studies have concerned chromosome and gene repositioning after an 
infection. However, genes have been observed to relocate within cells of hosts that 
are exposed to infectious agents. In  Biomphalaria glabrata  cells, the secondary host 
organism of the human parasitic disease schistosomiasis, commonly known as bil-
harzia, specifi c genes involved in the infection become relocated within the inter-
phase nuclei at the same time that quantitative polymerase chain reaction (PCR) 
reveals that they are being expressed (Knight et al.  2011 ;    Arican, Ittisprasert, 
Bridger, and Knight, manuscript in preparation)   . One other study revealed chromo-
some 17 and not 18 changed nuclear location over time after an Epstein–Barr virus 
(EBV) infection (Li et al.  2010 )   .  

    Concluding Remarks 

 As more laboratories consider the 3D and 4D nuclear organization of the genome in 
their studies on genome function, it is becoming clearer that chromosome position 
and association with nuclear structure matter a great deal with respect to regulating 
gene expression in healthy cells and affect the functioning of diseased cells when 
misorganization of the chromosomes and genes is apparent. Furthermore, misorga-
nization and misplacement of chromosomes and their gene loci may be responsible 
for some disease situations.     
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    Abstract     Mammalian interphase nuclei are highly organized structures in which 
chromosome territories are nonrandomly distributed following a radial pattern. 
Gene richness and size markedly infl uence nuclear chromosome positioning. Active 
euchromatin and inactive heterochromatin exhibit different nuclear topology: the 
former is centrally located and the latter mostly placed at the periphery, within chro-
mocenters, and around nucleoli. DNA is subjected to a wide repertoire of insults 
including radiation, chemical, and biological agents. The differential sensitivity of 
euchromatin and heterochromatin to clastogens has been a matter of debate, 
although most experimental evidence supports that euchromatin is more damage 
prone. Gene expression and DNA synthesis coupled to chromatin remodeling could 
act as key factors in the distribution of chromosome aberrations (CA) in euchro-
matic and heterochromatic regions of genome. In this chapter, the main features of 
nuclear architecture as well as an overview of current knowledge of genetic damage 
at the metaphase and interphase levels are presented. Also, the preferential involve-
ment of transcriptionally active regions of the human genome regarding the induc-
tion of chromosome aberrations and deregulation of tumor genes is analyzed. 
Finally, the impact of DNA replication timing and connected chromatin remodeling 
processes in the generation and localization of CA and primary genetic damage is 
discussed.  
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        Introduction 

 Human populations exhibit a signifi cant frequency of inborn chromosomal aberra-
tions (CA). Therefore, it is of utmost importance to understand the mechanisms 
underlying their origin and transmission to progenies (Miller and Therman  2001 ). 
CA are among the major biological endpoints of human exposure to ionizing radia-
tion and genotoxic compounds. Hence, CA scoring is a key tool for biological 
dosimetry of radiation exposure or disclosing putative mutagenic/carcinogenic 
agents. Moreover, specifi c CA are associated with different types of cancers (Obe 
et al.  2002 ). 

 Early cytogenetic analyses based on classical solid staining of metaphase chro-
mosomes provided valuable information on the types and frequencies of spontane-
ous and clastogen-induced CA. Exposure of cells during the G 

0
 /G 

1
 -phase leads to 

chromosome-type aberrations whereas chromatid-type lesions are induced after 
DNA replication (S/G 

2
  phases). Chromosome banding procedures allowed the pre-

cise recognition of individual chromosomes, karyotype evolutionary studies, and 
assignment of genes to specifi c chromosome landmarks as well as accurate map-
ping of chromosome breakpoints either induced by DNA-damaging agents or pres-
ent in inborn or neoplastic diseases. 

 Moreover, banding techniques paved the way to understanding the highly com-
plex structure of mammalian chromosomes. G- and R-banding revealed the pres-
ence of alternate Giemsa-dark and Giemsa-light chromosome bands, which refl ect 
the evolutionary partition of euchromatin as well as constitutive and facultative het-
erochromatin into distinct chromosome domains. G-light bands are gene-rich, high 
G-C content, early-replicating regions, harboring short interspersed repeated ele-
ments (SINEs). Most housekeeping genes map to G-light bands and exhibit distinct 
epigenetic modifi cations such as unmethylated CpG islands and histone H3/H4 
hyperacetylation. On the other hand, G-dark bands are gene-poor, late-replicating, 
A-T-rich regions, homing tissue-specifi c genes and long interspersed repeated ele-
ments (LINEs). C-band constitutive heterochromatin is highly packed, inactive, and 
almost devoid of genes. Epigenetic modifi cations in G-dark and C-bands include 
DNA and specifi c histone lysine methylation as well as serine H3/H4 underacety-
lation (Holmquist  1992 ; Korenberg and Rykowski  1988 ). 

 The impact of chromatin organization in the induction and localization of 
genetic damage induced by clastogens has been extensively studied by several 
research groups (Obe et al.  2002  and citations therein). The interchromosomal dis-
tribution of CA seems to be random (Cornforth et al.  2002 ; Martínez-López et al. 
 2000 ), although nonrandomness has also been claimed (Grigorova et al.  1998 ; Xiao 
and Natarajan  1999 ) analyzing either G-banded or FISH-painted chromosomes. In 
contrast, the intrachromosomal distribution of CA has been repeatedly reported to 
be nonrandom (Obe et al.  2002 ; Slijepcevic and Natarajan  1994 ). A higher suscep-
tibility of G-light chromatin in Chinese hamster ovary (CHO) cells after 
 electroporation of restriction endonucleases (RE) or DNAse I or even following 
irradiation with neutrons and γ-rays has been reported. Moreover, clustering of 
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both  endonuclease- and radiation-induced breakpoints in specifi c CHO  chromosome 
regions  independently of the cell-cycle stage (G 

1
 - or S-phase) was also evidenced 

(Folle and Obe  1995 ,  1996 ; Folle et al.  1997 ,  1998 ). 
 Immunolabeling of hyperacetylated histone H4 (H4 +a ) in CHO metaphase 

spreads revealed the colocalization of H4 +a  chromosome regions with endonucle-
ase- and radiation-induced breakpoint clusters, giving further support to the assump-
tion that transcriptionally active euchromatin is a preferential target for DNA 
damage induction (Martínez-López et al.  2001 ). 

 The detection of specifi c DNA sequences and even whole chromosomes (or 
chromosome arms) in metaphase spreads through fl uorescence in situ hybridization 
(FISH) techniques has greatly improved our knowledge regarding the mechanisms 
involved in the formation of CA. FISH analyses uncovered CA types and mecha-
nisms not evidenced by conventional staining or banding procedures (Simpson and 
Savage  1995 ). Molecular cytogenetic techniques such as spectral karyotyping 
(SKY), comparative genome hybridization (CGH), multicolor FISH (mFISH), and 
multicolor chromosome banding (mBAND FISH) precisely identify a wide spec-
trum of CA ranging from drastic genomic alterations to minute chromosome 
changes. Interphase cytogenetic studies based on FISH or immunoFISH methods 
have furnished crucial information concerning the organization and function of 
eukaryotic chromosomes and nuclei. Correlative metaphase and interphase cytoge-
netic studies are now possible, especially in relationship to the origin and fate of 
CA. Still, our present understanding of DNA damage processing leading to CA 
formation remains incomplete.  

    Nuclear Architecture 

 The eukaryotic nucleus is a highly organized and compartmentalized structure 
refl ecting genome and epigenome dynamics at the cellular and molecular level. The 
fi rst compaction level of chromatin is the 10-nm fi ber involving DNA wrapped 
around nucleosomes. Further chromatin folding could lead to the 30-nm fi ber and to 
still poorly known higher-order structures critical for the building and dynamics of 
eukaryotic nuclei. Chromatin compaction levels seem to play a critical role in 
nuclear organization. Highly packed constitutive and facultative heterochromatin 
(C- and G-dark bands) reside at the nuclear periphery, around nucleoli, and within 
chromocenters whereas euchromatin (G-light bands) is centrally located (Postberg 
et al.  2010 ). The position of interphase chromosomes inside mammalian nuclei is 
nonrandom and radially organized. Chromosome positioning is mainly modulated 
by size and gene density but not by gene expression (Küpper et al.  2007 ). However, 
chromosome nuclear location may vary depending on cell type and shape, differen-
tiation state, presence of chromosomal aberrations, senescence, and transformation. 
Interphase chromosomes are structured as discrete, nonoverlapping territories 
(CTs), although intermingling of peripheral chromatin loops was also proposed 
(Branco and Pombo  2006 ). Gene-rich chromosomes are inwardly positioned and 
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gene-poor chromosomes mostly lodge in the nuclear boundary (Cremer et al.  2003 ). 
This chromosome gene richness-dependent topological partition has been shown to 
be evolutionarily conserved (Tanabe et al.  2002 ). 

 It is noteworthy that plasticity seems to be also an inherent feature of nuclear 
architecture, as evidenced by striking nuclear multilobation in granulocytes, and 
manifold modifi cations in cancer cells, as well as the striking relocation of euchro-
matin and heterochromatin in retina rod cells to improve light collection in noctur-
nal species (Solovei et al.  2009 ). 

 A central role of nuclear chromatin assembly could be the confi guration of two 
distinct functional domains: condensed silent heterochromatin and transcription-
ally active euchromatin. Packed heterochromatin shows low acetylating levels as 
well as methylated DNA and H3K9/H3K27 histone tail methylation whereas open 
euchromatin is highly acetylated and enriched in H3K4me and H3K79me. Nuclear 
chromatin compartments also infl uence gene expression and DNA synthesis pat-
terns. In fact, transcription dominates in central regions although it is nearly absent 
from the nuclear rim (Sadoni et al.  1999 ,  2004 ). Furthermore, transcriptional hubs 
could be very signifi cant for high throughput transcription and the expression of 
coregulated genes. DNA synthesis progression from early-replicating gene-rich to 
mid-/late- replicating gene-poor chromatin compartments is also highly ordered 
(see following). 

 According to the CT/IC model, CTs are bordered by the interchromatin compart-
ment (IC), which harbors nuclear bodies and the complex machineries required for 
DNA transcription, replication, and repair as well as for RNA processing. The IC 
comprise an intricate channel network that expands throughout the nucleus, reach-
ing the interior of CTs and the nuclear pores. The interface between CTs and the IC, 
named the perichromatin region (PR), has been proposed as a key nuclear subcom-
partment for DNA/RNA metabolism (Postberg et al.  2010 ; Rouquette et al.  2009 ).  

    DNA Damage and Chromosome Aberrations: The Nuclear 
Landscape 

 The DNA double-strand break (DSB) is the ultimate lesion leading to chromosomal 
aberrations, genomic instability, oncogenic transformation, and cell death (Obe 
et al.  2002 ). DSB may arise as a result of endogenous oxidative damage by oxygen 
free radicals or collapsed replication forks during DNA synthesis. A wide spectrum 
of physical, chemical, and biological DNA-damaging agents are also able to induce 
DSB. Two main repair systems evolved to cope with these deleterious and highly 
recombinogenic DNA lesions: nonhomologous end-joining (NHEJ), mostly active 
during the G 

1
  stage of the cell cycle, and homologous recombination (HR), which 

acts along late S/G 
2
 -phases and requires an undamaged template for effi cient DSB 

repair (Rogakou et al.  1998 ). DSB mobility is constrained within the nuclear  volume 
and normally is not beyond 0.5 μm, which corresponds to the Brownian motion 
radius in cells (Jakob et al.  2009 ). 
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 DNA damage triggers a global response in cells named DNA damage response 
(DDR), which activates a complex mechanism committed to detect lesions and 
restore DNA integrity. The induction of DSB elicits the phosphorylation of the vari-
ant histone H2AX on serine 139 (γH2AX) by PIKK (phosphoinositide 3-kinase-
related kinase) ATM. Other PIKKs such as ATR and DNA-PKcs may also 
phosphorylate histone H2AX. Soon after DSB induction (~3 min), γH2AX mole-
cules are generated over megabase chromatin domains fl anking the lesion. A pla-
teau in the yield of γH2AX foci is reached approximately 30 min after damage 
induction. In addition to signaling the presence of DSB, γH2AX molecules interact 
and may provide docking sites for repair proteins including the MRE11/NSB1/
RAD50 complex, MCD1, 53BP1, and BRCA1. The H2AX phosphorylation 
response can be unveiled as discrete foci through immunodetection with specifi c 
antibodies allowing the quantitation of primary DNA lesions in interphase nuclei. 
As H2AX phosphorylation is proportional to DSB induction, γH2AX is considered 
a sensitive biomarker of DNA damage (Podhorecka et al.  2010 ). However, the pres-
ence of spontaneous γH2AX foci in human confl uent fi broblast cultures and senes-
cent cells as well as in aged mice tissues has been reported. S-phase cells exhibit 
distinct punctuate small γH2AX foci (Costes et al.  2010  and citations therein). 

 The distribution of γH2AX foci in the different nuclear compartments after DNA 
insult has been extensively studied. A preferential localization of γH2AX foci in the 
nuclear interior after treating human fi brosarcoma H1080 cells with UV radiation or 
hydrogen peroxide was observed. XRCC repair proteins also mapped to the same 
nuclear domains (Gazave et al.  2005 ). Modulation of γH2AX foci distribution by 
chromatin density was also reported by Costes et al. ( 2010 ). In this study, foci 
located mainly in DAPI-weak regions (euchromatin) or at eu- and heterochromatin 
interfaces. Moreover, exclusion of γH2AX foci from heterochromatin was also 
observed in MCF7 breast carcinoma cells treated with either X-rays or the topoi-
somerase II inhibitor etoposide. Combined immunodetection of HP1 (heterochro-
matin protein 1) evidenced no colocalization with γH2AX foci. Comparable results 
were obtained when the heterochromatin marker H3K9me3 was assayed. 
Interestingly, γH2AX foci mapped to heterochromatin domains and colocalized 
with HP1 when MCF7 cells were treated with hydroxyurea during late S-phase 
(heterochromatin replication). In this case, DSB stem from stalled or collapsed rep-
lication forks and ATR signaling. It is envisaged that chromatin remodeling associ-
ated to DNA synthesis could render heterochromatin amenable to histone H2AX 
phosphorylation (Cowell et al.  2007 ). Finally, it has been shown that specifi c hetero-
chromatic regions such as the alpha satellite and satellite 2 are resistant to the for-
mation of γH2AX foci after irradiation. Still, pretreatment of cells with the 
deacetylase inhibitor trychostatin A (TSA) causes these satellite sequences to be 
prone to generate γH2AX foci (Karagiannis et al.  2007 ). 

 These fi ndings argue in favor of a higher sensitivity of euchromatin to DNA 
insult. On the other hand, they challenge the hypothesis of a protective role of the 
heterochromatin compartment adjacent to the nuclear envelope by shielding the 
gene-rich central region. There is yet no clear-cut explanation to heterochromatin 
low sensitivity to γH2AX foci formation, although the following factors have been 

3 Nuclear Architecture, Chromosome Aberrations, and Genetic Damage



40

postulated: (a) low level of histone H2AX; (b) nominal H2AX phosphorylation; 
(c) scarce induction of DSB because of high chromatin compaction; (d) rapid migra-
tion of genuine heterochromatic DSB to neighboring euchromatic domains; and 
(e) loss of heterochromatin features as a result of DSB-induced local chromatin 
decondensation (Cowell et al.  2007 ). Experimental evidence highlights the impact 
of chromatin relocation after DNA damage. H2AX is effectively phosphorylated in 
chromocenters after single-ion microbeam irradiation, but the damaged region is 
rapidly decondensed and shortly expelled to the chromocenter periphery (Jakob 
et al.  2011 ). 

 Cytogenetic evidence on the role played by chromatin structure in the localiza-
tion of chromosome breakpoints induced by DNA-damaging agents (Folle  2008 ) 
has been confi rmed through immunoFISH studies in nuclei of human fi broblasts 
(Falk et al.  2008 ). Results obtained indicate that genetically inactive condensed 
chromatin is less susceptible to DSB induction by γ-rays than are transcriptionally 
active regions. The amount of γH2AX foci produced by ionizing radiation in the 
CTs of gene-dense (HSA11, HSA19), intermediate density (HSA2), and gene-poor 
(HSA4, HSA18) human chromosomes was assessed. Gene-dense CTs exhibited 
higher yields of DNA DSB (visualized as γH2AX foci) per Mbp than intermediate 
or gene-poor CTs (Table  3.1 ).

   Interestingly, damage-prone HSA11 and HSA19 harbor more tumor-deregulated 
genes (TDRG) per Mbp than gene-poor HSA4 and HSA18 whereas HSA 2 exhibits 
an intermediate yield (Folle et al.  2010 ) (Table  3.1 ). In other words, the chromo-
somal extent of TDRG is in agreement with damage sensitivity to ionizing radiation 
(see following). 

 The nonrandom organization of CTs within eukaryotic nuclei could infl uence the 
pattern of chromosome aberration production. Hence, nonrandom occurrence of 
chromosome rearrangements is expected to occur because vicinity effects and 
 constrained migration of chromatin loops may limit the range of putative partner 
domains. 

    Table 3.1    Molecular size of selected gene-rich (HSA11, HSA19), gene-poor (HSA4, HSA18), 
and low gene density (HSA2) human chromosomes (Mbp) with their corresponding number of 
genes and radiation-induced DNA double-strand breaks (DSB) per Mbp estimated via γH2AX foci   

 Chromosome 
number  Mbp 

 Genes 
per Mbp 

 DSB per 
Mbp a  

 Number 
of TDRG b  

 TDRG 
per Mbp 

 2  243.6  6.2  0.05  68  0.28 
 4  191.7  4.8  0.03  37  0.19 
 11  134.4  13.75  0.07  52  0.39 
 18  76.1  4.3  0.03  12  0.16 
 19  63.8  23.9  0.12  60  0.94 

   Respective amounts of tumor-deregulated genes (TDRG) per chromosome and per Mbp are also 
depicted 
  a Data from Falk et al. ( 2008 ) 
  b Data from Folle et al. ( 2010 )  
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 A good example in this respect is given by chicken DT40 (lymphocytes) and 
CEF (embryonic fi broblasts) cell lines. DT40 cells typically exhibit chicken gene- 
rich minichromosomes (MICs) in the nuclear interior whereas gene-poor macro-
chromosomes (MACs) dwell at the periphery (Habermann et al.  2001 ). Irradiated 
DT40 cells exhibited mainly MIC/MIC and MAC/MAC translocations. The topo-
logical partition of MICs and MACs in chicken nuclei is lost in CEF cells (MICs 
distribute throughout the nuclear volume), favoring neighborhoods between both 
chromosome types. As expected, CEF cells showed an increased frequency of MIC/
MAC translocations (Grandy et al.  2002 ). 

 As mentioned earlier, CT organization and neighborhoods may differ between 
cell lineages, and thus variations in chromosome translocation frequencies are also 
expected to happen. In mouse lymphomas CT 12 and 15 are close neighbors whereas 
in mouse hepatomas CT 5 and 6 are topologically related. Analysis of translocation 
rates revealed that 5/6 rearrangements frequently occur in hepatomas but are absent 
in lymphomas. Conversely, 12/15 translocations prevail in lymphomas. In conclu-
sion, the differential spatial organization of genomes in specifi c tissues could be 
critical for the formation of recurrent CA (Parada et al.  2004 ). 

 According to vicinity effects and DSB-constrained mobility, a higher frequency 
of chromosome rearrangements within CTs is expected to occur. However, most 
data point to a ratio of inter/intrachromosomal CA (F ratio) above 1; that is, an 
excess of interchromosome exchanges is regularly detected even for high linear 
energy transfer (LET) radiation where DSB are formed in close proximity along the 
tracks. These fi ndings have been confi rmed using high-resolution mBAND FISH 
and densely ionizing radiation (Johannes et al.  2004 ; Obe and Durante  2010 ). The 
basis of this unpredicted distribution of CA remains to be elucidated. 

 Recurrent translocations in Burkitt’s lymphoma involve the  MYC  locus at 8q24 
with different partners encoding immunoglobulin heavy chain ( IGH , 14q21), light 
chain α ( IGL , 22q11) and light chain κ ( IGK , 2p11) gene loci. Translocation fre-
quencies differ, being  MYC-IGH >  MYC-IGL >  MYC-IGK . FISH detection of  MYC  
and immunoglobulin loci with specifi c probes in karyotypically normal MC/CAR 
cells revealed a direct relationship between translocation frequencies and nuclear 
spatial proximity to the  MYC  locus (Roix et al.  2003 ).  MYC  deregulation results in 
nuclear remodeling of telomere and chromosome positions, preceding the onset of 
chromosomal rearrangements and instability (Louis et al.  2005 ). Spatial vicinity has 
been claimed as a decisive factor for some cancer-prone loci rearrangements (Gué 
et al.  2006 ; Weckerle et al.  2011 ) as well as for the coregulation of genes (Brown 
et al.  2006 ). 

 The impact of chromosome translocations on gene expression and CT reposi-
tioning has been well documented by Harewood et al. ( 2010 ). Transcriptomes per-
taining to balanced translocation t(11;22)(q23;q11) carriers, Emanuel syndrome 
patients with +der(22)t(11;22)(q23;q11) unbalanced karyotypes, as well as from 
normal individuals were analyzed. Signifi cant variations in the number of differen-
tially expressed transcripts (DET) between translocation-carrying and normal 
cohorts were observed. Because Emanuel syndrome patients are partially trisomic 
for chromosomes 11 and 22, the expected increase in DET mapping to these regions 
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was confi rmed. In the case of balanced t(11;22)(q23:q11), many DET corresponded 
to genes located along the derived chromosome 11. The modifi cation of gene 
expression in translocation carriers involved not only the breakpoint region but also 
genes residing tens of megabases apart or mapping to the opposite arm or other 
chromosomes. FISH studies revealed a spatial reorganization of derived chromo-
some 11 toward the nuclear center compared to its normal counterpart. However, no 
signifi cant changes in the position of derived 22 were observed. Anchoring of NOR 
regions to the nucleolus could explain the constrained mobility of derived 22. It is 
noteworthy that a displacement of gene-rich HSA17 to a more peripheral nuclear 
environment was observed in translocation carriers, refl ecting long-range CT modi-
fi cations as a consequence of derived 11 repositioning. The authors conclude that 
karyotype changes may lead to large-scale variations in gene expression and altera-
tions in CT positioning, which could impinge on genome instability, tumor develop-
ment, and speciation. 

 Tissue-specifi c CT organization may drastically change in malignant cells. 
Variations in the location of gene-poor HSA18 and gene-rich HSA19 was observed 
in malignant cell lines characterized by nuclei showing inverted positional patterns 
and a decline in gene density nuclear order. Interestingly, positional changes of 
HSA18 and HSA19 have also been reported in colon carcinoma cell lines RKO and 
DLD1, which exhibit nearly diploid karyotypes (Cremer et al.  2003 ).  

    Chromatin Dynamics: Gene Expression and Genetic Damage 

 Transcriptionally competent and actively transcribed chromatin maps to the nuclear 
interior and roughly corresponds to domains of early-replicating, gene-rich G-light 
bands. Similarly, hyperacetylated histone H4 (H4 +a ), a cytogenetic marker for gene 
expression, is also confi ned to the inner compartment of mammalian nuclei. These 
facts reveal a higher-order spatial organization of functional nuclear processes 
(Jeppesen and Turner  1993 ; Sadoni et al.  1999 ). 

 The analysis of the human transcriptome map (HTM) disclosed the presence of 
regions of increased gene expression (RIDGEs) as well as genome domains of very 
low or null transcription (antiRIDGEs). RIDGEs typically are 5- to 15-Mbp gene- 
dense regions exhibiting high G-C content, short introns, and SINE repeats. 
AntiRIDGEs, in contrast, are gene-poor, low G-C content regions that harbor longer 
introns and LINE repeats. Moreover, RIDGEs show open chromatin conformation 
(Gilbert et al.  2004 ) and map to the nuclear interior whereas antiRIDGEs are con-
densed regions adjacent to the nuclear envelope (Caron et al.  2001 ; Gierman and 
Indemans  2007 ). 

 In an attempt to disclose the putative relationship between active chromatin 
(H4 +a , RIDGEs) susceptibility to DNA damage induction and tumor gene deregula-
tion, we mapped, onto human G-band idiograms: (1) radiation breakpoint clusters 
(RBPC;  n  = 69) (Barrios et al.  1989 ); (2) H4 +a  regions (Jeppesen  1997 ); (3) the tran-
scriptome map (Caron et al.  2001 ); (4) RIDGEs and antiRIDGEs (Gierman and 
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Indemans  2007 ) and; (5) tumor-deregulated genes (TDRG;  n  = 1019) (Aouacheria 
et al.  2006 ) (Fig.  3.1a, b ).

   TDRG cluster at 23 chromosome regions characterized by the presence of 
RIDGEs, H4 +a  chromatin, and RBPC. Additionally, TDRG map to 12 regions har-
boring RIDGEs and enriched in H4 +a  but devoid of RBPC (see 14qcen, 16p, 17q, 
and Xqter). Note that some chromosome segments fl anking RIDGEs also concen-
trate TDRG (e.g., 1p, 6p, 12p, and 19q; not shown). Conversely, fewer RBPC and 
TDRG mapped to antiRIDGEs. RBPC exhibiting no colocalization with RIDGEs or 
antiRIDGEs mostly corresponded to chromosome regions of medium to high gene 
expression (Folle et al.  2010 ). 

 However, because there is a good correlation between the HTM and gene density 
maps along human chromosomes, the observed clustering of TDRG in RIDGEs 
could respond, at least in part, to gene content variations between gene-rich and 
gene-poor genome regions. Through in silico methods it was possible to determine 
specifi c chromosome subbands implicated in TDRG independent of gene concen-
tration (Aouacheria et al.  2006 ). As can be seen in Table  3.2 , two thirds of these 
subbands map to RIDGEs, harbor RBPC, and participate in amplifi cation/deletion 
events in tumor formation (antiRIDGEs = 0). Nearly all subbands (32 of 33) are 
embedded in H4 +a  chromatin and are sites of chromosome changes during 
evolution.

   The higher sensitivity of RIDGEs compared to antiRIDGEs in relationship to 
genetic damage was also observed by Falk et al. ( 2008 ). In this study, the presence 
of radiation-induced γH2AX foci was determined in a RIDGE (11 Mbp) as well as 
in a nearby antiRIDGE (11 Mbp), both mapping to the pericentric region of 11q and 
only 12 Mbp apart. Similar to our fi ndings, γH2AX foci were much more frequent 
(∼4×) in the 11q RIDGE than in the antiRIDGE in which chromatin is nearly 40 % 
more condensed (Goetze et al.  2007 ). 

 The concentration of RBPC and TDRG in RIDGEs and H4 +a  chromatin could be 
the result of a compartment-biased response to DNA insult in highly expressed 
regions of the human genome. In this respect, spatial CT positioning (and reposi-
tioning), neighborhoods, and intermingling of specifi c DNA sequences as well as 
long-range interactions and coexpression of genes at transcription hubs could all 
play a role in the origin and location of recurrent chromosomal aberrations, gene 
deregulation, tumor development, and karyotype evolution.  

    Chromatin Dynamics: DNA Replication and Genetic Damage 

 In mammals, replication dynamics refl ects the compartmentalized structure of inter-
phase nuclei. Replication foci (RF) can be disclosed through the incorporation of 
halogenated nucleotides or 5-ethynyl-2′-deoxyuridine (EdU) to S-phase cells. The 
progression from early to mid- and fi nally late DNA synthesis along the different 
nuclear compartments has been subdivided into fi ve main stages: (1) RF map to the 
nuclear interior; (2) the pattern of RF fl ows to the nuclear periphery although few 
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  Fig. 3.1    Human idiograms depict chromosome regions harboring enriched hyperacetylated his-
tone H4 (H4 +a ,  green bars ), regions of increased gene expression (RIDGEs) ( red bars ), or anti-
RIDGEs ( blue bars ), and the corresponding transcriptome map ( light violet ). ( a ) Chromosomes 1, 
3, 6, 7, 11, and 12. ( b ) Chromosomes 14, 16, 17, 19, and X.  Black arrows  indicate colocalization 
of H4 +a  chromatin with RIDGEs, clusters of radiation breakpoints (Barrios et al.  1989 ), and clus-
ters of tumor-deregulated genes (TDRG) (Aouacheria et al.  2006 ).  Gray arrows  denote colocaliza-
tion of only H4 +a , RIDGEs, and TDRG. (Modifi ed from Folle et al.  2010 )       
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inner RF persist; (3) RF map only to the nuclear border and perinucleolar regions; 
(4) large and fewer RF are found at the nuclear rim and central region; (5) in late 
S-phase cells, large RF predominate in chromocenters residing in the nuclear inte-
rior and smaller RF map to peripheral heterochromatin domains (O’Keefe et al. 
 1992 ; Sadoni et al.  1999 ,  2004 ). 

 Replicating chromatin has been reported to be more sensitive to DNA-damaging 
agents (Cowell et al.  2007 ). Remodeling complexes associated to DNA synthesis 
could enhance chromatin accessibility and favor the induction of DNA damage in 
chromosome regions undergoing replication (Di Tomaso et al.  2010 ). 

 An interesting model to test the role played by DNA replication and chromatin 
remodeling in the production of chromosome breakpoints in mammalian cells has 
been developed by our group (Di Tomaso et al.  2006 ). The model takes advantage 
of the peculiar chromatin organization of the X chromosome in CHO cells. The 
short arm (Xp) is entirely euchromatic whereas heterochromatin is confi ned to the 
long arm (Xq) with the exception of a medial conspicuous secondary constriction 
(Xq 

sc
 ). Xp (as well as Xq 

sc
 ) exhibit hyperacetylated chromatin whereas Xq is 

underacetylated (Martínez-López et al.  2001 ). Pulse-labeling of CHO cultures with 
the base analogue bromodeoxyuridine (BrdU) allowed us to precisely defi ne in 
metaphase spreads the S-phase stage (early, mid, or late) in which DNA insult 

   Table 3.2    Colocalization of clusters of tumor-deregulated genes (TDRGs) with regions of 
increased gene expression (RIDGEs), antiRIDGEs, H4 +a  chromatin, radiation breakpoint clusters 
(RBPC), amplifi cation/deletion events in tumorigenesis (AMP/DEL), and breakpoints involved in 
evolution (EBP)   

 Chromosome (number 
of subbands)  RIDGEs  AntiRIDGEs  H4 +a   RBPC  AMP/DEL  EBP 

 1 (2)  2  0  2  2  2  2 
 2 (3)  0  0  3  2  0  3 
 3 (1)  1  0  1  1  1  1 
 4 (1)  0  0  1  1  0  1 
 5 (1)  0  0  1  0  1  1 
 6 (1)  1  0  1  1  1  1 
 7 (3)  3  0  3  2  3  3 
 9 (2)  1  0  2  2  2  2 
 11(4)  2  0  4  4  3  4 
 12 (2)  1  0  2  2  1  2 
 14 (2)  2  0  2  1  2  2 
 16 (2)  1  0  1  0  2  2 
 17 (1)  1  0  1  0  1  1 
 19 (5)  5  0  5  4  4  5 
 20 (1)  0  0  1  1  0  1 
 21(1)  1  0  1  0  1  1 
 X (1)  1  0  1  0  1  0 
  17 (33)    22    0    32    23    25    32  

   A total of 33 chromosome subbands (in 17 chromosomes) that are implicated in tumor gene dereg-
ulation independently of gene density (Aouacheria et al.  2006 ) are listed (see text)  
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occurred by BrdU immunodetection with fl uorochrome-tagged specifi c antibodies. 
As one would expect, BrdU labeling is restricted to Xp during early S-phase and to 
Xq in late S-phase, whereas a combination of both patterns is observed in cells 
labeled during mid S-phase. By mapping chromosome breakpoints along CHO Xp 
and Xq in cells damaged and labeled during early (ES) or late (LS) S-phase, it is 
possible to assess the infl uence of replication timing and remodeling processes in 
BP localization. 

 Topoisomerase II (Topo II) modulates supercoiling and alleviates torsional stress 
in DNA through the generation of short-lived DSB that abrogate knots and tangles 
(Podhorecka et al.  2010 ). Topo II inhibitors (i.e., etoposide) are among the most 
effective anticancer drugs and potent inducers of DSB by stabilizing the cleavable 
complex of Topo II with DNA (Palitti  1993 ). Rolling DNA replication forks may 
collide with drug-stabilized Topo II–DNA complexes, turning transient DSB pro-
duced by Topo II into permanent DSB, leading to the induction of chromosomal 
aberrations. 

 Analysis of CA induced by etoposide in ES cells showed a concentration of BP 
in Xp. Conversely, clustering of BP in Xq was observed in cells exposed during LS 
(Fig.  3.2 ). A similar partition in the distribution of BP in Xp and Xq according to 
replication time was observed when the alkylating agent methyl methanesulfonate 
(MMS) was assayed (Di Tomaso et al.  2006 ). Exposure of CHO cells to UV radia-
tion also showed BP clustering in Xp and Xq during ES and LS, respectively (Di 
Tomaso et al.  2010 ).

   However, BP clustered in Xp but not in Xq after electroporation of the restriction 
endonuclease  Alu I (5′-AGCT-3′) into ES and LS CHO cells, respectively (Di 
Tomaso et al.  2010 ). In this case, it can be argued that accessibility for bulky mol-
ecules such as  Alu I (38 kDa) could still be hampered in replicating Xq heterochro-
matin during late S-phase. Supporting this view is the fact that Xq is highly resistant 
to  Alu I digestion in metaphase spreads of CHO cells (Folle et al.  1997 ). 

 As mentioned, synchronized MCF7 cell cultures treated with hydroxyurea 
showed a preferential localization of γH2AX foci in heterochromatin during LS as 
evidenced by colocalization with HP1. Similar fi ndings were reported when MCF7 
cells were X-irradiated or exposed to the anticancer compound cisplatin (Cowell 
et al.  2007 ). Interestingly, an increment of γH2AX foci number was also observed 
in γ-irradiated human BJ skin fi broblast nuclei pretreated with hypotonic culture 
medium (~140 mOsm) to induce chromatin decondensation (Falk et al.  2008 ). 

 The drift of DNA replication along the different nuclear compartments allows 
studying the spatiotemporal relationship between RF (EdU labeling) and induced 
DSB (γH2AX foci immunodetection) in interphase nuclei. 

 The localization of RF and DSB (γH2AX foci) in CHO cells induced by the 
radiomimetic agent bleomycin in different stages of the S-phase is shown in Fig.  3.3 . 
Some γH2AX foci colocalize with RF while others map to the boundaries of repli-
cation compartments. Most γH2AX foci do not map to EdU-unlabeled nuclear 
regions in either early/mid or late S-phase. These results underscore the impact of 
DNA synthesis and chromatin decondensation regarding the topology of DNA dam-
age induction.

G.A. Folle et al.
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  Fig. 3.2    CHO9 metaphase depicting early-replicating chromosome regions by immunodetection 
of BrdU incorporation using FITC-tagged anti-BrdU antibodies ( yellow ). Chromosomes were 
counterstained with propidium iodide ( red ). A quadrirradial rearrangement involving Xp and an 
acrocentric autosome is illustrated. Note the absence of replication labeling in Xq.  Bar  5 μm       

  Fig. 3.3    Confocal z-sections showing the distribution of primary DNA damage (double-strand 
breaks, DSB) induced by bleomycin in CHO9 nuclei revealed as γH2AX foci with Cy3-bound 
specifi c antibodies ( red ) in relationship to replication foci (RF) detected with the EdU-Click-iT 
Alexa Fluor 488 Kit ( green ). An early/mid S-phase nucleus ( left ) and a late-replicating nucleus 
( right ) are depicted. Nuclei were counterstained with DAPI. γH2AX foci positioning follows rep-
lication labeling. Colocalization of γH2AX foci with RF clusters is observed ( arrows ). γH2AX 
foci also map to the borders of replicating chromatin domains ( arrowheads ). (From Liddle P, 
unpublished results).  Bar  3 μm       
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   Recent fi ndings involving the origin of somatic copy number alterations (SCNA) 
have shed new light concerning the participation of DNA replication in the muta-
tional landscape of human cancer genomes. SCNA are abnormal structural varia-
tions of the genome arising through deletions or amplifi cations of chromosome 
segments. The study by De and Michor ( 2011 ) integrated databases from more than 
330,000 SCNA boundaries inferred from microarray analysis of 2,792 samples per-
taining to 26 different types of cancer, genome-wide DNA replication timing, and 
long-range (Hi-C) DNA interactions. They were able to demonstrate that SCNA 
arise preferentially in neighboring genomic regions (enriched for interactions in the 
Hi-C database) that share similar replication timing. Remarkably, early replicating 
regions exhibited more amplifi cation SCNA events whereas deletions were more 
frequent in late-replicating domains. Thus, the spatiotemporal dynamics of DNA 
replication seems to play a crucial role in the generation of cancer-prone genomic 
rearrangements.  

    Conclusions 

 Nuclear structure and dynamics seem to impinge in the genesis and localization of 
CA. Genome regions with open chromatin conformation, high gene expression, or 
undergoing DNA replication constitute preferential sites for the induction of CA, 
thus paving the way for tumorigenesis. Spatial proximity may also be critical to 
determine partnerships in spontaneous or induced chromosome rearrangements. 
Correlative metaphase/interphase molecular cytogenetics has still much to offer to 
shed new light in the fi elds of chromatin organization and function, DNA damage 
handling, and CA production. New technological achievements that allow us to 
scrutinize the nuclear structure at the nanometer scale will certainly afford a new 
perspective to our present knowledge on the mechanisms of the origin of CA.     
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    Abstract     The human brain is generally assumed to be populated by cells that share 
identical genomes or diploid chromosome sets. However, interphase molecular 
cytogenetics has shown variable mosaic aneuploidy to be a new feature of brain 
cells. Interphase FISH analysis has estimated the amount of aneuploid cells as 
approximately 10 % (about 100 billion cells) in more than a trillion postmitotic 
neuronal and glial cells in the normal adult human brain. Paradoxically, aneuploidy 
appears to feature the mammalian brain despite representing a devastating condition 
in humans. Furthermore, neural aneuploidy rates vary during ontogeny. Aneuploidy 
rates are dramatically increased in early brain development, but decrease signifi -
cantly in the postnatal period. Additionally, acquired aneuploidy affecting the brain 
is shown to be associated with neurodevelopmental and neurodegenerative disor-
ders (i.e., autism, schizophrenia, ataxia-telangiectasia, Alzheimer’s disease). 
Furthermore, interphase molecular cytogenetics allows for the analysis of genome 
organization at the chromosomal level in brain cells, which is, unfortunately, beyond 
the scope of current neuroscience and genome research. Nonetheless, a number of 
pilot reports have determined analyzing interphase chromosome spatial organiza-
tion in neuronal nuclei to be promising for genetics/genomics and cell biology of 
the human brain.  
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         Introduction 

 The genomic landscape of the normal and diseased human brain had remained 
largely obscure until molecular cytogenetic or cytogenomic methods (i.e., fl uores-
cence in situ hybridization, or FISH) for visualizing interphase chromosomes in non-
dividing neural cells became available (Vorsanova et al.  2010c ). For several decades, 
indirect evaluations of neural chromosomes have resulted in confusion whether the 
human brain is populated by polyploid or diploid/euploid (normal) brain cells 
(Iourov et al.  2006c ; Kingsbury et al.  2006 ; Mosch et al.  2007 ; Arendt et al.  2009 ). 
The dilemma has been resolved by interphase molecular cytogenetic studies, which 
have directly addressed genomic content of neural cells and have established that the 
overwhelming majority of cells populating the human brain are euploid. 

 Historically, the fi rst attempt to evaluate chromosome numbers in the human brain 
was performed by Prof. van der Ploeg’s group (Arnoldus et al.  1989 ,  1991 ,  1992 ). 
Their idea was referred to use interphase cytogenetics for studying genetic changes in 
brain tumors. Interphase nuclei isolated from unaffected brain tissues were analyzed 
as well. In the normal brain, they found relatively high levels of trisomy (mean rate, 
~2 % per individual chromosome) (Arnoldus et al.  1989 ). Unfortunately, these data 
have not been appreciated by geneticists and neuroscientists. On the other hand, it has 
been repeatedly shown that almost all human somatic and germline tissues can contain 
a detectable amount of chromosomally abnormal cells as a result of sporadic (sponta-
neous) genome instability (Iourov et al.  2006a ,  2008a, b ; Hulten et al.  2008 ,  2010 , 
 2013 ). Brain tissues are not an exception. Thus, it is hard to disagree with the idea that 
“aneuploidy is a necessary evil in human life” (Weier et al.  2010 ). First, aneuploidy in 
germline cells leads to the most common type of genetic pathology, termed “chromo-
somal diseases.” Second, aneuploidy in somatic cells is involved in cancer pathogen-
esis (Duesberg et al.  2005 ). Finally, intrinsic aneuploidy rates in the human brain and 
its biological signifi cance remain a matter of discussion (Iourov et al.  2010 ,  2012 ). 
Patterns of cellular variability and complexity in the central nervous system (Muotri 
and Gage  2006 ), integration of genetically abnormal neural cells into brain circuitry, 
and neuron–glia interactions (Kingsbury et al.  2005 ) allow us to speculate that neural 
aneuploidy plays a role in normal and pathogenic genome heterogeneity that is surely 
underestimated (Iourov et al.  2006c, d ; Kingsbury et al.  2006 ). 

 In March 2005, three papers reevaluating aneuploidy in the normal human brain 
by interphase molecular cytogenetics were published. Professor Chun’s group has 
focused on chromosome 21 aneuploidy in neural cells of the adult human brain. 
Surprisingly, they found chromosome 21 aneuploidy in about 4 % (40 billion?) of 
cells among approximately 1 trillion nonneuronal cells and postmitotic neurons in 
the human brain (Rehen et al.  2005 ). In comparison, human interphase lymphocytes 
show chromosome 21 aneuploidy rates in ~0.6 %. This study was unable to estimate 
the overall aneuploidy rates in the human brain as only one chromosome was ana-
lyzed. Nonetheless, it allowed speculation that all human beings are “low-level 
chromosome 21 trisomics” (or affected by mosaic trisomy 21/Down syndrome). 
Two other papers have evaluated chromosome complements in the developing and 
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adult human brain by a quantitative FISH (QFISH) analysis (Iourov et al.  2005 ) and 
interphase FISH with a set of chromosome enumeration DNA probes specifi c to 13 
chromosomes: 1, 7, 8, 9, 13, and 21; 14 and 22; 15, 16, 18, X, and Y (Yurov et al. 
 2005 ). Increased aneuploidy rates were found in cultured embryonic brain tissues as 
to the adult brain (1.3–7.0 % per individual chromosome, in contrast to 0.6–3.0 % 
in uncultured fetal brain cells and 0.1–0.8 % in postmortem adult brain cells, respec-
tively). The overall aneuploidy incidence in the normal adult human brain was, 
therefore, estimated as nearly 10 %. These data have given rise to a hypothesis sug-
gesting aneuploidy affects up to 100 billion of a trillion neuronal and nonneuronal 
cells populating the normal human brain. 

 The pilot neurocytogenetic studies have revealed signifi cant aneuploid cell popu-
lations in the developing and adult human brain. Furthermore, aneuploidy affecting 
a larger amount of brain cells was found to be involved in pathogenesis of psychiat-
ric and neurological (neurodegenerative) diseases (Yurov et al.  2001 ,  2007a ,  2008 ; 
Iourov et al.  2006a ,  2009a ,  b ; Mosch et al.  2007 ; Boeras et al.  2008 ; Westra et al. 
 2008 ; Arendt et al.  2009 ,  2010 ; Granic et al.  2010 ). In addition, there is evidence 
that aneuploidy can be involved in normal and pathological brain aging (Iourov 
et al.  2008a ; Yurov et al.  2009b ; Granic et al.  2010 ; Faggioli et al.  2011 ; Fischer 
et al.  2012 ). Taken together, these observations have given rise to new directions in 
biomedical research—molecular neurocytogenetics and cytogenomics of brain dis-
eases (Iourov et al.  2006c ,  2008b ). 

 Here, we consider current hypotheses concerning brain-specifi c genome variabil-
ity, which probably plays a role in the etiology and pathogenesis of neuropsychiatric 
diseases. Additionally, we have tried to refer to all available neurocytogenetic studies 
covering the fi eld of molecular neurocytogenetics that were published in peer-
reviewed scientifi c journals during the past 10–12 years as well as reviews highlight-
ing attractive hypotheses based on molecular cytogenetic and genomic data (Iourov 
et al.  2006    c, d,   2008b ,  2010 ,  2012 ; Kingsbury et al.  2006 ; Arendt  2012 ; Arendt et al. 
 2010 ; Zekanowski and Wojda  2009 ; Astolfi  et al.  2010 ).We speculate that testing 
hypotheses concerning chromosome, genome, and epigenome variations in brain 
cells can be used for creating a unifi ed theory considering the biological and clinical 
meaning of neural genome instability during ontogeny. The theory should provide 
for a coherent explanation of the role that somatic genome instability plays in the 
pathogenesis of genetically and etiologically heterogeneous brain diseases (autism, 
schizophrenia, ataxia-telangiectasia, and Alzheimer’s disease) and brain aging.  

     Aneuploidy in the Developing Human Brain 

 The complexity and variability of the human brain are generated during the early 
prenatal development and are strongly determined by genomic content of neural 
progenitor cells (Muotri and Gage  2006 ). At early ontogeny, the murine developing 
brain possesses approximately 30 % of aneuploid cells (Rehen et al.  2001 ). Because 
the frequency of aneuploid conceptions (meiotic plus mitotic aneuploidy) usually 
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differs signifi cantly between species, one can question whether brain-specifi c aneu-
ploidy in mice can model the phenomenon in humans (Iourov et al.  2006c ; Hassold 
et al.  2007 ; Dierssen et al.  2009 ). However, this is not the case of the developing 
human brain. Molecular cytogenetic study of organotypic human neuronal cell cul-
tures using interphase FISH with probes specifi c for chromosomes 1, 13/21, 18, X, 
and Y has found aneuploidy frequency to vary between 0.7 and 3 % per chromo-
some and to achieve 28 % in terms of the entire genome (Yurov et al.  2005 ). The 
elaboration of high-resolution molecular cytogenetic techniques, providing for 
visualization of interphase chromosomes at all stages of the cell cycle and at molec-
ular resolutions, such as QFISH and interphase chromosome-specifi c multicolor 
banding (ICS-MCB), allowed us to be more accurate in estimating intercellular 
genomic variations at the chromosomal level in the developing human brain 
(Fig.  4.1 ) (Iourov et al.  2005 ,  2006a ,  2007a ; Vorsanova et al.  2010c ). To address 
genomic variation during early development in more detail, aneuploidy and poly-
ploidy were monitored in human fetuses (8–15 weeks of gestation). The developing 
human brain was found to have a mosaic nature, being composed of euploid and 
aneuploid neural cells. By studying more than 600,000 neural cells, the average 
aneuploidy frequency was estimated as 1.25–1.45 % per chromosome. The overall 
percentage of aneuploidy tended to approach 30–35 %. Tetraploidy affected about 
0.04 % of embryonic neuronal cells (Yurov et al.  2007a ). In total, these data provide 
evidence for aneuploidization in the developing brain to be evolutionarily conserved 
in mammals (Rehen et al.  2001 ; Yurov et al.  2005 ,  2007a ; Iourov et al.  2006c ). 
However, a unique feature of the developing human brain in terms of intercellular 
chromosomal/genomic variation was discovered: chromosome-specifi c aneuploidy 
is confi ned to the developing human brain (chromosome-specifi c low-level mosaic 
aneuploidy is exclusively confi ned to neural cell populations without affecting other 
fetal tissues) (Yurov et al.  2007a ). It is to note that this is the only available report 
on aneuploidy mosaicism limited to an embryonic (not extraembryonic!) tissue.

   Interestingly, the amount of aneuploid cells determined in the developing human 
brain (30–35 %) was found to approach the amount of cells cleared by programmed 
cell death (30–50 %) throughout human prenatal development (Muotri and Gage 
 2006 ; Yurov et al.  2007a ). Therefore, considering the pathogenic effect of aneu-
ploidy on cellular physiology (Dierssen et al.  2009 ), aneuploidization in the devel-
oping human brain was hypothesized to be a mechanism for neural cell number 
regulation by clearance of genetically abnormal and aneuploid cells either through 
apoptosis or through a cascade of mitotic catastrophes (Iourov et al.  2006c ,  d ). 

Fig. 4.1 (continued)  of a chromosome (from  left  to  right ): chromosome 9 ( d ), chromosome 16 ( e ), 
and chromosome 18 ( f ). ( g ) Interphase QFISH: (1) a nucleus with two signals for chromosomes 18 
(relative intensities: 2,058 and 1,772 pixels), (2) a nucleus with one paired signal mimics monosomy 
of chromosome 18 (relative intensity: 4,012 pixels), (3) a nucleus with two signals for chromosome 
15 (relative intensities: 1,562 and 1,622 pixels), (4) a nucleus with one signal showing monosomy 
of  chromosome 15 (relative intensity: 1,678 pixels) (From Yurov et al.  2007a . An open-access arti-
cle distributed under the terms of the Creative Commons Attribution License)       
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  Fig. 4.1    Molecular cytogenetic analysis of aneuploidy in the fetal human brain. ( a – c ) Interphase 
fl uorescence in situ hybridization (FISH) with chromosome-enumeration DNA probes: two nuclei 
characterized by additional chromosomes Y and X and a normal nucleus ( a ); a nucleus with mono-
somy of chromosome 15 and a normal nucleus ( b ); and a nucleus with monosomy of chromosome 
18 and a normal nucleus ( c ). ( d – g ) Interphase chromosome-specifi c multicolor banding (MCB): 
nuclei with monosomy, disomy, trisomy, and G-banding ideograms with MCB color-code labeling 
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Aneuploidy is the most common type of mosaic chromosome instability (CIN) 
associated with the malignization process (Li et al.  2009 ; Weaver and Cleveland 
 2009 ). It was hypothesized that developmental instability of the genome confi ned to 
the brain cell populations has the potential to cause childhood brain cancer—the 
second most common childhood cancer after leukemia (Iourov et al.  2009c ).  

     Aneuploidy in the Normal Adult Human Brain 

 The fi rst analyses performed by single- and multiprobe FISH with chromosome- 
enumeration DNA probes have demonstrated neural aneuploidy rates per individual 
chromosome to vary in a wide range between 0 and 4 % or even more (Rehen et al. 
 2005 ; Yurov et al.  2005 ). Aneuploidy estimations indicate approximately 10 % of 
neural cells to be aneuploid in the adult brain (Yurov et al.  2005 ; Iourov et al.  2006a ; 
Mosch et al.  2007 ; Westra et al.  2008 ). Although FISH is the technique most applied 
for interphase molecular cytogenetic analyses (Vorsanova et al.  2010c ), there is a 
limitation of the classical interphase FISH protocols referred to the study of specifi c 
genomic loci without an integral view of the whole chromosome (Iourov et al. 
 2006b ,  d ). Taking into account that neural CIN in the developing mammalian brain 
manifests almost exclusively as aneuploidy (Rehen et al.  2001 ; Yurov et al.  2007a ), 
there has not been an empirical background for suggesting additional chromosomal 
imbalances in the unaffected human brain. Nonetheless, a need for further analyses 
by molecular cytogenetic techniques providing for visualization of the whole chro-
mosome appeared to exist. The latter was solved by ICS-MCB (Fig.  4.2 ), the only 
available approach offering such opportunities that allowed identifying more precise 
rates of aneuploidy per individual chromosomes in the adult brain, but the overall 
amount of aneuploid cells still remained at about 10 % (Iourov et al.  2006a ,  2007a ). 
This rate was also confi rmed in control brain samples used for the evaluation of 
aneuploidy in human brain diseases (i.e., schizophrenia, ataxia telangiectasia, and 

Fig. 4.2 (continued) spond to 18p11.2Yq12.2. SO (Spectrum Orange) signals Y 18p11.2Yp11.3. 
TR (Texas Red) signals Y 18q22Yq23. Cy5 signals Y 18q11.2Yq21.3. ( e ) FISH with MCB probe 
for chromosome X.R110 signals correspond to Xp21.3Yp22.3 and Xq25Yq28. SO (Spectrum 
Orange) signals Y Xp11.22Yp22.1 and Xq25Yq28. TR (Texas Red) signals Y Xq12Yq21.1. Cy5 
signals Y Xq21.1Yq26. DEAC signals Y Xp11.3Yq13. Note the upper chromosome X appears as 
a  white condensed spot  (merged image). Because facultative heterochromatin, a feature of X chro-
mosome inactivation, should appear as a highly condensed structure, the upper X chromosome was 
assumed to be the inactivated one (Xi) in contrast to the active X chromosome (Xa) appearing as a 
lightly diffused structure. ( f ) Example of a trisomic nucleus (trisomy of chromosome 9):  left side  
Y black- and-white picture of DAPI-counterstained nucleus,  right side  Y merged MCB true color 
picture showing the presence of three chromosomes 9 in this nucleus. ( g ) Example of a monosomic 
nucleus (monosomy of chromosome 18):  left side  Y black-and-white picture of DAPI- 
counterstained nucleus,  right side  Y merged MCB true color picture showing the presence of one 
chromosome 18 in this nucleus (From Iourov et al.  2006a . Reproduced with permission of Elsevier 
BV in the format reuse in a book/textbook via Copyright Clearance Center)       
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  Fig. 4.2    FISH using MCB probes on interphase nuclei of the human brain. ( a ) FISH with MCB 
probe for chromosome 1. R110 signals correspond to 1p32.3Yp36.3 and 1q32Yq43. SO ( Spectrum 
Orange ) signals Y 1p13Yq21, including constitutive heterochromatin (1qh). TR ( Texas Red ) sig-
nals Y 1p31.1Yp33 and 1q21.3Yq31. Cy5 signals Y 1p13.1Yp22.3 and 1q32Yq43. DEAC signals 
Y 1q21.3Yq31. Note the upper chromosome 1 is folded around 1qh and bent in the proximal part 
of the q-arm. ( b ) FISH with MCB probe for chromosome 9. R110 signals correspond to 9p13Yq13 
including constitutive heterochromatin (9qh). SO (Spectrum Orange) signals Y 9p21Yp24 and 
9q32Yq34. TR (Texas Red) signals Y 9q22.2Yq34.1. Cy5 signals Y 9p13Yp23. DEAC signals Y 
9q13Yq22.2. ( c ) FISH with MCB probe for chromosome 16. R110 signals correspond to 
16p11.1Yp13.1 SO (Spectrum Orange) signals Y 16p13.3Yp21. TR (Texas Red) signals Y 
16q11.1Yq21 including constitutive heterochromatin (16qh). Cy5 signals Y 16q21Yq24. Note the 
single Texas Red signal instead of two; this implies that 16qh regions of two homologous chromo-
somes 16 are overlapped. Therefore, somatic pairing of two homologous chromosomes 16 by 16qh 
region should be suspected. ( d ) FISH with MCB probe for chromosome 18. R110 signals corre
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Alzheimer’s disease) (Yurov et al.  2008 ; Iourov et al.  2009a ,  b ). Additionally, a 
recently proposed approach to defi ne “DNA content variation” has determined aver-
age genome content diversifi cation between neuronal cells as ~250 Mb (Westra et al. 
 2010 ). These data accord well with observations on aneuploidy in the adult human 
brain performed by single-cell interphase molecular cytogenetic approaches (Mosch 
et al.  2007 ; Westra et al.  2008 ; Iourov et al.  2009a ,  b ).

   As one can notice, aneuploidy rates differ almost exactly three times between the 
developing and adult human brain. Therefore, suggestions about neural aneuploid 
clearance throughout prenatal development appear to be consistent with data on the 
postnatal brain. Nevertheless, the biological role of aneuploidy in the adult human 
brain remains to be established. Currently, aneuploid cells are considered to be 
involved in human neuronal diversity (Iourov et al.  2006c ,  2008b ; Muotri and Gage 
 2006 ; Arendt et al.  2009 ). This idea is further supported by an observation that 
aneuploid cells are functionally active, being employed into integrated mammalian 
brain circuitry (Kingsbury et al.  2005 ). Moreover, aneuploidy is probably involved 
in brain aging (Yurov et al.  2009b ,  2010 ; Faggioli et al.  2011 ,  2012 ), inasmuch as 
aneuploidy rates appear to increase during postnatal ontogeny stages and aneu-
ploidy is involved in abnormal/accelerated aging and neurodegenerative diseases. 
Because the majority of cells forming the adult human brain are likely to be postmi-
totic, these observations seem to produce a paradox. Somatic aneuploidy results 
largely from abnormal cell divisions during neurogenesis in the early brain develop-
ment. Therefore, aneuploidy increase in late ontogeny may be only explained by 
widespread adult neurogenesis, which is unable to produce such a large cell popula-
tions. To solve this discrepancy, a hypothesis applying different thresholds for aneu-
ploidy levels and effects to each brain ontogeny period was proposed (Yurov et al. 
 2009b ). The latter suggests constitutional and acquired aneuploidy to alter coopera-
tively the homeostasis of neural cells (neurons and glia) during ontogeny, to  generate 
senescent cellular phenotypes (probably, promoting cell death), but these processes 
begin to become apparent at the phenotypic level in late ontogeny. However, only 
direct experimental aneuploidy monitoring in human brain aging would help to test 
this hypothesis and to solve the paradox. 

 The effect of aneuploidy on human cell populations is known to be extremely 
devastating (Iourov et al.  2006c ,  d ,  2008b ; Hassold et al.  2007 ; Dierssen et al.  2009 ). 
Thus, one can assume brain aneuploidization to be pathogenic in contrast to hypoth-
eses proposing a role of aneuploidy in neural diversity. To defi ne benign sporadic 
aneuploidy in the adult human central nervous system, it is necessary to compare 
the amount of aneuploid cells between the normal and diseased human brain.  

     Aneuploidy in the Diseased Human Brain 

 The diseases associated with brain dysfunction and aneuploidy are chromosomal 
aneuploidy syndromes: autosomal and gonosomal trisomies, an additional chromo-
some X in males, and chromosome X monosomy in females (Iourov et al.  2006c , 
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 2008b ; Hassold et al.  2007 ; Dierssen et al.  2009 ). Direct molecular cytogenetic 
evaluations of the brain are exclusive in chromosomal aneuploidy syndromes. 
Nevertheless, these pathological conditions were used for models and hypotheses of 
brain diseases in the widest sense and their probable association with mosaic aneu-
ploidy in the brain (Yurov et al.  2001 ; Iourov et al.  2006c ,  2008b ). As a result, 
autism, schizophrenia, ataxia-telangiectasia, and Alzheimer’s disease have been 
directly assessed by a series of molecular neurocytogenetic studies (Yurov et al. 
 2001 ,  2008 ; Iourov et al.  2009a ,  b ; Mosch et al.  2007 ; Yang and Herrup  2007 ; 
Boeras et al.  2008 ; Westra et al.  2009 ; Arendt et al.  2009 ,  2010 ). In addition, numer-
ous brain diseases are hypothesized to be associated with brain-specifi c aneuploidy 
or CIN. Table  4.1  provides an overview of the latest molecular neurocytogenetic 
achievements in brain research.

       Autism 

 Autism is an umbrella term for a number of neurodevelopmental disorders charac-
terized by etiological and genetic heterogeneity including more than 100 genetic 
and genomic diseases (Betancur  2011 ). Autism is frequently associated with chro-
mosomal imbalances (Castermans et al.  2004 ; Xu et al.  2004 ). Using cytogenetic 
and molecular cytogenetic techniques, constitutional chromosomal abnormalities 
are found in about 5–7 % of autism cases (Xu et al.  2004 ; Vorsanova et al.  2007 , 
 2010a, b ). The contribution of mosaic aneuploidy to autism pathogenesis is esti-
mated as 16 %, probably representing the most common molecular cytogenetic 
fi nding in children with unexplained autism (Fig.  4.3 ). It is to be noted that 10 % of 
males with unexplained autism exhibited low-level 47,XXY/46,XX mosaicism 
(Yurov et al.  2007b ). This fi nding was used for a hypothesis suggesting mosaic X 
chromosome aneuploidy to be involved in male predisposition to autistic spectrum 
disorders (Iourov et al.  2008c ). Finally, a recent study has shown mosaic aneuploidy 
and CIN to segregate with mental diseases in autistic families (Vorsanova et al. 
 2010b ). Interestingly, Rett syndrome, an X-linked autistic spectrum monogenic dis-
ease, associated with male prenatal lethality, has been found to occur in males who 
are 47,XXY/46,XY mosaics (Vorsanova et al.  1996 ,  2001 ). Additionally, mosaicism 
in Rett syndrome males was tissue specifi c and was confi ned to ectodermal tissues 
(Vorsanova et al.  2001 ). As the disease is primarily associated with neurodevelop-
mental abnormalities, it was assumed that the majority of (if not all) boys with Rett 
syndrome should have cells with additional chromosome X in the affected brain 
(Yurov et al.  2001 ; Iourov et al.  2006c ,  2008a ).

   Molecular neurocytogenetic studies have revealed somatic genome instability or 
mosaic aneuploidy to increase in the developing central nervous system and appear 
to play a role in brain development. It was hypothesized that neuronal aneuploidy 
alters brain development and is involved in male predisposition to autism or related 
psychiatric conditions (Iourov et al.  2006a ). To test this hypothesis we have 
attempted to estimate the incidence of mosaic aneuploidy in the autistic brain tissue 
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  Fig. 4.3    FISH with chromosome-enumeration DNA probes in autism.    ( a ) Nucleus characterized 
by trisomy 15 (three  green signals ) and two copies of chromosome 17 (two  red signals ). ( b ) A 
nucleus with monosomy 18 (one  red signal ) and a normal nucleus with disomy 18 (two  red sig-
nals ). Two chromosomes 9 are present in each nuclei (two  green signals ). ( c ) A nucleus with 
disomy X (two  green signals ) and one chromosome Y (one  red signal ). ( d ) A nucleus with disomy 
X (two  green signals ), two chromosomes 1 (two  light blue signals ), and one chromosome Y (one 
 red signal ). ( e ) Metaphase with additional chromosome der(15) and two normal chromosomes 15 
( green signals  at the centromeric regions of chromosomes 15) (From Yurov et al.  2007b ,  Journal 
of Medical Genetics  by the British Medical Association. Reproduced with permission of BMJ 
Publishing Group in the format reuse in a book/monograph via Copyright Clearance Center)       
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using molecular cytogenetic techniques. Postmortem brain tissues of 12 patients 
with idiopathic autism, obtained from the NICHD Brain and Tissue Bank for 
Developmental Disorders at the University of Maryland, Baltimore, MD, USA, 
were analyzed using a chromosome-X-specifi c alphoid DNA probe (Yurov et al. 
 2011b ,  2012 ). In this pilot interphase cytogenetic study, we observed statistically 
signifi cant increase of chromosome X aneuploidy rates in the cerebral cortex and 
cerebellum in the male autistic brain as compared to control samples. Autistic spec-
trum disorders currently affect four times as many males as females. Mosaic chro-
mosome X aneuploidy in the brain may help to explain the preponderance of autism 
among males in addition to specifi c alterations of the X-chromosome genes. We 
conclude that intercellular genomic variation manifesting as brain-specifi c low- 
level mosaic aneuploidy is one of the possible genetic factors likely contributing to 
autism neuropathology. This fi nding agrees with the hypothesis that increased 
developmental instability of the somatic genome could affect neuronal homeostasis 
and functions of the autistic brain, playing, therefore, a role in the pathogenesis of 
this common nervous system disease. These data form a fi rm basis for forthcoming 
systematic molecular neurocytogenetic studies of the autism brain.  

     Schizophrenia 

 In addition to autism, there are increasing lines of evidences linking genomic and 
epigenomic instability (GIN), including CIN, to schizophrenia (Smith et al.  2010 ). 
Schizophrenia was the fi rst disease studied through direct molecular neurocytogenetic 
evaluation (Yurov et al.  2001 ). Analyzing six samples of the postmortem schizophre-
nia brain by multiprobe FISH has shown two individuals to be both affected by low-
level mosaic trisomy of chromosomes 18 and X. These data were intriguing in the 
light of numerous studies of individuals suffering from schizophrenia by an extensive 
set of cytogenetic and molecular cytogenetic during the past 40 years, which 
have shown from 1 to 4 % of patients exhibit sex chromosome aneuploidy as well as 
single cases of partial monosomy/trisomy of autosomes (DeLisi et al.  1994 ,  2005 ; 
Iourov et al.  2006c ,  2008a ,  b ; Yurov et al.  2008 ; de Moraes et al.  2010 ). More detailed 
 molecular-cytogenetic evaluation of a cohort of 12 patients by multiprobe FISH/
QFISH and ICS-MCB has discovered two additional cases of low- level mosaic aneu-
ploidy confi ned to the schizophrenia brain: monosomy and trisomy of chromosome 1 
(Fig.  4.4 ). Moreover, chromosome 1-specifi c sporadic aneuploidy is increased in the 
brain samples among those schizophrenia patients (Yurov et al.  2008 ). It is to be noted 
that chromosome 1 aneuploidy is one of the most devastating numerical chromosome 
imbalances usually associated with early embryonic lethality (Vorsanova et al.  2005 ; 
Iourov et al.  2006c ). However, affecting less than 4–5 % of cells and limited to brain 
tissue, chromosome 1 aneuploidy seems to produce tissue-specifi c pathology (Iourov 
et al.  2008a ,  b ). These lines of evidences allow the hypothesis that mosaic aneuploidy 
in the human adult brain is a likely mechanism for psychotic disorders such as schizo-
phrenia, at least in some cases.
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  Fig. 4.4    Molecular 
cytogenetic analysis of 
aneuploidy in the postmortem 
schizophrenia brain. 
Interphase FISH with 
chromosome-enumeration 
DNA probes: a nucleus with 
monosomy involving 
chromosome 1 (one  white 
signal , relative intensity: 
3,910) and disomy X (two 
 red signals ) ( a ); a nucleus 
with disomy 1 (two  white 
signals , relative intensities: 
3,840 and 2,450) and disomy 
X (two  red signals ) ( b ); a 
nucleus with disomy 1 (one 
large  white signal  composed 
from two paired signals, 
relative intensity: 6,290) and 
disomy X (two  red signals ) 
( c ). Interphase chromosome- 
specifi c MCB: nuclei with 
monosomy ( d ) and trisomy 
( e ) involving chromosome 1 
(From Yurov et al.  2008 . 
Reproduced with permission 
of Elsevier BV in the format 
reuse in a book/textbook via 
Copyright Clearance Center)       

        Ataxia-Telangiectasia 

 Ataxia-telangiectasia (AT) is an autosomal recessive syndrome associated with 
CIN. This disease exhibits targeted cerebellar neurodegeneration, whereas other 
brain areas are paradoxically less affected (McKinnon  2004 ). To solve this paradox, 
a hypothesis suggesting CIN to affect selectively degenerating brain areas was pro-
posed (Iourov et al.  2007b ). The murine model ( Atm  −/−  mouse) has demonstrated an 
appreciable increase of sex chromosome aneuploidy in the brain compared to unaf-
fected mice (Table  4.1 ), but area-specifi c aneuploidy distribution has not been 
observed (McConnell et al.  2004 ). However, it is to be noted that  Atm  −/−  mice do not 
demonstrate progressive cerebellar neurodegeneration, being poorly applicable for 
modeling ataxia-telangiectasia neuropathology. 
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 Interphase cytogenetics using multiprobe FISH/QFISH and ICS-MCB have 
demonstrated a signifi cant increase of aneuploidy in the ataxia-telangiectasia 
brain, achieving 20–50 % (Iourov et al.  2009b ). Although dramatic neural aneu-
ploidization was found to be a striking feature of this disease, the ataxia-telangiec-
tasia paradox (Iourov et al.  2007b ) was not completely solved. This lack led to an 
interphase chromosome study of different areas within the ataxia-telangiectasia 
brain by multiprobe FISH/QFISH and ICS-MCB followed by an in silico analysis. 
The cerebellum has shown a new CIN pattern distinct from that observed in the 
cerebrum. Apart from increased sporadic aneuploidy, chromosome-specifi c aneu-
ploidy and nonrandom DNA double-strand breaks of chromosomes 14, 7, and, to 
a lesser extent, chromosome X, were discovered (Fig.  4.5 ). These breaks produced 
rearranged chromosomes in about 40 % of cerebellar cells, manifested essentially 
as der(14)(14pter->14q12:), and multiple aneuploidy involving rearranged chro-
mosomes 14. The hotspots for targeted cerebellar neurodegeneration revealed by 
ICS-MCB and in silico analysis were mapped to 14q12, containing two candidate 
genes:  NOVA1  and  FOXG1B  (Fig.  4.6 ). It is known that Nova is a key brain-spe-
cifi c alternative splicing regulator in the vertebrate central nervous system. If a 
connection between impaired genome stability caused by  ATM  gene mutation and 
an aberrant process of genome regulation by NOVA1 does exist, it may provide 
elucidation of the pathogenic pathway of ATM-dependent neurodegeneration 
associated with aberrant  splicing in cerebellar cells. The second prioritized gene 
( FOXG1B ) encoding a transcriptional factor is known to regulate neurogenesis and 
is highly expressed in the fetal brain. Mutations in  FOXG1B  gene cause a clinical 
phenotype similar to Rett syndrome. Interestingly, the forkhead protein FoxG1 
interacts with the methyl-CpG binding protein 2 (MeCP2, mutated in Rett syn-
drome) in mouse neurons. In differentiated neurons of the adult brain,  FOXG1B  
promotes survival of postmitotic neurons, and its downregulation leads to neuronal 
cell death (Dastidar et al.  2012 ). One can propose that somatically acquired CIN 
and breakpoints in  FOXG1B  lead to its downregulation and promote neuronal 
death in the AT cerebellum. Thus, molecular neurocytogenetics provides a link 
between cerebellar dysfunction in neurodevelopmental and neurodegenerative 
disorders.

    The speculations about GIN involvement in neurodegenerative and neurodevel-
opmental processes within the AT cerebellum defi ne the ATM-directed selective 
increase of aneuploidy and chromosome-specifi c breaks to affect specifi c pathways 
of brain development and neuronal survival. Mosaic expression of GIN selectively 
in the cerebellum could help to explain the AT paradox, highlighted by McKinnon 
( 2004 ). Identifi cation of genes abnormally regulated in the AT brain will open new 
ways to explore cerebellar degeneration pathways and to develop targeted therapy 
in this, presently incurable, brain disorder (Yurov et al.  2009a ). 

 Therefore, AT demonstrates that single-gene neurodegenerative diseases could 
be associated with chromosome-specifi c instability and aneuploidy confi ned to spe-
cifi c brain areas. In this instance, we have hypothesized that neurodegeneration and 
cancer has the same mechanism—genome and chromosome instabilities (Iourov 
et al.  2009a ; Li et al. 2009; Weaver and Cleveland  2009 ). An additional implication 
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  Fig. 4.5    Molecular cytogenetic analysis of aneuploidy in the cerebellum of the ataxia- 
telangiectasia (AT) brain by multiprobe FISH and ICS-MCB techniques. ( a ) True trisomy 7 

I.Y. Iourov et al.
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of cerebellar neurodegeneration mechanism in ataxia-telangiectasia makes a basis 
for future successful strategies of therapeutic interventions by cell replacement 
 therapy, which should be started immediately after birth (Yurov et al.  2009a ).  

     Alzheimer’s Disease 

 Alzheimer’s disease (AD) was long thought to be associated with aneuploidy involving 
trisomy 21 (Heston and Mastri  1977 ; Potter  2008 ). It was known that individuals with 
Down’s syndrome frequently develop AD-like ne uropathology, and it was suggested 
that classical AD (genetic and late-onset sporadic forms) might be promoted by mosaic 
trisomy 21. More precisely, because of neuropathological parallels between AD and 
Down’s syndrome, it has been hypothesized that individuals with AD should exhibit 
mosaic aneuploidy of chromosome 21 (Heston and Mastri  1977 ; Geller and Potter 
 1999 ; Potter  2008 ). Genetic mutations causing familial AD disrupt the cell cycle and 
lead to chromosome aneuploidy, including trisomy 21. However, until recently, no con-
sensus has been obtained regarding the trisomy 21 hypothesis of AD pathogenesis 
(Potter  2008 ; Yurov et al.  2009b ; Iourov et al.  2010 ). 

 Arendt and colleagues have shown that neurons with more-than-diploid DNA con-
tent are increased in preclinical AD stages and are selectively affected by cell death 
during disease progression (Arendt et al.  2010 ). Therefore, GIN or neuronal hyperploidy 
should be associated with decreased viability of neural cells in AD. Neuronal hyper-
ploidy is, thereby, a direct molecular signature of cells prone to death in AD and indi-
cates that a neuronal differentiation failure is a critical event in the AD pathogenetic 
cascade. Scoring a larger amount of neuronal cells by slide- based cytometry followed 
by single-probe FISH and chromogenic in situ  hybridization, it was found that 
 aneuploidy is likely to be increased in the AD brain (Mosch et al.  2007 ). Finally, direct 
analysis of the diseased brain using multiprobe FISH/QFISH and ICS-MCB has discov-
ered chromosome 21-specifi c aneuploidy to increase dramatically (from 5- to 20 fold) 
in the AD cerebrum, and it was found to be involved in targeted neurodegeneration 

Fig. 4.5 (continued) revealed by mFISH with chromosome 7-specifi c alphoid DNA probe (three 
 green signals ) in neuronal nucleus ( left ) in the cerebellum of the AT brain. Glial-like nucleus ( cen-
ter ) and neuronal-like nucleus ( right ) with two  green signals , indicating disomy 7. Chromosome 
X-specifi c alphoid DNA probe ( red signals ) indicates the presence of two copies of chromosome 
X in each nucleus. ( b ) Disomy X (nucleus in  left , two  red signals ) and monosomy X (one  red 
signal , nucleus in  right ) revealed by chromosome X-specifi c probe in the cerebellum of a woman 
with AT. Chromosome 7-specifi c alphoid DNA probe ( green signals ) indicates the presence of two 
copies of chromosome 7 in each nucleus. ( c1 ) ICS-MCB with chromosome 7-specifi c MCB probe 
demonstrates monosomy 7 in neuronal nucleus of the AT brain. ( c2 ) Scheme illustrates ideogram 
of chromosome 7 with G-banding in neuronal nucleus with monosomy 7.    ( d1 ) ICS-MCB with 
chromosome 14- specifi c MCB probe demonstrates trisomy 14 in neuronal nucleus of the AT brain. 
( d2 ) Scheme illustrates ideogram of chromosome 14 with G-banding in neuronal nucleus with 
trisomy 14 (From Yurov et al.  2009b . Reproduced with permission of Oxford University Press in 
the format reuse in a book/textbook via Copyright Clearance Center)       
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  Fig. 4.6    Molecular cytogenetic analysis of chromosome 14 breaks in the cerebellum of the AT 
brain by ICS-MCB techniques. ( a ) FISH with chromosome 14-specifi c MCB probe demonstrates 
one neuronal nucleus ( left ) with two undamaged chromosome 14 (or disomy 14) and another nucleus 
with two undamaged chromosome 14 with additional four derivate chromosomes 14q12 ( right ). ( a1 ) 
Scheme illustrates ideograms of undamaged and damaged chromosomes 14 with G-banding in the 
same nuclei as in ( a ). ( b ) FISH with chromosome 14-specifi c MCB probe demonstrates one 
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(Iourov et al.  2009b ). Additionally, experimental and theoretical evaluations have shown 
that aneuploidy is probably involved in disease-causing selective neuronal cell death 
(Arendt et al.  2010 ). Thus, the hypothesis suggesting a common background in AD and 
Down’s syndrome (Potter  2008 ) was confi rmed. Moreover, mutated presenilin 1 and 
amyloid  precursor protein gene cell lines (models of genetic defects associated with 
monogenic AD) were shown to exhibit high levels of aneuploidy (Table  4.1 ), suggesting 
these mutations promote aneuploidization (Boeras et al.  2008 ; Granic et al.  2010 ; 
Borysov et al.  2011 ). Therefore, chromosome 21 aneuploidy represents an integral com-
ponent of the AD neurodegeneration pathogenic cascade (Yurov et al.  2009b ; Iourov 
et al.  2010 ). However, aneuploidy in the AD brain demonstrates both chromosome 21 
gain and loss, as well as affecting, in lesser instances, other chromosomes, including 
chromosome X (Fig.  4.7 ). These fi ndings and studies of nonneuronal tissues indicate 
that not only trisomy 21 but another type of aneuploidy, or CIN, may be involved in the 
AD neurodegeneration pathway (Thomas and Fenesh  2008 ; Migliore et al.  2011 ; 
Spremo-Potrapevic et al.  2011 ; Taupin  2011 ). Thus, the hypothesis that AD is a mosaic 
of Down syndrome is attractive, but direct comparison of the pathogenic pathways asso-
ciated with chromosome/genome instability in AD and Down’s syndrome should to be 
performed with caution, requiring additional experimental proof (Potter et al.  2011 ).

   A line of evidence concerning the high rates of polyploidy and abnormal DNA 
replication activity in the AD brain was provided. Because the overwhelming major-
ity of cells in the human brain are considered to be postmitotic, it has been sug-
gested that neurons enter the cell-cycle stage accompanied by chromosomal DNA 
replication but are unable to end the division (endomitosis or endoreplication). As a 
result, these neurons become tetraploid (Yang et al.  2001 ; Yang and Herrup  2007 ; 
Herrup and Yang  2007 ; Chen et al.  2010 ). Cell-cycle events including complete 
chromosomal DNA replication should ultimately result in generation of tetraploid 
cells. The empirical fi nding of tetraploid neurons at a higher frequency (to 4 %) in 
the AD hippocampus allowed the proposal that DNA replication precedes neuronal 

Fig. 4.6 (continued) neuronal nucleus ( left ) with one undamaged chromosome 14 with additional 
der14q12; glial-like nucleus with disomy 14 ( center ); and another nucleus with one undamaged 
chromosome 14 with additional fi ve derivate chromosomes 14q12 ( right ). ( a1 ) Scheme illustrates 
ideograms of undamaged and damaged chromosomes 14 with G-banding in the same nuclei as in 
( b1 ). ( c )  Left : Neuronal nuclei with one undamaged chromosome 14 and one additional der14q12. 
 Center : Two ideograms of undamaged chromosome 14 and one additional der14q12 with MCB 
labeling scheme. Chromosome der14q12 contains two labeled bands: q11.2 ( red)  and q12 ( yel-
low ). The majority of chromosomes der14 revealed in the diseased cerebellum (Fig.  4.5a,b ) have 
the same MCB banding, indicating that DNA double-strand breaks occurred in the band 14q12 
with the loss of the distal part of chromosome 14.  Right : Levels of expression of 19 known genes 
mapped to the band 14q12 in the fetal human brain, in the whole human brain, and in the cerebel-
lum, indicating that only two genes from chromosome 14q12 are highly expressed in the cerebel-
lum:  NOVA1  and  FOXG1B.  ( d1 ), ( d2 ), ( d3 ) The frequency of aneuploidy involving undamaged 
and damaged chromosome 14 in neural nuclei in the cerebellum of AT patients: patient UMB#1038, 
age 24 years ( d1 ); patient UMB#1004, age 35 years ( d2 ); patient UMB#878, age 47 years ( d3 ) 
(From Yurov et al.  2009b . Reproduced with permission of Oxford University Press in the format 
reuse in a book/textbook via Copyright Clearance Center)       
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cell death (Yang et al.  2001 ). Although single-color FISH allows analysis of DNA 
replication, some notes should be made, especially in relationship to postmitotic 
tissues. The best results of DNA replication activity in interphase nuclei are obtained 
by application of site-specifi c cosmid DNA probes for euchromatic chromosomal 
regions (Soloviev et al.  1995 ), whereas cosmid contig and centromeric DNA probes 
(used for studying AD brain) give contradictory results and have to be controlled by 
additional molecular cytogenetic techniques (Vorsanova et al.  2010a ). Furthermore, 
more effi cient molecular cytogenetic technologies have shown that tetraploid cells 
are really present in the AD brain (Mosch et al.  2007 ; Iourov et al.  2009b ; Westra 
et al.  2009 ). However, Westra and coauthors have shown that these tetraploid nuclei 
are exclusively nonneuronal and are as prevalent as in the control (Westra et al. 
 2009 ; Chun et al.  2011 ; Iourov et al.  2011 ). An independent monitoring of aneu-
ploidy/tetraploidy in the normal and AD brain by interphase mFISH has estimated 
true tetraploidy to affect 0.1–0.2 % of neural nuclei (Iourov et al.  2009b ). These 
fi ndings provide evidence against the relationship between tetraploidy and neurode-
generation. The paradoxes  surrounding the AD cell-cycle theory arise from discrep-
ancies between reproducible evidence for the presence of neurons exhibiting G 

2
  

biomarkers and evidence against t etraploid genomic content in these neurons. To 
solve this paradox, the DNA replication stress hypothesis of AD was proposed 
(Yurov et al.  2011a ). Accordingly, neurons entering into S-phase do not proceed 
further through the cell cycle and contain partially duplicated DNA content 
(Fig.  4.8 ). This fi nding suggests neuronal cell dysfunction and death occurs during 
the S-phase and originates from replication stress. In other words, unscheduled and 
unrealized DNA synthesis in vulnerable neurons, which epigenetically are unable to 
reorganize the nuclear genome for proper chromosome duplication, should lead to 
a DNA replication catastrophe or neuronal death resulting from lethal errors in rep-
lication. In this context, G 

2
 -phase biomarkers are likely to be a sign of cell-cycle 

  Fig. 4.7    Two nuclei with disomy 21 and a nucleus with true trisomy 21 revealed by ICS-MCB 
with chromosome 21-specifi c probe in the Alzheimer’s disease (AD) brain (From Yurov et al. 
 2009a . Reproduced with permission of Academic Press in the format reuse in a book/textbook via 
Copyright Clearance Center)       
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  Fig. 4.8    Replication stress hypothesis of AD. Interplay between essential elements of the 
AD-type dementia pathogenetic cascade is proposed. The genetic infl uences ( PSEN  or  APP  
mutations, trisomy 21, APOE4 genotype), metabolic changes, and environmental factors 
 affecting neuronal homeostasis in the aging brain lead to activation of neuronal proliferation. 
Mitogens, which do exist in the human brain (neuronal cells), induce additional stimuli of exten-
sive adult neurogenesis in the hippocampus. In the AD brain, such events would lead to increased 
hippocampal neurogenesis. A side effect could be that these mitogenic stimuli activate cell-cycle 
reentry in postmitotic neurons. The latter is a pathological activation of the neuronal cell cycle, 
including reentry into G 

1
 - and S-phases and initiation of DNA replication. Neurons showing 

protein markers of G 
2
 /M- phase probably contain a chromosome set of 23 duplicated  chromosome 

pairs with unseparated chromatids (DNA content, 4C; chromosome complement, 2N) and 
become tetraploid in a sense of DNA content (4C). According to the commonly accepted theory 
of neuronal cell-cycle reentry and death, some neuronal populations complete the DNA synthe-
sis but are arrested during the G 

2
 /M transition. Therefore, neuronal death occurs in the G 

2
 -phase. 

Alternatively, one can propose that a large proportion of activated postmitotic neurons in the AD 
brain are unable to pass the S-phase properly; this would lead to accumulation of genomic and 
chromosomal instabilities throughout ontogeny (DNA breaks, aneuploidy). In addition, replica-
tion-induced DNA damages would lead to fork stalling, incomplete or ineffi cient DNA replica-
tion, together designated as replication stress. Replication stress may be considered the leading 
cause of neuronal cell death caused by processing into S-phase or accumulation of genetic insta-
bilities, which together constitute an important element of the AD pathogenetic cascade (From 
Yurov et al.  2011a . An open-access article distributed under the terms of the Creative Commons 
Attribution License)       
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“imitation” or other intracellular phenomena accompanied by production of G 
2
 -

specifi c proteins playing a role in processes of DNA repair, DNA damage response, 
and initiation of programmed cell death, but indirectly related to replicative cell-
cycle events. Replication stress is a probable trigger of genome instability in the AD 
brain, which links abnormal cell- cycle events, chromosomal aneuploidy, and amy-
loid overproduction and deposition. Testing of the “replication stress—replicative 
death” hypothesis would help to expand our views on how neural cell-cycle dys-
regulation and somatic genome instability are involved in AD pathogenesis. 
Furthermore, such investigation can provide a clue to the role that genome instabil-
ity plays in the normal and diseased brain in addition to the way genome stability is 
maintained in neuronal cells through ontogeny.

         Origins of Aneuploidy in the Human Brain 

 The early stages of human embryonic development are prone to errors that produce 
aneuploidy or other types of somatic genome variations manifesting at the chromo-
somal level (Vorsanova et al.  2005 ,  2010a ; Iourov et al.  2006c ,  2010 ; Hassold et al. 
 2007 ; Dierssen et al.  2009 ; Robberecht et al.  2010 ; Yurov et al.  2010 ). Somatic 
genome instability including mosaic aneuploidy is extremely frequent among human 
embryos (Vanneste et al.  2009 ). Interphase FISH indicates that low-grade mosaic 
aneuploidy affecting more than 5–20 % of cells is frequently associated with sponta-
neous abortions being observed in 25 % of cases (Vorsanova et al.  2005 ). Therefore, 
low-level mosaicism is likely not to lead to prenatal death (Iourov et al.  2008a ), which 
is supported by observations of somatic genome variations at chromosomal level in 
fetal tissues at 9–12 weeks of gestation (Yurov et al.  2007a ). Together, these results 
suggest that global mitotic instability associated with aneuploidization in human fetal 
tissues is the main source of aneuploidy confi ned to the brain. Furthermore, embry-
onic neural cells have an extremely large number of mitotic divisions during early 
brain development (~250,000 cells per minute) (Muotri and Gage  2006 ), which can 
also be a reason for abundant brain aneuploidization because of mitotic machinery 
exhaustion in a dramatically accelerated cascade of cell divisions. Nonetheless, the 
intrinsic causes of aneuploidy in humans remain largely unknown (Iourov et al.  2006c , 
 d ,  2008a ; Hassold et al.  2007 ; Li et al. 2009; Weaver and Cleveland  2009 ). 

 Aneuploidy increase in the diseased brain is likely to originate from natural cel-
lular selection. This idea is further supported by observations that each disease 
exhibits chromosome-specifi c aneuploidy (chromosome-specifi c instability), for 
example, schizophrenia (chromosomes 1, 18, and X), Alzheimer’s disease (chromo-
some 21), and ataxia-telangiectasia (chromosome 14) (Yurov et al.  2001 ,  2008 ; 
Iourov et al.  2009a ,  b ). However, some of these are also associated with increased 
sporadic aneuploidy. Therefore, the selection is likely to be driven by different 
effects of alterations to cell clearance or “antianeuploidization” machinery (Iourov 
et al.  2008a ). The extent of clearance failure determines the patterns of CIN or types 
of mosaic aneuploidy in the postnatal brain. A proportion of AD cases and 
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ataxia- telangiectasia are known to be associated with mutations in specifi c genes. 
Thus, presenilin 1, which is mutated in early-onset familiar Alzheimer’s disease, has 
been shown to cause chromosome missegregation and aneuploidy (Boeras et al. 
 2008 ). Amyloid precursor protein, an important element of the AD pathogenic cas-
cade mutated in familiar AD, was also found to be involved in chromosome misseg-
regation (Granic et al.  2010 ; Borysov et al.  2011 ). Finally, the mutated 
ataxia-telangiectasia gene ( ATM ), a component of genome integrity maintenance 
machinery involved in mitotic and apoptotic regulation, produces aneuploidy and 
chromosome-specifi c instability in the affected brain (Iourov et al.  2009a ). Therefore, 
gene mutations can also contribute to formation of brain-specifi c aneuploidy.  

     Aneuploidy in the Aging Human Brain 

 Aneuploidy has been consistently shown to be associated with aging (Ly et al.  2000 ; 
Yurov et al.  2009b ; Faggioli et al.  2011 ). However, the role of aneuploidy in the 
aging of the brain is largely unknown. An increasing rate of mitotic errors in late 
ontogeny can be a mechanism for chromosome gains and losses in aging tissues: 
this corresponds to data on aneuploidy in human tissues composed of mitotic cells 
but is not applicable to postmitotic neural cells. In this context, the human brain is 
probably the most remarkable example of a tissue populated by almost exclusively 
postmitotic cells that are not expected to undergo mitotic division. 

 Although somatic aneuploidy is associated with aging, the normal human brain 
is unlikely to feature a dramatic increase of aneuploidy rates during ontogeny 
(Iourov et al.  2008a ). However, a reevaluation of aneuploidy in the postnatal human 
brain has shown aneuploidy rates tend to increase in this instance. The paradox has 
been theoretically solved proposing two scenarios: (1) natural cellular selection 
does not affect smaller populations of aneuploid cells, whereas the amount of 
euploid cells dramatically decreases throughout ontogeny; and (2) human adult 
n eurogenesis and gliogenesis are prone to mitotic errors (Yurov et al.  2009b ). 

 Mosaic neural aneuploidy is a remarkable biomarker of GIN and CIN. Looking 
through the data concerning aneuploidy in the developing and adult human central 
nervous system, the GIN ‘n’ CIN hypothesis of brain aging has been proposed, sug-
gesting that neural aneuploidy produced during early brain development plays a 
crucial role of aging genetic determinant in the healthy and diseased brain (Yurov 
et al.  2009a ). Key points of brain aging mediated by GIN/CIN are given in Fig.  4.9 .

   Interestingly, neurodegenerative diseases associated with abnormal/accelerated 
aging exhibit high rates of aneuploidy in the affected brain (Mosch et al.  2007 ; 
Arendt et al.  2009 ; Iourov et al.  2009a ,  b ). To evaluate possible changes in the DNA 
content of brain cells during aging, Fischer et al. ( 2012 ) quantifi ed the frequency of 
neurons with a more than diploid DNA content in the cerebral cortex of the normal 
human brain between the fourth and ninth decades of life. Their protocol included 
slide-based cytometry optimized for DNA quantifi cation of single identifi ed 
 neurons, allowing DNA content analysis in about 500,000 neurons for each sample. 
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On average, 11.5 % of cortical neurons showed DNA content above the diploid 
level. The frequency of neurons with alterations to genomic content was highest in 
early adulthood/adolescence and declined with age. These results indicate that the 
genomic variation associated with DNA content exceeding the diploid level might 
compromise the viability of these neurons in the aging brain and might thus 
 contribute to susceptibilities for age-related brain diseases. Alternatively, a potential 
selection bias of “healthy aging brains” needs to be considered, assuming that DNA 
content variation above a certain threshold associates with AD. 

 In contrast to DNA content variations in the aging human brain, the study of a mouse 
model provided alternative results. Faggioli et al. ( 2012 ) used the interphase FISH 
approach to compare aneuploidy levels in the aging murine brain. They showed that 
aneuploidy accumulates with age in a chromosome-specifi c manner (up to 9.8 % of 
nonneuronal brain nuclei in 28-month-old animals for chromosome 18). Although both 
neuronal and glial cells are affected equally at an early age, the age-related increase was 
limited to the nonneuronal nuclei. Extrapolating the data on average frequencies of 
aneuploidy involving 8 chromosomes to the entire murine genome (20 chromosomes), 
would indicate approximately 50 % cells of the aged murine brain to be aneuploid. 
Authors speculate that such high levels of genome instability affecting nonneuronal 

  Fig. 4.9    Schematic representation of the hypothesis on the role of aneuploidy in normal central 
nervous system (CNS) development and aging as well as in pathogenesis of brain diseases. During 
normal prenatal brain development, developmental chromosome instability (CIN) is cleared, lead-
ing to threefold decrease of aneuploidy rates. Brain aging is likely to be associated with a slight 
increase of aneuploidy. Total failure of clearance of developmental CIN would lead to the persis-
tence as observed in CIN syndromes with brain dysfunction (ataxia-telangiectasia) and brain can-
cers. Clearance may not affect low-level chromosomal mosaicism confi ned to the developing 
brain, which is extremely frequent among human fetuses. In such cases, the postnatal brain exhib-
its low-level chromosome-specifi c mosaic aneuploidy. The latter is shown to be associated with 
diseases of neuronal dysfunction and degeneration (mental retardation, autism, schizophrenia, 
Alzheimer’s disease)       
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(glial) cells could be a cause of age-related neurodegeneration (Faggioli et al.  2012 ). 
This speculation is likely to correlate with analyses of aneuploidy in the AT brain (early-
onset progressive neurodegenerative disease characterized by premature aging) (Iourov 
et al.  2009a ). In this premature aging disease, increased aneuploidy and chromosome 
breaks in the brain were predominantly found in nonneuronal cells (up to 80 %) of the 
cerebellum (Fig.  4.10 ). Therefore, available data generally confi rm the signifi cance of 
somatic genome and CIN in the brain during late ontogeny or aging.

        Interphase Chromosomes and Genome Organization 
in the Human Brain 

 The availability of technical solutions for studying interphase chromosomes in the 
human brain allows analyzing the nuclear genome organization as well (Vorsanova 
et al.  2010a ; Iourov et al.  2006b ,  2010 ,  2012 ). Although some previous efforts 

  Fig. 4.10    Multicolor immuno-FISH (NeuN immunophenotyping + MFISH) of AT cerebellum 
cells. ( a   left ): Simultaneous tricolor FISH with chromosome enumeration probes for chromosomes 
1 ( blue signals ), 18 ( magenta signals ), and X ( red signals ) and DAPI staining demonstrate that one 
nucleus ( right ) is aneuploid (chromosome 1 loss). ( a   right ): NeuN immunophenotyping of same 
nuclei demonstrates one NeuN-positive neuronal nucleus ( green color ,  left ) with two chromo-
somes 1 and one NeuN-negative aneuploid neuronal nucleus with monosomy 1. ( b ) Frequency of 
NeuN-positive and NeuN-negative neuronal-like nuclei with chromosomal imbalances in the cer-
ebellum of an AT patient (From Yurov et al.  2009b . Reproduced with permission of Oxford 
University Press in the format reuse in a book/textbook via Copyright Clearance Center)       
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have provided for intriguing data on specifi c patterns of chromosome behavior 
 (chromosomal associations, somatic pairing of homologous chromosome regions) 
and its probable contribution to brain diseases (for review, see Leitch  2000 ; Iourov 
et al.  2006c ), this area of molecular neurocytogenetics remains almost unstudied. 
Apart from a few reports on associations of heterochromatic and much more rarely 
euchromatic regions (Arnoldus et al.  1989 ,  1991 ; Leitch  2000 ; Iourov et al.  2005 , 
 2006a ,  2010 ), chromosome dynamics and chromatin organization at the chromo-
somal level in interphase nuclei of human neuronal cells are almost completely 
unknown. Therefore, it seems that molecular neurocytogenetic analyses of func-
tional interphase chromosome organization at the chromosomal and subchromo-
somal level are strongly required for fi lling the gaps in our knowledge of genome 
behavior in the human central nervous system.  

     Conclusion 

 The present review is aimed at describing the latest advances in molecular neurocy-
togenetics with special attention to chromosome (genome) variations in postmitotic 
cells of the human brain. Aneuploidy is considered as a highly pathogenic type of 
GIN. Mosaic aneuploidy in the brain is the result of mitotic cell-cycle errors during 
developmental and adult neurogenesis and, probably, gliogenesis. Paradoxically, 
addressing neurocytogenetic data, one can conclude that low-level constitutional 
aneuploidy is an integral component of normal human central nervous system 
development and could mediate neuronal diversity. Nevertheless, the pathogenetic 
cascade producing neural genome instability seems to increase neural aneuploidy 
rates in brain diseases. The role of aneuploidy, tetraploidy, and ectopic DNA repli-
cation events in the brain is the basis for numerous hypotheses. Taking into account 
that some neurodegenerative diseases exhibiting acquired brain-specifi c aneuploidy 
are those associated with pathological or accelerated aging, speculations about rela-
tionship between “nonmalignant aneuploidization,” neurodegeneration, and brain 
aging are pertinent. 

 The main outcome of previous molecular neurocytogenetic studies is that mosaic 
aneuploidy does affect the developing and adult human brain. In the developing 
human brain, aneuploidy is likely to regulate cell numbers and is probably a kind of 
“checkpoint” for programmed cell death. In the adult human brain, aneuploid cells 
are likely to represent a signature of developmental CIN. One still cannot exclude 
that aneuploidy also plays a role in human neuronal diversity. The lack of clearance 
of aneuploid cells is likely to be a mechanism for human brain diseases associated 
with CIN and low-level mosaic aneuploidy in the brain. However, the origins of 
aneuploidy and its effects on cellular physiology remain to be established. 
Furthermore, there are psychiatric and neurological disorders that require direct 
studies of genome variability and instability in the diseased brain. We propose that 
current experimental evidence and attractive (but untested) hypotheses concerning 
genome variation in the brain can be used for proposing a theory of neural genome 
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ontogenetic instability in health and disease. This theory would explain the role of 
somatic genome variation in the etiology and pathogenesis of brain diseases and, 
probably, in both normal and pathological brain aging. Finally, it is pointed out that 
molecular neurocytogenetics and cytogenomics are integral parts of current bio-
medicine and possess the potential to yield new discoveries in human genetics, 
genomics, neuroscience, and cell biology.     
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    Abstract     The chromosome has long been viewed as a structure that ensures faithful 
segregation of the genetic materials to daughter cells. However, it is now apparent 
that the chromosome plays a central role in defi ning the genetic network through the 
genome context. One often-confused phenomenon bridging studies of interphase 
chromatin and mitotic chromosomes is chromosome pulverization, which has been 
inappropriately linked to premature chromosome condensation (PCC) and more 
recently confused with chromosome fragmentation (C-Frag), a major form of 
mitotic cell death. Recently there has been increased interest in genome alteration- 
mediated somatic cell evolution and its clinical implications, although a number of 
publications have continued to confuse these terminologies/concepts. 

 To alleviate confusion in this fi eld we review both C-Frag and PCC. 
Discussion of C-Frag includes its morphological and mechanistic 
 characterization, its relationship to genomic instability, and its utility. Discussion 
of PCC pertains to its mechanisms, defi nition, historical perspectives, and its 
application in basic research and clinical settings. C-Frag and PCC are then 
directly compared and contrasted to fully differentiate these two phenomena. 
Chromosome  pulverization, chromosome shattering, and mitotic catastrophe 
are compared in relationship to both C-Frag and PCC. To avoid future confusion 
we suggest avoidance of the ambiguous term chromosome pulverization in 
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favor of the more specifi c term C-Frag or PCC. Finally, future implications and 
perspectives of both C-Frag and PCC are discussed.  

        Introduction 

 It is well established that the chromosome plays a key role in packaging the genes to 
ensure faithful division of genetic material during mitosis (Heng et al.  2004 ). However, 
the chromosome serves more than this obvious purpose (Heng et al.  2011a ). Recently, 
it has been realized that the order of genes along the chromosome and within the 
genome represent a new type of genetic information called system inheritance. The 
genome provides this new information through the genome topology, which is an 
important component of the genome context (all sequences of a given species plus 
genomic topology), which in turn defi nes the genetic network (Heng et al.  2009 , 
 2011a ,  b ; Heng  2013 ). Thus, the most important functions of the chromosomes are (1) 
defi ning the genetic network for all types of somatic cells, and (2) ensuring the main-
tenance of system inheritance (especially through the germline) by preserving the 
karyotype (including the order of genes along the chromosome, as well as the chro-
mosomal compositions within a cell). As the result, alterations in chromosomal num-
ber or structure lead to extensive changes in gene expression, modifying the networks 
in which those genes function (Stevens et al.  2013a ,  b ). Maintenance of chromosome 
makeup (both structurally and numerically) of a cell is thus of great importance, and 
alteration of this makeup results in multiple diseases, especially cancer, by providing 
evolutionary potential. Therefore, there is an urgent need to increase understanding of 
the chromosome and the effects of its alteration (Heng et al.  2009 ,  2010a ,  2013a ; 
Heng  2007 ,  2009 ; Stevens et al.  2011a ; Gorelick and Heng  2011 ). 

 Premature chromosome condensation (PCC) is a phenomenon whereby chromatin 
condensation is induced inappropriately during interphase. The discovery of PCC has 
led to increased knowledge of the basic chromosome structure, the state of the chro-
mosomes during the different stages of interphase, and identifi cation of factors 
involved in the cell cycle (Bezrookove et al.  2003 ; Johnson and Rao  1970 ). One key 
feature of PCC is the resultant chromosomal morphology (Potu et al.  1977 ). Induction 
of PCC during S-phase results in the condensation of partially replicated chromo-
somes, which appear as fragmented clumps of chromosomes. Interestingly, similar 
morphology, often described as chromosome pulverization or shattering, has been 
observed following exposure to a variety of agents, including viral infection, pesti-
cides, caffeine, and ultraviolet light, and in blood diseases (Knuutila et al.  1981 ; Alam 
and Kasatiya  1976 ; Cremer et al.  1980 ; Norrby et al.  1966 ; Kato and Sandberg  1968 ). 
Despite the difference of pulverization from PCC in many of these cases, and warn-
ings of restraint in calling PCC chromosome pulverization, the use of the term pul-
verization has remained (Stevens et al.  2007 ,  2010 ,  2011a ,  b ; Sandberg  1978 ). 

 More recently, a new form of mitotic cell death called chromosome fragmentation 
(C-Frag) has been identifi ed (Heng et al.  2004 ,  2013b ; Stevens et al.  2007 ,  2011a , 
 2013b ; Ye et al.  2007 ). During chromosome fragmentation, condensed mitotic chro-
mosomes are progressively degraded, leading to cell death. C-Frag is induced to 
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eliminate cells subjected to broad-ranging stress, including both external stress such 
as drug treatments or viral infections and internal stress including genome instability 
(Stevens et al.  2011a ). Interestingly, incomplete chromosome fragmentation leads to 
fragmented pieces of chromosomes being rejoined to form highly complex chromo-
somal rearrangements known as genome chaos and a subtype of genome chaos, chro-
mothripsis (Heng et al.  2006 ,  2009 ,  2011a ,  b ; Kloosterman et al.  2011 ; Liu et al.  2013 ; 
Stephens et al.  2011 ). Thus, C-Frag can act as a double- edged sword, on one hand 
serving to retain genomic integrity by removing stressed and altered cells and on the 
other hand changing the genome and perpetuating somatic evolution. 

 Because of the similarities between C-Frag and PCC, these two phenomena are 
frequently confused. In particular, such confusion is evidenced in many recent stud-
ies seeking to understand the mechanism of genome chaos (Heng et al.  2010b , 
 2011a ; Liu et al.  2013 ; Micronuclear chromosome pulverization may underlie chro-
mothripsis  2012 ; Crasta et al.  2012 ). This review seeks to quell that confusion. To 
do so, C-Frag and PCC are discussed, specifi cally in regard to similarities and dif-
ferences in morphology, mechanisms, and outcomes. The basic research and clini-
cal utilities of both phenomena are also discussed. Similarities of the two to other 
confusing phenomena such as mitotic catastrophe, chromosome shattering, and 
chromosome pulverization are briefl y addressed. Finally, future avenues of research 
and implications of these studies are described to provide a broad view and under-
score the importance of both C-Frag and PCC.  

    Chromosome Fragmentation 

    C-Frag Is a Major Type of Mitotic Cell Death 

 C-Frag is a major form of mitotic cell death that occurs directly during mitosis, both 
in vivo and in vitro, and results in the progressive degradation of condensed, mitotic 
chromosomes (Figs.  5.1  and  5.2 ) (Stevens et al.  2007 ). C-Frag has been previously 
observed but was often referred to as PCC (Stevens et al.  2007 ,  2010 ). The realiza-
tion that C-Frag resulted from the degradation of mitotic chromosomes resulted in 
the conclusion that C-Frag and PCC are distinct mechanisms (Stevens et al.  2007 , 
 2010 ,  2011a ). In addition to the distinctive morphology of C-Frag, degraded chro-
mosomes are mitotic, as evidenced by phosphorylation of histone H3 at Ser10, 
whereas viability is lost during the degradation of chromosomes, as well as when 
they are exclusively induced from the window of mitosis (Stevens et al.  2007 ).

    C-Frag differs from apoptosis in both morphology and mechanism. Morphologically, 
on cytogenetic slides apoptotic cells appear as clusters of small round regions of con-
densed DNA (Fig.  5.3 ) (Stevens et al.  2007 ). Mechanistically, C-Frag is not affected 
by overexpression of Bcl-2 or caspase inhibition, and fragmented chromosomes have 
been shown to not react to TUNEL staining, although double-strand breaks are detect-
able during C-Frag by γ-H2AX (Stevens et al.  2007 ). Apoptosis, on the other hand, is 
inhibited by caspase inhibition and Bcl-2 overexpression, and degraded DNA from 
apoptotic cells exhibit positive TUNEL staining. Interestingly although C-Frag 
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  Fig. 5.1    Examples of various stages of chromosome fragmentation (C-Frag). Giemsa ( a – c ) and 
DAPI ( d – f ) images of early- ( a ,  d ), mid- ( b ,  e ), and late-stage ( c ,  f ) C-Frag. In early-stage C-Frag, 
a limited number of chromosomes begin to degrade, as evidenced by broken chromosomes ( red 
arrows ), while most remain unphased ( blue arrows ). As C-Frag continues, more chromosomes 
show signs of degradation and chromosome morphology begins to be lost. At late stages of C-Frag, 
nearly all chromosomes are degraded, although one or more chromosomes may still be intact ( blue 
arrow ) ( a – c  Adapted from Stevens et al.  2007 )       

  Fig. 5.2    C-Frag occurring at later stages of mitosis and earlier stages of mitosis. The morphology of 
C-Frag is also dependent on the stage of mitosis in which it occurs. C-Frag occurring early in mitosis 
(pre-metaphase) results in chromosomes that are not highly condensed and in which separation of 
sister chromatids is not detectable ( a ). Occurrence of C-Frag at or beyond metaphase results in fur-
ther condensation of chromosomes, and separation of sister chromatids is evident ( b ). Occurrence of 
C-Frag in response to various drug treatments more commonly results in chromosome degradation 
at or after metaphase, especially if the treatment includes inhibitors of microtubule dynamics       
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differs from apoptosis, poly ADP ribose polymerase (PARP)  degradation does take 
place during fragmentation, indicating that C-Frag may be a programmed cell death 
where DNA repair by PARP is undesirable during the process (Stevens et al.  2011a ).

   C-Frag also differs in from mitotic catastrophe (MC), an apparently different 
form of mitotic cell death (Stevens et al.  2011a ). Although the Committee on Cell 
Death Nomenclature has advised against the term mitotic catastrophe, studies 
reporting death by mitotic catastrophe are pervasive (Kroemer et al.  2005 ). Multiple 
reports have described MC as a cell death that occurs following an abnormal or 
abortive mitosis (Castedo et al.  2004a ; Chan et al.  1999 ; Roninson et al.  2001 ). In 
some cases MC is linked to caspase activation (Castedo et al.  2004a ). Morphologically, 
MC results in multilobulated nuclei and micronuclei that form during the death 
process (Castedo et al.  2004b ). MC morphology is therefore easily distinguishable 
from C-Frag (Stevens et al.  2011a ). Although C-Frag appears to be distinct from 
other forms of cell death, including apoptosis and MC, it is related to these other 
deaths in that it works in concert with them to ensure that abnormal and damaged 
cells are effectively eliminated (Stevens et al.  2011a ).  

    Morphological Characterization of C-Frag 

 Broadly, C-Frag appears as three distinct morphological groupings: early C-Frag, 
where limited fragmentation has taken place on a limited number of chromosomes; 
late C-Frag, where nearly all chromosomes are degraded and most chromosome 
morphology is lost; and intermediate C-Frag, where extensive chromosomal degra-
dation may have occurred but chromosome structure is largely still apparent 

  Fig. 5.3    Example of an 
apoptotic cell. Although 
apoptosis can result in 
condensation of fragmented 
DNA, this condensation 
differs in morphology from 
chromatin condensation. 
Apoptotic DNA fragments 
aggregate into small, 
condensed, circular clusters 
of DNA that differ drastically 
from condensed 
chromosomes       

 

5 Differentiating Chromosome Fragmentation and Premature Chromosome…



90

(Fig.  5.1 ) (Stevens et al.  2007 ). C-Frag can further be classifi ed based on when it 
occurs during mitosis. C-Frag occurring during or following metaphase or after 
extended mitotic arrest results in small, tightly condensed chromosomes that are 
degraded during the process. C-Frag that occurs before metaphase results in 
degraded chromosomes that tend to be longer, not overly condensed, and have sister 
chromatids which have not separated (Fig.  5.2 ).  

    C-Frag Occurs as a Response to Stress 

 Mechanistically, C-Frag occurs as a general response to stress (Stevens et al.  2011a ). 
C-Frag was originally identifi ed in cells treated with genotoxic drugs; however, 
C-Frag is not caused directly by genotoxicity by a specifi c drug/reagent. C-Frag has 
been shown to occur in response to a number of treatments that can broadly be 
summed as stresses to the cellular system. Initially, C-Frag was described as chro-
mosome pulverization resulting from measles infection, but it has subsequently also 
been shown to occur in knockouts of ATR, ATM, and p53 (Nichols and Levan  1965 ; 
Brown and Baltimore  2000 ; Fukasawa et al.  1997 ). Furthermore, C-Frag can be 
induced by endoplasmic reticulum stressors such as A31187, DTT, and thapsigar-
gin. In fact, simply increasing the temperature at which cells are cultured increases 
the frequency of C-Frag. Finally, stress induced by the effects of genomic instability 
results in C-Frag. Cell lines with high levels of genomic instability also show 
increased levels of spontaneous C-Frag (Stevens et al.  2011a ). 

 Further support for the mechanistic link between stress and C-Frag is evidenced 
by centrosome amplifi cation (Stevens et al.  2011a ). Centrosome amplifi cation also 
occurs during times of stress. HSP90 is a core component of the centrosome, and 
inhibition of its function with 17-DMAG increases C-Frag (Stevens et al.  2011a ). 
Taken together, C-Frag can be described as a mitotic cell death that occurs when 
mitotic cells are exposed to stress in general or which occurs when cells that have 
encountered lethal levels of stress are able to bypass cell-cycle checkpoints and 
enter mitosis (Fig.  5.4 ) (Stevens et al.  2011a ).

       C-Frag and Genomic Instability 

 C-Frag has direct implication for genomic instability. Cell-cycle checkpoint func-
tion is often abrogated in cells with genomic instability such as cancer cells. Loss of 
cell-cycle checkpoint function is common in cancer. Thus, mitotic cell death is the 
major type of cell death that occurs during cancer therapy, and C-Frag is a major 
form of mitotic cell death. Normally, damaged or highly stressed cells are arrested 
at cell-cycle checkpoints where the damage can then be fi xed, or signals for 
 apoptosis are given. In cells with genome change, however, gene networks are 
altered and their function changes, resulting in the ability to escape checkpoints; 
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therefore, mitotic cell deaths, especially C-Frag, are the last line of defense to elimi-
nate cells with altered genomes. 

 In the case of genomic instability, C-Frag can be a double-edged sword. Although 
C-Frag does eliminate cells with altered genomes, C-Frag can induce further 
genome change. C-Frag-related genomic change occurs in three ways. First, C-Frag 
can eliminate single (or multiple) chromosomes without inducing cell death, result-
ing in aneuploidy (Stevens et al.  2007 ). This chromosome elimination is more com-
mon when treatment dosages are sublethal. Interestingly, in yeast it has been shown 
that genome duplication followed by the loss of chromosomes is a major mecha-
nism in the development of aneuploidy. C-Frag is one way to lose chromosomes and 
create aneuploidy. Second, in certain cases the process of C-Frag can stop, leaving 
large regions of chromosomes partially digested. Repair mechanisms such as non-
homologous end-joining can repair these partially digested chromosomes, resulting 
in highly rearranged chromosomes that are indicative of genome chaos. Interestingly, 
this could provide a mechanism for chromothripsis, one subtype of genome chaos 
where portions of one or more chromosomes are inserted into another chromosome, 
resulting in a highly rearranged chromosome with repeating segments of other chro-
mosomes (Stephens et al.  2011 ; Liu et al.  2013 ). Third, a fraction of C-Frag cases 
directly contribute to genome chaos (Liu et al.  2013 ). Following induction of 
C-Frag, chromosome repair mechanisms including nonhomologous end-joining 
reattach chromosomal fragments to form new chimeric chromosomes (Fig.  5.5 ). 
Cells with genome chaos persist typically only for a few weeks until a stable genome 
is selected, but in some cases genome chaos can persist (Stephens et al.  2011 ; Liu 
et al.  2013 ).

       Utility of C-Frag 

 The implications and utility of C-Frag are wide ranging. First, C-Frag functions 
in concert with other forms of cell death to eliminate diseased, stressed, or altered 

  Fig. 5.4    Relationship between cellular stress and death. Cells subjected to levels of stress respond 
in multiple ways. Sublethal doses of stress in most cases result in adaptation of the cell without 
disruption to the genome system. Lethal doses of stress, however, affect individual cells differen-
tially. The type of cell death that is induced is dependent on a number of factors including the 
integrity of the affected cell genome, the current state of the cell (such as the point in the cell cycle 
where the cell resides during the stress encounter or the intactness of cell-cycle checkpoints), the 
availability of cell death-inducing networks, and the degree and type of stress that is encountered 
(Adapted from Stevens et al.  2011a )       
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cells (Stevens et al.  2011a ). In combination with measures of other types of cell 
death, C-Frag is useful in measuring the amount of cell death occurring in a given 
sample. C-Frag is especially useful in measuring cell death in cancer samples 
because mitotic cell deaths are the main types of cell death that occur during 
cancer treatment and C-Frag is a major form of mitotic cell death. Therefore, 
C-Frag has obvious utility in evaluating the effi cacy of new chemotherapeutic 
drugs. Second, C-Frag is a type of nonclonal chromosome aberration (NCCA) 
and is useful as an indicator of genome stability (Stevens et al.  2011a ). 
Spontaneous C-Frag increases with genome instability. Thus, the presence of 
C-Frag occurring spontaneously at increased frequencies indicates increased 
genome instability. Incomplete C-Frag can lead to further induction of genomic 
instability through the development of genome chaos or aneuploidy. Therefore, 
C-Frag also gives a window into the probability of genome change, which in turn 
can be used to monitor the evolutionary potential for targeted cells (Stevens et al. 
 2007 ,  2011a ,  b ,  2013b ).   

  Fig. 5.5    Incomplete C-Frag 
can lead to multiple types of 
genome chaos. Following 
exposure to stress, normal 
chromosomes ( top ) undergo 
C-Frag ( middle ). Activation 
of various repair mechanisms 
such as nonhomologous 
end-joining results in 
rejoining of the fragments in 
a manner that reshuffl es the 
genome (represented by the 
changing of the lettered 
regions of the genome and 
the chromosome number), 
resulting in genome chaos 
( bottom ) (Adapted from Heng 
et al.  2011b )       
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    Premature Chromosome Condensation (PCC) 

    Defi nition and Historical Perspectives 

 Premature chromosome condensation (PCC) is a process whereby interphase 
chromatin is induced to condense into chromosomes abnormally (Johnson and 
Rao  1970 ; Sperling and Rao  1974a ; Rao  1982 ). This condensation should not be 
confused with apoptotic condensation where degraded interphase DNA con-
denses (Figs.  5.3  and  5.6 ) (Martelli et al.  1997 ). During PCC, mitosis-promot-
ing factor (MPF), which is composed of cyclin b and CDK1 (cdc2p34), is 
activated, moves from the cytoplasm to the nucleus, stimulating the events of 
mitosis, including breakdown of the nuclear envelope and condensation of chro-
matin (Nurse et al.  1976 ; Masui  2001 ; Wasserman and Masui  1976 ). The mor-
phology of PCC differs depending on the stage of interphase in which PCC is 
induced. Induction of PCC during G 

1
  or G 

2
  results in condensation of complete 

chromosomes (Fig.  5.6 ) (Johnson and Rao  1970 ; Potu et al.  1977 ; Hanks et al. 
 1983 ). In the case of G 

1
  PCC, the chromatin has not been replicated, so the 

  Fig. 5.6    Examples of various stages of premature chromosome condensation (PCC): Giemsa ( a –
 d ) and DAPI ( e – h ) staining. Treatment of cells with the phosphatase inhibitor calyculin A induces 
PCC in cells where cyclin b and CDK1 are present, primarily S-phase and G 

2
 . The morphology of 

the resultant PCC fi gure depends on the stage of the cell cycle in which PCC is induced. During 
S-phase PCCs take on a “pulverized” appearance ( a – c ,  e – g ). PCCs in early S-phase cells result in 
condensation of small regions of the chromosomes ( a ,  e ). The visibly condensed regions have 
replicated whereas the unreplicated regions remain less tightly condensed. As S-phase proceeds, 
larger portions of the genome are replicated and chromosome morphology becomes more apparent 
( b ,  c ;  f ,  g ). Notice the uniformity in size of the condensed regions within each cell. G 

2
  PCC causes 

condensation of fully replicated chromosomes, resulting in long chromosomes with little chroma-
tid separation ( d ,  h )       
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chromosomes lack sister chromatids. G 
2
  PCC chromosomes appear similar to 

early prophase chromosomes: they tend to be long, skinny, and not very 
 condensed. Induction of PCC during S-phase results in the most unique chromo-
some morphology of the three stages of interphase. S-phase chromatin has not 
been fully replicated, and PCC induced during S-phase results in fi gures where 
replicated regions of chromosomes have normal condensed chromosome mor-
phology while intervening unreplicated regions appear to lack chromatin 
(Fig.  5.6 ). This appearance can lead to the false conclusion that there are breaks 
between the replicated regions.

   PCC was fi rst described in 1970 when it was found that fusion of mitotic and 
interphase cells by the Sendai virus would cause condensation of the chromatin 
from the interphase cell (Johnson and Rao  1970 ). This fi nding demonstrated that 
mitotic cells could induce condensation of interphase chromatin but did not identify 
the reason for this. Subsequent work showed that MPF was the factor that initiated 
the PCC process (Masui and Markert  1971 ). MPF was soon after identifi ed as a 
heterodimer of cyclin b and cdc2 (CDK1) (Lee and Nurse  1987 ). 

 Other methods to induce PCC have also been developed (Miura and Blakely 
 2011 ). Soon after the discovery that inactive Sendai virus could induce fusion-
based PCC, protocols were developed that used ethylene glycol to induce fusion, 
eliminating the need for viral production (Lau et al.  1977 ). A number of chemicals 
have also been discovered to be capable of inducing PCC. For example, caffeine 
in combination with inhibitors of DNA synthesis such as hydroxy urea has been 
shown to induce PCC (Rybaczek and Kowalewicz-Kulbat  2011 ). The maturation 
of MPF requires phosphorylation of CDK1, which occurs spontaneously without 
dephosphorylation by protein phosphatase 2C (PP2C). Okadaic acid was found to 
dephosphorylate PP2C, inactivating it and inducing PCC (Ghosh et al.  1992 ). 
Subsequently calyculin A, a molecule with increased affi nity for PP2C over other 
protein phosphatases, was isolated and found to potently induce PCC (Miura and 
Blakely  2011 ). 

 PCC has also been shown to occur as a result of various genetic manipulations. 
Attenuation of the G 

2
  checkpoint by deletion of key checkpoint proteins such as 

ATR can sensitize cells to PCC, especially in the presence of inhibitors of DNA 
synthesis (Nghiem et al.  2001 ). Other systems have been developed where PCC is 
induced in syncytia by coculture of one cell line expressing a receptor such as 
CD4 and another expressing a ligand such as the HIV envelope protein (Castedo 
et al.  2002 ,  2004c ). As further discussed next, many phenomena previously 
described as PCC are actually C-Frag. Such confusion is caused by similar phe-
notypical characteristics. 

 Induction of PCC by fusion or by inhibitors of PP2C does not differ mechanisti-
cally because both types of PCC are caused by the exposure of interphase chromatin 
to activated MPF, regardless of the origin of the MPF. Aside from fusion-based PCC 
resulting in two closely located mitotic fi gures (the original mitotic chromosomes 
and the PCCs), G 

1
  PCC is rarely detectable by drug-induced PCC. Drug-induced 

PCC requires the presence of cyclin b and CDK1 to have an effect, and cyclin b in 
most cases is not expressed until S-phase (Bezrookove et al.  2003 ).  
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    Application of PCC 

 The major application of PCC has been to induce condensation of interphase 
chromatin to allow for cytogenetic analysis (Bezrookove et al.  2003 ; Potu et al. 
 1977 ; Cheng et al.  1993 ). In addition, the PCC method has been used to address 
many basic questions of cell biology, and it has been instrumental in identifi cation 
of the proteins and complexes of the cell cycle, especially mitosis (Potu et al. 
 1977 ; Sperling and Rao  1974b ). PCC has also aided in developing the current 
 understanding of how mitosis occurs. More recently PCC has been used to uncover 
unique  mechanisms of DNA repair and to determine bystander effects of nuclei 
exposed to radiation (Terzoudi et al.  2008 ,  2010 ). In addition to its use in basic 
research, PCC has been an important method for karyotyping tissues and cells 
with low mitotic indices, as mitotic fi gures are required for cytogenetic analysis 
(Bezrookove et al.  2003 ; Miura and Blakely  2011 ). PCC is commonly used to 
measure radiation exposure and DNA damage caused by other exposures (Miura 
and Blakely  2011 ; Balakrishnan et al.  2010 ). Interestingly, fusion-based PCC 
could be used to determine the stage of the cell cycle that is the most susceptible 
to various forms of DNA damage. In this method PCC is induced in lymphocytes 
from patients with radiation exposure to visualize chromosome breaks to ascertain 
radiation exposures. PCC has also been used to karyotype tumor tissue as it 
reduces the need for cell culture. It is important to optimize conditions of PCC 
induction when it is used for monitoring DNA damage, because the condition of 
the cells in which PCC is induced, the concentration of okadaic acid or calyculin 
A, and the time of treatment all affect the quality of the fi gures produced (Miura 
and Blakely  2011 ).   

    Direct Comparison of C-Frag and PCC 

    Differences 

 C-Frag and S-phase PCC fi gures can be diffi cult to differentiate, but the phenomena 
can be differentiated by a number of factors (Table  5.1 ). Fusion-based PCC is the 
easiest form of PCC to differentiate from C-Frag as fusion-based PCC results in 
fi gures containing a mitotic cell located closely to the nucleus undergoing PCC. 
Although there are instances of the two fi gures overlapping, this is uncommon. 
Visual assessment of ploidy levels of the involved nuclei can be helpful in cases of 
overlap. Although most cell lines have some degree of aneuploidy, nuclei from 
fused cells can be differentiated from aneuploidy cells by having an idea of the aver-
age chromosome count of the studied population. Differentiation of nonfusion- 
based PCC and C-Frag is slightly more diffi cult. Morphologically, C-Frag results in 
a higher diversity of chromosomal morphology within a given mitotic fi gure. 
C-Frag, especially in cases of intermediate-stage fragmentation, produces mitotic 

5 Differentiating Chromosome Fragmentation and Premature Chromosome…



96

   Table 5.1    Diverse mechanisms of chromosome fragmentation (C-Frag)   

 Factors of pulverization/shattering  Species  Year  References 

 UV exposure   Tradescantia 
paludosa  

 1954  Lovelace ( 1954 ) 

 Exposure of male mice to methyl methane-
sulfonate before fertilization of female 
mice. Shattering seen in fi lial cells 

 Mouse  1975  Brewen et al. ( 1970 ) 

 Infection of lymphocytes with JM-V 
herpesvirus 

 Chicken  1976  Yoon et al. ( 1976 ) 

 Treatment with fungicide 
 N -trichloromethylthio-phthalimide 

 Human  1978  Sirianni and Huang 
( 1978 ) 

 Pulverization caused by UV light and 
caffeine 

 Chinese hamster  1980  Cremer et al. ( 1980 ) 

 Exposure to alpha-amanitin  Rat  1985  Magalhães and 
Magalhães 
( 1985 ) 

 Doxorubicin treatment. Pulverization 
inhibited in drug-resistant cells 

 Human  1986  Tapiero et al. ( 1986 ) 

 Herpes simplex virus type 1 infection  Human  1986  Peat and Stanley 
( 1986 ) 

 Hepatitis B infection. Pulverization occurs 
in both hepatocellular cell line derived 
from a tumor and in peripheral 
lymphocytes from the patient 

 Human  1986  Simon and Knowles 
( 1986 ) 

 Herpes simplex virus (HSV) type 1 
infection. Endoreduplication was 
noted. Also HSV infection increased 
the mitotic index 

 1986  Chenet-Monte et al. 
( 1986 ) 

 Friend leukemia cells exposed to high 
levels of ADM 

 Mouse  1986  Patet et al. ( 1986 ) 

 Following incubation of cells with 
temperature-sensitive DNA polymerase 
α in S-phase at 39 °C that were then 
cultured in a permissive temperature 

 Mouse  1987  Eki et al. ( 1987 ) 

 Photoirradiation of G 
2
  or early prophase 

cells 
 CHO  1990  Fernandez et al. 

( 1990 ) 
 Hepatitis B integration and genomic 

instability 
 Human  1993  Grabovskaya et al. 

( 1993 ) 
  N -Methyl- N ′-nitro- N -nitrosoguanidine 

(MNNG), sodium selenite, and caffeine 
treatment of CHO cells 

 Chinese hamster  1994  Balansky et al. 
( 1994 ) 

 Culture of a fi broblast line generated from 
a patient with xeroderma 

 Human  1995  Casati et al. ( 1995 ) 

 Associated with ubiquitin-activating 
enzyme E1 activity 

 Mouse  1995  Sudha et al. ( 1995 ) 

 Vaccination against hog cholera virus  Swine  1998  Genghini et al. 
( 1998 ) 

 Radiation exposure  Mouse  1998  Ganasoundari et al. 
( 1998 ) 

 Maintenance of diploid karyotype in PA-1 
cells by removal of tetraploid cells 

 Human  1999  Gao et al. ( 1999 ) 

(continued)
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fi gures where some chromosomes are degraded to the point that chromosomal 
morphology is lost while some chromosomes may remain intact. In contrast, the 
chromosomal morphology and the number of gaps between condensed regions in 
S-phase PCC chromosomes is dependent on the degree of replication that has 
occurred. Although certain chromosomes may replicate at different times, overall 
replication tends to occur similarly across the genome. Thus, induction of PCC in 
S-phase cells results in fi gures with a more regular morphology than those produced 
by C-Frag. An exception to this rule occurs in micronucleated cells. Micronuclei 
can replicate at different times than does the main nucleus. When the cell completes 
G 

2
  and enters into M-phase, partially replicated micronuclei can be induced to 

undergo PCC, resulting in a small region of a mitotic fi gure showing similar mor-
phology to C-Frag. Care should be taken during cytogenetic analysis to note the 
prevalence of micro- and multinucleated cells within the population as C-Frag may 
be over estimated in these populations. C-Frag occurring in later stages of mitosis 
can also be easily differentiated as PCC does not produce highly condensed chro-
mosomes. Taken together, careful morphological inspection during cytogenetic 
analyses can differentiate C-Frag and PCC.

   C-Frag and PCC can also be differentiated biochemically. Although morphologi-
cally S-phase PCC fi gures appear to have breaks interspersed in regions of condensed 
chromatin, these gaps are not formed by DNA breaks (Gollin et al.  1984 ): they are 
simply composed of the unreplicated regions of DNA that do not readily condense. 
The lack of DNA breaks in S-phase PCC has been confi rmed by electron microscopy 
and the lack of γ-H2AX staining, which is indicative of double-strand breaks. The 
chromosomal pieces observed in C-Frag, on the other hand, show extensive γ-H2AX 
staining, although to date electron microscopy has not been performed on C-Frag. A 
prepulse of bromodeoxyuridine (5-bromo-2'-deoxyuridine, BrdUrd) before induction 
of S-phase PCC demonstrates active DNA replication during S-phase PCC whereas 
culturing mitosis-arrested cells in BrdUrd and subsequently inducing C-Frag by 
doxorubicin treatment did not reveal active DNA replication, demonstrating that 
C-Frag occurs during mitosis and is not related to S-phase. Furthermore, during 
C-Frag induction of PCC does not result in PARP degradation. Outside the nucleus, 
PCC and C-Frag also differ. C-Frag is associated with multiple centrosomes while 

Table 5.1 (continued)

 2-Methoxyestradiol, an endogenous 
metabolite of estrogen 

 Human  2000  Tsutsui et al. ( 2000 ) 

 Following vaccination of pigs 
for swine fever 

 Swine  2002  Genghini et al. 
( 2002 ) 

 Streptozotocin treatment  Human  2003  Bolzán and Bianchi 
( 2003 ) 

 Viral infection in pigs  Swine  2004  Sutiaková et al. 
( 2004 ) 

 Vitamin C treatment of lymphocytes  Human  2008  Nefíc ( 2008 ) 
 Shattering by UV light and caffeine 

exposure 
 Chinese hamster  2009  Hübner et al. ( 2009 ) 

    Source : Adapted from Stevens et al. ( 2010 )  
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spindle formation is inhibited during PCC (Ghosh et al.  1992 ). Thus, C-Frag and PCC 
are distinguishable at both morphological and biochemical levels.  

    Overlap 

 Although PCC and C-Frag can be differentiated in most cases, there are some areas 
of overlap between the two phenomena. This overlap centers on the G 

2
  checkpoint. 

In cancer, the checkpoint function is often abrogated (Kastan and Bartek  2004 ), 
allowing cells with DNA damage that would normally arrest before mitosis until 
that damage was repaired to abnormally enter mitosis. Entry into mitosis with DNA 
damage then can result in the induction of C-Frag (Stevens et al.  2011a ). Thus, cells 
that abnormally slip past the G 

2
  checkpoint are prematurely entering mitosis. 

Although C-Frag and PCC are distinct phenomena, as with many cellular phenom-
ena there is some overlap.   

    Pulverization, Shattering, and Mitotic Catastrophe 

    Pulverization and Shattering 

 A number of reports of chromosome pulverization and chromosome shattering pre-
date discovery of PCC (Lovelace  1954 ; Nichols and Levan  1965 ; Kato and Sandberg 
 1967 ). Subsequent discovery of PCC led to the shattered fi gures being called PCC, 
although there must be some doubt to PCC being the mechanism in all cases of shat-
tering or pulverization because the continued use of the terms ‘shattering’ and ‘pul-
verization’. Although some cases of pulverization are indeed PCC, such as in the 
case of binucleate cells in which the nuclei asynchronously replicate and in cases of 
cellular fusion that result in obvious PCC fi gures (Kato and Sandberg  1967 ), other 
cases wherein pulverization is induced by various widely ranging stresses, includ-
ing viral infection, chemical exposure, radiation exposure, and genetic defects, this 
pulverization is most likely C-Frag (Table  5.2 ) (Stevens et al.  2010 ; Nichols and 
Levan  1965 ). Recently chromosome pulverization has been raised as a potential 
mechanism behind chromothripsis, a form of genome chaos where a single chro-
mosome recombines multiple times to form a highly complex chromosome (Crasta 
et al. 2012). However, pulverization is synonymous with PCC, and PCC does not 
result in strand breaks; thus, pulverization cannot contribute to chromothripsis 
(Stevens et al.  2010 ; Micronuclear chromosome pulverization may underlie chro-
mothripsis  2012 ; Gollin et al.  1984 ). Chromosome pulverization, or shattering, is a 
morphological description, whereas C-Frag and PCC are both morphological and 
mechanistic descriptions. Therefore, the use of chromosome pulverization/shatter-
ing should be avoided in favor of either S-phase PCC or C-Frag, depending on 
which process is observed. As we previously suggested, the use of C-Frag will 
reduce such confusion (Stevens et al.  2010 ).
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       Mitotic Catastrophe 

 The term mitotic catastrophe has been applied to a number of phenomena where cell 
death is linked to mitosis. Various reports have shown mitotic catastrophe to occur 
with multiple phenotypes, which range from cell death following abnormal mitosis 
where apoptotic pathways are activated, to cell deaths that occur directly during mito-
sis which may or may not be associated with apoptosis (Chan et al.  1999 ; Roninson 
et al.  2001 ; Castedo et al.  2004b ; Hübner et al.  2009 ). Despite warnings against its use 
because of the lack of a solid, recurrent morphological or mechanistic defi nition, the 
term mitotic catastrophe has remained pervasive in the literature (Kroemer et al. 
 2005 ). Many reports of mitotic catastrophe rely on DNA content measures to defi ne 
mitotic cells without using specifi c markers of mitosis such as histone H3 phosphory-
lation at serine 10 or without cytogenetic or in-depth morphological characterization. 
This carelessness has led to increased confusion in the fi eld. 

 C-Frag has been shown to differ from a well-described model of mitotic catastro-
phe. In this model, cells lacking 14-3-3σ, which plays a role in the G 

2
  checkpoint, 

have been shown to undergo a mitotic cell death following low-dose doxorubicin 
treatment; however, when these cells were treated no C-Frag was detectable (Stevens 
et al.  2007 ; Chan et al.  1999 ). Other models of mitotic catastrophe have been devel-
oped that are based on cellular fusion (Castedo et al.  2002 ,  2004a ). In this case it is 
likely that a signifi cant portion of cells are undergoing PCC. The fact that descrip-
tions of mitotic catastrophe are wide ranging should, however, not detract from the 
important message that mitotic cell deaths play a major role in the reduction of 
tumor size following chemotherapy. It is apparent that at least two distinct types of 
mitotic cell death occur: C-Frag, which occurs directly during mitosis, and another 
form of cell death that occurs following an abnormal or failed mitosis.   

   Table 5.2    Identifi able differences of chromosome fragmentation and premature chromosome 
condensation (PCC)   

 Chromosome fragmentation  PCC 

 Morphological 
 Single cell involvement  If fusion induced, normal, intact mitotic cells will 

be in close proximity to fragmented cells 
 Can affect single chromosomes  Impacts entire genome regularly, except in limited 

multinucleated cells 
 Results in chromosome degradation  Unknown, may activate chromosome breakdown 
 Chromosome morphology lost 

as process progresses 
 Chromosome morphology dependent on position 

in cell cycle 
 Differential cut size  Differential condensation states 
 Mechanistic 
 Occurs during mitosis  Occurs in interphase cells exposed to active MPF 
 Not inhibited by roscovitine  Inhibited by roscovitine 
 Induced by stress during mitosis  Induced by cell fusion or activation of MPF 
 γ-H2AX positive  γ-H2AX negative 
 No active DNA incorporation  Actively incorporating DNA 

    Source : Previously published from Stevens et al. ( 2010 )  
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    Future Perspectives 

 A major drawback of cytogenetic analyses is the requirement for condensed 
 chromosomes to perform most analyses. PCC has proven to be an important cyto-
genetic method that increases the ability to observe mitotic fi gures in cells or tissues 
which are not actively dividing, and it will continue to have multiple clinical and 
basic research implications. PCC has proven to be instrumental in the development 
of our knowledge of the cell cycle, especially the proteins and complexes that are 
involved in mitosis. PCC will continue to be an important tool in measuring DNA 
breaks associated with radiation and other hazardous exposures. Development of 
improved methods of inducing PCC, especially methods of inducing G 

1
  PCC to 

allow cytogenomic analysis of tissues with little or no mitotic activity, will improve 
the power of PCC and cytogenomics in general. 

 Multiple questions about C-Frag remain and should be addressed in future work. 
First, although C-Frag differs from apoptosis, these two types of cell death appear 
to complement each other in that they both eliminate unfi t cells. Further work will 
determine potential links between these deaths and other deaths such as autophagy 
and necrosis, and whether other forms of cell death may be activated late in the 
process of C-Frag (Stevens et al.  2007 ). Determination of whether there is a specifi c 
order of C-Frag may reveal more of the biology behind C-Frag. Identifi cation of 
whether there are specifi c sequence motifs that are targeted early in C-Frag, and 
whether portions of the genome are more resistant to degradation, would also be 
interesting; current genomic technologies such as next-generation sequencing put 
this research within grasp and could aid in identifi cation of the proteins/systems 
directly responsible for fragmenting the chromosomes. 

 As C-Frag represents a type of NCCA, a key question is what is the relationship 
between C-Frag and overall frequency of the NCCAs? How to use the C-Frag to 
predict the outcome of cancer therapy and potential risk of induced genome chaos? 
Increasing the knowledge of how C-Frag is related to genome chaos and other chro-
mosome aberrations may provide new insights into the somatic evolution leading to 
cancer. Finally, as C-Frag may also be involved in developmental processes, more 
research is needed to address its signifi cance in both development and evolution 
(Fujiwara et al.  1997 ; Gernand et al.  2005 ).  

    Conclusion 

 Chromosome fragmentation and PCC are processes that are distinct both morpho-
logically and mechanistically, although they have been confused in the past. C-Frag 
is a major form of mitotic cell death that is induced by various forms of stress 
whereas PCC is a phenomenon in which interphase chromatin is forced to abnor-
mally condense outside mitosis. Both C-Frag and PCC are relevant for both basic 
research and in the medical clinic, and future studies of both phenomena will 
increase our understanding of the chromatin and chromosomes.     
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    Abstract     The ICF syndrome is a rare, autosomal recessive disorder, often fatal in 
childhood, and characterized by genetic and clinical heterogeneity. Its most 
 consistent features are reduction in serum immunoglobulin levels, facial  anomalies, 
and cytogenetic defects. ICF is also characterized by abnormal DNA methylation. 
Signifi cant DNA hypomethylation is present mainly in the classical satellite 
sequences, the major constituent of the juxtacentromeric heterochromatin of chro-
mosomes 1, 9, and 16. The relationship between DNA methylation defects, altered 
gene expression, and clinical and phenotypic features in ICF has been the object of 
intense scrutiny. Although the full pathogenetic picture remains to be elucidated, a 
number of hypotheses advocating an epigenetic model for this syndrome have been 
advanced by  different research groups. Central to some of these hypotheses is the 
postulation of a trans-acting regulatory role for the heterochromatin and the sugges-
tion of a possible connection between altered gene  expression in ICF and the inap-
propriate release or recruitment of regulatory complexes by the hypomethylated 
satellite DNA. This chapter reviews the evidence supporting an association between 
pathology, large-scale chromatin organization, and nuclear architecture in this enig-
matic syndrome.  

        Introduction 

 The ICF syndrome (OMIM 242860) is a rare genetic disorder with a distinctive 
chromosomal phenotype. The acronym ICF was coined more than 20 years ago 
(Maraschio et al.  1988 ) to describe a newly identifi ed syndrome characterized 
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by  i mmunodefi ciency,  c entromeric instability, and  f acial anomalies. 
Cytogenetically ICF is distinguishable because of its variable chromosomal 
instability and typical structural aberrations, mostly involving the centromeric 
regions of chromosomes 1 and 16, and to a lesser extent chromosome 9, with the 
most distinctive feature being the apparent stretching or despiralization of the 
large blocks of juxtacentromeric—or centromere-adjacent—heterochromatin. 
Chromosomal anomalies in ICF patients also include homologous and nonho-
mologous associations of those centromeric regions, multibranched confi gura-
tions involving one or more of the decondensed chromosomes, nuclear 
protrusions, micronuclei, and duplications or deletions of whole chromosome 
arms (Brown et al.  1995 ; Gimelli et al.  1993 ; Sawyer et al.  1995a ; Tuck-Muller 
et al.  2000 ). Those chromosomal abnormalities are almost exclusively encoun-
tered in phytohemagglutinin-stimulated lymphocytes. In fi broblasts and 
Epstein–Barr virus (EBV)-transformed lymphocytes, the cytogenetic manifes-
tations of the syndrome are limited to the occasional elongation of the hetero-
chromatic regions (Maraschio et al.  1989 ). 

 The ICF syndrome is often fatal in childhood. The immunodefi ciency is typically 
the cause of early fatalities, and the normal cause of death in ICF patients is infec-
tion, usually of the pulmonary or gastrointestinal tract. Although the majority of 
patients display only humeral immunodefi ciency, a considerable number show com-
bined immunodefi ciency with additional defective cellular immunity, characterized 
by a reduction or inversion in the CD4 + /CD8 +  T-cell ratio. Thus far, only one patient 
lacking the immunodefi ciency phenotype has been described. Facial anomalies in 
ICF patients are mild and include hypertelorism, low-set ears, fl at nasal bridge, 
epicanthal folds, and macroglossia. Psychomotor and mental retardation are also 
often observed in this syndrome. The spectrum of phenotypic and clinical features 
resulting in the pronounced heterogeneity of the ICF syndrome has been compre-
hensively covered in a number of expert reviews (Ehrlich  2003 ; Ehrlich et al.  2008 ; 
Hagleitner et al.  2008 ). 

 Since its initial description, the enigmatic nature of this syndrome has continued 
to fascinate scientists worldwide and from different biomedical spheres with the 
result that, in spite of its rarity—approximately 50 cases reported so far—and the 
limited availability of study material, published research on various aspects of ICF 
has fl ourished over the past 20 years. Although investigations on the ICF syndrome 
initially seemed almost exclusively the dominion of clinical genetics, cytogenetics, 
and immunology, with the growing number of case reports and the complexity of 
the disorder becoming gradually more evident, cross-referencing and the drawing of 
parallelisms between specifi c fi ndings in ICF and related aspects of cancer biology, 
epigenetics, genomics, and developmental biology have become increasingly 
 frequent (Aran et al.  2011 ; Ehrlich  2009 ; Ehrlich et al.  2006 ; Feng and Fan  2009 ; 
Martins-Taylor et al.  2012 ; Toyota and Suzuki  2010 ; van den Brand et al.  2011 ). 
However, notwithstanding the global research efforts and the extensive range of 
experimental approaches deployed, the full ICF pathogenetic picture remains 
s omehow elusive.  
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    Methylation Defects and Genetic Heterogeneity 

 Methylation at the 5-position of cytosine within CG dinucleotides is an important 
epigenetic modifi cation, critical for gene regulation and control of chromatin struc-
ture in mammalian cells. One of the hallmark molecular features of the ICF syn-
drome is defective DNA methylation. Most specifi cally, ICF patients present with 
signifi cant constitutive hypomethylation at the classical satellite 2 DNA, the major 
constituent of the juxtacentromeric heterochromatin at 1qh and 16qh, which is nor-
mally hypermethylated in somatic cells. Chromosome 9 juxtacentromeric hetero-
chromatin, which mainly consists of the related satellite 3, also appears to be 
hypomethylated, although to a lesser extent (Jeanpierre et al.  1993 ). A small num-
ber of other genomic regions have been shown to have signifi cant hypomethylation 
in ICF syndrome, most notably the centromeric alpha satellites (Miniou et al. 
 1997a ), Alu sequences (Miniou et al.  1997b ) and the non-satellite repeats D4Z4 and 
 NBL2  (Kondo et al.  2000 ). Single-copy loci showing heterogeneous hypomethyl-
ation comprise the imprinted loci D15S9, D15S63, and H19 (Schuffenhauer et al. 
 1995 ), and in female ICF cells a number of genes residing on the inactive X chro-
mosome (Hansen et al.  2000 ; Bourc’his et al.  1999 ; Miniou et al.  1994 ). 

 Initial investigations on the DNA methylation status in ICF were prompted by 
the observation that chromosome rearrangements seen in ICF cells were reminis-
cent of the chromosomal changes induced by the undermethylating agent 
5- azacytidine (examples in Fig.  6.1 ). Key cytological evidence implicating DNA 
hypomethylation in the formation of pericentromeric anomalies in ICF was pro-
vided by Ji et al. ( 1997 ), who confi rmed in a pro-B-cell line the preferential forma-
tion at a very high frequency of pericentric rearrangements of chromosome 
1—identical to the diagnostic chromosomal aberrations in ICF syndrome—on treat-
ment with the DNA methylation inhibitors 5-azadeoxycytidine and 5-azacytidine.

   At the molecular level, the methylation pattern of classical satellite DNA in ICF 
patients, which mimics an embryonic, undermethylated pattern, was initially shown 

  Fig. 6.1    Demethylation by 5-azacytidine induces ICF (immunodefi ciency, centromere instability, 
and facial anomalies syndrome)-like ‘stretching’ of the juxtacentromeric heterochromatin in nor-
mal B cells       

 

6 Chromosomes and Nuclear Organization in ICF Syndrome



110

by restriction endonuclease analysis with methyl-sensitive enzymes (Jeanpierre 
et al.  1993 ). Subsequently, Hassan et al. ( 2001 ) managed to quantify the extent of 
the abnormal methylation in ICF by using a bisulfi te conversion-based method and 
showing that the cytosine methylation level of the satellite 2 DNA sequences was 
almost 70 % in normal lymphoblasts and fi broblasts, compared with only 20 % in 
ICF cells. In line with previous fi ndings, a paper recently published by the Esteller 
group (Heyn et al.  2012 ), reporting whole-genome bisulfi te DNA sequencing of an 
ICF patient, showed that despite a global loss of DNA methylation, the shape of 
genetic features, such as promoters or CpG islands, is conserved, and the most pro-
found changes occur in inactive heterochromatic regions, satellite repeats, and 
transposons. 

 The ICF syndrome—the transmission of which is compatible with an autosomal 
recessive mode of inheritance—was initially linked to chromosome 20q11.2 by 
homozygosity mapping (Wijmenga et al.  1998 ). Subsequently, the DNA methyl-
transferase 3B gene ( DNMT3B ) was mapped by positional cloning at this chromo-
somal location and mutations in this gene identifi ed as responsible for the 
methylation defects observed in ICF (Hansen et al.  1999 ; Xu et al.  1999 ). Along 
with DNMT3A, DNMT3B acts to methylate cytosine residues de novo. The de 
novo methyltransferases DNMT3A and DNMT3B are essential for normal develop-
ment, and  Dnmt3b  −/−  homozygous mouse embryos present with multiple develop-
mental defects and fail to develop to term, although development appears normal up 
to E9.5 (Okano et al.  1999 ). 

 Dnmt3b colocalizes with Dnmt3a to the pericentromeric heterochromatic regions 
in murine embryonic stem cells (Bachman et al.  2001 ). In mammalian cells, 
DNMT3B has been found to interact with constitutive centromere protein CENP-C 
to modulate DNA methylation and the histone code at centromeric regions, and its 
loss has been shown to lead to elevated chromosome misalignment and segregation 
defects during mitosis and increased transcription of centromeric repeats 
(Gopalakrishnan et al.  2009 ). DNMT3B has also been found to associate in hetero-
chromatic regions with HDAC1 and HDAC2, the ATP-dependent chromatin remod-
eling enzyme hSNF2H, and two components of the histone H3 lysine 9 methylation 
machinery, namely, HP1 proteins and Suv39h1 (Geiman et al.  2004 ). In summary, 
DNMT3B appears to interact with four chromatin-associated enzymatic activities 
common to transcriptionally repressed, heterochromatic regions of the genome: 
DNA methyltransferase, histone deacetylase, ATPase, and histone methylase 
activities. 

 Mutations of  DNMT3B  in ICF syndrome are heterogeneous. Analysis of 14 
patients revealed 11 different mutations, including eight different missense muta-
tions, two nonsense mutations, and a splice site mutation (Wijmenga et al.  2000 ). 
Missense mutations of  DNMT3B  in ICF patients occur in or near the catalytic 
domain of the DNMT3B protein, presumably affecting the normal activity of the 
enzyme. Nonsense mutations giving rise to a truncated protein always occur as 
compound heterozygous mutations, highlighting that the DNMT3B protein is 
essential for life. Most recently, a murine model for ICF syndrome has been engi-
neered by generating  Dnmt3b  mutations in mice (Ueda et al.  2006 ). Homozygous 
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mice carrying two missense alleles of  Dnmt3b  show many ICF-like characteristics, 
and exhibit low body weight, cranial facial anomalies, and T-cell death by apopto-
sis. They also show hypomethylation of heterochromatin repeat DNA. 

 Mutations in the  DNMT3B  gene account for approximately 60 % of ICF cases. 
Wijmenga and collaborators were the fi rst to report a number of ICF patients not 
carrying mutations in the  DNMT3B  gene (Wijmenga et al.  2000 ). Similar fi ndings 
were subsequently published by other research groups (Jiang et al.  2005 ; Kubota 
et al.  2004 ). Jiang et al. ( 2005 ) showed that the patients carrying a mutation in the 
 DNMT3B  gene had alpha satellite methylation patterns comparable to control sam-
ples. In contrast, the patients who did not carry mutations in  DNMT3B  exhibited 
hypomethylation of the alpha satellite DNA as well as classical satellite. These fi nd-
ings led to the proposal of the existence of two distinct types of ICF syndrome with 
different genetic and epigenetic characteristics, namely, a type 1, in which patients 
display mutations in the  DNMT3B  gene but have normal alpha satellite methylation, 
and a type 2, characterized by normal  DNMT3B  and hypomethylation of alpha sat-
ellite DNA. There appears to be no genotype–phenotype correlation between 
patients with and without DNMT3B mutations (Hagleitner et al.  2008 ). 

 In 2011, by means of homozygosity mapping, whole-exome sequencing and 
Sanger sequencing on 11 ICF type 2 cases, de Greef and collaborators identifi ed in 
some of the patients mutations in  ZBTB24 , the zinc-fi nger- and BTB (bric-a-bric, 
tramtrack, broad complex)-domain-containing 24, a gene belonging to a large fam-
ily of transcriptional factors including some members with prominent regulatory 
roles in hematopoietic development and malignancy (de Greef et al.  2011 ).  ZBTB24  
is ubiquitously expressed and its expression appears to be coregulated with DNMT3B 
during B-cell differentiation. A deletion in the  ZBTB24  gene, resulting in a loss of 
function of the corresponding protein, was also reported in a consanguineous 
Lebanese ICF type 2 family with three affected brothers (Chouery et al.  2012 ). In a 
DNMT3B mutant patient, whole-genome bisulfi te DNA sequencing showed that 
ZBTB24 harbored a hypermethylated DMR (differentially methylated region) in its 
promoter, suggesting that inactivating hypermethylation of this gene might contrib-
ute to the type 1 disease phenotype (Heyn et al.  2012 ). 

 Notwithstanding a great deal of progress with the understanding of the genetic 
and methylation defects that characterize the ICF syndrome at the molecular level, 
the causal relationships between  DNMT3B  and/or  ZBTB24  mutations, methylation 
abnormalities, and the range of ICF phenotypes still needs to be fully clarifi ed.  

    Original Interphase Studies 

 Once it became clear that the ICF distinctive ‘chromosomal phenotype’ comprising 
anomalous mitotic confi gurations involving mainly chromosomes 1 and 16, and to 
a lesser extent chromosome 9, combined with an abnormal methylation pattern of 
the classical satellite DNA, was the hallmark feature of the ICF syndrome, there 
followed several attempts at investigating the ICF genetic and cytogenetic traits in 
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interphase as well as in metaphase. Of course, by that time, the introduction of the 
fl uorescence in situ hybridization (FISH) technique to the diagnostic scenario had 
allowed the reinvention of classical cytogenetics into molecular cytogenetics, open-
ing up the possibility to visualize specifi c DNA sequences within the nuclear con-
text and allowing the identifi cation of individual chromosomes and the study 
chromosomal abnormalities in interphase (Volpi and Bridger  2008 ). 

 Maraschio and collaborators published the fi rst study on the interphase b ehavior 
of the centromeric heterochromatin of chromosomes 1 and 16 in ICF lymphocytes 
by means of nonisotopic in situ hybridization, reporting involvement of those 
chromosomal regions in increased somatic pairing, nuclear protrusions, and 
micronuclei (Maraschio et al.  1992 ). Miniou and collaborators carried out the fi rst 
cytological investigation of DNA methylation defects in ICF using 5-methylcyto-
sine monoclonal antibody to evaluate the methyl content of nuclei and micronu-
clei (Miniou et al.  1994 ). They also used alpha and classical satellite probes in 
single- and dual-color FISH to visualize heterochromatin stretching in interphase. 
Sawyer and collaborators applied FISH with ‘painting’ probes for chromosomes 
1 and 16 to document the progression of centromeric instability from simple het-
erochromatin decondensation to the subsequent formation of multibranched con-
fi gurations, and fi nally nuclear projections and micronuclei involving both 
chromosomes 1 and 16 (Sawyer et al.  1995b ). Similar interphase cytogenetic 
investigations were carried out by Stacey et al. ( 1995 ). Subsequent FISH experi-
ments using the satellite 2-related probe pHuR 195 confi rmed that chromosome 
fusion in the ICF syndrome occurs only at regions of decondensed centromere-
adjacent heterochromatin, and that the alpha satellite repeats, the main component 
of centromeres, always remain outside the regions of multiradiate chromosome 
fusions (Sumner et al.  1998 ). 

 Gisselsson and collaborators showed, in four ICF lymphoblastoid cell lines, an 
increased colocalization of the hypomethylated 1qh and 16qh sequences in interphase, 
abnormal looping of pericentromeric DNA sequences at metaphase, formation of 
bridges at anaphase, chromosome 1 and 16 fragmentation at the telophase–interphase 
transition, and, in apoptotic cells, micronuclei with overrepresentation of  chromosome 
1 and 16 material. Their results suggested that 1qh–16qh associations in interphase 
can lead to disturbances of mitotic segregation, resulting in micronucleus formation 
and sometimes apoptosis (Gisselsson et al.  2005 ). An association between satellite 2 
demethylation induced by 5-azacytidine with missegregation of chromosomes 1 and 
16 was shown in human somatic cells by Prada et al. ( 2012 ). 

 Overall, the original interphase cytogenetic studies were mostly concerned with 
tracking the succession of cytological events leading to the distinctive karyotypic 
features of the ICF syndrome. Accordingly, the main focus of those research endeav-
ors was on the dynamics of chromosomal instability and references to the possible 
pathogenetic signifi cance of interphase chromosome organization were rare and 
strictly speculative. However, those initial ‘nuclear’ observations were fundamental 
to prepare the experimental and conceptual ground for subsequent studies on the 
epigenetic impact of nuclear architecture and interphase chromosome organization 
in the ICF syndrome.  
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    Gene Expression and the Regulation Conundrum 

 A signifi cant landmark in the sequence of research undertakings aimed at clarifying 
the connection between methylation defects and gene expression in ICF was a paper 
published by Ehrlich and collaborators in 2001 (Ehrlich et al.  2001 ). By means of 
an oligonucleotide microarray containing approximately 5,600 different human 
genes, gene expression was analyzed in lymphoblastoid cell lines from six ICF 
patients carrying different  DNMT3B  mutations. A total of 45 genes were shown to 
have signifi cant differences in expression in ICF versus control cells. Of the 32 
genes described in detail in the paper, a substantial number appears to play a part in 
lymphogenesis, signal transduction, and apoptosis. Nine genes in particular are 
implicated in lymphoid cell differentiation or function after V(D)J recombination 
and are involved in signal transduction or transcriptional control. Despite the differ-
ences in gene expression between ICF and control lymphoblastoid cell lines, no 
differences in methylation at the promoters or 5 -transcribed regions were observed 
in a sample of genes analyzed by COBRA analysis, leading the authors to suggest 
that the hypomethylation of classical satellite DNA sequences in ICF syndrome 
might result in a decreased ‘heterochromatinization’ that affects the regulation of 
genes elsewhere in the genome. 

 Global expression profi ling of three patients with  DNMT3B  mutations was pub-
lished by Jin et al. ( 2008 ). This study generated an impressive list of nearly 800 genes 
appearing to be up- or downregulated in ICF cells, a large number of which are 
involved with immune function, development, and neurogenesis. Detailed DNA 
methylation mapping on a subset of deregulated genes revealed that a fraction of them 
are typically methylated at low levels in normal cells and lose their methylation in ICF 
cells. By chromatin immune precipitation the authors also showed that histone modi-
fi cation patterns at affected promoters were dramatically altered, demonstrating for 
the fi rst time that loss of DNMT3B function in ICF can lead to signifi cant hypometh-
ylation of nonrepetitive regions of the genome and alterations in the histone code. 
They also observed loss of binding of the SUZ12 component of the PRC2 polycomb 
repression complex and DNMT3B to derepressed genes, including a number of 
homeobox genes critical to the immune system and craniofacial development. 

 Heterochromatic genes have also been reported to undergo epigenetic changes 
and escape silencing in ICF (Brun et al.  2011 ); however, the precise mechanism 
driving their transcription is unclear. Indeed, although DNA hypomethylation was 
found in all heterochromatic genes and in all patients analyzed, gene expression was 
restricted to some genes and every patient had his or her own group of activated 
genes. Surprisingly, heterochromatic genes—either active or inactive—appeared to 
be associated with histone modifi cations typical of inactive chromatin. 
Hypomethylation of subtelomeric regions, associated with aberrant transcription 
and advanced replication timing of these sequences, has also been described in ICF 
(Yehezkel et al.  2008 ). 

 All together, these expression studies have succeeded in shedding important light 
on the extent and nature of gene deregulation in ICF resulting from the combined 
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effect of DNA hypomethylation and alterations in the histone code. However, even 
allowing for prediction of alterations in relevant downstream targets of misex-
pressed transcriptional regulators, it is obvious that the full ICF epigenetic picture is 
not yet complete. In summary, on the basis of what has been published so far, and 
taking also in consideration recent evidence obtained by whole-genome bisulfi te 
DNA sequencing of a DNMT3B mutant patient showing that, despite global loss of 
genomic DNA methylation, transcriptional active loci and rRNA repeats escape 
hypomethylation and overall the shape of genetic features such as promoters and 
CpG islands is conserved (Heyn et al.  2012 ), it is apparent that the relationship 
between methylation defects, altered gene expression, and clinical and phenotypic 
features in ICF needs further investigation.  

    The Nuclear Architecture Perspective 

 Over the years a number of hypotheses advocating an epigenetic model for the ICF 
syndrome have been advanced by different research groups. In particular, possible 
mechanisms linking altered gene expression to the hypomethylation of pericentro-
meric heterochromatin have been postulated, generally envisaging inappropriate 
release or recruitment of regulatory complexes by the hypomethylated satellite 
DNA, affecting the transacting regulatory properties of the heterochromatin (Hassan 
et al.  2001 ; Hansen et al.  1999 ; Xu et al.  1999 ; Ehrlich et al.  2001 ; Bickmore and 
van der Maarel  2003 ). 

 Although so far only a handful of investigations have attempted to test those 
hypotheses, some interesting fi ndings have already emerged. For example, two publi-
cations have independently reported repositioning of the chromosome 1 juxtacentro-
meric heterochromatin domain to a more interior location within the nuclear volume 
in ICF lymphocytes (Dupont et al.  2012 ; Jefferson et al.  2010 ). More specifi cally, 
microscope observations on a cell-by-cell basis, and comparative measurements of 
the distance between chromosome 1 juxtacentromeric heterochromatin and the 
nuclear rim carried out in our laboratory, have revealed that the extent of heterochro-
matin association with the extreme nuclear periphery is reduced in ICF cells (both 
type 1 and type 2), suggesting its specifi c repositioning to a more internal location 
within the nuclear space (Jefferson et al.  2010 ). Dupont and collaborators have inde-
pendently confi rmed repositioning of the chromosome 1 juxtacentromeric hetero-
chromatin toward the nuclear interior by means of three-dimensional (3D) FISH and 
confocal microscopy analysis on type 2 patient cells (Dupont et al.  2012 ). Based on 
the differential distribution of early and late-replicating chromatin within the nuclear 
space (Ferreira et al.  1997 ; Sadoni et al.  1999 ), these fi ndings on the relocation of the 
juxtacentromeric heterochromatin away from the extreme nuclear periphery to a more 
internal position appear to be in line with the previously reported data on the advanced 
replication of the hypomethylated satellite 2 in ICF (Hassan et al.  2001 ). 

 Although its role in actively regulating gene expression remains unproven, the 
nuclear periphery is generally considered a transcriptionally silent ‘address’ within 
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the nuclear volume, characterized by poor gene density (Croft et al.  1999 ; Shopland 
et al.  2006 ; Tanabe et al.  2002 ) and a high concentration of nontranscribed sequences 
(Scheuermann et al.  2004 ). Interestingly, a case of functional repositioning of the 
chromosome 1 juxtacentromeric heterochromatin within the nuclear volume had 
been reported previously by Barki-Celli et al. ( 2005 ), who found that the 1q12 het-
erochromatin domain location within the nuclear volume was different when resting 
B cells were compared to B cells treated with trichostatin A (TSA), a histone 
deacetylase inhibitor, with the induced hyperacetylation shown to cause a signifi -
cant reduction in the percentage of 1q12 signals associated with the nuclear periph-
ery, probably by interfering with the establishment of ‘epigenetic codes’ required 
for localizing 1q12 to the nuclear membrane, as suggested by the authors. 

 Long-range heterochromatin–gene associations have gained recognition as a 
potential novel epigenetic mechanism of gene regulation in mammalian cells. So 
far, a correlation between gene silencing and localization to transcriptionally repres-
sive heterochromatic compartments has been reported in mouse cycling lympho-
cytes (Brown et al.  1997 ,  1999 ; Grogan et al.  2001 ), human and mouse erythroid 
cells (Francastel et al.  1999 ,  2001 ; Schubeler et al.  2000 ), and retinoblastoma cells 
(Bartova et al.  2002 ). Replacement of the endogenous β-globin locus control region 
(LCR) with an ectopic regulatory element, the IgH LCR, was shown to induce loop-
ing of the globin locus out of its chromosome territory and bring it closer to the 
repressive centromeric heterochromatin compartment by Ragoczy et al. ( 2003 ). 
A link between centromeric recruitment and establishment of allelic exclusion at 
the immunoglobulin heavy-chain gene in mouse B cells was also reported (Roldan 
et al.  2005 ). In many instances, uncertainty remains whether nonrandom position-
ing and association of genes with specifi c nuclear compartments are the cause or the 
consequence of gene function, although the general consensus points toward an 
interactive model in which the functional potential of a locus facilitates its associa-
tion with a nuclear compartment, which in turn infl uences the functional properties 
of the locus (Misteli  2004 ). Accordingly, recruitment to heterochromatin domains 
may help to stabilize the inactive state, rather than actively promoting silencing. 

 In our laboratory, we were interested in understanding if the decondensation of 
the juxtacentromeric heterochromatin, as observed in metaphase, and general chro-
mosomal instability reported in ICF patients, corresponded to changes in the three- 
dimensional properties of the heterochromatin in interphase, our working hypothesis 
being that disruption in the heterochromatin spatial confi guration might interfere 
with transcriptional silencing and be indirectly responsible for the changes in gene 
expression accounting for the symptoms of ICF. Accordingly, as well as the hetero-
chromatin intranuclear positioning, we analyzed and compared, in patients and con-
trols, the large-scale organization of the juxtacentromeric heterochromatin of 
chromosome 1 and the intranuclear positioning of a set of genes—four from chro-
mosome 1 and one as a control from chromosome 6, on which we had concurrently 
conducted expression and methylation analysis—and their colocalization with the 
juxtacentromeric heterochromatin of chromosome 1. Examples of our fi ndings are 
presented in Figs.  6.2  and  6.3 . In contrast to the consensual view that decondensa-
tion and stretching of the juxtacentromeric heterochromatic blocks—similar to that 
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observed in ICF cells in metaphase—could also be expected in interphase, we found 
that in ICF nuclei the juxtacentromeric heterochromatin appears more compactly 
shaped. We also found that for two of the loci analyzed— CNN3  and  RGS1 —the 
extent of gene–heterochromatin colocalization was signifi cantly reduced in ICF 
cells, in which these genes are overexpressed but present no changes in promoter 
methylation (Jefferson et al.  2010 ).

    Our combined fi ndings on the altered large-scale organization and intranuclear 
positioning of chromosome 1 juxtacentromeric heterochromatin in ICF are particu-
larly signifi cant in the light of the mounting experimental evidence suggesting chro-
mosome band 1q12, which corresponds to the juxtacentromeric heterochromatin of 
chromosome 1, to be the core of a nuclear domain with functional signifi cance. 
Earlier investigations showed physical association of this genomic region with the 
human polycomb group complex, a repressor of the homeotic gene expression 
(Saurin et al.  1998 ), and also with the oncogenic transcriptional regulator TLX1/
HOX11 in leukemic T cells (Heidari et al.  2006 ). Most relevantly, in ICF cells the 

  Fig. 6.2    The intranuclear positioning and large-scale organization of the juxtacentromeric hetero-
chromatin is altered in ICF B cells. Chromosome 1 heterochromatin is visualized by two- 
dimensional (2D) fl uorescence in situ hybridization (FISH) with the classical satellite probes 
D1Z1 ( red ) in nuclei from two controls ( a ,  c ), an ICF type 1 patient ( b ), and an ICF type 2 patient 
( d ). Chromosome 16 heterochromatin is visualized by cohybridization with D16Z3 ( green ) ( a ,  b )          
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subcellular distribution of HP1 proteins is altered and the 1qh satellite DNA is asso-
ciated in G 

2
  with a giant HP1-PML nuclear body (Luciani et al.  2005 ,  2006 ). 

 A large-scale effect of DNA hypomethylation on the organization of chromo-
some ‘territories’ within the nuclear volume in ICF was proposed by Matarazzo 
et al. ( 2007 ) on the basis of their fi ndings on repositioning of misexpressed genes 
located in the pseudo-autosomal region 2 (PAR2) of the X and Y chromosomes. As 
DNA hypomethylation appears to cause changes in the interphase organization of 
the inactive chromosome X territory that extends far beyond the genes which are 
immediately subject to hypomethylation and transcriptional activation, they suggest 
that it is plausible that elsewhere in the ICF genome, altered chromosome territory 
organization encompassing extended regions around hypomethylated sequences 
may allow for the inappropriate transcriptional activation of relocated genes if the 
right transcription factor environment is available. 

 Finally, DNA replication appears to be globally affected in ICF cells. Gartler and 
collaborators (Hansen et al.  2000 ) indicated advanced replication time as a major 
determinant of escape from silencing for genes on the inactive X and Y chromo-
somes they had identifi ed in ICF syndrome. They also showed that satellite 2 repli-
cation in ICF is advanced compared with that in normal cells (Hassan et al.  2001 ). 
Yehezkel and collaborators reported that hypomethylation of subtelomeric regions 

  Fig. 6.3    The extent of interphase gene–heterochromatin colocalization for the two loci RGS1 
( green ) ( a ,  b ) and CNN3 ( green ) ( c ,  d ) is signifi cantly reduced in ICF cells (b, d), in which they are 
signifi cantly overexpressed, when compared to respective controls ( a ,  c ). Chromosome 1 hetero-
chromatin is visualized in  red  by hybridization with D1Z1 in all four images       
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was associated in ICF with advanced telomere replication timing (Yehezkel et al. 
 2008 ). More recently, the De Sario group reported that in ICF cells heterochromatic 
genes replicate earlier in the S-phase, global replication fork speed is higher, and 
S-phase is shorter, and suggested that these replication defects may result from 
chromatin changes which modify DNA accessibility to the replication machinery 
(Lana et al.  2012 ). 

 From what has been published so far on different aspects of interphase  organization 
in ICF cells, a distinctive ICF ‘nuclear phenotype’ has begun to emerge in which both 
local and global changes in the chromatin large-scale organization and positioning, 
together with changes in chromatin proteins distribution, appear mechanistically 
linked to the deregulation or impairment of fundamental nuclear functions, including 
chromosome condensation and segregation, DNA replication, and transcription.  

    Conclusion 

 The complexity of ICF, in particular the combination of phenotypic variability and 
genetic heterogeneity that characterizes it, has intrigued geneticists and cell biolo-
gists since this syndrome was initially described more than 20 years ago. Indeed, 
irrespective of its rare occurrence, ICF has been the object of numerous and diverse 
studies that have yielded interesting insights into its pathogenesis and prompted a 
substantial amount of speculation on the relationship between methylation defects 
and the ICF phenotypic spectrum. Up to now only a small number of investigations 
have attempted to study the ICF syndrome from a nuclear architecture perspective. 
However, fi ndings that have emerged so far appear to support—cautiously but con-
sistently—a role for large-scale chromatin organization in the interphase nucleus as 
a structural and functional intermediary between DNA hypomethylation and altered 
gene expression in ICF, suggesting the existence of additional layers of epigenetic 
complexity in this syndrome and warranting further investigations.     
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           Introduction 

 The widespread use of in vitro fertilization (IVF) throughout the world provides the 
opportunity to study human development at the very earliest stages before implan-
tation. Nonetheless, the study of human embryos poses a series of unique ethical 
and moral implications. The unique totipotent nature of a human embryo and its 
potential to develop into a child necessitates a level of restriction and regulatory 
control that is not present when studying other cell types. Although some govern-
ments outlaw any experimental procedure on human embryonic material, others 
allow it under appropriate control. In the latter case (e.g., in the UK), experimenta-
tion can be justifi ed on the basis of development of a diagnostic test and/or the goal 
of improving patient care. A further challenge to effective study is the paucity of 
material available. Much of the work reported in this chapter arises from the study 
of only single nuclei. For these reasons, research on interphase cytogenetics in 
human preimplantation embryos is less advanced than in other cell types. Despite 
this, a fundamental insight into chromosome copy number and nuclear organiza-
tion can be gleaned from this material through collaboration with an appropriate 
clinical program. As attested by other chapters in this book, fl uorescence in situ 
hybridization (FISH) was fi rst adopted for research, but clinical applications rap-
idly followed. Prenatal and cancer diagnostics are the best examples of this, but the 
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increasing use of assisted reproductive technologies, namely IVF, precipitated the 
use of FISH in the fi eld of preimplantation genetic diagnosis (PGD). PGD is defi ned 
as the diagnosis of genetic disorders in human preimplantation embryos. The pur-
pose is selective implantation of unaffected embryos in the hope of establishing 
genetically normal ongoing pregnancies. PGD by interphase cytogenetics was fi rst 
applied for sexing (to screen for sex-linked disorders), then for chromosome trans-
locations, and later for chromosome copy number. In the latter case, termed preim-
plantation genetic screening (PGS), families at risk of adverse obstetrical outcomes 
(referral categories include advanced maternal age and recurrent miscarriage) are 
targeted, rather than families at risk of transmitting inherited disorders in a classical 
Mendelian fashion. Clinical application of interphase cytogenetics in the IVF world 
has allowed the subsequent study of chromosome copy number and nuclear organi-
zation. This chapter provides an overview of interphase cytogenetics in human 
embryos, highlighting the progress and the sometimes contentious pitfalls that it has 
encountered.  

    Early Detection of the Sex Chromosomes 

 The fi rst application of FISH in IVF for PGD was as a means of determining the 
genotypic sex of embryos from couples in whom there was a high risk of transmit-
ting X-linked disorders. Application of dual-color FISH probes for the sex chromo-
somes was applied to interphase nuclei of single blastomeres (Griffi n et al.  1991 , 
 1992 ), which resulted in the fi rst successful clinical PGD application and led to the 
birth of a healthy female child (Griffi n et al.  1993 ). The advantage of the technique 
was the simultaneous detection of the sex chromosomes and the additional informa-
tion about the copy number, which was not possible via polymerase chain reaction 
(PCR) at the time (Griffi n  1994 ). PGD by FISH was rapidly adopted by IVF clinics 
worldwide for sex-linked disorders, and the possibility to select chromosomally 
normal embryos to improve IVF and ICSI pregnancies was proposed. This technol-
ogy is still in use today, but in the past few years is being replaced with newer plat-
forms that are discussed later in this chapter. 

 Rapidly technological advances quickly revolutionized the fi eld, including (1) 
development of probes directly labeled with fl uorochromes, (2) discovery and 
application of multiple fl uorochromes enabling multicolor FISH experiments (up to 
six colors applied per experiment, and the cells can be reprobed (Ioannou et al. 
 2011a ), (3) availability of commercial FISH probes, and (4) improvements in 
embryo fi xation techniques. All these advances allowed shorter protocol times 
(Harper et al.  1994 ), improved diagnostic test results, and enabled multiple chromo-
somes other than just the sex chromosomes to be tested, thus facilitating the screen-
ing of chromosome translocations and aneuploidy.  
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    Detection of Translocations in Early Human 
Preimplantation Embryos 

 FISH was soon applied in the fi eld of PGD for the detection of the unbalanced prod-
ucts of chromosome translocations. The frequency of a balanced translocation in the 
general population is estimated to occur in 1 in 625 individuals, whereas in couples 
with recurrent miscarriage the incidence is much higher, affecting approximately 
4–5 %, including both reciprocal and Robertsonian translocations (Chang et al. 
 2011 ). A balanced translocation is rarely an issue for the individual carrying it; how-
ever, problems arise during meiosis when the homologous chromosomes must pair, 
leading to the formation of either a quadrivalent or trivalent and subsequent aberrant 
segregation patterns in gametes that can be detected by interphase cytogenetics. 

 Scriven et al. ( 1998 ) estimated that for reciprocal translocations the chance for 
normal or balanced gametes is 4 in 32 whereas it is 4 in 16 for Robertsonian trans-
locations. The chromosomes involved in the translocation, the translocation break-
points, and the sex of the carrier are additional factors that can affect the percentage 
of the normal or balanced gametes and the risk of liveborn affected offspring. 
Carriers of a balanced translocation are therefore at an increased risk for infertility, 
pregnancy loss, or offspring with congenital abnormalities and mental retardation 
caused by unbalanced gamete segregation (Chang et al.  2011 ). PGD through inter-
phase cytogenetics has provided a means to exclude embryos carrying an unbal-
anced chromosome complement. 

 Initially, FISH using whole chromosome paints was used to determine the origin 
of the additional chromosomal segment to clarify the karyotype and provide clini-
cally important information (Mewar et al.  1992 ); however, this strategy was limited 
in its resolution. Another strategy used probes that spanned or fl anked the chromo-
some breakpoints involved in the translocation to distinguish normal from balanced 
or unbalanced embryos, but this methodology was restricted by the cost and the 
time required to make specifi c probes (Chang et al.  2011 ). A more effi cient approach 
involved the use of subtelomeric probes in combination with centromeric probes for 
specifi c chromosome pair combinations that does not require the development of 
specifi c probes for each case. However, there are several drawbacks to this approach: 
(1) it cannot differentiate between chromosomally normal embryos and balanced 
translocation carriers, and (2) chromosome probes for these regions are not always 
available because of the highly repetitive nature of these regions, resulting in cross- 
hybridization of probes (Scriven et al.  1998 ). 

 Application of FISH for chromosome translocations (Simpson  2010 ) in embryos 
(Munne et al.  1998 ) or polar bodies (Munne et al.  2000 ) became widespread in the 
late 1990s and into the 2000s. Numerous studies have reported successful pregnan-
cies following PGD for translocations (Coonen et al.  2000 ; Chen et al.  2007 ; Lim 
et al.  2008 ; Wiland et al.  2008 ), and the strategy described above was rapidly 
adopted by IVF clinics worldwide. 
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 To date, no randomized clinical trial has been performed for the use of FISH for 
chromosome translocations. Indeed, such trials are unlikely given that almost all 
translocations are family specifi c (with the exception of Robertsonian transloca-
tions). Notwithstanding the inability to determine normal from balanced transloca-
tions, the requirement for a bespoke couple-specifi c test, experimental errors in 
signal interpretation, and failure of probes to hybridize, the interphase FISH 
approach is still a robust one. FISH application for translocations has clearly shown 
a reduction in (1) spontaneous miscarriages, (2) abnormal viable offspring, and (3) 
the time needed to achieve a pregnancy, and it can be combined with aneuploidy 
screening (PGS) to assess the chromosomes not involved in the translocation itself 
(Simpson and Tempest  2010 ). 

 Despite the apparent robustness of the FISH approaches just described, array 
CGH (aCGH) approaches and single nucleotide polymorphism (SNP) microarrays 
are also being applied to translocation cases as they provide several advantages over 
interphase cytogenetics. First, they do not require lengthy, expensive patient- specifi c 
workups, and second, they provide genome-wide coverage and so can deliver aneu-
ploidy data for all chromosomes, not just those involved in the translocation. In 
practical terms, there is no longer a requirement for a visible interphase nucleus at 
the time of embryo biopsy, which is required when using FISH on a single nucleus 
owing to the high chance of chromosome loss from a metaphase nucleus after 
nuclear spreading. Finally, SNP arrays should theoretically be able to distinguish 
between normal and balanced embryos (Simpson and Tempest  2010 ).  

    Assessment of Aneuploidy by Interphase Cytogenetics: 
The Rise, Fall, and Rise of PGS 

 The use of interphase cytogenetics for preventing X-linked disease transmission and 
exclusion of embryos with an unbalanced chromosomal complement paved the way 
for the use of FISH for chromosomal copy number in human preimplantation 
embryos and what subsequently evolved to become PGS. 

 It is estimated that the incidence of aneuploidy is approximately 0.6 % in new-
borns, 6 % in stillbirths, and 60 % in spontaneous abortions (Martin  2008 ). Most 
abnormalities are lethal and do not survive to term; however, certain chromosomal 
abnormalities do survive. With the advent of IVF and interphase cytogenetics in 
determining copy number of individual chromosomes in a PGD setting, it was pos-
sible to study the aneuploidy rates at this early stage of development (early studies 
reviewed by Griffi n  1996 ). From the mid-1990s onward, the frequency of chromo-
some aneuploidies and estimates of chromosome mosaicism in the early human 
preimplantation embryo were reported (Munne et al.  1993 ,  1994 ,  1995 ). Munne 
et al. ( 2004 ) analyzed 2,000 embryos using probes for 14 chromosomes and found 
that the chromosomes most frequently involved in aneuploidy were 22, 16, 21, and 
15, whereas the least involved were 14, X, and Y. They also reported higher rates of 
monosomy rather than trisomy. An important fi nding from studies in embryos was 
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that the predominant type of mosaicism affecting preimplantation embryos was the 
diploid/aneuploid type arising from one of the fi rst three divisions (probably fi rst or 
second) (Delhanty et al.  1997 ; Daphnis et al.  2005 ). In a study by Daphnis et al. 
( 2008 ), embryos were compared to investigate the evolution of chromosome abnor-
malities between the cleavage and blastocyst stages. The conclusion drawn was that 
a normal blastomere on day 3 is more likely to give rise to blastomeres with the 
correct chromosome complement on day 5, whereas an abnormal cell on day 3 pre-
dicts a poor outcome on day 5. 

 The studies on aneuploidy at the time were numerous. However, to summarize 
them, three trends emerged (Munne et al.  2007a ):

    1.    Aneuploidy increases in cleavage-stage embryos with advancing maternal age, 
irrespective of embryo morphology.   

   2.    Postmeiotic abnormalities (mosaicism, polyploidy, haploidy) increase with 
poorer embryo development and morphology.   

   3.    Postmeiotic abnormalities are the most frequent type of abnormalities.    

  The main rationale for PGS is to increase the chance of a healthy pregnancy in 
subfertile patients undergoing IVF by screening for chromosome abnormalities, 
based on the fact that patients undergoing IVF with poor prognosis generate embryos 
with a high incidence of numerical chromosome abnormalities (60–70 %) (Donoso 
et al.  2007 ). Thus, theoretically, if abnormal embryos could be identifi ed and 
excluded and chromosomally normal ones selected for embryo transfer, an improved 
pregnancy outcome (manifested as either reduced miscarriage rate, increased clini-
cal pregnancy and live birth rate, increased implantation rate, shorter time to preg-
nancy, or a combination of these outcomes) should be expected, at least in women 
with a high risk of chromosome aneuploidy (Fritz  2008 ). 

 With this rationale in mind the main referral categories for PGS were advanced 
maternal age (AMA, more than 37 or 38 years), repeated implantation failure (RIF, 
three or more failed implantation attempts following embryo transfer), repeated 
miscarriage (RM, at least three pregnancy losses in patients with a normal karyo-
type), or severe male factor (SMF, abnormal semen parameters) (Donoso et al. 
 2007 ; Munne  2003 ; Harper et al.  2010 ). 

 The selection of probes predominantly used in the clinics was based on the inci-
dence of chromosome abnormalities in spontaneous abortions and live births. 
Chromosomes 13, 15, 16, 18, 21, 22, X, and Y were the most widely used, enabling 
the detection of an estimated 72 % of abnormalities found in spontaneous abortions 
(Donoso et al.  2007 ). Over the years, the application of PGS had become wide-
spread with 75 % of the overall PGD-related procedures in the United States, and 
65 % in Europe, being PGS (Hernandez  2009 ). In the most recent ESHRE PGD 
consortium report, this steady increase has been highlighted with 3,401 PGS cycles 
in 2008 alone compared to 116 in 1997–1998 (Goossens et al.  2009 ,  2012 ). 

 Early studies using PGS reported an increase in implantation rates and, at the 
same time, a reduction in trisomic offspring and spontaneous abortions (Munne 
 2003 ; Harper et al.  2008 ; Werlin et al.  2003 ). However, criticisms of these early 
reports focus on the fact that these were nonrandomized and had poor experimental 
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design, inadequate control groups, few or no reports on delivery rates, and relatively 
small patient numbers (Harper et al.  2008 ). The fi rst randomized controlled trial 
(RCT) casting some doubt on the effi cacy of PGS was published by Staessen et al. 
( 2004 ) in which no difference in embryo implantation and pregnancy rates was 
reported between control and PGS patients. 

 A subsequent RCT study initiating wide debate and controversy with regard to 
the effi cacy of PGS, published by Mastenbroek et al. ( 2007 ), reported a signifi cant 
 decrease  in pregnancy rates and live births following PGS in women of advanced 
maternal age. This study was however, heavily criticized (Cohen and Grifo  2007 ; 
Wilton  2007 ; Munne et al.  2007b ,  c ; Simpson  2008 ; Sermondade and Mandelbaum 
 2009 ; Handyside and Thornhill  2007 ) on many levels including experimental 
design, biopsy procedure, number of embryos per patient, and exclusion of probes 
for chromosomes 15 and 22. However, it prompted more RCTs (Jansen et al.  2008 ; 
Twisk et al.  2008 ; Mersereau et al.  2008 ; Hardarson et al.  2008 ; Staessen et al.  2008 ; 
Debrock et al.  2010 ; Chiamchanya et al.  2008 ; Schoolcraft et al.  2009 ; Garrisi 
et al.  2009 ), and a subsequent meta-analysis of the RCTs by Checa et al. ( 2009 ) 
concluded that, in women with poor prognosis or undergoing IVF, aneuploidy 
screening by PGS using FISH methodologies at the cleavage stage of development 
is associated with lower pregnancy and live birth rates. The reasons why PGS has 
failed to show a positive outcome in the RCTs have been extensively discussed 
elsewhere (Donoso et al.  2007 ; Beyer et al.  2009 ; Cohen et al.  2009 ; Wilton et al. 
 2009 ; Uher et al.  2009 ) and therefore are not considered further here. 

 The net effect of all this controversy is that FISH-based technologies have largely 
been superseded by array-based platforms for PGS. As this is a chapter on inter-
phase cytogenetics, it is not within the remit of this chapter to discuss microarray- 
based approaches to detecting chromosome copy number. Suffi ce to say, however, 
that a brief fl irtation with metaphase CGH (which uses a hybridization approach 
directly onto ‘normal’ human metaphase chromosomes, was rapidly replaced by 
aCGH, in which sample DNA is hybridized to glass slides containing small portions 
of chromosomes organized in precise locations or arrays). This approach is now 
fi nding widespread application with favorable outcomes for patients (Le Caignec 
et al.  2006 ; Fragouli et al.  2010 ,  2011 ; Schoolcraft et al.  2010 ) with successful live 
births reported (Fishel et al.  2010 ; Obradors et al.  2008 ). 

 In addition to aCGH, SNP arrays have been adapted for use in PGS (Brezina 
et al.  2011 ; Handyside et al.  2010 ; Treff et al.  2010 ,  2011 ; Northrop et al.  2010 ). 
SNP arrays take advantage of the sequence variation within a population, and this 
information can be used to distinguish one person from another or one chromosome 
from another in any person, because SNPs are biallelic and exist in either of two 
forms and occur in large numbers throughout the entire genome. Using information 
from parental DNA, SNP arrays can further extend their applicability in PGS by 
determining the parent and the meiotic phase of origin of the abnormality (Handyside 
et al.  2010 ; Gabriel et al.  2011 ). Further validation of these new platforms and well- 
designed RCTs to show improvement in delivery dates are under way to determine 
whether these approaches will help patients undergoing assisted reproductive tech-
nologies around the world (Harper an. Harton  2010 ).  
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    The Future of Interphase Cytogenetics in Early Human 
Preimplantation Embryos 

 Although, in terms of PGS, FISH will soon be replaced by array-based methods and 
perhaps whole-genome sequencing, FISH remains a valid molecular cytogenetic 
tool for research purposes ostensibly because it is a relatively simple, robust, and 
low-cost method to determine chromosome copy number in individual nuclei. The 
cost alone of studies requiring analysis of thousands of individual cells makes the 
use of aCGH and SNP array approaches prohibitive. Using interphase cytogenetics 
for as many chromosomes as possible in preimplantation embryos will make it pos-
sible to gain insight into the types of abnormalities occurring (e.g., monosomies, 
trisomies), the level of mosaicism from analysis of all chromosomes and multiple 
cells from the same embryo, and the relationship between nuclear organization and 
chromosome abnormalities (discussed further next). Furthermore, in the next few 
years it could be used as a means of comparing the new array platforms for concor-
dance purposes. Supportive evidence, which already exists in the literature, is dis-
cussed next. 

 Interphase cytogenetics is already in use for the validation of array-based 
approaches; this initially involved the use of nine probes in a two-layer experi-
ment (Thornhill et al.  2005 ). Screening additional chromosomes, however, could 
provide a more comprehensive diagnosis. The added value of aneuploidy detec-
tion by screening 15 chromosomes in cryopreserved day 4 and 5 embryos using 
three rounds of hybridization is clear. Incorporation of an additional 6 chromo-
somes allowed detection of chromosome aberrations that were mainly mitotic in 
origin, leading to a higher percentage of mosaic embryos (Baart et al.  2007 ). In 
another study FISH was used to investigate chromosomal constitution of whole 
nontransferred embryos following the diagnosis of abnormality in a single biop-
sied blastomere from day 3 (DeUgarte et al.  2008 ). Of 198 abnormal embryos, 
164 were confi rmed when the whole embryo was analyzed by FISH, giving a 
positive predictive value of 83 %, signifying that 17 % of embryos are misdiag-
nosed as abnormal on day 3 when they are in fact normal (DeUgarte et al.  2008 ). 
Such follow-up FISH analysis of whole embryos provides another means of con-
fi rming the high level of mosaicism observed in cleavage-stage embryos and thus 
insight into how representative is a single cell with regard to the whole embryo. 
Using three rounds of hybridization and a mix of centromeric and telomeric 
probes in the last round, Colls et al. ( 2009 ) screened for 12 chromosomes and 
found that embryos diagnosed as normal for the initial chromosome panel (9 
chromosomes) had extra abnormalities that would not have been found without 
extended screening. They postulated, however, that because of the use of telo-
meric probes in the later hybridization rounds and suboptimal conditions, the 
error rate was slightly higher from the percentage found for the 9 chromosomes 
alone (Colls et al.  2009 ). Thus, the extended screening can be important in reveal-
ing other ‘rarer’ chromosomal abnormalities found in preimplantation embryos 
and can also be tailored to different subgroups of patients. 
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 Recently a 24-color FISH screen assay using four layers of hybridization and 
involving six fl uorochromes per layer was described (Ioannou et al.  2011a ). The 
methodology was applied successfully to preimplantation embryos not eligible 
for transfer to assess copy number and nuclear organization (Ioannou et al.  2012 ). 
Such an approach could be used to investigate if there are chromosome-specifi c 
mechanisms of error in early embryos and also used on blastocysts to assess aneu-
ploidy rates on a cell-by-cell basis and compare data with ongoing pregnancies 
(Ioannou et al.  2012 ). It should be noted that, despite its obvious potential, if each 
probe fails (or the signal overlaps with its homologue) in 2 % of nuclei, a 24-chro-
mosome screen would only be completely accurate in 40–50 % of nuclei, and this 
should be taken into account. Additional information obtained regarding the 
nuclear organization could provide further insight about its role in early human 
development, as described next (Ioannou and Griffi n  2011 ).  

    Studying Nuclear Organization in Human Embryos 

 The rationale for the study of the nonrandom position of chromosomes in the 
interphase nuclei is well justifi ed in other chapters in this book (Tanabe et al. 
 2001 ; Parada and Misteli  2002 ; Foster and Bridger  2005 ; Foster et al.  2005 ; 
Cremer and Cremer  2001 ; Manuelidis  1985 ,  1990 ; Oliver and Misteli  2005 ; 
Khalil et al.  2007 ; Meaburn and Misteli  2007 ; Meaburn et al.  2005 ). The location 
of chromosomes in the nucleus, its relationship to the accessibility of various 
nuclear machinery, and its vital role in the regulation of gene expression, DNA 
replication, damage, repair, development, and other cellular functions are well 
documented (Foster and Bridger  2005 ; Cremer and Cremer  2001 ; Miguel and 
Pombox  2006 ; Fraser and Bickmore  2007 ; Lanctot et al.  2007 ; Rouquette et al. 
 2010 ; Schoenfelder et al.  2010 ; Pederson  2004 ,  2011 ; Rajapakse and Groudine 
 2011 ; Dundr and Misteli  2011 ; Spector and Lamond  2011 ). The availability of 
multicolor images primarily used to detect chromosome copy number can provide 
an insight into nuclear organization and its role in early human development and 
the genesis of aneuploidy. 

 Nuclear organization in embryos is a relatively underexplored area mainly as a 
result of the issues outlined in the Introduction. Studying nuclear organization in 
human embryos is nonetheless important for a number of reasons. First, embryo 
cells are totipotent, and comparison of nuclear organization of these cells compared 
to committed cells in the body provides insight into the nature of totipotency itself. 
Second, between 50 and 70 % of human cleavage-stage blastomeres from IVF 
patients are chromosomally abnormal (Delhanty et al.  1997 ; Munne and Cohen 
 1998 ; Wells and Delhanty  2000 ; Voullaire et al.  2000 ), and one can speculate that 
nuclear localization is altered in aneuploid embryos compared to chromosomally 
normal ones. Finally, if specifi c patterns of nuclear organization do emerge, as 
already mentioned, they may provide novel markers for PGD and PGS. 
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 To date, only a small number of studies have attempted to address the issue of 
nuclear organization in human embryos. Each of the studies used a basic computer- 
generated template with fi ve concentric circles superimposed onto the two- 
dimensional (2D) nucleus before counting the number of FISH signals in each 
circle to record the chromosome position. The fi rst investigated the position of 
seven chromosomes (13, 16, 18, 21, 22, X, and Y) in normal and abnormal human 
blastomeres using centromeric and locus-specifi c probes (McKenzie et al.  2004 ), 
fi nding that in normal blastomeres chromosome 13, 18, 21, and X were central 
and chromosome 16, 22, and Y were more peripherally located. However, this 
pattern was altered in aneuploid blastomeres with more peripheral localizations 
(McKenzie et al.  2004 ). The localization of specifi c chromosomes (13, 18, X) in 
the interior part of the nuclei during embryonic development, compared with the 
typical peripheral localization within a committed cell line, indicates a different 
nuclear organization pattern associated with totipotent cells at the cleavage stage 
of human development (McKenzie et al.  2004 ). A similar study by Diblik et al. 
( 2007 ) reported that the localization of chromosomes 13, 16, 21, 22, X, and Y was 
essentially random in both normal and abnormal embryos. The only difference 
they could observe was that arrangement in chromosome 18 was signifi cantly dif-
ferent to random distribution and shifted toward the periphery in aneuploid blas-
tomeres (Diblik et al.  2007 ). 

 More recently, Finch et al. ( 2008 ) attempted to establish a correlation between 
chromosomal abnormalities and nuclear organization in human embryos and then 
compare this to a range of committed cell lines (Finch et al.  2008 ). This study 
reported a signifi cant alteration of nuclear organization associated with chromo-
somally abnormal embryos compared to control committed cell lines. For example, 
chromosome 15 was localized in the periphery of nuclei in committed cells, but in 
aneuploid blastomeres chromosome 15 had a central localization. This study also 
reported that embryos with no detected abnormalities adopt a less distinct pattern in 
genome organization because of the existence of mixed populations of cells, each 
with a different nuclear organization (Finch et al.  2008 ). The foregoing studies sug-
gest that examining nuclear architecture during early embryogenesis could provide 
insight into the mechanisms of aneuploidy and improve embryo selection in preim-
plantation diagnosis. 

 In the aforementioned studies, blastomeres were classifi ed as normal based on 
ploidy from a subset of chromosomes: fi ve chromosomes (13, 18, 21, X, Y) in the 
study by McKenzie et al. ( 2004 ), seven chromosomes (13, 16, 18, 21, 22, X, Y) in 
that by Diblik et al. ( 2007 ), and eight chromosomes (13, 15, 16, 18, 21, 22, X, Y) in 
the study by Finch et al. ( 2008 ). 

 Further investigations studied the nuclear localization of all 24 chromosomes 
using a methodology based on the ‘mainstream’ nuclear organization literature to 
analyze radial position (Ioannou et al.  2012 ) (Fig.  7.1 ). This approach allowed more 
accurate assessments of relative nuclear positions in blastomeres through analysis 
of the nuclear localization of all 24 chromosomes in 17 embryos (255 cells) and 
found that centromeres have a mainly central localization, giving evidence for a 
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chromocenter nuclear organization as in sperm (Zalensky and Zalenskaya  2007 ; 
Ioannou et al.  2011b )   .

   It is noteworthy that the various studies that have looked at nuclear organization 
of embryos have obtained quite variable results for the same chromosomes, possibly 
for numerous reasons, such as examination at different development stages, differ-
ent embryo morphologies, different levels of aneuploidy, different patient cohorts, 
or technical reasons such as spreading techniques or analysis algorithms. Table  7.1  
compares the results of the various studies.

   The study of nuclear organization in human embryos is still in its infancy. Despite 
practical, ethical, and legal restrictions, some of the approaches outlined in this 
book may well be applied to human embryos if an appropriate clinical justifi cation 
can be made. Studies of all chromosomes and their territories are possible as well as 
specifi c regions such as centromeres and telomeres. The issue of the relationships 
between aneuploidy, embryo morphology, maternal age, patient referral category, 
and so on all warrant further investigation. Such studies may well pave the way for 
investigations into human embryonic stem cells and the role of nuclear organization 
in stem cell differentiation.  

    Conclusions 

 Interphase cytogenetics in human embryos clearly has a number of applications both 
in the clinic and in the research laboratory. The other chapters outlined in this book 
pave the way for a range of exciting new studies that, potentially, could emerge on 
human embryos. Although interphase cytogenetics for PGS has already been super-
seded by array-based approaches, FISH is still a useful tool for the validation and 

  Fig. 7.1    Blastomere nucleus after four rounds of hybridization.  Bars  10 µm. ( a ) DAPI only, show-
ing retention of nuclear structure. ( b ) Same nucleus with fi nal probe set signals shown: chromo-
some 19 in  blue , chromosome 5 in  aqua , chromosome 21 in  green , chromosome 22 in  yellow , 
chromosome 13 in  red , chromosome 14, far-red fl uorochrome pseudo-colored  purple . ( c ) Same 
nucleus with probes from the other three rounds superimposed in Adobe Photoshop: note position 
and copy number of chromosomes 5, 13, 14, 19, 21, and 22 can still be observed (From Ioannou 
et al.  2012 )       
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‘follow-up’ of clinical cases because of the rapid, low-cost, and robust cell-by-cell 
information that can be gleaned. Perhaps the most exciting avenue of research is that 
of nuclear organization. We still know very little about this in the earliest stages of 
our development when a unique set of cellular processes occur, not least of which is 
the establishment of our basic body plan.     
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    Abstract     Chromosomes in the human sperm nucleus adopt a hierarchy of structures 
starting from protamine toroids, the elementary units of DNA packaging, and up to 
the higher-order organization of chromosome territories. Nonrandom intranuclear 
positioning of individual chromosomes, with centromeres aggregated in the inter-
nally located chromocenter and preferential location of telomeres at the nuclear 
periphery, suggests a highly defi ned architecture of the sperm nucleus at the level of 
genome. Such an ordered chromatin organization in the sperm nucleus may have a 
functional signifi cance and determine the onset of paternal gene activity at early 
stages of embryonic development. This chapter describes relevant experimental 
data with primary attention to studies of human spermatozoa and discusses the 
implications of sperm chromosome organization for male reproductive health.  

  Abbreviations 

   CHR    Chromosome   
  CT    Chromosome territory   
  FISH    Fluorescence in situ hybridization   
  ICSI    Intracytoplasmic sperm injection   
  MSCI    Meiotic sex chromosome inactivation   
  MSUC    Meiotic silencing of unsynapsed chromatin   
  WCP    Whole chromosome painting probe   
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          Introduction 

 Our understanding of higher-order chromatin arrangement in somatic cell nucleus 
(referred to as nuclear architecture, genome architecture, or chromosome architec-
ture) has progressed considerably in recent decades, mainly as the result of the 
development of a wide variety of hybridization probes for specifi c genomic 
sequences and advances in fl uorescence imaging techniques. It has been established 
that chromosomes are compartmentalized into distinct subvolumes—chromosome 
territories—that are nonrandomly distributed in the nucleus. The organization of 
chromosome territories and chromosome domains, chromatin structure, and their 
dynamics inside the interphase nucleus have functional consequences for gene 
expression regulation (reviewed in Cremer and Cremer  2001 ; Lanctôt et al.  2007 ; 
Misteli  2007 ; Pai and Engelke  2010 ; Meister et al.  2011 ). 

 Spermatozoa are the specialized cells that differentiate from spermatogonia pre-
cursor cells in the course of spermatogenesis. Spermatogenesis includes two major 
stages: meiosis and spermiogenesis. Spermatogonia are divided mitotically and dif-
ferentiate into spermatocytes that undergo meiotic divisions which result in forma-
tion of haploid spermatids. During spermiogenesis, the maturation of spermatids 
into motile spermatozoa occurs, which is accompanied by the formation of the acro-
some, the loss of the excess cytoplasm, and the formation of a fl agellum. The matu-
ration is also characterized by chromatin reorganization: the replacement of somatic 
histones with sperm-specifi c proteins (protamines), supercondensation of DNA, 
and inhibition of transcriptional activity. For a long time, the compact hydrody-
namically shaped sperm cell with inert DNA was considered as a “sack” of genes 
unlikely to bear any information beyond its genomic load. However, a complex 
nonrandom organization of the genome was demonstrated for mammalian sperm 
cells (reviewed by Mudrak et al.  2011 ). An emerging concept is that in addition to 
the paternal genome per se, the sperm nucleus provides a structural context that is 
essential for proper genome activation upon fertilization. 

 This chapter summarizes the current state of knowledge on human sperm chro-
mosome organization at different structural levels, starting from the packaging of 
the DNA with protamines to the higher-order chromosome confi guration and intra-
nuclear chromosome positioning. Possible implications of sperm chromosome 
architecture for male factor infertility are discussed.  

    DNA Packaging in Spermatozoa 

 The chromatin of the sperm nucleus is characterized by extensive protamination that 
leads to the tight packaging of chromatin, which is necessary for the protection of paren-
tal genome during movement of the spermatozoa through the female reproductive tract. 

 There are two types of protamines in humans, P1 and P2. The P1/P2 ratio ranges 
from 0.54 to 1.43 in healthy individuals (Nanassy et al.  2011 ). Protamines are highly 
basic proteins that are characterized by an arginine-rich core and cysteine residues. 
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Positively charged arginine residues electrostatically neutralize DNA, leading to a 
strong protamine–DNA binding. The cysteine residues of protamines mediate the 
formation of multiple inter- and intramolecular disulfi de bonds so that sperm DNA 
is organized into a nucleoprotamine complex with extreme compactness (Balhorn 
 1982 ,  2007 ). 

 Protamines coil sperm DNA into toroidal structures approximately 50–70 nm in 
outer diameter and 25 nm thick, a form of packaging that inactivates the sperm 
genome (Brewer et al.  1999 ; Balhorn  2007 ). Each toroid contains 50 kb DNA and 
is linked to the neighboring ones by nuclease-sensitive histone-bound DNA frag-
ments, toroid linkers (Sotolongo et al.  2005 ; Ward  2010 ). Stacking of these nucleo-
protamine toroids results in DNA compaction approximately tenfold more effi cient 
as compared with nucleohistone packaging. Toroids and core particles remain in 
decondensed human sperm nuclei, as was demonstrated by the method of atomic 
force microscopy (Hud et al.  1993 ; Allen et al.  1996 ; Joshi et al.  2000 ; Nazarov 
et al.  2008 ). 

 According to the “donut-loop” model of chromatin organization in mammalian 
sperm suggested by S.W. Ward (reviewed by Ward and Ward  2004 ), during sper-
miogenesis, individual DNA loop domains condense into toroidal (donut-like) 
structures, so that each toroid contains a single DNA loop domain that is attached to 
the sperm nuclear matrix via toroid linkers (Ward  2010 ). 

 Mudrak et al. ( 2005 ) reported 500-nm chromatin beads in the partially decon-
densed human sperm nuclei and suggested that they consisted of a number of 
toroid stacks, thus representing the next hierarchical level of sperm chromatin 
organization. Earlier, Haaf and Ward, using fl uorescence in situ hybridization 
(FISH) on sperm chromatin spreads, observed beaded fi bers with basic package 
units of 180, 360, and 600 nm (Haaf and Ward  1995 ). The relationship of such 
beads to nucleoprotamine toroids remains to be elucidated. At the next level, two 
rows of 500-nm chromatin beads interconnected by thinner and less dense chroma-
tin fi laments organize the chromosome-arm fi ber with thickness about 1,000 nm 
(Mudrak et al.  2005 ). 

 It has been demonstrated that replacement of somatic histones by protamines dur-
ing spermiogenesis occurs in a stepwise manner. First (during meiosis), somatic his-
tones are replaced with testis-specifi c histone variants; then (during chromatin 
condensation at the elongating spermatid stage of spermiogenesis), the latter are 
replaced by transition proteins, which, in turn, are replaced by protamines (Meistrich 
et al.  2003 ; Churikov et al.  2004 ; reviewed in Mudrak et al.  2011 ). As a result, in 
mature spermatozoa, histones are not completely replaced by protamines; 1–2 % of 
mouse sperm DNA (   Balhorn  1982 ; Pittoggi et al.  1999 ; Brykczynska et al.  2010 ) and 
as much as 15 % of human sperm DNA remains histone bound and packed into 
nucleosomes (Churikov et al.  2004 ; Gineitis et al.  2000 ; Hammoud et al.  2009 ). 

 Mature human spermatozoa contain core histones (H2A, H2B, H3, H4) 
(Gatewood et al.  1990 ); histone variants such as CENP-A (Zalensky et al.  1993 ), 
TSH2B (Zalensky et al.  2002 ); H3.1, 3.2, 3.3 (van der Heijden et al.  2008 ), H2A.Z 
(Hammoud et al.  2009 ), and H2AX (Li et al.  2006 ); and the modifi ed histones H3K4 
Me2, Me3, and H3K9 Me3 (Hammoud et al.  2009 ). 
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 Histone hTSH2B (human testis/sperm-specifi c H2B variant), which is transcribed 
exclusively in the testis, is also found in spermatogonia, spermatids, and in a sub-
population of mature sperm cells (Zalensky et al.  2002 ), where it is involved in 
nuclear decondensation during fertilization (Singleton et al.  2007 ). 

 Phosphosphorylated histone H2AX (γH2AX) plays a crucial role in the process 
known as meiotic sex chromosome inactivation (MSCI), a form of X-chromosome 
inactivation present in male germ cells. γH2AX marks entire sex chromosomes at 
the onset of MSCI (Mahadevaiah et al.  2001 ). 

 H3.1/H3.2 histone variants originated from male germ cells were found in pater-
nal pronuclei in pre-S-phase human zygotes (van der Heijden et al.  2008 ). 

 Several research groups addressed the question whether histone-bound DNA 
distributed randomly throughout the sperm genome or the histones were associ-
ated with certain sequences. Earlier work by Gatewood et al. ( 1987 ) suggested that 
histone binding was restricted to specifi c sequences (Gatewood et al.  1987 ). Later, 
analysis of the chromatin structure of members of β-globin gene family expressed 
at different times during development showed that embryo-specifi c ε- and γ-globin 
genes were histone enriched, whereas the postnatal-expressed β-globin gene was 
protamine enriched in human sperm cells (Gardiner-Garden et al.  1998 ). It was 
suggested that histones in sperm chromatin might mark sets of genes that would 
be preferentially activated during early development. It was shown in subsequent 
studies that histone-associated DNA included telomeres (Zalenskaya et al.  2000 ), 
centromeres (Zalensky et al.  1993 ; Hammoud et al.  2009 ), paternally imprinted 
regions (Banerjee and Smallwood  1995 ; Hammoud et al.  2009 ), specifi c gene loci 
(Wykes and Krawetz  2003 ; Hammoud et al.  2009 ), and regulatory sequences of 
developmentally important genes (Arpanahi et al.  2009 ). Recent data from 
Arpanahi et al. ( 2009 ) and Hammoud et al. ( 2009 ) have demonstrated that histone-
bound DNA is distributed in paternal genome in two ways: in relatively large 
tracts, ranging from 10 to 100 kb, and in smaller tracts interspersed throughout the 
genome. Smaller tracts of histone- associated DNA distributed evenly throughout 
the paternal genome were suggested to represent a repeating unit of sperm chro-
matin structure, such as linker regions between protamine toroids in the chromatin 
fi ber (Ward  2010 ). 

 Together, these fi ndings suggest that there are at least two types of sperm chro-
matin: nucleoprotamine-containing domains and nucleohistone-containing 
domains. The nucleohistone domains are structurally more open as compared to the 
nucleoprotamine domains and are nuclease sensitive in contrast to nuclease- resistant 
nucleoprotamine domains. 

 Histone-associated chromatin might represent the residual active chromatin that 
persists through chromatin condensation and therefore reveals the transcriptional 
history of spermatogenesis (Johnson et al.  2011 ). 

 The transmission of core histones together with modifi ed histones and histone 
variants to the egg leaves the door open for DNA and histone-based epigenetic 
signals that may be important for consequent embryonic development (Miller 
et al.  2010 ). 
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 It has been speculated that sperm genome is frozen in a dynamic confi guration 
that refl ects its pending introduction to the ooplasm (Miller et al.  2010 ). Deviation 
from this confi guration caused by DNA-packaging anomalies may lead to infertile 
phenotypes. It has been shown that abnormally high P1/P2 ratios are associated 
with decreased fertilization rates and embryo quality (Simon et al.  2011 ). In line 
with this observation, an aberrant expression of P2 induced by oxidative stress 
caused by cigarette smoking leads to abnormal elevation of the P1/P2 level and 
improper sperm chromatin condensation (Hammadeh et al.  2010 ). Antioxidant ther-
apy after oxidative stress resulted in signifi cant improvements in sperm chromatin 
integrity and protamine packaging (Tunc et al.  2009 ). 

 Defects in DNA methylation at imprinted loci have been found in oligozoosper-
mic patients and patients with improper histone replacement by protamines, indicat-
ing the existence of a tight link between epigenetic chromatin alterations and male 
infertility (Carrell and Hammoud  2010 ; Hammoud et al.  2010 ). 

 Therefore, similar to somatic cells, the structural organization of chromatin in 
the sperm nucleus apparently has a functional signifi cance, and its alterations can 
affect spermatogenesis and early developmental processes.  

    Higher-Order Chromatin Organization in the Sperm Nucleus 

 In the following sections we describe elements of sperm genome architecture above 
the level of nucleoprotamine/nucleohistone complexes, revealed by methods of 
FISH and microscopy. 

    Application of FISH to Chromosome Positioning Studies 
in Spermatozoa 

 Almost 40 years ago, Geraedts and Pearson ( 1975 ) demonstrated that in human 
spermatozoa, chromosome 1 (CHR 1) is frequently located adjacent to CHR Y, 
which suggested a nonrandom chromosome arrangement in the human sperm 
nucleus. Later, Luetjens et al. ( 1999 ) showed that CHR 18 had a tendency to locate 
in the basal area of the nucleus, near the sperm tail, whereas CHR X was preferen-
tially located in the apical area (Luetjens et al.  1999 ). 

 FISH studies using whole chromosome painting (WCP) probes demonstrated 
that, similarly to somatic cells, individual chromosomes occupy distinct territories in 
human spermatozoa (Haaf and Ward  1995 ; Zalensky et al.  1995 ; Hazzouri et al. 
 2000 ). In the following years, data on the defi ned chromosome positioning in human 
sperm began to appear (Hazzouri et al.  2000 , Tilgen et al.  2001 ; Sbracia et al.  2002 ; 
Zalenskaya and Zalensky  2004 ; Mudrak et al.  2005 ; Wiland et al.  2008 ; Manvelyan 
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et al.  2008 ). These studies provided a strong basis for the current view of nonrandom 
chromosome arrangement in human spermatozoa. 

 By now, information on the location of all 23 chromosomes in the haploid human 
male gamete is available. However, it is not entirely conclusive, because application 
of different protocols resulted in inconsistent data on chromosome positioning com-
ing from different laboratories. 

 Centromeres are traditionally used in somatic cells as indicators of intranuclear 
chromosome location (Nagele et al.  1999 ; Sun and Yokota  1999 ). Along with WCP, 
chromosome-specifi c centromeric probes were employed in chromosome position-
ing studies on sperm cells (Sbracia et al.  2002 ; Zalenskaya and Zalensky  2004 ; 
Finch et al.  2008 ; Wiland et al.  2008 ). The WCP probe, covering the entire length 
of the chromosome, yields the large FISH signal; the intranuclear position of the 
chromosome territory (CT), in this case, is often determined by the position of the 
hybridization signal center (Foster et al.  2005 ). 

 FISH studies on sperm cells have some peculiarities originating from sperm cell 
characteristics. For example, the mature spermatozoon has almost no cytoplasm. Its 
nucleus occupies almost the whole of the sperm head. The amount of cytoplasm is 
diminished during spermiogenesis to reduce the cell weight and achieve a more 
hydrodynamic shape, improving sperm motility in the female reproductive tract. 
Therefore, no pretreatment is needed to remove the cytoplasm before denaturation 
to enable effi cient hybridization of the probe to the target. 

 Although removal of cytoplasmic debris can be omitted, the decondensation of 
densely packed sperm chromatin is a prerequisite for performing FISH. Because of 
its extensive protamination, sperm DNA is the most condensed DNA in eukaryotes. 
Therefore, to enable penetration of painting probes and antibodies during FISH, 
sperm chromatin needs to be relaxed. Sperm chromatin decondensing buffers 
slightly differ from each other, but all include dithiothreitol (DTT), the thiol reduc-
ing agent, which reduces disulfi de bonds between protamines (Zalensky et al.  1995 , 
 1997 ; Luetjens et al.  1999 ; Hazzouri et al.  2000 ; Zalenskaya and Zalensky  2004 ; 
Mudrak et al.  2005 ; Finch et al.  2008 ; Wiland et al.  2008 ).  

    Longitudinal and Radial Chromosome Positioning in Spermatozoa 

 Asymmetry of the sperm nucleus and the presence of a spatial reference point, the 
place of tail attachment, facilitate chromosome positioning studies. The elongated 
shape of the human sperm nucleus allows the assessment of not only radial but also 
longitudinal chromosome position. 

 To determine the longitudinal position, that is, the location of the chromosome 
along the anterior–posterior axis, the length of the sperm nucleus can be divided into 
equal sectors: “subacrosomal, equatorial, basal” (Sbracia et al.  2002 ), “regions (I–
IV)” (Zalenskaya and Zalensky  2004 ), and “apical, medial, basal” (Wiland et al. 
 2008 ), and the number of FISH signals in each sector is calculated. Alternatively, the 
normalized distance from the center of the FISH signal to the tail attachment spot 
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can be computed and used as the indicator of longitudinal chromosome location 
(Zalenskaya and Zalensky  2004 ). 

 The preferential location in the anterior part of the human sperm nucleus has 
been demonstrated for CHR X (Luetjens et al.  1999 ; Hazzouri et al.  2000 ; Sbracia 
et al.  2002 ; Zalenskaya and Zalensky  2004 ) and CHR 1 (Zalenskaya and Zalensky 
 2004 ; Mudrak et al.  2005 ), whereas CHR 18 has been found preferentially in the 
posterior part (Luetjens et al.  1999 ; Sbracia et al.  2002 ; Mudrak et al.  2012 ). A random 
distribution along the long nuclear axis has been demonstrated for CHR 13 (Hazzouri 
et al.  2000 ). 

 Radial position can be defi ned as the position of chromosomes in relationship to 
the nuclear periphery or the nuclear interior. Some authors divided sperm nuclei 
into concentric zones, “central and peripheral” (Manvelyan et al.  2008 ), or enumer-
ated “shells” (Finch et al.  2008 ), and scored the number of FISH signals in each 
zone. Other authors ascertained the distance from FISH signals either to the nearest 
peripheral edge (Foster et al.  2005 ) or to the long axis of the nucleus (Zalenskaya 
and Zalensky  2004 ). It has been shown that CHR 6 (Zalenskaya and Zalensky 
 2004 ), CHR 7 (Manvelyan et al.  2008 ), and CHR 18 (Manvelyan et al.  2008 ; Mudrak 
et al.  2012 ) are mostly peripheral in location, whereas CHR X (Zalenskaya and 
Zalensky  2004 ; Mudrak et al.  2012 ) and CHR 19 (Manvelyan et al.  2008 ; Mudrak 
et al.  2012 ) are internal. Figure  8.1a–c  demonstrates different approaches to chro-
mosome position determination. Some disagreements in data on chromosome local-
ization between different research groups can result from different methods of cell 
treatment and FISH data analysis. For instance, the internal location of CHR X and 
peripheral location of CHR 6 (Zalenskaya and Zalensky  2004 ) were reported, as 
compared to the peripheral position of CHR X and central position of CHR 6 found 
in another study (Manvelyan et al.  2008 ).

   Analysis of three-dimensional (3D) chromosome arrangement in human sperma-
tozoa (Manvelyan et al.  2008 ) has shown the correlation of radial positioning with 
chromosome size and gene content. Large chromosomes occupied mostly the 
periphery and small chromosomes the nuclear interior: gene-rich chromosomes 
were more centrally located in comparison with gene-poor chromosomes. 

 A similar tendency in the radial intranuclear positioning of chromosomes of dif-
ferent size and gene content was observed in human somatic cells (Croft et al.  1999 ; 
Bickmore and Chubb  2003 ; Parada et al.  2004 ). However, detailed study of chromo-
some positioning in spermatozoa from three breeds of pig (Foster et al.  2005 ), 
although showing the association between position and gene density, did not dem-
onstrate any correlation between position and chromosome size. 

 Interestingly, a nonrandom chromosome arrangement has been reported in sperm 
cells of other mammals: rat (Meyer-Ficca et al.  1998 ), mouse (Garagna et al.  2001 ), 
pig (Foster et al.  2005 ), cow (Mudrak et al., unpublished data), and mammals of the 
earliest groups, such as marsupials (Greaves et al.  2001 ) and monotremes (Watson 
et al.  1996 ; Greaves et al.  2003 ; Tsend-Ayush et al.  2009 ). 

 The observed evolutionary conservation of nonrandom chromosome arrange-
ment in mammalian sperm cells implies its functional importance.  
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    Clustering of Centromeres into Compact Chromocenter 
in the Interior of the Sperm Nucleus 

 Immunofl uorescent detection of the centromere-specifi c histone CENP-A and in situ 
hybridization with alphoid pan-centromeric DNA probes followed by confocal 
microscopy analysis revealed the localization of centromeres in mature human sperm 
nuclei. It was shown that centromeres of all nonhomologous chromosomes demon-
strate a strong clustering that leads to the formation of a compact chromocenter 
localized to the nuclear interior (Zalensky et al.  1993 ,  1995 ). Individual centromeres 

  Fig. 8.1    Determination of chromosome position in human sperm nuclei using fl uorescent in situ 
hybridization (FISH) with centromere-specifi c and whole chromosome painting (WCP) probes. 
( a ) Centromere-specifi c probes with fi ve shell template overlaid are used to determine the radial 
chromosome location. FISH signals are scored according to which of the fi ve shells they 
appeared in; if a probe is spanned more than one shell, it is scored based on the location of the 
majority of its signal. Upper sperm nucleus: the chromosome 18 ( aqua ) is the outermost, the 
chromosome Y ( red ) is innermost; lower sperm nucleus: chromosomes X ( green ) and 18 ( aqua ) 
occupy intermediate positions. (From Finch et al.  2008 , with kind permission from Oxford 
University Press.) ( b ) Centromere-specifi c probe ( red ) and measurements of normalized dis-
tances from FISH signal to the tail attachment point and to the long nuclear axis (D/L and d/L) 
are used to describe the intranuclear chromosome position. ( c ) Chromosome painting probe is 
used to visualize the chromosome territory (CT) of a chromosome ( green ). To determine the 
longitudinal position along the anterior–posterior axis (shown as a  horizontal line ), the sperm 
nucleus is divided into four regions, I–IV, starting from the basal side that is determined by the 
tail attachment site. Methods in ( b  and  c ) suggested by Zalenskaya and Zalensky ( 2004 ). Nuclear 
DNA ( a – c ) is counterstained with DAPI ( blue )       
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within the chromocenter of the decondensed mature human sperm nucleus form 
different structural elements: dimers, tetramers, linear arrays, and V-shaped struc-
tures (Zalensky et al.  1993 ). Later on, the existence of the chromocenter in human 
sperm nucleus was supported (Hazzouri et al.  2000 ; Gurevitch et al.  2001 ; Finch 
et al.  2008 ; Wiland et al.  2008 ). Chromocenters were also found in bovine (Powell 
et al.  1990 ), rat (Meyer-Ficca et al.  1998 ), and mouse (Haaf and Ward  1995 ; Hoyer-
Fender et al.  2000 ; Dolnik et al.  2007 ) sperm nuclei, suggesting similar principles of 
overall nuclear architecture in mammalian spermatozoa.  

    Peripheral Location of Telomeres in the Sperm Nucleus 

 The position of telomeres in human sperm cells was examined using FISH with the 
telomere-specifi c (TTAGGG)n probe. It was shown that telomeres are localized at the 
periphery of human sperm nuclei, and it was suggested that they form associations 
with the nuclear membrane (Zalensky et al.  1995 ). Using minimal nuclear swelling of 
the sperm cells pretreated with heparin in combination with DTT, it was found that in 
human sperm, telomeres associate into tetrameres and dimers (Zalensky et al.  1997 ). 
Telomere dimers are observed not only in humans but in fi ve other mammals: rat, 
mouse, pig, horse, and cow (Zalensky et al.  1997 ; Meyer-Ficca et al.  1998 ). The prog-
ress in the studies on telomere positioning has been done after human subtelomeric 
chromosome- and arm-specifi c probes for FISH became available (Knight et al.  1997 , 
Kingsley et al.  1997 , Knight and Flint  2000 ). Interesting results were obtained with 
the use of two-color FISH with pairs of DNA probes that correspond to p- and q-arms 
of seven human chromosomes (metacentric and submetacentric, large and small) on 
sperm cells after heparin-DTT nuclear swelling (Solov’eva et al.  2004 ). These studies 
have revealed that the telomere dimer appears as the result of specifi c interaction of 
chromosome ends of the same chromosome, indicating that human sperm chromo-
somes are looped. It has been proposed that these interactions depend on chromo-
some arm-specifi c subtelomeric sequences and may involve protein complexes 
specifi cally binding these sequences that are not established yet.  

    Hairpin Confi guration of Chromosomes in Human Sperm Nucleus 

 Using two-color FISH with microdissected probes for the whole p- and q-arms of 
human metacentric chromosomes 1 and 2 and submetacentric chromosome 5, the 
looped confi guration of human sperm chromosomes proposed earlier (Zalensky 
et al.  1995 ; Solov’eva et al.  2004 ) was confi rmed (Mudrak et al.  2005 ). In sperm 
nuclei mildly decondensed with heparin/DTT, FISH signals from p- and q-arms of 
the chromosomes overlapped or were located closely to each other in the antiparal-
lel fashion inside the compact CT, while the chromosome was bent at almost 180° 
in the centromere region. The antiparallel position of chromosome arms produced 
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the hairpin confi guration (Fig.  8.2 ) of chromosomes (Mudrak et al.  2005 ). The hairpin 
shape of chromosomes was preserved in nuclei swollen to a higher degree. The 
hairpin conformation is most probably characteristic to the sperm chromosomes of 
other mammals where telomeric dimers located at the nuclear periphery were 
observed (Zalensky et al.  1997 ; Meyer-Ficca et al.  1998 ).

   In summary, chromosome organization in human spermatozoa has the following 
features: (1) chromosomes are nonrandomly located in the nucleus and occupy dis-
tinct CTs; (2) centromeres of all chromosomes are joined into the chromocenter in 
the nuclear interior; (3) telomeres are located at the periphery of the nucleus, form-
ing dimers and tetramers; (4) each CT appears to be stretched between its internally 
located centromere with p- and q-arm telomeres interacting at the periphery, so that 
overall chromosome confi guration resembles a hairpin; (5) chromosome arms rep-
resent chromatin fi bers 1,000 nm wide; each 1,000-nm fi ber is composed of two 
rows of chromatin globules 500 nm in diameter interconnected with thinner chro-
matin strands (illustrated in Fig.  8.3a–c ).

        Chromosome Positioning in Spermatozoa and Early 
Embryonic Development 

 Complex and dynamic organization of the genome in somatic cells contributes to 
the regulation of nuclear processes such as DNA replication and repair, gene tran-
scription, and RNA processing (for review, see Schneider and Grosschedl  2007 ). 

  Fig. 8.2    Hairpin confi guration of the chromosome in human sperm nucleus revealed by two-color 
FISH with arm-specifi c chromosome paints. ( a ) Typical pattern of hybridization: chromosome 
fi ber is bent at 180° at the centromere ( arrow ) so that p-arm ( red ) and q-arm ( green ) of the chromo-
some appear aligned in the antiparallel way. This arrangement produces a looped shape of chromo-
somes with telomeres located close to each other. ( b ) Schematic representation of the hairpin 
chromosome confi guration presented in ( a ). p- and q-chromosome arms are shown in  red  and 
 green ; the centromere, in  yellow , and telomeres located at the nuclear periphery, in  light green        
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It is not entirely clear whether global genome organization in the genetically silent 
sperm nucleus is of any functional importance or if it arises in the process of effi -
cient packaging of chromatin into the miniature sperm head. 

 Intranuclear location of CHR X was studied in spermatozoa of several mamma-
lian species including monotremes and marsupials—nonplacental mammals evolu-
tionarily diverged from placentals 170 and 130 million years ago, respectively. In 
fi brillar spermatozoa of two monotreme species—platypus and echidna—sex chro-
mosomes are located apically near the acrosome, the place of the fi rst contact with 
the egg during fertilization (Watson et al.  1996 ). Therefore, it was suggested that 
sex chromosomes were possibly the fi rst chromosomes to be exposed to the egg 
cytoplasm, decondensed and remodeled by ooplasmic factors (Greaves et al.  2003  ).  
Anterior (subacrosomal) location of X chromosomes in humans (Luetjens et al. 
 1999 ; Hazzouri et al.  2000 ; Sbracia et al.  2002 ) supported this view. Although in 
sperm cells of two Australian marsupials, the fat-tailed dunnart and southern hairy-
nosed wombat, CHR X occupied the medial position (Greaves et al.  2001 ,  2003 ), 
during maturation, dunnart and wombat sperm cells undergo the morphological 
transition to T-shape (Breed  1994 ), so that their medially located CHR X appears to 
be located in the place of spermatozoon fi rst contact to the egg during fertilization. 

 The opposite point of view is that sex chromosomes are the last ones to be acti-
vated by ooplasm during fertilization (Foster et al.  2005 ); this is based on the analy-
sis of sex chromosome location in spermatozoa of humans and pigs. Although the 
longitudinal position of CHR X in these two species (human and pig) could be 
defi ned as anterior (subacrosomal), its radial position is strictly central (Luetjens 
et al.  1999 ; Hazzouri et al.  2000 ; Sbracia et al.  2002 ; Zalenskaya and Zalensky 
 2004 ). It has been suggested that in oval-shaped porcine and human nuclei, radial 
positioning is more relevant, and therefore chromosomes X and Y, located deeply in 
the nuclear interior, are the last ones to be exposed to the ooplasm during fertiliza-
tion. Similar CHR X location was observed in bovine sperm nuclei (Mudrak et al., 
unpublished data). Despite the diametrical points of view on timing of sex chromosome 

  Fig. 8.3    Organization of chromosomes in human sperm nucleus. ( a ) Chromosomes (only two 
ones are shown) stretch between the sperm chromocenter formed by an aggregation of centromeres 
( yellow circles ) in the nuclear interior and peripherally located telomeres ( light green circles ), 
associated into dimers. Closely located p- and q-arms produce a characteristic hairpin confi gura-
tion of the sperm chromosome. ( b ) Enlarged chromosome hairpin: an individual arm presents a 
1,000-nm chromatin fi ber. ( c ) A 1,000-nm arm fi ber consists of two rows of 500-nm chromatin 
globules seen in a conventional epifl uorescent microscope. These globules presumably are formed 
by stacked nucleoprotamine toroids. Each toroid consists of a packed 50-kb DNA loop. 
(Overviewed in Section “  DNA Packaging in Spermatozoa    ”)       
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activation during fertilization, both groups of authors (Greaves et al.  2003 ; Foster 
et al.  2005 ) are in agreement on functional importance of intranuclear sex chromo-
some positioning. 

 Global rearrangement of nuclear architecture takes place in spermatogenesis. 
Individual centromeres come together to form a chromocenter in humans (Zalensky 
et al.  1993 ,  1995 ) and mice (Namekawa et al.  2006 ) by the round spermatid stage. 
At the same stage, repositioning of the X chromosome from the periphery to the 
center of the nucleus was observed also in spermatogenesis of mice (Namekawa 
et al.  2006 ) and marsupials (Namekawa et al.  2007 ). Similarly, in the spermato-
genesis of the pig (Foster et al.  2005 ), relocation of CHR X from the periphery to 
the center occurs, when primary spermatocytes become secondary spermatocytes 
and then differentiate into spermatids, and this relocation seems to be important 
for proper sperm functioning. In sperm cell precursors such as primary spermato-
cytes, CHR X is located at the nuclear periphery (reviewed in Handel  2004 ; Foster 
et al.  2005 ). 

 Migration of the X chromosome may be associated with MSCI, another form of 
X-chromosome inactivation characteristic for male germ cells. Male MSCI is Xist 
independent (McCarrey et al.  2002 ; Turner et al.  2002 ), as compared to female 
X-inactivation, well known for placental mammals, when a noncoding RNA (Xist) 
decorates the entire X chromosome to initiate chromosome-wide gene silencing 
(Chow and Heard  2010 ; Lee  2010 ). MSCI is a special case of the more general 
mechanism of meiotic silencing of unsynapsed chromatin (MSUC), which silences 
chromosomes that fail to pair with their homologous partners and is thought to pre-
vent the aneuploidy resulting from synaptic errors (Turner  2007 ). 

 MSCI begins during the fi rst meiotic prophase of spermatogenesis when homol-
ogous pairing and synapsis take place. Sex chromosomes lack homology, except for 
a tiny pseudoautosomal region. Although autosomes undergo synapsis, sex chromo-
somes remain unpaired. They start condensing and eventually form a transcription-
ally inactive XY-body by the mid-pachytene stage, at the nuclear periphery of 
primary spermatocytes (Hoyer-Fender  2003 ; Namekawa et al.  2006 ). Transcriptional 
silencing is achieved by a number of chromatin modifi cations, including histone 
ubiquitination, phosphorylation, methylation, and acetylation (Baarends et al. 
 2007 ). It was demonstrated that the silencing persists throughout meiosis II and 
spermiogenesis into mature sperm, long after dissolution of the XY-body. Inactive 
X and Y chromosomes, showing epigenetic similarity to the XY-body, were termed 
postmeiotic sex chromatin (Namekawa et al.  2006 ). 

 In postmeiotic haploid round spermatids of mice, postmeiotic sex chromatin 
occupies a novel compartment in the center of the nucleus, juxtaposed to the chro-
mocenter, and adopts a distinctive chromosome confi guration as compared to auto-
somes. Although autosomes are organized radially around the chromocenter in a 
Rabl confi guration (Leitch  2000 ), the X and Y occupy compact domains that do not 
extend to the nuclear periphery (Namekawa et al.  2006 ). Similar CHR X confi gura-
tion was observed in mature spermatozoa of pigs (Foster et al.  2005 ), bulls, and 
humans (Mudrak et al., unpublished data). Thus, the X-chromosome position may 
be critical for establishing X-chromosome inactivation. 
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 Polarity of sperm nuclei together with the nonrandom chromosome/chromatin 
domain arrangement in sperm cells may lead to the sequential manner of sperm 
chromatin remodelling during fertilization (Foster et al.  2005 ). Following penetra-
tion into the oocyte, the sperm nuclear envelope starts to disperse, and sperm chro-
matin becomes exposed to the ooplasm. It is imaginable that chromatin bordering 
the disassembling nuclear envelope is decondensed and remodeled by ooplasmic 
factors in the fi rst turn. Chromosomes that are closer to the dispersing nuclear enve-
lope should be remodeled earlier than others. 

 During early mammalian embryogenesis, male and female genomes remain 
topologically separated up to the four-cell embryo stage, at the time when chroma-
tin remodeling (Mayer et al.  2000 ) and programming of the appropriate patterns of 
parent-specifi c developmental gene expression occur (Fundele and Surani  1994 ). 

 Thus, the well-organized and conserved nuclear architecture in sperm may pro-
vide the mechanism for differential exposure of chromatin domains to the ooplas-
mic factors and the controlled activation of the male genome following 
fertilization.  

    Genome Architecture Abnormalities and Male Infertility 

 Male factor infertility is a heterogeneous disorder including abnormal sperm mor-
phology, low motility and sperm count, chromosome abnormalities, defi ciencies in 
basic chromosomal proteins, and chromatin condensation defects. 

 If the genome architecture is functionally important, its change is expected to be 
associated with an abnormal phenotype. Indeed, in somatic cells, alterations in 
genome architecture are correlated with epilepsy (Borden and Manuelidis  1988 ), 
some laminopathies (Misteli  2004 ), and cancer (Meaburn et al.  2005 ). 

 In sperm cells, deviations from normal genome architecture may affect fertiliza-
tion or development. There are a few studies of genome architecture in infertile 
males. Finch et al. ( 2008 ) studied the radial distribution of three centromeric loci (in 
CHRs X, Y, and 18) in spermatozoa from infertile men diagnosed as having impaired 
semen parameters such as oligozoospermia, asthenozoospermia, and teratozoosper-
mia. They found that the sex chromosome distribution pattern in these patients was 
altered in comparison with a control group of normozoospermic males. The distri-
bution of X- and Y-centromeres in infertile males was close to random, whereas in 
the control group, centromeres were located in the center of the nucleus, which is 
characteristic of normal human sperm genome architecture (Zalensky et al.  1993 , 
 1995 ; Zalenskaya and Zalensky  2004 ). The authors suggested that the distorted 
genome architecture in infertile males could be the consequence of impaired sper-
matogenic regulation. X-chromosome migration to the center of the nucleus may be 
related to the MSCI/MSUC process, whereas compromised semen parameters are 
often connected with the increase of aneuploidy level (reviewed by Tempest and 
Griffi n  2004 ). Hence, Finch and coauthors speculated that the altered pattern of 
genome architecture in infertile males might refl ect failure in sex chromosome 
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migration from the periphery to the center and defects in MSCI/MSUC mechanisms 
(Finch et al.  2008 ). 

 A distorted centromere distribution pattern in spermatozoa was reported to be 
correlated with infertility (Olszewska et al.  2008 ). The authors demonstrated that 
although in fertile individuals the localization of centromeres (CHRs 15, 18, X, and 
Y) was restricted to a small area in the nuclear interior, some disturbances in the 
centromere area existed in sperm cells of infertile patients. In disomic sperm cells 
( n  + 1), centromeres of CHRs 15,15 or 18,18, or Y,Y (but not X,X) had a shifted 
average longitudinal position in comparison with normal sperm cells ( n  = 23) 
(Olszewska et al.  2008 ). 

 Aberrations of genome architecture in spermatozoa do not necessarily cause 
infertility. A study of longitudinal and radial localization of centromeres (CHRs 7, 
9, X, Y) in fertile normozoospermic males that were carriers of the reciprocal chro-
mosome translocations t(1;7), t(7;2), t(7;13), t(7;9), t(9;14), and t(4;13) demon-
strated deviations in normal chromosome positioning: the centromeres of 
chromosomes with translocations had a shifted intranuclear localization, which 
infl uenced the localization of other chromosomes (X and Y). The chromocenter in 
sperm nuclei of translocation carriers was widened toward the apical end of the 
nucleus in comparison with the chromocenter in control males (Wiland et al.  2008 ). 

 An increase of aneuploidy level and the degree of mosaicism in the embryo 
derived from parents—carriers of a balanced translocation—was reported previ-
ously (Iwarsson et al.  2000 ). Based on this observation, Wiland and coauthors 
hypothesized that distorted chromosome positioning in spermatozoa might affect 
the position of chromosomes during the fi rst mitotic division of the zygote and thus 
could lead to aneuploidy. 

 Therefore, no deterministic link has been established between aberrant sperm 
genome architecture and male fertility. Further studies are needed to evaluate the 
contribution of altered sperm genome architecture to male infertility.  

    Sex Chromosome Positioning in Male Gametes and the 
Increased Rate of Sex Chromosome Aneuploidy After ICSI 

 Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technology that 
is used to treat sperm-related infertility. In this technique, a single spermatozoon is 
injected into a mature egg, thus bypassing all the steps of normal gamete interac-
tion. The injected spermatozoon does not undergo the acrosome reaction and pre-
serves the intact perinuclear theca, which can cause delay in decondensation of 
subacrosomal chromatin. 

 An increased occurrence of chromosomal abnormalities in newborn children 
conceived through ICSI was reported (Bonduelle et al.  1998 ; In’t Veld et al.  1995 ; 
Liebaers et al.  1995 ). It was suggested that one of these abnormalities, the increase 
in sex chromosome aneuploidy of paternal origin, might arise de novo and be a 
consequence of the ICSI procedure itself (Luetjens et al.  1999 ). 
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 An impaired chromatin decondensation pattern was also observed in monkey 
(Sutovsky et al.  1996 ; Hewitson et al.  1999 ; Ramalho-Santos et al.  2000 ), porcine 
(Katayama et al.  2002 ), mouse (Ajduk et al.  2006 ), and heterologous human–ham-
ster ICSI (Terada et al.  2000 ; Jones et al.  2010 ). 

 Human sex chromosomes have been shown to be preferentially located in sub-
acrosomal areas of the sperm nucleus (Luetjens et al.  1999 ; Hazzouri et al.  2000 ; 
Sbracia et al.  2002 ; Zalenskaya and Zalensky  2004 ; Mudrak et al.  2012 ). Atypical 
decondensation of the subacrosomal region may lead to unbalanced remodeling of 
sex chromosomes (for instance, delaying their entry into S-phase) and eventually 
lead to errors during the fi rst mitotic division of the zygote and chromosome loss 
(Terada et al.  2000 ). 

 An alternative explanation of the increased sex chromosome aneuploidy 
after ICSI may be an increased rate of sex chromosome aneuploidy in sperm cells. 
A statistically signifi cant increase of the fraction of sperm cells with sex chromo-
some abnormalities was found in the semen of oligozoospermic men (Shi and 
Martin  2001 ; Sbracia et al.  2002 ). It was shown that normal morphology was not an 
absolute indicator for the selection of genetically normal sperm, and therefore the 
observed pregnancy failures among ICSI patients might in part be caused by the 
selection of aneuploid spermatozoa (Ryu et al.  2001 ). Prospective sperm aneuploidy 
testing would be benefi cial for understanding the basis of chromosome anomalies 
and for improving the effi ciency and safety of infertility therapies.  

    Concluding Remarks 

 Chromatin remodeling in the nucleus in differentiating male germ cells results in com-
plete suppression of gene expression and supercompact packaging of the male genome 
into a volume of about 5 % of that of somatic cells in mature spermatozoa. Because of 
this, for a long time, the sperm function was considered to be limited only to the deliv-
ery of paternal genetic material to the oocyte. However, data that have emerged in the 
past two decades suggest that, in addition to the paternal genome, the mammalian 
sperm cell may bear epigenetic information important for early embryogenesis. 

 Human sperm chromatin adopts complex spatial organization on multiple levels 
starting from the packaging of DNA by protamines up to the higher-order structure 
of CTs. However, protamination of sperm chromatin is not complete, and it contains 
somatic-like domains organized in nucleosomes located at imprinted genes, devel-
opmentally transcribed genes, and genes of signaling factors (Miller et al.  2010 ). 
Similarly to chromatin in somatic cells, histone-containing domains can be marked 
by histone modifi cations (Hammoud et al.  2009 ; Brykczynska et al.  2010 ), suggest-
ing potential paternal contribution to the epigenetic reprogramming of the zygote 
following fertilization. 

 Large-scale chromosome and nuclear architecture in sperm cells may have a 
functional signifi cance as well. Individual chromosomes demonstrate nonrandom 
intranuclear positions, with their centromeric regions aggregated in the internal 
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chromocenter, and specifi c pairing of the telomeric domains at the nuclear periphery. 
Such well-defi ned nuclear architecture can potentially meditate the order of unpacking 
and activation of the male genome upon fertilization, thus transmitting epigenetic 
information to descendant cells (Zalensky and Zalenskaya  2007 ). 

 Emerging evidence suggests that spermatozoa are not just vehicles for genome 
delivery, but that, similarly to somatic cells, sperm chromatin transmits epigenetic 
information. 

 However, our understanding of the functional signifi cance of the structural orga-
nization of sperm chromatin is far from being complete. Further studies of chroma-
tin organization in spermatozoa are essential for revealing mechanisms involved in 
early stages of embryogenesis.     
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    Abstract     Interphase chromosome-specifi c multicolor banding (ICS-MCB) is a 
FISH-based technique for studying interphase chromosomes in their integrity at 
molecular resolution in single cells. To date, this is the only method providing for 
visualizing the whole chromosome and its specifi c regions together at any stage of 
the cell cycle. Offering such opportunity, ICS-MCB has repeatedly proven effective 
in molecular cytogenetic studies of interphase chromosomes (i.e., surveying 
genomic variations at the chromosomal level in different human tissues and charac-
terizing interphase genome/chromosome organization and behavior). The intention 
of this chapter is to describe the basics of ICS-MCB procedure and its applications 
in different biomedical fi elds. The advantages of this technique allow speculations 
that it has to become a method of choice in somatic cell genetics as well as in cell 
and chromosome biology.  
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        Introduction 

 Technical advances in molecular cytogenetics were the starting point of accumulating 
empirical data on interphase chromosomes. Based on fl uorescence in situ hybridiza-
tion (FISH), molecular cytogenetic techniques are successfully used for visualizing 
specifi c genomic loci (molecular cytogenetic diagnosis) and chromosome territories 
in interphase nuclei (Iourov et al.  2009c ; Liehr  2009 ; Cremer and Cremer  2010 ; 
Vorsanova et al.  2010a ,  b ). However, the evolving understanding of the role played 
by interphase chromosome plasticity in genome behavior (Claussen  2005 ) and the 
extensive variability of the cellular genome (Iourov et al.  2008a ,  b ,  2010 ; Yurov 
et al.  2010 ) has forced the search for new technological solutions for a higher-reso-
lution interphase molecular cytogenetic analysis. To achieve such resolution, a tech-
nique granting simultaneous visualization of the whole chromosome and its regions 
in a given nucleus (i.e., banding of interphase chromosomes in single cells) has been 
required. Actually, interphase chromosome-specifi c multicolor banding (ICS-MCB) 
has become the solution providing for studying interphase chromosomes in their 
integrity at molecular resolution (Iourov et al.  2006a ,  2007 ; Iourov  2012 ). The tech-
nique has been further found to be applicable in studying somatic genome variations 
manifesting as chromosomal gain/loss (aneuploidy) and genome/chromosome 
instability (Yurov et al.  2007 ,  2008 ; Iourov et al.  2009a ,  b ), as well as in analysis of 
interphase chromosome (genome) organization (Manvelyan et al.  2008a ,  b ,  2009 ). 

 Using ICS-MCB it is possible to determine chromosome numbers, structure, and 
positioning in interphase nuclei. Specifi cally, one is able to determine structural 
variations and the arrangement of differentially painted chromosomal regions. The 
initial success of the method encouraged us to propose previously that ICS-MCB is 
a tool of choice in attempts to determine structural and functional chromosome/
genome variations in interphase (Iourov et al.  2007 ,  2009c ; Liehr  2009 ; Liehr et al. 
 2010 ; Vorsanova et al.  2010a ; Iourov  2012 ). Notwithstanding, some questions still 
arise regarding the possibilities of this technique that hinder its wide use in biomedi-
cal research. Consequently, we provide here a thorough description of ICS-MCB 
with special attention paid to the advantages, disadvantages, and areas of estab-
lished and potential applications.  

    The Basics of the Procedure 

 Multicolor banding (MCB) is a FISH-based approach toward banding chromo-
somes, which is defi ned as a molecular cytogenetic technique depicting simultane-
ously several chromosomal regions (or subregions) smaller than a chromosome 
arm (Liehr et al.  2010 ). MCB was developed through utilizing microdissected 
DNA probes and was initially applied to metaphase chromosomes for studying 
genome variations at the chromosomal/subchromosomal level (Liehr et al.  2002 ). 
Because MCB produces DNA-specifi c banding, it possesses a higher resolution as 
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to cytogenetic banding (i.e., G-banding) and provides for identifying the DNA-
based chromosomal structure (Liehr et al.  2002 ,  2010 ). MCB adaptation to study-
ing numbers and arrangement of interphase chromosomes (ICS-MCB elaboration) 
has become possible because of original imaging approaches allowing us to deter-
mine chromosomal axis, region (locus) location, and arrangement in differently 
shaped interphase nuclei (Iourov et al.  2006a ,  2007 ; Manvelyan et al.  2008a ). In 
general, apart from imaging, ICS-MCB resembles metaphase MCB, but a specifi c-
ity of ICS-MCB procedure does exist. 

 Both MCB and ICS-MCB are based on changing fl uorescence intensity ratios 
along the chromosome axis. By means of corresponding software or an “in-house” 
analysis, different pseudocolors are assigned to specifi c chromosomal regions. The 
latter makes available differentiating between chromosomal regions, which are 
referred to specifi cally painted areas at the band or subband level. The banding 
becomes visible because three to fi ve differently labeled microdissected probes are 
used, which are hybridizing along the chromosomal axis and overlap with each 
other. The color sequence results from painting of chromosomal regions by these 
probes per se and overlappings of probe signals, which are assigned to pseudocolors 
according to the fl uorescence ratios within the area of signal overlapping. Although 
the MCB concept suggests having specifi c software for successful application, ICS- 
MCB results can be alternatively acquired through scoring signals by simple visual 
analysis, especially during evaluation of chromosome numbers in large cell popula-
tions (Liehr et al.  2002 ,  2010 ; Yurov et al.  2007 ; Liehr  2009 ; Iourov et al.  2006a ,  c , 
 2007 ,  2009c ; Vorsanova et al.  2010a ). For an extended reference list, one can refer 
to   http://www.fi sh.uniklinikum-jena.de/mFISH/banding/MCB.html    . 

 The resolution of interphase molecular cytogenetic analysis can be affected by 
chromosome spatial organization (Vorsanova et al.  2010a ). Chromosome associa-
tions (somatic homologous chromosome pairing), nucleus fl attening during cell 
suspension preparation, and chromosomal DNA diffusion within the nuclear milieu 
all cause misinterpretation of interphase FISH results (Iourov et al.  2006b ,  2009c ). 
To solve this problem by ICS-MCB, imaging processing is required. First, image 
pre-processing for quantifi cation of relative intensities is performed. Second, digital 
image analysis by quantifi cation is made. These procedures allow (1) determining 
the chromosomal axis by removing background from chromosomal DNA diffusion, 
(2) defi ning the location and volume occupied by each labeled chromosomal region, 
and (3) differentiating between specifi c arrangement of chromosomal loci in inter-
phase (inside the nuclear volume) and chromosome abnormalities (Iourov et al. 
 2007 ). Alternatively, software for digital 3D analysis of microscopically visible 
structures offers options similar to (1) and (2), which are required for studies of 
nuclear chromosome organization via ICS-MCB (Manvelyan et al.  2008a ,  b ,  2009 ). 
Figure  9.1  demonstrates ICS-MCB on human interphase nuclei and the way to 
increase effi ciency and resolution by using different quantifi cation protocols (Iourov 
et al.  2007 ).

   To consider established and potential applications of ICS-MCB, advantages and 
disadvantages of this method should be listed. Classical (metaphase) MCB provides 
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  Fig. 9.1    Interphase chromosome-specifi c multicolor banding (ICS-MCB) on human interphase 
nuclei. ( a ) ( 1 ) ICS-MCB probe set for chromosome 14 characterizing the localization and orienta-
tion of the two homologues ( right : pseudocolor results;  left : schematically depicted results as 
G-banding ideograms); ( 2 ) corresponding results obtained with an ICS-MCB with probe set for 
chromosome 7. ( b ) ICS-MCB probe-set for chromosome 21 depicted as 3D-intensity profi les 
( parts 1–3 ) and as depicted in  part 4 . 3D-intensity profi les can be used to defi ne chromosome 
integrity. The original results can be evaluated by equalizing the background within nuclear area to 
zero: SpectrumOrange signals specifi c for 21q11.1-q21 ( 1 ), TexasRed signals specifi c for 21q21- 
qter ( 2 ), and SpectrumGreen signals located in 21q21-q22 ( 3 ) were treated in this manner. Original 
results are shown in the upper an. equalized ones in the lower lines, each. In ( 4 ), results corre-
sponding to these are shown in a fi gure obtained with an ICS-MCB with probe set for chromosome 
21. ( c ) Results of ICS-MCB obtained with a probe set for chromosome 16 in pseudocolor depic-
tion ( left ) together with the corresponding quantitative fl uorescence in situ hybridization (QFISH) 
results ( right ). For the latter, the relative intensity values for each color channel used 
(SpectrumOrange, SpectrumGreen, TexasRed, and Cyanine5) are given in fl uorescence intensity 
curves. According to pseudocolor depiction, the presence of one or two chromosomes 16 on this 
nucleus could have been suggested. QFISH clearly shows that two overlapping chromosomes are 
present, because the intensities of two discrete signals of SpectrumOrange and Cyanine5 are 
approximately two times lower than those of single signals in SpectrumGreen and TexasRed. 
(From Iourov et al.  2007 . Reproduced with permission of Elsevier B.V. in the format reuse in a 
book/textbook via Copyright Clearance Center)       
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for analyzing chromosomes irrespective of their condensation grades (Liehr et al. 
 2002 ). It is also applicable for ICS-MCB, which is able to depict a homologous 
chromosome pair at any cell-cycle stage in any cell type regardless of cellular size, 
chromatin compaction level, density of chromosome positioning, etc. (Iourov et al. 
 2006a ,  2009a ,  b ; Manvelyan et al.  2008a ,  b ,  2009 ; Liehr  2009 ). In contrast to other 
types of interphase FISH assays, ICS-MCB shows not only specifi c genomic loci or 
ambiguous chromosome territories (Vorsanova et al.  2010a ), but a pair of discrete 
homologous chromosomes “band by band.” The possibility to visualize simultane-
ously the entire chromosome, its regions (size, ~3–15 Mb), and intranuclear arrange-
ment defi nes ICS-MCB as the unique method for studying chromosome 
abnormalities and nuclear organization in all cell types, at different cell-cycle stages, 
and at molecular resolutions. Because DNA–DNA FISH underlies ICS-MCB, the 
technique is able to provide qualitative and quantitative defi nition of chromosomal 
DNA-based structure important in evaluations of nuclear architecture and discrimi-
nations between structural alterations to chromosomes and chromosomal spatial 
positioning (Lemke et al.  2002 ; Weise et al.  2002 ; Iourov et al.  2006c ,  2009c ). ICS- 
MCB disadvantages are referred to the impossibility of analyzing more than one 
homologous chromosome pair per assay and problems with initial interpretation of 
digital microscopic images. However, these interpretation problems are relatively 
easily solved using quantifi cation or additional software for three-dimensional (3D) 
microscopic analysis (Iourov et al.  2007 ; Manvelyan et al.  2008a ).  

    Applications 

 According to our experience, there are two essential directions for ICS-MCB appli-
cation: identifi cation of chromosome abnormalities or genomic variations at the 
chromosomal or subchromosomal level at the single-cell level (Iourov et al.  2006a ,  c , 
 2008a ,  b ,  2009a ,  b ; Vorsanova et al.  2010b ; Yurov et al.  2007 ,  2008 ) and defi nition 
of DNA-based structure of human chromosomes in interphase or analysis of nuclear 
chromosome organization (Lemke et al.  2002 ; Weise et al.  2002 ; Iourov et al.  2007 ; 
Manvelyan et al.  2008a ,  b ,  2009 ; Liehr  2009 ). The former direction is relevant to 
basic and applied research targeted at defi ning the role of somatic genome varia-
tions in health and disease (Iourov et al.  2006c ,  2008a ,  b ,  2010 ; Yurov et al.  2010 ) 
and developing approaches to molecular cytogenetic diagnosis of chromosomal 
mosaicism and instability in interphase (Vorsanova et al.  2010b ), whereas the latter 
is an important issue in basic biomedical research aimed at uncovering the meaning 
of spatial intranuclear genome organization at the chromosomal level (Claussen 
 2005 ; Cremer and Cremer  2010 ). 

 The cellular genome is highly variable and can undergo ontogenetic, clonal, and 
sporadic changes, but the intrinsic causes and consequences of this phenomenon are 
hardly known (Iourov et al.  2010 ; Yurov et al.  2010 ). To obtain further insights into 
somatic cell genetics and genomics, it is necessary to determine the amount of cells 
possessing the deviant genome in different cell types of diseased and healthy  tissues. 
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Once acquired, the data would be useful for molecular cytogenetic diagnosis of 
somatic genome variations as a catalogue of disease-causing and benign intercel-
lular genomic variations as a platform for developing techniques for studying 
cellular genome. In this context, ICS-MCB is so far the only possibility to deter-
mine single-cell genomic variations at chromosomal and subchromosomal levels 
(Iourov  2012 ). Thus, ICS-MCB can be used for molecular cytogenetic diagnosis of 
somatic chromosomal mosaicism in uncultured tissues (detection rate, <0.1 % or 
one interphase nucleus in cases of pseudomosaicism) (Iourov et al.  2008a ,  2009c ; 
Vorsanova et al.  2010b ), determining pathogenetic mechanisms of a wide spectrum 
of human diseases mediated by somatic genome variations (for review, see Iourov 
et al.  2008a ,  2010 ; Yurov et al.  2010 ), and identifi cation of chromosome instability 
in interphase cells [chromosome instability manifested as aneuploidy/polyploidy, 
structural chromosome abnormalities, alterations to chromosome morphology 
(fragile sites, interphase chromosome breakage), etc.] (Iourov et al.  2009a ,  b ). 
Figure  9.2  shows original examples of ICS-MCB applications for studying chromo-
some number variations (i.e., aneuploidy) and instability (structural rearrangements 
caused by interphase chromosome breakage). In total, ICS-MCB appears to have 
practical implications for molecular cytogenetic diagnosis of chromosome abnor-
malities (or chromosomal mosaicism) in medical genetics/cytogenetics, including 

  Fig. 9.2    Molecular cytogenetic analyses of the developing and adult human brain by ICS-MCB. 
( a ) Loss of chromosome 18 (monosomy) in a cell isolated from telencephalic regions of the fetal 
brain. ( b ) Loss of chromosome 16 (monosomy) in a cell isolated from the cerebral cortex of the 
normal human brain ( c ) Loss of chromosome 1 (monosomy) in a cell isolated from the cerebral 
cortex of the schizophrenia brain. ( d ) Gain of chromosome 21 (trisomy) in a cell isolated from the 
cerebral cortex of an Alzheimer’s disease brain. ( e ) Loss of chromosome 21 (monosomy) in a cell 
isolated from the cerebellum of the ataxia-telangiectasia brain. ( f ) Chromosome instability in the 
cerebellum of the ataxia-telangiectasia brain manifesting as the presence of a rearranged chromo-
some 14 or der(14)(14pter->14q12:)       
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 oncocytogenetics and reproductive cytogenetics. Furthermore, studying intercellular 
genome variations is strongly required in such biomedical areas as ontogenetic 
(aging and development) and cancer research, single-cell biology (genomics), neu-
roscience, and personalized medicine.

   Recent success in studying interphase genome organization by ICS-MCB has 
made possible speculations about a higher resolution of this technique for determin-
ing spatial arrangement of chromosomes inside the nucleus compared to other inter-
phase FISH assays (Manvelyan et al.  2008a ,  b ,  2009 ). As noted before, simultaneous 
analysis of the whole chromosome and its regions is the unique feature of ICS- 
MCB. Providing for DNA-based interphase chromosome structure with molecular 
resolution (Lemke et al.  2002 ; Weise et al.  2002 ), ICS-MCB is likely to be the 
essential technique for evaluating positioning of specifi c chromosomal regions in 
relationship to the whole chromosome and different nuclear compartments. This 
opportunity seems to be required for acquiring more profound knowledge concern-
ing the real meaning of spatial chromosome positioning in interphase. Moreover, 
the visualization of chromosomal associations, which are likely to be involved in 
epigenetic genome regulation and susceptibility to somatic chromosomal rearrange-
ments (Cremer and Cremer  2010 ), is much more effi ciently performed by ICS- 
MCB (Iourov et al.  2006a ,  2007 ; Fig.  9.1 ) compared to techniques showing 
ambiguous chromosome territories (chromosomal regions are not visible) or 
ligation- based chromosome conformation capture (number of chromosomal loci is 
limited and only small genomic fragments, sized as an average PCR product, can be 
evaluated). Therefore, one can further speculate that studies in chromosome and cell 
biology as well as somatic genetics, which are dedicated to analysis of chromosome 
structural and functional organization at the single-cell level, can gain much from 
ICS-MCB application.  

    Conclusion 

 ICS-MCB offers an opportunity to visualize together individual interphase chromo-
somes and their regions. The advantages of this technique (i.e., resolution, ability to 
study interphase chromosomes at any cell-cycle stage in any cell type) make it 
highly applicable in chromosome and cell biology. The method may be used as for 
chromosomal analysis on large cell populations, such as for defi nition of DNA- 
based structure of chromosomal loci in single interphase nuclei. Using ICS-MCB, 
one can acquire new data on somatic genome variations at the chromosomal level in 
any cell type (including structural chromosome abnormalities or instabilities, which 
are rarely detected by single-cell analyses of uncultured cells) and spatial chromo-
some/genome nuclear organization. Taking into account the data already obtained, 
ICS-MCB may be considered a kind of technological achievement in chromosome 
biology. To this end, the technique described here deserves to become a method of 
choice in genetics, cell, genome, and chromosome biology.     
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    Abstract     The impact of chromosome architecture on the formation of  chromosome 
aberrations is a recent fi nding of interphase-directed molecular cytogenetic studies. 
Until recent years, biomedical research of interphase chromosomes in their integrity 
was hindered by technical limitations. The introduction of three- dimensional sus-
pension-based fl uorescence in situ hybridization (S-FISH) in combination with 
microdissection-based engineered DNA probes and fl uorescence multicolor band-
ing (MCB) allowed studying interphase chromosome organization, numbers, and 
rearrangements in different kinds of cells. Such studies have already provided com-
prehensive information on the interphase architecture of normal human sperm, as 
well as fi rst insights into the infl uence of chromosomal  rearrangements on the 3D 
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structure of sperm nuclei. Also, the infl uence of  additional chromosomal fragments 
present in a nucleus was successfully visualized by S-FISH. Finally, S-FISH sup-
ported the idea that disease-specifi c chromosomal translocations could be the result 
of tissue-specifi c genomic organization. Overall, S-FISH combined with MCB, but 
also with other DNA probes, is a tool with high potential to resolve the infl uence of 
chromosomal imbalances or rearrangements on the interphase architecture, the lat-
ter being possibly a part of epigenetic cell regulation.  

           Introduction 

 In the interphase nucleus, chromosomes are located in specifi c regions, which are 
called “chromosome territories” (Cremer and Cremer  2001 ; Williams and Fisher 
 2003 ; Branco and Pombo  2006 ). Our own multicolor banding (MCB)-based studies 
revealed that the chromosome shape itself is not lost in the interphase nucleus and 
that one can even identify “interphase chromosomes” instead of only the chromo-
some territory, even irrespective of the cell-cycle phase (Weise et al.  2002 ; Lemke 
et al.  2002 ). 

 Both chromosome size and gene density have been discussed as having an 
important impact on the nuclear position of chromosomes. Small chromosomes 
preferentially locate close to the center of the nucleus, whereas large chromosomes 
can be found in the nuclear periphery (Sun et al.  2000 ; Bolzer et al.  2005 ). On the 
other hand, Croft et al. ( 1999 ) demonstrated a gene density-correlated radial 
arrangement of chromosomes in nuclei. Gene-dense and early-replicating chroma-
tin can be found mainly in the central part of the nucleus, whereas gene-poor and 
later-replicating chromatin is located in the nuclear periphery (Croft et al.  1999 ). 
Interestingly, this nuclear topological arrangement is conserved during primate evo-
lution (Manvelyan et al.  2008a ). 

 Here we summarize the published applications of suspension-based fl uorescence 
in situ hybridization (S-FISH) combined with FISH banding (Liehr et al.  2002 , 
 2006 ), in particular, the most used approach, array-proven MCB (Weise et al.  2008 ).  

    S-FISH: The Method 

 Performing of a FISH experiment on human meta- and interphase cells after the air- 
drying method is a well-established approach; it is routinely done as a one- to mul-
ticolor FISH test (Liehr et al.  2004a ). However, the air-drying procedure of 
chromosome preparation, leading to well-spread metaphases under appropriate 
conditions, leads at the same time to fl attening of the originally spherical interphase 
nuclei. Thus, interphase architecture is hard to study reliably on such a preparation 
(Hunstig et al.  2009 ), even though some basic insights can also be gained using such 
material for FISH banding (Weise et al.  2002 ; Lemke et al.  2002 ). 
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 However, there is an easy way to do studies in three-dimensionally (3D) pre-
served interphase nuclei obtained from routinely prepared cytogenetic preparations 
stored in Carnoy’s fi xative. One only needs to do the whole FISH procedure in cell 
suspension, and as a fi nal step the nuclei are placed on a polished concave slide 
before evaluation, immobilized in agarose. This approach for 3D-FISH analyses on 
totally spherical interphase nuclei, called suspension-based fl uorescence in situ 
hybridization (S-FISH), was published fi rst in 2002 (Steinhaeuser et al.  2002 ) and 
further developed and slightly modifi ed later (Manvelyan et al.  2008a ; Hunstig et al. 
 2009 ). Its principle is shown in Fig.  10.1 .

      S-FISH: Which DNA Probes May Be Applied? 

 For S-FISH, all available chromosomes or chromosome region-specifi c DNA are 
suitable. However, for application in S-FISH, at least double the amount of the 
probe is necessary compared to “normal” FISH experiments (Hunstig et al.  2009 ). 
To resolve the chromosome structure as a whole, single chromosome-directed FISH 
banding based on partial chromosome painting probes, as in MCB, is best suited 

  Fig. 10.1    Schematic drawing 
of the suspension-based 
fl uorescence in situ 
hybridization (S-FISH) 
procedure. Overall, S-FISH 
avoids fl attening and artifi cial 
swelling of the interphase 
nuclei, and the whole 
experiment is performed in 
suspension. A certain loss of 
cells during the washing steps 
is normal, shown here by the 
reduction of cells/nuclei from 
step 1 to 4. In principle, 
Carnoy’s fi xative is replaced 
subsequently by solutions 
necessary for a FISH, and 
washing steps are included as 
well. Finally, the cells/nuclei 
are immobilized and 
counterstained in agarose 
(AGAR) on a glass slide 
under a coverslip. Details of 
the protocol are described by 
Hunstig et al. ( 2009 )       
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(Weise et al.  2008 ). Centromeric or locus-specifi c probes can be used as well for 
special questions (Manvelyan et al.  2009 ; Hunstig et al.  2009 ).   

    Applications of S-FISH 

 In addition to some studies done in comparative interphase cytogenetics of humans, 
the white-handed gibbon, and gorilla (Manvelyan et al.  2008a ), S-FISH combined 
with MCB is mainly applied in the fi eld of biomedical basic research of the human 
interphase nucleus. Here still many questions are open and unanswered, mainly 
because of the lack of suitable methods before introduction of S-FISH. 

    Human Sperm 

 For the fi rst time the distribution of all human chromosomes in sperm was resolved 
comprehensively by S-FISH/MCB studies. Strikingly, for the majority of the 24 
human chromosomes the distribution of the territories was alike as in lymphocytes; 
only the acrocentric chromosomes showed another location, because in sperm no 
nucleolus is formed (Manvelyan et al.  2008b ). Thus, this nonrandom positioning 
must have biological signifi cance. In other words, each chromosome needs to have 
a special position in the nucleus so that the cell can work properly. Sperm are trans-
lationally inactive cells; however, they need to have chromosomes at the right places 
as soon as a sperm enters an oocyte and needs to become active again. 

 The study by Manvelyan et al. ( 2008b ) showed a direct correlation of chromo-
some positions and their sizes, apart from chromosomes 1, 2, 6, 14, 18, 20, 21, and 
Y; that is, large chromosomes were in the periphery, small ones in the center. Exactly 
those eight chromosomes not fi tting in the previous correlation, perfectly aligned 
with gene density theory, that is, gene-dense chromosomes, were in the nuclear 
center and gene-poor ones in the periphery. 

 There is also already one study in sperm of males with a chromosomal aberration 
(Bhatt et al.  2009 ). Three males with paracentric inversion were studied, and no 
gross changes in the interphase positioning of the affected chromosomes were 
found. Certainly more studies on the infl uence of inborn rearrangements on the 
nuclear architecture of sperm, but also in other tissues, are necessary.  

    Different Tissues with Additional Chromosomal Fragments 

 Additional chromosomal material present in the cell is suspected to alter or at least 
infl uence the chromosomal architecture. Besides complete trisomies as inborn or 
acquired aberrations, there is the possibility of partial trisomies induced either by 
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derivative chromosomes or by the presence of a small supernumerary marker 
 chromosome (sSMC). The latter condition may be seen in 0.043 % of newborn 
infants, 0.077 % of prenatal cases, 0.433 % of mentally retarded patients, and 
0.171 % of subfertile people (Liehr and Weise  2007 ). sSMC are defi ned as 
 structurally abnormal chromosomes that cannot be identifi ed or characterized 
unambiguously by conventional banding cytogenetics alone, and are generally 
equal in size or smaller than a chromosome 20 of the same metaphase spread. sSMC 
are mostly detected unexpectedly in routine cytogenetics (Liehr et al.  2004b ). Also, 
they are not easy to correlate with a specifi c clinical outcome, because in addition to 
induction of genomic imbalance, mosaicism, etc., most often epigenetic factors can 
infl uence the phenotype of an sSMC carrier. Uniparental disomy, heterochromatiza-
tion, and even their infl uence on the interphase architecture may play a role here. 

 In a recent study (Klein et al.  2012 ), S-FISH revealed that an extra piece of DNA 
such as an sSMC leads to gross rearrangements within the interphase nucleus, 
mainly concerning the sSMC normal sister chromosomes. Primarily, the position of 
the sSMC is infl uenced by or infl uences the position of the homologous chromo-
somes. sSMC and one sister chromosome tend to colocalize; this seems to be driven 
mainly by the amount of euchromatin present in the sSMC. Also, the sSMC seems 
to take over the position of one normal sister chromosome. Thus, the remainder 
sister chromosome is displaced toward another location within the nucleus. These 
observations were made in B- and T lymphocytes and skin fi broblasts.  

    Different Female Tissues and the Position of the X Chromosome 

 S-FISH/MCB studies in buccal mucosa, B- and T lymphocytes, and skin fi broblasts 
for the positioning of normal and derivative X chromosomes in female cells also 
may lead to interesting yet impossible insights into the nuclear architecture. 
Preliminary unpublished results (Fig.  10.2 ) fi rst confi rmed that active and inactive 
X chromosomes are located in the cell periphery and that the inactive X chromo-
some colocalizes to large parts, even though not perfectly, of the Barr body. 
Interestingly, a dicentric X chromosome, leading to an almost complete trisomy X, 
altered the positioning of the two X chromosomes to each other, inducing a larger 
distance between both normal and derivative X chromosomes compared to the nor-
mal cells. Thus, new insights may also be obtained by studying a well-known phe-
nomenon such as X-inactivation by the S-FISH approach.

       Leukemia and the Positions of Chromosomes 8 and 21 

 Nonrandom positioning of chromosomes in interphase nuclei is known to be of 
importance for genomic stability and formation of chromosome aberrations. Thus, 
tissue specifi city of chromosomal translocations could be the result of tissue-specifi c 

10 Chromosome Architecture Studied by High- Resolution FISH Banding in Three…



176

genome organization (Meaburn et al.  2007 ; Brianna Caddle et al.  2007 ), and a posi-
tive correlation between spatial proximity of chromosomes/genes in interphase 
nuclei and translocation frequencies was shown (Bickmore and Teague  2002 ; Roix 
et al.  2003 ; Branco and Pombo  2006 ; Meaburn et al.  2007 ; Brianna Caddle et al. 
 2007 ; Grasser et al.  2008 ). 

 Manvelyan et al. ( 2009 ) provided evidence that there might be an effect of spe-
cifi c chromosome positioning in myeloid bone marrow cells, that is, a colocaliza-
tion of chromosomes 8 and 21 could promote a translocation providing selective 
advantage of t(8;21) cells in AML-M2. Yet unpublished additional S-FISH studies 
confi rmed that this is specifi cally true for AML patients having a trisomy 8. Overall, 
studies to enlighten the nuclear position of tumor-related oncogenes, which are 
known to be activated by specifi c translocations, are promising targets of future 
S-FISH-studies, as supported by recent comparable fi ndings in thyroid cancer 
(Gandhi et al.  2009 ).   

    S-FISH, Conclusions, and Perspectives 

 Overall, the combination of S-FISH and MCB for a three-dimensional analysis of 
chromosome position in the interphase nucleus, which can be accompanied by the 
use of locus-specifi c probes, is a powerful tool. The topological organization in 
interphase nucleus is nonrandom, and it becomes more and more obvious that there 
is a physiological reason behind that. 

 The completed S-FISH studies in humans that have been already summarized 
show the potential of this approach for (1) genome-wide analysis of interphase 
architecture in tissues not yet studied (such as done for sperm; Manvelyan et al. 

  Fig. 10.2    S-FISH results after application of X chromosome-specifi c DNA probe sets. ( a ) Active 
and inactive X chromosomes in a lymphocyte nucleus of a normal female labeled with an MCB-X 
probeset. ( b ) A normal (X) and derivative X chromosome (dic(X)) labeled with partial chromo-
some paints for Xp ( green ) and Xq ( yellow ) visualized in the fi broblast cell line GM15859 
( Corriell ). The female carrier had a constitutional karyotype 46,X,dic(X)(pter->q28::q28->pter)       
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 2008b ), (2) studies on architectural changes in nuclei with additional chromosomes 
or chromosomal material (such as done for sSMC; Klein et al.  2012 , or the X chro-
mosome), and (3) analysis for the susceptibility of specifi c parts of the human 
genome for rearrangements caused by colocalization (as done for the t(8;21) in 
AML; Manvelyan et al.  2009 ). It is certain that additional biomedical research 
aspects of interphase chromosomes may also be discovered using the S-FISH/MCB 
approach.     
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    Abstract     Numerous interphase molecular cytogenetic approaches are useful for 
the analysis of chromosomes in normal and abnormal human cells. Interphase fl uo-
rescence in situ hybridization techniques offer unique possibilities to visualize indi-
vidual chromosomes or chromosomal regions in single nondividing cells isolated 
from any given tissue. Despite technological diffi culties encountered during study-
ing human interphase chromosomes in health and disease, molecular cytogenetics 
or cytogenomics (“chromosomics”) does provide solutions for high-resolution 
single- cell analysis of genome organization, structure, and behavior at all stages of 
the cell cycle. However, usually relatively little attention is paid to interphase 
molecular cytogenetics in current biomedical literature. Looking through the volu-
minous amount of original research papers and reviews dedicated to human inter-
phase chromosomes, one can conclude that the technological aspects of studying 
human interphase chromosomes applied to basic and clinical research are rarely 
addressed. In an attempt to fi ll this gap, the present chapter provides a description of 
technological solutions in human interphase cytogenetics.  
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        Introduction 

 It is generally accepted that almost all fl uorescence in situ hybridization (FISH) 
protocols are applicable for developing an interphase FISH (I-FISH) method. To 
learn more about numerous approaches and applications of useful FISH-based tech-
niques and detailed protocols, readers can refer to recent FISH application guides 
edited by the authors with the contribution of leading international experts in the 
fi eld of molecular cytogenetics and cytogenomics, who also contributed to this book 
( Fluorescence In Situ Hybridization  ( FISH )— Application Guide , edited by Thomas 
Liehr, Springer, 2009, and  Fluorescence In Situ Hybridization  ( FISH ):  Protocols 
and Applications , edited by Joanna M. Bridger and Emanuela V. Volpi, Humana 
Press, 2010). 

 Recently we have attempted to give an overview of currently applied molecular 
cytogenetic techniques with a special emphasis on their technological abilities for 
studying human interphase chromosomes (Vorsanova et al.  2010a , freely available 
at Molecular Cytogenetics (BioMed Central), an open access journal dedicated to 
different aspects of chromosome and genome biology,   http://www.molecularcyto-
genetics.org/content/3/1/1    ). Here we present an updated review dedicated to tech-
nological achievements in human interphase cytogenetics. 

 According to Gersen and Keagle ( 2005 ), it is estimated that more than one mil-
lion cytogenetic and molecular cytogenetic analyses are performed each year. Taken 
together, these analyses represent the standard of care in medical genetics and rou-
tine clinical workups for numerous patients suffering from congenital malforma-
tions, mental diseases, cancers, or reproductive problems (Carter  2007 ; Liehr  2009 ; 
Vorsanova et al.  2010b ). The signifi cance of molecular cytogenetic techniques for 
molecular diagnosis has been repeatedly shown, and these techniques are recog-
nized as a valuable addition or even alternative to conventional cytogenetics (Liehr 
and Claussen  2002 ; Iourov et al.  2008a ; Bejjani and Shaffer  2008 ). In addition, 
molecular cytogenetic technologies are widely used in basic biomedical research 
(Liehr et al.  2004 ). For instance, the thousands of articles mentioning at least one 
molecular cytogenetic technique are indexed in browsable scientifi c databases (for 
more details, see Iourov et al.  2008a ; Chap.   12    , and the web page about multicolor 
FISH at   http://www.med.uni-jena.de/fi sh/mFISH/mFISHlit.htm     website, managed 
by Dr. Thomas Liehr, Jena, Germany). Thus, it is certain that the role of molecular 
cytogenetics in current biomedicine is appreciable. 

 Two essential advantages of molecular cytogenetics can be noted: (1) the ability 
to provide either a high-resolution on-chip scan of the whole genome or to visualize 
single specifi c genomic loci (Bejjani and Shaffer  2008 ), and (2) the capability to 
analyze DNA (RNA)-based genome organization, structure, and behavior in single 
cells (Levsky and Singer  2003 ; Iourov et al.  2006a ). The fi rst advantage is appre-
ciable when analyzing mixed DNA isolated from a large amount of cells and is rarely 
appreciated in single-cell genomic studies (Iourov et al.  2012 ; Vanneste et al.  2012 ). 
The second advantage of molecular cytogenetic techniques is consistently empha-
sized but is usually applied to studying metaphase chromosomes of mitotic cells. 
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However, eukaryotic cells are more likely to be in interphase. Therefore, surveys of 
genome organization, structure, and behavior do not evaluate an essential part of 
cellular life. In molecular diagnosis, interphase analysis is also not commonly 
applied. One might suggest a lack of reproducibility and the low resolution of inter-
phase cytogenetic techniques. However, a brief look through molecular cytogenetic 
studies of somatic genomic variations and genome behavior in interphase nuclei 
(Walter et al.  2006 ; Goetze et al.  2007 ; Iourov et al.  2008b ,  2012 ; Rouquette et al. 
 2010 ) and developments in interphase cytogenetics (Iourov et al.  2006c ; Liehr 
 2009 ; Vorsanova et al.  2010a ,  b ) demonstrates that this idea is unsupported. 
Furthermore, numerous laboratories elaborating such techniques are able to solve 
important practical and research tasks without notable diffi culties. Evidently, inter-
phase molecular cytogenetics requires additional attention, which is the intention of 
the present chapter.  

    Molecular Cytogenetic Techniques and Interphase Cytogenetics 

 There are currently two essential platforms available for developments in molecular 
cytogenetics: FISH, including comparative genomic hybridization (CGH), and pep-
tide nucleic acid (PNA) probing for analysis of chromosomal DNA (Liehr and 
Claussen  2002 ; Iourov et al.  2008a ; Liehr  2009 ; Vorsanova et al.  2010a ). The reso-
lution of such techniques is usually established against cytogenetic banding analysis 
(the gold standard of resolution for genetic analyses). Single-cell molecular cytoge-
netics analyzes either metaphase plates or interphase nuclei. Study of metaphase 
plates is traditionally made by means of several detection technologies [spectral 
karyotyping (SKY) or multicolor FISH (MFISH)] (Schrock et al.  1996 ; Speicher 
et al.  1996 ) or specifi c DNA probe sets (chromosome-enumeration/centromeric, 
site-specifi c, whole-painting, microdissected) (Yurov et al.  1996 ; Soloviev et al. 
 1998a ,  b ; Liehr et al.  2002 ; Nietzel et al.  2001 ). If modifi ed, these techniques can be 
applied to interphase chromosomal analysis, but this “translation” (transfer of tech-
nology) requires major efforts (Vorsanova et al.  2010a ; Iourov et al.  2010 ). 
Table  11.1  provides an overview of the molecular cytogenetic techniques used for 
metaphase and interphase analysis of single cells. As one can see, molecular cyto-
genetics allows us to perform high-resolution analysis of chromosomal structure 
and behavior at all stages of the cell cycle. Nonetheless, molecular cytogenetic 
methods are preferentially used for detecting metaphase chromosome imbalances 
and rearrangements or for whole-genome scans by CGH (Liehr et al.  2004 ; 
Vorsanova et al.  2010b ).

   Visualization is the key stage of studying interphase chromosomes. Without 
direct (microscopic) visualization of DNA-base chromosomal structures, related 
research is certainly incomplete. Thus, FISH-based techniques offer the unique pos-
sibility to depict either whole chromosomes or specifi c genomic loci in single cells. 
In other words, if one wishes to obtain valid data on human interphase chromo-
somes, one will undertake an I-FISH study. Further, we attempt to review the 
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technique in context of applications to single-cell chromosomal analysis, which is 
the basis of interphase molecular cytogenetics.  

    I-FISH 

 FISH represents a general-purpose technique for studies of both the whole genome 
and specifi c genomic loci. The resolution of molecular cytogenetic is essentially 
determined according to the DNA sequence size of probes hybridizing in situ. DNA 
probes are designated as centromeric and telomeric (hybridizing to repetitive- 
sequence DNA), site-specifi c (hybridizing to euchromatic DNA, i.e., DNA 
sequences of a gene), or whole chromosome painting (wcp; hybridizing to DNA of 
whole chromosomes) (Table  11.2 ).

    FISH with chromosome-specifi c DNA probes : FISH painting of repetitive genomic 
sequences is performed with centromeric (chromosome-enumeration or chromo-
some-specifi c) or telomeric DNA probes. Analysis of telomeres is an important area 
of biomedical research (Aubert et al.  2012 ). In such approaches, PNA/DNA probes 
possessing TTAGGG repetitive motifs are used. Representing the technological 
basis of telomere biology (cancer and aging research), telomere FISH and related 
techniques are poorly applicable for diagnosis. On the other hand, I-FISH with telo-
meric probes is applicable for analysis of nuclear organization (Klewes et al.  2011 ). 

 I-FISH using centromeric DNA probes has become an integral part of molecular 
diagnosis in medical genetics, oncology, and reproductive medicine (Cremer et al. 
 1986 ; Vorsanova et al.  1986 ,  1991 ,  2005b ; Baumgartner et al.  2006 ; Yurov et al. 
 2007 ; Iourov et al.  2008b ). Additionally, it is repeatedly demonstrated that I-FISH 

    Table 11.1    Molecular cytogenetic techniques   

 Conventional cytogenetics (banding) 

 Resolution  MA a   IA b   SCA c   VC d  

 >5–7 Mb  +  −  +  + 

 FISH/MFISH/SKY  With centromeric probes  >0.3–1 Mb  +/−  +  +  +/− 
 With site-specifi c probes  ~0.1–2 Mb  +/−  +/−  +/−  +/− 
 With whole-painting probes  >5–10 Mb  +  −  +  + 

 MCB  Metaphase MCB  ~2–5 Mb  +  −  +  + 
 ICS-MCB  ~2–5 Mb  −  +  +  + 
 Fiber FISH  >3 kb  na  na  +  + 

 Single-cell CGH  Standard CGH  >5 Mb  na  na  +  − 
 Array CGH  >0.03 Mb  na  na  +  − 

    Source : Adapted from Vorsanova et al. ( 2010a ) 
  FISH  fl uorescence in situ hybridization,  MFISH  multicolor FISH,  SKY  spectral karyotyping,  MCB  
multicolor banding,  CGH  comparative genomic hybridization,  na  not applicable 
  a Analysis of metaphase chromosomes ( MA  metaphase analysis) 
  b Analysis of interphase chromosomes ( IA  interphase analysis) 
  c Possibility to perform single cell-analysis (SCA) 
  d Possibility to visualize chromosomes or chromosomal loci ( VC  visualizing chromosomal loci)  
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with these probes is highly applicable in chromosome biology studies encompass-
ing genome research (chromosomal and nuclear), evolution, behavior, and variation 
in health and disease. These DNA probes feature nearly 100 % hybridization effi -
ciency and chromosome specifi city. As a result, analysis of an individual homolo-
gous chromosome pair in interphase becomes possible. Moreover, extreme 
interindividual variations of pericentromeric heterochromatic DNA has led to 
developing quantitative FISH (QFISH) solving numerous problems encountered 
during metaphase and interphase analysis of chromosomes (Iourov et al.  2005 ; 

     Table 11.2    Interphase FISH (I-FISH) overview   

 Technique  Description  Advantages  Disadvantages 

 I-FISH with 
centromeric 
probes 

 Painting of pericentro-
meric (heterochro-
matic) regions 

 High hybridization 
effi ciency, 
chromosome 
specifi city 
(apart from 
chromosomes 
5/19, 13/21, 
14/22) 

 Chromosomal associations 
(associations of signals 
causing misinterpreta-
tion of false-positive 
monosomy), impos-
sibility of analyzing 
chromosomes 5, 13, 
14, 19, 21, 22; 
heteromorphisms 

 I-FISH with 
site-specifi c 
probes 

 Painting of specifi c 
euchromatic 
genomic loci 

 Specifi c genomic 
loci (»1 Mb) are 
visualized 

 Low hybridization 
effi ciency, numerous 
artifacts 

 I-FISH with wcp  I-FISH painting 
chromosome 
territories 

 Visualization of 
chromosome 
territories in 
interphase 
nuclei 

 Chromosome territories 
are ambiguous, 
additional information 
about behavior of 
chromosomal regions 
is occasional 

 mFISH  Multicolor I-FISH with 
several differentially 
labeled probes 

 Analysis of several 
targeted 
genomic loci 

 Diffi culty to distinguish 
between artifacts and 
chromosomal 
abnormalities 

 mFISH/QFISH  mFISH + QFISH 
(QFISH: digitaliza-
tion of FISH signals) 

 Possibility to 
distinguish 
between FISH 
artifacts and 
numerical 
chromosomal 
imbalances 

 Same as mFISH 

 MFISH  Visualization of the 
complete set of 
chromosomes in an 
interphase nucleus 

 All chromosome 
territories are 
simultaneously 
seen 

 Exceedingly sophisticated 
analysis; data poorly 
interpretable 

 ICS-MCB  Chromosome-specifi c 
MCB generated on 
interphase nuclei 

 Visualization of 
whole banded 
interphase 
chromosomes in 
their integrity 

 Single pair of homologous 
chromosomes is 
visualized per assay; 
relative complexity of 
the analysis 

    Source : Adapted from Vorsanova et al. ( 2010a )  
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Vorsanova et al.  2005a ). It is noteworthy that the resolution of related assays is 
poorly determined by DNA sequence size of loci assessed (Table  11.1 ), inasmuch 
as centromeric I-FISH is used for the analysis of phenomena involving large chro-
mosomal regions or even whole chromosomes. For instance, I-FISH with 
chromosome- enumeration probes allows the detection of numerical chromosome 
imbalances (aneuploidy and polyploidy) in interphase. The latter is the most fre-
quent application of the method (Fig.  11.1 ) and is required for pre-/postnatal diag-
nosis, cancer diagnosis/prognosis, and somatic genomic variation surveys. The 
nearly 100 % hybridization effi ciency of centromeric DNA probes and chromosome- 
specifi c DNA sequences forming pericentromeric (heterochromatic) chromosomal 
regions (apart from shared alphoid DNA of chromosomes 5 and 19, 13 and 21, and 
14 and 22) (Yurov et al.  1996 ; Lee et al.  1997 ; Vorsanova et al.  2002 ,  2005a ) is the 
essential advantage that this technique possesses. However, heteromorphisms of 
pericentromeric DNAs can produce the lack of a signal leading, thereby, to impos-
sibility of the I-FISH assay application. Fortunately, such extreme heteromorphisms 
(centromeric DNA variations) are rare in the general population (Verma and Luke 
 1992 ; Liehr et al.  1998 ; Vorsanova et al.  2002 ,  2005a ).

    I-FISH with site-specifi c probes : Site-specifi c DNA probes (YACs, BACs, PACs, 
cosmids) are used either to map chromosomal regions within which a breakpoint is 
located or to evaluate chromosomal imbalances by a targeted FISH assay (diagnosis 
of known microdeletion and microduplication syndromes) (Iourov et al.  2008a ; 
Liehr  2009 ), aneuploidy and/or recurrent chromosome abnormalities during 
 preimplantation genetic diagnosis (Fung et al.  2001 ; Stumm et al.  2006 ; Lu et al. 
 2009 ), prenatal diagnosis (Soloviev et al.  1995 ; Vorsanova et al.  2005b ; Liehr  2009 ), 
oncocytogenetic analysis (Liehr and Claussen  2002 ; Mitelman et al.  2007 ), and 
copy number variation precision (Carter  2007 ). Probing small genomic loci (<1 Mb), 
site-specifi c probes are applied to studying gene-specifi c nuclear organization and 
its relevance to genome behavior (Goetze et al.  2007 ; Strickfaden et al.  2010 ). 
However, relatively moderate hybridization effi ciency (<70 %) hinders using the 
approaches in numerous areas of biomedical research and diagnosis. Alternatively, 
a number of FISH procedures with these types of probes (i.e., hematological and 
tumor diagnosis) are found effective for molecular cytogenetic diagnosis and have 
cutoffs varying between 90 and 95 % (Liehr  2009 ). As a result, interphase molecu-
lar cytogenetic studies by I-FISH with site-specifi c probes are commonly applied in 
preimplantation, prenatal, and postnatal diagnosis as well as in cancer cytogenetics 
(Fig.  11.2 ). Although repeatedly noted to be of signifi cant importance for detecting 
gene fusions resulting from interchromosomal translocations (cancer biomarkers) 
(Mitelman et al.  2007 ) and to be useful for preimplantation diagnosis (Stumm et al. 
 2006 ), such I-FISH modifi cations have considerable disadvantages. To be more pre-
cise, the hybridization effi ciency of site-specifi c probes is usually between 40 % and 
70 %. This irregularity of hybridization effi ciency can produce false-positive or 
false-negative data. Moreover, one has to use probes hybridizing to well- 
characterized chromosomal/genomic DNA loci (i.e., oncogenes or genes/genomic 
loci within deletion or duplication regions). Few well-characterized approaches 
using these DNA probes may be of importance for detecting continuously reported 
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chromosomal rearrangements in cancer cells (Virgili et al.  2008 ; Nicholson and 
Duesberg  2009 ; Sen and Hopwood  2010 ) and deletions/duplications in a clinical 
population (Halder et al.  2008 ; Weise et al.  2012 ). Nonetheless, application of site- 
specifi c probes is the best way to visualize interphase chromosomal DNAs less than 
1 Mb. Simultaneous hybridization of centromeric and site-specifi c probes (mFISH) 
(Fig.  11.3 ) is applicable for diagnostics and survey of somatic genome variations.

  Fig. 11.1    Two- and three-color interphase fl uorescence in situ hybridization (I-FISH) with centro-
meric DNA probes: ( a ) normal diploid nucleus with two signals for chromosome 1 and chromo-
some 15; ( b ) monosomic nucleus with two signals for chromosome 1 and one signal for 
chromosome 15; ( c ) trisomic nucleus with two signals for chromosome 1 and three signals for 
chromosome 15; ( d ) normal diploid nucleus with two signals for chromosome 1, chromosome 9, 
and chromosome 16; ( e ) monosomic nucleus with two signals for chromosome 1 and chromosome 
9 and one signal for chromosome 16; ( f ) trisomic nucleus with two signals for chromosome 1 and 
chromosome 16 and three signals for chromosome 9; ( g ) triploid nucleus with three signals for 
chromosome 16 and chromosome 18; ( h ) tetraploid nucleus with two signals for chromosome X 
and chromosome Y; ( i ) tetraploid nucleus with two signals for chromosome X and chromosome Y 
and four signals for chromosome 1. (Copyright © Vorsanova et al.  2010a ; licensee BioMed Central 
Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (  http://creativecommons.org/licenses/by/2.0    )       
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     FISH with wcp probe and MFISH/SKY : Wcp probe combinations allow performing 
24-color MFISH or SKY for metaphase analysis of interchromosomal chromosome 
rearrangements in cancers and individuals with constitutional chromosomal abnor-
mities (Liehr and Claussen  2002 ; Liehr et al.  2004 ). In interphase chromosomal 
analysis, MFISH and SKY are hardly applicable. Occasional studies applied 
MFISH-based approaches for visualizing all chromosomes in fi broblast interphase 
nuclei and prometaphase rosettes (Walter et al.  2006 ). Similar assays with 2–5 wcp 
probes are frequently encountered in molecular cytogenetic diagnosis of structural 

  Fig. 11.2    I-FISH with site-specifi c DNA probes: ( a ) normal diploid nucleus with two signals for 
chromosome 21; ( b ) trisomic nucleus with three signals for chromosome 21; ( c ) interphase nucleus 
exhibiting colocalization of  ABL  and  BCR  genes, probably caused by t(9;22)/Philadelphia chromo-
some. (Copyright © Vorsanova et al.  2010a ; licensee BioMed Central Ltd. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License (  http://creative-
commons.org/licenses/by/2.0    )       

  Fig. 11.3    Five-color I-FISH 
(mFISH) with DNA probes 
for chromosomes 18, X, and 
Y (centromeric probes) as 
well as 13 and 21 (site- 
specifi c probes). A 
presumably normal (diploid) 
male nucleus isolated from 
the adult human brain. 
(Copyright © Vorsanova et al. 
 2010a ; licensee BioMed 
Central Ltd. This is an Open 
Access article distributed 
under the terms of the 
Creative Commons 
Attribution License (  http://
creativecommons.org/
licenses/by/2.0    )       
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alterations to metaphase chromosomes, as well (Liehr et al.  2004 ), and in investigation 
of genome organization in interphase nuclei (Rouquette et al.  2010 ). Nevertheless, 
I-FISH with wcp probes is sophisticated and too poorly reproducible to become 
competitive with other interphase molecular cytogenetic techniques. It is therefore 
unsurprising that FISH chromosomal painting by wcp is generally recognized as 
completely useless for identifi cation of interphase chromosome numbers and struc-
ture (Fig.  11.4 ). Alternatively, basic research of chromosome architecture in inter-
phase is usually performed using I-FISH with wcp providing for visualization of 
chromosome territories and their positioning relative to nuclear structures. 
Additionally, I-FISH-wcp approaches were almost the only way to study genomic 
organization in interphase until more effective techniques have been elaborated 
(Walter et al.  2006 ; Rouquette et al.  2010 ). Finally, these techniques are all limited 
in their abilities to paint chromosome territories (volumes) only (Table  11.2 ).

    Interphase chromosome-specifi c MCB : By microdissection of chromosomal loci for 
obtaining a set of probes that produce multicolor pseudo-G-banding, a high- 
resolution molecular cytogenetic technique for analysis of metaphase chromosomes 
termed MCB (multicolor banding) was proposed (Liehr et al.  2002 ). Further, this 
idea has been adapted to interphase chromosomal analysis and has provided for 
elaboration of interphase chromosome-specifi c MCB (ICS-MCB). To visualize a 
homologous pair of interphase chromosomes in their integrity, one has to generate 
MCB (Iourov et al.  2007 ,  2009a ,  b ; Manvelyan et al.  2008 ; Iourov  2012 ). Figure  11.5  
gives an example of aneuploidy detection in an interphase nucleus isolated from the 
Alzheimer’s disease brain (Iourov et al.  2009a ). ICS-MCB can be widely applied 

  Fig. 11.4    I-FISH with two-whole chromosome painting (wcp) for chromosomes 7 and 21. ( a ) 
Ambiguous chromosome territories provide information neither about number of chromosomes 
nor about structure of chromosomes (chromosome 7,  green signal ; chromosome 21,  red signals ), 
whereas this individual presented with regular unbalanced t(7;21). Details of this case are described 
in Vorsanova et al. ( 2008 ). ( b ) Chromosome territories in an interphase nucleus of a cell isolated 
from the ataxia-telangiectasia brain (chromosome 7,  green signals ; chromosome 14,  red signal ). 
Note the impossibility to identify number of chromosomes 14. (Copyright © Vorsanova et al. 
 2010a ; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License (  http://creativecommons.org/licenses/by/2.0    )       
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for basic research of somatic genomic variations, chromosome structural and functional 
organization in interphase, and supramolecular disease mechanisms. Apparently, 
the sole disadvantage of this technique is the impossibility to analyze more than one 
homologous chromosome pair at a time (Iourov et al.  2007 ; Iourov  2012 ). This 
state-of-the-art molecular cytogenetic technology is discussed in detail in Chap.   9     of 
this book.

    Fiber FISH : Probably the highest molecular cytogenetic resolution is achieved by 
DNA fi ber FISH. This technique provides a mapping resolution of 1–3 Mb (meta-
phase analysis). Applied to interphase nuclei, it achieves a resolution of 50 kb or 
even more. The high resolution is attributed to a higher degree of chromatin decon-
densation than other FISH techniques. Applied to naked DNA fi bers, fi ber FISH 
show that chromatin fully decondenses, leading to a resolution ranging from 1 to 
400 kb. Furthermore, DNA fi ber FISH provides a mapping tool supplementary to 
restriction mapping permitting accurate gap and overlap sizing (Raap et al.  1996 ; 
Weier  2001 ). The latter, however, is currently out of the scope of human genome 
research, inasmuch as genomic loci are supposed to be all mapped in a defi nitive 
manner by the Human Genome Project. 

 Heng et al. ( 1992 ) were able to release the chromatin fi bers from cells arrested at 
G 

1
  and G 

2
  by different chemicals and alkaline lysis procedure. They have also dem-

onstrated fl uorescence-labeled probes to hybridize specifi cally to single-copy 
genomic DNA sequences of the free chromatin. FISH signals have been detected for 
sequences separated by 21 kb (the closest position) and 350 kb (the far position), 
with exact correspondence between the observed and expected distances. The reso-
lution of this technique is likely to approach 10 kb, and the coverage should span 
millions of base pairs. According to these data, authors have concluded that free 

  Fig. 11.5    Interphase 
chromosome-specifi c 
multicolor banding (ICS- 
MCB) with chromosome 
21-specifi c probe. Monosomy 
(loss) of chromosome 21 in a 
nucleus isolated from the 
Alzheimer’s disease brain. 
(Copyright © Vorsanova et al. 
 2010a ; licensee BioMed 
Central Ltd. This is an Open 
Access article distributed 
under the terms of the 
Creative Commons 
Attribution License (  http://
creativecommons.org/
licenses/by/2.0    )       
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chromatin mapping can be generally used to study the structure and organization of 
mammalian interphase genomes. 

 To improve the DNA resolution of FISH, Wiegant and his collaborators have 
adapted a nuclear extraction technique, resulting in highly extended DNA loops 
arranged around the nuclear matrix in a halo-like structure (Wiegant et al.  1992 ). In 
situ hybridization signals depicting alphoid and cosmid DNAs appear as beads-on-
a-string, which, according to preliminary experiments, results from the association 
of individual probe fragments. By multicolor hybridization the authors were able to 
determine relative map positions and to detect easily a 10-kb overlap between indi-
vidual cosmid clones, each of which shows linear beaded signals, suggesting that 
the DNA was essentially linearized in these experiments. The resolution range was 
defi ned as 10–200 kb, and probably as little as a few kilobases, thus greatly extend-
ing the abilities of fi ber FISH. Fiber FISH was also found useful for investigation of 
genomic organization and mapping, stalled transcription, and genomic rearrange-
ments (including large deletions within gene sequences) (Weier  2001 ). Although 
this technique is based on obtaining DNA fi bers from interphase nuclei, it cannot be 
directly attributed to I-FISH. Single-cell fi ber FISH (especially when large cell pop-
ulations are analyzed) is highly complicated. 

  Immuno-FISH : Immuno-FISH combines immunohistochemical detection of pro-
teins with FISH to specifi c DNA (RNA) targets (Dundas et al.  2001 ; Yang et al. 
 2004 ). A simple protocol of immuno-FISH using cytospin centrifuge and fi xation 
without acetic acid in 80 % methanol is effective for detecting colocalization of 
entromeric alpha-satellite DNA sequences with the kinetochore CENP-B proteins 
(Marcais et al.  1999 ). Such FISH analyses of chromosome 21-specifi c alphoid DNA 
and immunostaining of kinetochores on extended interphase chromatin fi bers and 
interphase nuclei indicated that centromeric kinetochore-specifi c proteins bind to 
restricted areas of centromeric DNA arrays. In general application, this approach 
allows prevention of protein and DNA loss during processing cell suspensions for 
cytogenetic and immunochemical evaluation. Immuno-FISH is found to be appli-
cable in cancer research/diagnosis (immunophenotyping during single-cell genetic 
analysis), studies of chromosome structure and organization, transplantation 
research, and identifi cation of supramolecular disease mechanisms (Meaburn et al. 
 2009 ; Strickfaden et al.  2010 ). Figure  11.6  shows immuno-FISH on interphase neu-
ronal cells of the adult human brain (more details in Iourov et al.  2009b ,  c ).

    Fast-FISH with microwave activation for I-FISH : Usually FISH using chromosome- 
specifi c or site-specifi c DNA probes is performed during 1 or 2 days. Several fast-
FISH protocols were developed using microwave activation for rapid hybridization 
and detection. Microwave activation for FISH has been proposed by Dr. Ilia Soloviev 
in 1994. In contrast to standard FISH protocols, this method offers an opportunity 
to detect hybridization signals within a few minutes, granting 10- to 15-fold detec-
tion time reduction. No signal amplifi cation is used to minimize the overlapping and 
nonspecifi c background of hybridization signals during chromosomal analysis of 
interphase nuclei. Microwave activation makes FISH applicable to cells containing 
cytoplasm (Fig.  11.7 ). This technique was highly reproducible and applicable for 
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many different chromosome-specifi c DNA probes. For instance, we have tested 
alpha-satellite DNA probes specifi c for chromosomes 1, 3–19, 21, 22, X, and Y. The 
procedure has allowed rapid chromosome detection in interphase nuclei and meta-
phase plates of peripheral blood and amniotic fl uid (cell suspensions were older 
than 2 years). Chromosome-specifi c repetitive DNA probes with FISH microwave 
activation are to be used for rapid diagnosis of common chromosomal syndromes 
including chromosome aneuploidies, fast sex determination in prenatal screening, 
and routine chromosome identifi cation (Soloviev et al.  1994 ). For more specifi c 
purposes, it seems that laboratory microwave ovens are required. However, a com-
mon commercially available microwave oven is a handy alternative to a thermal 
cycler for fast-FISH. Comparable results have been obtained for chromosome 

  Fig. 11.6    Immuno-FISH (I-FISH) using centromeric probe for chromosome Y (DYZ3) with 
immunostaining by NeuN (neuron-specifi c antibody) performed for the analysis of cells isolated 
from the human brain. (Copyright © Vorsanova et al.  2010a ; licensee BioMed Central Ltd. This is 
an Open Access article distributed under the terms of the Creative Commons Attribution License 
(  http://creativecommons.org/licenses/by/2.0    )       

  Fig. 11.7    I-FISH performed 
with microwave activation. 
FISH signals show 
centromeric DNAs of 
chromosomes X and Y 
(karyotype: 46, XY)       
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1-/X-specifi c satellite DNA probes. In addition, the complete fast-FISH procedure 
was accelerated. An optimized condition for a commercially available X-specifi c 
alpha-satellite probe by fast-FISH technique has been also developed for quantita-
tive microscopy (Durm et al.  1997 ). For highly repetitive DNA probes, the hybrid-
ization (renaturation) time and the number of subsequent washing steps can be 
reduced considerably by omitting denaturing chemical agents (formamide). The 
appropriate hybridization temperature and time allow a clear discrimination between 
major and minor binding sites by quantitative fl uorescence microscopy. The well- 
defi ned physical conditions for hybridization permit automatization of the proce-
dure (Iourov et al.  2008c ). Highly fl uorescent major binding sites are obtained when 
denaturation is performed at 74 °C and hybridization is performed during 60 min. 
These conditions have shown the best microwave activation for denaturation and 
hybridization to accelerate the procedure. It is to be noted that slides with the target 
material and the hybridization buffer are placed in a standard microwave oven. After 
denaturation for 20 s at 900 W, hybridization is performed for 4 min at 90 W. The 
suitability of a microwave oven for fast-FISH was confi rmed with a chromosome 
1-specifi c alpha-satellite probe. In this series of tests, denaturation was performed at 
630 W for 60 s and hybridization at 90 W for 5 min. The results were analyzed 
quantitatively and compared to the results obtained by fast-FISH. The major bind-
ing sites were clearly discriminated by their brightness (Durm et al.  1997 ).

   Another method for FISH signals enhancing by microwave pulses during DNA–
DNA hybridization using a single- or low-copy probe has shown application of 
microwaves to be effective in diagnostic or research practice because of the enhance-
ment of weak signals. Microwave FISH has been compared systematically with 
simple FISH protocols, and it was possible to demonstrate that microwave irradia-
tion leads to better FISH results, especially during the fi rst 100 min of hybridization 
(Weise et al.  2005 ). 

  General advantages and limitations : All FISH-based methods require (1) obtaining 
cells suspensions or performing other biopsy preparations for the analysis, (2) dena-
turation and hybridization, and (3) microscopic visual/digital analysis of hybridiza-
tion results (Iourov et al.  2006b ; Iourov  2009 ). The fi rst stage does not cause any 
complication, when I-FISH is used, because any cell type of a human organism can 
be processed for such analyses (Iourov et al.  2006b ; Vorsanova et al.  2010a ). This is 
the essential advantage of interphase molecular cytogenetics in contrast to classical 
cytogenetics (metaphase analysis), that is, the ability to analyze chromosomes in all 
cell types. Regardless of I-FISH limitations (Liehr and Claussen  2002 ), some modifi -
cations such as ICS-MCB allow a view of interphase chromosomes in their integrity. 
As mentioned earlier and in Chap.   9    , ICS-MCB still has some limitations, being, 
however, the unique way to visualize the whole banded chromosome in a nucleus 
(Iourov et al.  2007 ). I-FISH denaturation and hybridization are performed identically 
to classical FISH-based approaches (Liehr  2009 ), and no additional drawbacks can 
be attributed to these procedures. I-FISH microscopic or digital analysis is not asso-
ciated with any special problem (Iourov et al.  2008c ,  2009c ). There are also possi-
bilities to apply digital analysis for studying interphase chromosomes: QFISH 
analysis of signal colocalization (gene fusions: chromosomal translocations in 
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interphase nuclei), ICS-MCB (visualization of chromosomal structures), increasing 
“signal visibility,” and automatic signal detection. Digital analysis is required for multi-
color FISH-based assays (SKY, MFISH, multiprobe interphase FISH, or mFISH), which 
are usually applied to increase the potential of FISH-based assays through simultaneous 
analysis of multiple targets (Iourov et al.  2009a ,  b ; Lu et al.  2009 ). A combination of 
FISH techniques (i.e., mFISH with 2–5 probes, QFISH, and ICS-MCB) has become the 
basis for an integrated approach toward molecular diagnosis and genome (chromosome) 
research at supramolecular level in interphase. Usually, the way that FISH results are 
evaluated (i.e., visual or digital) is determined by features of DNA probes (amount of 
probes per reaction and DNA sequence affi nity) and detection. Consequently, it is 
better to subdivide I-FISH techniques this way (Table  11.2 ). 

 Several general problems of I-FISH application do exist. Differences of hybrid-
ization effi ciency complicate simultaneous applications of different probe sets 
(Iourov et al.  2006a ). Site-specifi c probes signals can be overlooked when wcp or 
centromeric probes are used (because of intensity differences). Probably the sim-
plest solution is the ICS-MCB. However, some interphase FISH protocols with 
established probe combinations are proven to be effective for diagnostic purposes 
(Gersen and Keagle  2005 ; Liehr  2009 ). DNA replication during the S-phase of the 
cell cycle is another major source of unusual I-FISH signal appearance. There are 
recommendations concerning this type of I-FISH artifacts in the available literature, 
but the analysis can still be hindered by replicative signals. The latter mainly con-
cerns site-specifi c probes, being, however, observed during I-FISH with centro-
meric probes, as well (Fig.  11.8 ). An additional source of artifacts that can be 
misinterpreted (i.e., considered as false-positive chromosome abnormalities) is the 
specifi city of nuclear genome organization or interphase chromosome architecture. 
Here, the problem is related to chromosomal associations (Leitch  2000 ; Iourov et al. 
 2005 ; Krueger and Osborne  2006 ), signifi cantly affecting I-FISH results and becom-
ing even more important when taking into account that numerous cell types are 
prone to exhibit chromosomal associations/pairing (Fig.  11.8 ). Such problems are 
easily managed by QFISH (Iourov et al.  2005 ) (Fig.  11.8 ).

       I-FISH for Analysis of DNA Replication 

 I-FISH allows the visualization of replicating genomic DNA sequences in inter-
phase nuclei. FISH has been shown to help discriminate between nonreplicated and 
replicated regions of the genome in interphase nuclei, based on the number of spe-
cifi c fl uorescent signals (Selig et al.  1992 ). In normal diploid cells, FISH results on 
nonreplicated DNA are seen as a single signal whereas replicated loci are character-
ized by doublets (doubling of a signal). The distribution of these two patterns in 
unsynchronized cell populations can be used to determine the replication time (S 
phase) of a DNA sequence. The availability of well-mapped genomic probes and 
the possibility to compare results from different cell lines make this a convenient 
approach, by which domains of replication timing control mapped at any 
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chromosomal position can be addressed and the relationship to various gene expression 
patterns can be deduced. Because there appear to be important but poorly under-
stood correlations among replication timing, chromatin structure, and transcrip-
tional competence in mammalian cells, this technique seems to be valuable for 
understanding related molecular interrelationships. 

 I-FISH studies have established that monoallelically expressed genes display the 
unusual property of asynchronous replication, and in those genes that exhibit tran-
scription randomly monoallelic, the asynchronous replication is also random 
(Ensminger and Chess  2004 ). By examining the replication timing of genes in a 
number of human trisomies, authors consistently fi nd one allele replicating early 
and the other two alleles replicating late, similar to previous observations in 
X-chromosome trisomies. 

 I-FISH with chromosome 21-specifi c cosmid probes was also previously used to 
identify trisomy 21 in cultured and uncultured amniotic cells. Proper identifi cation 
of chromosome 21 numbers was made in 65–75 % of trisomic cells and in 70–75 % 
of normal disomic cells by using all the tested probes. The effi ciency of FISH analy-
sis for the total population of interphase cells and cells in the postreplication periods 
(late S, G 

2
 ) of the cell cycle was assessed (Fig.  11.9 ). Selective scoring of cells in 

  Fig. 11.8    Problems of I-FISH with centromeric/site-specifi c DNA probes. ( a ,  b ) Replication of 
specifi c genomic loci (LSI21 probe): some nuclei exhibit replicated signals, whereas in some 
nuclei it is not apparent; note the distance between signals can be more than a diameter of a signal. 
( c ) Asynchronous replication of a signal (DXZ1) in case of tetrasomy of chromosome X; note dif-
fi culty to make a defi nitive conclusion about number of signals in the right nucleus. ( d ) Two-color 
FISH with centromeric/site-specifi c DNA probes for chromosome 1 shows chromosomal associa-
tions in a nucleus isolated from the adult human brain; note impossibility to identify number of 
chromosomes. ( e ) Quantitive FISH (QFISH) demonstrates an association of centromeric regions 
of homologous chromosomes 9, but not a monosomy or chromosome loss. (Copyright © Vorsanova 
et al.  2010a ; licensee BioMed Central Ltd. This is an Open Access article distributed under the 
terms of the Creative Commons Attribution    License    (  http://creativecommons.org/licenses/by/2.0    )       

 

11 Technological Solutions in Human Interphase Cytogenetics

http://creativecommons.org/licenses/by/2.0


194

the postreplicative period (a pair of FISH signals on replicated interphase chromosomes) 
increased the amount of informative nuclei by as much as 95–97 %. The approach 
was found to determine overlapping chromosomes, artifi cial doubling of FISH sig-
nals on each chromatid of interphase chromosomes, background, and polyploidy. 
Cosmid probes and integral analysis of hybridization-positive nuclei in pre- and 
postreplication periods may, therefore, be applicable for improving prenatal diagno-
sis of trisomy 21. Interestingly, that I-FISH showed that additional chromosomes 21 
can induce changing in the replication pattern of an allelic pair: from a synchronous 
pattern mimicking concomitantly expressed alleles to unsynchronized ones appear-
ing as signals displaying an allele-specifi c mode of expression (Amiel et al.  1998 ). 
A similar phenomenon of asynchronous replication of alleles in genomes carrying 
an extra chromosome was found in autosomal aneuploidy (trisomy of chromosomes 
18 and 13) and sex chromosome aneuploidy (47,XXX and 47,XXY) (Amiel et al. 
 1999 ). These data suggest that gross phenotypic abnormalities associated with 

  Fig. 11.9    FISH hybridization with the cosmid probe (21q22.2) on cultured amniotic fl uid trisomic 
21 cells. ( a ) Cell with asynchronously replicating loci (unreplicated locus with singlet signal and 
replicated locus with doublet signal). ( b ) Replicated cell shows two closely paired hybridization 
signals corresponding to each chromatid of chromosome 21. ( c ) Cell with trisomy 21 in the 
postreplicative stage of the cell cycle. (From Soloviev et al.  1995 . Reproduced with permission of 
John Wiley & Sons, Ltd., in the format reuse in a book/textbook vis Copyright Clearance Center). 
( d ) Examples of FISH on interphase nuclei with chromosome X-specifi c centromeric and region- 
specifi c probes (locus Xq28) show different types of signals (SD and SD) in a girl with Rett syn-
drome (RTT). Cy3-labeled centromeric alphoid DNA probe was used.  Two single red signals  
indicate simultaneously replicating centromeric DNA from both X chromosomes. PAC clone 
671D9 (MeCP2 gene) was labeled by biotin and detected with FITC-avidin. Two asynchronously 
replicating loci could be seen:  one single green signal  represents late-replicating X chromosome 
and  one double green signal  represents early-replicating X chromosome. Interphase nuclei were 
counterstained with fl uorescent dye Hoechst 33258 ( blue color ). (From Vorsanova et al.  2001a  
Brain & development by Nihon Shoni Shinkeigaku. Reproduced with permission of Elsevier BV 
in the format reuse in a book/textbook via Copyright Clearance Center)       
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chromosomal aneuploidy result not only from  overexpression of extra gene copies 
(increased gene dosage) but also from altered expression of genes located on the 
remaining two homologous chromosomes.

   A study of replication timing by I-FISH using chromosome X-specifi c DNA 
probes was used to determine the loci with altered replication and transcription in 
Rett syndrome (RTT), a epigenetic disease caused by mutations in  MECP2 . It was 
detected that a feature of RTT patients is the  MECP2  locus escaping inactivation in 
late-replicating chromosome X (Fig.  11.9 ). Therefore, region Xq28 could contain 
genes, including  MECP2 , escaping X-inactivation and featured by biallelic expres-
sion from the active as from inactive chromosomes X (Vorsanova et al.  2001a ). 
These results support the hypothesis proposing the disturbances in dosage compen-
sation effect caused by aberrant activation of the inactive X-chromosome genes in 
RTT (biallelic expression in contrast to monoallelic) (Vorsanova et al.  2001a ,  b ) and 
indicate that normal  M CP2  allele can escape X-inactivation and, in contrast, reduce 
the pathogenic effect of a mutated allele in RTT. 

 In the light of the tight relationship between replication timing and expression of 
a given DNA sequence, the replication timing of  FMR1  alleles on active and inac-
tive X chromosomes was analyzed by I-FISH (Yeshaya et al.  1999 ). The authors 
concluded that the  FMR1  locus is subjected to X-inactivation and the delaying 
effect of the trinucleotide expansion (causing fragile X syndrome) is superimposed 
on the delay in replication associated with X-inactivation. Thus, a signifi cant epi-
genetic marker of the interphase chromosome replicative activity is asynchronous 
replication of monoallelically expressed genes and the synchronous replication of 
biallelically expressed genes. 

 Testing a similar hypothesis in microdeletion syndromes (i.e., a microdeletion 
can affect epigenetic profi ling of genes located outside the missing segment), 
Yeshaya et al. ( 2009 ) analyzed the replication patterns of two genes:  SNRPN , a 
normally monoallelically expressed gene (assigned to 15q11.13) and  RB1 , a bial-
lelically expressed gene (assigned to 13.q14) in the genomes of patients carrying the 
22q11.2 deletion (DiGeorge/velocardiofacial syndrome) and those carrying the 
7q11.23 deletion (Williams syndrome). In each affected individual, an aberrant and 
reversed pattern of replication was shown. In other words, a monoallelic gene repli-
cated more synchronously than a biallelic gene. This inverted pattern, which appears 
to be nonspecifi c for those deletions, clearly distinguishes cells of deletion carriers 
from unaffected individuals. As a result, a potential epigenetic marker for suspect-
ing a hidden microdeletion that is too small to be detected by conventional karyo-
typing methods was proposed (Fig.  11.10 ).

   Litmanovitch et al. ( 1998 ) have used I-FISH for studying replication patterns of 
alpha-satellite DNA sequences in the light of the human centromere structure and 
function. They showed an association between replication timing of alpha-satellite 
DNA sequences and centromere function. Chromosomes having homologous alpha- 
satellite loci, which replicated synchronously, were revealed to be associated with a 
lower occurrence of chromosome-specifi c aneuploidy, whereas chromosomes 
exhibiting asynchrony with long intervals between early- and late-replicating loci 
showed the highest occurrence of chromosome-specifi c aneuploidy. The latter 
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supports the hypothesis suggesting that loss of replication control within loc. composed 
of human centromeric DNAs affects essential centromere functions, such as ensuring 
proper sister chromatid separation and proper chromosomal segregation during cell 
division.  

    Chromosome Architecture and Behavior in Interphase 

 Chromosome architecture in interphase is consistently shown to be a driving force 
for crucial intranuclear processes. Specifi c arrangement of interphase chromosomes 
is likely to play a role in the regulation of genome activity and cell division as well 

  Fig. 11.10    FISH signals in PHA-stimulated lymphocytes at interphase, following FISH with  RB1 . 
Cells with two singlets (SS cells) in which neither allele has replicated ( a – c ); cells with two dou-
blets (DD cells) in which both alleles have replicated ( d – f ); and cells with one singlet and one 
doublet (SD cells) ( g – i ), which are S-phase cells in which one allele has replicated while its partner 
has not. (Copyright © Yeshaya et al.  2009 ; licensee BioMed Central Ltd. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License (  http://creative-
commons.org/licenses/by/2.0    )       
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as formation of chromosome rearrangements occurring during meiosis and mitosis 
(Leitch  2000 ; Iourov  2012 ). To analyze genome organization in interphase, numer-
ous approaches are to be applied, among which I-FISH appears to play the leading 
role. Several applications of I-FISH approaches for interphase chromosome analy-
sis can be proposed: (1) identifi cation of chromosome positioning and its relation to 
other nuclear compartments/structures (I-FISH with wcp, interphase MFISH, or 
ICS-MCB); (2) analyzing positioning of specifi c genomic loci in relation to each 
other (associations of whole chromosomes or chromosomal loci) and their behavior 
(transcriptional/replicative activity) to get a view of functional nuclear genome/
chromosome organization and its driving forces (I-FISH with centromeric, site- 
specifi c, and wcp, mFISH/QIFSH, or ICS-MCB); and (3) assessment of chromo-
some arrangement or behavior and its relationship to genome, epigenome, and 
proteome profi ling for delineation of possible consequences of specifi c interphase 
chromosome architecture (somatic chromosomal mutations) (I-FISH with centro-
meric, site-specifi c, and wcp, mFISH/QIFSH, ICS-MCB, and immuno-FISH). 
I-FISH analysis of spatial chromosome organization is also infl uenced by specifi c-
ity of methods used for structural preservation of nuclei. There are some reports 
about dependence of fi xation on I-FISH results, whereas other studies have not pro-
vided similar data. Suspension FISH (S-FISH) is likely to be an alternative for 
I-FISH spatial genome analysis using standard fi xation protocols and is able to 
leave aside related problems (Steinhaeuser et al.  2002 ). This technique is discussed 
in detail in Chap.   10     of this book. In brief, advantages of this approach are referred 
to the possibility of studying three-dimensionally (3D) preserved nuclei from any 
human tissue, whereas other 3D preservation techniques require specifi c conditions 
of cell cultivation. The latter makes I-FISH lose its main advantage—the opportu-
nity to analyze nondividing cells.  

    Molecular Cytogenetic Diagnosis 

 Molecular cytogenetic identifi cation of chromosomal aberrations by I-FISH has 
been already mentioned in this chapter as well as in a number of comprehensive 
reviews (Leitch  2000 ; Iourov et al.  2006a ,  2009c ; Yurov et al.  2009 ; Sen and 
Hopwood  2010 ; Vorsanova et al.  2010a ,  b ). However, some additional comments 
about more specifi c problems of medical cytogenetics seem to be required. Because 
studying chromosomes in interphase nuclei has undoubtedly profound effects on 
molecular cancer and prenatal diagnosis, it is obvious that it is impossible to refer all 
the I-FISH diagnostic studies. To list some technical solutions in molecular cytoge-
netic diagnosis by I-FISH, we have preferred to focus on diffi culties  encountered 
during the introduction and usage for diagnostic purposes. Newly introduced inter-
phase techniques are primarily used for research purposes and are rarely tested for 
diagnostic validity. Limiting practical application of such I-FISH protocols requires 
reevaluating the drawbacks. However, the majority of these can be eliminated by 
application of additional FISH-based approaches (i.e., QFISH). Another problem 
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comes from the diagnosis of somatic chromosomal mosaicism. Regardless of some 
attempts to propose guidelines or criteria for mosaicism defi nition (for details, see 
Iourov et al.  2009c ; Vorsanova et al.  2010b ), additional studies of somatic mosa-
icism seem to be strongly required. For instance, a large-scale study aimed to 
uncover somatic genomic variations in several unaffected human tissues might lead 
the way. Finally, it is still poorly understood whether data obtained through inter-
phase analysis can be more valid than those obtained by metaphase analysis. From 
the “structural point of view” (analyzing structural chromosome imbalances), meta-
phase chromosomal analysis is likely to be more precise. On the other hand, mosaics 
require large cell populations to be analyzed, and this problem is even more notable 
when cases of complex, hidden (cryptic), or dynamic mosaicism are evaluated. 
Metaphase analysis in these cases can be applied for thorough defi nition of all cell 
lines, because simple I-FISH analyses (apart from ICS-MCB) are hardly able to 
show precisely the structure of rearranged chromosomes in a given cell line. More 
sophisticated studies can require additional data to obtain. For instance, parental 
origin of chromosomes or epigenetic features addressed by either QFISH (Iourov 
et al.  2005 ) or pod-FISH (Weise et al.  2010 ) could be useful for more thorough con-
fi rmational or exclusive diagnosis. 

 Molecular cytogenetic diagnosis should be performed using a panel of FISH- 
based techniques (Liehr  2009 ; Bridger and Volpi  2010 ; Vorsanova et al.  2010b ). To 
achieve the highest resolution, one can combine molecular cytogenetic techniques 
based on different platforms (array CGH with I-FISH; metaphase FISH-based tech-
niques with I-FISH, etc.). Cases of complex mosaics or balanced structural chromo-
some abnormalities seem to especially require such a complex diagnostic procedure. 
Consequently, regardless of signifi cant developments in molecular interphase cyto-
genetics, I-FISH techniques remain an addition to whole-genome screening 
approaches based on array CGH (array CHG) and/or metaphase cytogenetic analysis 
used for the diagnosis. Only a few targeted I-FISH assays for identifi cation of 
known caner-associated translocations in interphase and preimplantation genetic 
diagnosis seem to be applicable in routine molecular cytogenetic diagnosis. To this 
end, the diagnostic potential of I-FISH is to be more thoroughly analyzed for 
becoming a routine testing procedure in molecular diagnosis.  

    Conclusion 

 According to the present overview of molecular cytogenetic techniques for visual-
izing chromosomes in interphase, we conclude that a fi rm technological basis does 
exist for high-resolution analyses of chromosomes in almost all human tissues. 
I-FISH advanced by developments in interphase molecular cytogenetics is almost 
the unique technological issue for studying functional consequences of spatiotem-
poral chromosome arrangement (architecture) in the interphase nuclei, elucidating 
the role of such immense intercellular genomic diversity or somatic genomic varia-
tions (somatic mosaicism), and proposing new diagnostic solutions for medical 
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genetics, reproductive medicine, and oncology. I-FISH provides for assessment of 
genome variations and behavior (including DNA replication) in all the cell types of 
the human organism (all stages of the cell cycle) at molecular resolutions. The com-
binations of interphase molecular cytogenetic techniques (i.e., mFISH, QFISH, 
ICS-MCB, S-FISH, pod-FISH, immuno-FISH, etc.) have already given rise to 
several biomedical discoveries or even new biomedical directions (i.e., molecular 
neurocytogenetics; for details, see Chap.   3    ). Therefore, one can insist that develop-
ments in interphase molecular cytogenetics are promising for basic and diagnostic 
research in genetics, cellular and molecular biology, and molecular (genome) medi-
cine. In summary, describing the technological solutions for studying human 
interphase chromosomes allows us to conclude that interphase molecular cytogenetics 
opens new opportunities for genetics and cell biology.     
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                      Appendix: Internet Links for Interphase 
Molecular Cytogeneticists 

    Abstract   In the fi nal chapter, “Appendix,” we have provided a list of Internet sites 
that are highly useful for those working in the fi eld of interphase molecular cytoge-
netics. The collection includes sites dedicated to cytogenetics (molecular cytogenet-
ics), clinical aspects of diseases studied by molecular cytogenetic techniques, 
retrieving scientifi c (biomedical) literature, and bioinformatic analysis (including 
resources allowing gene prioritization and pathway analysis, genome browsers, and 
analyzing tools). The inclusion was performed according to our own experience and 
reported relevance to genome and chromosome research based on data acquired 
during molecular cytogenetic analyses. It is clearly impossible to list all the links 
that are of importance for a scientist whose activity is related to studying genome 
(chromosome) structure and behavior in interphase. In this instance, we encourage 
the readers to follow the links provided by the listed resources.  

    Introduction 

 To list Internet sites relevant to the fi eld of interphase molecular cytogenetics, we 
preferred to subdivide the list according to the main modes of application. We also 
provide references to papers describing the resource (if applicable) and to journals 
that are publishing papers dedicated to interphase chromosome analyses. However, 
one has to keep in mind that the provided sites are not all specifi cally dedicated to 
interphase cytogenetics. On the other hand, these are almost indispensable to be 
addressed when a study of genome (chromosome) structure and behavior in inter-
phase at a high technological level is performed. A brief example of the use of in 
silico (bioinformatic) methods in a study almost completely dedicated to interphase 
chromosome behavior and variations and its relevance to more general biological 
processes can be found in Iourov et al. ( 2009 ). Finally, these sites are included to the 
present chapter (Appendix) according to our own experience and reported relevance 
to genome and chromosome research based on data acquired during molecular cyto-
genetic analyses. All the links were tested in November 2012.  
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    Cytogenetics: Chromosome Abnormalities (Including Cancer 
Cytogenetic Databases) 

 arrayMap (genomic arrays for copy number profi ling in human cancer) (Cai et al.  2012 ):   http://
www.arraymap.org/cgi-bin/amHome.cgi     

 Atlas of genetics and cytogenetics in oncology and haematology (Huret et al.  2012 ):   http://atlasge-
neticsoncology.org/     

 Chromosomal Variation in Man or Borgaonkar DS. Chromosomal Variation in Man: A Catalog of 
Chromosomal Variants and Anomalies: Online NLM Version. Bethesda (MD): National Center 
for Biotechnology Information (US); 1975:   http://www.ncbi.nlm.nih.gov/books/NBK105441/     
and   http://www.wiley.com/legacy/products/subject/life/borgaonkar/access.html     

 Chromosome Anomaly Collection (managed by Dr John Barber):   http://www.ngrl.org.uk/wessex/
collection/     

 CyDAS (drawing derivative chromosomes online) (Hiller et al.  2005 ):   http://www.cydas.org/
OnlineAnalysis/     

 Cytogenetic Gallery (a scholar website for cytogeneticists):   http://www.pathology.washington.
edu/galleries/Cytogallery/     

 DECIPHER—database of unbalanced chromosome aberrations (Firth et al.  2009 ):   http://decipher.
sanger.ac.uk/     

 ECARUCA European Cytogeneticists Association Register of Unbalanced Chromosome 
Aberrations (Feenstra et al.  2006 ):   http://umcecaruca01.extern.umcn.nl:8080/ecaruca/ecaruca.
jsp     

 Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer:   http://cgap.nci.nih.
gov/Chromosomes/Mitelman     

 NCI and NCBI’s SKY/M-FISH and CGH Database (2001):   http://www.ncbi.nlm.nih.gov/sky/sky-
web.cgi     

 Progenetix (database of cytogenetic abnormalities in cancer) (Baudis  2007 ):   http://www.proge-
netix.de/progenetix/index.html     

 Small supernumerary marker chromosomes (sSMC) homepage (managed by Dr. T. Liehr):   http://
www.med.uni-jena.de/fi sh/sSMC/00START.htm      

    Clinical Databases 

 Autism Chromosome Rearrangement Database (Marshall et al.  2008 ):    http://projects.tcag.ca/autism/          
 GeneReviews™ or Pagon RA, Bird TD, Dolan CR, et al., editors. GeneReviews™. Seattle, WA: 

University of Washington, Seattle; 1993:   http://www.ncbi.nlm.nih.gov/books/NBK1116/     
 Genetics Home Reference (consumer-friendly information about the effects of genetic variations 

on human health):   http://ghr.nlm.nih.gov/     
 MedGen (organizes information related to human medical genetics, such as attributes of conditions 

with a genetic contribution):   http://www.ncbi.nlm.nih.gov/medgen/     
 OMIM (online Mendelian inheritance in man):   http://www.omim.org/     
 ORPHANET (the portal for rare diseases and orphan drugs):   http://www.orpha.net     
 The Phenotype-Genotype Integrator (PheGenI):   http://www.ncbi.nlm.nih.gov/gap/PheGenI     
 SFARI Gene/AutDB (a publicly available, curated, web-based, searchable database for autism 

research) (Basu et al.  2009 ):   http://www.mindspec.org/autdb.html     
 UNIQUE (rare chromosome disorder support group):   http://www.rarechromo.org/html/home.asp      
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    FISH and Array CHG-Based Techniques (Including Pages 
Containing Information About DNA Probes) 

 A general compilation of links to molecular cytogenetics resources and beyond (the last chapter of 
the  Fluorescence In Situ Hybridization (FISH): Application Guide , Edited by Dr. T. Liehr): 
  http://www.springer.com/life+sciences/cell+biology/book/978-3-540-70580-2     

 ArrayCyGHt (a web-based application tool for analysis and visualization of array-CGH data) 
(Kim et al.  2005 ):   http://genomics.catholic.ac.kr/arrayCGH/     

 CHORI BACPAC resources (Children’s Hospital & Research Center Oakland; Dr. P. De Jong): 
  http://bacpac.chori.org/about.htm     

 CCAP BAC Clones (Cancer Genome Anatomy Project, NCI):   http://cgap.nci.nih.gov/
Chromosomes/CCAP_BAC_Clones     

 e-FISH (an in-silico FISH simulation tool):   http://projects.tcag.ca/efi sh/     
 Genomic Clone Database (The Centre for Applied Genomics and The Hospital for Sick Children, 

Toronto):   http://projects.tcag.ca/gcd     
 The International Standards for Cytogenomic Arrays (ISCA) Consortium:   https://www.iscacon-

sortium.org/     
 Multicolor FISH database (managed by Dr. T. Liehr):   http://www.fi sh.uniklinikum- jena.de/

mFISH.html     
 NCBI Probe/Probe Database (a public registry of nucleic acid reagents designed for use in a wide 

variety of biomedical research applications, with information on reagent distributors, probe 
effectiveness, and computed sequence similarities):   http://www.ncbi.nlm.nih.gov/probe     

 Resources for molecular cytogenetics:   http://www.biologia.uniba.it/rmc/     
 Scitable by Nature Education—Cytogenetics—FISH:   http://www.nature.com/scitable/topic/chro-

mosomes-and-cytogenetics-7       http://www.nature.com/scitable/topicpage/
fl uorescence-in-situ-hybridization-fi sh-327     

 University of Kansas Medical Center compilation of links to cytogenetic (molecular cytogenetic) 
resources:   http://www.kumc.edu/gec/prof/cytogene.html      

    Genome, Epigenome and Pathway Analyzing Tools (Including 
Genome Browsers, Bioinformatic Tools for Gene Prioritization 
and Pathway Analysis) 

 AmiGO browser (Gene Ontology project browser and search engine):   http://amigo.geneontology.
org/cgi-bin/amigo/go.cgi     

 BioGPS (a free extensible and customizable gene annotation portal, a complete resource for learn-
ing about gene and protein function; The Scripps Research Institute) (Wu et al.  2009 ):   http://
biogps.org     

 A Catalog of Published Genome-Wide Association Studies (NHGRI) (Hindorff et al.  2009 ):   http://
www.genome.gov/gwastudies/     

 ENDEAVOUR (a gene prioritization tool) (Tranchevent et al.  2008 ):   http://homes.esat.kuleuven.
be/~bioiuser/endeavour/tool/endeavourweb.php     

 Ensembl Genome Browser:   http://www.ensembl.org/index.html     
 Gene Expression Omnibus (GEO):   http://www.ncbi.nlm.nih.gov/geo/     
 The Gene Wiki (Wikipedia-based gene annotation portal) (Huss et al.  2010 ):   http://en.wikipedia.

org/wiki/Portal:Gene_Wiki     
 Gene Wanderer (a gene prioritization tool using interactome) (Köhler et al.  2008 ):   http://compbio.

charite.de/genewanderer/GeneWanderer     
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 KEGG or Kyoto Encyclopedia of Genes and Genomes (source for understanding high-level functions 
and utilities of the biological system):   http://www.genome.jp/kegg/     

 NCBI BioSystems Database (access to biological systems and their component genes, proteins, 
and small molecules, as well as literature describing those biosystems and other related data): 
  http://www.ncbi.nlm.nih.gov/biosystems     

 NCBI Build 37.1/NCBI Map Viewer ( Homo sapiens , Annotation Release 104):   http://www.ncbi.
nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9606     

 NCBI Gene (a record may include nomenclature, RefSeqs, maps, pathways, variations, pheno-
types, and links to genome-, phenotype-, and locus-specifi c resources worldwide):   http://www.
ncbi.nlm.nih.gov/gene/     

 Pathway Commons (maintained by Memorial Sloan-Kettering Cancer Center and the University of 
Toronto.):   http://www.pathwaycommons.org/pc/     

 REACTOME (manually curated and peer-reviewed pathway database) (Vastrik et al.  2007 ):   www.
reactome.org/     

 UCSC Genome Browser:   http://genome.ucsc.edu/     
 UniHI (interactome analysis tool) (Chaurasia et al.  2007 ):   http://www.unihi.org/      

    Genomic Variation Databases 

 Database of Genomic Variants (hosted by the Centre for Applied Genomics):   http://dgvbeta.tcag.
ca/dgv/app/home?ref=GRCh37/hg19     

 Database of genomic structural variation (dbVar)   http://www.ncbi.nlm.nih.gov/dbvar/     
 Human Genome Structural Variation Project (Structural Variation Database) (managed by Eichlerlab) 

  http://humanparalogy.gs.washington.edu/structuralvariation/     
 Human Genome Variation Society:   http://www.hgvs.org/dblist/dblist.html      

    Biomedical Literature (Including Websites Allowing Acquiring 
Scientifi c Information Through the Entire World Wide Web) 

 PubMed:   http://www.ncbi.nlm.nih.gov/pubmed     
 ScienceDirect—Elsevier: (>11 million full-text journal articles and book chapters):   http://www.

sciencedirect.com/     
 SCIRUS (for scientifi c information only; searches more than 545 million science- specifi c web 

pages):   http://scirus.com/     
 Scopus (easy and comprehensive resource to support the research needs in the scientifi c, technical, 

medical, and social sciences fi elds):   http://www.scopus.com/home.url     
 Springer (contains nearly six million resources):   http://link.springer.com/     
 Wiley onli ne library:   http://onlinelibrary.wiley.com/     
 HighWire Stanford University:   http://highwire.stanford.edu/     
 BioMed Central The Open Access Publisher:   http://www.biomedcentral.com/     
 Web of Knowledge (Thompson Reuters/impact factor):   http://apps.webofknowledge.com     
 Google Scholar:   http://scholar.google.com/     
 To this end, we found pertinent to provide a list of journals that publish research in interphase 

molecular cytogenetics. The inclusion was made according to ratio of numbers of interphase 
cytogenetics papers to the overall number of papers. Journals are sorted by relevance; those 
journals that have ceased to publish are excluded. 

 Molecular Cytogenetics:   http://www.molecularcytogenetics.org/     

Appendix: Internet Links for Interphase Molecular Cytogeneticists 

http://www.genome.jp/kegg/
http://www.ncbi.nlm.nih.gov/biosystems
http://www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9606
http://www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9606
http://www.ncbi.nlm.nih.gov/gene/
http://www.ncbi.nlm.nih.gov/gene/
http://www.pathwaycommons.org/pc/
http://www.reactome.org/
http://www.reactome.org/
http://genome.ucsc.edu/
http://www.unihi.org/
http://dgvbeta.tcag.ca/dgv/app/home?ref=GRCh37/hg19
http://dgvbeta.tcag.ca/dgv/app/home?ref=GRCh37/hg19
http://www.ncbi.nlm.nih.gov/dbvar/
http://humanparalogy.gs.washington.edu/structuralvariation/
http://www.hgvs.org/dblist/dblist.html
http://www.ncbi.nlm.nih.gov/pubmed
http://www.sciencedirect.com/
http://www.sciencedirect.com/
http://scirus.com/
http://www.scopus.com/home.url
http://link.springer.com/
http://onlinelibrary.wiley.com/
http://highwire.stanford.edu/
http://www.biomedcentral.com/
http://apps.webofknowledge.com/
http://scholar.google.com/
http://www.molecularcytogenetics.org/


209

 Chromosoma:   http://link.springer.com/journal/412     
 Chromosome Research:   http://link.springer.com/journal/10577     
 Journal of Cell Biology:   http://jcb.rupress.org/     
 Journal of Cell Science:   http://jcs.biologists.org/     
 Genes, Chromosomes and Cancer:   http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291098-

2264;jsessionid=14F5A0A05993373860006F087881472C.d01t04     
 Experimental Cell Research:   http://www.journals.elsevier.com/experimental-cell-research/     
 Molecular Biology of the Cell:   http://www.molbiolcell.org/     
 Molecular and Cell Biology:   http://mcb.asm.org/     
 Cytogenetic and Genome Research:   http://content.karger.com/ProdukteDB/produkte.asp?Aktion=

JournalHome&ProduktNr=224037     
 Journal of Histochemistry and Cytochemistry:   http://jhc.sagepub.com/     
 Human Genetics:   http://www.springer.com/biomed/human+genetics/journal/439     
 The American Journal of Human Genetics:   http://www.cell.com/AJHG/     
 Human Molecular Genetics:   http://hmg.oxfordjournals.org/     
 BioDiscovery:   http://www.biodiscoveryjournal.co.uk/     
 Current Genomics:   http://www.benthamscience.com/cg/     
 Methods in Molecular Biology:   http://www.springer.com/series/7651     
 PLoS One:   http://www.plosone.org/     
 Cell:   http://www.cell.com/home     
 Nature Cell Biology:   www.nature.com/ncb/     
 Prenatal Diagnosis: http://onlinelibrary.wiley.com/journal/  10.1002/%28ISSN%291097-0223     
 Mutation Research:   http://www.elsevier.com/journals/mutation-research-full- set/FS00-0289     
 Journal of Cellular Physiology:   http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291097-

4652     
 Journal of Medical Genetics:   http://jmg.bmj.com/     
 Genes & Development:   http://genesdev.cshlp.org/     
 PNAS USA:   http://www.pnas.org/     
 Cancer Research:   http://cancerres.aacrjournals.org/        
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