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PREFACE 

This book emerged from a stream of research conducted in CASTLE Laboratory at 
Princeton University during the period 2006 - 2011. Initially, the work was motivated 
by the "exploration vs. exploitation" problem that arises in the design of algorithms 
for approximate dynamic programming, where it may be necessary to visit a state to 
learn the value of being in the state. However, we quickly became aware that this 
basic question had many applications outside of dynamic programming. 

The results of this research were made possible by the efforts and contributions of 
numerous colleagues. The work was conducted under the guidance and supervision 
of Warren Powell, founder and director of CASTLE Lab. Key contributors include 
Peter Frazier, Ilya Ryzhov, Warren Scott, and Emre Barut, all graduate students at the 
time; Martijn Mes, a post-doctoral associate from University Twente in the Nether-
lands; Diana Negoescu, Gerald van den Berg, and Will Manning, then undergraduate 
students. The earliest work by Peter Frazier recognized the power of a one-step 
look-ahead policy, which was named the knowledge gradient, in offline (ranking and 
selection) problems. The true potential of this idea, however, was realized later with 
two developments. The first, by Peter Frazier, adapted the knowledge gradient con-
cept to an offline problem with correlated beliefs about different alternatives. This 
result made it possible to learn about thousands of discrete alternatives with very 
small measurement budgets. 

xv 
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The second development, by Ilya Ryzhov, made a connection between the knowl-
edge gradient for offline problems and the knowledge gradient for online problems. 
This relationship links two distinct communities: ranking and selection in statistics 
and simulation, and the multi-armed bandit problem in applied probability and com-
puter science. This link provides a tractable approach to multi-armed bandit problems 
with correlated beliefs, a relatively new extension of the well-known bandit model. 

This foundation led to a number of additional results. Peter Frazier and Diana 
Negoescu created a version of the algorithm for problems where the belief structure 
is given by a linear model, which made it possible to tackle a problem in drug dis-
covery, sorting through 87,000 possible drug combinations with just a few hundred 
experiments. Martijn Mes adapted the knowledge gradient approach to create an al-
gorithm for a nonparametric model where the value of an alternative was represented 
through a hierarchical aggregation model. Emre Barut adapted this result for a non-
parametric belief model using kernel regression. Warren Scott derived a very difficult 
but powerful algorithm for when the choice of what to measure is a multidimensional 
vector of continuous parameters, which was applied to calibrate an industrial simu-
lator for airline operations. Ilya Ryzhov then used the knowledge gradient idea to 
connect optimal learning with classical mathematical programming, making it pos-
sible to incorporate learning issues into fundamental optimization models such as 
linear programs. As of this writing, we are developing (with Gerald van den Berg) a 
method to handle the exploration issue in approximate dynamic programming - the 
very problem that we originally set out to solve. 

The work inspired an undergraduate course at Princeton University called "Opti-
mal Learning." Over several years, it has repeatedly attracted talented and enthusias-
tic students who have produced a creative collection of projects. This book evolved 
out of lecture notes written the first year that the course was offered. Indeed, the 
course covers roughly the first seven chapters, with other topics selected from the 
second half as time permits. The book is designed to be accessible to an advanced 
undergraduate audience, and presents an overview of the extensive body of research 
we compiled around the idea of the knowledge gradient. However, we also kept 
another goal in mind: to recognize the important contributions that have been made 
by a number of different communities such as economics, computer science, applied 
probability, simulation optimization, stochastic search, and ranking and selection. 

The languages of these different communities have posed a particular challenge. 
For example, we use the term "online learning" to refer to learning where we have to 
live with the rewards we receive while also learning to improve decisions in the future, 
while some use this same term to refer to any sequential learning policy. Different 
communities are guided by specific classes of applications with characteristics that 
guide the choice of algorithms. The application setting is rarely transparent in the 
mathematics, complicating the evaluation of competing methods which have been 
designed with specific issues in mind. In the multi-armed bandit literature, an alter-
native x is always referred to as a "bandit," even if x is continuous and vector-valued. 
Even within this literature, the preferred techniques for solving these problems are 
quite different in applied probability (Gittins indices) and computer science (upper 
confidence bounding). 
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Audience 

The book is aimed primarily at an advanced undergraduate or masters-level audience 
with a course in statistics and a full course in probability. The course can easily be 
taught at a Ph.D. level by putting more emphasis on the derivations and supporting 
theory, which is quite deep. However, the book was written for students and prac-
titioners who are interested in practical tools for real problems. For this reason, the 
core of each chapter focuses on a specific learning problem and presents practical, 
implementable algorithms. 

The later chapters cover material that is more advanced, including (a) learning on 
graphs and linear programs and (b) learning where the alternatives are continuous 
(and possibly vector-valued). We have provided chapters designed to bridge with 
communities such as simulation optimization and machine learning. This material is 
designed to help Ph.D. students and researchers to understand the many communities 
that have contributed to the general area of optimal learning. 

While every effort has been made to make this material as accessible as possible, the 
theory supporting this field can be quite subtle. More advanced material is indicated 
with an * in the section title. Some derivations and proofs are provided in sections 
called "Why does it work." These sections provide more advanced students with a 
more thorough foundation, but they can be skipped without loss of continuity. 

Organization of the Book 

The book is roughly organized into three parts: 

Part I: Fundamentals 

Chapter 1 - The Challenges of Learning 

Chapter 2 - Adaptive Learning 
Chapter 3 - The Economics of Information 
Chapter 4 - Ranking and Selection 
Chapter 5 - The Knowledge Gradient 
Chapter 6 - Bandit Problems 
Chapter 7 - Elements of a Learning Problem 

Part II: Extensions and Applications 

Chapter 8 - Linear Belief Models 
Chapter 9 - Subset Selection Problems 
Chapter 10 - Optimizing a Scalar Function 
Chapter 11 - Optimal Bidding 
Chapter 12 - Stopping Problems 
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Part III: Advanced Topics 

Chapter 13 - Active Learning in Statistics 
Chapter 14 - Simulation Optimization 
Chapter 15 - Learning in Mathematical Programming 
Chapter 16 - Optimizing over Continuous Measurements 
Chapter 17 - Learning with a Physical State 

The book is used as a textbook for an undergraduate course at Princeton. In this 
setting, Part I covers the foundations of the course. This material is supplemented 
with traditional weekly problem sets and a midterm exam (two hourly exams would 
also work well here). Each of these chapters have a relatively large number of exercises 
to help students develop their understanding of the material. 

After this foundational material is covered, students work in teams of two to design 
a project which involves the efficient collection of information. In the initial problem 
definition, it is important for students to clearly identify the information that is being 
collected, the implementation decision (which may be different, but not always), and 
the metric used to evaluate the quality of the implementation decision. 

While the students work on their projects, the course continues to work through 
most of the topics in Part II. The material on linear belief models is particularly useful 
in many of the student projects, as is the subset selection chapter. Sometimes it is 
useful to prioritize the material being presented based on the topics that the students 
have chosen. The chapters in Part II have a small number of exercises, many of which 
require the use of downloadable MATLAB software to help with the implementation 
of these more difficult algorithms. 

Part III of the book is advanced material and is intended primarily for researchers 
and professionals interested in using the book as a reference volume. These chapters 
are not accompanied by exercises, since the material here is more difficult and would 
require the use of fairly sophisticated software packages. 

Additional material for the book is available at the website: 

http://optimallearning.princeton.edu/ 

Downloadable software is provided for several of the most important algorithms, and 
a fairly elaborate implementation, the Optimal Learning Calculator, is available as a 
spreadsheet interface calling a sophisticated Java library. Further reading, software, 
sample projects, and additional thoughts about the field will be made available here. 

WARREN B. POWELL AND ILYA O. RYZHOV 

Princeton University 
University of Maryland 
October 2011 
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CHAPTER 1 

THE CHALLENGES OF LEARNING 

We are surrounded by situations where we need to make a decision or solve a problem, 
but where we do not know some or all of the relevant information for the problem 
perfectly. Will the path recommended by my navigation system get me to my ap-
pointment on time? Am I charging the right price for my product, and do I have the 
best set of features? Will a new material make batteries last longer? Will a molecular 
compound help reduce a cancer tumor? If I turn my retirement fund over to this in-
vestment manager, will I be able to outperform the market? Sometimes the decisions 
have a simple structure (which investment advisor should I use), while others require 
complex planning (how do I deploy a team of security agents to assess the safety of a 
set of food processing plants). Sometimes we have to learn while we are doing (the 
sales of a book at a particular price), while in other cases we may have a budget to 
collect information before making a final decision. 

There are some decision problems that are hard even if we have access to perfectly 
accurate information about our environment: planning routes for aircraft and pilots, 
optimizing the movements of vehicles to pick up and deliver goods, or scheduling 
machines to finish a set of jobs on time. This is known as deterministic optimization. 
Then there are other situations where we have to make decisions under uncertainty, but 
where we assume we know the probability distributions of the uncertain quantities: 

Optimal Learning. By Warren B. Powell and Ilya O. Ryzhov 1 
Copyright © 2012 John Wiley & Sons, Inc. 



2 THE CHALLENGES OF LEARNING 

How do I allocate investments to minimize risk while maintaining a satisfactory return, 
or how do I optimize the storage of energy given uncertainties about demands from 
consumers? This is known as stochastic optimization. 

In this book, we introduce problems where the probability distributions themselves 
are unknown, but where we have the opportunity to collect new information to improve 
our understanding of what they are. We are primarily interested in problems where the 
cost of the information is considered "significant," which is to say that we are willing 
to spend some time thinking about how to collect the information in an effective way. 
What this means, however, is highly problem-dependent. We are willing to spend 
quite a bit before we drill a $10 million hole hoping to find oil, but we may be willing 
to invest only a small effort before determining the next measurement inside a search 
algorithm running on a computer. 

The modeling of learning problems, which might be described as "learning how 
to learn," can be fairly difficult. While expectations are at least well-defined for 
stochastic optimization problems, they take on subtle interpretations when we are 
actively changing the underlying probability distributions. For this reason, we tend 
to work on what might otherwise look like very simple problems. Fortunately, there 
are very many "simple problems" which would be trivial if we only knew the values of 
all the parameters, but which pose unexpected challenges when we lack information. 

1.1 LEARNING THE BEST PATH 

Consider the problem of finding the fastest way to get from your new apartment to 
your new job in Manhattan. We can find a set of routes from the Internet or from our 
GPS device, but we do not know anything about traffic congestion or subway delays. 
The only way we can get data to estimate actual delays on a path is to travel the path. 
We wish to devise a strategy that governs how we choose paths so that we strike a 
balance between experimenting with new paths and getting to work on time every 
day. 

Assume that our network is as depicted in Figure 1.1. Let p be a specific path, and 
let xp = 1 if we choose to take path p. After we traverse the path, we observe a cost 
cp. Let jip denote the true mean value of cp, which is of course unknown to us. After 
n trials, we can compute a sample mean 0™ of the cost of traversing path p along with 
a sample variance o^n using our observations of path p. Of course, we only observe 
path p if x^ = 1, so we might compute these statistics using 

n 

K = 5>£, (i.i) 
k=i 

P k=l 
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Figure 1.1 A simple shortest path problem, giving the current estimate of the mean and 
standard deviation (of the estimate) for each path. 

Note that o^n is our estimate of the variance of cp by iteration n (assuming we have 
visited pathp N™ > 1 times). The variance of our estimate of the mean, 0™, is given 
by 

- 2 , n 1 - 2 , n 

Now we face the challenge: Which path should we try? Let's start by assuming 
that you just started a new job and you have been to the Internet to find different 
paths, but you have not tried any of them. If your job involves commuting from a 
New Jersey suburb into Manhattan, you have a mixture of options that include driving 
(various routes) and commuter train, with different transit options once you arrive in 
Manhattan. But you do have an idea of the length of each path, and you may have 
heard some stories about delays through the tunnel into Manhattan, as well as a few 
stories about delayed trains. From this, you construct a rough estimate of the travel 
time on each path, and we are going to assume that you have at least a rough idea of 
how far off these estimates may be. We denote these initial estimates using 

0® = initial estimate of the expected travel time on path p , 

a® = initial estimate of the standard deviation of the difference be-
tween 0® and the truth. 

If we believe that our estimation errors are normally distributed, then we think that 
the true mean, /xp, is in the interval (//p — za/2(Tpi [iv + za/2(Jp) a percent of the 
time. If we assume that our errors are normally distributed, we would say that we 
have an estimate of [iv that is normally distributed with parameters (0°, (cr®)2). 

So which path do you try first? If our priors are as shown in Figure 1.1, presumably 
we would go with the first path, since it has a mean path time of 22 minutes, which 
is less than any of the other paths. But our standard deviation around this belief is 4, 
which means we believe this could possibly be as high as 30. At the same time, there 
are paths with times of 28 and 30 with standard deviations of 10 and 12. This means 
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that we believe that these paths could have times that are even smaller than 20. Do 
we always go with the path that we think is the shortest? Or do we try paths that we 
think are longer, but where we are just not sure, and there is a chance that these paths 
may actually be better? 

If we choose a path we think is best, we say that we are exploiting the information 
we have. If we try a path because it might be better, which would help us make better 
decisions in the future, we say that we are exploring. Exploring a new path, we may 
find that it is an unexpectedly superior option, but it is also possible that we will simply 
confirm what we already believed. We may even obtain misleading results - it may 
be that this one route was experiencing unusual delays on the one day we happened to 
choose it. Nonetheless, it is often desirable to try something new to avoid becoming 
stuck on a suboptimal solution just because it "seems" good. Balancing the desire to 
explore versus exploit is referred to in some communities as the exploration versus 
exploitation problem. Another name is the learn versus earn problem. Regardless 
of the name, the point is the lack of information when we make a decision, along with 
the value of new information in improving future decisions. 

1.2 AREAS OF APPLICATION 

The diversity of problems where we have to address information acquisition and 
learning is tremendous. Below, we try to provide a hint of the diversity. 

Transportation 

■ Responding to disruptions - Imagine that there has been a disruption to a net-
work (such as a bridge failure) forcing people to go through a process of dis-
covering new travel routes. This problem is typically complicated by noisy 
observations and by travel delays that depend not just on the path but also on 
the time of departure. People have to evaluate paths by actually traveling them. 

■ Revenue management - Providers of transportation need to set a price that 
maximizes revenue (or profit), but since demand functions are unknown, it is 
often necessary to do a certain amount of trial and error. 

■ Evaluating airline passengers or cargo for dangerous items - Examining people 
or cargo to evaluate risk can be time-consuming. There are different policies 
that can be used to determine who/what should be subjected to varying degrees 
of examination. Finding the best policy requires testing them in field settings. 

■ Finding the best heuristic to solve a difficult integer program for routing and 
scheduling - We may want to find the best set of parameters to use our tabu search 
heuristic, or perhaps we want to compare tabu search, genetic algorithms, and 
integer programming for a particular problem. We have to loop over different 
algorithms (or variations of an algorithm) to find the one that works the best on 
a particular dataset. 
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Figure 1.2 The operations center for NetJets®, which manages over 750 aircraft1. NetJets® 
has to test different policies to strike the right balance of costs and service. 

■ Finding the best business rules - A transportation company needs to determine 
the best terms for serving customers, the best mix of aircraft, and the right pilots 
to hire1 (see Figure 1.2). They may use a computer simulator to evaluate these 
options, requiring time-consuming simulations to be run to evaluate different 
strategies. 

■ Evaluating schedule disruptions - Some customers may unexpectedly ask us to 
deliver their cargo at a different time, or to a different location than what was 
originally agreed upon. Such disruptions come at a cost to us, because we may 
need to make significant changes to our routes and schedules. However, the 
customers may be willing to pay extra money for the disruption. We have a 
limited time to find the disruption or combination of disruptions where we can 
make the most profit. 

Energy and the Environment 

■ Finding locations for wind farms - Wind conditions can depend on micro-
geography - a cliff, a local valley, a body of water. It is necessary to send 
teams with sensors to find the best locations for locating wind turbines in a 
geographical area. The problem is complicated by variations in wind, making 
it necessary to visit a location multiple times. 

■ Finding the best material for a solar panel - It is necessary to test large numbers 
of molecular compounds to find new materials for converting sunlight to elec-
tricity. Testing and evaluating materials is time consuming and very expensive, 
and there are large numbers of molecular combinations that can be tested. 

includes aircraft under management by Executive Jet® Management. 
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Figure 1.3 Wind turbines are one form of alternative energy resources (from 
http://www.nrel.gov/data/pix/searchpix.cgi). 

■ Tuning parameters for a fuel cell - There are a number of design parameters 
that have to be chosen to get the best results from a full cell: the power density 
of the anode or cathode, the conductivity of bipolar plates, and the stability of 
the seal. 

■ Finding the best energy-saving technologies for a building - Insulation, tinted 
windows, motion sensors and automated thermostats interact in a way that 
is unique to each building. It is necessary to test different combinations to 
determine the technologies that work the best. 

■ R&D strategies - There are a vast number of research efforts being devoted to 
competing technologies (materials for solar panels, biomass fuels, wind turbine 
designs) which represent projects to collect information about the potential for 
different designs for solving a particular problem. We have to solve these 
engineering problems as quickly as possible, but testing different engineering 
designs is time-consuming and expensive. 

■ Optimizing the best policy for storing energy in a battery - A policy is defined 
by one or more parameters that determine how much energy is stored and in 
what type of storage device. One example might be, "charge the battery when 
the spot price of energy drops below x" We can collect information in the 
field or a computer simulation that evaluates the performance of a policy over 
a period of time. 
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■ Learning how lake pollution due to fertilizer run-off responds to farm policies -
We can introduce new policies that encourage or discourage the use of fertilizer, 
but we do not fully understand the relationship between these policies and lake 
pollution, and these policies impose different costs on the farmers. We need to 
test different policies to learn their impact, but each test requires a year to run 
and there is some uncertainty in evaluating the results. 

■ On a larger scale, we need to identify the best policies for controlling CO2 emis-
sions, striking a balance between the cost of these policies (tax incentives on 
renewables, a carbon tax, research and development costs in new technologies) 
and the impact on global warming, but we do not know the exact relationship 
between atmospheric CO2 and global temperatures. 

Homeland Security 

■ You would like to minimize the time to respond to an emergency over a con-
gested urban network. You can take measurements to improve your understand-
ing of the time to traverse each region of the traffic network, but collecting these 
observations takes time. How should you structure your observations of links 
in the network to achieve the best time when you need to find the shortest path? 

■ You need to manage a group of inspectors to intercept potentially dangerous 
cargo being smuggled through ports and across borders. Since you do not 
know the frequency with which smugglers might try to use a port of entry, it 
is important to allocate inspectors not just to maximize the likelihood of an 
interception given current beliefs, but to also collect information so that we can 
improve our understanding of the truth. For example, we may believe that a 
particular entry point might have a low probability of being used, but we may 
be wrong. 

■ Radiation is detected in downtown Manhattan. Inspectors have to be managed 
around the city to find the source as quickly as possible. Where should we send 
them to maximize the likelihood of finding the source? 

Science and Engineering 

■ The National Ignition Facility uses large crystals to focus lasers into a very 
small region to perform nuclear research. The crystals become damaged over 
time and have to be repaired or replaced, but the process of examining each 
crystal is time-consuming and reduces the productivity of the facility. NIF has 
to decide when to examine a crystal to determine its status. 

■ A company is trying to design an aerosol device whose performance is deter-
mined by a number of engineering parameters: the diameter of the tube that 
pulls liquid from a reservoir, the pressure, the angle of a plate used to direct 
the spray, and the size of the portal used to project the spray and the angle of 
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Figure 1.4 Drug discovery requires testing large numbers of molecules. 

the departure portal. These have to be varied simultaneously to find the best 
design. 

Health and Medicine 

■ Drug discovery - Curing a disease often involves first finding a small family 
of base molecules, and then testing a large number of variations of a base 
molecule. Each test of a molecular variation can take a day and consumes 
costly materials, and the performance can be uncertain. 

■ Drug dosage - Each person responds to medication in a different way. It is 
often necessary to test different dosages of a medication to find the level that 
produces the best mix of effectiveness against a condition with minimum side 
effects. 

■ How should a doctor test different medications to treat diabetes, given that 
he will not know in advance how a particular patient might respond to each 
possible course of treatment? 

■ What is the best way to test a population for an emerging disease so that we 
can plan a response strategy? 

Sports 

■ How do you find the best set of five basketball players to use as your starting 
lineup? Basketball players require complementary skills in defense, passing, 
and shooting, and it is necessary to try different combinations of players to see 
which group works the best. 

■ What is the best combination of rowers for a four person rowing shell? Rowers 
require a certain synergy to work well together, making it necessary to try 
different combinations of rowers to see who turns in the best time. 
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■ Who are the best hitters that you should choose for your baseball team? It is 
necessary to see how a player hits in game situations, and of course these are 
very noisy observations. 

■ What plays work the best for your football team? Specific plays draw on 
different combinations of talents, and a coach has to find out what works best 
for his team. 

Business 

■ What are the best labor rules or terms in a customer contract to maximize 
profits? These can be tested in a computer simulation program, but it may 
require several hours (in some cases, several days) to run. How do we sequence 
our experiments to find the best rules as quickly as possible? 

■ What is the best price to charge for a product being sold over the Internet? 
It is necessary to use a certain amount of trial and error to find the price that 
maximizes revenue. 

■ We would like to find the best supplier for a component part. We know the price 
of the component, but we do not know about the reliability of the service or 
the quality of the product. We can collect information on service and product 
quality by placing small orders. 

■ We need to identify the best set of features to include in a new laptop we are 
manufacturing. We can estimate consumer response by running market tests, 
but these are time-consuming and delay the product launch. 

■ A company needs to identify the best person to lead a division that is selling a 
new product. The company does not have time to interview all the candidates. 
How should a company identify a subset of potential candidates? 

■ Advertising for a new release of a movie - We can choose between TV ads, 
billboards, trailers on movies already showing, the Internet, and promotions 
through restaurant chains. What works best? Does it help to do TV ads if you 
are also doing Internet advertising? How do different outlets interact? You 
have to try different combinations, evaluate their performance, and use what 
you learn to guide future advertising strategies. 

■ Conference call or airline trip? Business people have to decide when to try 
to land a sale using teleconferencing, or when a personal visit is necessary. 
For companies that depend on numerous contacts, it is possible to experiment 
with different methods of landing a sale, but these experiments are potentially 
expensive, involving (a) the time and expense of a personal trip or (b) the risk 
of not landing a sale. 
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E-Commerce 

■ Which ads will produce the best consumer response when posted on a web-
site? You need to test different ads, and then identify the ads that are the most 
promising based on the attributes of each ad. 

■ Netflix can display a small number of movies to you when you log into your 
account. The challenge is identifying the movies that are likely to be most 
interesting to a particular user. As new users sign up, Netflix has to learn as 
quickly as possible which types of movies are most likely to attract the attention 
of an individual user. 

■ You need to choose keywords to bid on to get Google to display your ad. What 
bid should you make for a particular keyword? You measure your performance 
by the number of clicks that you receive. 

■ YouTube has to decide which videos to feature on its website to maximize the 
number of times a video is viewed. The decision is the choice of video, and 
the information (and reward) is the number of times people click on the video. 

■ Amazon uses your past history of book purchases to make suggestions for 
potential new purchases. Which products should be suggested? How can 
Amazon use your response to past suggestions to guide new suggestions? 

The Service Sector 

■ A university has to make specific offers of admission, after which it then ob-
serves which types of students actually matriculate. The university has to 
actually make an offer of admission to learn whether a student is willing to ac-
cept the offer. This information can be used to guide future offers in subsequent 
years. There is a hard constraint on total admissions. 

■ A political candidate has to decide in which states to invest his remaining time 
for campaigning. He decides which states would benefit the most through 
telephone polls, but has to allocate a fixed budget for polling. How should he 
allocate his polling budget? 

■ The Federal government would like to understand the risks associated with 
issuing small business loans based on the attributes of an applicant. A particular 
applicant might not look attractive, but it is possible that the government's 
estimate of risk is inflated. The only way to learn more is to try granting some 
higher risk loans. 

■ The Internal Revenue Service has to decide which companies to subject to a 
tax audit. Should it be smaller companies or larger ones? Are some industries 
more aggressive than others (for example, due to the presence of lucrative tax 
write-offs)? The government's estimates of the likelihood of tax cheating may 
be incorrect, and the only way to improve its estimates is to conduct audits. 
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Figure 1.5 The Air Force has to design new technologies and determine the best policies for 
operating them. 

The Military 

■ The military has to collect information on risks faced in a region using UAVs 
(unmanned aerial vehicles). The UAV collects information about a section of 
road, and then command determines how to deploy troops and equipment. How 
should the UAVs be deployed to produce the best deployment strategy? 

■ A fighter has to decide at what range to launch a missile. After firing a missile, 
we learn whether the missile hit its target or not, which can be related to factors 
such as range, weather, altitude and angle-of-attack. With each firing, the 
fighter learns more about the probability of success. 

■ The Air Force has to deploy tankers for mid-air refueling. There are different 
policies for handling the tankers, which include options such as shuttling tankers 
back and forth between locations, using one tanker to refuel another tanker, and 
trying different locations for tankers. A deployment policy can be evaluated by 
measuring (a) how much time fighters spend waiting for refueling and (b) the 
number of times a fighter has to abort a mission from lack of fuel. 

■ The military has to decide how to equip a soldier. There is always a tradeoff 
between cost and the weight of the equipment, versus the likelihood that the 
soldier will survive. The military can experiment with different combinations 
of equipment to assess its effectiveness in terms of keeping a soldier alive. 

Tuning Models and Algorithms 

■ There is a large community that models physical problems such as manufac-
turing systems using Monte Carlo simulation. For example, we may wish to 
simulate the manufacture of integrated circuits which have to progress through 
a series of stations. The progression from one station to another may be limited 
by the size of buffers which hold circuit boards waiting for a particular machine. 
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We wish to determine the best size of these buffers, but we have to do this by 
sequential simulations which are time-consuming and noisy. 

There are many problems in discrete optimization where we have to route peo-
ple and equipment, or scheduling jobs to be served by a machine. These are 
exceptionally hard optimization problems that are typically solved using heuris-
tic algorithms such as tabu search or genetic algorithms. These algorithms are 
controlled by a series of parameters which have to be tuned for specific problem 
classes. One run of an algorithm on a large problem can require several minutes 
to several hours (or more), and we have to find the best setting for perhaps five 
or ten parameters. 

Engineering models often have to be calibrated to replicate a physical process 
such as weather or the spread of a chemical through groundwater. These models 
can be especially expensive to run, often requiring the use of fast supercom-
puters to simulate the process in continuous space or time. At the same time, it 
is necessary to calibrate these models to produce the best possible prediction. 

1.3 MAJOR PROBLEM CLASSES 

Given the diversity of learning problems, it is useful to organize these problems into 
major problem classes. A brief summary of some of the major dimensions of learning 
problems is given below. 

■ Online versus offline - Online problems involve learning from experiences as 
they occur. For example, we might observe the time on a path through a 
network by traveling the path, or adjust the price of a product on the Internet 
and observe the revenue. We can try a decision that looks bad in the hopes of 
learning something, but we have to incur the cost of the decision, and balance 
this cost against future benefits. In offline problems, we might be working in a 
lab with a budget for making measurements, or we might set aside several weeks 
to run computer simulations. If we experiment with a chemical or process that 
does not appear promising, all we care about is the information learned from the 
experiment; we do not incur any cost from running an unsuccessful experiment. 
When our budget has been exhausted, we have to use our observations to choose 
a design or a process that will then be put into production. 

■ Objectives - Problems differ in terms of what we are trying to achieve. Most 
of the time we will focus on minimizing the expected cost or maximizing the 
expected reward from some system. However, we may be simply interested 
in finding the best design, or ensuring that we find a design that is within five 
percent of the best. 

■ The measurement decision - In some settings, we have a small number of 
choices such as drilling test wells to learn about the potential for oil or natural 
gas. The number of choices may be small, but each test can cost millions of 
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dollars. Alternatively, we might have to find the best set of 30 proposals out of 
100 that have been submitted, which means that we have to choose from 3 x 1025 

possible portfolios. Or we may have to choose the best price, temperature, or 
pressure (a scalar, continuous parameter). We might have to set a combination 
of 16 parameters to produce the best results for a business simulator. Each 
of these problems introduce different computational challenges because of the 
size of the search space. 

■ The implementation decision - Collecting the best information depends on what 
you are going to do with the information once you have it. Often, the choices 
of what to observe (the measurement decision) are the same as what you are 
going to implement (finding the choice with the best value). But you might 
measure a link in a graph in order to choose the best path. Or we might want 
to learn something about a new material to make a decision about new solar 
panels or batteries. In these problems, the implementation decision (the choice 
of path or technology) is different from the choice of what to measure. 

■ What we believe - We may start by knowing nothing about the best system. 
Typically, we know something (or at least we will know something after we 
make our first measurement). What assumptions can we reasonably make about 
different choices? Can we put a normal distribution of belief on an unknown 
quantity? Are the beliefs correlated (if a laptop with one set of features has 
higher sales than we expected, does this change our belief about other sets of 
features)? Are the beliefs stored as a lookup table (that is, a belief for each 
design), or are the beliefs expressed as some sort of statistical model? 

■ The nature of a measurement - Closely related to what we believe is what we 
learn when we make a measurement. Is the observation normally distributed? 
Is it a binary random variable (success/failure)? Are measurements made with 
perfect accuracy? If not, do we know the distribution of the error in a measure-
ment? 

■ Belief states and physical states - All learning problems include a "belief state" 
(or knowledge state) which captures what we believe about the system. Some 
problems also include a physical state. For example, to measure the presence 
of disease at city i, we have to visit city i. After making this measurement, the 
cost of visiting city j now depends on city i. Our physical location is a physical 
state. 

We are not going to be able to solve all these problems in this book, but we can at 
least recognize the diversity of problems. 

1.4 THE DIFFERENT TYPES OF LEARNING 

It is useful to contrast learning problems with other types of optimization problems. 
Figure 1.1 depicts two optimization problem. The problem in Figure 1.1(a) shows 
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Table 1.1 (a) A problem involving five known alternatives, and (b) a problem where 
the value of each alternative is normally distributed with known mean and standard 
deviation. 

Alternativ< 

1 
2 
3 
4 
5 

i Value 

759 
722 
698 
653 
616 

Alternative 

1 
2 
3 
4 
5 

Mean 

759 
722 
698 
653 
616 

Std. Dev. 

120 
142 
133 
90 
102 

(a) The Best of Five Known Alternatives (b) The Best of Five Uncertain Alterna-
tives 

five choices, each of which has a known value. The best choice is obviously the first 
one, with a value of 759. Of course, deterministic optimization problems can be quite 
hard, but this happens to be a trivial one. 

A harder class of optimization problems arise when there is uncertainty in the 
parameters. Figure 1.1(b) depicts a problem with five choices where the reward we 
receive from a choice is normally distributed with known mean and standard deviation. 
Assume that we have to make a choice before the reward is received, and we want to 
make a choice that gives us the highest expected return. Again, we would select the 
first alternative, because it has the highest expected value. 

The problems illustrated in Table 1.1 use either known values, or known distribu-
tions. This problem is fairly trivial (picking the best out of a list of five), but there are 
many problems in stochastic optimization that are quite hard. In all of these problems, 
there are uncertain quantities but we assume that we know the probability distribution 
describing the likelihood of different outcomes. Since the distributions are assumed 
known, when we observe an outcome we view it simply as a realization from a known 
probability distribution. We do not use the observation to update our belief about the 
probability distribution. 

Now consider what happens when you are not only uncertain about the reward, 
you are uncertain about the probability distribution for the reward. The situation 
is illustrated in Table 1.2, where after choosing to measure the first alternative, we 
observe an outcome of 702 and then use this outcome to update our belief about 
the first alternative. Before our measurement, we thought the reward was normally 
distributed with mean 759 and standard deviation 102. After the measurement, we 
now believe the mean is 712 with standard deviation of 92. As a result, alternative 2 
now seems to be the best. 

Since we are willing to change our belief about an alternative, is it necessarily the 
case that we should try to evaluate what appears to be the best alternative? Later in 
this volume, we are going to refer to this as an exploitation policy. This means that 
we exploit our current state of knowledge and choose the alternative that appears to 
be best. But it might be the case that if we observe an alternative that does not appear 
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Table 1.2 Learning where we update our beliefs based on observations, which changes 
our distribution of belief for future measurements. 

Alternative 

1 
2 
3 
4 
5 

Initial Mean and Std. Dev. 
Mean 

759 
722 
698 
653 
616 

Std. Dev. 

102 
133 
78 
90 
102 

First 
Obs. 

702 

Updated 
Mean 

712 
722 
698 
653 
616 

Mean and Std. 
Std. Dev 

92 
133 
78 
90 
102 

Dev. Second 
Obs. 

734 

to be the best to use right now, we may collect information that allows us to make 
better decisions in the future. The central idea of optimal learning is to incorporate 
the value of information in the future to make better decisions now. 

Now consider another popular optimization problem known as the newsvendor 
problem. In this problem, we wish to order a quantity (of newspapers, oil, money, 
energy) x to satisfy a random demand D (that is, D is not known when we have to 
choose x). We earn p dollars per unit of satisfied demand, which is to say min(#, D), 
and we have to pay c dollars per unit of x that we order. The total profit is given by 

F(x, D) = pmm(x, D) — ex. 

The optimization problem is to solve 

maxEF(z ,D) . 
X 

There are a number of ways to solve stochastic optimization problems such as this. 
If the distribution of D is known, we can characterize the optimal solution using 

PD[X* <!>] = - , 
P 

where P D ( ) is the cumulative distribution function for D. So, as the purchase cost 
c is decreased, we should increase our order quantity so that the probability that the 
order quantity is less than demand also decreases. 

In many applications, we do not know the distribution of D, but we are able to 
make observations of D (or we can observe if we have ordered too much or too little). 
Let xn~l be the order quantity we chose after observing JDn_1, which was our best 
guess of the right order quantity to meet the demand on day n, and let Dn be resulting 
demand. Now let gn be the derivative of F(x, D), given that we ordered xn~l and 
then observed Dn. This derivative is given by 

an = SP~C ifx^D> 9 \-c ifx>D. 
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A simple method for choosing xn is a stochastic gradient algorithm which looks like 

xn = xn-1+an-1gn. (1.4) 

Here, Oin-\ is a stepsize that has to satisfy certain conditions that are not important 
here. If the stepsize is chosen appropriately, it is possible to show that in the limit, 
xn approaches the optimal solution, even without knowing the distribution of D in 
advance. 

What our algorithm in equation (1.4) ignores is that our choice of xn allows us 
to learn something about the distribution of D. For example, it might be that the 
purchase cost c is fairly high compared to the sales price p, which would encourage 
us to choose smaller values of x, where we frequently do not satisfy demand. But we 
might benefit from making some larger orders just to learn more about the rest of the 
demand distribution. By ignoring our ability to learn, the algorithm may not converge 
to the right solution, or it may eventually find the right solution, but very slowly. When 
we use optimal learning, we explicitly capture the value of the information we learn 
now on future decisions. 

1.5 LEARNING FROM DIFFERENT COMMUNITIES 

The challenge of efficiently collecting information is one that arises in a number of 
communities. The result is a lot of parallel discovery, although the questions and 
computational challenges posed by different communities can be quite different, and 
this has produced diversity in the strategies proposed for solving these problems. 
Below we provide a rough list of some of the communities that have become involved 
in this area. 

■ Simulation optimization - The simulation community often faces the problem 
of tuning parameters that influence the performance of a system that we are 
analyzing using Monte Carlo simulation. These parameters might be the size 
of a buffer for a manufacturing simulator, the location of ambulances and fire 
trucks, or the number of advance bookings for a fare class for an airline. Simu-
lations can be time-consuming, so the challenge is deciding how long to analyze 
a particular configuration or policy before switching to another one. 

■ The ranking and selection problem - This is a statistical problem that arises in 
many settings, including the simulation optimization community. It is most 
often approached using the language of classical frequentist statistics (but not 
always) and tends to be very practical in its orientation. In ranking and selec-
tion, we assume that for each measurement, we can choose equally from a set 
of alternatives (there is no cost for switching from one alternative to another). 
Although the ranking and selection framework is widely used in simulation 
optimization, the simulation community recognizes that it is easier to run the 
simulation for one configuration a little longer than it is to switch to the simu-
lation of a new configuration. 
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■ The bandit community - There is a subcommunity that has evolved within ap-
plied probability and machine learning that studies what has long been referred 
to as bandit problems. This is the online (pay as you go) version of ranking 
and selection. A major breakthrough for this problem class was the discovery 
that a simple index policy (a quantity computed for each alternative that guides 
which alternative should be tested next) is optimal, producing a line of research 
(primarily in applied probability) aimed at discovering optimal index policies 
for more general problems. A separate subcommunity (primarily in computer 
science) has focused on a simple heuristic known as upper confidence bounding 
which has the property that the number of times we test the wrong alternative 
is bounded by a logarithmic function, which has then been shown to be the 
best possible bound. Upper confidence bounding has also been popular in the 
control theory community. 

■ Global optimization of expensive functions - The engineering community of-
ten finds a need to optimize complex functions of continuous variables. The 
function is sometimes a complex piece of computer software that takes a long 
time to run, but the roots of the field come from geospatial applications. The 
function might be deterministic (but not always), and a single evaluation can 
take an hour to a week or more. 

■ Learning in economics - Economists have long studied the value of information 
in a variety of idealized settings. This community tends to focus on insights 
into the economic value of information, rather than the derivation of specific 
procedures for solving information collection problems. 

■ Active learning in computer science - The machine learning community typ-
ically assumes that a dataset is given. When there is an opportunity to choose 
what to measure, this is known as active learning. This community tends to 
focus on statistical measures of fit rather than economic measures of perfor-
mance. 

■ Statistical design of experiments - A classical problem in statistics is deciding 
what experiments to run. For certain objective functions, it has long been 
known that experiments can be designed deterministically, in advance, rather 
than sequentially. Our focus is primarily on sequential information collection, 
but there are important problem classes where this is not necessary. 

■ Frequentist versus Bayesian communities - It is difficult to discuss research in 
optimal learning without addressing the sometimes contentious differences in 
styles and attitudes between frequentist and Bayesian statisticians. Frequentists 
look for the truth using nothing more than the data that we collect, while 
Bayesians would like to allow us to integrate expert judgment. 

■ Optimal stopping - There is a special problem class where we have the ability to 
observe a single stream of information such as the price of an asset. As long as 
we hold the asset, we get to observe the price. At some point, we have to make a 
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decision whether we should sell the asset or continue to observe prices (a form 
of learning). Another variant is famously known as the "secretary problem" 
where we interview candidates for a position (or offers for an asset); after each 
candidate (or offer) we have to decide if we should accept and stop or reject 
and continue observing. 

■ Approximate dynamic programming/reinforcement learning - Approximate dy-
namic programming, widely known as reinforcement learning in the computer 
science community, addresses the problem of choosing an action given a state 
which generates a reward and takes us to a new state. We do not know the exact 
value of the downstream state, but we might decide to visit a state just to learn 
more about it. This is generally known as the "exploration versus exploitation" 
problem, and this setting has motivated a considerable amount of research in 
optimal learning. 

■ Psychology - Not surprisingly, the tradeoff between exploration and exploita-
tion is a problem that has to be solved by people (as well as other animals 
ranging from chimpanzees to ants) for problems ranging from finding foot to 
finding mates. This has recently attracted attention in the psychology commu-
nity (Cohen et al. 2007). 

Readers who wish to study this field seriously will encounter the contributions of 
these (and perhaps other) communities. It is not possible to cover all the issues and 
perspectives of these communities in this volume, but we do provide a foundation 
that should make it possible for students and researchers to understand the issues and, 
in some cases, challenge conventional wisdom within specific communities. 

1.6 INFORMATION COLLECTION USING DECISION TREES 

The simplest types of information collection problems arise when there is a small 
number of choices to collect information. Should you check the weather report 
before scheduling a baseball game? Should you purchase an analysis of geologic 
formulations before drilling for oil? Should you do a statistical analysis of a stock 
price before investing in the stock? 

These are fairly simple problems that can be analyzed using a decision tree, which 
is a device that works well when the number of decisions, as well as the number of 
possible outcomes, is small and discrete. We begin by first presenting a small decision 
tree where collecting information is not an issue. 

1.6.1 A Basic Decision Tree 

Decision trees are a popular device for solving problems that involve making decisions 
under uncertainty, because they illustrate the sequencing of decisions and information 
so clearly. Figure 1.6 illustrates the decision tree that we might construct to help with 
the decision of whether to hold or sell a stock. In this figure, square nodes are decision 
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Decision Outcome Decision Outcome 
AP = +$1 w/pu.3 
AP= $0 w/p0.5 

^ AP = -$1 w/p0.2 

'AP = +$1 w/p0.3 
AP= $0 w/p0.5 

. AP = -$1 w/p0.2 

^AP = +$1 w/p0.3 
^AF= $0 w/p0.5 
x AP = -$1 w/p0.2 

Figure 1.6 Illustration of a decision tree to determine if we should hold or sell a stock, where 
the stock might go up or down $1 or stay the same in each time period. 

nodes, where we get to choose from a set of actions (where the number of actions 
cannot be too large). Circle nodes are outcome nodes, where something random 
happens, such as the change in the price of the stock. The solid lines represent 
decisions, while dashed lines are random outcomes. In our example, there is no cost 
for holding a stock, and the random outcome represents a change in the price of the 
stock. 

If we hold the stock (which currently can be sold at a price of $50), it might go up 
or down by a dollar, with probabilities of 0.3 and 0.2, respectively, or hold at the same 
price with a probability of 0.5. After observing the change in the price, we again have 
a chance to hold or sell the stock. If we continue holding, the stock might go up or 
down by a dollar, or stay the same. 

We can solve the problem of whether to hold or sell the stock initially by doing 
what is called "rolling back the decision tree." Figure 1.7(a) shows the tree after the 
first rollback. Here, we have taken the final random outcome and replaced it with the 
expected value, which gives us the result that we expect the price to go up by $0.10 if 
we hold the stock. We now have the option of holding or selling, which is a decision 
that we control. Since the price is likely to go up if we hold, we make this choice. 

In Figure 1.7(b), we now use the expected value of the second decision to give us 
what we will earn at the end of each random outcome resulting from the first decision. 



2 0 THE CHALLENGES OF LEARNING 

Hold^O«51.10 

/ w/p 0.3 

<$50.10 

$50.00 

AP = -$1 

H o l ^ O $ 4 9 1 0 

Sell\ ^X\ Selh^Q: $49.00 

£ ] $51.10 

* □ $50.10 

t]$49.K 

1.7(a) 1.7(b) 1.7(c) 

Figure 1.7 (a) Decision tree with second outcome replaced by expected value, (b) Decision 
tree with second decision replaced by best expected value, (c) Decision tree with first outcome 
replaced by expected value, producing a deterministic decision. 

We have the same three outcomes (up or down $1, or stay the same), but each outcome 
produces an expected return of $51.10, $50.10, or $49.10. Now we again have to 
find the expectation over these returns, which gives us the expected value of $50.20. 
Finally, we have to evaluate our original decision to hold or sell, and of course we are 
willing to hold for $50.20 rather than sell now for $50. 

1.6.2 Decision Tree for Offline Learning 

The previous example provided a quick illustration of a basic decision tree. A common 
decision problem is whether or not we should collect information to make a decision. 
For example, consider a bank that is considering whether it should grant a short-term 
credit loan of $100,000. The bank expects to make $10,000 if the loan is paid off on 
time. If the loan is defaulted, the bank loses the amount of the loan. 

From history, the bank knows that 95 percent of loans are repaid in full, while 5 
percent default. If the bank purchases the credit report, this information will allow 
the bank to classify the customer into one of three groups: 52 percent fall into the 
top A rating, 30 percent fall into the middle B rating, while 18 percent fall into the 
lower C rating with the highest risk of default. The company selling the credit report 
provides the joint distribution P(Credit, Default) that a customer will receive each 
credit rating, and whether it defaulted or not. This data are summarized in Table 1.3. 

We need to understand how the information from the credit report changes our 
belief about the probability of a default. For this, we use a simple application of 
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Table 1.3 The marginal probability of each credit rating, the joint probability of a 
credit rating and whether someone defaults on a loan, and the conditional probability of 
a default given a credit rating. 

Credit Rating 

A 
B 
C 

P(Credit) 

0.52 
0.30 
0.18 

P(Default) = 

P(Credit,Default) 

No 

0.51 
0.28 
0.16 

0.95 

Yes 

0.01 
0.02 
0.02 

0.05 

P(Default 

No 

0.981 
0.933 
0.889 

1 Credit) 

Yes 

0.019 
0.067 
0.111 

Bayes' theorem, which states 

P(Default | Credit) = P ^ ^ ^ ^ ^ ^ 

_ P(Credit, Default) 
P(Credit) ' 

Bayes' theorem allows us to start with our initial estimate of the probability of a 
default, P(Default), and then use the information "Credit" from the credit history 
and turn it into a posterior distribution P(Default | Credit). The results of this 
calculation are shown in the final two columns of Table 1.3. 

Using this information, we can construct a new decision tree, shown in Figure 1.8. 
Unlike our first decision tree in Figure 1.7, we now see that the decision to collect 
information changes the downstream probabilities. 

We repeat the exercise of rolling back the decision tree in Figure 1.9. Figure 1.9(a) 
shows the expected value of the decision to grant the loan given the information about 
the credit history. We see that if the grantee has an A or B credit rating, it makes sense 
to grant the loan, but not if the rating is C. Thus, the information from the credit report 
has the effect of changing the decision of whether or not to grant the loan. After we 
roll the tree back to the original decision of whether to purchase the credit report, we 
find that the credit report produces an expected value of $4,900, compared to $4,500 
that we would expect to receive without the credit report. This means that we would 
be willing to pay up to $400 for the credit report. 

1.6.3 Decision Tree for Online Learning 

Now consider a problem where we learn as we go. We use the setting of trying to 
identify the best hitter on a baseball team. The only way to collect information is 
to put the hitter into the lineup. Assume that we are evaluating hitters for the fourth 
position in the lineup, typically reserved for power hitters. Part of what we are trying 
to learn is how a hitter actually performs in game situations. 
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Check rating? Credit rating Give loan? Default? Return Prob 

.r $10,000 0.981 

■> -$100,000 0.019 

w $10,000 0.933 

-> -$100,000 0.067 

.r $10,000 0.889 

■v -$100,000 0.111 

•r $10,000 0.95 

> -$100,000 0.05 

Figure 1.8 The decision tree for the question of whether we should purchase a credit risk 
report. 

Assume that we have three candidates for the position. The information we have 
on each hitter from previous games is given in Table 1.4. If we choose player A, we 
have to balance the likelihood of getting a hit, and the value of the information we 
gain about his true hitting ability, since we will use the event of whether or not he 
gets a hit to update our assessment of his probability of getting a hit. We are going to 
again use Bayes' theorem to update our belief about the probability of getting a hit. To 
do this, we have to make some probabilistic assumptions that are not relevant to our 
discussion here; we defer until Chapter 2, Section 2.3.4, the discussion of the model 
that we use to calculate the updated probabilities. Fortunately, this model produces 

Table 1.4 History of hitting performance for three candidates. 

Player No. Hits No. At-Bats Average 

A 36 100 0.360 
B 1 3 0.333 
C 7 22 0.318 
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Do not 
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Figure 1.9 (a) Decision tree with final default replaced with expected value, (b) Decision tree 
with second decision replaced by best expected value, (c) Decision tree with the uncertainty 
of the credit risk report replaced with its expected value. 

some very intuitive updating equations. Let Hn be number of hits a player has made 
in n at-bats. Let jr7n+1 = 1 if a hitter gets a hit in his (n + l)st at-bat. Our prior 
probability of getting a hit after n at-bats is 

F[H' n + l l\Hn,n] = 
Hn 

n 
Once we observe Hn+1, it is possible to show that the posterior probability is 

P[ffn+2 = l | f l r n ,n,ffn + 1] = 
Hn + ff n+1 

71+ 1 

In other words, all we are doing is computing the batting average (hits over at-bats). 
In Chapter 2 we are going to put a lot more rigor behind this, but for now, we are 
going to take advantage of the simple, intuitive updating equations that this theory 
provides. 

Our challenge is to determine whether we should try player A, B, or C right now. 
At the moment, A has the best batting average of .360, based on a history of 36 hits 
out of 100 at-bats. Why would we try player B, whose average is only .333? We 
easily see that this statistic is based on only three at-bats, which would suggest that 
we have a lot of uncertainty in this average. 

We can study this formally by setting up the decision tree shown in Figure 1.10. 
For practical reasons, we can only study a problem that spans two at-bats. We show 
the current prior probability of a hit, or no hit, in the first at-bat. For the second at-bat, 
we show only the probability of getting a hit, to keep the figure from becoming too 
cluttered. 

Figure 1.11 shows the calculations as we roll back the tree. Figure 1.11 (c) shows the 
expected value of playing each hitter for exactly one more at-bat using the information 
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Choose 
hitter 

Hit? Choose 
hitter 

Hit? 

Figure 1.10 The decision tree for finding the best hitter. 

obtained from our first decision. It is important to emphasize that after the first 
decision, only one hitter has had an at-bat, so the batting averages only change for 
that hitter. Figure 1.11 (b) reflects our ability to choose what we think is the best hitter, 
and Figure 1.11(a) shows the expected value of each hitter before any at-bats have 
occurred. We use as our reward function the expected number of total hits over the 
two at-bats. So, if we choose batter A, the expected value is 

.720 = .360(1 + .366) + .640(0 + .356), 

where .360 is our prior belief about his probability of getting a hit; .366 is the expected 
number of hits in his second at-bat (the same as the probability of getting a hit) given 
that he got a hit in his first at-bat. If player A did not get a hit in his first at-bat, his 
updated probability of getting a hit, .356, is still higher than any other player. This 
means that if we have only one more at-bat, we would still pick player A even if he 
did not get a hit in his first at-bat. 

Although player A initially has the highest batting average, our analysis says that 
we should try player B for the first at-bat. Why is this? On further examination, we 
realize that it has a lot to do with the fact that player B has had only three at-bats. If 
this player gets a hit, our estimate of his probability of getting a hit jumps to 0.500, 
although it drops to .250 if he does not get a hit. If player A gets a hit, his batting 
average moves from .360 to .366, reflecting the weight of his much longer record. 
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, r D -360 

. 682 ' " ■ * □ 360 

.720 = 

.360(1+.366)+ 

.640(0+.356) 

O 740 

1.11(a) 1.11(b) 1.11(c) 

Figure 1.11 (a) Expected value of a hit in the second at-bat. (b) Value of best hitter after one 
at-bat. (c) Expected value of each hitter before first at-bat. 

This is our first hint that it can be useful to collect information about choices where 
there is the greatest uncertainty. 

1.6.4 Discussion 

These simple examples illustrate some of the issues that are fundamental to informa-
tion collection. First, we see that collecting information changes our beliefs about 
uncertain quantities. Second, when we change our beliefs, we change our decisions 
which produces an economic impact. From this analysis, we can compute the ex-
pected value of the information. 

In the credit risk example, the measurement decision (purchasing the credit risk 
report) was completely separate from the implementation decision (whether or not to 
give a loan). There are many problems where we learn from our actions. For example, 
we might grant a loan and then learn from this experience. This means giving a loan 
allows us to observe whether or not someone defaults on the loan, which might then 
change our behavior in the future. We can ignore the value of this information when 
making a decision, but one of the goals of this book is to use this value of information 
in our decisions. 

Most of the problems that we address in this book can be visualized as a decision 
tree. Decisions trees, however, grow very quickly with the number of decisions being 
made, the number of random outcomes that might occur, and the number of time 
periods. For example, the very simple decision tree that we used in Section 1.6.3 
to analyze which baseball player we should use grows quickly if we look more than 
two at-bats into the future. With three players to choose from, and only two possible 
outcomes, the tree grows by a factor of six for every at-bat we add to our planning 
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horizon. If we want to plan over the next 10 at-bats, our decision tree would have 
610 = 60,466,176 end points. And this is a tiny problem. 

Although decision trees are often impractical as a computational device, they are 
extremely useful as a conceptual mechanism for understanding sequential decision 
problems. 

1.7 WEBSITE AND DOWNLOADABLE SOFTWARE 

The book is supported by additional material at the website 

http://optimallearning.princeton.edu/ 

The website will provide additional readings, chapter notes and comments, sample 
applications (many drawn from the projects generated by students in the course Op-
timal Learning taught at Princeton University), and downloadable software. Most of 
the software is in the form of MATLAB modules that offer implementations of some 
of the algorithms. One module, the Optimal Learning Calculator, uses a spreadsheet 
front-end which talks to a series of Java-based modules which implement some of the 
algorithms. The spreadsheet offers an interactive environment which makes it possi-
ble to experiment with a variety of learning policies. You can solve a learning problem 
manually, or simulate any of a series of policies on problems. These problems can be 
randomly generated, or entered manually by hand. 

1.8 GOALS OF THIS BOOK 

There are a number of communities that address the general problem of collecting 
information. These communities span economics, computer science, statistics, and 
operations research (which in turn includes subcommunities such as decision analysis, 
applied probability, and simulation). One of our goals is to bring these communities 
together under a common vocabulary and notation. 

Given the diversity of problems where learning arises, it is not surprising that a 
multitude of techniques have evolved to address these problems. Our presentation 
reviews a number of these techniques, but considerable emphasis is put on a concept 
called the knowledge gradient which guides measurements based on the marginal 
value of a single measurement. The knowledge gradient is comparable to the gradient 
in classical optimization, but focuses on the value of information. The power of the 
knowledge gradient is that it is a simple concept that can be applied to a wide range of 
problems. In fact, this technique opens up new problems, and it allows us to consider 
learning in settings where it has previously not been considered. Our empirical work 
to date suggests that it is a surprisingly robust strategy, in that it is usually competitive 
with competing techniques, while often outperforming other methods without the 
need for tunable parameters. 
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The book is aimed at students and professionals with a basic course in statistics 
and a full course in probability. The presentation emphasizes concepts and practical 
tools over heavy mathematical development. 

PROBLEMS 
1.1 Pick a problem that involves sequential information and decision processes. 
Ideally, the problem is one of special interest to you. Give a short description of the 
problem in plain English. Then describe the following components listed below. In 
each case, a candidate answer is provided using the setting of finding a new compound 
for storing energy in a battery (this is a fairly complicated example - there are many 
settings which are much simpler). 

a) What decision are you making that determines the information you collect? 
[Example: Testing a particular molecule.] 

b) Precisely what information is being observed as a result of your choice? [Ex-
ample: The amount of energy stored per pound.] 

c) What decision are you going to make with this information? [Example: We 
will use this information to decide which type of battery is the most economical, 
which in turn will impact our decision of whether to use batteries, flywheels, 
or hydroelectric reservoirs as our major form of storage.] 

d) What is the economic impact of the decision? [Example: The information will 
allow the Department of Energy to determine if it should invest in rooftop solar 
panels, where batteries are needed to smooth out variations in solar energy, 
or more distant wind turbines, which can be used in conjunction with water 
reservoirs.] 

1.2 For each of the situations below, identify whether it is an online or offline 
learning problem. Then, identify the measurement decision (what is being measured), 
and how you evaluate the quality of the measurements (that is, what is the value of 
the information you are collecting). 

a) The adventurer Steve Fossett was lost somewhere in Nevada. The problem is 
to design a search process that might identify the location of the plane he was 
flying. 

b) You would like to find the best price for a downloadable song by adjusting the 
price. 

c) A bank evaluates loans based on a set of attributes determined from a loan 
application. Some loans are turned down, others are approved. For the loans 
that are approved, the bank can observe if the loan is repaid or defaults. The 
bank can then later use this data to correlate the default rate to the attributes of 
the loan. Since the bank is not able to observe defaults on loans which are not 



2 8 THE CHALLENGES OF LEARNING 

approved, it occasionally may decide to grant a loan which its policy suggests 
should be turned down, just to observe the information. 

d) A doctor administers drugs to control the blood pressure in a patient. The doctor 
will adjust both the type of medication and the dosage, observing the effect on 
the patient's blood pressure. 

1.3 In Section 1.6.2, we addressed the problem of whether a bank should request 
a credit report. Repeat the exercise of finding out whether the bank should purchase 
the credit report, and determine how much the bank would be willing to pay for the 
report. As before, assume a loan is for $100,000. If the loan is paid off, the bank 
makes $10,000. If the loan defaults, assume that the bank loses on average $30,000 
(since a portion of the loan would have been repaid). Assume that 85 percent of the 
loans are repaid. The bank has collected past statistics on credit reports which are 
expressed as the conditional probabilities in Table 1.5 below. So, 72 percent of the 
loans that did not default had a credit rating of A. 

Table 1.5 Data for exercise 1.3. 

P(Credit rating I Default) 

Default P(Credit) A B C 

No 0.85 0.72 0.24 0.04 
Yes 0.15 0.25 0.57 0.18 

1.4 In Table 1.3 for the credit risk problem, the probability P(Credit = C, 
Default = Yes) = 0.16 and P(Credit = C, Default = No) = 0.01. Change 
these probabilities to 0.17 and 0.01, respectively, and solve the decision tree in Figure 
1.9 again. How did this change in the data change the behavior of the system after 
reviewing the credit risk report? What is the new value of the information in the credit 
risk report? Given an intuitive explanation. 

1.5 Return to the decision tree in Section 1.6.3 where we are trying to decide which 
hitter to use. This decision tree has been implemented in the spreadsheet available 
on the book website at 

http://optimallearning.princeton.edu/exercises/BaseballTree31evels.xlsx 

Note that the decision tree considers three successive at-bats. 

■ The decision tree takes into account the information we gain from observing 
the outcome of the first at-bat (whether it be player A, B, or C). How would 
your answer have changed if we formulated the decision tree without taking 
advantage of the information gained from the first at-bat? 
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■ Use the spreadsheet to compute the value of using each of the three batters, 
while changing the batting statistics from player B from 1 for 3 to 2 for 6 to 3 
for 9 to 4 for 12 and finally 5 for 15. Draw a graph giving the value of choosing 
each of the three hitters (in the first at-bat) for all five sets of batting statistics. 
Explain intuitively why your choice of who to use for the first at-bat changes. 





CHAPTER 2 

ADAPTIVE LEARNING 

At the heart of any learning problem is a probabilistic statement of what we believe 
about parameters that characterize the behavior of our system. Most of our attention 
will focus on uncertainty about the performance of a choice (such as a person or 
technology), a design (such as policies for running a business) or a policy (such 
as rules for testing cargo for explosives or when to sell an asset). Our beliefs are 
influenced by observations that we make. 

There are two perspectives that we can take when forming a belief, known as 
the frequentist view and the Bayesian view. In the frequentist view, we begin with 
no knowledge at all about our parameters, and our beliefs are formed entirely by 
measurements that we make. Since measurements are inherently noisy, we can repeat 
a series of measurements and obtain different estimates of the parameters. If we 
repeat the measurements often enough, we can form a frequency distribution of any 
parameter that we estimate using the measurements. 

In the Bayesian view, we start with initial beliefs about parameters, known as 
the prior distribution, which is formed before we make any observations. After 
a measurement, we combine the prior distribution with a measurement to form a 
posterior distribution. This then becomes the next prior distribution. This distribution 
is our distribution of belief about the true values of a set of parameters, formed from 
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a combination of our initial belief and subsequent observations. By contrast, in the 
frequentist view, we form a probability distribution of estimates of parameters that 
reflect the variation in the observations. 

Below, we provide a brief illustration of how to form estimates using the frequen-
tist view. In the remainder of the volume, there is a bias toward the Bayesian view of 
knowledge since this tends to be the most natural for many learning situations. How-
ever, both views are important, and the choice of Bayesian or frequentist perspectives 
is generally determined by the characteristics of an individual problem. We do return 
to the frequentist view in Chapter 14. 

2.1 THE FREQUENTIST VIEW 

The frequentist view is arguably the approach that is most familiar to people with an 
introductory course in statistics. Assume we are trying to estimate the mean // of a 
random variable W which might be the performance of a device or policy. Let Wn 

be the nth sample observation. Also let 0n be our estimate of /x, and ( j 2 , n be our 
estimate of the variance of W. We know from elementary statistics that we can write 
6n and <j2'n using 

i n 

en = - Y w™, (2.i) 
n *—' 

ra=l i n 

Y^ (wm - en) a2'n = r-=-r 2^ (wm - ony. (2.2) 
ra=l 

The estimate 0n is a random variable (in the frequentist view) because it is computed 
from other random variables, namely Wl,W2,..., Wn. Imagine if we had 100 
people each choose a sample of n observations of W. We would obtain 100 different 
estimates of 0n , reflecting the variation in our observations of W. The best estimate 
of the variance of the estimator 6n is easily found to be 

(7 ' = —G ' . 
n 

Note that as n -> oo, <J2'n -> 0, but <j2'n —>► cr2, where a2 is the true variance of W. 
If a2 is known, there would be no need to compute a2,n and a2,n would be given as 
above with a2,n = a2. 

We can write these expressions recursively using 

0n = (1 - - ) 0n-1 + -Wn, (2.3) 
\ nj n 

We will often speak of our "state of knowledge," which captures what we know about 
the parameters we are trying to estimate. Given our observations, we would write our 
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state of knowledge as 

KJreq = (9n,a2'n,n). 

Equations (2.3) and (2.4) describe how our state of knowledge evolves over time. 
The state of knowledge (or belief state) is supposed to communicate a probability 

distribution as opposed to statistics such as mean and variance. When we are forming 
an average, we can apply the law of large numbers and assume that our estimate 8n is 
approximately normally distributed. This is true exactly if W is normally distributed, 
but it is generally a very good approximation even when W is described by other 
distributions. 

2.2 THE BAYESIAN VIEW 

The Bayesian perspective casts a different interpretation on the statistics we compute, 
which is particularly useful in the context of optimal learning. In the frequentist 
perspective, we do not start with any knowledge about the system before we have 
collected any data. It is easy to verify from equations (2.3) and (2.4) that we never 
use 0° or <72'0. 

By contrast, in the Bayesian perspective we assume that we begin with a prior 
distribution of belief about the unknown parameter \x. In other words, any number 
whose value we do not know is interpreted as a random variable, and the distribution 
of this random variable represents our belief about how likely \i is to take on certain 
values. So if /x is the true but unknown mean of W, we might say that while we 
do not know what this mean is, we think it is normally distributed around 8° with 
standard deviation a0. Thus, the true mean /x is treated as a random variable with a 
known mean and variance, but we are willing to adjust our estimates of the mean and 
variance as we collect additional information. If we add a distributional assumption 
such as the normal distribution, we would say that this is our initial distribution of 
belief, known generally as the Bayesian prior. 

The Bayesian perspective is well suited to information collection since it is often 
the case that we approach these problems with some sort of prior knowledge. For 
example, when we set a price for a product, we can draw on our past experience and 
sales figures from previous years. However, even more important is the conceptual 
framework that there exists a truth that we are trying to discover. Optimal learning 
can be viewed as the problem of trying to learn /i as efficiently as possible. 

We note a subtle change in notation from the frequentist perspective, where 0n 

was our statistic giving our estimate of //. In the Bayesian view, we let 0n be our 
estimate of the mean of the random variable fi after we have made n observations. 
It is important to remember that (i is a random variable whose distribution reflects 
our prior belief about fi. The parameter 0° is not a random variable. This is our 
initial estimate of the mean of our prior distribution. By contrast, #n, for n > 1, is 
a random variable for the same reason that 0n is random in the frequentist view: 6n 

is computed from a series of random observations W1, W2,..., Wn, and therefore 
the distribution of 0n reflects the distribution of all of our measurements. However, 
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in the Bayesian perspective we are primarily interested in the mean and variance of 

Below we first use some simple expressions from probability to illustrate the effect 
of collecting information. We then give the Bayesian version of (2.3) and (2.4) for 
the case of independent beliefs, where observations of one choice do not influence 
our beliefs about other choices. We follow this discussion by giving the updating 
equations for correlated beliefs, where an observation of [ix for alternative x tells us 
something about /JLX/ . We round out our presentation by touching on other important 
types of distributions. 

2.2.1 The Updating Equations for Independent Beliefs 

We begin by assuming (as we do through most of our presentation) that our random 
variable W is normally distributed. Let afy be the variance of W, which captures the 
noise in our ability to observe the true value. To simplify the algebra, we define the 
precision of W as 

PW = ± . 
Precision has an intuitive meaning: Smaller variance means that the observations will 
be closer to the unknown mean, that is, they will be more precise. Now let 6n be our 
estimate of the true mean \i after n observations, and let /?n be the precision of this 
estimate. That is, having already seen the values W1, W2,..., Wn, we believe that 
the mean of /x is 0n, and the variance of fi is 4^. We say that we are "at time n" 
when this happens; note that all quantities that become known at time n are indexed 
by the superscript n, so the observation WnJrl is not known until time n + 1. Higher 
precision means that we allow for less variation in the unknown quantity, that is, we 
are more sure that [i is equal to 6n. After observing VFn+1, the updated mean and 
precision of our estimate of \i is given by 

_ pn6n+fiWWn+l 

pn+1 = pn+/3W^ ( 2 6 ) 

Equation (2.5) can be written more compactly as 
0»+l = {prl+lyl^nen + ^WWn+ly ( 2 J ) 

There is another way of expressing the updating which provides insight into the 
structure of the flow of information. First define 

a2<n = Varn[6n+1] (2.8) 
= Varn[6n+1 - en], (2.9) 

where Varn[] = Var[-1 W1,..., Wn] denotes the variance of the argument given the 
information we have through n observations. For example, 

Varn[en] = 0 
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since, given the information after n observations, 6n is a number that we can compute 
deterministically from the prior history of observations. 

The parameter a2,n can be described as the variance of # n + 1 , given the information 
we have collected through iteration n, which means the only random variable is Wn+1. 
Equivalently, a2",n can be thought of as the change in the variance of 6n as a result 
of the observation of Wn+l. Equation (2.9) is an equivalent statement since, given 
the information collected up through iteration n, 6n is deterministic and is therefore 
a constant. We use equation (2.9) to offer the interpretation that <r2,n is the change 
in the variance of our estimate of the mean of fi. 

It is possible to write <72'n in different ways. For example, we can show that 

~2,n = a2,n_c r2,n+l ( 2 1 0 ) 

(<T2'n) 
= -, 9 / 9 ( 2 . H ) 

1 + a^/a2^ 
= (Pn)-1 -(Pn + pw)-\ (2.12) 

The proof of (2.10) is given in Section 2.5.1. Equations (2.11) and (2.12) come 
directly from (2.10) and (2.6), using either variances or precisions. 

Just as we let Vforn[-] be the variance given what we know after n measurements, 
let E n be the expectation given what we know after n measurements. That is, if 
W1,..., Wn are the first n measurements, we can write 

En0n+1 =E(9n+1\W\...,Wn) = 6n. 

We note in passing that E9n+1 refers to the expectation before we have made any 
measurements, which means W1,..., Wn are all random, as is Wn+l. By contrast, 
when we compute E n # n + 1 , W 1 , . . . , Wn are assumed fixed, and only Wn+1 is 
random. By the same token, E n + 1 # n + 1 = # n + 1 , where 9n+1 is some number which 
is fixed because we assume that we already know W 1 , . . . , W n + 1 . It is important 
to realize that when we write an expectation, we have to be explicit about what we 
are conditioning on. In practice, conditioning on history occurs implicitly when we 
collect a sequence of observations. In particular, if we have made n observations and 
have not yet made the (n + l)st observation, then W1,..., Wn is known and Vj/n+1 

is random. 
Using this property, we can write # n + 1 in a different way that brings out the role 

of dn. Assume that we have made n observations and let 

_ # n + 1 - en 

Zi = . 

We note that Z is a random variable only because we have not yet observed Wn+1. 
Normally we would index Z = Z n + 1 since it is a random variable that depends 
on W rn+1, but we are going to leave this indexing implicit. It is easy to see that 
EnZ = 0 and VarnZ =- 1. Also, since VTn+1 is normally distributed, then Z is 
normally distributed, which means Z ~ N(0,1). This means that we can write 

<9n+1 =0n + anZ. (2.13) 
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Equation (2.13) makes it clear how 6n evolves over the observations. It also reinforces 
the idea that an is the change in the variance due to a single observation. 

Equations (2.5) and (2.6) are the Bayesian counterparts of (2.3) and (2.4), although 
we have simplified the problem a bit by assuming that the variance of W is known. 
The state of knowledge in the Bayesian view (with normally distributed beliefs) is 
given by 

K%ayea = (en,n-
As we show below in Section 2.5.2, if our prior belief about p, is normally distributed 
with mean 9n and precision /?n, and if W is normally distributed, then our posterior 
belief after n + 1 observations is also normally distributed with mean 0 n + 1 and 
precision /? n + 1 . We often use the term Gaussian prior, when we want to say that our 
prior is normally distributed. We also allow ourselves a slight abuse of notation: we 
use M (//, a2) to mean a normal distribution with mean p and variance cr2, but we 
also use the notation M (/i, /3) when we want to emphasize the precision instead of 
the variance. 

Needless to say, it is especially convenient if the prior distribution and the posterior 
distribution are of the same basic type. When this is the case, we say that the prior and 
posterior are conjugate. This happens in a few special cases when the prior distribution 
and the distribution of W are chosen in a specific way. When this is the case, we 
say that the prior distribution is a conjugate family. The property that the posterior 
distribution is in the same family as the prior distribution is called conjugacy. The 
normal distribution is unusual in that the conjugate family is the same as the sampling 
family (the distribution of the measurement W is also normal). For this reason, 
this class of models is sometimes referred to as the "normal-normal" model (this 
phraseology becomes clearer below when we discuss other combinations). 

In some cases, we may impose conjugacy as an approximation. For example, it 
might be the case that the prior distribution on p is normal, but the distribution of 
the observation W is not normal (for example, it might be nonnegative). In this case, 
the posterior may not even have a convenient analytical form. But we might feel 
comfortable approximating the posterior as a normal distribution, in which case we 
would simply use (2.5)-(2.6) to update the mean and variance and then assume that 
the posterior distribution is normal. 

2.2.2 The Expected Value of Information 

The previous section described how we update the mean and variance (or precision) 
for a particular observation of W. It is useful to see what happens when we look 
at the expected change in the mean and variance when we average over all possible 
realizations. Let p be the unknown true value of some quantity. Then, /i is a random 
variable with (assumed) mean 8° and variance a2,0. Let W be a random observation 
of whatever we are measuring, from which we might update our estimate of the mean 
and variance. Note that 

EW = EE(W\fji)=Ep = 60. 
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We observe that 

E/x = 0°, 
Var(fjL) = a 2 ' 0 . 

Assume that we observe W = w. For example, we might assume that the travel 
time on a link has mean 0° = 22 minutes, but we observe an actual travel time 
of W = w = 27 minutes. Then, E(/i|W = w) would be the updated mean, and 
Var{n\ W = w) would be the updated variance. But now let's consider what happens 
on average to our estimates of the mean and variance when we consider all possible 
outcomes of our observation of W. 

Let EM/i be the expected value of// (over our density function for //), which is equal 
to 0°. Now let EM(/z| W) be the expected value of [i given a particular observation of 
W. EM(/i| W) is a random variable (since it depends on W), but we are interested in 
its expectation over all possible values of W, which we can write as Ev^E/x(/i|VF). 
We can compute this by taking expectations of equation (2.7), given what we know 
at iteration n (which means that only Wn+l is random). We start by observing that 

EM(/X|WO = e1 = ^1)-1(/3°en + pww), 

where /31 = /3° + f3w. We then take expectations of both sides over the random 
observation W to obtain 

E^(( /31)"1 (/?°0° + PWW)) 

(P1)-1 (f3°e° + (3WEW) 

^ 1 ) - 1 ( /3°0° + / 3 ^ 0 ) 

(/31)-1(/3° + /3w)fl° 

0°. 

This result seems to be saying that collecting an observation of W does not change 
our belief of the true mean \i. This is not the case. As we saw in the previous section, 
a particular observation of W will, in fact, change our belief about the mean of /i. But 
if we look at all possible realizations of W, before the observation occurs, on average 
our estimate of the mean does not change. 

This simple equation provides an insight into priors and learning. Imagine if 

E/i - E(E(//|W)) = 0° + a. 

That is, observing W will, on average, shift our belief about the true mean from 0° 
to 0° + a, where a is a constant which would have to be known before we do our 
measurement. If this were true (for a other than zero), then this would mean that our 
initial estimate 0° is not a true prior. That is, we could shift our prior by a so that it 
becomes an unbiased estimate of the mean. 

Ejy# = 
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Now consider what happens to the variance after a measurement. We use some 
basic relationships from probability to obtain 

Var(fi) = E(/i2) - (E(/i))2 (2.14) 
= E(/i2) - E[(E(/x|W))2) + E[(E(M|W))2) - (E(/i))2 (2.15) 
= E[(E(/,2|W)) - (E(/i|W))2] +E[(E(M |W))2] - (E[E(/i|W0D2(2.16) 
= E[tar(/i|W)] + VflrpE^IW)]. (2.17) 

Equation (2.14) is the definition of the variance. In (2.15), we add and subtract 
E[(E(//|PF))]2. In (2.16), we turn two expectations into conditional expectations, 
setting up the final (and classic) result given by equation (2.17). Our interest is 
primarily in equation (2.17). Above, we pointed out that E (E(/i| W)) = E/i. This is 
not the case with the variance, where equation (2.17) tells us that 

E[Var(/i|W0] = Var(fj) - Var[E(fi\W)]. (2.18) 

This means that the variance after a measurement will, on average, always be smaller 
than the original variance. Of course, it might be the case that Vfar[E(/x| W)] = 0. 
This would happen if W were an irrelevant measurement. For example, assume that 
fi is our estimate of the travel time on a path in a network, and W is an observation of 
the change in the S&P stock index yesterday. The S&P stock index does not tell us 
anything about the travel time on the path, which means that E(^| W) is a constant (in 
our example, it would be 0°). Clearly, Var(0°) = 0, since 0° is not a random variable 
(it is just a number). 

We collect observations one at a time. So, the above discussion continues to apply 
after we observe W1 , W2,..., Wn. Since the posterior mean 0n is a known, fixed 
quantity at time n, we can simply view it as a new prior. Our problem essentially 
restarts after each observation, just with different parameters for our distribution of 
belief. The advantage of recursive updating is that it allows us to turn a problem 
with a long-time horizon into a sequence of small problems - a concept that will also 
inform our solution techniques in later chapters. 

2.2.3 Updating for Correlated Normal Priors 

A particularly important problem class in optimal learning involves problems where 
there are multiple choices, where our beliefs about the choices are correlated. Some 
examples of correlated beliefs are as follows: 

■ We are interested in finding the price of a product that maximizes total revenue. 
We believe that the function R(p) that relates revenue to price is continuous. 
Assume that we set a price pn and observe revenue Rn+1 that is higher than 
we had expected. If we raise our estimate of the function R(p) at the price p n , 
our beliefs about the revenue at nearby prices should be higher. 

■ We choose five people for the starting lineup of our basketball team and observe 
total scoring for one period. We are trying to decide if this group of five people 
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is better than another lineup that includes three from the same group with two 
different people. If the scoring of these five people is higher than we had 
expected, we would probably raise our belief about the other group, since there 
are three people in common. 

■ A physician is trying to treat diabetes using a treatment of three drugs, where she 
observes the drop in blood sugar from a course of a particular treatment. If one 
treatment produces a better-than-expected response, this would also increase 
our belief of the response from other treatments that have one or two drugs in 
common. 

■ We are trying to find the highest concentration of a virus in the population. If the 
concentration of one group of people is higher than expected, our belief about 
other groups that are close (either geographically, or due to other relationships) 
would also be higher. 

Correlated beliefs are a particularly powerful device in optimal learning, allowing us 
to generalize the results of a single observation to other alternatives that we have not 
directly measured. 

Let 6™ be our belief about alternative x after n measurements. Now let 

Covn (fix ,fiy) — the covariance in our belief about [xx and \iy. 

We let E n be the covariance matrix, with element E™ — Covn(nx,iJLy). Just as we 
defined the precision /3™ to be the reciprocal of the variance, we are going to define 
the precision matrix Bn to be 

Bn = ^nyl^ 

Let ex be a column vector of zeroes with a 1 for element x, and as before we let M/n+1 

be the (scalar) observation when we decide to measure alternative x. We could label 
Wrn+1 as W™+1 to make the dependence on the alternative more explicit. For this 
discussion, we are going to use the notation that we choose to measure xn and the 
resulting observation is Wn+1. If we choose to measure xn, we can also interpret 
the observation as a column vector given by Wn+1exn. Keeping in mind that 0n is 
a column vector of our beliefs about the expectation of /x, the Bayesian equation for 
updating this vector in the presence of correlated beliefs is given by 

6P+1 = (Bn^1)-1(Bnen + PwWn+1exn), (2.19) 

where Bn+l is given by 

Bn+i = (Bn + 0wexn(exn)T). (2.20) 

Note that ex(ex)T is a matrix of zeroes with a one in row x, column x, whereas f3w 

is a scalar giving the precision of our measurement W. 
It is possible to perform these updates without having to deal with the inverse of 

the covariance matrix. This is done using a result known as the Sherman-Morrison 
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formula. If A is an invertible matrix (such as En) and u is a column vector (such as 
ex), the Sherman-Morrison formula is 

[A + uuT]-1=A-1 T A-l A^uvF A 
l + uTA-lu' 

(2.21) 

Let \ w = (Tyy = l//3w be the variance of our measurement W n + 1 . We are going 
to simplify our notation by assuming that our measurement variance is the same 
across all alternatives x, but if this is not the case, we can replace Xw with Ajf 
throughout. Using the Sherman-Morrison formula, and letting x = x n , we can 
rewrite the updating equations as 

jxrn+l fin 

en+l{x) = en+ [w , J ; x snex , 
-m+l (x) E n 

Xw + £» 
E ex[ex) E 

\W i yn 
A T" ^xx 

xx 
Ts^n 

(2.22) 

(2.23) 

where we express the dependence of 0n+l (x) and E n + 1 (x) on the alternative x which 
we have chosen to measure. 

To illustrate, assume that we have three alternatives with mean vector 

en = 
20 
16 
22 

Assume that A^ = 9 and that our covariance matrix E n is given by 

E n 
12 6 3 
6 7 4 
3 4 15 

Assume that we choose to measure x = 3 and observe VFn+1 = 
Applying equation (2.22), we update the means of our beliefs using 

W^1 19. 

<9n+1(3) = 
r 20" 

16 
L 22 
r 20 " 

16 
22 

19-22 j 
+ 9 + 15 

- 3 
+ 7TT 

24 

" 19.625 ' 
15.500 
20.125 

3 1 
4 

15 J 

12 6 3 
6 7 4 
3 4 15 

0 
0 
1 
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The update of the covariance matrix is computed using 

£"+ 1(3) -
12 6 3 
6 7 4 
3 4 15 

[ 12 6 3 
6 7 4 

L 3 4 15 

' 0 ' 
0 
1 

[0 0 1] 
"12 6 3 1 

6 7 4 
3 4 15 J 

9 + 15 

12 6 
6 7 
3 4 
12 6 
6 7 
3 4 
12 6 
6 7 
3 4 
11.625 
5.500 
1.125 

3 
4 
15 _ 
3 
4 
15 _ 
3 
4 
15 _ 

— -

— -

— 

5.500 
6.333 
1.5( )0 , 

1 

24 

1 

24 

3 ~ 
4 

_ 1 5 \ 
9 
12 
45 

' 0.375 
0.500 

_ 1.875 
1.125 " 
L.500 
5.62 >5 . 

[3 4 15] 

12 45 
16 60 
60 225 
0.500 1.875 " 
0.667 2.500 
2.500 9.375 j 

These calculations are fairly easy, which means we can execute them even if we have 
thousands of alternatives. But we will run up against the limits of computer memory if 
the number of alternatives is in the 105 range or more, which arises when we consider 
problems where an alternative x is itself a multidimensional vector. 

2.2.4 Bayesian Updating with an Uninformative Prior 

What if we truly have no prior information about a parameter before we start collecting 
information? We can use what is known in the Bayesian statistics literature as an 
uninformative prior, which is equivalent to a normal density with infinite variance 
(or zero precision). We note that it is not necessary for the prior to be a true density 
(which integrates to 1.0). For example, our prior on a random variable x can be 
f(x) = .01 for all —oo < x < oo, which of course integrates to infinity. This is 
known as an improper prior. 

When we look at the Bayesian updating equations in (2.5) and (2.6), we see that 
if we use ft0 = 0, then it simply means that we put no weight on the initial estimates. 
It is easy to see that if /3° = 0, then 01 = W1 (the first observation) and (31 = f3w 

(the precision of our measurement). 
The problem with uninformative priors is that we have no guidance at all regarding 

our first measurement x°. Fortunately, in most applications of information collection 
we start with some prior knowledge, but this is not always the case. 

Another strategy we can use if we have no prior information is known as empirical 
Bayes. Put simply, empirical Bayes requires that we collect a small initial sample 
and then use the results of this sample to form a "prior" (obviously, this "prior" is 
formed after we calculate our small sample, but before we do any guided learning). 
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Empirical Bayes sounds like a different name for frequentist (essentially our prior 
belief is created using a frequentist procedure), but the interpretation of what is random 
is different than with a frequentist model. The main distinguishing feature of the 
Bayesian approach is that it puts a number on the likelihood that the unknown value 
takes on a certain value or falls within a particular interval. 

2.3 UPDATING FOR NON-GAUSSIAN PRIORS 

So far, we have considered a setting where the random observations Wn are assumed 
to come from a normal distribution, whose mean is the true value that we wish to 
estimate. We have also used a normal distribution to describe our prior belief about the 
unknown value. These are two very different normal distributions, and it is important 
to distinguish between them. We use the term "sampling distribution" to refer to the 
distribution of the observations Wn. This distribution depends on certain unknown 
parameters, like the value \x in the preceding section. Although we do not know this 
distribution, we have a way of obtaining samples from it. 

By contrast, the term "prior distribution" describes the distribution of our own be-
liefs about the unknown parameters of the sampling distribution. Unlike the sampling 
distribution, which is determined by nature and unknown to us, the prior distribution 
is something that we construct to encode our own uncertainty about the truth. The 
prior distribution changes as we accumulate observations, reflecting the changes in 
our beliefs and the reduction in our uncertainty that result from collecting new infor-
mation. 

In the preceding section, both the sampling distribution and the prior distribution 
are assumed to be normal. This model is particularly intuitive and versatile because 
the unknown parameter in the sampling distribution is precisely the mean of the 
sampled observations. The mean 0° of the prior distribution can easily be interpreted 
as our "best guess" as to the unknown value, with a0 representing our uncertainty. 
Thus, whenever we have a rough idea of what the unknown mean might be, a normal 
distribution provides a very intuitive and understandable way to encode that idea in a 
mathematical model. 

Unfortunately, the normal-normal model (normal prior, normal samples) is not 
always suitable. For one thing, a normal sampling distribution assumes that our 
random observations can take on any real value. In reality, this might not be the 
case: For instance, we might be observing the waiting times of customers in a service 
center, where we are trying to estimate the service rate. Waiting times are always 
positive, so an exponential distribution would seem to be a more appropriate choice 
than a normal distribution. Even more troubling is a situation where our observations 
are obviously discrete. For instance, we might be observing the success or failure of 
a medical test, where the outcome is 0 or 1. A normal distribution is certainly a poor 
choice for a sampling model in this setting. 

The normal distribution is not always the best choice for a prior, either. For 
example, if we are observing exponentially distributed service times, the service rate 
is necessarily a strictly positive number. If we were to put a normal prior on the 
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service rate, then even with a positive prior mean, we would essentially be allowing 
the possibility that our exponential sampling distribution has a negative rate, which is 
impossible. Our uncertainty about the service rate should be encoded using a different 
kind of distribution that accounts for the fact that the rate must be positive. In the case 
of 0/1 observations (success or failure of a test), the sample mean is the probability of 
success. We know that this number must be between 0 and 1, so a normal distribution 
is again not the best choice to represent our beliefs. 

In this section, we discuss several other possible learning models where the sam-
pling and prior distributions are not normal. However, all the distributions that we 
consider will retain the conjugacy property, which means that the posterior distribu-
tion is of the same type as the prior distribution. 

2.3.1 The Gamma-Exponential Model 

The gamma-exponential model is one possible choice for a situation where the obser-
vations are continuous and positive. Suppose that we are trying to estimate the service 
time distribution at a car repair shop by combining our prior belief with observations 
of actual service times. We feel comfortable assuming that the sampling distribution 
governing the service times is exponential with parameter A. The service rate is the 
unknown value that we wish to estimate. 

Since A is itself unknown, we view it as a random variable. Clearly it is not 
appropriate to assume that it follows a normal distribution, since this would mean 
that we believe that A might be negative. Assume instead that A comes from a gamma 
distribution with parameters a and b. This distribution is given by 

f{x\a,b) = b{bx)a-ie^ 

where a is typically an integer (as it will be for our applications) and T(a) = (a — 1)!. 
Figure 2.1 illustrates several examples of the gamma density. If a = 1, the gamma is 
an exponential distribution. For a > 1, it takes on a skewed shape which approaches 
a normal distribution for larger values of a. 

The mean of this distribution is given by 

E(A) = ^ . (2.24) 

The quantities a0 and b° should be chosen by us in such a way so that (2.24) represents 
our initial beliefs about the service rate. 

We can let an/bn be our estimate of A after n observations, as before. After 
observing W n + 1 , we update our beliefs using the equations 

an+l = an + 1? (2.25) 
bn+l = bn + wn+l^ ( 2 2 6 ) 

Our belief about A is that it follows a gamma distribution with parameters a n + 1 and 
6n + 1 . Despite the complexity of the gamma density, the updating equations governing 
the way in which we learn about A are actually quite simple. 
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(a) Varying a (b) Varying b 

Figure 2.1 Illustration of a family of gamma distributions (a) varying a and (b) varying b. 

Equations (2.25) and (2.26) give a simple explanation of the gamma prior that 
makes the parameters an and bn seem a bit less mysterious. Essentially, bn is the 
sum of the first n service times (plus some prior constant 6°), whereas an is roughly 
equal to n (again, plus a prior constant). Thus, after n observations, our estimate of 
the service rate is given by 

E(\\W\...,Wn) = £ . 

This estimate is roughly the number of customers that were served per single unit of 
time. This is precisely the meaning of a service rate. 

While the gamma-exponential model (gamma prior, exponential sampling distri-
bution) is useful for modeling problems with continuous, positive observations, it is 
incapable of handling correlated beliefs. There is no easy multivariate analog for the 
gamma distribution, the way there is with the normal distribution, and thus no analog 
of the correlated normal updating equations (2.22) and (2.23). In a setting where there 
are multiple unknown values with heavy correlations, it is important to consider the 
tradeoff between (a) using a multivariate normal model to capture the correlations, 
and (b) using a different type of model to more accurately represent the individual 
distributions of the alternatives. 

2.3.2 The Gamma-Poisson Model 

The gamma-Poisson model is similar to the gamma-exponential model, but the ob-
servations are now assumed to be discrete. For example, we may now be interested 
in the arrival rate of customers to the car repair shop, rather than the service time. 
Suppose that the total number of customers N that visit the shop in a single day 
follows a Poisson distribution with rate A customers per day. Our observations are 
now the actual numbers of customers that arrive on different days. If the arrival rate 
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is A, the distribution of N follows the Poisson distribution given by 

\xe~x 

F[N = x) = ^ - , 
x\ 

where x = 0,1, The problem is that we do not know A, and we wish to estimate 
it from observations Nn where Nn is the observed number of arrivals on the nth day. 

Once again, we assume that A comes from a gamma distribution with parameters 
a0 and b°. The prior distribution changes after each observation according to the 
equations 

a n + l = a n + A r n + l ^ ( Z 2 ? ) 

6 n+l = 6n + 1 ( 2 > 2 8 ) 

After n observations, our estimate of the Poisson rate, 

E(\\W\...,W«) = ^ , 
is roughly equal to the average number of customers that arrived per day. This is in 
line with the meaning of the Poisson rate. 

The gamma-Poisson case highlights the distinction between the sampling distribu-
tion and the prior. While the individual Poisson observations are discrete, the Poisson 
rate itself can be any positive real number and thus can be modeled using the gamma 
distribution. 

2.3.3 The Pareto-Uniform Model 

Suppose that W is uniform on the interval [0, B], where B is unknown. Our problem 
is thus to estimate the maximum of a uniform distribution. This problem is the 
continuous version of a production estimation problem, in which we can observe 
a sequence of serial numbers, and the goal is to guess the highest serial number 
produced. We can also use this model to estimate the maximum possible demand for 
a product or other extreme values. 

We assume that B comes from a Pareto distribution with parameters b > 0 and 
a > 1. The density of this distribution is given by 

J v ' ' J \ 0 otherwise otherwise. 

Thus, our prior estimate of B using priors a — a0 and b = b° is given by 

a°b° 
E(B) = 

a' : ° - l ' 

The parameter b° estimates the ^o^-quantile of the uniform distribution, and a0 

gives us the multiplier used to obtain the estimate of the maximum. 
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Although this model looks somewhat peculiar, it also has the conjugacy property. 
Our beliefs continue to have a Pareto distribution as we make observations, and the 
parameters of the distribution evolve according to the equations 

bn+l = max(6 n ,W n + 1 ) , (2.29) 
a n + i = a n + 1 ( 2 3 0 ) 

Thus, bn is roughly the maximum of the first n uniform observations. Our beliefs tell 
us that the true maximum of the distribution must be larger than bn. However, if we 
have made many observations, it is likely that bn is fairly close to the maximum. The 
degree of this "closeness" is represented by an. 

2.3.4 Models for Learning Probabilities* 

In many problems, our objective is to learn the probability that a certain event will 
occur, rather than the economic value of the event. For example, in a medical setting, 
our observations might simply be whether or not a certain medical treatment is suc-
cessful. Such an observation can be modeled as a Bernoulli random variable, which 
is equal to 1 (success) with probability p, and 0 (failure) with probability 1 — p. The 
success probability p is the unknown true value in this case. 

We assume that p comes from a beta distribution with parameters a and (3. Recall 
that the beta density is given by 

1 0 otherwise. 

As before, T(y) = y\ when y is integer. In this setting, a and /? are always integer. 
Figure 2.2 illustrates the beta distribution for different values of a and ft. 

Our prior estimate of p using a = a0 and f3 = /3° is given by 

E < " = ^ ' <2-3 i ) 

Thus, a0 and /3° are weights that, when normalized, give us the probabilities of 
success and failure, respectively. If a0 is large relative to /3°, this means that we 
believe success to be more likely than failure. 

A common trait of all the learning models we have discussed thus far is that, while 
the prior or sampling distributions can have fairly complicated densities, the resulting 
updating equations are simple and often have an intuitive meaning. This is also the 
case for the beta-Bernoulli model. The conjugacy property holds, and the parameters 
evolve according to the equations 

a n + l = an + wn+l^ ( 2 3 2 ) 

/T+1 = ^ n + ( l - ^ n + 1 ) , (2.33) 

where the observations Wn are 1 or 0, indicating a success or a failure. We see that 
the parameters an and f3n roughly keep track of the number of successes and failures 
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Figure 2.2 Illustration of a family of beta distributions. 

in n observations. For instance, the parameter an is the number of successes in n 
observations, plus a prior constant a0. This prior constant serves as a scaling factor 
of sorts. To see the importance of this scaling, consider the following three scenarios: 

Scenario 1: a0 = /3° = 0.1 
Scenario 2: a0 = p° = 1 
Scenario 3: a0 = p° = 10 

In each scenario, our estimate of p is 1/2, because the prior constants a0 and /3° 
are equal. However, suppose now that W1 — 1 in all three cases, and consider how 
our beliefs change: 

Scenario 1: a1 = 1.1, ^ =0 .1 , EfplVF1) =0.916, 
Scenario 2: a1 = 2,/31 = l, E (p| W1) = 0.666, 
Scenario 3: a0 = 11,0° = 10, E (p| V^1) =0.524. 

In the first scenario, observing a single success leads us to greatly increase our 
estimate of the success probability. In the other two scenarios, we also increase our 
estimate of p, but by a much smaller amount. Thus, the prior values of a 0 and (3° can 
be viewed as a measure of our confidence in our estimate of p. High values of a0 and 
(3° show that we are very confident in our prior estimate, and hence this estimate is 
not likely to change by very much. Low values of a0 and 0° show that we have little 
prior knowledge about p, and our prior estimate can easily be changed by only a few 
observations. 

The beta-Bernoulli model can be easily generalized to a multivariate setting. Sup-
pose that, instead of a simple 0/1 value, each observation can be classified as belonging 
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to one of K different categories. For example, instead of merely measuring the suc-
cess or failure of a medical treatment, we also consider cases where the treatment 
is generally effective, but causes certain side effects. This result should be viewed 
differently from either total failure or unqualified success. Consequently, we now 
have more than two possible outcomes. 

We model our observations as individual trials from a multinomial distribution with 
K categories. The probability that an observation belongs to category k = 1,..., K 
is P (Wn = k) = pk, with each pk £ [0,1] and Ylk=i Pk — 1- The unknown true 
values are now the probabilities pk. Let us use p = (pi,..., px) to denote the vector 
containing all these probabilities. 

Our prior is the multivariate generalization of the beta distribution, called the 
Dirichlet distribution. This distribution has a vector of parameters a = (c*i,..., o^)? 
with one parameter for each category, satisfying otk > 0 for all k. The Dirichlet 
density is given by 

/ ( * ) = { i t ^ n ^ r - 1 i f * * > 0 f o r a l l f c a n d E ^ = l , ( 2 3 4 ) 

[ 0 otherwise. 

Essentially, the Dirichlet density is a probability distribution for the probability that 
an observation belongs in a particular category. The density can only be nonzero 
on the set of points x (the probabilities) in a fc-dimensional space such that every 
component of x is positive, and the sum of the components is 1 (since the sum of 
the probabilities of being in each category has to sum to 1). For example, in two 
dimensions, this set is the part of the line x\ + X2 = 1 that lies in the non-negative 
quadrant. 

By computing the marginal densities of (2.34), it can be shown that our estimate 
of the probability of observing an outcome in category k given a prior a = a0 is 

E(p*) = 
a? + ... + < 

a straightforward generalization of (2.31). Just as with the beta-Bernoulli model, the 
prior values a£ represent the weight that we want to assign to the kth category. Large 
values of a% relative to a°k, indicate that we are more likely to observe category k 
than category kf. Our earlier discussion of scaling applies here as well. 

To update our beliefs, we apply the equation 
n + 1 = / a% + 1 i f ^ n + 1 belongs to category k, 
k ~ \ an otherwise. 

We can write this more concisely if we model W as taking values of the form e&, 
where e^ is a if-vector of zeroes, with only the kth component equal to 1. Then, the 
probability mass function of W is given by P (W = e&) = pk, and (2.35) can be 
rewritten as 

an+l = a n + r + l i ( 2 3 6 ) 

It is important to remember that (2.36) is a vector equation, where only one component 
of VFn+1 is equal to 1, and the other components are equal to zero. Simply put, if 
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observation n + 1 belongs to category k, we increment oQ by 1 and leave the other 
components of an unchanged. 

2.3.5 Learning an Unknown Variance* 

Our last learning model takes us back to the basic setting of one-dimensional Gaus-
sian priors from Section 2.2.1. As before, we assume that the observation W ~ 
A/"(/x, f3w), where f3w = l/cr^y is the precision. However, we will now suppose that 
both the true mean ji and the precision /3W are unknown. We will have to learn both 
of these quantities at the same time. 

It is easy to imagine applications where (3W is unknown. In fact, the precision 
of an observation is often more difficult to estimate than the mean. For example, 
in finance, the return of a stock can be directly observed from market data, but the 
volatility has to be indirectly inferred from the returns. We often assume that fiw is 
known because it makes our model cleaner, but even then, in practice the value that 
we plug in for this quantity will be some sort of statistical estimate. 

Because the mean and precision are both estimated using the same data, our 
beliefs about these two quantities are correlated. We create a joint prior distribu-
tion on (//, j3w) in the following way. First, the marginal distribution of f3w is 
Gamma(a, 6), where a, b > 0 are prior parameters of our choosing. Next, given that 
pw _ r^ m e con(iitional distribution of /i is Af(0, rr), where —oo < 6 < oo and 
r > 0 are also prior parameters. Note that rr denotes the conditional precision of //, 
not the conditional variance. We can write the joint density of (//, /3W) as 

/ ( s , r | ^ T , a , & ) - v _ _ _ r r ( f l ) e 

This is widely known as a "normal-gamma" distribution. It is closely related to 
Student's ^-distribution (often simply called the ^-distribution), used in statistics to 
estimate the mean of a sample under unknown variance. In fact, if (/z, j3w) is normal-
gamma with parameters 9,r,a and 6, the marginal distribution of /LL can be connected 
back to the t distribution. The random variable y ^ f (/i — 0) follows the standard t 
distribution with 2a degrees of freedom, analogous to expressing a Gaussian random 
variable in terms of the standard Gaussian distribution. 

The estimates of the unknown quantities that we obtain from the normal-gamma 
distribution are given by 

b 
The parameter r only affects the amount of uncertainty in our beliefs, with 

Recall that r affects the precision, so lower r leads to more uncertainty and higher 
prior variance. 

Like the other distributions considered in this chapter, the normal-gamma prior is 
conjugate when combined with normal observations. Suppose that (0n, r n , an, bn) 
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represent our beliefs after n observations, and we make an observation WnJrl ~ 
A/"(/x, /3W). Then, the posterior distribution of (//, f3w) is normal-gamma with 
parameters 

0n^ rnen + w^1 
yrt-ri. 

.n+1 _ 

,n+l _ 

> n + 1 = 

r n + 1 

r n + l, 

a» + J, 
n (iyn+1 _ an)2 

bn H - —. 
2 ( r " + l) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

The equations are more complicated than their analogs in Section 2.2.1. However, 
(2.37) is actually a straightforward generalization of (2.5), replacing the precisions /3n 

and (3W from the known-variance model by scale factors, r n for the prior precision 
and 1 for the observation. In this way, we can see that the parameter rn is roughly 
equal to n, plus a prior constant. 

Later on, we will use the normal-gamma model in a setting where, instead of 
collecting one observation at a time, we can obtain a batch of k observations si-
multaneously. In this case, we can easily update our beliefs by calculating (2.37)-
(2.40) k times for the individual observations Wn+1,..., Wn+k. It is instructive, 
however, to look at the equivalent "batch version" of the updating equations. Let 
Wn,k = \ Yli=i Wn+l be the average of our k observations. Then, the posterior 
distribution of (/x, (lw) is normal-gamma with parameters 

(2.41) 

(2.42) 

(2.43) 

1 A 9 Tnh (Wri,k _ nn\2 

2 ^ v J 2 (rn + k) 

The differences between (2.37)-(2.40) and (2.41)-(2.44) are mostly straightforward. 
For example, in (2.41), the scale factor of k observations is simply k times the scale 
factor of a single observation. Notice, however, that (2.44) now involves a sum of 
squared errors (Wn+l — Wn,h) for i = 1,..., k. 

This sum of squares will be automatically computed if we apply (2.40) k times 
in a row, much like the recursive expression in (2.4) computes the sum of squares in 
(2.2). In this way, we see that the frequentist and Bayesian models are estimating the 
variance in roughly the same way. The Bayesian model simply adds a correction to 
the frequentist estimate in the form of the last term in (2.40), which uses the prior 
information 9n and r n . Larger values of r n correspond to a more precise prior and 
will place more weight on this term. 

nn+k 

Tn+k 

an+k 

= 

= 

= 

rn6n + kWn>k 

Tn + k 
rn + fc, 

n k 

a + 2 ' 
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The Bayesian model allows us to learn the unknown variance from a single ob-
servation, whereas the frequentist model requires at least two. Essentially, the prior 
stands in for the missing "first" observation. The difference is mostly cosmetic: In 
practice, the prior is frequently constructed using old or preliminary observations. 
The true difference between the frequentist and Bayesian philosophies is not in the 
updating equations, but in the philosophical interpretation of /i as an "unknown, but 
fixed, number" (frequentist) or a "random variable" (Bayesian). 

2.4 MONTE CARLO SIMULATION 

There are many settings where we need to take a sample realization of a random vari-
able, a process known widely as Monte Carlo simulation. There are many good books 
on this subject. This section provides only a brief introduction to some elementary 
methods for generating samples of a random variable. 

All computer languages include a utility for generating a random number that is 
uniformly distributed between 0 and 1. For example, in Microsoft Excel, this function 
is called "RANDO ", and we can generate a random number from this function by 
entering "=RAND() " in a cell. 

We can use this simple function to generate random variables with virtually any 
distribution. Let U be a random variable that is uniformly distributed between 0 and 
1. If we want a random variable that is uniformly distributed between a and 6, we 
first compute U and then calculate 

X = a+(b-a)U. 
It is fairly easy to generate random variables with general distributions if we can 

compute the inverse cumulative distribution function. Let F(x) = P[X < x] be the 
cdf of a random variable X. If we have a way of generating a sample realization of 
X with the cumulative distribution F(x), then if we let Y = F(X) (where X is a 
realization of our random variable), then it is a simple probability exercise to show 
that Y is uniformly distributed between 0 and 1. Now assume that we can find the 
inverse of the cumulative distribution function, which we represent as F~x{u) for a 
value 0 < tz < 1. If f/is a random variable that is uniformly distributed between 0 
and 1, then if we compute X using 

X = Fx\U), 
we can show that X has the cumulative distribution F(x). 

For example, consider the case of an exponential density function Xe~Xx with 
cumulative distribution function 1 — e~Xx. Setting U = 1 — e~Xx and solving for x 
gives 

X = -\\n(l-U). 
A 

Since 1 — U is also uniformly distributed between 0 and 1, we can use 

X = -\HU). 
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F[X£x] 

U(a,b) 
(a) Generating uniform random variables. 

P[X£x] 

*»x 
Fx(x) = Xe-Xx 

(b) Generating exponentially-distributed random variables. 

Figure 2.3 Generating (a) uniformly and (b) exponentially distributed random variables using 
the inverse cumulative distribution method. 

Figure 2.3 demonstrates how we can use a random variable that is uniformly 
distributed between 0 and 1 to create a random variable that is uniformly distributed 
between a and b (in Figure 2.3a), and a random variable that has an exponential 
distribution (in Figure 2.3b). 

We can use this method to compute random variables with a normal distribution. 
Excel and MATLAB, for example, have a function called N0RMINV(p, /i, cr), where 
p is a probability and \x is the mean of a normally distributed random variable with 
standard deviation a. Writing 

x = N0RMINV(p, //, a) 

in MATLAB (in Excel, you would enter " = N0RMINV(p, /z, cr)" in a cell) generates 
the value of a normally distributed random variable X such that P(X < x) = p. 
To generate a random variable that is normally distributed with mean [i and standard 
deviation cr, simply generate a uniform random variable U and them compute 

z = N0RMINV(J7,/x,cr). 
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Now imagine that we want to generate a Monte Carlo sample for a vector of 
correlated random variables. Let /i be a M-dimensional vector of means, and let 
E be a M x M covariance matrix. We would like to find a sample realization 
u rsj JV(/i, £) . This can be done very simply. Let C be the "square root" of E which 
is computed using Cholesky decomposition. In MATLAB, this is done using 

C = chol(E). 

The result is an upper triangular matrix C, which is sometimes called the square root 
of E because 

E = CCT. 

Let Z be an M-dimensional vector of independent, standard normal variables gener-
ated as we just described above. Given Z, we can compute a sample realization of \x 
using 

u = /i + CZ. 

The vector u satisfies Eu = 0. To find the variance, we use 

Cov(u) = Var(u + CZ) = CCov(Z)CT. 

Since the elements of the vector Z are independent with variance 1, Cov(Z) = I 
(the identity matrix), which means Cov(u) = CCT = E. 

To illustrate, assume our vector of means is given by 

M = 
10 
3 
7 

our covariance matrix is given by 

9 
3.31 

0.1648 

3.31 
9 

3.3109 

0.1648 
3.3109 
9 

3 1.1033 0.0549 
0 3 1.1651 
0 0 3 

The Cholesky decomposition computed by MATLAB using C = chol(E) is 

C-

Imagine that we generate a vector Z of independent standard normal deviates 

1.1 
Z= I -0.57 

0.98 
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Using this set of sample realizations of Z, a sample realization u would be 

10.7249 
2.4318 
7.9400 

Using computers to generate random numbers has proven to be an exceptionally 
powerful tool in the analysis of stochastic systems. Not surprisingly, then, the field 
has matured into a rich and deep area of study. This presentation is little more than 
a hint at the many tools available to help with the process of generating random 
numbers. 

2.5 WHY DOES IT WORK?* 

2.5.1 Derivation of <x 

An important quantity in optimal learning is the variance a™ of #™+1 given what we 
know after n measurements. 
Proposition 2.5.1 The variance of6n+l, defined as 

on = Varn[6n+1] 
= Varn[6n+1 - 9% 

isgivenby{d^)2 = {^)2-{cj^1)2. 
Proof: Keep in mind that after n measurements, 0™ is deterministic. We are dealing 
with two random variables: (a) the truth jix and (b) the estimate #™+1 after we have 
made n measurements (the (n + l)st measurement, W n + 1 , is unknown). We begin 
with the relation 

(6£+1 - Mx) - ( ^ + 1 - 6n
x) + {9n

x - nx). (2.45) 

Recall that « + 1 ) 2 = E" + 1 [(0£+1 - /xx)2]. Squaring both sides of (2.45) and 
taking the conditional expectation En + 1(-) = E(- |W 1 , . . . , Wn+1) gives 

{an
x
+lf = E" + 1 [{6n

x - fix)2] + 2E"+ 1 {{6n
x - / i x ) ( ^ + 1 - 9n

x)} 
+ E " + 1 [ ( 0 £ + 1 - 0 2 ) 2 ] 

= E " + 1 [((£ - n x f ] + 2{en
x - e:+1)(ez+1 - en

x) + {en
x
+1 - en

xf 
= E" + 1 [ (^ -^) 2 ] - (^ + 1 -^ ) 2 . 

Keep in mind that E n + 1 0£ + 1 = 9^+1 and E™+V* = ^"+1- We then observe that 
while 0X

+1 is random given the first n observations, ax
+1 is deterministic, because 

<7™+1 does not depend on W™+1 - it only depends on our decision of what to measure 
xn. Using this property, we can take the expectation given W1,..., Wn to obtain 

E " « + 1 ) 2 = {<+1f = E" [E"+ 1 [{6n
x - /ix)2]] - E" [ ( ^ + 1 - 9n

xf] 
= Enl{en

x-nxf]-w>[(on
x
+1-en

x)2} 
= W)2 - (O2-
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□ 
2.5.2 Derivation of Bayesian Updating Equations for Independent 

Beliefs 

Bayesian analysis begins with a simple formula that everyone learns in their first 
probability course. Given the events A and B, the basic properties of conditional 
probability imply 

P(A,B) = P(A\B)P(B) = P(B\A)P(A), 

which implies 

P(A\B)P(B) 
P(B\A) P(A) 

This expression is famously known as Bayes' theorem. In a learning setting, the 
event A refers to a measurement (or some type of new information), while B refers 
to the event that a parameter (say, the mean of a distribution) takes on a particular 
value. P(B) refers to our initial (or prior) distribution of belief about the unknown 
parameter before we make a measurement, and P(B\A) is the distribution of belief 
about the parameter after the measurement. For this reason, P{B\A) is known as the 
posterior distribution. 

We can apply the same idea for continuous variables. We replace B with the event 
that /i = u (to be more precise, we replace B with the event that u < n < u + du), 
and A with the event that we observed W = w. Let g(u) be our prior distribution of 
belief about the mean //, and let g(u\w) be the posterior distribution of belief about // 
given that we observed W = w. We then let f(w\u) be the distribution of the random 
variable W if fi = u. We can now write our posterior g(u\w), which is the density 
of /i given that we observe W = w, as 

/ . x f(MuMu) 
g(u\w) = fW ' 

where f(w) is the unconditional density of the random variable W, which we compute 
using 

- / 
/ M = / f(w\u)9(u)' 

Ju 
Equation (2.46) gives us the density of /i given that we have observed W = w. 

We illustrate these calculations by assuming that our prior g(u) follows the normal 
distribution with mean 8° and variance <r2'0, given by 

i / i(u-ey 
S W = K- n e x p - -y/too° *\ 2 a2.o 
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We further assume that the observation W is also normally distributed with mean // 
and variance a2, which is sometimes referred to as the measurement or observation 
error. The conditional distribution f(w\u) is 

f(w\u) 1 
27TCT 

exp 
1 (w - u)2 

2 a2 

We can compute f(w) from f(w\u) and g(u), but it is only really necessary to find 
the density g(u\w) up to a normalization constant (f(w) is part of this normalization 
constant). For this reason, we can write 

g(u\w) oc f(w\u)g(u). 

Using this reasoning, we can drop coefficients such as J- 0 

(2.46) 

and write 

exp( - -g(u\w) oc 

oc exp 

After some algebra, we find that 

g(u\w) oc exp 

where 

e1 = 

P = 

1 (w — v)' 
e x p l - ^ 

i (« - e0)2 

r 2,0 

\({w-uf (u-e°) 
+ T-2,0 

(Pww + P°0°) 
a+ (3° 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

The next step is to find the normalization constant (call it K), which we do by solving 

K I g(u\w)du = 1. 
Ju 

We could find the normalization constant by solving the integral and picking K so 
that g{u\w) integrates to 1, but there is an easier way. What we are going to do is look 
around for a known probability density function with the same structure as (2.48) 
and then simply use its normalization constant. It is fairly easy to see that (2.48) 
corresponds to a normal distribution, which means that the normalization constant is 

K = V 2n' Tn^s means that our posterior density is given by 

g(u\w) = ^eXp(~P1{u-01)2 (2.51) 

From equation (2.51), we see that the posterior density g(u\w) is also normally 
distributed with mean 91 given by (2.49), and precision /31 given by (2.50) (it is 
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only now that we see that our choice of notation 91 and /31 in equations (2.49) and 
(2.50) was not an accident). This means that as long as we are willing to stay with 
our assumption of normality, then we need only to carry the mean and variance (or 
precision). The implication is that we can write our knowledge state as Kn = (8n, /3n) 
(or Kn = (0n, <r2'n)) and that (2.49)-(2.50) is our knowledge transition function. 

Our derivation above was conducted in the context of the normal distribution, but 
we followed certain steps that can be applied to other distributions. These include: 

1) We have to be given the prior g{u) and the conditional measurement density 
f(w\u). 

2) We use equation (2.46) to find the posterior up to the constant of proportionality, 
as we did in (2.47) for the normal distribution. 

3) We then manipulate the result in the hope of finding a posterior distribution, rec-
ognizing that we can discard terms that do not depend on u (these are absorbed 
into the normalization constant). If we are lucky, we will find that we have a 
conjugate family, and that we end up with the same class of distribution we 
started with for the prior. Otherwise, we are looking for a familiar distribution 
so that we do not have to compute the normalization constant ourselves. 

4) We identify the transition equations that relate the parameters of the posterior to 
the parameters of the prior and the measurement distribution, as we did with 
equations (2.49) and (2.50). 

2.6 BIBLIOGRAPHIC NOTES 

Sections 2.1-2.2 - There are numerous books on both frequentist and Bayesian 
statistics. An excellent reference for frequentist statistics is Hastie et al. (2009), 
which is available as of this writing as a free download in PDF form. An 
excellent reference for Bayesian statistics is Gelman et al. (2004). Another 
classical reference, with a focus on using Bayesian statistics to solve decision 
problems, is DeGroot (1970). 

Section 2.3 - See Gelman et al. (2004) for a thorough treatment of Bayesian models. 

Section 2.4 - There are a number of outstanding references on Monte Carlo simu-
lation, including Banks et al. (1996), Roberts & Casella (2004), Glasserman 
(2004) and Rubinstein & Kroese (2008), to name a few. 

PROBLEMS 
2.1 In a spreadsheet, implement both the batch and recursive formulas for the 
frequentist estimates mean and variance of a set of random numbers (just use RAND () 
to produce random numbers between 0 and 1). Use a sequence of 20 random numbers. 
Note that Excel has functions to produce the batch estimates (AVERAGE and VAR) 
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of the mean and variance. Compare your results to Bayesian estimates of the mean 
and variance, assuming that your prior is a mean of .5 and a variance of .2 (the prior 
estimate of the mean is correct, while the variance is incorrect). 

2.2 Download the spreadsheet from the book website: 

http://optimallearning.princeton.edu/exercises/FiveAlternative.xls 

On day 0, the spreadsheet shows your initial estimate of the travel time on each path. 
In the column painted yellow, enter the path that you wish to follow the next day. 
You will see an observed time, and in the column to the right, we record the time you 
experience the next day when you follow your chosen path. To the right there is a 
work area where you can code your own calculations. Assume all random variables 
are normally distributed. 

a) In the work area, use the Bayesian updating formulas to compute updated 
estimates of the mean and variance. Assume that the standard deviation of the 
observed travel time for any path is 5 minutes. 

b) Using your estimates from part a, simulate a policy where you always choose 
the path that you thought was fastest. Record your total travel time, along with 
the path that you thought was best. 

c) You should find that you are getting stuck on one path and that you do not 
"discover" the best path (you can quickly find that this is path 1). Suggest a 
policy that could be applied to any dataset (there cannot be any hint that you 
are using your knowledge of the best path). Report your total travel time and 
the final path you choose. 

2.3 You are trying to determine the distribution of how much people weigh in a 
population. Your prior distribution of belief about the mean fi is that it is normally 
distributed with mean 180 and standard deviation 40. You then observe the weights 
of n students drawn from this population. The average weight in the sample is y = 
150 pounds. Assume that the weights are normally distributed with unknown mean 
fi and a known standard deviation of 20 pounds. 

a) Give your posterior distribution for \i given the sample you have observed. 
Note that your answer will be a function of n. 

b) A new observation is made and has a weight of y pounds. Give the posterior 
distribution for y (again, your answer will be a function of n). 

c) Give a 95 percent posterior confidence intervals for /x and y if n = 10. 

d) Repeat part c with n = 100. 

2.4 Show that, for a fixed k > 1, equation (2.44) is equivalent to applying (2.40) 
k times in a row. Use the equivalence of (2.2) and (2.4). Now implement both the 



PROBLEMS 5 9 

recursive and batch formulas in a spreadsheet and verify that they produce the same 
numbers. 

2.5 In this problem, you will derive the Bayesian updating equations (2.25) and 
(2.26) for the gamma-exponential model. Suppose that W is a continuous random 
variable that follows an exponential distribution with parameter A. The parameter A 
is also random, reflecting our distribution of belief. We say that A has a gamma prior 
by writing A ~ Gamma(a,b), meaning that our distribution of belief is gamma. 
Each time we observe W, we use this observation to update our belief about the true 
distribution of W, reflecting our uncertainty about A. 

a) Write down the prior density f(u). What does u refer to? 

b) Write down the conditional density g(w\u) of the observation. 

c) Write down the unconditional density g(w) of the observation. (Hint: Start 
with g(w\u) and take an expectation over the prior. Remember that the gamma 
function has the property that T(a) = (a — l)T(a — 1).) 

d) Apply Bayes' rule to get f(u\w), the posterior density after the observation. 
What distribution does this density correspond to? How does this verify equa-
tions (2.25) and (2.26)? 

2.6 In this problem, you will see how the updating equations you derived in exercise 
2.5 works in practice. Suppose that the customer service time at a certain store is 
exponentially distributed, and we are using the gamma-exponential model to learn 
the service rate as we observe the service times of individual customers. 

a) Let U be a random variable that is uniformly distributed between 0 and 1. 
Let R = — j log U. Show that R follows an exponential distribution with 
parameter A. This gives us a way to create samples from any exponential 
distribution by transforming samples from a uniform distribution (see section 
2.4). 

b) In a spreadsheet, use the above method to simulate 10 observations from an 
exponential distribution with parameter A = 3. Now suppose that we do not 
know that A has this value, and model our beliefs using a gamma prior with 
parameters a0 = 1 and (3° — 0.2. What is our best initial estimate of A? 
In your spreadsheet, record the values of an and /3n, as well as the resulting 
estimate of A, for each n. Copy the results into a table and hand in a paper 
copy. 





CHAPTER 3 

THE ECONOMICS OF INFORMATION 

Underlying the general area of optimal learning is the notion of the economics of 
information. While the cost of information is highly problem-dependent, the ben-
efits of information can often be captured using models that combine the issues of 
uncertainty in the context of simple decision problems. 

In this chapter, we are going to approach information collection as an economist 
would. We will use simple models to derive insights into the value of information in 
a decision problem. In the rest of the book, we will focus on deriving algorithms for 
information collection, but some of the basic concepts underlying these algorithms 
can already be seen in the simple models discussed in this chapter. 

3.1 AN ELEMENTARY INFORMATION PROBLEM 

We begin by considering an elementary game where we have to decide whether to 
first acquire a signal that provides information into the probability of winning a game. 
The problem is illustrated in the decision tree shown in Figure 3.1. The game has 
two elementary outcomes. If we win ( ' W ) , we receive a reward R, while if we lose 
("L"), we lose —1. Without any new information (an information state we designate 
by "TV" for "None"), the probability of winning the game is p, with an expected 
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Payoff 

R 

-1 

0 

R 

-1 

0 

R 

-1 

0 

Figure 3.1 Decision tree for an elementary learning game, where we have to choose whether 
to use a signal that changes our distribution of belief about the probability of winning. 

value V of 

E[V\N] =max{0,pR-(l-p)}, (3.1) 

where we assume that we will not play the game at all if its expected value is less 
than zero. 

Before we play the game, we have the option of acquiring an information signal 
5, which might represent purchasing a report, checking the Internet or making a 
phone call. The signal may be good ("g") or bad ("6"). We assume that the signal 
will correctly predict the outcome of the game with probability q. This means that 
P[S = g\W]=P[S = b\L}=q. 

We would like to understand the value of purchasing the signal (an elementary 
information acquisition problem) and the value of the quality of the signal, represented 
by the probability q. To begin, we need to understand how the signal changes the 
expected payoff from the game. We can write the conditional value of the game given 
the signal as 

E[V\S = g}= max{0, RP[W\S = g] - P[L\S = g}}. (3.2) 

Equation (3.2) captures our ability to observe the signal, and then decide whether we 
want to play the game or not. If the signal is bad, the expected winnings are 

E[V\S = b]= max{0, RP[W\S = b] - P[L\S = &]}. (3.3) 

Get 
signal 

Signal 
outcome 
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We now want to find the value of the game given that we have decided to acquire 
the signal, but before we know its value. This is given by 

E[V\S] = E[V\S = g]P[S = g] + E[V\S = b]P[S = b}. 

For this calculation, we need to compute the unconditional probabilities P[S = g] 
and P[S — b]. Up to now, we have only been given the conditional probabilities 
P[S = g\W] = P[S = b\L] — q. We can find the unconditional probability of a 
good signal using 

P[S = g] = P[S = g\W]P[W}+P[S = g\L}P[L} 
= QP+(l-q)(l-p). (3.4) 

Similarly, the unconditional probability of a bad signal is found using 

P[S = b] = P[S = b\W]P[W] + P[S = b\L]P[L] 
= (l-q)p + q(l-p). (3.5) 

We are now ready to find the conditional probability of winning or losing given 
the outcome of the signal. We use Bayes' theorem to write the probability of winning 
given a good signal as 

pq 
qp + (1 - q){l - pY 

Similarly, the probability of winning given a bad signal is given by 

P[W]P[S = b\W] P[W\S = b] = 
P[S = b] 
P( I - q) 

(l-q)p + q(l-p)' 

Of course, P[L\S = g) = 1 - P[W\S = g]. 
We are now ready to calculate the value of the signal. We let S represent the 

decision to acquire the signal before we know the outcome of the signal. Combining 
(3.2), (3.3), (3.4), and (3.5), we can find the expected value of the game given that 
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= max« 

Figure 3.2 The value of the signal as a function of R for different values of q. 

we have chosen to acquire the signal is 

E[V\S] = E[V[S = g]P[S = g}+ E[V\S = b}P[S = b) 
= max{0, RP[W\S = g] - P[L\S = g]}{qp+(l ~ q)(l - p)) 

+ max{0,RP[W\S = b] - P[L\S = 6]}((1 - q)p + q(l - p)) 

{°KPHi-\)(i-P))}iqp + il-q){1-p)) 

I (l-q)p + q(l-p) V ( 1 - 9 ) P + « ( 1 - P ) / J 
x ( ( l - g ) p + g ( l - p ) ) 

^K g P +( i -V-J} ("+ ( i- 9 ) ( i-p ) ) 

/ n o P ( i - g ) / g ( i - p ) V , 
l ' ( 1 - 9 ) P + « ( 1 - P ) U 1 - 9 ) P + « ( 1 - P ) / J 

x((l-q)p + q(l-p)). 

The value of the signal, which depends on the game reward R, the probability of 
winning p, and the quality of the signal q is given by 

Vs(R,p,q)=E[V\S]-E[V\N]. 

The behavior of Vs(R,p, q) is illustrated in Figure 3.2, which gives the value of the 
signal as a function of the reward R, for different values of the signal quality q, with 
p = .5. Keep in mind that if we lose the game, we lose $1. The quality of the signal 
is highest when R = 1 (a byproduct of the choice of p , as we see below). When 
R = 1 and p = .5, we are most ambivalent about playing the game, and as a result 

max < 

-max -
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Figure 3.3 The value of the signal as a function of R for different values of q. 

the additional information provided by the signal is most important. For sufficiently 
small values of R, we are less inclined to play the game regardless of the information 
provided by the signal, just as we are more inclined to play the game for larger values 
of R. Thus, we see that the value of the signal is greatest when it has the greatest 
potential for changing a decision. 

Figure 3.3 shows how the value of the signal changes as we vary p while holding 
q constant at .7. As p increases, the point at which the value of the signal is highest 
moves down and to the left, reflecting both the reduced value of additional information 
as the probability of winning the game increases (which lowers the maximum height 
of the curve) and the lowering of the break even point (which moves the maximum 
to the left). 

3.2 THE MARGINAL VALUE OF INFORMATION 

Our elementary game in Section 3.1 allowed us to understand the value of a discrete 
piece of information in a stylized setting. We now turn to a variant of this problem 
where we are allowed to take multiple measurements to increase the precision of the 
information we are gaining. 

Imagine that we have a choice between doing nothing (and receiving a reward of 
0) and choosing a random reward with unknown mean /i. Assume that our prior belief 
about ji is normally distributed with mean 6° and precision /3° — 1/cr2,0. Before 
playing the game, we are allowed to collect information in the form of a series of 
measurements VF1 , . . . , Wn, presumably at a cost which we are going to ignore in 
order to focus on the value of information. We assume that W has the unknown mean 
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Id (of course, because it is coming from the true distribution) and a precision (3W, 
which, for convenience, we assume is known. 

If we choose to make n measurements, the precision of our estimate of the reward 
would be given by 

Pn=0° + nPw. 
The updated estimate of our reward (using our Bayesian model) would be 

0°tf> + nPwWn 

f3° + n(3w ' 

where 

1 n 

fc=l 

We are going to create a random variable that captures our belief about the reward, 
which we are then going to use to make a decision about whether or not to play the 
game. We start by using the well-known identity from probability given by 

Varbj) = E[Var{fi | W\ ..., Wn)} + Var\E(n | W\ ..., Wn)), 

where Var(fj, \ W1,..., Wn) = l/f3n = (/3° + n^)'1 and E (/i | W\ ..., Wn) = 
8n. Let a2(n) be the variance of 6n given what we knew before we took our n 
measurements (keep in mind that 6° is deterministic). Equivalently, a2(n) is the 
change in the variance due to the n measurements. We can calculate 

a2(n) = Var(6n) 
= Var(n) - E[l//3n] 
= 1//30 - l / /3n 

= l/(3°-l/(P° + nPw). 

Let Z be a standard normal random variable with mean 0 and variance 1. We can 
write our random variable 6n as 

9n = 6° + a2(n)Z. 

We can quickly verify that E(9n = 0°, and Var[6n] = a2(n). 
After our n measurements, we are going to choose to play the game if we believe 

that its value is greater than zero, otherwise we will pass. Thus, the value of the game 
Vn after n measurements is 

F n = Emax{O,0n}. 

This expectation can be calculated simply using 
QU 

Vn = ax(nx)f a(n) 
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(a) (b) 

Figure 3.4 Illustrations of when the value of information is (a) concave and (b) nonconcave. 

where /(£) is given by 

/(C) = C*(C) + «A(0, 
and where $(£) and <£(£) are, respectively, the cumulative standard normal distribu-
tion and the standard normal density. That is, 

and 

$(£) = f 4>{x) dx. 
J — oo 

This simple model allows us to learn about the marginal value of information. 
It seems reasonable to expect that the value of information would be concave, as 
illustrated in Figure 3.4(a). This curve was generated assuming that (3W = 4 (which 
means the standard deviation of a measurement aw is .5) and a0 = 5. Note that 
the standard deviation of a measurement is smaller than the standard deviation of our 
belief, so each measurement significantly reduces our uncertainty about the value of 
the game. 

It turns out, however, that the value of information may be nonconcave. Figure 
3.4(b) demonstrates an example of this, which was created assuming that cw — 20, 
or fiw = 1/CTIY = .0025. Now, the noise in a measurement is much larger than the 
uncertainty in our belief. A single measurement does little to change our belief about 
the reward. However, the accumulation of knowledge from multiple measurements 
has the same effect as a single, much more precise measurement. So, as n grows, we 
eventually move back into a region where the marginal value of information decreases. 

We will revisit this discussion in Chapter 5, where the decision problem will 
become more complicated. We will calculate the value of information for multiple 
decisions and use this quantity to distinguish between choices. Our discussion here 
introduces the basic concept for a simple problem with two decisions. 
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3.3 AN INFORMATION ACQUISITION PROBLEM 

Imagine that we are selling a product where we have to choose which price pt we 
should charge during month t. Let p* be the unknown optimal price, and assume that 
the lost revenue from charging a suboptimal price is given by the quadratic function 
(3(pt - p*)2. The company may conduct market research in any given month at a 
cost $c per unit sold (the company continues to sell the product while the research is 
being conducted). The market research provides an imperfect estimate of the optimal 
price which we represent as 

pt =p* +eu 

where the sampling errors et are independent and identically distributed with mean 
zero and variance a2. 

Let 

{1 if the company conducts a market research study during time period t, 
0 otherwise. 

We assume that our market research study does not affect market behavior or our 
pricing strategy. Our goal is to design a policy for deciding when we should perform 
market research that minimizes expected costs over a finite horizon t = 1,2,. . . , T. 

Since each market research study gives us an unbiased estimate of the true optimal 
price, it makes sense for us to set our price to be the average of the prices pt obtained 
from each of the market research studies. Let 

t 

nt = Yl Xt' 
t'=i 

be the number of market research studies we have performed up to (and including) 
time t. Thus 

ft_i + -M t if j ; t = 1, 
pt = 1 n* n* 

Pt-i otherwise. 

pt is an unbiased estimate of p* with variance 

T2 
* ? = a 

nt 

where we are assuming that a1 is known. 
We have chosen the structure of the problem to make it especially easy to solve. 

We start by observing that our choice of loss function allows us to write the expected 
lost revenue as 

Ef3(pt-p*)2 = Var(p*\pt)=l3a2
t. 
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Using this nice structure, we can write the optimization problem for deciding the 
vector x\,..., XT , which determines when we will perform market research studies, 
as follows: 

wmF(x) = E^2(f3(pt-p*)2 + cxt) 
t=i 

T 

t=l 
It seems intuitively obvious that we should perform market research studies for 

the first r time periods and then stop (the reader has a chance to prove this in exercise 
3.2). This means that xt = 1, t = 1,2,.. . , r with xt — 0, t > r, which also means 
that nt = t for t < r. Using this structure, we may rewrite F(x) as 

i = l V l ' t=T+l T 

An analytically convenient way of solving this problem is to treat time as continuous, 
which gives us 

dt 

2 
= (/3<72ln* + c£)|[+/?—(*) 

T 
T 

r 

f3az l n r + c(r - 1) + /3—(T - r). 
T 

Differentiating with respect to r and setting the result equal to zero gives 

™ = ^ I + . - ^ - o . 
or T rz 

Finding the optimal point r* to stop collecting information requires solving 
cr2 + f3a2T - f3a2T = 0. 

Applying the familiar solution to quadratic equations and recognizing that we are 
interested in a positive solution, we obtain 

-Pa2 + 7(/3a2)2 + 4c/3a2T 
T = 2c * 

This result allows us to understand the how the solution to this problem behaves as a 
function of the parameters of the problem. For example, we see that the amount of 
time we should be collecting information increases with a2, /?, and T and decreases 
with c, as we would expect. If there is no noise (a2 = 0), then we should not collect 
any information. Most importantly, it highlights the concept that there is an optimal 
strategy for collecting information, and that we should collect more information when 
our level of uncertainty is higher. 
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3.4 BIBLIOGRAPHIC NOTES 

Section 3.1 The material in this section is based on Chapters 4 and 5 in Birchler & 
Butler (2007), which is a very nice introduction to the economics of information 
from the perspective of the field of economics. 

Section 3.2 The marginal value of information has been studied by a number of 
authors. Howard (1966) appears to be the first to have presented a problem (in an 
auction setting) where the value of information is superadditive (two sources of 
information combined contribute more than each of them individually). Radner 
& Stiglitz (1984) present the first thorough investigation of the nonconcavity of 
information, providing general conditions under which the value of information 
is nonconcave. Chade & Schlee (2002) and Delara & Gilotte (2007) further 
generalize these results. Weibull et al. (2007) and Frazier & Powell (2010) 
investigate the implications of nonconcavity in the value of information in 
terms of allocating resources for collecting information. 

Section 3.3 This section is based on material from Chapter 10 in Powell (2007). 

PROBLEMS 
3.1 Program a spreadsheet to recreate the graph in Figure 3.2, which assumes that 
the signal precision q — H. 

a) Create the graph for q = .6. 

b) Create the graph for q = .8. 

c) Compare the two graphs and describe the effect of q on the value of information 
as a function of the reward. Why is there little value for both high and low values 
of the reward? 

d) What happens when q = .5? Explain. 

3.2 Prove our intuitive claim in Section 3.3 that it is optimal to first collect infor-
mation and then, at some time r , stop collecting information and use it. This means 
that ifxt = 0 for some time t, then xt+i = 0 (and so on). [Hint: This can be proved 
with an interchange argument. Assume that a;1 is one policy with, for some t, xt = 0 
and a?t+i = 1, and let x2 be the same policy except that xt = 1 and xt+\ = 0 (we 
have simply exchanged the decision to collect information at time t + 1 to time t). 
Show that x2 is better than x1. Use this to prove your result.] 



CHAPTER 4 

RANKING AND SELECTION 

Ranking and selection problems arise in many settings. We may have to choose a type 
of cholesterol drug, the parameters of a chemical process (e.g., temperature, relative 
mix of certain inputs), or the design of a manufacturing process (choice of equipment, 
size of buffers, routing of jobs). Testing an alternative might involve running a 
time-consuming computer simulation, or it might require a physical experiment. We 
assume that in either case, the measurement involves some noise, which means we 
may need to repeat the experiment several times. We assume that we have a budget 
that determines how many times we can perform these experiments, after which we 
have to take the best design and live with it. 

We assume that we have a finite set of alternatives X — ( 1 ,2 , . . . , M) where 
M is "not too large." We then assume that we have a budget for evaluating these 
alternatives, and when our budget is exhausted, we have to choose the alternative that 
appears to be best. For this reason, this is called offline learning, since the cost of a 
measurement is distinct from the cost of using the resulting design in production. 

The assumption of a "finite" set of alternatives is fairly important, and will prove 
to be somewhat restrictive. It will generally be the case that we plan on testing all 
the alternatives at least once, although this is not essential. We may use our prior 
knowledge about the performance of an alternative to decide that it is so poor that 
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we do not even have to try it. But there are many applications where the number 
of alternatives is much larger than what the measurement budget will allow us to 
evaluate. In these cases, we will introduce extensions to the basic model. 

4.1 THE MODEL 

Recall the Bayesian philosophy that any unknown number is a random variable. We 
start by assuming that we have a prior distribution of belief about the performance fix 
of each alternative x G X which is normally distributed with mean 0° and precision 
/?£. Throughout this book, it is important to recognize that when we talk about the 
true mean u (or fix), that u is a random variable. Whenever we solve a problem, 
there is an underlying truth which is unknown to us, which can be represented as a 
realization of the random variable /i. 

At the nth iteration (starting with n — 0), we choose xn and observe Wx^x. We 
then use this new information to update our belief about \ixn (remember that nxn is 
a random variable). We do not update priors that are not observed, so our updating 
equations now look like 

X 

We are going to make a series of observations W*0, W*x,..., W^N-X. These ob-
servations depend in part on our decisions of what to measure, and then in part on 
the random outcome of a measurement. In addition, the probability distribution that 
describes a measurement is based on the underlying truth, which is also unknown to 
us. It is useful in our presentation to think of a set \I> of potential outcomes of fi. The 
element ij) G \& might be thought of as a state of the world, where n(ip) is the truth 
when the state of the world is ip. This is easiest to visualize if you assume that there 
are finitely many states of the world, but everything we are going to do works fine 
if the set of all possible true values is continuous (for example, if our distribution of 
belief is normal). 

For now, we assume that we have some rule or decision function X7*^71) which 
depends on our state of knowledge Kn — (6™,f3™)xex a nd returns the alternative to 
be tested in iteration n + 1. We refer to X*(K) as a policy indexed by n G II. We 
will discuss the precise meaning of TT and n later. We refer to the decision function 
Xn and the policy n interchangeably. 

We use the notation UJ to denote a sample realization of all the random quantities 
in our problem. Think of a matrix W (OJ) of numbers, such that the number in the nth 
row and #th column represents a sample realization W™ (CJ) of the measurement W£. 
Figure 4.1 illustrates this idea with three sample realizations of W£ (three different 
values of a;) for n = 1,..., 10 and x = 1, 2,3. It is useful to think of generating 

? W l g v £ ! ifx» = s, 
^ otherwise, 

r / £ + /3f i f a ; n = x , ( 4 2 ) 

/3? otherwise. 
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Table 4.1 Three sample realizations of three alternatives over 10 observations. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

UJ 

w? 
37.4 
24.3 
30.5 
20.5 
29.1 
36.7 
27.3 
26.8 
40.0 
21.4 

= UJl 

w? 
64.1 
65.2 
64.5 
63.2 
64.5 
62.1 
53.5 
57.7 
58.6 
51.6 

w? 
59.2 
56.0 
56.5 
55.9 
44.8 
59.6 
44.8 
48.1 
42.8 
56.4 

UJ — UJ2 

w? 
38.1 
28.0 
38.9 
34.1 
36.3 
37.0 
27.7 
28.8 
39.6 
33.1 

W? 
66.9 
57.6 
59.3 
57.7 
60.1 
53.6 
60.9 
68.6 
52.8 
54.5 

W£ 
55.7 
59.3 
50.2 
57.1 
56.4 
42.9 
48.9 
54.4 
53.5 
42.7 

UJ = UJ3 

W? 
33.4 
25.4 
22.7 
24.1 
37.3 
20.7 
32.0 
34.3 
31.1 
33.4 

wz 
66.5 
60.1 
59.5 
59.8 
65.1 
51.8 
53.4 
53.0 
64.0 
56.7 

w? 
40.1 
59.5 
48.7 
58.8 
57.1 
42.9 
53.3 
48.6 
59.9 
42.7 

all these realizations, but then we are going to choose a measurement policy TT that 
determines which of these realizations that we are actually going to see. That is, we 
only get to see W£ if we choose to observe x = X7* (Kn). 

Since the true values [xx are also random variables, we can let ip be a sample real-
ization of the truth. That is,/x(^) is a particular set of truth values//i (ip), . . . , ^ M WO-
Our Bayesian model makes the fundamental assumption that fix ~ jV (#£, /3°), that 
is, our prior distribution is assumed to be accurate on average. Therefore, the sample 
path ip is generated from the prior distribution. 

With this, we finally can compute a sample realization of the value of a policy 
using 

F^(^),W(u))=max0^(^Lj,ir). (4.3) 

In other words, we take our estimate of 0^ for each x after N measurements and then 
choose the alternative with the highest estimate. The estimates 9™ depend on both 
types of sample realizations, UJ and I/J. Our beliefs change over time in a way that 
depends on the exact numbers W1 (uo),..., WN (UJ) . At the same time, the probability 
distribution of the observations (the likelihood of observing, say, ui instead of cos) is 
determined by the truth fi(ip). 

Moreover, the measurement policy n determines which observations we actually 
see: recall again that Wn = (W^)xex is the vector of outcomes for all alternatives, 
but that we observe only one component of this vector. Thus, the precise distribution 
of Fn depends on -K. We did not observe this distinction in Chapter 2, where we were 
given an observation. Now, we have the ability to choose what we want to observe. 

If we want to evaluate a policy, we need to compute F71" (fJL(ip), W(u)) for different 
samples W (uo) and different truths / / (^) , and take an average. Let ujk be the /cth 
sample of measurements where k = 1,2,... ,K, and let ipt be a particular truth 
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Table 4.2 Three sample realizations of both a truth fi and a set of sample realizations 
W drawn from this truth. 

U = UJ\ UO — UJ2 UJ = OJ3 

M i ( ^ i ) ^ 2 ( ^ 1 ) ^ 3 ( ^ 1 ) ^ 1 ( ^ 2 ) ^ 2 ( ^ 2 ) ^ 3 ( ^ 2 ) ^ 1 ( ^ 3 ) ^ 2 ( ^ 3 ) ^ 3 ( ^ 3 ) 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

32.1 

W? 

33.8 
37.0 
36.0 
30.8 
30.9 
29.7 
32.1 
31.1 
35.9 
35.4 

57.8 

w? 
57.7 
55.0 
54.9 
53.3 
58.6 
56.3 
57.0 
53.9 
55.5 
60.5 

55.8 

W£ 

53.3 
59.7 
51.9 
58.6 
58.3 
55.6 
57.9 
54.4 
50.8 
54.7 

29.5 

wr 
32.6 
26.0 
34.3 
30.0 
30.7 
26.3 
31.6 
29.1 
31.5 
33.7 

62.3 

w% 
62.7 
60.8 
65.0 
57.7 
59.4 
62.4 
57.8 
59.6 
65.9 
62.4 

60.1 

ws 
60.5 
55.3 
58.3 
57.8 
61.0 
60.9 
59.9 
59.0 
60.8 
55.9 

34.4 

WT 

29.6 
36.8 
38.0 
36.1 
38.6 
33.9 
30.8 
31.6 
36.0 
38.9 

59.2 

w? 
55.7 
62.1 
60.3 
59.9 
58.3 
54.6 
63.3 
58.9 
62.3 
54.9 

59.7 

wz 
62.6 
59.1 
60.4 
63.2 
63.2 
64.5 
55.3 
60.8 
62.9 
64.2 

where £ = 1,2,.. . , L is a set of potential truths. We can compute an average using 

*" = 7 E ( IF E ^(MOM, W(Uk)U . (4.4) 

This hints at how we would like to state our objective in a formal way. Let E ^ be the 
expectation over all possible measurements. The measurements we observe depend 
on our measurement policy n, since this determines which elements of the vector W 
that we actually observe. For this reason, we write the expectation over measurements 
as E ^ . Let EM be the expectation over all possible truths. We can write our objective 
as 

max E^EwF" (//, W), (4.5) 
7rGn 

where F7r(//, W) = maxx G^ 0% *s m e sample estimate of the objective function, 
computed using the truth /x(,0), the measurements W1 (a ; ) , . . . , WN(OJ) and the pol-
icy 7r that determines which measurements we actually observe. 

Mathematically, we can lump the uncertainty about the truth and the uncertainty 
about measurements into a single space of outcomes. Table 4.2 illustrates how we 
might represent 3 sample realizations. Here, u represents both a realization of the 
truth /i and a realization of the measurements W™ drawn from this truth. We would 
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calculate an estimate of Fn using 

1 K 

F* = -Y/F"Muk),W(u>k)). (4.6) 
k=l 

Note that calculating Fn using (4.6) or (4.4) is conceptually the same, although the 
actual numbers may be slightly different when we code up the calculation. Using 
(4.6), we calculate F ^ / i ^ ) , W(u)k)) K times, while if we use (4.4), we calculate 
F*bj,(ut), W(uk)) LxK times. 

Now let E be the expectation over the outcomes UJ e ft where now both p, and W 
are changing with ou. In this case, we would write our objective function as 

maxEF^faW). (4.7) 
7rGn 

This is a perfectly legitimate way of writing our objective function. But it is important 
to realize that the expectation is summing (or integrating) over our uncertainty in our 
belief about the truth as well as the randomness in our measurements. 

The preceding discussion becomes relevant when we simulate the performance 
of a policy. In (4.3), we first generate L truth values, and then generate K sets of 
observations for each one. We thus obtain a more precise estimate of the average 
performance of the policy on each truth. In (4.6), we generate a new truth for each 
set of observations. We can thus simulate a larger number of truth values, but we will 
sacrifice some precision in our estimate of average performance for any given truth. 

4.2 MEASUREMENT POLICIES 

Central to the concept of optimal learning is a measurement policy. This is a rule 
that tells us which action x we should take next in order to observe something new. 
In addition, we may also be receiving rewards or incurring costs, which have to be 
balanced against the value of the information being gained. 

In this section, we contrast deterministic versus sequential policies and then provide 
a mathematical framework for finding optimal sequential policies. Unfortunately, 
this framework does not provide us with practical policies that we can compute. The 
section closes with a presentation of a number of the more popular heuristic policies 
that have been used on this problem class. 

4.2.1 Deterministic Versus Sequential Policies 

Before we begin our presentation, it is important to make a distinction between what 
we call deterministic policies and sequential policies. In a deterministic policy, we 
decide what we are going to measure before we begin making any measurements. 

For example, a business may decide to perform four market research studies in 
different parts of the country before finalizing the pricing and advertising strategy in a 
full roll-out to the entire country. The decision to do four studies (and their locations) 
is made before we have any information from any of the studies. 
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There are problem classes where deterministic policies are optimal. For example, 
we might be interested in making measurements that minimize some function of the 
variance of the quantities that we are trying to estimate. If you take a close look 
at our formula for updating the variance (or equivalently the precision) in equation 
(4.2), we see that our estimate of the variance is a deterministic function of what we 
choose to measure. This means that any rule that depends purely on the variance can 
be solved deterministically. 

Our interest is primarily in sequential policies, where the decision of what to mea-
sure next may depend on past measurements. For example, when we are trying to find 
the shortest path, we may decide to continue sampling a path if it remains competitive, 
or give up on a path if the observed travel times are simply too long. Our decisions 
of what to measure in this case depend on the outcomes of prior measurements. 

4.2.2 Optimal Sequential Policies 

It is possible to provide a mathematical characterization of an optimal measurement 
policy. Imagine that we are moving over a graph, where we gain information about 
the graph (including other links) every time we make a transition from one node to the 
next. For this system, let S be the state variable which captures both our physical state 
(which might be the node we are sitting at) and the knowledge state (what we know 
about all the links in the graph as a result of our previous measurements). Further, 
let Sn be the state after n measurements. We note in passing that the ranking and 
selection problem does not have a physical state; Sn consists purely of the state of 
knowledge. Whenever we discuss this problem, we can use Sn interchangeably with 
our earlier notation Kn. 

Assume that we are in state Sn and we make a decision xn which might change 
both our physical state (we move from i to j) and our knowledge state (which might 
be updated using equations (4.1) and (4.2)). Let Wn+1 be the next observation we 
observe which is used to determine 5 n + 1 . When we do not want to get into the details 
of how the state changes, we introduce a transition function, often referred to as a 
state model (or sometimes simply "model") SM(-) which updates the state using 

Sn+1 =SM(Sn,xn,Wn+1). 

When we have normally distributed beliefs, our transition function (or knowledge 
transition function) is given by equations (4.1) and (4.2). 

Next let V(Sn) be the value of being in state Sn. The quantity C(Sn, x) captures 
our total contribution (or reward), minus any measurement costs, from being in state 
Sn and taking action x. Assume we wish to maximize the total discounted reward, 
with discount factor 7. Bellman's equation characterizes the optimal decision using 

V(Sn) = max(C(5 n ,x ) + 7 E { l / ( 5 n + 1 ) | 5 n } ) . (4.8) 

We let xn represent the optimal solution to (4.8). We let X*(S) be the complete 
mapping of states S e S to actions x e X, where X describes the set of feasible 
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(a) (b) 

Figure 4.1 Estimating a function where we sample closest to the point that might be best (a), 
versus sampling a wide range of points so that we get a better estimate of the function (b). 

actions. We refer to the function X*(S) as the optimal policy if it describes the 
solution to (4.8) for all states Sn e S. 

It may be mathematically comforting to characterize the optimal policy, but equa-
tion (4.8) is virtually impossible to solve, even for very small problems. The simplest 
knowledge state uses at least one continuous variable for each action x. Calculating 
a value function with as few as two continuous dimensions can, in practice, be quite 
a challenge. Needless to say, we do not have very many problems of practical signifi-
cance that meets this modest criterion. Not surprisingly, the field of optimal learning 
consists primarily of finding shortcuts or, failing this, good heuristics. 

4.2.3 Heuristic Policies 

Our goal, ultimately, is to find the best possible policies for learning. The reality, 
however, is that most of the time we are happy to find good policies. Below are some 
popular methods that have been suggested for problems that are typically associated 
with discrete selection problems, which is to say that the set of measurement decisions 
is discrete and "not too large." 

Pure Exploration A pure exploration strategy might sample a decision xn = x 
with probability \jM (the probabilities do not have to be the same - they just have to 
be strictly positive). We would only use a pure exploration policy if we were focusing 
purely on estimating the value of each choice, as opposed to making a good economic 
decision. If we really are trying to find the best value of fix, a pure exploration strategy 
means that we would spend a lot of time measuring suboptimal choices. 

Pure exploration can be effective for offline learning problems, especially when 
the number of choices is extremely large (and especially if a measurement x is mul-
tidimensional). This is often what has been used when we are given a dataset of 
observations from which we have to fit a model so that we can find the best choice 
or design. With offline learning, it does not hurt us to observe a poor choice, and 
extreme choices can give us the best estimates of a function. For example, consider 
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the problem of fitting a linear regression model of the form 

Y = 6>o + e±x + 02x2 + c. 

Imagine that x is a scalar between 0 and 10, and we believe the highest values of Y are 
likely to be found close to the middle of the range. Figure 4.1 (a) shows what happens 
when we draw most of our samples from a narrow range. We may get a lot of data to 
estimate the function around those points, but we do not get the kind of information 
we need to get an accurate estimate of the function, which would allow us to do the 
best job finding the maximum. In Figure 4.1(b), we explore a wider range of points, 
which allows us to do a better job of estimating the entire curve. For instance, we 
discover that Y decreases once x is large enough, whereas 4.1(a) leads us to believe 
that Y always increases with x. 

Pure Exploitation Exploitation means making the best decision given our current 
set of estimates (we are "exploiting" our knowledge). So, after iteration n, we would 
next measure 

xn = argmax#™. 

This strategy would seem to focus our energy on the options that appear to be the 
best. However, it is very easy to get stuck measuring choices that seem to be the best, 
especially when we simply had some bad luck measuring the better choices. 

Pure exploitation is a common strategy in online problems, where we have to live 
with the results of each measurement. With pure exploitation, we can always defend 
our choice because we are doing what we believe is the best, but we may be ignoring 
errors in our own beliefs. 

Epsilon-Greedy Exploration A simple strategy that avoids the limitations of 
pure exploration and pure exploitation is to use a mixed strategy, where we explore 
with probability e (known as the exploration rate) and we exploit with probability 
1 — e. The value of e has to be tuned for each application. 

Mixing exploration and exploitation is appealing because it allows you to spend 
more time evaluating the choices that appear to be best (to make sure this is the 
case) while still doing a certain amount of exploration. As our measurement budget 
goes to infinity, we can still provide guarantees that we will find the best alternative 
because of the exploration component. But this policy still suffers from the significant 
limitation that when we do choose to explore, we sample from the entire population 
of alternatives, which may be extremely large, including choices that are clearly 
suboptimal. 

The problem with a mixed exploration/exploitation strategy with fixed e is that 
the correct balancing of exploration and exploitation changes with the number of 
iterations. In the beginning, it is better to explore. As we build confidence in our 
estimates, we would prefer to exploit more. We can do this by using an exploration 
probability en at iteration n that declines with n. We have to make sure it does not 
decline too quickly. We do this by setting 

en = c/n 
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for 0 < c < 1. If we explore, we would choose measurement x with probability 
1/|#|. This means that in the limit, the number of times we will measure x is given 
by 

oo 

n = l ' ' 

This assures us that we will estimate each measurement x perfectly, but as the mea-
surements progress, we will spend more time measuring what we think are the best 
choices. 

Boltzmann Exploration A different strategy for balancing exploration and ex-
ploitation is known as Boltzmann exploration. With this strategy, we sample mea-
surement x with probability p™ given by 

Pn
x = ^ ^ r . (4.9) 

This policy is also known as the soft max policy. If p = 0, we are going to sample each 
measurement with equal probability (pure exploration). As p —> oo, we will sample 
the measurement with the highest value of 6n with probability 1 (pure exploitation). In 
between, we explore the better options with higher probability. Furthermore, we can 
make p increase with n (which is typical), so that we explore more in the beginning, 
converging to a pure exploitation strategy. 

Care should be used when computing the probabilities using a Boltzmann distri-
bution, especially if you are increasing p as you progress to focus attention on the 
best alternatives. The problem is that the exponent p6™ can become so large as to 
make it impossible to evaluate e(pe*\ A better way is to first compute 

ftn = max 0" 

and then compute the probabilities using 

v
n = -

This calculation can be further streamlined by excluding any choices x where 8™ is 
sufficiently far from p n (for example, where p\\xn — Q™\ > 10). 

A limitation of Boltzmann exploration is that computing these probabilities can 
be fairly expensive when there are large numbers of potential measurements. It 
is a popular policy in computer science where problems typically have fewer than 
100 alternatives, but x might be a vector, producing an exponentially large number 
of choices. However, Boltzmann exploration has the distinct advantage that our 
exploration is based on our belief about the quality of each alternative. As a result, 
we do not spend much time evaluating truly bad alternatives. 
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Interval Estimation Imagine that instead of choosing a measurement that we think 
is best, we will choose a measurement that we think might eventually be best if we 
were to take enough measurements. With this idea, we might construct a confidence 
interval and then value an option based on the upper limit of, say, a 95% confidence 
interval. Letting a be our confidence level and denoting by za the standard normal 
deviate leaving a in the upper tail, our upper limit would be 

vlE'n = 0Z + zaa2, (4.10) 

where a™ — «/4r is the standard deviation of the distribution of our belief at time 
n. When we use an interval exploration policy, we choose the measurement xn with 
the highest value of v]^^. 

Although the interpretation as the upper limit of a confidence interval is appealing, 
the confidence level a carries no particular meaning. Instead, za is simply a tunable 
parameter. It has been reported in the literature that values around 2 or 3 work best 
for many applications, but it is possible to construct problems where the best value 
may be anywhere from 0.1 to 100 (the high values arise when the priors are really 
poor). Furthermore, it has been found that the algorithm can be very sensitive to the 
choice of za. However, if properly tuned, this policy can work extremely well in 
many settings. 

Interval estimation introduces two important dimensions relative to policies based 
on exploration and exploitation. First, like Boltzmann estimation, the likelihood of 
measuring a choice depends on how well we think the choice may work. This means 
that we will avoid exploring options that seem to be genuinely bad. Second, we are 
going to be more willing to explore options which we are more uncertain about. The 
term za<7™ has been called the "uncertainty bonus." As we explore an option with a 
high value of v1^'11, cr™ will decrease, which will often push us to try other options. 

IE is not guaranteed to find the best option, even with an infinitely large measure-
ment budget. It is possible for us to get some poor initial estimates of what might 
be the best option. If 6™ is low enough for some choice x, we may never revisit this 
choice again. Our experimental work suggests that this can happen, but rarely. 

Chemoff Interval Estimation A variant of interval estimation is a method where 
the confidence interval is derived using Chernoff's inequality. This is computed using 

.M=,n + « + ^ ^ ± g ! ( 4 U ) 

where 
, 2nM 

a = In ■ 
S ' 

Here, M is the number of alternatives and 0 < S < 2 is a tolerance parameter that 
controls the likelihood that v£h,n is greater than the true value fix. The parameter 6 
comes from the result that if (4.11) is calculated n times for all M alternatives, then 
vCh,n > ^ wj t j 1 probability 1 — | for all n and x. Alternatively, it is possible to 
show that the probability that u^h,n < fix for a particular iteration n and alternative 
x is less than ^£M • 
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4.3 EVALUATING POLICIES 

Now that we have an initial sense of some possible measurement policies, we have 
to start thinking about how to compare them so we can choose the best one. It turns 
out that comparing one measurement policy to another is a relatively subtle exercise. 

To start, consider a simple deterministic optimization problem, where we are trying 
to find the best value of a function f(x). If we have two solutions x1 and x2, all 
we have to do is compare fix1) and f(x2) to see which is bigger. Although finding 
a good solution can be hard for certain classes of deterministic problems, deciding 
when one answer is better than another is relatively simple. 

When we have a stochastic problem, the comparison is a bit harder. Imagine that 
we have a function F(x, W) that involves a random variable W. We would like to 
find the value x that maximizes EF(rr, W). This could be a shortest path problem, 
where the random variable W is the vector of costs on all the links. It could be a 
problem involving the allocation of vaccines to different parts of the country; x could 
be a vector determining how many vaccine doses are sent to each region, after which 
we observe the random demands W for the vaccine. Assume now that we cannot 
compute the expectation. Instead, we might use Monte Carlo methods to observe n 
sample realizations oui, UJ2 , . . . , oun (see Section 2.4 for a brief review of Monte Carlo 
simulation methods). We would then evaluate a solution x1 using 

U fc=l 

This is an estimate of how well x1 performs. We would similarly calculate F(x2), and 
we could compare Fix1) and F(x2). Of course, even if one is better than the other, we 
should compute confidence intervals around each to see if the difference is statistically 
different. So, this is a bit harder, but conceptually it is the same comparison that we 
would undertake with the deterministic case. 

Now think about what happens when we compare two measurement policies. 
Consider our ranking and selection problem where we use a measurement policy 
7r to determine how often we sample the value of a decision x. Perhaps we want 
to compare Boltzmann exploration to interval estimation, or we want to compare 
Boltzmann exploration with parameter p = .1 to the results when we use p = .2. 

After N measurements, 0% is our belief about the value of alternative x. We can 
use these beliefs to find the best choice, which we can write using 

xn = argmax(9f. (4.12) 

How well did we do with our measurements? We might evaluate our solution using 

F * = max 0^ = 0 * . xex x x 

Of course, #£t is random. The crucial point to remember is the same issue that we 
raised in Section 4.1: The value of 0%* that we observe in our simulations depends 
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on the generated outcomes of the observations, as well as the generated value of the 
truth. In Section 4.1, we distinguished these two types of generated outcomes by 
using UJ to denote a sample realization of an observation and using ip to denote a 
sample realization of the truth. 

We proceed as before. For I = 1,..., L, let \x (i/jt) be sampled truth values, while 
W (uJk) for k = 1,..., K are sampled observation values. We let x71" (fi (tpi), W (cok)) 
be our choice of the best alternative, which depends on the truth fi(ip), the sampled 
observations W(cu), and the measurement policy n. The estimates after N obser-
vations #^(/i, W) also depend on the truth //(V0> m e sampled observations W{oo) 
and the policy n (which we suppress for notational compactness). We can create an 
estimate 

^ = Z E (IF £ C(^e),wM) (M (lW >W ("*))) . (4-13) 

representing average performance across L truths and K sets of observations per truth. 
We can then compare policies -K\ and 7r2 by computing F71"1 and Fn2. If F71"1 > F71"2, 
we might conclude that TCI is better. Of course, we should again find confidence 
intervals for each to see if the difference is significant. 

There is a neat trick that can make policy evaluation much more efficient. Since 
we are generating the truth values // (ipt), they are now known to us, meaning that 
we can use them directly to evaluate performance. Define 

F*{ii(i)),W{u)) = iix«(^)tw(u)){?l>)i 

to be the true value of the alternative selected by policy TT. The policy does not get 
to see the true values // (ip). The alternative x71" = argmax^ 6^ is chosen purely 
based on the time-iV beliefs. However, since we have generated a sample realization 
of fi, we can use the true value of this alternative to evaluate the policy. Thus, (4.13) 
becomes 

1 L ( 1 K \ F* = TYS\KJ2 M**(M0M,w(Wfc)) W • (4.14) 
£=1 \ fc=l / 

On average over many sample realizations, 9^ is just a noisy estimate of \ix, so these 
two approaches are equivalent. However, (4.14) provides a more precise estimate 
with less variance. Essentially we are eliminating the noise due to the observations. 
Alternatively, we could define the regret Rn as 

1 L ( 1 K \ 

where /ix* (ip) = max^ fix (ijj) is the best we can do for a particular truth. The regret 
has a lower bound of zero, which provides a nice reference point. 

We can use either equation (4.13) (which uses estimates of the value of each 
alternative) or (4.14) (which uses the simulated truths) to evaluate the value of a 
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policy. In Section 4.4.2, we show that (in expectation) F™, given by equation (4.13) 
using the estimates 8%, provides an unbiased estimate of Fn as given by equation 
(4.14), where we use the assumed truth fi(ip). If you are running simulations to find 
the best policy, it is better to use equation (4.14), since (4.13) introduces additional 
statistical errors. 

We suggest that the best environment for identifying good learning policies is 
inside the computer, where you can assume a truth and then try to discover the truth. 
Once you have decided on a good learning policy, you can go to the field where the 
truth is unknown, and you only have access to the estimates 8%. 

4.4 MORE ADVANCED TOPICS* 

Ranking and selection is a relatively simple problem, as are the basic policies that 
are introduced in this chapter. But this simple problem hides some fairly advanced 
probabilistic concepts. In this section we introduce readers with an interest in a more 
advanced treatment to some of these concepts. 

4.4.1 An Alternative Representation of the Probability Space 

In Section 4.1, we represented a sample realization of observations W in Table 4.1 (or 
Table 4.2) as if specifying u had the effect of telling us what all possible realizations 
of W might be. That is, if we fix uo, we create a table of what W would be for every 
alternative x and every measurement n. Let P(u) be the probability of outcome uo 
(assuming these are discrete). We write our objective function Fn (/i, ft) as a function 
of 7r because the policy for choosing which alternative to measure is embedded in the 
objection function. If we wanted to take its expectation, we would write 

Fn = EF*(n, W) = Y, P{u)F*(ii(u), W(u)). 
eject 

For some (and possibly many), this is not the most natural way of thinking about 
a sample realization. Another way of thinking about a sample path is to assume 
that for iteration n, we first choose xn and then observe Wxn (u;£). We essentially 
"separate" the distributions of our observations from one another, so ou^ now refers 
to the outcome of the rzth observation only. That is, we only get to see the outcome 
after we choose the alternative we are going to observe according to the policy TT. 
With this construction, a sample realization would consist of 

That is, a sample path is now a sequence of decisions and observations. In this 
interpretation, our decisions are also random variables. For instance, our decision at 
time n is based on the knowledge state Kn, which has just been updated with the 
most recent observation Wn(u)^). Thus, xn implicitly depends on LJ*. 

Let UJ € Q be a sample realization using our original construction from Section 
4.1, as illustrated in Table 4.1. For each oo € ft, and given a measurement policy TT 
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that determines the decision, we can construct a new sample realization of decisions 
xn(u>n) and observations W£+l ((JJ*+1) . Let a;71" = ( u ^ , ^ , ...,wjy)bea sample 
realization of both decisions and the measurements that go with the decision, as 
depicted in the sample path above. Given a policy TT, we can construct a set of 
outcomes Qn where every outcome u G Q can be mapped to an outcome w1 G 11 \ 
We would then write the probability of a;71" as P7r(o;7r). 

If we want to find our objective function, we no longer have to embed the mea-
surement policy 7r in the objective function, since ujn already contains the decisions 
that we want to make. In this case, we can write F(^(d;7r), W(ujn)) since we no 
longer need to index F(-) by the policy n. Now if we wanted to take an expectation 
of F(/i, W) we would write 

In the research literature, it is possible to see authors writing EF7r(fji, W) and 
E7rF(/i, W). The ultimate meaning is the same, but these two ways of writing the 
expectation implicitly represent different constructions of the underlying probability 
space. 

4.4.2 Equivalence of Using True Means and Sample Estimates 

We formally state the equivalence of the two approaches to policy evaluation from 
Section 4.3, and present an argument as to why it holds. 

Theorem 4.4.1 Let irbea policy, and let xn be the alternative selected by the policy. 
Then, 

E/ix7r = E m a x 0 f . 
X 

Proof: Recall that EN/ix = 6^ for any fixed x. By the tower property of conditional 
expectations, 

E//X7r = E E HXK = ULUXTT , 

because x* = arg maxx 6™ is known at time N (that is, it is fixed from the point of 
view of our time-iV beliefs). However, 6!^ = maxx 0* by definition of x \ □ 

Theorem 4.4.1 has an interesting corollary. Denote by x a n "implementation 
policy" for selecting an alternative at time N. We can think of \ as a function 
mapping the knowledge state KN to an alternative \ (Kn) £ {1? •••> M}. Then, 

maxE/ix(^jv) = max^f. 
x x 

In other words, the optimal decision at time N is always to select 0% - If we have no 
more opportunities to learn, the best possible decision we can make is to go with our 
final set of beliefs. This result addresses the issue of why most of our policies seek 
to maximize maxx 6^ in some way, even though what we really want to learn is the 
unknown true value max^ fix. 
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4.5 BIBLIOGRAPHIC NOTES 

Section 4.1 - We present here a standard Bayesian framework for ranking and se-
lection; see, e.g., Gupta & Miescke (1996) or Chick (2006). Our presentation 
is based on the measure-theoretic idea of random variables as functions on a 
space of outcomes or sample paths; although measure theory is far outside the 
scope of this book, interested readers are directed to Cinlar (2011), a definitive 
rigorous exposition of measure-theoretic probability. 

Section 4.2 - The design of policies for taking observations (or measurements) of 
noisy functions has its roots in the 1950s and 1960s. It evolved originally 
under the umbrella of stochastic optimization over a continuous domain from 
the seminal paper of Robbins and Monro (Robbins & Monro 1951), but this 
literature did not focus on the issue of maximizing the information gained from 
each observation (there was more attention on asymptotic convergence than 
rate of convergence). The ranking and selection community evolved with a 
focus on the problem of finding the best out of a set of discrete alternatives; see 
Barr & Rizvi (1966) for an early review, and see Fu (2002) for a more current 
review. The challenge of collecting information in an optimal way has its roots 
in DeGroot (1970), which appears to give the first presentation of optimal 
learning as a dynamic program (but without an algorithm). Interval estimation 
was introduced by Kaelbling (1993). The adaptation of interval estimation 
using Chernoff bounds was done by Streeter & Smith (2006). Epsilon-greedy is 
described in Sutton & Barto (1998), with an analysis of convergence properties 
given in Singh et al. (2000). There is an emerging area of research which 
uses the concept of upper confidence bounding (UCB), originally developed 
for online problems, in an offline setting. We introduce the idea of upper 
confidence bounding in Chapter 6 for online ("bandit") problems. Drawing 
on this framework, Audibert et al. (2010) presents a frequentist approach to 
ranking and selection with finite alternatives, with provable guarantees. 

PROBLEMS 
4.1 We wish to find a good learning policy to solve the problem in Table 6.6. 

a) Briefly describe the epsilon-greedy policy, the Boltzmann policy, and the interval-
estimation policy. Evaluate each policy in terms of its ability to capture impor-
tant characteristics of a good learning policy. 

b) Define the expected opportunity cost (EOC). Describe in words how you would 
approximate the EOC (since computing it exactly is impossible) using Monte 
Carlo simulation. 

c) Let uon be the index for the nth sample realization of the random observations. 
Give an expression for the EOC for some policy 7r and give a precise formula 
for the confidence interval for the true performance of a policy 7r. 
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4.2 This exercise requires that you test an exploration policy in MATLAB. You will 
need to download two files from the course website: 

http://optimallearning.princeton.edU/exercises/exploration.m 
http://optimallearning.princeton.edU/exercises/explorationRun.m 

The MATLAB file explora t ion . m executes a pure exploration policy for a general 
ranking and selection problem. The file explorationRim.m creates the data for a 
problem with 10 alternatives, where it simulates 1000 truths and 50 samples per truth. 
The program exploration.m computes the average opportunity cost "o_cost" and 
the standard deviation "se_result." 

a) Write out the meaning of "o_cost" mathematically using the notation we have 
been using in the course. 

b) The standard deviation "sejresult" is the standard deviation of what variable? 

c) Construct a 95 percent confidence interval for the value of the exploration 
policy, and modify the code to produce this confidence interval. 

4.3 In this exercise you have to implement the Boltzmann learning policy, which 
you should model after the exploration.m routine in the previous exercise. 

a) Create a new file boltzmann.m which implements the Boltzmann learning 
policy. Keep in mind that you will have to introduce a tunable parameter p. 
The Boltzmann policy gives you the probability that you should sample an al-
ternative. Imagine you have three alternatives, and the Boltzmann distribution 
gives you sampling probabilities of .2, .5 and .3. To sample from this distribu-
tion, generate a random number between 0 and 1. If this number is less than 
or equal to .2, you choose the first alternative; if it is between .2 and .7, choose 
the second alternative; otherwise choose the third. You will need to generalize 
this for an arbitrary number of alternatives. 

b) Using N = 5000, vary p over .001, .01, .1, 1.0, until it appears that you have 
found the range which bounds the best value of p. For each value of p that you 
try, record it in a table and report the value of the policy and the standard error. 
Narrow your range until you begin getting results that are indistinguishable 
from each other. 

c) Compare the performance of the best Boltzmann policy that you can find to a 
pure exploration policy that was developed in exercise 4.2. 

4.4 Implement the interval estimation policy using the explorat ion.m routine 
provided in exercise 4.2. 

a) Create a file called ie.m which implements the interval estimation policy. 
Again, you will need a tunable parameter za which you might call zalpha. 
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b) The optimal value of za will be in the range from 0 to 5. Search over this range, 
first in increments of 1.0, and then in smaller increments, until you again are 
unable to distinguish between values (continue using N = 5000). 

c) Compare the performance of the best Boltzmann policy that you can find to a 
pure exploration policy that was developed in exercise 4.2. 

4.5 This exercise builds on the exploration policy, Boltzmann policy and interval 
estimation policy that was implemented in exercises 4.2, 4.3, and 4.4. 

a) Run each policy using TV = 5000, M = 50 and report the confidence intervals, 
using your best estimate of the tunable parameters. Can you conclude that one 
policy is better than the other two? If so, which one? If not, use the fact that 
the standard deviation declines inversely with y/N (it also decreases inversely 
with \[M, but we are going to hold M constant for our study). Use this to 
determine how small you need the standard error to be, and then how large N 
needs to be to produce a confidence interval that is small enough to conclude 
that one policy is best. You have may to repeat this exercise a few times for the 
numbers to settle down. 

b) Now set N = 1, M = 1 and run each policy 10 times, reporting the actual 
outcome (noticed that you will not get a standard error in this case). This 
simulates the application of a learning policy in a specific situation, where you 
put it into practice (but we are going to pretend that you can replicate this 10 
times). Record how often each policy discovers the best alternative (o_cost 
= 0). Comment on the likelihood that your best policy would outperform the 
other two policies on a single sample path. 

4.6 You have to choose the best of three medications to treat a disease. The perfor-
mance of each medication depends on the genetic characteristics of the individual. 
From the perspective of this medication, people can be divided into five genetic sub-
groups. If a doctor knew a patient's subgroup, he would know the medication he 
should use, but this information is not available. Lacking this information, the doc-
tor has to resort to trial and error. Complicating the process is that measuring the 
performance of a medication involves a certain level of noise. 

Table 4.3 gives the average performance of each type of medication on the five 
patient types, based on extensive prior records. The five patient types occur with 
equal probability in the population. The doctor will typically test a medication on a 
patient for one month, after which a blood test provides a measure of the performance 
of the medication. But these measurements are not precise; the error between the 
measurement and the actual impact of the medication is normally distributed with a 
standard deviation of 2.2 (we assume this is constant for all medications and patient 
types). 

a) What is the prior vector 6° that you would use for this problem, given the data 
in the table? 
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Table 4.3 The performance of each type of medication for each type of patient. 

Patient Type 

Medication 

Ml 
M2 
M3 

A 

6.2 
8.4 
5.2 

B 

7.3 
6.9 
5.8 

C 

5.4 
6.8 
6.3 

D 

7.2 
6.6 
5.5 

E 

5.4 
4.2 
3.7 

b) What is your prior probability distribution for the performance of medication 
Ml? Note: It is not normally distributed. 

c) Test each of the following policies below. You may use the MATLAB routines 
developed in the previous exercises, or perform the exercise manually with a 
budget of N = 10 observations. If you are using the MATLAB routines, use a 
budget of N = 50 observations. 

1) Pure exploitation. 
2) Boltzmann exploration, using scaling factor p = 1. 
3) Epsilon-greedy exploration, where the exploration probability is given by 

1/n. 
4) Interval estimation. Test the performance of za = 1.0,2.0,3.0 and 4.0 

and select the one that performs the best. 

For each policy, report the average performance based on 100 trials, and com-
pute a 95 percent confidence interval. 



CHAPTER 5 

THE KNOWLEDGE GRADIENT 

The knowledge gradient is the name we apply to the simple idea of measuring the 
alternative that produces the greatest value, in expectation, from a single observation. 
This idea is also sometimes known as the "economic approach" to ranking and se-
lection, indicating a connection to the ideas we sketched out in Chapter 3. In this 
chapter, we develop the concept of the knowledge gradient in the context of ranking 
and selection problems, which limits our discussion to offline problems with a small 
number of alternatives to measure. However, as we develop the idea in later chap-
ters, we show that this strategy can be applied to a wide range of online and offline 
problems. 

The idea works as follows. Assume that we have a finite number of discrete 
alternatives with independent, normally distributed beliefs. After n measurements, 
we let 6n be our vector of means and f3n our vector of precisions (inverse variances). 
We represent our state of knowledge as Sn = (6n,(3n). If we stop measuring now, 
we would pick the best option, which we represent by 

xn =max(9I?. xex x 
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The value of being in state Sn is then given by 

Vn{Sn) = 6%n. 

Now let 5 n + 1 (x) be the next state if we choose to measure xn = x right now, allowing 
us to observe W™+1. This allows us to update 8™ and /3%, giving us an estimate #™+1 

for the mean and /3™+1 for the precision (using equations (4.1) and (4.2)). Given that 
we choose to measure x — xn, we transition to a new state of knowledge 5 n + 1 (x), 
and the value of being in this state is now given by 

y»+ 1 (S n + 1 (x)) = m a x ^ /
+ 1 . 

x'' EX 

At iteration n, #™+1 is a random variable because we do not yet know what W n + 1 is 
going to be. We would like to choose x at iteration n which maximizes the expected 
value of y n + 1 (S ' n + 1 (x) ) . We can think of this as choosing xn to maximize the 
incremental value, given by 

yKG,n = E p ^ + ^ + ^ x ) ) - Vn{Sn)\Sn]. (5.1) 

The right-hand side of (5.1) can be viewed as the derivative (or gradient) of Vn(Sn) 
with respect to the measurement x. Thus, we are choosing our measurement to 
maximize the gradient with respect to the knowledge gained from the measurement, 
hence the label "knowledge gradient." We write the knowledge gradient policy using 

XKG>n = argmaxz/f G ' n . (5.2) 
x€zX 

The knowledge gradient, i /X G , n , is the amount by which the solution improves 
if we choose to measure alternative x. This is illustrated in Figure 5.1, where the 
estimated mean of choice 4 is best, and we need to find the value from measuring 
choice 5. The estimated mean of choice 5 will move up or down according to a normal 
distribution (we assume with mean 0). The solid area under the curve that exceeds 
the estimate for choice 4 is the probability that measuring 5 will produce a value that 
is better than the current best, which means that V n + 1 will increase. The knowledge 
gradient is the expected amount by which it will increase (we receive a value of 0 if 
it does not go up). 

5.1 THE KNOWLEDGE GRADIENT FOR INDEPENDENT BELIEFS 

For the case of independent normally distributed beliefs, the knowledge gradient is 
particularly easy to compute. When independence holds, we only change our beliefs 
about one alternative in every time period. Suppose that we are at time n, with 
estimates 6™ of the true values fix, after which we choose to measure a particular 
alternative xn. Then, we will have 6™+1 — 9™ for x ^ xn. Furthermore, for x = xn, 
while the exact value of #™+1 is still unknown at time n, there is a very simple 
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Figure 5.1 Illustration of the knowledge gradient if we were to measure choice 5. 

expression for the conditional distribution of 6™+1 given the time-n beliefs. We are 
able to write 

eZ+1~Af(9Z,a2
x<n), (5-3) 

where a^'n is the same quantity that we saw in (2.9). The distribution in (5.3) is known 
as the predictive distribution of 6™+l, because it represents our best prediction of the 
results of our next observation before the observation actually occurs. 

Below we provide the calculations required to compute the knowledge gradient, 
and we follow this presentation with a discussion of some properties of this policy. 
The full derivation of the knowledge gradient policy is deferred to Section 5.9.1. For 
now, it is enough to keep in mind that (5.1) involves computing an expected value 
over the predictive distribution. 

5.1.1 Computation 

For the case of independent normally distributed beliefs, the knowledge gradient is 
particularly easy to compute. Recall that the precision is simply the inverse of the 
variance, which is given by cr^n. Making the transition from precisions to variances, 
let &W be the variance of our measurement W. The updating formula for the variance 
of our belief a^n, assuming we measure xn = x, is given by 

Now let Varn(') be the variance of a random variable given what we know about the 
first n measurements. For example, Varn6™ = 0 since, given the first n measurements, 
6™ is deterministic. Next we compute the change in the variance in our belief about 

((^'-1)-1 + (^)-1) 
( < ^ - 1 ) 

-1 i 2,71- l/*? 
(5.4) 

w 
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Qn+l given 6n, given by 

S%n = Varn[0%+1 - 6%}. 

We need to remember that given what we know at iteration n, which means given 9n, 
the only reason that # n + 1 is random (that is, with a variance that is not equal to zero) 
is because we have not yet observed W n + 1 . As in Chapter 2, after some derivation, 
we can show that 

~2,n ~2,n 2,n+l /e c\ 

y x J (5.6) 

It is useful to compare the updating equation for the variance (5.4) with the change 
in the variance in (5.6). The formulas have a surprising symmetry to them. Equation 
(5.7) gives the expression in terms of the precisions. 

We then compute (£, which is given by 

Sic 
fl£ - maxx/^x flg, 

(5.8) 

(£ is the normalized influence of decision x. It is the number of standard deviations 
from the current estimate of the value of decision x, given by 6™, and the best 
alternative other than decision x. We always need to keep in mind that the value of 
information lies in its ability to change our decision. So, we are always comparing the 
value of a choice to the best of all the other alternatives. The quantity Q captures the 
distance between a choice and the next best alternative, measured in units of standard 
deviations of the change resulting from a measurement. 

We next compute 

/K) = C*(C) + #C), (5-9) 

where $(£) and (/>(() are, respectively, the cumulative standard normal distribution 
and the standard normal density. That is, 

and 

$(£) = I 4>(x) dx. 
J — oo 

(f)(() is, of course, quite easy to compute. $(£) cannot be calculated analytically, but 
very accurate approximations are easily available. For example, MATLAB provides 
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the function normcdf (x, //, a), while Excel provides NORMSDIST(£). Searching the 
Internet for "calculate cumulative normal distribution" will also turn up analytical 
approximations of the cumulative normal distribution. 

Finally, the knowledge gradient is given by 

v KG,n = 3?/(0- (5-10) 
Table 5.1 illustrates the calculations for a problem with five choices. The priors 

6n are shown in the second column, followed by the prior precision. The precision 
of the measurement is (5W = 1. 

Table 5.1 Calculations illustrating the knowledge gradient index 

Choice 0n f3n /T + 1 a m a x ^ f l g , C /(C) v$G 

-2.0616 0.0072 0.0279 
-2.1082 0.0063 0.0180 
-0.8158 0.1169 0.5731 

26.0 0.1111 1.1111 2.8460 28 -0.7027 0.1422 0.4048 
28.0 0.0625 1.0625 3.8806 26 -0.5154 0.1931 0.7493 

Interestingly, the knowledge gradient formula in (5.10) is symmetric. This means 
that, if we are looking for the alternative with the lowest value (rather than the highest), 
we still have 

1 
2 
3 

20.0 
22.0 
24.0 

0.0625 
0.1111 
0.0400 

1.0625 
1.1111 
1.0400 

3.8806 
2.8460 
4.9029 

28 
28 
28 

E 92, -mm9"+1\Sn,xn = = *£/(£), 
with the only difference being that 

maxXYx @™' is replaced by min^/ ̂ x 0™, in the 
definition of Q. This symmetry is a consequence of our choice of a Gaussian learning 
model with Gaussian observations. Intuitively, the normal density is symmetric about 
its mean; and thus, whether we are looking for the largest or the smallest normal 
value, the computation consists of integrating over the tail probability of some normal 
distribution. This does not mean that alternative x has the exact same KG factor in 
both cases (we are changing the definition of Q), but it does mean that the KG formula 
retains the same basic form and intuitive interpretation. Later on, we show that this 
does not hold when the learning model is not Gaussian. 

5.1.2 Some Properties of the Knowledge Gradient 

Recall that we provided a mathematical framework for an optimal learning policy in 
Section 4.2.2. It is important to keep in mind that the knowledge gradient policy is 
not optimal, in that it is not guaranteed to be the best possible policy for collecting 
information. But for ranking and selection problems, the knowledge gradient policy 
has some nice properties. These include 
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■ Property 1: The knowledge gradient is always positive, u^G,n > 0 for all x. 
Thus, if the knowledge gradient of an alternative is zero, that means we won't 
measure it. 

■ Property 2: The knowledge gradient policy is optimal (by construction) if we 
are going to make exactly one measurement. 

■ Property 3: If there are only two choices, the knowledge gradient policy is 
optimal for any measurement budget N. 

■ Property 4: If N is our measurement budget, the knowledge gradient policy is 
guaranteed to find the best alternative as N is allowed to be big enough. That 
is, if xN is the solution we obtain after N measurements, and 

x* = argmax/ix 

is the true best alternative, then xN —> x* as TV —» oo. This property is known 
as asymptotic optimality. 

■ Property 5: There are many heuristic policies that are asymptotically opti-
mal (for example, pure exploration, mixed exploration-exploitation, epsilon-
greedy exploration and Boltzmann exploration). But none of these heuristic 
policies is myopically optimal. The knowledge gradient policy is the only pure 
policy (an alternative term would be to say it is the only stationary policy) that 
is both myopically and asymptotically optimal. 

■ Property 6: The knowledge gradient has no tunable algorithmic parameters. 
Heuristics such as the Boltzmann policy and interval estimation have tunable 
algorithmic parameters, such as p in (4.9) and za in (4.10). The knowledge 
gradient has no such parameters but, as with all Bayesian methods, does require 
a prior, which is sometimes used as a tunable parameter. 

The knowledge gradient is not an optimal policy for collecting information, but these 
properties suggest that it is generally going to work well. But there are situations 
where it can work poorly, as we demonstrate in Section 5.2 below. 

5.1.3 The Four Distributions of Learning 

It is useful to identify four different distributions that arise in the learning process. 
We illustrate these in the context of learning problems where all random variables are 
represented by normal distributions. 

1) The prior distribution N(0®,(T%>0) , which gives our initial distribution of belief 
about the mean. 

2) The sampling distribution of the random variable W, which is given by 
iV(/x, Ow), where \x is the true mean and <7{y is the sample variance. 
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3) The posterior distribution (after n measurements), given by N(0™, cr2'n), which 
reflects the noise in the measurements W. 

4) The conditional distribution of 0™+1 given our beliefs at time n. This is 
also known as the predictive distribution. If we have seen W1,..., Wn, then 
0£+ 1 is random before we have observed Wn+1, which means that 0™+1 ~ 

An understanding of these distributions is useful because it helps to highlight the 
different types of uncertainties we are trying to resolve by collecting information. 

5.2 THE VALUE OF INFORMATION AND THE S-CURVE EFFECT 

The knowledge gradient computes the marginal value of information. What if we 
perform nx observations of alternative x, rather than just a single measurement? In 
this section, we derive the value of nx measurements to study the marginal value of 
information. Note that this can be viewed as finding the value of a single measurement 
with precision nx/3w, so below we view this as a single, more accurate measurement. 

As before, let 9® and /?£ be the mean and precision of our prior distribution of belief 
about \ix. Now let Q\ and /3* be the updated mean and precision after measuring 
alternative x a total of nx times in a row. As before, we let fiw = l/cr^y be the 
precision of a single measurement. This means that our updated precision after nx 
observations of x is 

ft=0°x+nxl3w. 
In Section 2.2.1, we showed that 

a2 'n = Varn[6nJrl - 6% 

where Varn is the conditional variance given what we know after n iterations. We 
are interested in the total variance reduction over n measurements. We denote this 
by a2'0, and calculate 

a2'°(nx) = a 2 ' 0 - a 2 - 1 

Recall that we have already seen this quantity in Section 3.2, where it had the same 
meaning. 

We next take advantage of the same steps we used to create equation (2.13) and 
write 

6l=6x+cl{nx)Z, 

where Z is a standard normal random variable and where &x(nx) = \Jcrx (nx) is 
the standard deviation of the conditional change in the variance of 01 given that we 
make nx observations. 
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(a) (b) 

Figure 5.2 Value of making n measures. In (a), the value of information is concave, while 
in (b) the value of information follows an S-curve. 

We are now ready to calculate the value of our nx measurements. Assume we are 
measuring a single alternative x, so nx > 0 and nxf = 0 for x' ^ x. Then we can 
write 

vx(nx) = E max(0°, + a0
x,{nx>)Zx>) — max el 

We can compute the value of nx observations of alternative x using the knowledge 
gradient formula in equation (5.10), 

, K ) ^ K ) / ( t a ^ * > 
where f(Q is given in equation (5.9). 

Now we have what we need to study some properties of the value of information. 
Consider a problem where aw — 1.0, <J° = 1.5 and A = iix — maxx/^x {ix> — 5. 
Figure 5.2(a) shows the value of n measurements as n ranges from 1 to 50. This plot 
shows that the value of information is concave, as we might expect. Each additional 
measurement brings value, but less than the previous measurement, a behavior that 
seems quite intuitive. Figure 5.2(b), however, gives the same plot for a problem 
where aw = 2.5. Note that when the measurement noise increases, the value of 
information forms an S-curve, with a very small value of information from the first 
few measurements, but then rising. 

The S-curve behavior arises when a single measurement simply contains too little 
information. Imagine, for example, trying to find the best baseball hitter out of a 
group using the experience of a single at-bat. If you use the knowledge gradient 
to guide the choice of what to measure, it is possible that it would not evaluate an 
alternative simply because we are learning too little from a single observation. This 
is one setting where the knowledge gradient policy may not work well. In fact, it is 
fairly easy to create situations where the knowledge gradient produces numbers on 
the order of 10"10. 
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Figure 5.3 The KG(*) policy, which maximizes the average value of a series of measurements 
of a single alternative. 

A variant of the KG policy is called the KG(*) policy, which finds the number 
of measurements n* which produces the highest average value of each observation, 
computed using 

arg max 
nx>0 

vx(nx) (5.11) 

Figure 5.3 illustrates this policy. If the value of information is concave, then n* = 1. 
If the function is nonconcave, then it is very easy to find the value of n* that solves 
equation (5.11). 

The KG(*) policy implicitly assumes that our measurement budget is large enough 
to sample alternative x roughly n* times. There are many applications where this is 
just not going to be true. For example, a baseball coach needs about 100 at-bats to 
get a real sense of how well a player can hit. Coaches simply do not have the time to 
let every player have this many at-bats before deciding who should be on the team. 
Furthermore, it is not effective to simply spread a fixed measurement budget over a 
large number of alternatives, especially when the measurement noise is large. 

Figure 5.4 illustrates the value of spreading a budget of 50 measurements uniformly 
over TV < 50 alternatives. If the measurement noise A is small (in the figure, this 
corresponds to A = 1/2), we do the best if we can observe all 50 alternatives exactly 
once, after which we pick what appears to be the best choice. Since our evaluation is 
very accurate, we do the best when we have the most choices. As the measurement 
noise increases, we get more value if we focus our measurement budget over a subset 
of the alternatives. For example, if A = 16, we do best if we arbitrarily choose eight 
alternatives out of our population of 50, and then focus on finding the best among 
these eight. 

This behavior can help explain why some choices tend to be biased in favor of 
cosmetic differences. If you have to choose the best baseball player, there is a bias 
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Figure 5.4 The value of spreading a budget of 50 measurements over M < 50 alternatives 
(from Frazier & Powell 2010). 

toward choosing tall, strong athletes, since these are attributes that are easy to identify 
and help to narrow the field. People are biased toward brands that are well known, 
and companies tend to work with established vendors. Simply landing near the top of 
an Internet search can also be a way of pruning a set of choices. However it is done, 
there are many examples where there is a need to use an initial filter to reduce the set 
of choices to one that can be evaluated using a fixed measurement budget. 

5.3 KNOWLEDGE GRADIENT FOR CORRELATED BELIEFS 

There are many problems where updating our belief about one alternative tells us 
something about other alternatives. Some examples include the following: 

■ We are trying to find the best set of features for a laptop. We try one laptop 
with 2G of RAM, a 2.4-GHz processor, a CD/DVD drive, and a 14-inch screen 
and weighing 5.2 pounds. We then offer a second laptop with 4G of RAM, but 
everything else the same. A third laptop has 4G of RAM, a 3.2-GHz processor, 
a CD/DVD drive, a solid-state internal disk drive, a 13-inch screen and weighs 
3.7 pounds (with a much higher price). We start by selling the first laptop, and 
find that we are getting sales higher than expected. Given the similarities with 
the second laptop, it is reasonable to assume that the sales of this laptop will 
also be higher than expected. 
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■ Now we are trying to find the best price for our laptop. We start with an initial 
guess of the sales volume we will for prices in $100 increments from 700 to 
1200. We start at $1100, and sales are much lower than we expected. This 
would lower our beliefs about sales at $1000 and $1200. 

■ We are trying to find the best of several paths to use for routing a bus. Each 
time the bus finishes a trip, we record the start and end times, but not the times 
for individual components of the trip (the bus driver does not have the time for 
this). If the travel time for one path is higher than expected, this would increase 
our estimates for other paths that have shared links. 

■ We are estimating who has a disease. If a concentration of a disease is higher 
than expected in one part of the population, then we would expect that people 
who are nearby, or otherwise have a reason to interact, will also have a higher 
likelihood of having the disease. 

Correlations are particularly important when the number of possible measurements 
is much larger than the measurement budget. The measurement might be continuous 
(choosing locations to evaluate the population for infections), or there may simply be 
a very large number of choices (such as websites relevant to a particular issue). The 
number of choices to measure may be far larger than our budget to measure them in 
a reliable way. 

Perhaps one of the most important features of the knowledge gradient is its ability 
to handle correlated beliefs. We assume that we have a covariance matrix (or function) 
that tells us how measurements of x and x' are correlated. If x is a scalar, we might 
assume that the covariance of fix and nx> is given by 

Cov(x,x')ote-p\x-x'\. 

Or, we just assume that there is a known covariance matrix E with element oxxi. For 
now, we continue to assume that the alternatives x are discrete, an assumption we 
relax later. 

There is a way of updating our estimate of 0n which gives us a more convenient 
analytical form than what is given in Section 2.2.3. To simplify the algebra a bit, 
we let Xw = dyy — 1/(3W. As we did in Section 5.1, we need the change in the 
variance of our belief due to a measurement. Following the development in Chapter 2, 
let E n + 1 (x) be the updated covariance matrix given that we have chosen to measure 
alternative x, and let E n (x) be the change in the covariance matrix due to evaluating 
x, which is given by 

tn(x) = E n - E n + 1 

where ex is a column vector of 0's with a 1 in the position corresponding to x. We 
note that (5.12) closely parallels (5.5) for the case of independent beliefs. Now define 

(5.12) 

(5.13) 
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the column vector an (x), which gives the change in our belief about each alternative 
xf resulting from measuring alternative x. This is calculated using 

an(x) = , EUex . (5.14) 

Also let <Ti(E,x) be the component (ei)Ta(x) of the vector a(x). Let Varn(') be 
the variance given what we know after n measurements. We note that if we measure 
alternative xn, then 

Varn[W^l-6^} = Varn [j^» + £n + 1] 
— 2-Jxnxn T~ A . (j.lj) 

It is useful to think about this for a moment. We index H^n+1 by xn to emphasize 
the fact that our observation is a scalar quantity. Since 0n is deterministic given n 
(that is, given what we know about our first n measurements), Varn [W^1 - 6n] = 
Varn [W^1]. Next recall that WXJ~X = fixn + e n + 1 , where fixn is random (because 
of our Bayesian prior) and en+1 is random (and independent of fixn). So, we are 
doing a noisy measurement around an uncertain mean. Our estimate of the variance 
of /ixn after n measurements is T^nxn. This reasoning gives us (5.15). 

Next define the random variable 

Zn+l = (W?+l - en
xn)/^Varn[W^l-e^}. 

We can now rewrite (2.22) as 

6>n+1 = On + a{xn)Zn+1. (5.16) 

Equation (5.16) nicely brings out the definition of a(xn) as the vector of variances of 
the future estimates 0™+1 given what we know at time n (which makes 6n determin-
istic). Essentially, even though a single measurement may change our beliefs about 
every alternative, the "randomness" in this change comes from a scalar observation, 
so the conditional distribution is expressed in terms of the scalar Zn+l. This is a 
useful way of representing 0 n + 1 , especially for problems with correlated beliefs, as 
we see next. 

The knowledge gradient policy for correlated beliefs is computed using 

rKG (s) = a r g m a x E l m a x / i ^ 1 | Sn = s,xn = x) (5.17) 
x L i J 

= argmaxE[max (6? + di{xn)Zn+1) \ Sn,xn - x\ 

where Z is a one-dimensional standard normal random variable. The problem with 
this expression is that the expectation is hard to compute. We encountered the same 
expectation when measurements are independent, but in this case we just have to do 
an easy computation involving the normal distribution. When the measurements are 
correlated, the calculation becomes more difficult. 
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Figure 5.5 
dominated. 

Regions of z over which different choices dominate. Choice 3 is always 

There is a way to compute the expectation exactly. We start by defining 

h(6n,a(x)) = E [max (0? + ^ ( x n ) Z n + 1 ) | Sn,xn = x\ (5.18) 
L i J 

Substituting (5.18) into (5.17) gives us 

XKG(s) = argmax/i((9n,a(x)). (5.19) 
X 

Now let /i(a, b) = Emax^aj + biZ), where a = 6™ ,b = ai(Sn,xn) and Z is our 
standard normal deviate. Both a and b art M-dimensional vectors. We next sort the 
elements bi so that &i < fr2 < • • • so that we get a sequence of lines with increasing 
slopes. If we plot the lines, we get a series of cuts similar to what is depicted in Figure 
5.5. We see there are ranges for z over which the line for alternative 1 is higher than 
any other line; there is another range for z over which alternative 2 dominates. But 
there is no range over which alternative 3 dominates; in fact, alternative 3 is dominated 
by every other alternative for any value of z. What we need to do is to identify these 
dominated alternatives and drop them from further consideration. 

To do this we start by finding the points where the lines intersect. If we consider 
the lines a* + 6*2 and aj+i + bi+\z, we find they intersect at 

Ci 
G i + l 

0»+l k 
For the moment, we are going to assume that bi+\ > bi (that is, no ties). If Q _ I < 
Ci < Ci+i, then we can generally find a range for z over which a particular choice 
dominates, as depicted in Figure 5.5. We can identify dominated alternatives such 
as alternative 3 in the figure when Q + I < Q . When this happens, we simply drop it 
from the set. Thus, instead of using c2, we would use cf

3 to capture the intersection 
between the lines for choices 2 and 4. 
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(a) (b) 

Figure 5.6 Estimate of a continuous function after (a) three measurements and (b) four 
measurements. 

Once we have the sequence Q in hand, we can compute (5.17) using 
M 

h{a, b) = ^ ( & ; + i - &*)/(-M), 
i = l 

where as before, f(z) = z$(z) + <t>{z). Of course, the summation has to be adjusted 
to skip any choices i that were found to be dominated. 

Figure 5.6 illustrates the use of the correlated knowledge gradient algorithm when 
it is used to try to estimate a continuous function, starting with a constant confidence 
interval over the entire range. The logic begins by sampling the two endpoints. 
The third measurement is shown in Figure 5.6(a), which occurs roughly at the 2/3 
point (even though our best estimate of the maximum is at the midpoint). Figure 
5.6(b) shows the fourth measurement, which is to the left of the third measurement 
(which corresponds roughly to where the current estimate of the maximum lies). The 
measurements illustrate that we are not choosing points that correspond to the highest 
point on the curve, but instead we are choosing the points where we have the best 
chance of improving our estimate of the maximum of the function. 

Figure 5.7 shows the log of the expected opportunity cost as a function of the num-
ber of measurements for three different situations. The curve labeled "correlated KG" 
represents the performance of the correlated knowledge gradient algorithm exactly 
as presented in this section. The curve labeled "hybrid KG" represents a situation 
where we have correlated beliefs, as in Section 2.2.3, but we do not consider the 
correlations when making decisions, and instead apply the independent KG formula 
from Section 5.1. Finally, "independent KG" indicates a situation where we do not 
account for correlations in any way, neither in our prior nor in our policy. Clearly, we 
do best when we incorporate correlations into our decision-making. Interestingly, we 
do the worst when our problem has correlated beliefs, but we do not consider them. 
It is not enough to use a more powerful learning model - we also need a good policy 
to match. 

Handling correlations between measurements has tremendous practical value. 
When we assumed independent measurements, it was necessary to measure each 
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Figure 5.7 Expected opportunity cost as a function of the number of measurements, for each 
of three policies (from Frazier et al. (2008)). 

option at least once. There are applications where the number of potential measure-
ments is far greater than the number of measurements that we can actually make. If 
we have information about correlations, we can handle (in principle) a much larger 
number of measurements (even potentially infinite) by using correlations to fill in the 
gaps. 

5.4 ANTICIPATORY VERSUS EXPERIENTIAL LEARNING 

It is important to recognize learning in two different settings: 

Anticipatory learning - This is the learning that we anticipate doing as part of our 
decision rule, when we are simulating decisions in the future. 

Experiential learning - This is learning that we would do as we experience data 
from real observations from the field. 

Anticipatory learning occurs within the decision function X7r(St) when decisions 
require calculations that approximate in some way how new information may change 
our underlying belief. In our discussion of decision trees in Section 1.6, Section 
1.6.1 presented a basic decision tree where outcomes did not change downstream 
probabilities. This is a case of a policy that does not use anticipatory learning. 
Sections 1.6.2 and 1.6.3 provided examples where observations of information were 
used to change downstream distributions within the decision tree used to make the 
decision. These sections provide examples of policies that use anticipatory learning. 

Experiential learning is what happens after a decision has been made, and we 
then observe an actual outcome. Section 4.2.2 introduced the transition function 
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St+i = SM(St)Xt, Wt+i) which describes the updated knowledge state given an 
observation W*+i. In some cases, Wt+i comes from a real physical system where 
the new information might be observed sales, or an observed response to a drug 
treatment. It is entirely possible that the distribution generating observed values of 
Wt+i is quite different than a distribution fw(w) t n a t w e are assuming for Wt+i 
within our policy Xn(St). If this is the case, then it is natural to use observations of 
Wt+i to update our estimate of the density fw(w)- This is experiential learning, and 
it is assumed to be part of the transition function SM(-). 

There are, however, many applications where SM(-) represents a computer sim-
ulation, and Wt+i is generated from an assumed probability distribution fwM- If 
fw (w) is the distribution we use within our policy Xn(St), then we are not actually 
learning anything from an observation Wt+i that comes from /w(iu). This is quite 
common in many stochastic simulations, where the focus is on the uncertainty in W, 
and not on the uncertainty about the distribution fw(w) of W. An exception would 
be a simulation that is focusing explicitly on policies for collecting information. In 
such simulations, it is natural to make observations of Wi+i as we step forward using 
St+i = SM(St,xt,Wt+i) which are drawn from a truth that is unknown to the policy 
X«(St). 

With these concepts in mind, we can describe three modeling strategies based on 
how new information is used. 

1) No anticipatory or experiential learning. This is the default strategy in both 
deterministic and stochastic optimization, where we assume that observations 
of random variables are realizations from a known distribution and, as a result, 
would not change our belief about the distribution. This situation is analogous 
to the "independent KG" curve in Figure 5.7. 

2) Experiential learning without anticipatory learning. Here we use actual obser-
vations of random variables to update our beliefs, but we ignore the fact that 
we are going to do this when we make a decision. Learning is thus reduced 
to a statistical problem, with no optimization component. This is exactly the 
"hybrid KG" situation in Figure 5.7. 

3) Experiential learning with anticipatory learning. This is where we use learning 
within the policy, as in equation (5.19), and in the transition function, as in 
equations (2.22) and (2.23). Such a situation corresponds to the "correlated 
KG" curve in Figure 5.7. 

We ignore the combination of using anticipatory learning without experiential learn-
ing, because it does not make sense to anticipate the effect of observations on beliefs, 
but then not use real observations to update beliefs. 

Anticipatory learning spans any policy (optimal or heuristic) which uses some 
representation of the uncertainty in our belief about the value of each choice. We did 
this heuristically in Chapter 4 with policies such as mixed exploitation-exploration, 
epsilon-greedy exploration, and Boltzmann exploration. In this chapter, the knowl-
edge gradient, expected improvement, and linear loss policies all represent methods 
which use some form of explicit learning within the measurement policy. 
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5.5 THE KNOWLEDGE GRADIENT FOR SOME NON-GAUSSIAN 
DISTRIBUTIONS 

It is important to remember that, while the definition of the knowledge gradient given 
in (5.1) is general, and can be written down for almost any learning problem, the KG 
formula given in (5.10) is geared specifically to the ranking and selection problem with 
independent alternatives and a normal-normal learning model (normally distributed 
prior, normally distributed measurements). This is not particularly surprising, because 
the formula uses the functions <j> and $ that characterize a Gaussian distribution. We 
might expect other learning models to yield completely different formulas. 

In this section, we give expressions for the marginal value of a single measurement 
for some of the non-Gaussian learning models presented in Chapter 2. They have 
certain notable differences from the normal-normal case, but all of them are based on 
the relationship between our beliefs about alternative x, and our beliefs about "the 
best alternative other than x." In all of these examples, we assume that the alternatives 
are independent, for the simple reason that there are no convenient Bayesian conjugate 
priors for any distribution other than normal. 

5.5.1 The Gamma-Exponential Model 

Suppose that we have M exponentially distributed random variables with means 
Ai,..., AM , and we wish to find the one with the largest rate. For instance, we might 
be looking at a number of servers, with the goal of finding the one with the highest 
(fastest) service rate. Alternately, we might have a number of products, each with an 
exponential daily demand. In this setting, we might want to discover which product 
has the lowest demand (corresponding to the largest exponential rate), so that we 
might take this product out of production. A final example is the problem of network 
routing, where we have a number of possible routes for sending packets, and the 
objective is to find the route with the lowest ping time. In all of these problems, the 
observations (service time, daily demand, network latency) are positive, which means 
that the normal-normal model is not a good fit. 

Instead, we use the gamma-exponential model (which we first saw in Section 
2.3.1). We start by assuming that the rate \ x of each alternative is uncertain and 
follows a gamma distribution with parameters ax and bx. When we choose to measure 
alternative xn at time n, we make a random observation W^1 ~ E (Xxn) and update 
our beliefs according to the equations 

a?+1 

tf*+i -

I ax otherwise, 

b7! otherwise. 

We still have an independent ranking and selection problem, as in (4.1) and (4.2), 
but the specific updating mechanism for the alternative we measure is taken from the 
gamma-exponential model in Chapter 2. 



106 THE KNOWLEDGE GRADIENT 

Recall that, given the beliefs a£ and b™, our estimate of A^ is a™/b™, the mean of 
the gamma distribution. The KG factor of alternative x at time n is now given by 

KG,n = jg a^1 a 
max *., - max —' 

x> bnfl x' bn. 

x' gn (5.20) 

We omit the steps in the computation of this expectation; interested readers can follow 
the procedure in Section 5.9.1 and compute the formula for themselves. However, 
we point out one interesting detail. As in the normal-normal case, the computation 
of v£G,n requires us to find the conditional distribution, given Sn and xn = x, of 
the parameter 6"+1. This is known as the predictive distribution of 6™. It is easy to 
see that 

P(6£+1 >y\Sn,xn = x) = F(Wn+l >y-bl\Sn,xn = x) 
E[P (Wn+1 >y-bl\\x) | Sn, xn = x] 

'e-**iv-m\Sn,xn 

. n 

y 

We get from the second line to the third line by using the cumulative distribution (cdf) 
of the exponential distribution, since W£+l is exponential given Xx. The last line uses 
the moment-generating function of the gamma distribution. From this calculation, it 
follows that the density of 6!J+1 *s given by 

f(y) = 
anx(bn

xf* 
7f«S + l 

which is precisely the Pareto density with parameters a™ and b™. 
Once we have this fact, computing (5.20) is a matter of taking an expectation of 

n 

a certain function over the Pareto density. Define C% = maxx/^x -r%. As before, 
X 

this quantity represents the "best of the rest" of our estimates of the rates. We then 
compute 

m< (C2)fl-+1 
^ = 

(«S + 1 ) a£+l (5.21) 

which is a sort of baseline knowledge gradient. However, depending on certain 
conditions, we may subtract an additional penalty from this quantity when we compute 
the final KG formula. 

It can be shown that the KG formula is given by 

tKG,n _ — < 

n 

if x = argmaxx/ ^ , 

(Cx ~ # ) ^ -* r - > maxx, ^ - , 
\ X / X x' 

(5.22) 

otherwise. 
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Table 5.2 Calculations of the KG formula for the gamma-exponential model. 

Choice 

1 
2 
3 
4 
5 

an 

1.0 
4.0 
3.0 
5.0 
2.0 

bn 

7.2161 
12.1753 
8.1802 
19.3574 
5.4413 

an/bn 

0.1386 
0.3285 
0.3667 
0.2583 
0.3676 

Cn 

0.3676 
0.3676 
0.3676 
0.3676 
0.3667 

Too low? 

Yes 
No 
No 
Yes 
No 

^ 

0.0472 
0.0390 

0.0540 

Penalty 

0.0390 
0.0008 

0 

Final KG 

0 
0.0081 
0.0382 

0 
0.0541 

This particular formula is skewed toward exploitation. If x ^ arg maxx' -tff, we 
X1 

subtract an additional value C™ — -g% from the KG factor of alternative x. However, 
71 

if x = arg maxx/ -^-, there is no additional penalty. Furthermore, if our estimate 
X1 

n_i_- i n 7 i 

of \ x is low enough that ^ — < maxx/ -^-, the KG factor is automatically zero. 
Since is£G>n > 0 for all x, just like in the normal-normal case, this means that we 
won't even consider an alternative if our beliefs about it are too low. So, there is a 
more pronounced slant in favor of alternatives with high estimates than we saw in the 
normal-normal setting. 

Table 5.2 illustrates this issue for a problem with five alternatives. Based on our 
beliefs, it seems that alternative 5 is the best. This alternative also has the highest KG 
factor. Although our estimate of A3 is very close to our estimate of A5 (they differ 
by less than 0.001), the KG factor for alternative 5 is nearly 1.5 times larger than the 
KG factor for alternative 3. Of the three remaining alternatives, only one is believed 
to be good enough to warrant a (very small) nonzero KG factor. 

One should not take this numerical example too close to heart, however. If we 
keep the same numbers but let a^ = 1 and 63 = 2.78, then alternative 3 will have 
the largest KG factor, even though our estimate of it would actually be 0.3597, lower 
than in Table 5.2. Just as in the normal-normal problem, the KG method weighs our 
estimate of a value against the variance of our beliefs. All other things being equal, 
alternatives with lower values of a™ (that is, alternatives that we have measured fewer 
times) tend to have higher KG factors, so the KG method will occasionally be moved 
to explore an alternative that does not currently seem to be the best. 

As a final detail in our discussion, let us consider the case where our goal is to find 
the alternative with the smallest rate, rather than the largest. So, instead of looking for 
the product with the lowest demand (highest rate) in order to take it out of production, 
we are now looking for the product with the highest demand (lowest rate) in order to 
determine the most promising line of research for new products. In this case, the KG 
factor of alternative x is defined to be 

uKG,n = E mm —r mm ,n+l 
gn 
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The predictive distribution of 6™+1, given Sn and xn = x, is still Pareto with param-
n 

eters a™ and b™. As before, let C™ = m i n x / ^ x -tff, and let z>™ be as in (5.21). The 
x' 

KG formula resulting from taking the appropriate expectation over the Pareto density 
is 

{ i>x i f z^a rgmax* / f̂ -, 

0 otherwise. 
This formula is the mirror image of (5.22). It has a similar appearance, but its effect 
is precisely the opposite: It rewards exploration. In this case, we never impose a an, 
penalty on any alternative except for arg max x / -$-. In fact, if our beliefs about the 

x' 
best alternative are too good (i.e. our estimate of the corresponding Xx is too small), 
the KG factor of this alternative is zero, and we do not measure it. Even if we believe 
that the best alternative is relatively close to the second best, we still penalize the one 
that we think is the best. 

Recall that, in the normal-normal case, the KG formula was the same regardless 
if we were looking for the alternative with the largest or the smallest value. However, 
in the gamma-exponential model, there is a clear difference between minimizing 
and maximizing. The reason is because the gamma and exponential distributions are 
not symmetric. Our use of the gamma prior means that our estimate of Xx could 
potentially take on any arbitrarily high value, but it can never go below zero. Thus, 
roughly speaking, our beliefs about Xx are more likely to be low than to be high. To 
put it another way, the true value Xx can always be higher than we think. Thus, if we 
are looking for the lowest value of \ x , we need to push ourselves to explore more, so 
as not to get stuck on one alternative that seems to have a low rate. However, if we 
are looking for the highest value of Xx, it is often enough to stick with an alternative 
that seems to have a high rate: If the rate is not really as high as we think, we will 
discover this quickly. 

5.5.2 The Gamma-Poisson Model 
Let us now consider a ranking and selection problem where our observations are 
discrete. For instance, we might consider the problem of finding the product with 
the highest average demand, assuming that the individual daily demands are integer-
valued. Then, the daily demand for product x can be modeled as a Poisson random 
variable with rate Ax. We assume that Xx follows a gamma distribution with parame-
ters ax and bx. If we choose to measure the demand for product xn after n days, our 
beliefs are updated according to the equations 

a n + l = | <+^ n + 1 if*n=Z, 
1 a™ otherwise, 

I b7! otherwise, 
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where N™+1 is the number of units of product x ordered on the next day. We assume 
that iV™+1 ~ Poisson (Xx). If we are looking for the largest rate, the definition of 
the KG factor is once again 

uKG,n = E max -Z-TT - max -%->n+1 x' bn, bZ 
gn 

The problem looks deceptively similar to the gamma-exponential problem. How-
ever, the first difference is that the predictive distribution of a£ + 1 is now discrete, 
since our observation is Poisson. In fact, it can be shown that 

~n+l _ nn = ax
l + k\Sn,xn = x) = r (eg + k) 

r(as)r(fc + i) \b\ ̂ + i / W + iJ 
for k = 0,1,2,.... We can view this as a sort of generalization of the negative binomial 
distribution. In fact, if a™ is an integer, then 

r ( a g + A;) /aJJ + fc-1 
r(as)r(fc + i) \ a ; - i 

and the predictive distribution of a™+1 is the classic negative binomial distribution, 
with a£ + 1 representing the total number of Bernoulli trials that take place before a£ 
failures occur, with ^ p j being the success probability. 

There is no closed-form expression for the cdf of a negative binomial distribution; 
however, because the distribution is discrete, the cdf can always be evaluated exactly 
by computing and adding the appropriate terms of the probability mass function. Let 
Fa (y) = P (Ya < y), where Ya has the negative binomial distribution for a failures, 
with success probability ^rp j . The basic KG quantity equals 

vn
x = C?Fa« (C™ (bn

x + 1)) - §Fan+1 {C% (bn
x + 1) + 1), 

and it can be shown that the KG factor is given by 

,KG,n 
i^x-iCx-^) ifx^argmaxx> ^7 , 
I \ x / xf 

= < if ax < rrn 
6!} + l - u x ) 

(5.24) 

0 otherwise. 

Interestingly, if our estimate of \ x is too high, we will not measure x at all, but if we 
measure an alternative that does not seem to have the highest rate, the KG factor has 
an extra penalty. 

5.5.3 The Pareto-Uniform Model 

Let us consider the problem of finding the product with the largest demand from a 
different angle. Suppose now that the demand for product x is uniformly distributed 
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on the interval [0, Bx), where Bx is unknown. We assume that Bx follows a Pareto 
distribution with parameters a0 > 1 and b° > 0. When we choose to perform a 
market study on product x at time n , we update our beliefs about x according to 

+ 1 = fmax(6S,W?+1) \£xn=x, 
\K. otherwise, 

a^1 = I < + 1 ifxn = x, 
a™ otherwise. 

The random variable W™+1 is our observation of the demand for product x and is 
uniform on [0, Bx\. 

The goal is to find the product with the largest possible demand m a x x Bx. Recall 
that E [Bx | S71} = ̂ | . Then, the knowledge gradient is defined to be 

v ^ n = E max x ,, m a x —x 

*' a^,+1 - 1 x' a£ , - 1 
gn 

The procedure for computing this expectation is the same as in the other models 
that we have considered. One thing that makes it a bit messier than usual is that 
the predictive distribution of 6™+1, given Sn and xn = x, is neither discrete nor 
continuous, but a mixture of both. This is because if we measure x, then fr™+1 is the 
maximum of a constant and our observation, which has the effect of "folding" part 
of the continuous density of the observation. It can be shown that 

P(^+ 1 = bx
l\Sn,xn = x) = °^ 

For y > b™, however, the predictive distribution has a scaled Pareto density 

f(y\Sn,xn = x) 
<*2 + l V ,a£ + l 

This mixed distribution complicates the computation slightly, but the principle is the 
same. As usual, let 

an,bn, 
C% = m a x -f-3^ 

denote the "best of the rest." In this case, the basic KG quantity is 

1 (ag + l ) " " - 1 ^ ) " " 
x al («5 - 1) (ajj)^"1 (CX)""-1 ' 

and the KG formula is 

KG,n 

a71 bn 

if z ^ a r g m a x x / a ^ _?{, 
i>?-(3SS-Cj) if^±P<Q, (5.25) 

otherwise. 
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Thus, if we think that x has the largest possible demand and our estimate of Bx is too 
much larger than our other estimates, we do not measure x. If x seems to have the 
largest demand but the actual estimate is relatively close to our other estimates, the 
KG factor of x is nonzero but has an extra penalty term. Otherwise, the KG factor is 
equal to z>™, with no additional penalty. This particular model promotes exploration. 

5.5.4 The Beta-Bernoulli Model 

The last model that we consider in this section is the beta-Bernoulli model. In this 
model, we assume that our observations can only take on the values 0 and 1. The 
unknown parameter of each alternative is the corresponding success probability. 

In fact, it is this setting, rather than the normal-normal setting, that motivated much 
of the pioneering work on optimal learning. A popular application arose in the setting 
of clinical trials. Our alternatives may correspond to different experimental medical 
treatments. A treatment can result in either success or failure, and we are interested 
in finding the treatment with the highest success probability. The challenge comes 
when we have a relatively small number of clinical trials that we can perform. We 
must decide which treatments to test in order to find the highest success probability 
most efficiently. 

As in Chapter 2, we assume that the success probability px of treatment x follows 
a beta distribution with parameters ax and /3X. If we decide to test treatment xn at 
time n, the result Wx£l of the test is 1 with probability pxn and 0 with probability 
1 — pxn. Our beliefs about the treatment are updated using the equations 

a n + l _ ) ^x T wx 

a7! otherwise, 

r + i = f/3? + (l-WT+1) if*n = s, 
x 1/3™ otherwise. 

71 

Our estimate of px given Sn is E (px I Sn) = „nlan • Recall that a™ roughly cor-
responds to the number of successes that we have observed in n trials, whereas /3" 
represents the number of failures. As usual, the KG factor is defined as 

vKG,n = £ < ' + 1 Oil 
max w + 1 * - max ■ a",+ 1+/3"+ 1 x> a£,+/9», 

Unlike some of the other models discussed in this section, the predictive distri-
bution in the beta-Bernoulli model is very simple. Given Sn and xn = x, the 
conditional distribution of a™+1 is essentially Bernoulli. There are only two possible 
outcomes, whose probabilities are given by 

P « + 1 = c£ + 1) = a*0 , P « + 1 = an
x) = P* 0 . 

The predictive distribution of/3™+1 is also Bernoulli, but the probabilities are reversed. 
That is, P ( ^ + 1 = # ? + !) is now - ^ . 
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Table 5.3 Calculations of the KG formula for the beta-Bernoulli model. 

Choice 

1 
2 
3 
4 
5 

an 

1 
2 
1 

67 
268 

fin. 

13 
11 
20 
333 
34 

otn 

an+£n+l 
0.0667 
0.1429 
0.0455 
0.1671 
0.8845 

an 

an+/3n 

0.0714 
0.1538 
0.0476 
0.1675 
0.8874 

an + l 
a n + j 8 n + l 

0.1333 
0.2143 
0.0909 
0.1696 
0.8878 

C n 

0.8874 
0.8874 
0.8874 
0.8874 
0.1675 

KG 

0 
0 
0 
0 
0 

Letting C™ = max^ /^ an ^ n as usual, we can derive the KG formula 

ax < fn ^ Q'x+1 

otherwise. 

KG,n = if "2 < C n < —^— (5.26) 

Observe that 
< < < < <£ +1 

and the KG factor depends on where C™ falls in relation to these quantities. In this 
case, we do not measure x if we believe px to be too low or too high. We will only 
benefit from measuring x if our beliefs about px are reasonably close to our beliefs 
about the other success probabilities. There is a certain symmetry to this formula 
(both low and high estimates result in knowledge gradients of zero); and in fact, it 
has the same symmetric quality of the KG formula for the normal-normal model. If 
our objective is to find the smallest success probability rather than the largest, (5.26) 
remains the same; the only change is that we replace the maximum in the definition 
of C™ by a minimum. 

An unexpected consequence of this structure is that it is entirely possible for all the 
KG factors to be zero in the beta-Bernoulli problem. Table 5.3 illustrates one possible 
instance where this might happen. Intuitively, it can occur when we are already quite 
certain about the solution to the problem. In the problem shown in the table, it seems 
clear that alternative 5 is the best, with 268 + 34 = 302 trials yielding a very high 
success probability. Among the other alternatives, there is some competition between 
2 and 4, but neither is close to alternative 5. As a result, our beliefs about 2 and 4 are 
too low for one measurement to change their standing with respect to 5. Similarly, 
our beliefs about alternative 5 are too high for one measurement to change its standing 
with respect to any of the others. Thus, all the KG factors are zero, which essentially 
means that the KG method does not really care which alternative to measure (we can 
choose any one at random). 

Of course, it is conceivable (though it may seem unlikely) that alternative 5 is 
not really the best. For instance, if we could measure alternative 2 several hundred 
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Table 5.4 Table showing the distinctions between sampling, prior, and predictive 
distributions for different learning models. 

Sampling Distribution Prior Distribution Predictive Distribution 

Normal Normal Normal 
Exponential Gamma Pareto 

Poisson Gamma Negative binomial 
Uniform Pareto Mixed discrete/Pareto 
Bernoulli Beta Bernoulli 

Multinomial Dirichlet Multinomial 
Normal Normal-gamma Student's t-distribution 

times, we might find that it actually has a higher success probability, and we were 
simply unlucky enough to observe 11 failures in the beginning. Unfortunately, the KG 
method only looks ahead one time step into the future and thus is unable to consider 
this possibility. This hints at possible limitations of the knowledge gradient approach 
when our observations are discrete, similar to the S-curve effect of Section 5.2. 

5.5.5 Discussion 

Our examination of ranking and selection with non-Gaussian learning models un-
derscores several interesting issues that were not as clear in the basic normal-normal 
problem. For one thing, there is now a real distinction between the prior, sampling and 
predictive distributions. In the normal-normal model, all three of these distributions 
were normal; but in other problems, all three can come from different families. 

So far, we have managed to derive knowledge gradient formulas in all of these 
cases. It is clear, however, that a knowledge gradient formula depends not only on 
the particular type of learning model that we are using, but also on the objective 
function. In the gamma-exponential model, the KG algorithm uses two different 
formulas depending on whether we are looking for the largest exponential parameter 
or the smallest. Even in the basic normal-normal model, we can change the KG 
formula completely by changing the objective function. 

The power and appeal of the KG method come from our ability to write the defini-
tion of the knowledge gradient in (5.1) in terms of some arbitrary objective function. 
Every new objective function requires us to recompute the KG formula, but as long 
as we are able to do this, we can create algorithms for problems where the objective 
function is very complicated. This allows us to go beyond the simple framework of 
ranking and selection, where the goal is always to pick the alternative with the highest 
value. Later on in this book, we will create knowledge gradient methods for problems 
where the alternatives are viewed as components that make up a large system, and the 
objective is a complicated function of our beliefs about the alternatives that somehow 
expresses the value of the entire system. 
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5.6 RELATIVES OF THE KNOWLEDGE GRADIENT 

The fundamental idea underlying KG is that a single piece of information contributes 
economic value by improving our ability to optimize (e.g. allowing us to choose a 
better alternative). This basic concept is quite intuitive, and it is no surprise that it has 
attracted a lot of attention in the scientific literature. However, there are different ways 
to plausibly define the value of information as a mathematical quantity, leading to 
decision-making policies that are closely related to KG, but not exactly identical. This 
section examines two well-known variations on the theme of value of information, 
known respectively as "expected improvement" and "linear loss." 

5.6.1 Expected Improvement 

The expected improvement (El) policy grew out of a class of learning problems where, 
instead of dealing with a finite set of alternatives, we have a continuous spectrum. For 
example, a semiconductor manufacturer uses liquid argon to provide an environment 
for sputtering, or depositing thin layers of metal, on semiconductor wafers. Argon is 
expensive and has to be purchased from a chemical manufacturing company, so the 
exact amount x that is needed may require some fine-tuning. We study this problem 
class in much more detail in Chapter 16. For now, we can examine El in the context 
of the basic ranking and selection problem with M alternatives. 

El defines improvement in the following way. At time n, our current estimate of 
the largest value is given by max^ 0™,. We would like to find alternatives x whose 
true value JJLX is greater than this estimated quantity. To put it another way, we prefer 
x such that /ix is more likely to exceed (or improve upon) our current estimate. We 
then define the El factor of x as 

max I fa- max 0£,, 0 j \ Sn, x — x (5.27) 

This expression is exactly identical to the one we derived in Section 3.2. We can 
interpret the El factor as the value of collecting a single observation about x versus 
doing nothing. According to El, collecting information about x is only valuable 
if fix > maxx/ 0™,, that is, if \ix brings about an improvement. Otherwise, the 
value is zero. Since \ix is unknown at time n (but maxx/ 0™, is known), we take an 
expected value of the improvement over the distribution of \ix. At time n, this is 
.AM 0", (&X1)2) • Like KG, the El expectation in (5.27) leads to an explicit formula 

^ " = ^ " ^ ^ 1 (5-28) 

which closely resembles (5.10), with some differences that we highlight below. The 
policy then makes the decision using 
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There are two main differences between El and KG. First, v x ' n is calculated 
based on how likely 0™+1 is to exceed maxx/^x 0X,; that is, x is compared to the best 
of the other alternatives. On the other hand, El simply uses the current best estimate 
max^/ 0™,, the maximum over all alternatives, as the reference point. Second, El 
uses the prior variance ax instead of the one-period variance reduction ax. One way 
to interpret this is that El essentially assumes a^y = 0. That is, El considers what 
would happen if we could learn fix exactly in a single measurement. 

We can still use El in problems with noisy measurements, but the noise is not 
explicitly considered by the El calculation. The literature on El sometimes goes so 
far as to assume that a^ — 0 in the underlying learning problem. This is not very 
interesting in ranking and selection, because we could find the exact optimal solution 
just by measuring every alternative once. However, in problems with continuous 
decisions, finding the best x is still challenging even when observations are exact. 
We return to El in Chapter 16, where it is known as efficient global optimization. 

5.6.2 Linear Loss* 

Two policies have been proposed in the literature under the names LL(1) and LL\, 
which might leave the impression that they are the same policy. Despite having very 
similar names, LL(1) and LL\ are actually two different policies. Both are exam-
ples of "linear-loss" or LL methods, close analogs to KG that were developed for 
ranking and selection with unknown means and variances. We discussed learning 
in this setting in Section 2.3.5. Supposing that alternative x has value / i x , and our 
observations of \ix also have an unknown precision fi™, we can represent our beliefs 
about the mean and precision using a normal-gamma prior. Recall that, when we say 
that (/ix, P™) follows a normal-gamma distribution with parameters 0%, rx, ax, bx, 
we mean that fi™ is gamma with parameters ax and bx, and the conditional distribu-
tion of \ix given that j3w = r is normal with mean 0X and precision rxr. For each 
observation of \xx that we collect, we use (2.37)-(2.40) to update our beliefs. 

Both 1/1/(1) and LL\ originate from a technique called LL(N). This procedure 
was designed for a version of ranking and selection where, instead of collecting 
observations one at a time, we collect N of them at once, in a batch. Instead of making 
sequential decisions, where we first choose an alternative, then collect an observation, 
update our beliefs, and make a new decision based on the new information, we make 
only one decision. Before collecting the batch of information, we choose how many 
observations (out of TV total) should be collected for each alternative. For example, if 
we have three alternatives and N = 10, we might make a decision to collect k\ = 3 
observations of fi\, k<i = 5 observations of ^2» and k% = 2 observations of n%. We 
make this decision based on the beliefs we have prior to collecting the batch. For 
example, if we have a lot of uncertainty about \±<i (corresponding to a low value of 
7-2), we might want to assign more observations to alternative 2. 

Our goal is to choose an allocation vector k — (&i,..., &M) with X^=i k{ = N 
and ki > 0 to maximize the usual objective function (4.7). In this setting, we can 
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write the objective as 
m&xEFk(^pw,W) (5.29) 

k 

with Fh (/i, f3w, W) = maxx 0^. Notice that / ? w is now included as part of the 
"truth," since it is also a vector of unknown parameters and affects the observations 
we get. The name "linear loss" is due to the fact that maximizing EFk is the same as 
minimizing an equivalent expression EpE^ (maxx /ix — maxx 0%)], the expected 
loss or difference between the true best value and the estimated best value. 

We cannot compute (5.29) directly, but we can approximate it. Let 
x* = arg maxx 8® be the alternative that seems to be the best initially, before any 
information is collected. Because x* does not depend on the choice of allocation k, 
we can rewrite (5.29) as 

maxE(max0% - 0%V (5.30) 

Although (5.29) and (5.30) have different optimal values, they have the same optimal 
solution (that is, the same k maximizes both functions). Define an indicator function 

fN _ \ 1 if x = argmaxx/ 0$, 
1 0 otherwise, 

that equals 1 if and only if x is believed to be the best alternative after N measurements 
have been made. Also define a second indicator 

1 0 otherwise, 

to show whether x is believed to be better than x* (but not necessarily better than all 
other alternatives) at time N. Then, 

M 

E(max#-#) = E J X •(<£-#) 
X=l 

M 

x=l 
M 

= £P(^^.)E(^-eK>e)- (5.31) 
X=l 

If we replace our objective function by the upper bound in (5.31), we have replaced the 
objective function maxx 0^ with a sum of pairwise comparisons between individual 
6™ and a single value 9^. This is more tractable because we can express the predictive 
distribution of 6^ at time 0, given that we will allocate kx observations to alterna-
tive x, in terms of Student's ^-distribution. Specifically, JT*a*^k^- (0* - 0°) 
follows a ̂ -distribution with 2ax degrees of freedom. We can then compute the expec-
tation in (5.31) for a particular choice of k, and maximize k by setting the derivative 
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with respect to kx equal to zero. After a few more approximations, the LL method 
arrives at the allocation 

kx=N + 1-*'z±l±-T», (5.32) 
b°,r)°, 

where 

^ = |v^2a°+AT:o(-r:e°)2^ao ( ^ ( e - * £ ) ) , ***•, 
\J^x'^x*rlx"> X = X*, 

the function 0 2 a is the density of the ^-distribution with 2a degrees of freedom, and 

A-* = ( ^ + ̂ r ) • (533) 

The procedure uses several approximations, such as allowing kx to be continuous 
when computing the optimal allocation, so it is possible for (5.32) to produce negative 
numbers. In this case, we need to adjust the allocation manually by rounding kx up 
or down while ensuring that the allocations still add up to N. 

What happens when we leave the batch setting and return to our usual world of 
sequential measurements? One easy solution is to run the LL(N) method for N = 1 
at every time step n = 0,l,2,...,iV — 1. This is precisely what is meant by the LL(1) 
technique. As a result, we will obtain a vector kn of the form exn, a vector of zeroes 
with a single 1 corresponding to the alternative that we need to measure. We then 
measure the alternative, update our beliefs, and repeat the same procedure assuming 
a batch of size 1. 

The similarly named LL\ procedure works along the same lines. The main differ-
ence is that, in the batch setting, LL\ assumes that all N samples will be allocated to 
a single alternative, and then it finds the most suitable alternative under these condi-
tions. This significantly simplifies computation, because the batch is guaranteed to 
change only a single set of beliefs. Setting N = 1 inside the policy then produces a 
straightforward rule for making decisions at time n, 

X L L l ' n = a r g m a x ^ L l ' n , 
X 

where 
^LLi ,n ^AS^a^y^Tl^-^l), (5.34) 

for x = arg maxx/^x 0%, and ^d {z) = ^T^d (z) ~ z$d (-z), with </>d, <f>d being 
the pdf and cdf of the standard ^-distribution with d degrees of freedom. The quantity 
A£ 5 is computed exactly as in (5.33), but using the time-n beliefs. Notice that this 
procedure compares our beliefs about x to our beliefs about x, the best alternative 
other than x. This recalls the behavior of the KG policy; and indeed, LL\ is the exact 
analog of KG for ranking and selection with unknown measurement precision. 
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The computation required for LL\ is simpler and requires fewer approximations 
than LL{1). It is less suitable for the batch setting, where we would most likely 
choose to divide our observations among many alternatives, but better suited to the 
sequential setting considered in this chapter. Additionally, some experiments in the 
simulation literature suggest that we can learn more effectively and discover better 
alternatives by using LL\ to make decisions sequentially or with very small batches, 
rather than by running LL(N) to allocate our entire learning budget at once. 

5.7 THE PROBLEM OF PRIORS 

Perhaps one of the most important yet difficult challenges in learning is constructing 
a reasonable prior. Sometimes a domain expert may have a reasonable understanding 
about the shape of a function. The domain expert may refer to a person or to infor-
mation derived from the Internet or prior studies. In the worst case, we may have to 
resort to doing an initial sample using randomly chosen observations. If we insist on 
using a Bayesian model, this last strategy is referred to as empirical Bayes. 

The biggest problem arises when we have a prior, but it is not a very good one. 
Furthermore, we may be willing to assume that the precision of our prior belief is 
higher than it really is. Figure 5.8 presents a thought experiment with several possible 
scenarios. In Figure 5.8(a), we have an unknown function, a constant prior over the 
interval, and a confidence interval that reasonably captures the spread of the function. 
This is a fairly accurate statement that we have no idea where the optimum is, but 
we do have an idea of the range of the function. Figure 5.8(b) is our estimate of 
the function after a series of measurements using the knowledge gradient, which 
shows that we do a very good job of finding the true optimum, with a very high level 
of confidence (note that we do not produce a precise estimate of the value of the 
function at the optimum). 

Figure 5.8(c) illustrates a prior that is too low, and where we do not accurately 
represent the precision of our belief. Figure 5.8(d) then shows that we start by 
sampling the function at a random point, and not surprisingly the observed value is 
much higher than our prior. As a result, we tend to focus our search near this point, 
since our prior suggests that there is no value in sampling points far from the initial 
sample. If we were to repeat the exercise with a different random starting point, we 
would have focused our entire search close to that point. The result is an unreliable 
estimate of the optimum. 

Figure 5.8(e) then depicts a prior that is too high. When this is the case, Figure 
5.8(f) shows that we end up sampling the entire function, since every observation 
produces an estimate that is very low relative to our prior estimate for the rest of the 
function. We then proceed to sample any point that has not been sampled before (and 
which is not close to a previously sampled point). This works if our budget is large 
enough to sample the entire function, but it would work poorly if this were not the 
case. 

Perhaps the most visible lesson from this illustration is that it is important to be 
honest about the uncertainty in the prior. Figures 5.8(c) and 5.8(e) both display 



THE PROBLEM OF PRIORS 1 1 9 

Figure 5.8 The effect of the prior on the search process: (a) Unbiased prior, (b) Resulting 
measurements, (c) Prior that is biased low. (d) A low prior produces measurements focused 
around whatever point is chosen first, (e) Prior that is biased high, (f) A high prior produces a 
search that evaluates the entire function. 

confidence intervals that do not cover the function. A narrow confidence bound is 
particularly problematic if the prior is biased low, because we tend to focus all of our 
energy around any point that we sample. 

Of course, from the Bayesian point of view, there is no one fixed function. Rather, 
our prior encodes our beliefs about a wide range of possible true functions. The 
message of the preceding example can be taken to mean that we should make sure 
that this range is in some way "wide enough." 

Care should be used to ensure that the prior does not exclude portions of the 
function that may be quite good. For this reason, it is better to be biased high and to 
use care not to overstate the precision of your prior (that is, where your confidence 
interval is too narrow). However, using a prior that is too high, and/or a confidence 
interval that is too large, may simply result in a lot of unnecessary exploration. In 
other words, the better your prior is, the better your search will be. This may be a 
way of saying that there is no free lunch in information collection. 
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5.8 DISCUSSION 

The appeal of the knowledge gradient is that it is a simple idea that can be applied 
to many settings. A particularly powerful feature of the knowledge gradient is that 
it can capture the important dimension of correlated beliefs. In fact, it is useful to 
review the list of applications given in Section 1.2 where you will see that almost 
all of these are characterized by correlated beliefs. Later in the volume, we consider 
more complex sets of alternatives such as finding the best subset, or the best value of 
a continuous, multidimensional parameter vector. 

The knowledge gradient (as with any policy based on the expected value of a single 
measurement) is vulnerable to the nonconcavity of information. Indeed, if you have 
a problem where the value of information is nonconcave, then you have to address 
the issues discussed in Section 5.2, regardless of your choice of learning policy. 
However, if the value of a single measurement is nonconcave, then this simply means 
that you have to think about taking repeated measurements. This behavior would 
almost always be present if the information Wn is binomial, which means that we 
should be thinking about the value of multiple trials. 

We have presented results for situations other than the normal-normal model, 
but we suspect that most applications will lend themselves reasonably well to the 
normal-normal model, for two reasons. First, while the initial prior may not be 
normal, the central limit theorem generally means that estimates of parameters after a 
few observations are likely to be described by a normal distribution. Second, while a 
single observation Wn may be non-normal, if we have to use repeated observations (in 
a single trial) to overcome the nonconcavity of information, then the combined effect 
of multiple observations is likely to be accurately described by a normal distribution. 

5.9 WHY DOES IT WORK?* 

5.9.1 Derivation of the Knowledge Gradient Formula 

It is not necessary to know how to derive the knowledge gradient formula in order to 
be able to use it effectively, but sometimes it is nice to go past the "trust me" formulas 
and see the actual derivation. The presentation here is more advanced (hence the * in 
the section title), but it is intended to be tutorial in nature, with additional steps that 
would normally be excluded from a traditional journal article. 

The knowledge gradient method is characterized by simplicity and ease of use. 
In every time step, we can compute v£G>n for each alternative x by plugging the 
current values of 0™ and a^n into the formulas (5.7) and (5.8), and then applying 
(5.10). After that, our measurement decision is given by XKG'n = arg maxx u^G'n, 
the alternative with the largest knowledge gradient value. 

However, it is worthwhile to go through the derivation of the knowledge gradient 
formula at least once. Not only does this make the KG formulas look less unwieldy, 
by showing how they originate from the definition of the knowledge gradient, it also 
gives a sense of how we might go about creating a knowledge gradient method in 
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other optimal learning problems. Later on in this chapter, we derive KG formulas for 
ranking and selection problems that use some of the non-Gaussian learning models 
from Chapter 2. This can be done using the same approach as for the independent 
normal case, but the resulting KG formulas will be very different from the formulas 
for the normal-normal model. 

The expression in (5.2) gives a generic definition of a KG policy, in terms of the 
expected improvement made by making a measurement. We can write down this 
expectation in many different settings, but the way we compute it (if, indeed, we can 
compute it at all) will vary from problem to problem. Often, deriving a computable 
form for the KG policy poses a computational challenge in research. Thus, the KG 
approach is a very general idea, but the algorithmic realization of that idea is heavily 
problem-specific. 

We now show how v£G'n is derived for a particular choice of alternative x at time 
n. At time n, the estimates 0™ and a^n are known to us for all x. However, the future 
estimates 0™+1 are still random, because we have not yet decided on the (n + l)st 
measurement. It is important to remember that, because the problem is sequential, 
each new time step changes what is random and what is known. For example, the nth 
estimate 0™ is a random variable from the point of view of any time n1 < n, but it is 
a constant from the point of view of time n, when the first n observations have been 
irrevocably made. 

Our goal is to compute (5.1), which requires us to find 

E[Vn+1(Sn)\ Sn,xn = x] = E max0r*+1\Sn,xn=x\ 

We assume that we measure x at time n, and we examine how this measurement 
will affect our beliefs about the best alternative. Fortunately, we can simplify our 
expression for max^ 0J+ 1 . Recall from the updating equations (4.1) and (4.2) that 
^x/+1 = Ox' f° r a ny x' ^ xU- Thus, we can rewrite 

E max0!J,+1 S n , X n = £ = E max max0£,,0£+1 

\x'^x 
Sn,xn = x (5.35) 

From the point of view of time n, the quantity maxx/ 0™,+* is merely a maximum of 
a single random variable and a constant. It is typically much easier to compute the 
expected value of such a quantity than the maximum of multiple random variables. 

Next, we consider the conditional distribution of 0J+ 1 given Sn and xn = x. 
From the updating equations, we know that 

0 n + 1 = Px 
P2+P: W 0? + ft w 

P2 + P2 w w: n + l (5.36) 

a weighted average of a constant 0™ and a random variable W£+1. Given our beliefs 
at time n, the conditional distribution of the true value fix of x is normal with mean 
0™ and variance a^'n. Then, given \ix, the observation W^1 is itself conditionally 
normal with mean \ix and variance o\. What we need, however, is the conditional 
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distribution of W^1 given our beliefs at time n, but not given the true value /ix, and 
we can find this distribution by computing the moment-generating function 

E ( e - ^ " + 1 ) = E ( E ( e - ^ " + 1 | ^ ) ) 

= e ^ r 2 E ( e - r ^ ) 

= e2 * e r">e2 > 

This is clearly the moment-generating function of the normal distribution with mean 
9% and variance a\ + a^n. The variance can also be written in precision notation as 
l//?f + l//3£. 

It follows that the conditional distribution of 0™+1 given Sn and xn = x is also 
normal, since 0%+1 is a linear function of W£+1 by (5.36). We can find the mean and 
variance of this distribution by computing 

on oW 
E[0£+1 I Sn,xn = x] = —J^—0^ + D

 Px
 oU/E \W™+1 | Sn,xn = x] 

on oW 
^x nn j r^x nn 

Ps + p? x ps + pw x 

r\n 

and 

/ oW \ ^ 
Var[^1\Sn

ixn = x] = \fiT^) Var[WZ+1 \ S", xn = x] 

DW \ 2 

^ VM +j_ 
/3f 

Using the definition of the precision again, we can write 

/3f <*n 

\ x crx J 

a 2 ' n 

-, , o / - 2 , n ' 1 + oll<Jx 

which is precisely a^n by (5.6). 
We have found that the conditional distribution of 0™+1, given Sn and xn = x, is 

normal with mean 0™ and variance a2'n. In words, when we measure x at time n, we 
expect that the next observation will be equal to 0£, that is, our beliefs 0n are accurate 
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on average. As a consequence of this measurement, the variance of our beliefs about 
/ix will decrease by an amount equal to the variance of the next observation. 

Now, we can return to (5.35) and rewrite the right-hand side as 

max(max<9£,,0£+1 j Sn,xn max(max0£,,0£ + cr£Z 
x'^x 

where Z is a standard normal (mean 0, variance 1) random variable. Our goal is now 
to compute an expectation of a function of Z, which looks far more tractable than the 
expression we started out with. 

Let C% = m&Xx'^x 0™,, and observe that 

Thus, 

I Cn if 7 < 
max(Cx

l,dx
i+ax

iZ) = l x - °* ' 
\6": + <7™ otherwise. 

E[max(C£,0£ + <£Z)] = / *" C^(z)dz 
POO 

+ L ^W + oMtWdz, 

where 

L ' fn cm c:<p(z)dz = c:$- - -
and 

fn fin \ / fin fin 
{0n

x + a^z) cf> (z) dz = 6nM — * — ■ * - + onJ - " 

f 
The first term in the second equation uses the symmetry of the normal distribution, 
and the second term is due to the fact that 

poo 

z<f>(z) dz = <t>{y\ 
fy 

which can be verified by a back-of-the-envelope calculation. 
Observe now that, due to the symmetry of the normal density, 

which gives us one of the terms that make up the KG formula. To obtain the other 
term, we consider two cases. If C™ < 8™, then 0™ = maxx/ 0™, and 

( fin fin \ / fn _ fin \ 

/ fin _ fin\ 

= On
x+<Tn

xQ<S>{Q). 
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However, if 8% < C%, then C£ = maxx, 0£, and 

Either way, 

' r*n fin \ / rvn fin 

' /^n an \ / r^n fin 

CT1 *,.. x ) + C T - . , * ) = c"-<?"*(C) + #"$(O) 

<J'x J ~ \ cr" 

Putting all the terms together, 

E[max(<7x",0£ + an
xZ)) = max0£ + an

x ( £ * (C) + 0 ( O ) 

= m a x ^ + a : / ( C ) , 
a;' 

whence 
,KG,n E 

E 

max6>™+1-max<9£, 
x' x' 

max m a x ^ , ^ n + 1 Sn,xn max 0™, 

= 3?/(C), 
which is precisely the KG formula that we introduced earlier. 

The above derivation relies on our assumption of independent alternatives, as 
well as our use of a normal-normal learning model. However, in the process, we 
followed a set of steps that can be used to derive knowledge gradient formulas for 
other learning problems, as well. In particular, we use the exact same approach to 
derive KG formulas for ranking and selection problems with non-Gaussian learning 
models later in this chapter. The steps are: 

1) We calculate the conditional distribution, given Sn and xn = x, of the value func-
tion Vn+1 ( 5 n + 1 (x)). In ranking and selection with independent alternatives, 
this reduces to the problem of finding the conditional distribution of #™+1 (in 
the above derivation, this was normal). Recall that this is called the predictive 
distribution of #™+1, because it is what we predict about time n + 1 at time n. 

2) We calculate the conditional expectation of VnJrl ( 5 n + 1 (x)) over the predictive 
distribution. This is especially simple in ranking and selection with independent 
alternatives, because it is simply an expected value of a function of a one-
dimensional random variable (in the above derivation, this was the standard 
normal random variable Z). 

3) We subtract the quantity Vn (Sn), which is viewed as deterministic at time n. 

In most of the problems discussed in this book, the real challenge lies in the second 
step. For example, if we introduce correlations into the problem, the predictive distri-
bution of the vector # n + 1 is still fairly simple, but it is a bit more difficult to calculate 
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the expectation of the value function F n + 1 ( 5 n + 1 (#)) over this distribution. How-
ever, there are many learning problems that seem complicated, but that actually yield 
simple closed-form expressions for the knowledge gradient. Later on, we encounter 
many more varied examples of such problems. 

5.10 BIBLIOGRAPHIC NOTES 

Section 5.1 - The idea of collecting information based on the expected value of a 
single measurement was first introduced by Gupta & Miescke (1994) and Gupta 
& Miescke (1996). The concept of the knowledge gradient was developed in 
greater depth in Frazier et al. (2008). We connect the KG concept to the idea of 
information economics from Chapter 3; in fact, Chick & Gans (2009) describes 
a KG-like approach as the "economic approach to simulation selection." 

Section 5.2 - The material on the nonconcavity of information is based on Frazier & 
Powell (2010). Additional discussion on the nonconcavity of information can 
be found in Weibull et al. (2007), which also presents conditions where it is 
not always optimal to choose the alternative that appears to be best. 

Section 5.3 - The knowledge gradient for correlated beliefs was first introduced in 
Frazier et al. (2009). 

Section 5.5 - The development of the knowledge gradient for non-Gaussian distribu-
tions in this section is mostly new. A version of KG for the gamma-exponential 
model was presented in Ryzhov & Powell (201 lc). 

Section 5.6 - The expected improvement algorithm was proposed by Jones et al. 
(1998) for problems with continuous decisions. This algorithm is also some-
times known as efficient global optimization or EGO in this setting. Some 
more recent work on El can be found in Gramacy & Lee (2011). The LL(N) 
methodology was originally put forth by Chick & Inoue (2001), with extensive 
empirical validation undertaken by Inoue et al. (1999) and Branke et al. (2005). 
A general overview of the LL approach is available in Chick (2006). The LL\ 
procedure is a more recent development laid out in Chick et al. (2010). 

PROBLEMS 
5.1 Your estimate of the long-run performance of a mutual fund was that it returns 8 
percent, but your distribution of belief around this number is normally distributed with 
a standard deviation of 3 percent. You update this each year (assume that successive 
years are independent), and from history you estimate that the standard deviation of 
the return in a particular year is 6 percent. At the end of the most recent year, the 
mutual fund returned -2 percent. 

a) Use Bayesian updating to update the mean and standard deviation. 



126 THE KNOWLEDGE GRADIENT 

b) What do we mean when we say that the "normal distribution is conjugate"? 

c) What will be the precision of my estimate of the long-run performance in four 
years (after four measurements, starting with the current state of knowledge)? 

5.2 You have three places that serve takeout food around your area and you want 
to maximize the quality of the total food you intake over time. The three restaurants 
are: 

1. Vine Garden (VG) 

2. Wise Sushi (WS) 

3. Food Village (FV) 

You assume a normal prior with (fix, (3X) on the quality of the food in these places 
and the measurements are normally distributed with precision f3w = 1. 

1. Define the expected opportunity cost (EOC) for this setting (assume that the 
discount factor, 7 = 1). 

2. For a single UJ , Table 5.5 below contains your prior, the truth, and the outcomes 
of your observations until the third time step n = 3. Write down the empirical 
opportunity cost after the third observation (note that you will need to update 
your priors). 

Table 5.5 Priors and Observations 

Iteration VG WS FV 

Prior (fjix, px) 

Truth for /xx 

1 

2 

3 

(6,2) 

5 

4 

(7,1) 

8 

9 

(8,1) 

7 

8.5 

3. If you are valuing your current utility from food higher than future time periods 
(7 < 1), how would you expect the behavior of the optimal policy to change 
as opposed to having 7 = 1? 

5.3 Table 5.8 shows the priors 6n and the standard deviations <jn for five alternatives. 

a) Compute the knowledge gradient for each alternative in a spreadsheet. Create 
a plot with the mean, the standard deviation, and the knowledge gradient for 
each alternative. 
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b) Three of the alternatives have the same standard deviation, but with increasing 
priors. Three have the same prior, but with increasing standard deviations. 
From these two (overlapping) sets of alternatives, describe how the knowledge 
gradient changes as we vary priors and the standard deviation of our belief. 

Table 5.6 Calculations Illustrating the Knowledge Gradient Index 

Choice 0n an 

1 3.0 8.0 
2 4.0 8.0 
3 5.0 8.0 
4 5.0 9.0 
5 5.0 10.0 

5.4 Assume that we have a standard normal prior about a true parameter \i which 
we assume is normally distributed with mean /i° and variance (a0)2 . 

a) Given the observations W1,..., Wn, is 6n deterministic or random? 

b) Given the observations W1,..., Wn, what is E(/x|W1,. . . , Wn) (where fi is 
our truth)? Why is fi random given the first n measurements? 

f-

c) Given the observations Wl,..., Wn, what is the mean and variance of 0 n + 1 ? 
Why is (9n+1 random? 

5.5 As a venture capitalist specializing in energy technologies, you have to decide 
to invest in one of three strategies for converting solar power to electricity. A major 
concern is the efficiency of a solar panel, which tends to run around 11 to 12 percent. 
You are at the point where you are running field experiments, but each field experiment 
produces an estimate of the efficiency which has a standard deviation of 4.0. The first 
technology appears to have an efficiency of 11.5 percent, but the standard deviation 
in your distribution of belief around this number is 2.0. The second technology has 
an estimated efficiency of 11.0 with a standard deviation of 3.5, while the third has 
an estimated efficiency of 12.0, with a standard deviation of 1.5. You want to choose 
the technology with the highest efficiency. 

a) Use the knowledge gradient to tell you which technology you should experiment 
with next. 

b) If you are only going to do one last experiment, is this the optimal choice? 
Explain. 

c) If you did not make this last investment, you would choose technology 3 with 
an efficiency of 12.0. What is the expected efficiency of the technology that 
would be chosen as best after the last investment? 
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5.6 Consider the problem of finding the best person to serve as the lead-off hitter 
on a baseball team. The lead-off hitter is evaluated primarily for his ability to get on 
base. If x is the hitter, his outcome would be recorded as a Bernoulli random variable 
W™, where W™ = 1 if he gets on base, and W£ = 0 otherwise. We are going to 
conduct these experiments during spring training, where we are primarily focused on 
finding the best lead-off hitter (we do not really care about his performance while we 
are collecting the information). Learning is accomplished using the beta-Bernoulli 
model. Each alternative x has an unknown success probability px, and our goal is 
to find the alternative with the highest success probability. We begin with a prior 
belief px ~ Beta (ax ,/?£)• Supposing that we measure alternative xn at time n, our 
beliefs are updated according to the equations 

a" + 1 = 
a™ otherwise, 

1/3™ otherwise, 

where the observation W n + 1 is equal to 1 with probability px and 0 with probability 
1 — Pa;. Recall that, under this model, our estimate of the uncertain truth px at time 
nisE(px\Sn) = ^ ^ . 

a) Suppose that we measure alternative x at time n. Show (by conditioning on 
the truth) that 

P(WT+ 1 = 11 Sn) = a* Q , P(W£ + 1 = 0 | Sn) = ®° n . 
<*£ + #? Ux+PZ 

b) Use the definition of the knowledge gradient to write out an expression for the 
knowledge gradient for this problem. You do not have to reduce the expression 
in any way (for example, you will have an expectation, but you do not have to 
reduce it to a convenient expression). 

5.7 Garrett Jones was a minor leaguer in baseball trying to break into the major 
leagues. He was called up to play in a few major league games, where he made one hit 
in eight at-bats. After this weak performance, he was sent back to the minor leagues. 
The major league club that was evaluating him is looking for someone who can hit 
at a certain level against an existing major league hitter. Think of this as choosing 
between an uncertain minor leaguer, and a more certain major leaguer (so this is a 
case with two alternatives). 

a) It is reasonable to assume that no one would ever make a decision based on a 
single at-bat. Assume that our minor leaguer will be given at least 10 at-bats 
and that we will now assume that our prior belief about his batting average 
is normally distributed with mean 0.250 and standard deviation 0.20. Further 
assume that our belief about the major leaguer is also normally distributed with 
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mean 0.267 and standard deviation of 0.10. Finally assume that we are going to 
approximate the observed batting average from at least*! 0 at-bats as normally 
distributed with mean: 

Wrr 
H 

where H is the number of hits and m is the number of at-bats. The variance of 
Wminor is given by 

r(l -)/ra, 

where p-minor — -235 is the expected batting average of the minor leaguer (the 
true batting average is a random variable). Give the expression for the knowl-
edge gradient resulting from m at-bats and compute the knowledge gradient. 

b) Assume that the knowledge gradient for a single at-bat is very small. Without 
actually computing the knowledge gradient, plot what is likely the general 
shape of the value of observing m at-bats as a function of m. If you were going 
to use the KG(*) policy, what would you do? What are the implications of this 
shape in terms of how a coach should evaluate different minor leaguers? 

5.8 Consider a ranking and selection problem with exponential observations and 
gamma priors. That is, if we choose to measure alternative x at time n, we observe 
W^ + 1 ~ exp(A^). The rate Xx is unknown, but we start with the assumption that 
Xx ~ Gamma(ax, (3®) and update these beliefs as we make measurements. Our 
beliefs about the alternatives are independent. Thus, if we measure alternative x 
at time n, we update a™+1 = a™ + 1 and f3™+1 = (3™ + W™+1 while keeping 
v^+l a™ and f3y 

'Tl+1 /3™ for all y ^ x. 

a) Suppose that our objective is to find the largest rate Ax. Define the knowledge 
gradient of alternative x at time n as 

v: 
KG,n E 

v^+l 
max y., - max —- Sn, xn = x 

Py 

Argue that 

E a, ,n+l 
max-® <n+l \Sn,xn = x = E max 

Qg + 1 
Y 

where C™ = max^-^ ^ and Y ~ Pareto(a^, /3%). 

(Remember that the Pareto(a, b) density is g(t) 
elsewhere.) 

ab' j£fr fort>b and zero 

«2+i b) Suppose that ^ p < C£. Show that 

E max C£, 
Y 

C%. 
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< + l c) Suppose that ^ L > C™. Show that 

+ 1 " 
E max(Cx", - ^ 

«"+i 

#? (aS + l ) < + 1 

d) Based on parts b) and c), show that 

^ = < 

(ff?)tt«(C2)ttg+1 

(a^ + l)ax+! 
( / ^ " ( q ^ + i _ (max 22 

if x = argmax^ | £ , 

^t) ifx ^a rgmax^ ^ , 
<+1 > max ^ I L 
otherwise. 

5.9 We again consider a ranking and selection problem with exponential observa-
tions and gamma priors. There are five alternatives, and the belief state for a certain 
time step n is given in Table 5.7. The objective is to find the largest rate. 

Table 5.7 Priors for Exercise 5.9 

X 

1 
2 
3 
4 
5 

a£ 
2 
3 
1 
2 
3 

K 
18 
17 
7 
15 
14 

5.10 Consider a ranking and selection problem with independent alternatives, ex-
ponential observations and gamma priors. 

a) Suppose that we want to find the alternative with the highest rate. Derive the KG 
formula given in (5.22). (Hint: Consider the three cases given in the formula 
separately before trying to take integrals.) 

b) Repeat your analysis for the case where our goal is to find the lowest rate. Show 
that the KG formula is given by (5.23). 

5.11 Table 5.8 shows the priors 9n and the standard deviations an for five alterna-
tives. 

a) Compute the knowledge gradient for each alternative in a spreadsheet. Create 
a plot with the mean, standard deviation and the knowledge gradient for each 
alternative. 

b) Three of the alternatives have the same standard deviation, but with increasing 
priors. Three have the same prior, but with increasing standard deviations. 
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From these two (overlapping) sets of alternatives, describe how the knowledge 
gradient changes as we vary priors and the standard deviation of our belief. 

Table 5.8 Calculations Illustrating the Knowledge Gradient Index 

Choice 

1 
2 
3 
4 
5 

0n 

3.0 
4.0 
5.0 
5.0 
5.0 

<Tn 

8.0 
8.0 
8.0 
9.0 
10.0 

a) Compute v^G'n for all x. Which alternative will the KG policy measure at 
time n? 

b) Suppose now that a^ — 1 and /?£ = 6, while our beliefs about the other 
alternatives remain unchanged. How does this change your answer to part 

a71 

a)? Why did KG change its decision, even though the estimate -& is actually 
smaller now than what it was in part a)? 

5.12 Table 5.9 shows the priors 0n and the standard deviations an for five alterna-
tives. 

a) Compute the knowledge gradient for each in a spreadsheet. 

b) You should observe that the knowledge gradients are fairly small. Provide a 
plain English explanation for why this would be the case. 

Table 5.9 Priors for Exercise 5.12 

Choice 

1 
2 
3 
4 
5 

en 

3.0 
4.0 
20.0 
5.0 
6.0 

an 

4.0 
6.0 
3.0 
5.0 
7.0 

5.13 In Section 5.9.1, we showed that E [<9£+1 | Sn, xn = x] = 0£ in the normal-
normal model. Verify that this also holds for our estimates of the unknown parameters 
in other learning models: 
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a) Show that E qn + l Sn,xn =x = %- in the gamma-exponential model. 

b) Repeat part a) for the gamma-Poisson model. 

c) Show that E 
model. 

d) Show that E 

hfl+l 
L-l Sn,xn =x n 

-rf-rb7! in the Pareto-uniform 
y.Vi — 1 x 

l+P2 +T Sn,xn = x — -TT^OTT in the beta-Bernoulli model. 
x 'Px 

In each of these cases, our estimates of the unknown parameters (the rate A^, the 
upper endpoint Bx, and the success probability px) are expected to stay the same on 
average. That is, given that we are at time n, we expect that the estimate will not 
change on average between time n and time n + 1. This is called the martingale 
property. 

5.14 Consider a ranking and selection problem with independent alternatives, Pois-
son observations and gamma priors. Suppose that the objective is to find the alternative 
with the highest Poisson rate. Show that the KG formula is given by (5.24). 

5.15 Consider a ranking and selection problem with independent alternatives, uni-
form observations and Pareto priors. Suppose that the objective is to find the largest 
upper endpoint among the uniform distributions. 

a) Show that the predictive distribution of KJ+1 given Sn and xn = x is a mixed 
discrete/continuous distribution given by 

vQ%+1=vz\sn,xn = x) = a" 
a# + l 

and 

f(y\Sn,xn = x) = i < (KT: 
y>bn

x. a^ + l yax+x 

b) Show that the KG formula for alternative x in this problem is given by (5.25). 

5.16 Consider a ranking and selection problem with independent alternatives, 
Bernoulli observations and beta priors. Suppose that the objective is to find the 
alternative with the largest success probability. Show that the KG formula is given 
by (5.26), and verify that this formula remains the same (aside from changing the 
maximum in the definition of C™ to a minimum) if we change the objective to finding 
the lowest success probability instead of the highest. 

5.17 Consider a ranking and selection problem with independent alternatives, nor-
mal observations and normal priors. However, instead of the usual objective function 
Fw = maxx 0^, we use 

F* EE[(^ ^ ) 2 ?N 
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That is to say, instead of trying to find the alternative with the highest value, our 
goal is now to make measurements in such a way as to reduce (on average) the sum 
of squared errors of our final estimates at time N of all the values. Derive the KG 
formula for this problem. 

5.18 Suppose that we have four different products. The profit margin of product 
x, x = 1,2,3,4 is represented by jix. We can choose to perform a market study on 
product x to get an observation Wx of its profit margin. The observation is normally 
distributed with mean \xx and variance (<T^) 2 . Table 5.10 below gives the true values 
o i> x and (o^ ) 2 : 

Table 5.10 Priors for Exercise 5.18. 

X 

1 
2 
3 
4 

l^x 

15 
10 
12 
11 

W 
4 
3 
5 
2 

However, we do not know the true values of /J,X . We describe our beliefs about them 
using a multivariate Gaussian prior with the following mean vector and covariance 
matrix: 

12 0 6 3 1 
0 7 4 2 
6 4 9 0 ' 
3 2 0 8 J 

Assume that we choose to observe product 3 and we observe W<$ = 1 5 . Show how 
our beliefs would change using the updating equations 

0i = 00 + W 0X ^o s i = Eo _ L e f * L (5.37) 

where x = 3 is the particular product that you are considering, and ex is a column 
vector of zeroes with a single 1 in the xth coordinate. Report the resulting values of 
6l and E1 . (Equation (5.37) gives the "convenient" version of the updating equa-
tions, where you don't have to compute an inverse. You do not have to derive these 
equations.) 

5.19 Consider a ranking and selection problem with independent alternatives, nor-
mal observations and normal priors. However, instead of the usual objective function 
Fn = maxx 8^, we use 

Fn = max|6>f| 

That is, we want to find the alternative with the largest absolute value. Show that the 
KG factor of alternative x is given by 

^ G , n = 3? ( / (C)+ /(<£)). 

e° = 
12 
14 
13 
10 

S° = 
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where 
flg-max^lfl^l j n ^ flg+maXaViC|fl£,| 

5.20 The revenue generated by an online advertisement has an exponential distri-
bution with parameter A (thus the mean revenue is j). We do not know A, so we use 
a gamma prior and assume A ~ Gamma(a, b) for a > 1. Recall that the density of 
the gamma distribution is given by 

_ fe(te)°-1e-te 

JK) ~ I » ' 

where T(a) = (a — 1)! if a is integer. The mean of f(x) is a/b and the variance is 
a/62. 

a) What is the current belief about the value of A? That is, if you had to guess 
the value of A, what would you say, and why? If you assume that A is exactly 
equal to this belief, what is the mean revenue generated by the advertisement? 

b) Now take an expectation of the mean revenue over the entire distribution of 
belief. That is, compute E(^) for A ~ Gamma{a, b). 

c) Why are your answers to (a) and (b) different? Which one should you actually 
use as your estimate of the mean reward, and why? 

5.21 Consider a ranking and selection problem with normal observations and nor-
mal priors (and independent beliefs). 

a) Create a MATLAB file called kg. m which implements the KG policy. As a 
template, you can use the code that was first introduced in exercise 4.2 which 
can be downloaded from 

http://optimallearning.princeton.edu/exercises/exploration.rn 
http://optimallearning.princeton.edu/exercises/explorationRun.rn 

b) Set N — 5000, M = 50 and report the confidence interval. 

c) Set N = 1, M = 1 and run the policy 100 times. How often does KG find the 
best alternative? 

5.22 You would like to find the price of a product that maximizes revenue. Unknown 
to you, the demand for the product is given by 

D(p) = 100e--02p. 

Total revenue is given by R(p) = pD(p). Assume prices are integers between 1 and 
100. 
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You set a price and watch it for a week. Assume that the observed revenue Rn in 
week n is given by 

Rn = R(p) + en, 

where en ~ A/*(0,4002). However, since you believe that the function is continuous, 
you realize that your beliefs are correlated. Assume that your belief about R(p) and 
R{p') is correlated with covariance function 

Cov°{R{p),R{p')) = 4002e-°-03lp-p,L 

So,Cov°(R(p),R(p)) = Var°(R(p)) = 4002,andCov°(R(20),R(30)) = 4002 x 
0.7408. Use this to create your prior covariance matrix E°. Assume that your initial 
estimate of R{p) is 0® — 2000 for each p (this is known as a "uniform prior," and 
represents a situation where you have no idea which price is the best.) Note that we 
are using online learning for this exercise. 

a) Write out the updating formulas for updating your estimate 0™ giving the es-
timated revenue when you charge price p , and the updating formula for the 
covariance matrix E n . 

b) Implement the algorithm for computing the knowledge gradient in the presence 
of correlated beliefs (call this algorithm KGCB), using as a starting point 

http://optimallearning.princeton.edu/exercises/KGCorrBeliefs.rn 

An example illustration of the KGCB algorithm is given in 

http://optimallearning.princeton.edu/exercises/KGCorrBeliefsEx.rn 

Verify your algorithm first by running it with a diagonal covariance matrix and 
showing that the independent and correlated KG algorithms give you the same 
numbers. Note that you may find that for some prices, the knowledge gradient 
is too small to compute (for example, you get a very negative exponent). 

c) Next use the initial covariance matrix described above. Plot the log of the 
knowledge gradient for prices between 1 and 100 (again, be careful with large 
negative exponents), and compare your results to the log of the knowledge 
gradient assuming independent beliefs. How do they compare? 

d) Now we are going to compare policies. Please do the following: 

i) Run your KGCB algorithm for 10 measurements, and plot after each 
measurement the opportunity cost, which means you take what you think 
is the best price based on your current set of estimates and compare it to 
the revenue you would get if you knew the best price (hint: it is $50). 
Repeat this exercise 20 times, and report the average opportunity cost, 
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averaged over the 20 iterations. The goal here is to get a sense of the 
variability of the performance of a learning policy. 

ii) We want to compare KGCB against pure exploration, pure exploitation, 
and interval estimation using za = 1.96 (a standard default). For each 
policy, perform 20 sample paths and plot the average opportunity cost 
over all 20 sample paths. Compare all three policies. [Please make sure 
that you are resetting the covariance matrix to its initial structure after you 
are done with a sample path (once you have gone over a single truth). If 
you skip this part, the KG algorithm will assume it has very precise priors 
for the second run, which of course is not true.] 

e) The knowledge gradient policy can be quite sensitive to the prior. Instead 
of an initial prior of 2000, now assume that we start with a uniform prior of 
500 (same standard deviation). If you edit the prior (column B), the package 
regenerates the truth. You are going to have to re-enter the formula for the truth 
after changing the prior. After doing this, perform 3 repetitions of KG, pure 
exploration and pure exploitation, and contrast their performance. 

5.23 This exercise uses the optimal learning library. Download the zip file from 

http://optimallearning.princeton.edu/exercises/OptimalLearningCalculator.zip 

Download and extract all the files, which will consist of an Excel spreadsheet 
KGCalculator.xls and a folder called l i b which needs to be in the same loca-
tion as the spreadsheet. 

You would like to find the price of a product that maximizes revenue. Unknown 
to you, the demand for the product is given by 

D(p) = 100e-°2 p . 

Total revenue is given by R{p) = pD(p). Assume prices are integers between 1 and 
100. 

You set a price and watch it for a week. Assume that the observed revenue Rn in 
week n is given by 

BT> = R(p) + e
n 

where en ~ A/"(0,4002). However, since you believe that the function is continuous, 
you realize that your beliefs are correlated. Assume that your belief about R(p) and 
R{p') is correlated with covariance function 

Cov°(R(p),R{p')) = 4002e-°-03lp-p,l. 

So, Cov°(R(p),R(p)) = Var°(R(p)) = 4002 ,tmdCov°(R(20),R(30)) = 4002 x 
0.7408. Use this to create your prior covariance matrix S°. Assume that your initial 
estimate of R (p) is 9® = 1400 for each p (this is known as a "uniform prior" and 
represents a situation where you have no idea which price is the best). 
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a) Write out the updating formulas for updating your estimate 0™ giving the esti-
mated revenue when you charge price p, and also write out the updating formula 
for the covariance matrix £ n . 

b) Using the Optimal Learning calculator, set the package for the problem class 
"Correlated" on the home screen (do not use "Independent" or "On a line"). 
Enter 100 under M (cell A3). Then hit the "edit covariance" button, and use the 
formula above to enter the covariance matrix. Returning to the home screen, 
hit "Edit settings" and set "measurement error" to 400 (this is the standard 
deviation of the measurement noise). Finally, change the "range end" from 5 
to 100 (lower left-hand corner of the edit settings screen). Hit the "exit and 
save changes" button to exit. Enter the prior of 2000 in column B. Using the 
formula for the true demand given above, compute the true revenue for each 
price and enter this in column D. Verify that the highest revenue occurs at $50. 
Now we are ready to try learning this true function. 

c) Before making any measurements, hit the "graphs" button and make a copy of 
the "current beliefs" graph and the log of the knowledge gradient, and include 
this in your writeup. Is the true belief within the confidence interval of your 
prior? 

d) Now we are going to compare policies. Please do the following: 

i) Enter the number 50 next to the field "number of iterations" in column 
H. Run your KGCB algorithm for 50 measurements (by hitting the "im-
plement policy" button). Make a copy of the graphs showing the current 
belief about the function, number of measurements by alternative, and 
the opportunity cost. Repeat this three times (so your report should have 
three sets of three graphs). Discuss how well your KG policy performed. 
Contrast the ability of KG to identify a near optimal price to its ability to 
estimate the true function. 

ii) We want to compare KGCB against pure exploitation, pure exploration, 
and interval estimation using the best value of za that you obtained in 
problem set 3. For each policy, perform 10 measurements, and we want 
to perform 20 iterations for each policy. To avoid doing this manually, go 
to "edit settings" and enter 20 in the field next to "budget" (this is your 
number of measurements - it should read "Infinity" when you first see this 
field). When you hit save, notice that the field "number of iterations" now 
reads "number of samples." Now enter 20 in this box (so we repeat each 
simulation 20 times). Now you are set up to do competitions between 
KG and other policies. First hit the "other" button (column I), click on 
the pull down menu, and choose pure exploitation. Save and exit, and 
then hit "implement policy." When the comparison is done, you will see 
a summary. At the top it shows the opportunity cost (with confidence 
intervals) for both KG and the competing policy. Report these numbers. 
Repeat this five times, for each of the three competing policies. Be sure 
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to hit the "clear history" button before each run. You want to be sure that 
cell B3 is zero before you hit the implement policy button. Discuss the 
performance of each policy, covering not only how well one policy seems 
to outperform the others, but also the variability of this performance. 

e) The knowledge gradient policy can be quite sensitive to the prior. Instead 
of an initial prior of 2000, now assume that we start with a uniform prior of 
500 (same standard deviation). If you edit the prior (column B), the package 
regenerates the truth. You are going to have to re-enter the formula for the truth 
after changing the prior. After doing this, perform three repetitions of KG, pure 
exploration, and pure exploitation, and contrast their performance. 



CHAPTER 6 

BANDIT PROBLEMS 

The multi-armed bandit problem is a venerable topic in optimal learning and has 
inspired some of the pioneering work in the field. The story that was originally used 
to motivate the problem (and gave the problem its name) is not really an important 
application, but is useful for understanding the basic idea behind the problem. The 
term "one-armed bandit" refers to a slot machine operated by pulling a lever (or 
"arm") on its side. A multi-armed bandit, then, is a collection of slot machines, each 
with a different winning probability (or different average winnings). 

Suppose that we have M slot machines, and we have enough money to play TV 
times. If we play slot machine x at time n, we receive random winnings W" + 1 . 
Suppose that the expected value of these winnings, given by \xx, is unknown. We 
would like to estimate fix, but the only way to do this is by putting money into the 
machine and collecting a random observation. For this reason, we must balance our 
desire to find the slot machine with the highest value with our desire to achieve good 
results on every play. 

It is easy to see the similarity between this problem and the ranking and selection 
problem from Chapter 4. In the multi-armed bandit problem, we have a clear set of 
alternatives, namely the different arms. Every arm has an unknown value, namely 
the average winnings. We can create and update estimates of these values using the 
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exact same model laid out in Section 4.1. At each time step, we choose an arm x, 
observe the winnings W™+1, and update our beliefs. 

The difference lies in the objective function. In ranking and selection, we choose 
a measurement policy to optimize the offline objective function 

maxE^/i^iv, 
7r£ll 

where xN = argmax^ 9™. This objective is designed for problems in which our 
measurements are only important insofar as they give us a good final estimate. For 
example, we could be running tests on various experimental drug compounds in 
a laboratory setting. We do not incur a penalty from a poor outcome of a single 
experiment. In fact, such an outcome could actually be desirable, because it may give 
us important information about the problem. 

By contrast, the multi-armed bandit problem is online. The idea is that we are 
playing the slot machines in real time, and our wealth depends directly on the outcome 
of each individual play. The correct objective function for this problem is 

N 

maxE" y \ n / i x n , (6.1) 
n=0 

where xn is the decision we make at time n, and 7 G (0,1] is a discount factor. This 
objective function causes us to play more conservatively than the offline objective. 
It is possible that a poor outcome of a single play may give us valuable information, 
but it would also penalize our objective value, and we might not necessarily be able 
to use the information we gained to make up for our immediate losses later on. 

The rest of the model is the same as before; the objective function is the only real 
difference between ranking and selection and multi-armed bandits. However, this 
difference can be very important in practical applications. Although the traditional 
slot machine example is not in itself a practical application, it is possible to think 
of many applications where the online objective is a crucial feature of the problem. 
For example, suppose that we are performing clinical trials on a set of experimental 
medical treatments. The treatments have already passed the laboratory trials, and 
we have moved to testing them on human patients. In this case, it is much more 
important to be mindful of the outcome of each individual trial and to try to ensure 
the best possible outcome for every patient while still learning something about which 
treatment is the most effective. 

For another example, suppose that we are running an online advertising system. 
Every day, we can choose one company's advertisement to display on our website. 
We would like to experiment with different companies' advertisements to figure out 
which is the most interesting and profitable. However, we must also keep an eye on 
the revenue we collect from the advertisements that we display each day. Here, too, 
we have to try to achieve a good outcome (high profitability) for every advertisement 
that we display while also learning in the process. 

In the multi-armed bandit problem, the difficulty of balancing between exploration 
(pulling an arm that may turn out to have high winnings) and exploitation (pulling 
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an arm that already seems to have the highest winnings) is highlighted especially 
starkly. Perhaps for this reason, there is a deep literature on bandit problems. The 
crowning result of this literature is the creation of a policy that is optimal as long as 
N -» oo; that is, we have infinitely many chances to measure. This policy is based 
on a clever shortcut credited to J.C. Gittins. Gittins found that instead of solving the 
dynamic program from Section 4.2.2 with the multidimensional state variable, it was 
possible to characterize the optimal solution using something known as an "index 
policy." This works by computing an index I™ (0™,f3™) for each option x at each 
iteration n. The index I™ is computed by solving M single-dimensional problems. 
The index policy chooses to measure xn = arg maxx I™, which is to say that we 
play the machine xn which corresponds to the largest index. Thus, instead of solving 
a single M-dimensional problem, we have to solve M one-dimensional problems. 

6.1 THE THEORY AND PRACTICE OF GITTINS INDICES 

The idea behind Gittins indices works as follows. Assume that we are playing a single 
slot machine, and that we have the choice of continuing to play the slot machine or 
stopping and switching to a process that pays a reward r. If we choose not to play, 
we receive r, and then find ourselves in the same state (since we did not collect any 
new information). If we choose to play, we earn a random amount W, plus we earn 
E { V ( 5 n + 1 , r ) | S n } , where 5 n + 1 represents our new state of knowledge resulting 
from our observed winnings. For reasons that will become clear shortly, we write the 
value function as a function of the state 5 n + 1 and the stopping reward r. 

The value of being in state Sn, then, can be written as 

V(Sn,r) = max[r + 7 V r ( 5 n , r ) , E { V r n + 1 + 7 y ( 5 n - f l , r ) | 5 n } ] . 

The first choice represents the decision to receive the fixed reward r, while in the 
second choice we get to observe W n + 1 (which is random when we make the decision). 
When we have to choose xn, we will use the expected value of our return if we continue 
playing, which is computed using our current state of knowledge. For example, in 
the Bayesian normal-normal model, E{W^n+1|Sn} = 6n, which is our estimate of 
the mean of W given what we know after the first n measurements. 

If we choose to stop playing at iteration n, then Sn does not change, which means 
we earn r and face the identical problem again for our next play. In this case, once 
we decide to stop playing, we will never play again, and we will continue to receive 
r (discounted) from now on. For this reason, r is called the retirement reward. The 
infinite horizon, discounted value of retirement is r / ( l — 7). This means that we can 
rewrite our optimality recursion as 

F ( S n , r ) = max 
1 - 7 

, E { W n + 1 + 7 F ( S n + 1 , r ) | S n } (6.2) 

Here is where we encounter the magic of Gittins indices. We compute the value of 
r that makes us indifferent between stopping and accepting the reward r (forever), 



142 BANDIT PROBLEMS 

versus continuing to play the slot machine. That is, we wish to solve the equation 

-^— = E {Wn+l + 7 V(Sn+1,r)\ Sn) (6.3) 

for r. The Gittins index IGltt>n is the particular value of r that solves (6.3). This 
index depends on the state Sn. If we use a Bayesian perspective and assume normally 
distributed rewards, we would use Sn = (0n, fin) to capture our distribution of belief 
about the true mean //. If we use a frequentist perspective, our state variable would 
consist of our estimate 6n of the mean, our estimate <r2'n of the variance, and the 
number Nn of observations (this is equal to n if we only have one slot machine). 

If we have multiple slot machines, we consider every machine separately, as if it 
were the only machine in the problem. We would find the Gittins index IGltt^n for 
every machine x. Gittins showed that, if N —>• oo, meaning that we are allowed to 
make infinitely many measurements, it is optimal to play the slot machine with the 
highest value of IGltt^n at every time n. Notice that we have not talked about how 
exactly (6.3) can be solved. In fact, this is a major issue, but for now, assume that we 
have some way of computing I^ltt'n. 

Recall that, in ranking and selection, it is possible to come up with trivial poli-
cies that are asymptotically optimal as the number of measurements goes to infinity. 
For example, the policy that measures every alternative in a round-robin fashion is 
optimal for ranking and selection: If we have infinitely many chances to measure, 
this policy will measure every alternative infinitely often, thus discovering the true 
best alternative in the limit. However, in the multi-armed bandit setting, this simple 
policy is likely to work extremely badly. It may discover the true best alternative in 
the limit, but it will do poorly in the early iterations. If 7 < 1, the early iterations 
are more important than the later ones, because they contribute more to our objective 
value. Thus, in the online problem, it can be more important to pick good alternatives 
in the early iterations than to find the true best alternative. The Gittins policy is the 
only policy with the ability to do this optimally. 

6.1.1 Gittins Indices in the Beta-Bernoulli Model 

The Gittins recursion in (6.2) cannot be solved using conventional dynamic program-
ming techniques. Even in the beta-Bernoulli model, one of the simplest learning 
models we have considered, the number of possible states Sn is uncountably infinite. 
In other models like the normal-normal model, Sn is also continuous. However, in 
some models, the expectation in the right-hand side of (6.2) is fairly straightforward, 
allowing us to get a better handle on the problem conceptually. 

Let us consider the beta-Bernoulli model for a single slot machine. Each play 
has a simple 0/1 outcome (win or lose), and the probability of winning is p. We do 
know this probability exactly, so we assume that p follows a beta distribution with 
parameters a0 and (3°. Recall that the beta-Bernoulli model is conjugate, and the 
updating equations are given by 

pn+1 = pnJr(^_wn+iy 
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where the distribution of Wn+1 is Bernoulli with success probability p. After n plays, 
the distribution of p is beta with parameters an and (3n. The knowledge state for a 
single slot machine is simply Sn = (an,(3n). Consequently, 

E (Wn+11 Sn) = E [E (Wn+1 \Sn,p)\ Sn] 
= E(p\Sn) 
_ an 

" an + f3n' 

Then, writing V (Sn, r) as V (an, /?n, r ) , we obtain 

+ ^ ^ ^ ^ / T + l , r ) . (6.4) 

For fixed a and /3, the quantity V (a, /3, r) is a constant. However, if the observation 
jyn+i j s a s u c c e s s ? w e wiu transition to the knowledge state (a n 4-1, /?n); and if 
it is a failure, the next knowledge will be (an , (3n + 1). Given 5 n , the conditional 
probability of success is Q W

ann. 
From (6.4), it becomes clear why Gittins indices are difficult to compute ex-

actly. For any value of r and any a, /?, we need to know V ( a + l , /3,r)as well as 
V (a, (5 + 1, r) before we can compute V (a, /?, r). But there is no limit on how high 
a and (3 are allowed to go. These parameters represent roughly the tallies of successes 
and failures that we have observed, and these numbers can take on any integer value 
if we assume an infinite horizon. 

However, it is possible to compute V (a, /3, r) approximately. For all a and f3 
such that a + (3 is "large enough," we could assume that V (a, /?, r) is equal to some 
value, perhaps zero. Then, a backwards recursion using these terminal values would 
give us approximations of V (a, /?, r) for small a and /3. 

The quality of such an approximation would depend on how many steps we would 
be willing to perform in the backwards recursion. In other words, the larger the value 
of a + /? for which we cut off the recursion and set a terminal value, the better. 
Furthermore, the approximation would be improved if these terminal values were 
themselves as close to the actual value functions as possible. 

One way of choosing terminal values is the following. First, fix a value of r. If 
a + f3 is very large, it is reasonable to suppose that 

V(a, (3, r) w V(a + 1,0, r) « V(a, (3 + 1, r) . 

Then, we can combine (6.2) with (6.4) to approximate the Gittins recursion as 

a 
V(a,(3,r) = max 

1 — 7 a 

In this case, it can be shown that (6.5) has the solution 

+ 7 y (a , / 3 , r ) (6.5) 

V(a, /3, r) = max( r, —^— ), 
1 - 7 V a + /V 
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Table 6.1 Gittins indices for the beta-Bernoulli model with a, /3 = 1,..., 7 for 
7 = 0.9. 

a 1 

1 

2 

3 

4 

5 

6 

7 

0.7029 

0.5001 

0.3796 

0.3021 

0.2488 

0.2103 

0.1815 

2 

0.8001 

0.6346 

0.5163 

0.4342 

0.3720 

0.3245 

0.2871 

3 

0.8452 

0.7072 

0.6010 

0.5184 

0.4561 

0.4058 

0.3647 

4 

0.8723 

0.7539 

0.6579 

0.5809 

0.5179 

0.4677 

0.4257 

5 

0.8905 

0.7869 

0.6996 

0.6276 

0.5676 

0.5168 

0.4748 

6 

0.9039 

0.8115 

0.7318 

0.6642 

0.6071 

0.5581 

0.5156 

7 

0.9141 

0.8307 

0.7573 

0.6940 

0.6395 

0.5923 

0.5510 

and the solution to (6.3) in this case is simply 

We can use this result to approximate Gittins indices for a desired an and /?n. First, 
we choose some large number N. If a + f3 > N, we assume that V(a, /?, r) = 
Yz~ -^R f°r a ^ r- Then, we can use (6.2) and (6.4) to work backwards and compute 
V(an, f3n, r) for a particular value of r. Finally, we can use a search algorithm to 
find the particular value r* that makes the two components of the maximum in the 
expression for V(an, /3n, r) equal. 

The computational cost of this method is high. If N is large, the backwards 
recursion becomes more expensive for each value of r, and we have to repeat it many 
times to find the value r*. However, the recursion (for fixed r) is simple enough to be 
coded in a spreadsheet, and r can then be varied through trial and error (see Exercise 
6.3). Such an exercise allows one to get a sense of the complexity of the problem. 

When all else fails, the monograph by Gittins (1989) provides tables of Gittins 
indices for several values of 7 and a,/3 = 1,2,..., 40. A few of these values are 
given in Tables 6.1 and 6.2 for 7 = 0.9,0.95. The tables allow us to make several 
interesting observations. First, the Gittins indices are all numbers in the interval [0,1]. 
In fact, this is always true in the beta-Bernoulli model (but not for other models, as 
we shall see in the next section). Second, the indices are increasing in the number 
of successes and decreasing in the number of failures. This is logical; if the number 
of successes is low, and the number of trials is high, we can be fairly sure that the 
success probability of the slot machine is low, and therefore the fixed-reward process 
should give us smaller rewards. 
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Table 6.2 Gittins indices for the beta-Bernoulli model with a,/3 = 1,..., 7 for 
7 = 0.95. 

a 1 
P 
1 

2 

3 

4 

5 

6 

7 

0.7614 

0.5601 

0.4334 

0.3477 

0.2877 

0.2439 

0.2106 

2 

0.8381 

0.6810 

0.5621 

0.4753 

0.4094 

0.3576 

0.3172 

3 

0.8736 

0.7443 

0.6392 

0.5556 

0.4898 

0.4372 

0.3937 

4 

0.8948 

0.7845 

0.6903 

0.6133 

0.5493 

0.4964 

0.4528 

5 

0.9092 

0.8128 

0.7281 

0.6563 

0.5957 

0.5440 

0.4999 

6 

0.9197 

0.8340 

0.7568 

0.6899 

0.6326 

0.5830 

0.5397 

7 

0.9278 

0.8595 

0.7797 

0.7174 

0.6628 

0.6152 

0.5733 

6.1.2 Gittins Indices in the Normal-Normal Model 

Let us now switch to the normal-normal model. Instead of winning probabilities, we 
deal with average winnings, and we assume that the winnings in each play follow a 
normal distribution. The quantity fix represents the unknown average winnings of 
slot machine x. Every observation W™ is normal with mean \ix and known precision 
/3W, and every unknown mean \ix is normally distributed with prior mean 6^ and 
prior precision /3%. In every time step, we select an alternative x, observe a random 
reward W%+1, and apply (4.1) and (4.2) to obtain a new set of beliefs (<9n+1, /3n + 1) . 

The Gittins index of slot machine x at time n can be written as the function 
jGitt,n ^ n a n aw ^y Observe that this quantity only depends on our beliefs about 
slot machine x, and not on our beliefs about any other slot machines y ^ x. This is 
the key feature of any index policy. However, the index does depend on the problem 
parameters aw and 7. We find it convenient to write the index in terms of the variance 
rather than the precision, for reasons that will become clear below. 

Gittins showed that I^iu^n can be simplified using 

jGitt.n (0n? ^ ^ ^ = Qn + ^ . jGitt,n L 3L,l,>y\ (6.6) 
\ &W J 

This equation is reminiscent of the well-known property of normal random variables. 
Just as any random variable can be written as a function of a standard normal random 
variable, so a Gittins index can be written in terms of a "standard normal" Gittins 
index, as long as we are using a normal-normal learning model. 

For notational convenience, we can write 

\ &w J \°w J 
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Table 6.3 Gittins indices G(s, 7) for the case where s = 1/y/k. Source: Gittins 
(1989). 

k 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0.5 

0.2057 

0.1217 

0.0873 

0.0683 

0.0562 

0.0477 

0.0415 

0.0367 

0.0329 

0.0299 

0.0155 

0.0104 

0.0079 

0.0063 

0.0053 

0.0045 

0.0040 

0.0035 

0.0032 

0.7 

0.3691 

0.2224 

0.1614 

0.1272 

0.1052 

0.0898 

0.0784 

0.0696 

0.0626 

0.0569 

0.0298 

0.0202 

0.0153 

0.0123 

0.0103 

0.0089 

0.0078 

0.0069 

0.0062 

Discount factor 
0.9 

0.7466 

0.4662 

0.3465 

0.2781 

0.2332 

0.2013 

0.1774 

0.1587 

0.1437 

0.1313 

0.0712 

0.0491 

0.0375 

0.0304 

0.0255 

0.0220 

0.0193 

0.0173 

0.0156 

0.95 

0.9956 

0.6343 

0.4781 

0.3878 

0.3281 

0.2852 

0.2528 

0.2274 

0.2069 

0.1899 

0.1058 

0.0739 

0.0570 

0.0464 

0.0392 

0.0339 

0.0299 

0.0267 

0.0242 

0.99 

1.5758 

1.0415 

0.8061 

0.6677 

0.5747 

0.5072 

0.4554 

0.4144 

0.3608 

0.3529 

0.2094 

0.1520 

0.1202 

0.0998 

0.0855 

0.0749 

0.0667 

0.0602 

0.0549 

0.995 

1.8175 

1.2157 

0.9493 

0.7919 

0.6857 

0.6082 

0.5487 

0.5013 

0.4624 

0.4299 

0.2615 

0.1927 

0.1542 

0.1292 

0.1115 

0.0983 

0.0881 

0.0798 

0.0730 

Thus, we only have to compute Gittins indices for fixed values of the prior mean and 
measurement noise, and then use (6.6) to translate it to our current beliefs. Table 6.3 
gives the values of G (s, 7) for 7 = 0.95,0.99 and s = 1/y/k for k = 1, 2,.... This 
corresponds to a case where the measurement noise is equal to 1, and our beliefs 
about alternative x have the variance 1/k if we make k measurements of x. 

The table reveals several interesting facts about Gittins indices. First, G (1/Vk, 7 ] 
is increasing in 7. If 7 is larger, this means that we have a larger effective time hori-
zon. Essentially, a larger portion of our time horizon "matters"; more and more of the 
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rewards we collect remain large enough after discounting to have a notable effect on 
our objective value. This means that we can afford to do more exploration, because 
one low reward early on will not harm our objective value as much. Hence, the Gittins 
indices are higher, encouraging us to explore more. 

Second, G f l/v^A;, 7} is decreasing in k. This is fairly intuitive. The standard 
Gittins index G (s, 7) represents the uncertainty bonus and does not depend on our 
estimate of the value of an alternative. As the variance of our beliefs goes down, the 
uncertainty bonus should go down as well, and we should only continue to measure 
the alternative if it provides a high reward. 

Unfortunately, even the seminal work by Gittins does not give the values of G (s,7) 
for all possible s and 7. In general, computing these values is a difficult problem in 
and of itself. For this reason, a minor literature on Gittins approximation has arisen 
in the past ten years. To obtain a practical algorithm, it is necessary to examine this 
literature in more depth. 

6.1.3 Approximating Gittins Indices 

Finding Gittins indices is somewhat like finding the cdf of the standard normal distri-
bution. It cannot be done analytically, and requires instead a fairly tedious numerical 
calculation. We take for granted the existence of nice functions built into most pro-
gramming languages for computing the cumulative standard normal distribution, for 
which extremely accurate polynomial approximations are available. In Excel, this is 
available using the function NORMINV. 

As of this writing, such functions do not exist for Gittins indices. However, in 
the case of the normal-normal model, there is a reasonably good approximation that 
results in an easily computable algorithm. First, it can be shown that 

where the function b must be approximated. The best available approximation of 
Gittins indices is given by 

b(s) = 

Thus, the approximate version of (6.6) is 

4 - ^ C + ^ v / ^ ^ - ^ ) . (6-7) 

Figure 6.1.3 gives us an idea of the quality of this approximation. In a few select 
cases where the exact Gittins indices are known (see Table 6.3), we can evaluate the 
approximation against the exact values. We see that the approximation gives the most 

e-0.02645(log s)2+0.89106 log s-0.4873 1 < g < ^ Q Q 

I xA(21offs- logloKS-logl67rp , 5 > 100. 
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Figure 6.1 Comparison of approximate and exact Gittins indices for 7 = 0.9,0.99. 

error for small values of k, but steadily improves as k increases. The approximation 
for 7 = 0.9 tends to be slightly more accurate than the one for 7 = 0.99. In general, 
the approximation is more accurate for lower values of 7. 

6.2 VARIATIONS OF BANDIT PROBLEMS 

The research into online learning problems has grown to consider a wide range of 
different variations. A sampling of this literature, with associated references, is sum-
marized below. 

Restless bandits - The standard bandit model assumes that the truth fix for arm 
x remains the same over time. Restless bandits describe a model where the 
means are allowed to vary over time (see Whittle 1988, Weber & Weiss 1990). 
Bertsimas & Nino-Mora (2000) provides a mathematically rigorous analysis 
of this problem class. 

Continuous-armed bandits - The first author to have considered the online opti-
mization of continuous functions (at least within the "bandit" literature) is 
Mandelbaum (1987). Bubeck et al. (2011) analyzes different policies for prob-
lems where the arm x may be a continuous, multidimensional variable using 
hierarchical discretization of the measurement space. Kleinberg (2004) pro-
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vides tight minimax bounds on the regret for problems with continuous arms, 
but these are exponential in the number of dimensions. 

Response-surface bandits - There are many applications where our beliefs about the 
value of different arms are correlated. Rusmevichientong & Tsitsiklis (2010) 
considers a problem where the value of arm x is given by a linear function 
/ (x) = a+bx, so that as we learn about different arms, we learn the parameters 
a and b. This type of model was originally studied by Ginebra & Clayton (1995) 
under the name of "response-surface bandits." 

Finite horizon bandits - Nino-Mora (2010) derives an index policy for finite horizon 
problems with discrete states, which occurs, for example, when we use the 
beta-Bernoulli model. 

Intermittent bandits - Dayanik et al. (2008) derives an index policy for the problem 
where a bandit may not always be available. This is also known as "sleeping 
bandits" (Kleinberg et al. 2010). 

A thorough review of bandit problems can be found in Bubeck (2010). In all these 
variations, the term "bandit" refers to a measurement x, which may be discrete or 
continuous. In this community, the use of the term bandit has the effect of putting a 
stochastic optimization problem in a learning setting, where we generally are looking 
for a policy where we would make a measurement in part for the value of information. 

6.3 UPPER CONFIDENCE BOUNDING 

A class of policies that has received considerable interest is known as upper confi-
dence bounding or UCB policies. These policies are quite simple to implement, and 
different variants have been developed using this approach for many types of reward 
distributions. For example, imagine we have a problem where all the rewards are in 
the interval [0,1] (e.g. if we are using a beta-Bernoulli model). In this setting, one 
possible UCB policy defines the index of alternative x to be 

^cm'n = e: + ]j2-^, (6.8) 

where N£ is the number of times we have played arm x up to and including time n. 
The policy is somewhat analogous to interval estimation: We take our current estimate 
of /JLX and add an uncertainty bonus. Just as in interval estimation, this particular 
uncertainty bonus represents the half-width of a confidence interval. In a sense, (6.8) 
represents a probabilistic guess of the largest possible value that //x could realistically 
take on. We choose to measure, not the alternative with the highest estimated value, 
but rather the alternative that could potentially have the largest value. 

The policy in (6.8) is geared toward the specific case where the rewards are in 
[0,1]. A UCB policy designed for the normal-normal model defines the index of x 
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as 
rUCBl-NormaLn _ nn , A- / log 71 jU^l-Vorma^n = Qn + 4 < J , _ ^ _ . ( 6 > 9 ) 

There are also many other versions in the literature for both beta-Bernoulli and 
normal-normal problems, but (6.8) and (6.9) are two of the most prominent. Prob-
lems with bounded rewards turn out to be particularly attractive for the UCB approach 
because, in these settings, a particular proof technique can be applied to create UCB 
policies with provable bounds on the regret. There is also a UCB policy for the 
gamma-exponential model, where Wx follows an exponential distribution with pa-
rameter \ x , and our beliefs about Â  are represented by a gamma distribution with 
parameters a™ and b™. In this case, we compute 

ZC—~ - -JL + , min^2'°S"+
jy1'*", l), <6..0, 

with z being a tunable parameter. 
The main reason why UCB policies have attracted attention is because they have 

an optimality property of sorts. If we are able to make TV measurements, and we 
make them by following a UCB-type policy, then the average number of times we 
will play a suboptimal machine (a machine with fix < max^ /xx/) can be bounded 
above by ClogTV, where C is some constant. Thus, the number of times that we 
choose any particular suboptimal machine is on the order of log TV, known as a regret 
bound. It has been proven that this is the best possible bound (up to the choice of C) 
on the number of times a suboptimal machine is played. Both of the UCB policies 
given above have this property. In fact, it can even be shown that the epsilon-greedy 
policy from Section 17.2 has the UCB optimality property, although this randomized 
method is not what we typically think of as an index policy. 

As is often the case, bounds can be loose, and the bound on the expected number 
of times that we may visit an incorrect arm given above can share this quality in 
some cases. For example, suppose that C — 8 for a particular UCB-type policy, and 
TV = 20. Then, Clog TV = 11.8170. This means that we can play any suboptimal 
machine up to eleven times on average. If we have many machines, this does not tell 
us much. Furthermore, the bound grows to infinity as TV —» oo, which once again 
indicates that an optimal policy can converge to a suboptimal arm (this is generally 
true of any discounted, online learning policy). 

Still, UCB policies are a noteworthy alternative to Gittins approximations (based 
on a fundamentally different style of thinking), especially for some finite-horizon 
problems where Gittins indices are no longer optimal. One particularly attractive 
feature is their ease of computation. UCB policies tend to explore more than is really 
necessary. This can be effective for problems with small action spaces, and where we 
have relatively little information about the performance of each arm. UCB policies 
can be improved for problems where we feel we have a good prior that describes 
the population of potential truths. When this is the case, we can introduce a scaling 
factor for the second term in (6.8) or (6.9) which can be tuned using the population of 
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truths. However, this would put a UCB policy into the same class as heuristics such 
as interval estimation. 

In the next section, we present an adaptation of the knowledge gradient for bandit 
problems, and present some comparisons between the knowledge gradient and upper 
confidence bounding. 

6.4 THE KNOWLEDGE GRADIENT FOR BANDIT PROBLEMS 

The knowledge gradient approach that we introduced in Chapter 5 is a particularly 
simple and elegant strategy for collecting information. In the ranking and selection 
setting, it produces an easily computable algorithm. What is more, it can be adapted to 
handle correlated measurements, as well as non-Gaussian learning models. A natural 
question, then, is whether it can be adapted for the multi-armed bandit problem, which 
is the online version of ranking and selection. 

In this section, we develop a simple relationship between the knowledge gradient 
for offline and online settings, which also allows us to consider problems with corre-
lated beliefs. We present a few experimental comparisons that seem to suggest that 
this works quite well for online problems. We then discuss applications to problems 
with non-normal belief models. 

6.4.1 The Basic Idea 

Once again, consider the normal-normal Bayesian learning model. Suppose that we 
can make N measurements and that 7 = 1. Furthermore, suppose that we have 
already made n measurements and have constructed estimates 0™ and /3% for each 
alternative x. Now, as a thought experiment, let us imagine that we will suddenly 
cease learning, starting at time n. We will still continue to collect rewards, but we 
will no longer be able to use the updating equations (4.1) and (4.2) to change our 
beliefs. We are stuck with our time-n beliefs until the end of the time horizon. 

If this were to occur, the best course of action would be to choose xn = arg maxx 6r
a 

for all times n <n' < N. Since we cannot change our beliefs anymore, all we can 
really do is choose the alternative that seems to be the best, based on the information 
that we managed to collect up to this point. The expected total reward that we will 
collect by doing this, from time n to time N, is given by 

vstoP,n (5n) = (jy _ n + x) max<9£, (6.11) 
x 

simply because there are N — n + 1 rewards left to collect. Because 7 = 1, each 
reward is weighted equally. For instance, in the example given in Table 6.4, this 
quantity is VStop>n (Sn) = 6 • 5.5 = 33. 

Consider a different thought experiment. We are still at time n, but now our next 
decision will change our beliefs as usual. However, starting at time n + 1, we will 
cease to learn, and from there on we will be in the situation described above. This 
means that, starting at time n + 1, we will always measure the alternative given by 
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argmax^ #™+1. The problem thus reduces to choosing one single decision xn to 
maximize the expected total reward we collect, starting at time n. 

This idea is essentially the knowledge gradient concept from a slightly different 
point of view. In ranking and selection, we chose each decision to maximize the 
incremental improvement (obtained from a single measurement) in our estimate of 
the best value. Essentially, we treated each decision as if it were the last time we were 
allowed to learn. We made each decision in such a way as to get the most benefit 
out of that single measurement. In the online setting, we do the same thing, only 
"benefit" is now expressed in terms of the total reward that we can collect from time 
n to the end of the time horizon. 

The KG decision for the bandit problem is given by 

XKG,n = a r g m a x E [ ^ + yStop,n+l (gn+1) | gn^n = ^ ( 6 U ) 

= argmax0£ + (N - n) E m a x C + 1 | Sn, xn = x 
x -' 

= argmax6£ + ( 7 V - n ) E max0" + 1 -max(9" , IS"1,a:" m ^n 

(6.13) 

(6.14) 

= argmax6£ + ( W - n ) i / * t " \ (6.15) 
X 

where ux
XG,n is simply the knowledge gradient for ranking and selection, given by 

(5.10). We start with the basic Bellman equation in (6.12). The downstream value 
is given by vStop,n^1 because we assume that we will cease to learn starting at time 
n + 1. Next, we use the fact that E (fix \Sn) = 0™, together with the definition of 
yStoP,n+i from (6.11) to obtain (6.13). Because the quantity maxx/ 0™, is constant 
given Sn, and does not depend on x, we can put it into the expression without changing 
the arg max, thus arriving at (6.14). Finally, we apply the definition of the knowledge 
gradient from (5.1) to obtain (6.15). 

This line of reasoning has given us a simple and easily computable algorithm for 
the multi-armed bandit problem. At first, the expression 0™ + (N — n) v£G'n that 
we compute for alternative x may look very similar to the index policies we discussed 
earlier. Like interval estimation, Gittins indices, and other methods, KG takes #™ and 
adds an uncertainty bonus (N — n) v£G,n. Just as in the other index policies, the 
uncertainty bonus gets smaller as a% gets smaller: thus, if the level of uncertainty 
is zero, the uncertainty bonus is zero as well. Furthermore, all other things being 
equal, the uncertainty bonus is larger if n is smaller, reflecting the fact that it is more 
important to learn in the early stages of the problem, while we have more remaining 
time steps in which we can potentially use the information we collect. 

However, the KG policy is not an index policy. Crucially, the knowledge gradient 
vKG,n depen(is not only on 0™, but also on maxx/^x 0™,. This cannot happen in an 
index policy, where the index of x is only allowed to depend on our beliefs about x. 
The knowledge gradient policy does not decompose the multi-armed bandit problem 
into many one-armed bandit problems. It considers each alternative relative to the 
others. 

Table 6.4 shows the computations performed by the online KG policy for a partic-
ular problem with five alternatives and N — n = 5 measurements remaining in the 
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Table 6.4 Calculations for the online KG policy in a bandit problem with M — 5, 
N - n = 5, and $? = 1 for all x. 

Choice 

1 
2 
3 
4 
5 

en 

2 
4 
3 

5.5 
4.5 

pn 

1/2 
1/2 
2/3 
1/2 
1/3 

<7U 

1.1547 
1.1547 
0.9487 
1.1547 

1.5 

c 
-3.0311 
-1.2990 
-2.6352 
-0.8660 
-0.6667 

uKG,n 

0.0004 
0.0527 
0.0012 
0.1234 
0.2267 

0" + 5 . vKGtn 

2.0020 
4.2634 
3.0062 
6.1168 
5.6333 

time horizon. This example illustrates the distinction between the online KG policy 
and the offline KG policy from Chapter 5. If this were a ranking and selection prob-
lem, we would measure the alternative with the highest KG factor, namely alternative 
5. However, even though alternative 4 has a smaller KG factor, our estimate 0J is 
sufficiently larger than 6V; to make the online KG policy choose alternative 4. Thus, 
the online KG policy favors exploitation more than the offline KG policy. 

At the same time, if iV — n = 50 in the same example, then the online KG policy 
would prefer alternative 5 to alternative 4, thus agreeing with the offline KG policy. 
Unlike the offline KG policy, online KG is what is known as a nonstationary policy. 
This means that the decision made by online KG depends on n as well as on Sn. The 
exact same belief state can lead online KG to measure different alternatives depending 
on the current time. 

The formulation of KG for bandit problems is quite versatile. Suppose that we 
have a discount factor 7 < 1. It is a simple matter to repeat the above reasoning and 
arrive at the decision rule 

XKG,n = a r g m a x 0 n + ^Izl -i/fG'n. 
x 1 — 7 

Taking N -> 00, we obtain the knowledge gradient rule for infinite-horizon bandit 
problems, 

XKG,n = a r g m a x 0 n + _J_yKG,n ^ 
x I—7 

This is substantially easier to compute than Gittins indices. Keep in mind also that 
Gittins indices are only designed for infinite-horizon problems. If N is finite, the 
Gittins policy becomes a heuristic with 7 serving as a tunable parameter. On the other 
hand, the KG policy can be defined for both finite- and infinite-horizon problems and 
requires no tuning in either case. Of course, it is not an optimal policy, but it is able to 
respond to these different environments without the need for any tunable parameters. 

6.4.2 Some Experimental Comparisons 

It is useful to see how the knowledge gradient adapted for online problems compares 
against some of the popular policies that have been proposed for this problem class. 
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(a) (b) 

Figure 6.2 Histogram showing the average difference in the total discounted rewards 
collected by KG and approximate Gittins indices across 100 bandit problems with M = 100 
and 7 = 0.9. (a) Histogram using truth from the prior, and (b) histogram using truth from an 
unbiased uniform distribution (from Ryzhov et al. 2011). 

Figure 6.2 shows a histogram of the performance of infinite-horizon KG minus the 
performance of a policy based on the Gittins approximation from Section 6.1.3 across 
100 bandit problems with 100 alternatives. The numbers represent differences in the 
total discounted rewards (with 7 = 0.9) collected by the two policies. We can see that 
all the numbers are positive, meaning that KG outperformed the approximate policy 
in every problem. To be sure, one can create problems where this is not the case, but 
it does indicate that KG can be competitive with the best existing approximation of 
the optimal policy. 

The main advantage of the KG method, however, is that its nature as a nonindex 
policy makes it well suited to the case where our beliefs about the alternatives are 
correlated. Suppose that we begin with a multivariate normal prior JJL ~ N (0°, E°) , 
and use (2.22) and (2.23) to update our beliefs, but we keep the bandit objective 
function from (6.1). In this setting, index policies are inherently unsuitable: An 
index policy depends on our ability to decompose the problem and consider every 
alternative as if it were the only alternative in the problem, but the whole point of 
correlations is that the alternatives are inextricably related. Thus, while we can still 
use index policies such as Gittins and UCB as heuristics, they automatically lose their 
nice optimality properties in the correlated setting. 

However, we can still define a knowledge gradient method in the correlated case. In 
fact, the KG decision rule is still given by (6.15), with the only change that we replace 
vKG,n b v h(6n, 5-(£n, x)) from (5.18). This quantity is then computed exactly as in 
Chapter 5. As of this writing, KG is the first algorithm that is able to consider bandit 
problems with multivariate normal priors. 

Table 6.5 summarizes the results of a series of experiments on online problems 
with 100 alternatives with correlated beliefs. The knowledge gradient outperformed 
approximate Gittins, UCB, UCB 1 and pure exploration for all 100 sample realizations. 
Only interval estimation proved to be competitive, and actually outperformed the 
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tb 

Table 6.5 Comparison between knowledge gradient and competing policies for 100 
truth-from-prior experiments (source: Ryzhov et al. (2011)). 

Comparison 

KG minus approximate Gittins 
KG minus interval estimation 
KG minus UCB 
KG minus UCB1 
KG minus pure exploitation 

Average Difference 

0.7076 
-0.0912 
44.4305 
1.2091 
5.5413 

Standard Error 

0.0997 
0.0857 
0.6324 
0.1020 
0.1511 

knowledge gradient policy 77 percent of the time (although the difference in the 
average performance was not statistically significant). Recall that interval estimation 
uses the policy of maximizing the index 

TlE,n /m . _ _n 
1 - vx + zaax, 

where 6™ is our current estimate of the value of alternative x and a™ is the standard 
deviation of our estimate 0™. 

The performance of interval estimation seems surprising, given that the knowledge 
gradient policy is taking advantage of a covariance structure (which we assume is 
known in advance), while IE has no such ability. However, IE has a tunable parameter 
za, and it is important that this parameter be tuned carefully. Figure 6.3 shows the 
behavior of interval estimation as a function of za, along with the knowledge gradient 

Figure 6.3 Expected opportunity cost for interval estimation as a function of za along with 
the knowledge gradient (from Ryzhov et al. 2011). 
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(which of course is a constant with respect to za). Note that IE outperforms KG only 
over a narrow range. Even more important, notice the severe degradation of IE as za 
moves away from its best setting. 

This experiment demonstrates that there is a tremendous amount of information 
in a tunable parameter. Statements have been made in the literature that za can be 
safely chosen to be around 2 or 3, but problems have been found where the optimal 
value of za ranges anywhere from 0.5 to 5.0. Furthermore, the solution can be quite 
sensitive to the choice of za, suggesting that tuning has to be performed with care. 

6.4.3 Non-Normal Models 

Just as in ranking and selection, KG can also be extended to non-normal learning 
models, although we should take care to define the knowledge gradient in accordance 
with our reward structure. Suppose that we are working with the gamma-exponential 
model, where Wx follows an exponential distribution with parameter Xx, and each 
Xx has a gamma prior distribution with parameters ax, bx. Thus, our prior estimate 
of every reward is 

E(WX) E\E(WX\XX)] 
1 

E 
A, 

bl 
a ° - l ' 

where bx > 0 and ax > 1. Suppose that our objective function is to maximize the 
sum of the expected rewards, 

max 
Tren 

N 1 

n=0 

Then, the online KG decision rule for 7 = 1 is given by 

X KG,n bn 
is — = arg max —^— + (N - n) v* 

x a™ - 1 v J x 
KG,n 

To write the knowledge gradient z/^G'n, let Cx = maxx/^x a^'-\ a nd define 
baseline KG quantity 

,~.n _ (6S)a-

the 

Then, 
(aSQ) a " - l a ? - 1 

,KG,n 
i>x if x ^ arg max^ ^ z r > 

* 2 - ( # i - c ? ) i f Q > § , 
0 otherwise. 

(6.16) 
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Once again, we have an easily computable KG algorithm, for a problem where Gittins 
approximations are not easily available. Note the presence of a penalty term in (6.16), 
much like in the expression for gamma-exponential KG in ranking and selection that 
was presented in Section 5.5. 

6.5 BIBLIOGRAPHIC NOTES 

Section 6.1- Gittins index theory is due to Gittins & Jones (1974), Gittins (1979) and 
Gittins (1989). The term "retirement" was used by Whittle (1980) to explain 
the Gittins index. Berry & Fristedt (1985) also provides a rigorous analysis 
of bandit problems. This research has launched an entire field of research 
into the search for index policies for variations on the basic bandit problems. 
Glazebrook (1982) analyzes policies for variations of the basic bandit model. 
Glazebrook & Minty (2009) presents a generalized index for bandit problems 
with general constraints on information collection resources. Bertsimas & 
Nino-Mora (2000) show how an index policy can be computed using linear 
programming for a certain class of bandit problems. See the updated version 
of Gittins' 1989 book, Gittins et al. (2011), for a modern treatment of bandit 
problems and a much more thorough treatment of this extensive literature. The 
approximation of Gittins indices is due to Chick & Gans (2009), building on 
the diffusion approximation of Brezzi & Lai (2002). 

Section 6.3 - Lai & Robbins (1985) and Lai (1987) provide the seminal research 
that shows that the number of times an upper confidence bound policy chooses 
a particular suboptimal machine is on the order of log N, and that this is the 
best possible bound. Auer et al. (2002) derives finite-time regret bounds on the 
UCB1 and UCB1-normal policies and reports on comparisons against varia-
tions of UCB policies and epsilon-greedy on some small problems (up to 10 
arms). The UCB policy for exponential rewards comes from Agrawal (1995). 

Section 6.4 - The online adaptation of the knowledge gradient is due to Ryzhov et 
al. (2011). Some additional experimental comparisons can be found in Ryzhov 
& Powell (2009a). Ryzhov & Powell (201 \c) presents the KG policy for the 
gamma-exponential model. Rates of convergence for KG-type policies are still 
an open question, but Bull (2011) is an interesting first step in this direction. 

PROBLEMS 
6.1 You have three materials, A, B, and C that you want to test for their ability to 
convert solar energy to electricity, and you wish to find which one produces the highest 
efficiency. Table 6.6 shows your initial beliefs (which we assume are independent) 
summarized as the mean and precision. Your prior belief is normal, and testing 
alternative x produces a measurement Wx which is normally distributed with precision 
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Table 6.6 Three observations, for three alternatives, given a normally distributed 
belief, and assuming normally distributed observations. 

Iteration 

Prior (/ix, Ar) 
1 
2 
3 

A 

(5..05) 
3 
-
-

B 

(3,02) 
-
2 
-

C 

(4..01) 
-
-
6 

a) You follow some measurement policy that has you first evaluating A, then B 
and finally C, obtaining the observations W™ shown in Table 6.6 (for example, 
W\ — 3). Give the updated belief (mean and precision) for fi\ given the ob-
servation W\ = 3. Also compute the updated means only (not the precisions) 
for \J?B and//^. 

b) Give the objective function (algebraically) to find the best policy after N mea-
surements if this is an offline learning problem. Compute a sample realization 
of the objective function for this example. 

c) Give the objective function (algebraically) to find the best policy if this is 
an online learning problem. Compute a sample realization of the objective 
function for this example. 

6.2 Consider a classic multi-armed bandit problem with normally distributed re-
wards. 

a) Is the multi-armed bandit problem an example of an online or offline learning 
problem? 

b) Let Rn(xn) be the random variable giving the reward from measuring bandit 
xn e ( 1 ,2 , . . . , M) in iteration n. Give the objective function we are trying to 
maximize (define any other parameters you may need). 

c) Let T(n) be the Gittins index when rewards are normally distributed with mean 
0 and variance 1, and let vx{nx, al) be the Gittins index for a bandit where the 
mean reward is fi with variance a2. Write vx(n>x, &%) as a function of T(n). 

6.3 Consider a bandit problem with 7 < 1 where we use the beta-Bernoulli learning 
model. 

a) Suppose that, for a particular choice of a , ft and r, we have V (a,/3,r) « 
V (a + 1, /3, r) « V (a, p -f 1, r). Show that the Gittins recursion is solved 
by 

V(a,P,r) = maxfr, —^— ). 
1-7 V a+PJ 
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b) In a spreadsheet, choose values for r and 7 (these should be stored in two cells 
of the spreadsheet, so that we can vary them), and create a table that compute 
the values of V (a, /?, r) for all a, /3 = 1,2,... with a + /? < 200. When 
a + /3 = 200, use V (a,/3,r) = j z - ^ g as a terminal condition for the 
recursion. 

c) The spreadsheet from part b) can now be used to compute Gittins indices. The 
Gittins index r* for a particular a and f3 with a + /? < 200 is the smallest value 
of r for which y^- is equal to the entry for V (a, /?, r) in the table. Use trial 
and error to find r* for a, /? = 1,..., 5 with 7 = 0.9. Report the values you 
find, and compare them to the exact values of the Gittins indices in Table 6.1. 

6.4 Consider a bandit problem with 7 < 1. Repeat the derivation from Section 6.4 
to show that the KG decision rule is given by 

XKG,n = a r g m a x 6 p + ylZl ^-V^0^ 
x 1 — 7 

for finite N. 

6.5 Consider a finite-horizon bandit problem with 7 = 1 and a gamma-exponential 
learning model. Show that z/^G'n is given by (6.16). 

6.6 This exercise needs the spreadsheet: 

http://optimallearning.princeton.edu/exercises/FiveAlternative.xls 

available on the optimal learning website. You are going to have to construct a 
measurement policy to choose the best of five options, using the problems that are 
described in the attached spreadsheet. You are welcome to solve the problem directly 
in the accompanying spreadsheet. But this is an exercise that will be easier for some 
of you to solve using a programming environment such as MATLAB, Java, or perhaps 
Visual Basic in Excel. 

The spreadsheet illustrates the calculations. Each time you choose a path, the 
spreadsheet will show you the time for the path. It is up to you to update your 
estimate of the average travel time and the variance of the estimate. Use a Bayesian 
framework for this exercise. You can repeat the exercise different times on the same 
set of random realizations. If you wish to use a fresh set of random numbers, hit 
the "Refresh button." You can see the data on the "Data" tab. The data tab uses 
the data in columns A-F, which will not change until you hit the refresh button. The 
data in columns H-L use the Rand () function, and will change each time there is a 
recompute (which can be annoying). If you click on the cells in columns H-L, you 
will see how the random numbers are being generated. The true means are in row 2, 
and the numbers in row 3 control the spread. You should use a prior estimate of the 
standard deviation equal to 10 for all your analyses. 

The problem set requires testing a number of exploration policies. For each policy, 
compute two objective functions (averaged over 100 random number seeds): 
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1) The online objective function, which is the discounted sum of your measure-
ment (for the chosen option) over all 100 measurements, with a discount factor 
of 7 = 0.80. If Cn {UJ) is the observed value of the measured option for the nth 
measurement for random number seed UJ , your objective function would be 

1 IOO IOO 

(jj=l 71=0 

2) The final measurement is given by 

ioo 

100 

1 ioo 

inn £-< v ' 

Here, F* is our online objective function, while G* is our offline objective function. 
Also let 

100 F = £w, 
n=0 

G = /A 
where /i* is the true mean for the best choice, if we knew the true means. Where 
necessary, you may assume that the standard deviation of a measurement is 10. You 
have to test the following policies: 

1) Pure exploitation. 

2) Boltzmann exploration, using scaling factor p = 1. 

3) Epsilon-greedy exploration, where the exploration probability is given by 1/n. 

4) Interval estimation. Test the performance of za = 1.0,2.0,3.0 and 4.0 and 
select the one that performs the best. 

5) Gittins indices (use the numerical approximation of Gittins indices given in 
Section 6.1.3. 

Do the following 

a) In a graph, report Fn and Gn for each of the policies below. Also show F and 
G to provide a measure of how well we are doing. 

b) Discuss your results. Compare the performance of each policy in terms of the 
two different objective functions. 

6.7 Consider a multi-armed bandit problem with independent normal rewards. In 
this exercise, you will implement a few online policies. 
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a) How should the opportunity cost be expressed in the online problem? 

b) In exercise 4.4 you implemented the interval estimation policy in an offline 
setting. Now take your code from before, and adapt it to online problems by 
changing the objective function appropriately. The parameters of the problem 
should be the same as before (use the same priors and assume 7 = 1), but now 
you need to compute opportunity cost differently. How does the best value 
of the tunable parameter za change when the problem becomes online? After 
you tune za, report the confidence interval for the opportunity cost using 200 
simulations. 

c) Now implement the Gittins index approximation for the independent normal-
normal model. You cannot solve the Gittins recursion -just use the approxima-
tion function b. Our problem has a finite horizon, so you can treat the parameter 
7 in the Gittins index calculation as another tunable parameter. What value of 
7 gives you the best results? 

d) Now implement the online KG policy. Compare the confidence intervals for 
KG, Gittins, and interval estimation. 





CHAPTER 7 

ELEMENTS OF A LEARNING PROBLEM 

By now we have covered some elementary classes of learning problems. Fortunately, 
these describe a very broad class of applications. But there are some important 
problem classes that we have not yet discussed, and which we cannot solve using 
the tools presented so far. However, before we launch into what can seem to be a 
list of scattered applications, it is useful to lay out a more comprehensive modeling 
framework that at least hints at how we might deal with the major classes of unsolved 
problems. This presentation will motivate the problems we consider in the remainder 
of the volume, but will also serve potentially as areas for further research. 

The dimensions of any stochastic, dynamic problem can be organized along five 
core dimensions: 

1) States 

2) Actions (or decisions or controls) 

3) Exogenous information 

4) The transition function 

5) The objective function 
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In this chapter, we are not going to design learning policies. Instead, the goal is 
to describe the different dimensions of learning problems to provide a sense of the 
richness of this general problem area. We are not going to design policies for all of 
the problems that this chapter will identify, but offer this description as a potential 
source of research opportunities. 

7.1 THE STATES OF OUR SYSTEM 

The state of a system can be described as consisting of all the information needed 
to make a decision, compute the objective (contributions and rewards), and compute 
the transition to the next state. Elements of a state variable can include the following 
types of information: 

■ The physical state - These are variables that describe the locations, quantities 
and status of people, equipment, and goods. 

■ The information state - This is information separate from the physical state 
needed to make a decision, compute the objective and calculate the transition 
function. In most applications, this information arrives exogenously to the 
system, such as weather, prices, customer demands or changes in technology. 
Note that the physical state is a form of information, but it is useful to separate 
the physical state from exogenous information used to make decisions. 

■ The knowledge (or belief) state - This captures our distribution of belief about 
quantities that we do not know perfectly. For example, if we are using an 
independent normal-normal model, the knowledge state consists of a vector of 
means and a vector of variances (or precisions). 

Up to now, our problems (ranking and selection and the bandit problem) have had only 
a belief state without a physical state. There is, of course, a vast range of problems 
in stochastic optimization where we are managing physical resources where we have 
to describe the state of our physical system. 

The information state is best illustrated by example. One illustration arises when 
routing a driver through a network. As a driver arrives to node i, he is able to see the 
actual travel times on each link out of node i, but cannot see the actual travel time on 
any other link of the network. His physical state would be node i, while the elements 
of the information state would be the times on links out of node i. The knowledge 
state (or the belief state) is always a probability distribution describing parameters or 
quantities about which we are uncertain, but where we feel that we can describe these 
quantities using probability distributions. In our network example, we could describe 
the uncertain times on links that we cannot observe using probability distributions, 
where we may be willing to change our estimates of these distributions as we observe 
actual times. 

We let Rn be the physical (or "resource") state at time n\ In is the information 
state; and finally Kn is our state of knowledge (we could also let Bn be the "belief 
state"). Given the range and complexity of systems involving physical resources, 
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we are not going to attempt to characterize the physical state other than as a generic 
variable Rn. Most of our attention focuses on problems with a pure knowledge state. 
But there is a growing literature that addresses the problem of optimal learning in the 
presence of a physical state, often under the broad umbrella of partially observable 
Markov decision processes (POMDPs). An example of an information problem with 
a physical state arises in sensor management, where observing information about, 
say, the disease in a population requires moving a sensor (e.g., a doctor) to an area to 
collect information. Once we do this, it changes our ability to make other observations 
moving forward. 

There are generally two interpretations of Kn. The first is the Bayesian view, where 
Kn captures the probability distribution representing our belief about the parameters. 
This view requires that we start with some sort of initial distribution (the "prior") 
before we have collected any data. The second perspective is the frequentist view, 
which captures our state of knowledge through a set of statistics computed from 
observations. We have already discussed Bayesian and frequentist perspectives in 
Chapter 2. These approaches often learn in very similar ways (aside from the Bayesian 
ability to capture prior information), but the Bayesian view imposes a probability 
distribution on the possible values of the unknown parameters in the problem. 

We have already seen problems with correlations in the belief model. This is 
where Cov(/ix,nx') ^ 0. We have only begun to explore the depth and richness 
of covariance structures for correlated beliefs. Correlated beliefs allow us to address 
problems with large (or infinite) numbers of potential alternatives with relatively small 
measurement budgets. Some examples of correlated beliefs include: 

■ Measurements are made of a continuous (and possibly scalar) function. We 
might be sampling disease within a population, the response due to a particular 
drug dosage, or the demand response to the price of a product. Measurements 
are correlated inversely proportional to the distance between two measure-
ments. 

■ Measurements of multiattribute entities. We might be predicting the importance 
of a document (based on the attributes of the document) or the likelihood 
that someone will default on a loan (as a function of an individual's financial 
characteristics). 

■ Estimating the time on a path in a network. The observed travel time over one 
path will be correlated with other paths that share common links. 

■ Effectiveness of a drug compound. Different drug compounds will share com-
mon atomic subsequences which interact and determine the effectiveness of a 
drug. Drug compounds sharing common atoms (typically in specific locations) 
may exhibit correlations in their effectiveness. 

The distinction between a physical (or resource) state and a belief (or knowledge) 
state has caused confusion in the dynamic programming community since the 1950s. 
It is common for people to equate "state" and "physical state," which is problem-
atic when we only have a belief state. When it became clear that our belief about 
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parameters could also evolve, Bellman & Kalaba (1959) used the term "hyperstate" 
to refer to the combination of physical state (an imperfect term) and state of knowl-
edge. In Chapter 17 we address the problem of learning in the presence of a physical 
state. Rather than use terms like hyperstate, we prefer to use terms like physical (or 
resource) state, information state, and belief/knowledge state. 

7.2 TYPES OF DECISIONS 

The complexity of a problem depends in large part on the nature of the decision we 
have to make in order to make a measurement. Major problem classes include: 

■ Binary decisions - We can continue to collect information, or stop; we can 
decide to show a document to an expert, or not. 

■ Discrete choice - Here, we have a set of discrete choices (not too large - dozens, 
hundreds, perhaps thousands), where at each point in time we have to make 
a decision to collect information about one of the choices. A discrete choice 
could be a person to do a job, a technology, a drug compound, or a path through 
a network. So far, we have considered only discrete choice problems under the 
heading of ranking and selection or bandit problems. 

■ A scalar, continuous variable - We have to choose a quantity, price, location of 
a facility, or concentration of a chemical that we need to optimize. 

■ A vector, where the elements can come in several flavors: 

a) Binary - Os and Is, which we would use to choose subsets or portfolios 
of discrete items. 

b) Reals - We might have to set a multidimensional set of continuous param-
eters, such as testing a series of settings on a physical device such as an 
engine, or parameters governing the performance of a simulator. 

c) Integers - Similarly, we may have a vector of discrete variables (but other 
than 0 or 1), such as testing an allocation of ambulances or locomotives, 
or a mix of different types of aircraft. 

d) Multiattribute - We might choose a complex item (a document, a molecule, 
a person) characterized by a vector of categorical attributes. 

We let x represent a generic "decision." We might have x G (0,1), or x = 
(1 ,2 , . . . , M), or x = (xd)dev where d G V is a type of decision ("fly to Chicago," 
"try a particular drug compound") where Xd can be binary, discrete, or continuous. 
We let X be the set of feasible decisions. It is very important from a computational 
perspective to understand the nature of x, since there are problems where we assume 
that we can easily enumerate the elements of A\ In the list above, we open the door 
to problem classes where the size of X is infinite (if x is continuous) or much too 
large to enumerate. 
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A different dimension arises when we separate measurement decisions from im-
plementation decisions. Some examples include: 

■ We may fund research (measurement) to build a device (the implementation). 

■ We may observe the performance of links in a network (measurement) to choose 
a path (implementation). 

■ We may wish to visit a company to talk to its management team (measurement) 
before deciding to invest in the company (implementation). 

Typically, implementation decisions span the vast range of optimization problems 
that arise in the management of physical and financial resources. However, it is 
important to realize that while our measurement and implementation decisions up to 
now for ranking and selection and bandit problems have been the same, this is only 
a special case. In Chapter 15, we present some problems where measurement and 
implementation decisions are very different. 

7.3 EXOGENOUS INFORMATION 

Exogenous information clearly comes in a wide variety depending on the application. 
We briefly survey a few common types: 

■ Stationary processes - This is the simplest process, where observations come 
from a stationary distribution (with unknown mean, and potentially unknown 
variance), and where observations of different alternatives are uncorrelated. 
Increments of the process (that is, new information) may be completely inde-
pendent of past history, or may exhibit some sort of history dependency. 

■ Nonstationary processes - We may make an observation of the level of disease 
in the population, but this can clearly change over time, but it changes in an 
exogenous way that we do not control. 

■ Correlated measurements - We might wish to simulate multiple configurations 
using what are known as common random variables, which means that we use 
the same sample realizations to help control statistical error. It is important 
to separate correlated measurements (where W£ is correlated with W™,) and 
correlated beliefs (where Cov{nx,nx>) > 0). 

■ Learning processes - We might have a nonstationary process, but one that 
improves (or potentially deteriorates) as we sample it, rather than through some 
exogenous processes. For example, imagine observing how well a baseball 
player can hit; as we observe the player, his hitting may actually improve. 

■ State and/or action dependent processes - We generally view exogenous infor-
mation as dependent on an unknown truth, but exogenous information may be 
a function of the state (this happens with learning processes described above) 
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and possibly even the action (if we decide to sell stock or expensive equipment, 
this can depress the market price for these assets). 

All of these generalizations represent interesting extensions of our learning model. 

7.4 TRANSITION FUNCTIONS 

If there is a physical state Rn, we are going to assume we are given a function that 
describes how it evolves over time. We write it as 

Rn+1 =RM(Rn^n^wn+ly 

The notation RM(-) represents the "resource transition function." For example, in 
an inventory problem where Rn represents the amount of inventory (such as water 
in a reservoir or product on a store shelf) at time n, our resource transition function 
would be 

where W n + 1 would represent water from rainfall between n and n + 1 , where VTn+1 

would be positive, or the demand for the product, in which case W n + 1 would be 
negative. 

We assume that with each decision xn, we learn something that allows us to update 
our state of knowledge. We represent this generically using 

Kn+i =KM(Kn,xn,Wn+1). 

For example, KM could represent the Bayesian updating equations (4.1) and (4.2) in 
a ranking and selection problem. When we want to be really compact, we write the 
state variable as Sn = (i?n, Kn) and represent its transition function using 

gn+l =SM(Sn,Xn,Wn+1). 

Elsewhere in this volume, we have been using the function SM(-) to represent the 
updating of the knowledge state when there is no physical state because this notation 
is more familiar and there is no ambiguity. We suggest using the notation KM{-) in 
situations where there is both a physical and a knowledge state, as well as when we 
want to refer specifically to the updating of the knowledge state. 

Most of this volume focuses on problems without a physical state. Chapter 17 
addresses learning in the presence of a physical state. 

7.5 OBJECTIVE FUNCTIONS 

There are several dimensions to the design of an objective function. The first dimen-
sion addresses the question, What are we trying to achieve? We need some metric 
that determines when we are doing a better job of learning. The second concerns the 
details of measurement costs. The third dimension addresses how we are managing 
the economics of measurement and the evaluation of the solution. 
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7.5.1 Designing Versus Controlling 

We have already compared two broad settings in which optimal learning arises: offline 
learning, where we conduct a series of measurements to design a process or system 
under some sort of measurement budget, and online learning, where we collect in-
formation in the process of managing the system. In the offline case, the economics 
of measurement are separated from the economics of using the system. On the other 
hand, in online learning, we are operating the system as we are observing it. The 
ranking and selection problem is an example of offline learning, whereas multi-armed 
bandits are an online problem. Below, we briefly sketch how offline and online ob-
jective functions might be structured. 

Offline Learning 

There are many problems where we have a certain budget to find the best decision. 
There is a measurement cost Cm (x) for a decision x. We let Xn (S) represent our pol-
icy for measuring x when we are in state S. After we have chosen our measurements 
x1, x2,..., xN, we have to make a final implementation decision that we represent 
as y which has to fall in a feasible region y. We formulate the optimization problem 
as 

maxE7rmaxC(S',2/). (7.1) 

Our measurements have to be made subject to a measurement budget which we might 
state as 

oo 

Y,Cm(xn) <B. (7.2) 
n=l 

Of course, we assume that we stop measuring after our budget has been consumed. 
For many problems, Crn(x) = 1, and the budget B represents a limit on the 

number of iterations (or time periods) that we are allowed to use for measurement. 
C(S7r^x) represents the optimization problem we will solve after we have completed 
our measurements, given our "state of knowledge" S71" which results from our policy 
for collecting information. 

We note that the total measurement cost on the left-hand side of equation (7.2) is a 
random variable, so (7.2) means we are saying that a random variable (on the left) has 
to be bounded by a fixed budget (on the right). If we are using measurement policy 
7r, we might let Cn(u) be the total measurement costs while following policy 7r on 
the sample path UJ. For our bound to be true, it means it must be true for every uo for 
which P (LJ) > 0. When this is the case, then we say that the constraint (7.2) holds 
almost surely (which is typically abbreviated "a.s."). 

Online Learning 

Let C(S, x) be a contribution (or reward, or utility) that we earn if we are in state 
S and choose action x. Remember that S captures our state of knowledge (in other 
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applications, S would also include the physical state of the system). We make a deci-
sion xn based on our state of knowledge (5n), where we receive a reward C ( 5 n , xn). 
Let X7r(S) be the policy we use to choose the action x. We would like to find a policy 
to solve 

m a x E | f ^ C ( 5 - , X - ( 5 - ) ) | . (7.3) 
U=o J 

Because we are solving the problem over multiple time periods, we have an incentive 
to explore certain decisions now so that we may make better decisions in the future. 
However, we have to pay for those decisions as they are made in the form of reduced 
rewards. 

For online problems, it will typically be the case that we observe as we implement, 
so we do not have to introduce a separate implementation variable. We also would 
not have an information collection budget. 

7.5.2 Measurement Costs 

There are several variations that distinguish problems in terms of measurement costs. 
These include 

■ Startup costs - There may be a certain amount of time or money required to start 
measuring an alternative, making the first observation much more expensive 
than subsequent observations. For example, perhaps we have to invite a baseball 
player to training camp, or we have to purchase a device to test it, or we have 
to create a molecular in a lab to determine its properties. 

■ Switchover costs - Startup costs address the first measurement of an alternative, 
but there may be switchover costs, where even after the first measurement, there 
may be a cost from making an observation of x to an observation of x'. For 
example, perhaps we are simulating a policy, but it takes time to switch from 
testing one set of parameters to another because we have to reload a software 
package or restart a model that has been stopped. 

■ Alternative specific costs - We often represent the budget for measurements as 
the number of measurements, which also implies that each alternative "costs" 
the same. But this may not be true at all. For example, a measurement might 
involve drilling an exploration well (costs depend on geology) or testing a 
population for disease (cost might reflect distance to travel, or the type of 
diagnostic test). 

7.5.3 Objectives 

Below we provide an indication of some objectives we might use. Perhaps not surpris-
ingly, there is a vast range of possible objectives that we might use. This discussion 
simply hints at the diversity of perspectives. 
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Expected Value 

Up to now, we have been choosing a policy to maximize our performance. We can 
write this as 

V* = E > ^ (7.4) 

= E* (max0^1, (7.5) 

where xn = a r g m a x ^ . We remind the reader that the expectation is over all 
beliefs fi and all measurements W. We note that in (7.4), we are using our belief 
/JLX to evaluate the result of our policy x*. In (7.5), we are using our estimates 0£. 
Both objectives produce the same policy, and in expectation they are the same, as we 
showed in Section 4.4.2. In both versions of the objective function, we are taking an 
expectation over truths, so we are not changing our fundamental model. However, in 
practice it will be statistically more reliable to use (7.4). 

Expected Opportunity Cost 

It is very common to minimize the opportunity cost, which measures how much worse 
we are doing than the optimal (whether we are minimizing or maximizing). This is 
written as 

VEOC = E ? r | m a x fix -fJLx*j- (7.6) 

As we saw in Section 5.6, this objective function is also known as "linear loss," 
because it represents the suboptimality of the alternative selected by policy 7r. The 
best possible loss value is zero, indicating that we have found the true best alternative. 

In online problems, it sometimes makes sense to consider the average opportunity 
cost per time step. Thus, if we have N measurements total, we can compute 

VAEOC = ^ E ? r {max^ x - Ms* j , C7-7) 

which represents the average loss incurred by the policy in each time step. 

Robust Optimization 

In some settings, it makes more sense to focus on the worst case rather than an expecta-
tion. This is becoming known in the optimization community as robust optimization. 
Assume there is a bounded set of outcomes Q. Rather than integrate over this set as 
we have done up to now, we might propose an objective function of the form 

Klbust = min/i^(u;). (7.8) 

Here, LU could refer to a truth and/or the set of outcomes, although it probably makes 
most sense to focus on the truth, while continuing to take expectations over observa-
tional outcomes. Rather than maximize the expected value, it may make more sense 
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to maximize the minimum value. Robust optimization is attracting increasing atten-
tion in the stochastic optimization community (Beyer & Sendhoff (2007), Ben-Tal et 
al. (2009)), but robust thinking in a learning setting appears to be in its infancy. 

Yet a further generalization is to use the concept of quantile optimization. If Qa 
is the a quantile of a random variable, we may wish to solve 

V; = QaVx*- (7.9) 

Quantile optimization is related to robust optimization, because we might choose to 
maximize the 10th quantile. Quantile optimization is also useful in the presence of 
heavy-tailed random variables. 

Probability of Correct Selection 

A different perspective is to focus on the probability that we have selected the best 
out of a set X alternatives. In this setting, it is typically the case that the number of 
alternatives is not too large, say 10 or 20, and certainly not 100,000. Assume that 

x* = arg max V^ Hx 
xe xex 

is the best decision (for simplicity, we are going to ignore the presence of ties). If we 
are using a frequentist perspective, we would make the choice 

xn — arg max 0£. 

In a Bayesian framework, we would use 

xn = arg max 0£. 
x£X 

Either way, we have made the correct selection if xn = x*, but even the best policy 
cannot guarantee that we will make the best selection every time. Let l^} = 1 if the 
event £ is true, 0 otherwise. We write the probability of correct selection as 

pcs,7r _ pr0Dability we choose the best alternative 

where the underlying probability distribution depends on our measurement policy 7r. 
The probability is computed using the appropriate distribution, depending on whether 
we are using Bayesian or frequentist perspectives. This may be written in the language 
of loss functions. We would define the loss function as 

TCS,ir _ -, 
LJ — i{rEn7^a:*}-

Although we use LCS,7T to be consistent with our other notation, this is more com-
monly represented as Lo-i for "0-1 loss." 
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Note that we write this in terms of the negative outcome so that we wish to minimize 
the loss, which means that we have not found the best selection. In this case, we would 
write the probability of correct selection as 

pCS,n i _TffTr TCS,IT 

Indifference Zone Selection 

A variant of the goal of choosing the best is to maximize the likelihood that we make 
a choice that is almost as good as the best. Assume we are equally happy with any 
outcome within 5 of the best. This is referred to as the indifference zone. Let Vn,7r be 
the value of our solution after n measurements. We require ¥n {fid* = /i*|//} > I —a 
for all \x where /i[x] — /i[2] > 6 and where /X[i] and /i[2] represent, respectively, the 
best and second best choices. 

We might like to maximize the likelihood that we fall within the indifference zone, 
which we can express using 

As before, the probability has to be computed with the appropriate Bayesian or fre-
quentist distribution. We will discuss indifference-zone selection in more detail in 
Chapter 14. 

Least Squared Error 

A different form of loss function arises when we want to fit a function to a set of data. 
In this setting, we think of "a;" as a set of independent variables which we choose 
directly or indirectly. For example, we may be able to choose x directly when fitting 
a linear regression of the form 

Y(X) = e0x0 + 0ixi + e2x2 + • • • + 0/xj + € 
= Ox + e, 

where Y is the observed response and e is the random error explaining differences be-
tween the linear model and the responses. We choose it indirectly when our regression 
is in the form of basis functions, as in 

Y{x) = Y,efM*) + e-

Classical linear regression assumes that we are given a set of observations which we 
use to fit a model by choosing 9. Let 
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where 0 is the true set of parameters. Our indexing reflects our requirement that xn 

be chosen before we observe en + 1 . Our measure of performance is given by 

N 

F(y<"+ 1>,a;W|0) = ^ ( F n + 1 -6xn)\ 

which is the sample sum of squares given measurements x ^ = ( x ° , . . . , xN) and 
observations y(iV+1) = (Y\ . . . , YN+1). Ordinary least squares regression fits a 
model by finding 

0N+1 = a r g m m F ( y ^ + 1 \ z W | 0 ) . 
e 

Let F*(Y<<N+1\xW) = F(Y^N+1\x^\0N+1) be the optimal solution given 
y(w+i) an (j ^(iv) Sequential estimation starts with 0n, then measures # n , and 
finally observes Yn+1 from which we compute 6n+l. This can be done easily using 
recursive least mean squares, given by 

0n+l = QU _ Hnxn^nxn _ yn+1) 

where Hn is an / x / scaling matrix that is computed recursively (we cover this in 
Section 8.2.2). 

Our focus is on choosing the measurements xn. Classical experimental design 
assumes that we choose (xn)^=0 first and then fit the model. This is sometimes 
referred to as batch design because the entire sample is chosen first. This is equivalent 
to solving 

X(N) 

where the expectation is over the random variables in Y^N+1\ 
We focus on sequential design, where we choose xn given our state Sn, which 

includes 9n and the information we need to update 9n. In a sequential learning 
problem, we have to use some basis for determining how well we have done. In 
our optimization problems, we want to maximize our expected contribution. This 
optimization problem determines the values of x that are most interesting. In the area 
of adaptive estimation, we have to specify the values of x that are most likely to be 
interesting to us, which we designate by a density h{x) which has to be specified. In 
an offline learning environment, we want to choose 00 « • • • m 00 % • • • % 00 " according to 
a policy IT to solve 

minE / (Y(x) - O^xf h(x) dx, 

where Y(x) is the random variable we observe given x, and where 6™ is the value of 
6 produced when we select xn according to n, and when we estimate 6 optimally. 

This formulation requires that we specify the domain that interests us most through 
the density h(x). An illustration of the density function arises when we are trying to 
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sample nuclear material over a border or in a region. For such cases, h(x) might be 
the uniform density over the region in question. When we solve online and offline 
optimization problems, we do not have to specify h(x) explicitly. The optimization 
problem (e.g., equation (7.3)), determines the region within X that is of greatest 
interest. 

Entropy Minimization 

Entropy is a measure of uncertainty that can be used for numeric and nonnumeric data. 
Imagine that we are trying to estimate a parameter fi that we know with uncertainty. 
If our distribution of belief about /i is continuous with density f{u),a measure of the 
uncertainty with which we know /i is given by the entropy of f(u), given by 

H(/J) = - fu\og{fu)du. 
Ju 

The logarithm is typically taken with base 2, but for our purposes, the natural log is fine. 
The entropy is largest when the density is closest to the uniform distribution. If the 
entropy is zero, then we know /z perfectly. Thus, we can try to take measurements that 
reduce the entropy of the distribution that describes our knowledge about a parameter. 

7.6 EVALUATING POLICIES 

The process of evaluating policies is subtle, because it can bias the identification 
of good policies toward problems with specific properties that may not be clearly 
identified. Perhaps one of the most difficult issues arises in the interaction between 
how problems are generated (that is, the "truth") and the relationship between the 
truth and any prior information that may be used. 

Truth from Prior 

From the Bayesian point of view, arguably the most natural way to evaluate a learning 
policy is to use the method described in Chapter 4, where we: 

1) Generate a truth //(t/O from a prior. 

2) Sample observations W(oo) from the truth /x(^). 

3) Evaluate how well we discover the truth using one of the objectives listed above. 

4) Repeat many times for different truths and different sample observations, to 
evaluate how well we discover the truth on average, and how reliably. 

This strategy represents a very controlled experiment, which eliminates potential 
biases which a particular policy might be able to exploit. However, this approach 
may bias the evaluation process toward policies that work well with good priors. 
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Truth from an Alternative Prior 

A way of evaluating the robustness of a policy is to generate truths from distributions 
other than the prior. For example, our prior may be normally distributed, but we 
might generate truths from a uniform or exponential distribution. Such experiments 
should focus on the ability of a policy to work with truths that come from distributions 
with potentially heavy tails, but the expected truth should match the expectation of 
the priors, which is to say that the prior should be unbiased. 

Truth from a Fixed Prior 

In the global optimization literature, where we collect noisy observations in an attempt 
to discover the maximum of an unknown continuous function, it is common to evaluate 
policies using a few "test functions." In other words, the truth is set to a fixed value 
that, for some reason, is believed to be a particularly interesting or difficult test case. 
For example, the Branin function 

f(x1,x2) = lx2- j-^xi + ~xi - 6 ) + 1 0 ( 1 _ 8 ~ ) C O S ( ^ I ) + 1 0 

is a commonly used test function in two dimensions. Test functions may be highly 
nonlinear with multiple local maxima, and so we may view them as posing an especial 
challenge for an optimization algorithm. If we are able to successfully find the point 
(xj, #2) that maximizes this difficult function, we may reasonably believe that our 
policy will be able to learn other functions. 

This is a frequentist approach to policy evaluation, where we consider a few fixed 
test cases rather than sampling truths from a distribution. However, the strength of 
this approach is that it presents a very clear and well-defined test suite of problems. 
In Chapter 16, we mention some of these test functions, such as the Branin function, 
the Ackley function, and others. 

Truth from a Biased Prior 

In any particular learning situation, the sample realization of a specific truth is going 
to be higher or lower than the mean of any prior distribution. However, a subtle issue 
arises if the expected truth is higher or lower than the expectation of the prior, an issue 
that we touched on in Section 5.7. In that section, we discussed the problem with 
the prior is consistently higher or lower than the truth. But this discussion did not 
recognize that it may be possible to identify and correct biases. Even more important 
to the discussion here is the fact that if there is a bias, then certain types of policies 
will tend to exploit this bias. For example, we might use epsilon-greedy or interval 
estimation, each of which has a tunable parameter. In the presence of a bias, we only 
have to tune the parameters to emphasize more exploration, and we are likely to get 
a better policy. 
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Expectations Versus Risks 

Most of our presentation focuses on the expected performance of a measurement 
policy. The probability of correct selection and indifference zone criterion can be 
viewed as risk-based measures, since they focus on finding alternatives that are within 
a specified tolerance with a specified probability. 

For many information collection problems, risk is a major issue. Finding a work-
able drug that will help to extend lives with a high probability may be much more 
attractive than finding the best drug, but with a significant risk of not finding any-
thing. The workable drug may not be ideal, but it may be good enough to gain federal 
approval which can then be marketed. 

In real implementations, we are not allowed to run many sample realizations and 
take an average. We will use a policy on a single sample path. If we are not successful 
in finding, for example, a workable drug, we may be left asking whether this was just 
bad luck, or did we have a bad policy. We would like to minimize the possibility that 
it was bad luck. 

Regret Bounds 

In Section 6.3, we described a policy known as upper confidence bounding. For 
example, for the case of normally distributed priors and rewards, the UCB policy was 
given by 

jUCBl-Normal,n _ QU , ^ M Q S n 

x x yy \ 7Vn ' 

where N£ is the number of times we have observed alternative x after n trials. UCB 
policies have attracted considerable attention in the community that works on multi-
armed bandit problems after it was found that it was possible to bound the number 
of times that incorrect arms would be tested by C log N, for an appropriately chosen 
constant C. In fact, it was shown that this was the best possible bound, which is often 
interpreted to mean that this may be the best possible policy. 

In Section 6.4, comparisons were made between a tuned UCB policy and the 
knowledge gradient policy for problems with normally distributed rewards. Although 
the knowledge gradient policy outperformed UCB, it is hard to know if this reflects a 
subtle bias in how the experiments were run. As of this writing, there is insufficient 
empirical evidence to form any judgments regarding the value of regret bounds in 
terms of predicting the empirical performance of a UCB policy. 

7.7 DISCUSSION 

The purpose of this chapter was to provide a sense of the dimensions of learning 
problems, and a hint of the rich diversity of this emerging class of problems. The 
remainder of this volume will attempt to chip away at some of these issues, but our 
treatment is hardly comprehensive. 
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One of the challenges of optimal learning is that important contributions have been 
made in specific subcommunities with a style that reflects both the characteristics of 
specific problem classes as well as the culture of different research communities. 
For example, the bandit community, which has attracted the attention of computer 
science, tends to emphasize online problems with relatively small action spaces, no 
switchover costs, a Bayesian belief model, and a desire to derive provable regret 
bounds. The simulation optimization community, which tends to focus on finding the 
best of a small set of designs using discrete event simulation, also deals with small 
choice sets but uses offline learning of a model with significant switching costs, a 
frequentist belief model, and a desire to show asymptotic optimality. 

7.8 BIBLIOGRAPHIC NOTES 

Sections 7.1-7.5- This representation of learning problems is new, but is based on the 
modeling framework for dynamic programs presented in Powell (2011). The 
notion of the "hyperstate" to solve the optimal learning problem was put forth 
by Bellman & Kalaba (1959); further efforts in this direction were undertaken 
by Cozzolino et al. (1965), Martin (1967) and Satia & Lave (1973). 

Section 7.5 - The different objective functions have been proposed by different 
authors in different communities. Expected opportunity cost lends itself better 
to the Bayesian approach (Chick & Inoue 2001), but can also be analyzed 
in a frequentist setting (Chick 2003, Chick & Wu 2005). A review of early 
research on indifference zone procedures is given in Bechhofer et al. (1968), 
with a review of somewhat more recent papers given by Bechhofer et al. (1995). 

Section 7.6 - The truth-from-prior approach is used in Bayesian problems; see, for 
example, Ryzhov et al. (2011). Vermorel & Mohri (2005) and Chhabra & Das 
(2011) use other evaluation strategies such sampling from an alternative prior 
or from an empirical dataset. Lai & Robbins (1985) provides the original paper 
on regret bounds for upper confidence bound policies. Regret bounds continue 
to be popular, usually in connection with upper confidence bound methods; see, 
for example, Agrawal (1995), Auer et al. (2002), Auer et al. (2008), Bartlett et 
al. (2008), Kleinberg et al. (2010), or Srinivas et al. (2010). 

PROBLEMS 
In the exercises below, you are given a situation that involves learning. For each 

situation, describe the five fundamental dimensions of a learning model, including: 

■ Carefully define the state variable, giving variable names to each component. 
Clearly distinguish the belief state (what you think about unknown parameters 
whose beliefs are evolving over time) and any physical state variables. 

■ Define the measurement decision (how you are collecting information) and the 
implementation decision (what you are doing with the information). Note that 
these may be the same. 
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■ Define the exogenous information. What are you observing? What is the source 
of the information? Is the information possibly changing your belief about a 
parameter? 

■ Describe the equations that make up the transition function. Distinguish be-
tween the equations used to update your knowledge state from those that update 
any physical or informational state variables that may be present. 

■ Define your objective function. Here is where you are going to distinguish 
between offline and online learning. Be sure to differentiate costs of measuring 
from implementation costs. 

Note that in our modeling, we are ignoring the dimension of designing policies. This 
is addressed in all the remaining chapters of this volume. You may feel that you need 
information not specified in the problem description, so you should just highlight any 
missing elements, or make up elements to round out your model. 

7.1 An entrepreneur would like to market the use of portable solar panels for 
recharging cell phones in Africa. The idea is to purchase a number of these solar 
panels and then to let individuals try to start businesses in different regions of Africa. 
Each region faces own unique characteristics in terms of need, competition for alter-
native sources of energy and the ability of the local population to pay. For example, 
the market responds badly to decisions to raise prices. Focus on the problem faced 
by a single individual who has to figure out a pricing strategy as quickly as possible. 

7.2 A pharmaceutical company is faced with the problem of performing a series of 
market research studies to determine the best pricing for a drug. The market can be 
expected to respond to recent pricing behavior, and the performance of the drug. The 
company would like to strike a balance between maximizing revenue and minimizing 
costs related to the market research. Market research studies may be run in local 
regions while the drug is still being marketed nationally. 

7.3 The Centers for Disease Control wants to collect information so that it can best 
understand the scope of an outbreak of a virulent new virus in the northeast of the 
United States. On a limited budget, the CDC would like to manage a single team 
of technicians who will set up a tent to test people as they walk by. The tent will 
typically be set up for 1-3 days before the team moves to another location. 

7.4 An analyst is using an expensive computer simulation to model the dynamics 
of wind and its effect on generating electricity. It is important to understand the 
impact of very low periods of wind, but obtaining these observations can require 
simulating years, which can take weeks of time on the computer. The analyst is using 
the simulator to design the location of wind farms and investments in the power grid. 
She might run shorter simulations to do quick evaluations to eliminate poor designs, 
but much longer simulations are needed to obtain accurate estimates of the likelihood 
that a particular design will be susceptible to blackouts. 





CHAPTER 8 

LINEAR BELIEF MODELS 

In the ranking and selection problem and the multiarmed bandit problem, we assumed 
we had a finite set of alternatives x e X = {1 ,2 , . . . , M}, with a belief fix about 
each of the finite alternatives. Known as a lookup table representation, this model is 
very flexible in that it does not require any assumed structure among the alternatives. 
However, such models become very clumsy when the number of alternatives is large. 

In this chapter, we make the transition from a lookup table belief model to one 
that uses a parametric model that is linear in the parameters. We assume that a 
measurement x can be written as the vector x = (xi, x2, • • •, %K) where Xk may 
be discrete or continuous. Given x, we observe a value y where we assume a linear 
relationship of the form 

y = 90 + 9ixi + 82x2 H h OKXK + e, 

where e is typically assumed to be a normally distributed error term with mean 0 and 
variance a2. 

The most common motivation for using a parametric model is that the number of 
alternatives M may be extremely large (say, 100,000 or more), or even infinite (if x 
is continuous). However, there are applications where we know something about the 
structure of the function that we can capture with a parametric model. For example, 
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we may be trying to estimate the maximum of a concave function. A quadratic 
approximation may capture this quite nicely, whereas a discretized approximation 
may easily lose the natural concavity of the function. 

In classical regression model applications, we are given a series of observations 
X ^ X ^ • • • ^ X , where for each set of explanatory variables x m there is an observa-
tion 7/m+1. (In traditional batch statistics, we would write ym as the observation 
corresponding to measurement xm, but in our sequential setting, it makes more sense 
to choose xm and then observe ?/m+1.) This data is then used to find a parameter 
vector 9 that minimizes the mean squared error between the predicted model and 
the actual observations. We often do not have any choice in how the measurements 
x1, x 2 , . . . , xn are chosen. 

The problem of determining how to choose a set of measurements is a popular 
topic in the literature on statistical design of experiments. This literature, however, 
typically focuses on problems where a design (that is, a sequence of measurements) 
is chosen before any observations are made (for more on this topic, see Chapter 13). 
This strategy reflects the nature of the objective function that is used in this work. If 
the goal is to minimize variance, we can exploit the property that the variance of an 
estimate is a function of the measurements xn and not the observations yn. 

In this chapter, we show how the knowledge gradient (for offline or online learning) 
can be extended to problems where the belief is captured by a model that is linear in the 
parameters. This result will allow us to tackle problems with thousands of alternatives, 
capturing correlations in the beliefs between these alternatives but without having to 
store a covariance matrix with thousands of rows and columns. The complexity of 
most of the steps in our adaptation of the knowledge gradient will be determined by 
the number of parameters rather than the number of alternatives. 

8.1 APPLICATIONS 

It is useful to start with some real applications to provide context to the discussion 
that follows. 

8.1.1 Maximizing Ad Clicks 

Imagine that you are an Internet company. You might be selling a set of products, or 
perhaps you are Google selling ad space. Either way, you may have a set of ads (and 
possibly thousands of ads) that you could post on the Internet, and you want to find 
the ad that generates the most ad clicks (the number of times that someone clicks on 
an ad, indicating interest). 

How do you choose which ads to post? Let Di be the data describing the ith ad. 
Di might include all the text, along with descriptors of any graphics. The hard part 
of this project requires identifying important features, which are often represented 
using a device called basis functions. We let <j)f(D) be a particular basis function in 
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a set / G T. Examples of basis functions might include 

(f>i(D) = The number of words in the ad, 
(/>2(D) = The number of times the word "iphone," "itouch" or 

"ipad" appears, 
03 (D) = 1 if the ad involves wireless communication, 0 other-

wise, 
04 (D) = 1 if the ad involves food, 0 otherwise, 
05 (D) = 1 if the ad has color graphics, 0 otherwise, 
06 (D) = 1 if the ad claims to save money, 0 otherwise, 
07 (D) = 1 if the ad involves travel or vacations, 0 otherwise. 

We first quickly realize that a "basis function" is the same as an independent variable 
in our linear regression model (different words for the same thing). Also, we can 
capture both individual features as well as combinations of features. For example, 
some people might be attracted to ads that involve food, while others enjoy travel, 
but what about ads that do both? We can reflect the combined contribution by adding 
the marginal effect of each, but we can also introduce a basis function that capture 
whether an ad covers food in exotic locations. 

Using the notation of basis functions, we would write our linear model as 

We can make this a bit more compact by introducing the basis function 4>o{D) = 1. 
Now let 4>{D) be a column vector of basis functions, and 6 be a column vector of the 
coefficients. We can then write 

Y = 0T0 + e. 

There are numerous variations of this basic problem which involve identifying 
websites (or documents) that achieve a particular purpose. For example: 

■ Researching information about a company that might predict a change in the 
stock price - The observable information might be an actual change in stock 
price (which can be automated) or it might involve showing the website to 
a domain expert who can assess its importance. Since the domain expert is 
a limited resource, we have to be careful in our selection of websites to be 
evaluated. 

■ Finding documents that provide information on terrorist activity - Similar to 
the previous item, we can scan millions of websites, but we have to choose 
which ones we should show to a domain expert for evaluation. This allows us 
to build up a dataset that can be used to calibrate the importance of different 
features. 
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8.1.2 Dynamic Pricing 

Now consider the same Internet company from the point of view of pricing. Perhaps 
we are selling textbooks, DVDs, or music downloads. In any case, the Internet offers 
us a great deal of freedom in setting prices for our product. We can choose a price, 
wait for a period of time, and observe the resulting revenue, then adjust the price in 
response. Of course, this is an example of online learning, because our objective is 
to maximize total revenue. 

To keep the modeling simple, we are going to assume that demand is a linear 
function of price which can be written 

D(p) = 60 + 6lP, 

where presumably 9\ < 0 to create a downward sloping demand function. We do not 
know #o and 6\, but we assume that we can charge a price p and then make a noisy 
observation of the demand D(p) = 6$ + 6\p + e. When we charge a price p, the 
revenue we earn is given by 

R(p)=pD(p). 

The pricing problem also arises outside the e-commerce setting. For example, it 
could apply to a small business that has a lot of room to change its pricing decisions, 
but is not prominent enough on the market to be able to change the underlying rev-
enue curve. The business then has to adapt to an existing, unknown true curve. An 
interesting example of such an enterprise is a recharging station for mobile phones 
in a developing country. For example, cell phone use in rural Africa is currently 
experiencing prodigious growth, because it is much easier to build a single cell phone 
tower in a rural area than to stretch a land line out to every home. Mobile phones 
can serve as versatile and affordable tools even for many who are not connected to 
the electric power grid. An entrepreneur with a small power generator, such as a car 
battery or a solar panel, can serve many users; the question is how the service should 
be priced. 

8.1.3 Housing Loans 

The Small Business Administration (SBA) plays the role of granting loans to people 
whose homes have been destroyed by hurricanes and other natural events. As with 
any bank, the SBA has to identify people who are good loan prospects. By granting 
a loan, the SBA is able to observe which people eventually replay the loan. This 
information can then be used in a regression model to improve future predictions of 
whether someone might default on a loan. Explanatory variables might include 

■ The term (length) of the loan. 

■ The credit score of the applicant. 

■ Number of months employed. 
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■ Income. 

■ Did the applicant own the home that was damaged or destroyed? 

■ Amount of the loan relative to the size of the loss from the storm. 

■ Amount of collateral. 
Normally the SB A would grant loans to people whose probability of repayment is over 
some amount. However, it is possible for the SBA to grant some loans to applicants 
whose probability of repayment might be lower simply for the information that might 
improve their predictive ability for loan defaults. 

8.1.4 Optimizing Dose Response 

It is often the case that people respond differently to a particular dosage of a medi-
cation, forcing physicians to experiment with different dosages. It is natural to try to 
predict a patient's response (lowering blood sugar, controlling high blood pressure, 
raising the red blood cell count) using a statistical model. However, sometimes it 
is necessary to experiment with different dosages to help improve the model (which 
may involve a term unique to an individual patient). 

We might envision a statistical model that predicts response as a function of a 
patient's body mass index, gender, age, ethnicity and other elements of a patient's 
history. However, it is often the case that we want to fit a nonlinear function that 
relates patient response to a nonlinear function which might look like 

eU(Xi\0) 
p. = _ 
r% l + eU(xi\0)> 

where U(x\0) is a linear function of independent variables with the general form 

U(x\0) = 0o + M i + M 2 + . . . . 

In this model, Pi gives the proportion of people in a group i with a specific set of 
attributes Xi = (xn, xi2,...) who respond to a particular dosage. This is an example 
of a parametric model that is nonlinear in the parameter vector 0. Belief models that 
are nonlinear in the parameters cause problems with methods such as the knowledge 
gradient because we lose conjugacy (see Chapter 11 for an in depth analysis of this 
particular belief model). However, we can overcome this problem by introducing the 
transformation 

Using this transformation, we obtain the linear regression 

Pi = Qo + M i + M 2 + • • ■ . 
Now we have the response relationship expressed as a linear regression. We can use 
this model given estimates of 0 to optimize a dosage strategy. This strategy, however, 
depends on estimates of the parameter vector 0. We may wish to attempt dosages 
simply to learn more about this relationship. 
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8.2 A BRIEF REVIEW OF LINEAR REGRESSION 

Assume we have n measurements of a vector x = ( x i , . . . , XK)- If # m is the rath 
measurement, using the indexing convention we have used throughout this volume, 
we let 2/m+1 be the observation corresponding to xm. Recall that our indexing system 
reflects the property that x™ depends on the observations y1,..., ym, and we observe 
y m + 1 after we have chosen x171. Let 

/ xi \ 

x = 

be a if-dimensional column vector of observations. Often we will let x\ = 1 to 
represent a constant term. Letting 6 be the column vector of parameters, we can write 
our model as 

y = 0T
X + e, 

where we assume that the errors ( e 1 , . . . , en) are independent and identically dis-
tributed. Since 6n is our estimate of 6 after n observations, our best estimate of y is 
given by 

n\Tn yn = (0nYx-

8.2.1 The Normal Equations 

We wish to find a parameter vector 8 that solves 

n - l / K 

mm 
e 
jn£ y m + 1 - (£^n • (8.1) 

m=0 fc=l 

Let 6n be the optimal solution for this problem. We can solve this problem very 
simply. Let Xn be the n by K matrix 

/ 

Xr> 

xl x2 
r2 

\ 

The vector of observations of the dependent variable is given by 

( v1 \ 
y2 

\yn I 
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The optimal parameter vector 6n (after n observations) is then given by 

en = [(xn)Txn]-1(xn)Trn . (8.2) 
From the normal equations, we can compute the covariance matrix for 8n using 

a simple matrix identity. If u and w are scalar random variables where u = Aw, 
then we know that Var(u) — A2Var(w). If u and v are vectors, and A is a suitably 
dimensioned matrix, then we can write Var(u) (the covariance matrix for the vector 
u) as 

Cov(u) = ACov(w)AT, 

where Cov(w) is the covariance matrix of w. Recall that for matrices A and B9 
ABT = (BAT)T. Also keep in mind that [ ( X n ) T X n ] _ 1 is symmetric. Applying 
this identity to (13.2), where A = [(Xn)TXn)~l(Xn)T, we obtain 

Var(6n) = [(Xn)TXn]-\Xn)TCov{Yn) ([(Xn)T X71]-1 {Xn)T)T 

= [(Xn)TXn]-1(Xn)TCov(Yn)(Xn)[(Xn)TXn}-1. 

Since the elements of Yn are independent, Cov(Yn) = a\l where / is the identity 
matrix and o\ is the variance of our measurement error . This allows us to write 

E*,n = {(xn)TXn]-l(Xn)TXn[{Xn)TXn]-la2
e 

= [(xn)Txn]-Ve
2. 

It is important to realize that the matrix Xn is n by K, so computing Y,e>n is not too 
difficult. 

8.2.2 Recursive Least Squares 

There is a shortcut that we can use to do this recursively. The updating equation for 
9n can be computed using 

en = 9n-l + l_Bn-lxn£n^ ( g 3 ) 

ryfl 

where en is the error given by 

en =yn -0n~1xn-1. (8.4) 
Thematrixi?n = \{Xn)T Xn}~1. This can be updated recursively without computing 
an explicit inverse using 

Bn = Bn-i _ l.(Bn-1xn(xn)TBn-1). (8.5) 

The scalar 7 n is computed using 

7
n = 1 + {xn)TBn-1xn. (8.6) 
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Note that if we multiply (8.5) through by of, we obtain 

where we scale j n by of, giving us 

7
n = ** + (xn)TEe>n-1xn. 

Note that we had to multiply each Bn~l in the second term on the right of (8.5) by 
of so we also divided the second term by of, which we did by scaling 7 n . 

Thus, we have compact updating equations dimensioned only by the number of 
parameters, rather than the number of alternatives. 

The recursive updating formulas, aside from allowing us to avoid an expensive 
matrix inversion, allows us to handle an issue that we have not yet considered. There 
are problems where the observations are nonstationary, which means they are coming 
from a process that is changing over time. In such settings, we may not want to give 
all the observations equal weight. We can do this by replacing the objective function 
(8.1) with 

n - l / K \ 2 

min J2 ^ - m Vm+1 ~ ( £ 8kX?) - (8.7) 
ra=0 \ fc=l / 

Here, A is a discount factor that we use to discount older observations. If we use this 
objective function, our recursive updating equations change only slightly to 

7 » = \ + (xn)TBn-1xn, (8.8) 

instead of (8.7), while we replace (8.5) with 

Bn = UB71'1 - \{Bn-1xn{xn)TBn-1)\. 

Setting A = 1 gives us the original updating equations. Using smaller values of 
A reduces the weight on older observations, but also increases the variance of the 
estimates. 

8.2.3 A Bayesian Interpretation 

Classical linear regression is, of course, a frequentist method, but we can put lin-
ear regression into our standard Bayesian vocabulary. Let fi1 be the true value of 
alternative i which, in our Bayesian setting, is a random variable given by 
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Just as [i is a random variable (our truth), so is #, which is the truth about the effect 
of each feature. We learned that we get tremendous benefits from exploiting the 
covariance between two alternatives. The covariance between ji% and ^ is given by 

C o u ^ V ) = CovfeokXi^OkXn 
V k k / 

= 52xixi,cov(0k,ek,) = YlxikX3A> 
= e[XEeXTeh 

where E^ k, — Cov{9k,9k') is the covariance between the regression coefficients 
6k and 9^. If E is our original covariance matrix between our beliefs of different 
alternatives, E and Y? are related by 

E = XE°XT. 

This means that we can write our vector of truths about the value of each alternative 
as 

V~N(9TX,XZeXT). 

Here, X is a matrix with a row and column for each alternative, which means that 
it has M rows (one for every alternative which may be an extremely large number) 
and K columns (one for every feature, which is generally not too large). We then let 

TT = XXe>nXT 

be the covariance matrix among all M alternatives (hence E n is M x M , while E^'n 

is K x K). This means that we are getting an estimate of the covariance between 
every pair of alternatives, including those which we have not tested yet, from the 
much more compact matrix E6*. Our goal is to avoid having to explicitly compute 
and store the complete matrix E n . 

The important result is that we can compute a covariance matrix among all possible 
alternatives, using only the covariance matrix E61'71 among the parameters, and the 
matrix X of attributes of each possible alternative. Updating E^'n from data is 
relatively easy using our recursive formulas. Computing E n , given the potentially 
large number of rows, is still quite manageable given that it involves fairly simple 
calculations. 

8.2.4 Generating a Prior 

To perform learning in our Bayesian setting, we have to generate a truth, and then 
apply a learning algorithm (such as the knowledge gradient) to try to discover the 
truth. When we had a discrete set of alternatives with normally distributed beliefs, 
we could simply sample from the normal distribution we used as a prior. 
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There are several ways to generate a prior for these more complex settings. One, 
of course, is to collect a small sample of observations from an initial training set 
x ° , . . . , xL~x, producing observations y1,..., yL. If L is larger than the number of 
parameters to be estimated, we can create an initial estimate of the parameter vector 
0° using the normal equations in equation (13.2). We can then use this initial estimate 
to obtain an estimate of the variance a2 (if this is not known already). In the context 
of Bayesian learning, this becomes the same empirical Bayes strategy that we have 
already discussed. 

Using an estimate of a2 obtained from this model, we can estimate an initial 
covariance matrix for 8 from 

E*'° = [ (XL )TXL ] -V e
2 , (8.9) 

where XL is our initial set of observations from the first L observations. 
We cannot use equation (8.9) if we have fewer than L observations, and we need at 

least L + 1 observations if we are going to obtain a valid estimate of a2. However, we 
can still get initial estimates of 6 and Y? with fewer than L observations, as long as 
we have some sort of prior. If we have some starting point, we can use the recursive 
equations (8.3)-(8.7) for an initial set of training points which may be chosen at 
random. 

A useful strategy for generating an initial set of estimates is to write the regression 
equation in the form 

y = 0O + 0\{x\ - xi) + 62{x2 - x2)-\ he, 

where xi is viewed as an average or typical value of the independent variable X{. In 
this model, #o should be an average (or typical) value of the observations y, while 6i 
captures the marginal impact of X{ on y. For example, consider our pricing model 
above where the demand D(p) is given by 

l>(p)*0o + 0 i ( p - p ) . 

Here, we have written the independent variable as the deviation from what we might 
call a typical price give by p. In this model, 6Q would be a prior estimate of the typical 
demand, while 0\ captures the effect of changes in the price on demand. 

Estimating E^'° is somewhat trickier. An estimate of the diagonal terms can be 
found by trying to estimate a confidence interval for each coefficient 0$. So, we might 
think the right coefficient for our demand curve is 0\ « —0.07, and we might then be 
willing to say that the right coefficient is probably in the range (-0.03,-0.10). From 
this, we could infer a standard deviation of, say, 0.015, and use this to create the 
diagonal elements of E61'0. 

Estimating the off-diagonal elements of E0 '0 is inherently more complicated. A 
first order approximation is to just set them to zero, but this can be dangerous. Consider 
the set of potential demand functions shown in Figure 8.1. We may be uncertain about 
the precise line that describes the demand-price tradeoff, but we may feel that they all 
go through a certain region that might reflect the current demand and current price. 
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Figure 8.1 Illustration of range of potential demand functions. 

The implication is that smaller values of #i correspond to smaller values of 90, so our 
prior on these coefficients would not be independent. 

Once we have an initial estimate of a mean vector 9° and covariance matrix E°, 
we can generate a truth n from a normal distribution using the techniques described 
in Section 2.4. 

8.3 THE KNOWLEDGE GRADIENT FOR A LINEAR MODEL 

Now we are ready to derive the knowledge gradient. Recall that the calculation of the 
knowledge gradient requires computing the function h(a,b(j)) where a is a vector 
with element â  = 0™ giving the estimate of the value of the ith alternative, and b(j) is 
a vector with element bi(j) = a™(j), which is the conditional variance of the change 
in 0n+l from measuring alternative j . The function h(a,b) is given by 

M - l 

h(a,b(j)) = J2 (bi+iU) ~ bi(j))f(-\ci(j)\), (8.10) 
i=l 

where 
tti - q i + i 

CA3) bi^-biU)' 
Refer to Section 5.3 for the details of computing the knowledge gradient for correlated 
beliefs. 

Keeping in mind that M may be a very large number, we have to use care in how 
this is computed. We can use 9™ = 9nxl to compute the expected value, which does 
not depend on the alternative j that we are measuring. 
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The harder part is computing an(j), which is a vector giving the change in the 
variance of each alternative i assuming that we have chosen to measure alternative j . 
Recall that 

}/*?> + <* 

which gives us the change in the covariance matrix from measuring an alternative j . 
The matrix T>n(j) is M x M , which is quite large, but we only need the jth row, 
which we compute using 

an(j) = ^ i (8.11) 

Since S" = I E 8 " (X)T, let X, be the jth row of X. Then 

an(j) = XjZ°nXT. 

We still have to multiply the K x If-dimensional matrix E^n times the K x M-
dimensional matrix XT, after which we have to compute equation (8.10) to find the 
knowledge gradient for each alternative. Even for problems with tens of thousands 
of alternatives, this can be executed in a few seconds, since K is much smaller than 
M. 

8.4 APPLICATION TO DRUG DISCOVERY 

A nice area of application of this logic is the design of molecules to accomplish some 
purpose, such as storing energy or curing cancer. We start with a base molecule 
such as that shown in Figure 8.2, where there are five locations (Ri,R2,..., R$). 
At these locations, we can add small molecular components called substituents, such 
as those listed to the right of the molecule in the figure. While we may not be 
able to put every substituent at every location (a chemist would understand which 
combinations make sense), the number of permutations and combinations can be quite 
large. For example, this base molecule and associated set of substituents produced 
87,000 possible combinations. 

The challenge with testing these molecules is that they are fairly difficult to create. 
It is necessary to design actual chemical processes to produce these compounds. A 
knowledgeable chemist can create a number of potential molecular compounds on a 
white board, but once we decide which compound to test next, the actual testing is a 
project that can take a day to several days. This is the reason why it is important to 
sequence the experiments carefully. 

The problem of designing molecules arises in many settings. The work in this 
section was motivated by a problem of finding compounds to cure a form of cancer, 
but the numerical work was done using data taken from the literature which was 
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Potential substituents: 
F 
OH 

CH3 

OCOCH3 

OCOCH 

OCH3 

CH 

NO 

CI 

OCOCH 

Figure 8.2 Illustration of base molecule with five substituent locations (from Katz & Ionescu 
1977). 

motivated by a variety of applications. All we require is that we are trying to choose a 
compound that maximizes (or perhaps minimizes) some metric, such as killing cancer 
cells. 

In practice, the knowledge gradient can be used to produce a ranked list of potential 
molecules to be tested next. An attraction of this strategy is that it allows a scientist to 
use expert knowledge to capture dimensions other than the performance of a molecule 
in terms of a specific metric such as killing cancer cells. For example, a molecule 
might be toxic, hard to manufacture or insoluble in water. 

To put this problem in the context of our model with linear beliefs, let i = 1 , . . . , / 
be the set of sites (five in our example) and let j = 1 , . . . , J be the set of potential 
substituents (10 in our example). Let 

Xa — 
! 1 if we put the jth substituent at the ith site, 
0 otherwise. 

Now let Y be a measurement of the performance of a particular molecule, which might 
be the percentage of cancer cells that are killed. We might model the performance of 
a molecule using 

Y — 0O + 2Lf Z-^ QijXij- (8.12) 

With this simple model, if we have five sites and 10 substituents, we have 51 param-
eters to estimate (including the constant intercept 6$). 

To determine the effectiveness of the knowledge gradient, it is necessary to create a 
truth (following our standard practice) and then try to discover the truth using different 
methods. The truth was created by using data from an initial set of experiments that 
was then used to perform an initial fit of the regression model in equation (8.12). This 
model was then assumed to give us an initial parameter vector 9° that we used as our 
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(a) Average opportunity cost over 100 runs using (b) Average opportunity cost over 100 runs using 
a dataset of 2,640 compounds and a noise standard a dataset of 2,640 compounds and a noise standard 
deviation of 0.1. deviation of 0.5. 

(c) Average opportunity cost over 10 runs using a (d) Average opportunity cost over 10 runs using a 
dataset of 87,120 compounds and a noise standard dataset of 87,120 compounds and a noise standard 
deviation of 0.1. deviation of 0.5. 

Figure 8.3 Comparison of the knowledge gradient to pure exploration and a standard 
experimental design on a medium and large molecule with different levels of noise (from 
Negoescu et al. 2011). 

prior, and an initial covariance matrix D6*'0. We made our standard assumption that 
the true parameter vector 6 ~ N(6°, S610) follows a normal distribution. We would 
generate a sample realization of a truth 6{UJ) by sampling from this distribution. 

Once we have a truth (which means we now have a "true" parameter vector 6), 
we run our experiments by choosing a molecule to test (using some policy), and then 
sampling its performance using equation (8.12). It is important to recognize that this 
method of testing a learning policy assumes that the linear model is accurate, even 
if we do not know the true parameter vector. But, there is nothing stopping us from 
generating observations from some other model, and then using linear regression as 
an approximation. 

The knowledge gradient was compared to a pure exploration policy (choosing 
molecules at random) and a simple experimental design policy which tests one factor 
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Figure 8.4 Mean and standard deviation of difference in opportunity cost between pure exploration 
and KGCB using 75 sample paths of 10,000 compounds each and a noise standard deviation of 0.38 (from 
Negoescu et al. 2011). 

(substituent) at a time, cycling through all the substituents. Each of these strategies 
are used in an offline setting (since this is laboratory experimentation) to collect data 
to fit our regression model. We then use this regression model to decide which of a 
much larger set of molecules is best. 

Figure 8.3 shows the expected opportunity cost for the knowledge gradient, pure 
exploration and the one-at-a-time factor design on molecules with 2,640 and 87,120 
variations, and with measurement noise of 0.1 (lower than that observed from actual 
data) and 0.5 (higher than that observed from actual data). These experiments suggest 
that the knowledge gradient consistently outperforms the competition, with a fairly 
significant improvement if we wanted to stop at around 20 experiments. Note that 
we were able to find a near-optimal molecule within approximately 30 experiments. 

Care has to be used when evaluating the performance of a measurement policy 
based on averages. Figure 8.4 shows the actual spread in the results from 75 sample 
paths, comparing knowledge gradient against pure exploration (positive means that 
KG is outperforming pure exploration). After 20 measurements, the knowledge gra-
dient policy is almost always outperforming pure exploration. The difference is much 
more mixed during the first 20 observations, which should be expected. When there 
is a lot of uncertainty and not enough information to make sensible choices, random 
exploration can work just as well as the knowledge gradient on specific sample paths. 
There is no evidence that the knowledge gradient ever underperforms pure explo-
ration; but it is certainly possible that pure exploration can outperform knowledge 
gradient in the early iterations. Interestingly, the knowledge gradient significantly 
outperforms pure exploration on average in the early iterations, but the spread is 
quite high. 
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8.5 APPLICATION TO DYNAMIC PRICING 

Let us briefly return to the dynamic pricing application in Section 8.1.2. We are 
interested in the pricing decision of the African entrepreneur running a cell phone 
recharging station. This is a small but profitable operation. For example, the en-
trepreneur can purchase a car battery, charge it in town, and then travel to a village to 
charge phones for a fee that can be anywhere between $0.10 and $0.50. An alternative 
with a higher startup cost may be to purchase a small solar system (e.g. a set of solar 
panels) and then sell the generated power. With a good pricing strategy, the recharging 
station may see 50-70 customers every day. Assuming that the entrepreneur works 
five days a week, the resulting revenue can be as high as $50-$ 100 per week. 

This problem provides the basic parameters for our example. Every week, the price 
per use of the recharging station is chosen from the range [0.10,0.50]. The weekly 
revenue R{p) can be as high as $50. In this example, we use a simple quadratic belief 
model, 

fl(p)=p(0o + M -
where we capture the fact that i?(0) = 0. Our belief about the revenue for the nth 
week can be written as Rn (p) = P(9Q + 0™p). We would typically start with a prior 
where 6® < 0, because revenue is likely to be concave (we do not expect it to keep 
increasing with price forever). 

The pricing problem is inherently online: every time we set a price, we collect a 
revenue. As always, we need to balance the need to maximize revenue with the need 
to fit a good curve. In this case, we would use the knowledge gradient for online 
learning, given by 

XKG>n(sn) = argmaxiT(p) + (N - n)is*G>n, 
v 

where v£G is the offline knowledge gradient corresponding to the value of observing 
demand at price p. 

Let's consider how different learning policies should behave. Figure 8.5 depicts 
a possible prior on the demand function and resulting revenue curve. Let pmax be 
the price that drives the demand to 0, which means that we should limit our search to 
prices in the interval [0, pmax]. Also let pn be the price that maximizes revenue given 
our current belief after n measurements, which is to say 

pn — arg max Rn (p). 

If we were to stop after n measurements, pn is the price that we would charge. 
Otherwise, we would characterize the decision to charge pn as a pure exploitation 
policy. 

What would we do if we wanted to focus on estimating the demand function? In 
Figure 8.6(a), we see that if we focus our energies on observations near the middle, we 
may obtain a wide range of possible functions as a result of our measurement noise. 
By contrast, if we focus our observations near the endpoints as in Figure 8.6(b), we 
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Prior belief about demand function 
D°(/0 = # + # / > 

* Price p 

Figure 8.5 Prior demand function and revenue curve. 

D(p) D{p)\ 

(a) (b) 

Figure 8.6 Estimating the demand function using (a) observations near the middle and (b) 
observations near the endpoints. 

obtain much more reliable estimates of the demand function. This behavior is well 
known in the statistics community. 

Measuring near the middle offers the potential for maximizing revenue, but we end 
up learning almost nothing from the observations. By contrast, if we measure near 
the endpoints, we learn a lot but earn almost nothing. Ideally, we would like to make 
observations that strike a balance between these two extremes, a property that might 
be called "sampling the shoulders." This, in fact, is exactly what the knowledge 
gradient does, in a way that adapts to the number of observations remaining in our 
budget. 

Figure 8.7 illustrates the behavior of a pure exploitation policy (first row), the 
knowledge gradient policy for offline learning (second row) and the knowledge gra-
dient policy for online learning (third row). These policies were tested for datasets 
with a moderate level of observation noise (the left column) and a relatively high 
level of observation noise (right column). The line with solid dots is the initial prior, 
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(e) (f) 

Figure 8.7 The behavior of pure exploitation (first row), offline learning (second row) and 
online learning (third row) for observations with a moderate level of noise (left column) and a 
high level of noise (right column). 

while the line with open circles is the true demand. The remaining lines represent 
the estimates of the demand functions for each of the first 20 observations obtained 
under each policy. The darker lines represent the early iterations, while the lighter 
lines (which are more clustered) represent the later iterations. 
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Revenue per period, medium variance Revenue per period, high variance 

Figure 8.8 The pricing decisions selected by each policy (first row), and revenue earned per 
period (second row) for moderate and high variance in the measurement noise. 

The results show that using a pure exploitation policy does a terrible job identifying 
the correct demand curve. By contrast, using an offline policy produces the best 
results, producing an estimate of the demand curve that is quite close to the truth. 
The online learning policy strikes a balance between the two, producing an estimate 
of the demand curve that is clearly not as good as what is obtained using an offline 
learning policy, but much better than the pure exploitation policy. 

The first row of Figure 8.8 shows the actual pricing decisions produced by each 
policy. The offline knowledge gradient behaves exactly as we would expect given 
the illustration in Figure 8.6(b). The policy alternates between the two endpoints. 
This behavior is consistent for both the medium and high variance cases. For the 
medium variance case, the online knowledge gradient does more exploration in the 
early iterations before settling in to a single point compared to the pure exploitation 
policy. Note that the online knowledge gradient approaches a pure exploitation policy 
toward the later iterations. The only reason that it is measuring different points is that 
it is converging on a different estimate of the demand curve than pure exploitation, 
as a result of the exploration in the early iterations. 
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The second row of Figure 8.7 shows the revenue earned per period. Note that 
the offline knowledge gradient earns a fixed revenue greater than zero because the 
endpoints were defined slightly interior to the interval (0, pmax). The more interesting 
comparison is between the pure exploitation policy and the online knowledge gradient. 
For both the medium and high variance cases, the pure exploitation policy produces 
higher revenues initially, but eventually loses out to the online knowledge gradient 
policy. Note that the relative improvement of the online knowledge gradient over 
pure exploitation is largest for the moderate noise case. Again, we think this is 
to be expected. As the measurement noise increases, it is harder for any policy to 
learn the correct function. By contrast, we would expect the difference between the 
two policies to diminish as the measurement noise decreases, because the value of 
information from learning will be minimal, which again pushes the online knowledge 
gradient policy toward the pure exploitation policy. 

8.6 BIBLIOGRAPHIC NOTES 

Section 8.2 - This is classic material that can be found in many statistical textbooks 
such as Hastie et al. (2005), which can be downloaded from 

http://www-stat.Stanford.edu/~tibs/ElemStatLearn/ 

Section 8.3 - 8.4 - This material is based on Negoescu et al. (2011). The drug 
discovery example is taken from Katz & Ionescu (1977). 

Section 8.5 - The experimental results presented here come from work by two under-
graduate students at Princeton University. The numerical work was performed 
by Xiaoyang Long as part of her research for the Program in Applied and Com-
putational Mathematics. The application of pricing cell phone charges was 
studied by Megan Wong as part of her senior thesis. 

PROBLEMS 
The exercises below require the knowledge gradient algorithm where the belief 

model is linear in the parameters. This can be downloaded from 

http://optimallearning.princeton.edU/exercises/KGCBLinReg.m 

An example implementation of the algorithm is given in 

http://optimallearning.princeton.edu/exercises/KGCBLinRegEx.rn 

8.1 You are going to replicate the experiments in Section 8.5 where we try to learn 
the demand as a function of price, while simultaneously trying to maximize revenue. 
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We start by assuming that the demand as a function of price is given by 

D{p) = 60 + 0lP. 

Our revenue is given by R(p) = pD(p), and prices are assumed to range between .1 
and .5. Assume the true value of 9 = (#o5#i) = (1233,-2055). Normally we would 
sample this truth from a normal distribution, but we are going to assume a single truth 
to illustrate how well we discover this truth. 

Now assume we start with a high prior 9° = (1350, —1500), with a starting 
covariance matrix of 

y0to = ( 62,500 0 
\ 0 2,500,000 

a) Set up and run the knowledge gradient with a linear belief model for N = 20 
iterations assuming a low measurement noise of of = 62,500, limiting your 
search of prices to the range [. 1,. 5]. Do this for both online and offline learning 
(recall that Section 6.4 describes how to compute the online knowledge gradient 
from the offline version). Plot the prices chosen and the updated estimate of 
the demand curve after each iteration. 

b) Now sample prices using a pure exploitation policy which maximizes the rev-
enue at each iteration, and compare your results to those obtained using the 
online and offline knowledge gradient. 

c) Repeat (a) and (b) using of = 625,000. 

d) Repeat (a) and (b) using o\ = 6,250,000. 

e) Compare the performance of the three algorithmic strategies under the different 
noise levels. 

8.2 Repeat exercise 8.1, but this time start with a low prior of 9° = (1350, —4500). 

8.3 Repeat exercise 8.1, but now assume that the truth is normally distributed 
around the prior with mean 9° = (0§, 0?) = (1233, -2055) and variance 

ye,o = ( 62,500 0 
1 0 2,500,000 





CHAPTER 9 

SUBSET SELECTION PROBLEMS 

In the ranking and selection problem, we have to pick the best out of a set of discrete 
choices. Now assume that we have to pick the four best rowers to man a four-person 
shell for rowing competitions. Perhaps the coach has identified seven people who, 
based on the performance on rowing machines, appear to be the best. But it is well 
known that people perform differently in a boat, and people interact in ways that 
affect their performance. 

Our challenge is to find the best subset of a discrete choice set. This problem, 
known as subset selection, arises in numerous settings and has a classical formulation 
as a mathematical program. For example, we might have M items, where xi = 1 
if we have chosen i to be in our subset. Normally we have some sort of budget 
constraint, so we have to choose the vector x to satisfy this constraint. If we knew 
that item i made a contribution Q , we could choose our elements by solving 

M 
max CiXis 
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subject to the constraints 
M 

^CLiXi < B, 

i=l 

Xi < 1, 

Xi > 0. 

If di = 1, then B is simply a limit on how many items we can have (for example, 
four rowers). The coefficient a* might be the cost of using i, in which case B is 
a monetary budget constraint. In this case, we have an instance of the well-known 
knapsack problem. 

Subset selection problems include forming a team, identifying investment portfo-
lios, prescribing a course of treatment for an illness, and choosing tools to solve a 
problem. In all of these problems, we have to choose a subset of elements that interact 
with each other in a relatively complex way. Section 9.1 discusses some examples of 
such problems in more detail. Our specific interest is in problems where we do not 
have a simple deterministic, linear objective function. Because of the interactions 
between elements, the problem is harder than simply not knowing the coefficients Q . 
However, we may have a learning budget allowing us to experiment with several sub-
sets before we have to choose one. For example, a basketball coach may hold some 
practice games to learn how well different players work together, before committing 
to a lineup for the season. 

We can apply optimal learning concepts to subset selection. In theory, the tools 
developed in Chapters 4 and 5 already allow us to handle this problem. We can view 
subset selection as an instance of a ranking and selection problem with correlated 
beliefs. Each alternative in the ranking and selection problem corresponds to one 
possible subset. In the problem of choosing four rowers out of seven possible can-
didates, we thus have a total of M = Q = 35 alternatives. We model the values 
of different subsets separately. If we choose rowers {Anne, Mary, Cathy, Tara} and 
{Anne, Mary, Susan, Tara}, these two subsets would be considered as two distinct 
alternatives, each with its own value. However, our beliefs about these two values 
are heavily correlated, because these two subsets have three elements in common. 
Learning about the effectiveness of one subset should also provide information about 
the other subset. 

As long as we do a good job modeling our prior beliefs (particularly our beliefs 
about the correlations between alternatives), we can then apply one of the learning 
techniques from Chapter 4, or the knowledge gradient method from Chapter 5, to 
decide which subset we want to learn about. Section 9.2.2 discusses two strategies 
for setting the prior covariances. Conceptually, we can approach the problem of 
subset selection entirely within the framework of ranking and selection. For smaller 
problems such as choosing four rowers out of seven, this approach will work fine. 

However, one characteristic specific to subset selection problems is that they tend 
to be quite large. Suppose that we need to choose five items from a list of ten. Five 
and ten are small numbers, but the number of possible subsets is (1

5°) = 252. If 
we slightly increase the size of the problem, and now choose six items from a list 
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of twelve, the number of subsets is (g2) = 924. The number of alternatives grows 
combinatorially as we add more items to our list. Choosing ten items from a list of 
twenty results in 184,756 alternatives! 

In Chapter 4, we did not really specify a problem size. Rather, we analyzed a 
generic problem with M alternatives. In theory, the techniques we developed can 
handle any M. In practice, they may be slow when M is very large. This issue is 
especially severe in subset selection, when even fairly small problems produce large 
numbers of subsets. We will need to develop further modifications to our methods 
that not only obtain good performance, but do so in a reasonable amount of time in 
larger problems. 

9.1 APPLICATIONS 

Subset selection problems come in many varieties. We are primarily interested in 
applications where there is an interaction between the subsets. 

■ Designing a diabetes treatment - Type 2 diabetes is an illness where the body 
is unable to properly react to insulin, a hormone used to remove sugar from 
the bloodstream. Most diabetes drugs fall into one of several categories; for 
example, sensitizers increase the body's sensitivity to insulin, whereas secreta-
gogues stimulate the body to secrete more insulin. A course of treatment for a 
single patient may contain drugs from multiple categories, as well as multiple 
complementary drugs within a single category. Clinical trials can help us learn 
how well two drugs complement each other. 

■ Choosing a starting basketball lineup - The coach wants to find five players 
who provide the best performance over the first quarter of a basketball game. 
He knows how many points each player scores from past games, and has other 
statistics such as rebounds, assists and blocks, but the simple reality is that there 
is no easy formula that predicts how people will interact with each other. Each 
time he tries out a team, he observes the total score (which might be viewed as 
a correction to a simpler formula). The coach has 12 players, implying that he 
has to pick the best set of 5 out of a team of 12, which means evaluating 792 
different teams. Fortunately, the observations should be correlated. We would 
not know the correlations exactly, but we might start with a covariance matrix 
that is proportional to the number of players in common between two teams. 

■ Collecting information for a venture capitalist - The VC is looking at a list of 
100 companies, divided into sectors such as web applications, energy, finance, 
and health. Within these, there are subfields such as companies making con-
tributions to solar energy (new materials, new collection devices, new storage 
devices) and finance (risk management software, portfolio balancing, tools for 
pricing credit derivatives, and forecasting). The VC has a rough idea of the 
prospects of each company from their literature and a phone call. He has time 
to visit about 20 of these companies. After a visit, his opinion may go up or 
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down on the prospects of the company. After he makes the visits, he will allo-
cate $100 million in funding. He does not want to concentrate too much money 
in a narrow area (solar panels), or even in a broader area (energy), which might 
be dramatically affected by a single random event (such as a carbon tax). 

■ Installing energy saving technologies - A company installs a variety of tech-
nologies to save energy costs in industrial buildings. These include computer-
controlled thermostats, solar plating on windows, fluorescent light bulbs, in-
sulation for air ducts, and solar panels on the roof. The company has ways of 
estimating the energy savings from each technology based on the configura-
tion of the building and the weather patterns. But the company has found that 
the combined contribution of all the technologies does not always match what 
it expects if it were to install each technology in isolation. Six months after 
each project, the company does an energy audit and can use the information to 
guide the choice of projects. Given the expense of each technology, it has to 
carefully choose how to experiment with different technologies so that it will 
better understand for the future how component technologies interact. 

■ R&D portfolio optimization - The Department of Energy is trying to decide 
which proposals, if funded, would advance our knowledge of hydrogen fuel 
cells. The proposals each address different components of the fuel cell. Some 
of these proposals address competing technologies (what is the best material 
for the cathode), while others are complementary (the total throughput of a 
fuel cell may be restricted by three separate components). Funding a proposal 
means that a component gets better by some random amount, but the amount by 
which the overall costs drops depends on changes in all the other technologies. 
We need to find the best set of proposals to fund to maximize the likelihood of 
a low cost fuel cell. 

■ Product assortment planning - A retail company has to choose a set of products 
to offer at its outlet store, or to display in a storefront window. The profitability 
of a product, or its effectiveness at drawing customers to a store, may also 
depend on the presence of other products in the assortment (e.g., accessories 
for an iPod). It is also important to display a diverse set of products that may 
attract buyers from different demographic groups. We have a short period of 
time to experiment with different assortments at a particular store in an attempt 
to discover the best one. 

■ Shortest path problems - Finding a path through a network with uncertain costs 
(or travel times) involves finding a subset of links out of the full set of links 
in the network. Of course, these links have to form a path that joins origin to 
destination. 

A common feature of many subset selection problems is that there are interactions 
between elements within a set. If the contributions of different elements in a subset 
were purely additive, then these problems would be best solved using the linear belief 
model of Chapter 8. 
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9.2 CHOOSING A SUBSET USING RANKING AND SELECTION 

We show how ranking and selection can be used to find a subset in the context of 
designing a diabetes treatment. In the latter stages of clinical trials, the search has 
typically been narrowed to a relatively small set of the most promising drugs. We can 
create a combination treatment consisting of multiple drugs from this set. 

The effectiveness of a diabetes treatment can be measured in terms of blood sugar 
reduction. Blood sugar level is measured in millimoles per liter, after the patient has 
not eaten for eight hours; this is known as the "fasting plasma glucose" or FPG level. 
For a healthy person, the FPG level is about 4-6 mmol/L. A diabetic can show FPG 
levels of up to 10-15 mmol/L. A single drug can reduce FPG level by an amount 
between 0.5 and 2 mmol/L. 

We design a combination treatment for two reasons. First, two drugs yield a bigger 
FPG reduction than one, and second, combination treatments tend to have lower risks 
of side effects. Prescribing three drugs instead of one may give us an FPG reduction 
between 2 and 5 mmol/L. Due to interactions between drugs, FPG reduction obtained 
from the combination is not a straightforward sum of the reductions we might observe 
from individual drugs. 

9.2.1 Setting Prior Means and Variances 

Let us consider an example with six drugs. Our list may include certain basic ele-
ments such as conventional treatment (recommending diet and exercise to the patient), 
metformin (the first drug of choice in most cases), and insulin injections, as well as 
newer compounds such as rosiglitazone, glibenclamide, and chlorpropamide. Our 
goal is to find the best possible combination of three of these drugs. The total number 
of subsets is still quite small, (3) = 20. 

Let S = {1,. . . , 6} be our set of S = 6 drugs, from which we have to choose a 
subset of size s. Let /ix be the true value of a subset x C 5 , that is, the true FPG 
reduction achieved by treatment x on average. Now suppose that we have a large 
population of patients in roughly the same poor health condition. We divide them 
into N groups and then we prescribe a treatment for each group. When we assign the 
(n + l)st group to treatment x, our observation W™+1 is the average FPG reduction 
across all the patients in the group. Sample averages are approximately normal, so 
we make our usual modeling assumption W™+1 ~ N(iix, &w)» w n e r e the variance 
o-yy is assumed known (but somehow estimated or guessed in practice). 

All we need now in order to apply optimal learning is a prior distribution on the 
values fjLx. We will use a multivariate normal distribution (accounting for correlations 
between subsets). The prior mean 0° on the true value of treatment x tends to be easier 
to choose, because it comes directly from our domain knowledge about the problem. 
In light of what we know about blood sugar levels, we might let 0° be a number 
between 2 and 5 mmol/L. The prior variance E^x represents a rough guess about the 
range of our uncertainty about the true value. If we are reasonably sure that the true 
value is between 2 and 5, we might let the variance be 0.5, meaning that we believe 
that \ix falls in the range d% ± 2 • >/0i5. 
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9.2.2 Two Strategies for Setting Prior Covariances 

While prior means and variances can be chosen with the help of knowledge about the 
problem, covariances between the true values are trickier to estimate. In actual clinical 
trials, we can observe the effectiveness of a treatment directly, but covariances between 
treatments can only be inferred from the results of individual trials. Fortunately, we 
can still obtain good performance with a simple, heuristic covariance structure. Our 
prior mainly needs to capture the fact that subsets are more heavily correlated if they 
have more elements in common. 

Our first rule of thumb is based purely on the number of such elements. In the 
problem of choosing three drugs from a list of six, let x — {1,2,3} and y = {2,3,5} 
be two possible treatments. These subsets have 2/3 elements in common, so we can 
simply choose 2/3 as the correlation coefficient of these two subsets in our prior 
distribution. That is, the prior correlation coefficient is set using 

o 1 , 
Pxy = -g\xny\. 

The prior covariance is simply 

^xy - Pxy(Jx(7y' C*-1) 

We calculate these covariances for every possible x and y. This simple heuristic 
produces high correlations between subsets with more common elements. 

In some problems, we may have more domain knowledge about individual items 
on our list than about subsets. For example, we may have access to clinical data 
about the drug rosiglitazone, tested independently of other drugs. Or, we may have 
some data on the travel time on a particular street or region, but no travel time data 
for a complex travel route that takes us through multiple regions. In this case, it may 
be easier to construct a prior on the value of a subset using our information about 
individual components. 

Let ii\nd be the true value of the individual component i G 5 (e.g. the FPG 
reduction achieved by the single diabetes drug i). Using our domain knowledge, we 

construct a prior ^ ~ AT ( 0*nd'°, (<j.nd,°) J. For the diabetes setting, we may 

believe that /i^nd falls in the range 1.25 ± 0.75 mmol/L. Then, our belief about a 
treatment x is given by 

02 = ^ 0 { n d ' ° , (9.2) 
i£x 

and the covariance of our beliefs about treatments x and y is given by 

£°y= E {°ind'°)2- (9-3) 
i£x(ly 

This heuristic implicitly assumes that the values of individual diabetes drugs are 
independent, which may not be the case. For example, the FPG reductions for multiple 
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drugs in the same class will be correlated. If a patient reacts adversely to sensitizers, 
all drugs of this type will tend to perform poorly. In any case, however, our prior is not 
able to capture all the nuances of the problem. Instead, the prior is meant to provide 
some rough guidelines about the values of different alternatives and the interactions 
between them. Even if we assume that individual items on our list are independent, 
subsets will still be correlated if they have common elements. The correlation structure 
in (9.3) once again captures the fact that subsets with many common elements should 
have similar values. As we make decisions, the information we collect will allow us 
to obtain more accurate beliefs. To put it another way, we start by assuming a simple 
linear objective function, then leave it to our learning algorithm to refine these initial 
beliefs. 

We now proceed as usual. Once we have a prior (/i°, S° ) , we rely on our standard 
Bayesian updating equations to change our beliefs from that point. If we choose 
treatment x for the trial at time n, our beliefs for subsets y will change according to 
the equations 

U/n+l _ Qn 
/m+1 nn _ rr x u x ym 

yn yn 
yn+1 _ yn _ x,V< x,y' 
^y^y' ny,y' a2 . yn ' 

aW + ^xx 

This gives us everything we need to run an algorithm such as knowledge gradient. If 
there are only 20 possible subsets, it is smooth sailing from here. 

9.3 LARGER SETS 

Let us switch gears and consider a slightly larger problem, namely the energy port-
folio selection example from Section 9.1. A recent study by McKinsey & Company 
(2007) has identified a number of promising technologies for reducing greenhouse 
gas emissions. These new technologies have a higher energy efficiency, and also help 
to reduce energy costs. A partial list of these technologies includes: residential light-
ing; energy-efficient water heaters and appliances; improved ventilation systems and 
air conditioners; heating systems and furnaces; solar technology; shell improvements 
for residential buildings (e.g., insulation); and fuel economy packages for cars. 

Suppose that we have a total of 12 promising technologies, and our goal is to 
create a portfolio of six. The McKinsey study provides estimates for the abatement 
potential (the emissions reduction) of these technologies. The estimates represent the 
total abatement, measured in gigatons of CO2 per year (ranging from 0.2 to 3.0 for 
different technologies), that could be achieved by implementing the technology across 
the entire United States. We can scale down these estimates and use the strategy from 
(9.2) and (9.3) to create a prior for the energy efficiency of a single portfolio of six 
technologies, applied to a single building. 

The total number of energy portfolios in this example is 924, about 50 times more 
than we had in the problem of designing a diabetes treatment. We can still run the 
correlated KG algorithm from Chapter 5, but we will see that it will run much more 
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than 50 times slower on this problem. The reason is because, in a problem with 
M subsets, the time required to compute correlated KG factors for all the subsets is 
proportional to M 2 log M. This computational cost grows faster than the problem 
size. Considering that subset selection problems are already prone to very large sizes, 
this is a serious issue. We now discuss a way to reduce this cost using Monte Carlo 
simulation. 

9.3.1 Using Simulation to Reduce the Problem Size 

The basic idea is straightforward. First, we want to narrow down our large number 
of subsets to a much smaller number of subsets that appear to be promising. We then 
calculate knowledge gradients only for this reduced choice set, choosing a single 
alternative to measure. 

Intuitively, when faced with a very large number of choices, we might ignore 
most of them and focus only on choosing from the top candidates. This behavior 
is also typical of optimal learning algorithms. Interval estimation, Gittins indices, 
knowledge gradients, and other techniques all have an initial period of extensive 
exploration, but quickly start vacillating between a small number of choices that 
consistently look good. Although we know that, in the limit, KG is guaranteed to 
measure every alternative infinitely often, in practice most alternatives go for very 
long periods of time without attracting attention. 

Suppose that we are at time n, with beliefs 0n and E n . (As before, 9n refers to 
a vector of estimates for the values of possible subsets, which are enumerated and 
arranged into a list.) We can use Monte Carlo simulation to generate K samples 
from our distribution of belief N(6n, S n ) . Let fin(ouk) denote the fcth sample, for 
k = 1,..., K. Since we are generating from a multivariate normal distribution, each 
fJLn{uok) is a vector of numbers. The notation pL™(ook) represents the simulated value 
of the individual subset x in the fcth sample. 

From the fcth sample, we can find xn(uk) = argmaxx/i™(u;fc). This is the 
"winner" of the fcth sample, or the subset that had the highest simulated value on the 
sample path ujk. Now, if we group together all of the winners, we will have a reduced 
set of at most K alternatives (at most, because there may be some duplicates). We 
will make our measurement decision based purely on these K subsets, ignoring all 
other possible subsets. 

To see how this works, consider a numerical example. Suppose that we have five 
alternatives with 6n = (10,13,12,16,8)T and 

22 
13 
14 
15 
14 

13 
16 
18 
13 
12 

14 
18 
24 
12 
14 

15 
13 
12 
14 
11 

14 
12 
14 
11 
16 

We decide to reduce the number of alternatives. To that end, we generate K = 4 
samples from the distribution J\f(6n, E n ) . Table 9.1 gives the simulated values for 
all five alternatives on all four sample paths. Observe that, according to our prior, 
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alternative 4 is believed to be the best. This same alternative is also the winner on 2/4 
sample paths. However, alternatives 2 and 3 each win on a single sample path, even 
though these alternatives are believed to be the second and third best according to the 
prior. The set of winners is thus {2,3,4}. In this way, Monte Carlo sampling can 
give us a reasonably diverse choice set, which includes many promising alternatives, 
but does not include alternatives that seem to be hopelessly bad. 

It can be shown that the marginal distribution of (fi2, /^s •> M4) is multivariate normal 
with parameters 

QMC,TI 
13 
14 
15 

^MC,n 
16 18 13 
18 24 12 
13 12 14 

That is, if we throw out alternatives 1 and 5, the distribution of our belief about the 
remaining alternatives is the same as before. We just need to throw out the rows and 
columns of E n , and the elements of 6n, having to do with alternatives 1 and 5. We 
obtain the reduced prior A/*(0MC'n, £ M C ' n ) , where the notation MC refers to the 
use of Monte Carlo sampling to reduce the prior. 

We can formalize this procedure as follows. Let K0 be the number of unique 
winners obtained from Monte Carlo sampling (with duplicates removed; this number 
would be 3 in the preceding example). We can enumerate the winners as xx 
XxC,n. We can define a matrix An of size M x KQby 

MC,n 

C-MC,n, . . . , C-MC,n Xl XK0 

Recall that ex is a vector of zeroes with only the xth component set to 1. In the 
preceding example, we would write 

An 

0 0 0 
1 0 0 
0 1 0 
0 0 1 
0 0 0 

Table 9.1 Simulated values of five alternatives based on the prior distribution. 

X 

1 

2 

3 

4 

£2(" i ) 

15.59 

17.24 

18.06 

19.32 

Mx(^2) 

11.38 

18.49 

20.77 

17.97 

M S M 
3.73 

7.30 

2.61 

12.53 

/SM 
10.48 

18.98 

18.88 

18.73 

5 12.37 13.41 4.08 11.55 
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Then, we can calculate the reduced prior using the equations 

E M C ' n = (An)TEnAn. 

We can now run the knowledge gradient algorithm using QMC>n and £M C>n as the 
prior instead of the original parameters 8n and E n . The computational cost is thus 
at most K2 log K, and likely less if there are many duplicates. We choose K to be 
much smaller than M. In a problem with 924 alternatives, we can obtain good results 
with K = 30. 

9.3.2 Computational Issues 

Monte Carlo simulation allows us to greatly reduce the cost of calculating knowledge 
gradients. However, it carries a new cost for running the simulations. Recall from 
Section 2.4 that a single sample from a multivariate normal distribution can be created 
using the equation 

p,n (u>) =6n + CnZ, 
where Z = (Z±,..., ZM) is a vector of standard normals, and Cn is a "square-
root matrix" satisfying Cn (Cn) = Hn. The standard normals are easy enough to 
generate, but calculating the square root matrix can be costly. In the worst case, the 
time required to compute Cn is proportional to M 3 , which is actually greater than the 
M2 log M needed to compute the full set of knowledge gradients in the first place. 

Fortunately, there is an elegant work-around for this issue. The square-root matrix 
can be computed recursively using the formula 

ynp nPT fin 
C n + 1 = Cn exnexn^ 

{o2
w + EJJ^n) [^ + y ^ T s ^ -

This equation is entirely analogous to (2.23). Given our decision xn at time n, C n + 1 

can be calculated directly from the beliefs at time n. The updating equation (9.4) 
even has a similar form to (2.23), and requires the same computational effort. 

Thus, we only need to perform the expensive calculations required to compute 
the square root of a matrix once, to obtain C° from E°. In MATLAB, this can be 
done using the routine chol (for Cholesky factorization, the name for the square root 
procedure). After that, we keep track of the square root matrix at each time step, and 
the next square root is computed recursively at a low cost. We are saving a lot of 
computing time by extending our knowledge state to include Cn as well as E n . 

It may also sometimes happen that, due to numerical rounding errors, the prior 
covariance matrix S° that we build using the methods from Section 9.2.2 may be 
reported by MATLAB as not being positive semidefinite (a necessary condition for 
computing square root matrices). This issue can often be resolved by simply adding 
a diagonal matrix e • / to E°. Here, I is the identity matrix and e is a small positive 
number (e.g., 0.001). This quick fix is often enough for computing C° , while still 
preserving the general correlation structure of subset selection. 
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Figure 9.1 Growth of the size Ko of the reduced choice set as a function of the sample size 
K. 

9.3.3 Experiments 

Earlier, we mentioned that the number K of Monte Carlo samples can be chosen 
to be much smaller than the total number M of subsets. One important question is 
exactly how many samples we need to take. Figure 9.1 shows how the size KQ of 
the reduced choice set (recall that this is the number of winners obtained from Monte 
Carlo sampling) increases with the sample size K on a variant of the energy portfolio 
selection problem. Due to the random sampling, the curve is noisy, but we can see 
that KQ grows fairly slowly. With K = 30 samples, we obtain a reduced choice set 
of KQ « 20 alternatives. This number is roughly doubled when K increases to 300. 
Thus, as long as our prior presents a roughly accurate picture of the values of the 
alternatives (in Chapter 7 we referred to this as a "truth-from-prior" problem), we 
can safely ignore the vast majority of the possible subsets and focus only on several 
dozen of the most promising choices. 

Figure 9.2(a) illustrates the performance, expressed using the average opportunity 
cost metric from (7.7), of the Monte Carlo KG (MCKG) policy as a function of 
the sample size K. We see that, once K > 30, performance begins to level off, 
and adding more samples does not yield substantially better results. Figure 9.2(b) 
shows the number of unique alternatives (energy portfolios) measured by MCKG 
for different sample sizes K. Here, we see that small sample sizes lead to more 
erratic behavior. In each iteration, our reduced choice set is randomly missing some 
important, promising portfolios, and it also randomly includes some portfolios that 
have previously been under-represented. Our policy thus measures more portfolios in 
an effort to gain enough information about the most relevant alternatives. On the other 
hand, once the sample size is large enough that all of these important portfolios are 
consistently included in the reduced choice set, the policy is able to more accurately 
discern which alternatives need to be measured. 
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Figure 9.2 Illustration of (a) performance of the Monte Carlo KG (MCKG) policy, and (b) 
the number of alternatives measured by the policy as the sample size K increases. Results are 
taken from Ryzhov & Powell (2009a). 

Finally, Figure 9.3 compares the performance of MCKG for a fixed sample size 
K — 25 to several other policies. In addition to our usual mainstays - approximate 
Gittins indices, interval estimation, and pure exploitation - we also apply the inde-
pendent KG policy, in which we apply the formula from (5.10) to make a decision, 
thus temporarily ignoring the correlations between subsets when we make decisions, 
but incorporating them into our learning model. In Section 5.3, this approach was 
also called "hybrid KG." Although this idea is clearly not as good as correlated KG, 
it makes sense to use it in this setting because of its much lower computational cost: 
the time to calculate the formula for each alternative is proportional to M, as opposed 
to M2 log M for correlated KG. 

We find that Monte Carlo KG still outperforms the other policies. These results 
are consistent with what we know about correlated KG from Section 5.3. The Monte 
Carlo component does not seem to harm performance, as long as K is around 20 or 
30. Note that Figure 9.3 does not include a comparison with the full correlated KG 
policy (computing correlated KG factors for the full choice set). Even in our version 
of energy portfolio selection, which is still not unreasonably large, it simply takes too 
much time to run correlated KG. The Monte Carlo modification allows us to work 
around this computational limitation. 

9.4 VERY LARGE SETS 

Eventually, subset selection problems become so large that the very framework of 
ranking and selection breaks down. For example, assume the Department of Energy 
is considering 100 proposals, from which they can fund 20. In this case, the number 
of potential subsets is 100 choose 20, which is approximately 5 x 1020. We will 
simply not have enough memory to store a covariance matrix with 1020 rows and 
columns. 
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^ B 
-0.5 0 0.5 

MCKG-lndKG: 61/100 
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MCKG-Gitt: 76/100 
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MCKG-IE: 65/100 MCKG-Exp: 67/100 

Figure 9.3 Performance of the MCKG policy relative to other policies for K = 25. The 
numbers indicate the number of problems (e.g., 61/100) where MCKG outperformed the 
competing policy. Results taken from Ryzhov & Powell (2009a). 

Let C(p) be a cost function where p = ( p i , . . . , PM) is a set of technology pa-
rameters. Let # = ( # ! , . . . , XM) be a portfolio, where X{ — 1 means we are funding 
a proposal to improve technology i. 

One strategy starts by replacing our objective function with a linear approximation 
of the form 

F{x) = Y^XiVi 

Here, vi is an approximation of the marginal value of adding the ith project to the 
portfolio. We approximate these values using V{, which we estimate using Monte 
Carlo methods. For example, assume we have a portfolio xn at the nth iteration. The 
updated technology parameters for the perturbed portfolio are 

where Wn+1'fc ~ C/[0, p*] is a random variable that describes the technology change 
of the kth technology of the jth project if that project were funded. We would like to 
choose x to solve 

maxEC(pi(W,x). 
X 

We are not able to compute the expectation, so instead we compute a sample realization 

v"*1 =C(xn,W(u>n+1)). (9.5) 
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We now compute a sample estimate of the marginal value of each project. We do this 
by looping over all the projects. Each project i is forced either in or out of the base 
portfolio (depending on whether it was out of or in the base portfolio, respectively), 
and then find the new portfolio given this constraint. The new portfolio is found by 
solving 

771 

xn'% — argmaxy^iffg/j, 

subject to 

E< 
J = l 

:jVj 

Vi 

Vj 

< 

= 
e 

&, 

1-*?, 
{0,1}, J^i 

A sample estimate of the marginal value of the new portfolio is given by 

n+l,i\ 
v?+1 r c(p?+1-*)-»n+1 i f< = i, (96) 

Finally, we smooth these sample estimates to find an averaged estimate using 

v?+1 = anv?+1 + (1 - <*„)«?, (9.7) 

where 0 < an < 1 is a stepsize. 
We have to remind ourselves that we are still solving a problem where the elements 

of the subset interact in a fairly complex way. We capture these interactions in the 
manner by which we calculate the marginal values v™+1. 

9.5 BIBLIOGRAPHIC NOTES 

Section 9.1 - See also Miller (2002) for additional applications of subset selection 
in statistics, and Horrace et al. (2008) for applications in economics. 

Section 9.3 - The energy portfolio application is also considered by Ryzhov & 
Powell (2009a) and Ryzhov & Powell (2009£). The first of these references 
also proposes the Monte Carlo KG policy. The recursive updating equation for 
the square root matrix can be found, for example, in Kaminski et al. (1971). 

PROBLEMS 
9.1 There are six primary drugs that can be used to treat diabetes, and these are often 
prescribed in groups of three at a time. There are 20 ways of choosing three drugs 
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from a set of six (known as a "cocktail"), assuming all possible combinations make 
sense. Enumerate these 20 cocktails, and create a covariance matrix E where entry 
Tiij = a2 N^, where N^ is the number of drugs in common between drug cocktail 
% and drug cocktail j (so, 0 < N^ < 3). Let a2 = .352 be the variance in our prior 
distribution of belief about the effect of a drug cocktail. Finally, let a2 — .552 be the 
variance of an observation. 

Assume that our prior on the blood sugar level produced by each cocktail is the 
same and is equal to 5.0. 

a) Randomly generate a truth from this prior for each cocktail. Create the covari-
ance matrix and use the knowledge gradient for correlated beliefs to search for 
the best cocktail using N = 20 measurements. You may use the MATLAB 
code (first introduced in Chapter 5) that can be downloaded from 

http://optimallearning.princeton.edu/exercises/KGCorrBeliefs.rn 

An example illustration of the KGCB algorithm is given in 

http://optimallearning.princeton.edu/exercises/KGCorrBeliefsEx.rn 

b) Now repeat (a) for 100 different truths, and summarize how well you discover 
each truth using 20 observations. 

c) Next we are going to use the methods described in this chapter to solve a much 
larger problem, but we are going to use them on this small test problem. Repeat 
(a), but this time you are going to randomly sample 5 out of the 20 combinations, 
and limit your calculation of the KG factor to these three (the easiest way to 
modify the code is to compute the knowledge gradient for all 20 as you are 
doing, but then choose a subset of 5, and finally choose the drug cocktail with 
the best knowledge gradient out of these five). Perform N = 100 samples and 
compare the performance to the results you obtained when you computed the 
knowledge gradient for all the alternatives. 

d) Finally, repeat (d) for all 100 truths and report on the average performance. 

9.2 Verify that 9.4 produces a valid square root matrix, that is, C n + 1 (C n + 1 ) = 
£ n + 1 . 





CHAPTER 10 

OPTIMIZING A SCALAR FUNCTION 

Optimizing scalar functions arises in a variety of settings, such as choosing the price 
of a product, the amount of memory in a computer, the temperature of a chemical 
process, or the diameter of the tube in an aerosol gun. Important special cases are 
functions which are unimodular, as depicted in Figure 10.1, where there is a single 
local maximum, or concave. In this chapter, we review some specialized algorithms 
designed for this particular problem class. 

We begin our presentation using an unusual problem setting for this volume, which 
is an unknown but deterministic function which can be measured perfectly. We then 
transition back to our more familiar setting of noisy functions. 

10.1 DETERMINISTIC MEASUREMENTS 

We begin by assuming that f{x) is differentiable and unimodular (that is, it has a 
single local maximum). We assume the region we are searching is bounded, so we 
can scale the search region to be between 0 and 1. Initially, we assume the optimum 
x* can be anywhere in this interval with equal likelihood. If we measure the derivative 
/ ' (#) at x — 0.5, we can observe whether f'(.5) > 0 or / '( .5) < 0. If the derivative 
is negative (as shown in Figure 10.1), then we know that 0 < x* < .5. We can 
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Figure 10.1 A unimodular function, showing the slope at the midpoint, and the height of the 
function at 1/3 and 2/3. 

eliminate the portion of the interval greater than .5. This means we can redefine the 
entire problem on the interval (0, .5) and repeat the process. Let £n be the length 
of the interval in which the optimum may lie after n iterations, where £° = 1. It is 
easy to see that £n = .5n . Under the assumptions of the problem, this is the fastest 
possible rate of reduction that we can achieve. 

Unfortunately, there are many problems where we cannot compute the derivative, 
but we can compute the function. For example, a transportation company may have a 
model that evaluates the on-time service when the fleet size is x. The company may 
vary x, re-running the model each time, but the model may not provide a derivative 
of the performance measure with respect to x. Instead, we have to resort to a kind of 
hunt-and-peck, trying different values of x. But, we can use our unimodular structure 
effectively. For example, we can try x1 = .2 and x2 = .8. If /(.2) > / ( .8) , then 
we can eliminate the region (.8,1) from further consideration. Of course, this only 
eliminates 20 percent of the interval. 

Imagine that we have a measurement budget of TV = 2 measurements. In this 
case, the best strategy is to measure x1 = .5" and x2 = . 5 + , by which we mean 
slightly less than .5 and slightly more than .5. Comparing /(.5~) and / ( .5 + ) allows 
us to effectively eliminate half the interval, just as we did when we could compute a 
derivative (we are basically computing a numerical derivative). 

Next consider the case where N = 3. If we first measure x1 = 1/3 and x2 = 2 /3 , 
we eliminate either (0,1/3) or (2/3,1). Assume that we eliminate the upper interval 
(as we did in Figure 10.1). Now we are left with the interval (0,2/3), but we 
already have a measurement at the midpoint x = 1/3. We are going to use our final 
measurement at a point slightly above or below 1/3 to determine the final interval of 
uncertainty, which will have width 1/3. 

We repeat this exercise one more time for TV = 4, but now we are going to assume 
that the optimum is at x = 0 (but we have to construct our measurements without 
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knowing this), so that we are always eliminating the upper part of the remaining 
interval. If we measure x1 = 2/5 and x2 = 3/5, we would eliminate (3/5,1), and 
we are left with the interval (0,3/5) with a measurement at 2/5. Conveniently, this 
is at the two-thirds point of the interval (0,3/5), with two remaining measurements. 
If we measure x = 1/5, we are now in the same situation we were when we started 
with N = 3, but on an interval of width 3/5. We eliminate the upper interval, leaving 
us with the interval (0,2/5) and a measurement at the midpoint 1/5. We use our final 
measurement at a point slightly higher or lower than the measurement at 1/5, giving 
us a final interval of 1/5. 

Now compare this result to what we would have obtained if we had used the 
bisection search with numerical derivatives. If N = 2, we would have measured just 
above and below .5, giving us a final interval of width .5. If N = 4, we would have 
done this twice, giving us an interval of width .52 = .25, which is greater than the 
interval we obtained of 1/5 = .2. How did we accomplish this? 

There is a pattern in this logic. When we eliminated the interval (3/5,1), we were 
left with the interval (0,3/5) and a measurement at 2/5. Rescaling all the numbers 
so that the interval is of length 1, we get an interval of (0,1) with a measurement at 
2/3. If we eliminated the lower part of the interval (0,2/5), we would be left with the 
interval (2/5,1) (which still has length 3/5) and a measurement at 3/5. Rescaling 
gives us an interval of length 1, and a measurement at 1/3. Either way, we end up 
with a measurement we would have made anyway if we only had 3 measurements. 

We can formalize the algorithm as follows. Let f1 < f2 < f3 < . . . be an 
increasing sequence of integers. If we are allowed three measurements, assume we 
first measure fl/f3 and f2/f3. If we eliminate the upper part of the interval, we are 
left with an interval (0, f2/f3). If we eliminate the lower part of the interval, we are 
left with (f1//3,1). We would like the width of these intervals to be the same, so 
we are going to require that 

/ 3 / 3« 

or, rearranging slightly, 

Similarly, if we have four measurements, we first measure / 2 / / 4 and f3/f4. Re-
peating the exercise above, rejecting the upper range leaves us with an interval of 
/ 3 / / 4 » while rejecting the lower range leaves us with the interval (1 — f2/f4). 
Again equating these gives us 

£ = i - L2 
/ 4 / 4 , 

or 

/4 = / 3+/2 . 
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Using proof by extrapolation, we see that if we are making N measurements, we want 

fN = fN-l+fN-2 ( 1 Q 1 ) 

Furthermore, this has to be true for all n < N. Equation (10.2) defines what is known 
as the Fibonacci sequence, comprising the numbers (1 ,1 ,2 ,3 ,5 ,8 , . . . ) , where we 
initialize the sequence using f° = 1, and then let f1 = 1, f2 = 2, / 3 = 3, 

It is possible to show that the Fibonacci sequence produces an optimal search 
sequence for a finite measurement budget (under the assumptions of our problem). 
By this we mean that for a given value of N, no other method will produce a smaller 
final interval in which the optimal solution may lie. This means that our search is 
optimal, because we learn the most within our budget. 

So what if our budget is unlimited? We are going to start by hypothesizing that 
in the limit, we are going to measure the interval at two points, which we are going 
to denote by 1 — r and r, where .5 < r < 1. If we measure 1 — r and r and then 
eliminate the upper interval, we are left with the interval (0, r). Now assume we are 
going to measure the same points within this interval, which would occur at r ( l — r) 
and r2. We want the larger of these two points to coincide with the smaller of the 
two measurements in the original interval, so that at each iteration, we are measuring 
only one additional point (as we did with the Fibonacci search). This means that we 
require 

r2 = 1 — r, 

or 

r
2 + r - 1 = 0. 

We solve this using the quadratic formula which gives the roots for the equation 
ar2 + br + c = 0 as 

-b ± Vb2 - Aac 
r — ~ • 

2a 
Using only the positive part gives us the solution 

-1 + VTT4 
" = 2 

-1 + V5 
2 

= 0.618. 

The quantity r = .618 is known as the golden section or golden ratio. We note that 
we get the same result if we had eliminated the lower portion of the interval, since our 
measurements are naturally symmetric. We also note that if fn is the nth Fibonacci 
number, then 

fn—1 
lim —n > r = 0.618. 

n—>oo Jn 
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Thus, the golden section search is the limit of the Fibonacci search. 
The Fibonacci search and the golden section search are both examples of optimal 

learning in that they give the fastest improvement in our knowledge, measured by 
the length of the interval where we think the optimum might be. The Fibonacci 
search guarantees the smallest possible interval after a fixed (and known) number 
of measurements. The golden section search gives the fastest rate of convergence 
for an algorithm that will be run an infinite number of times. To put it another way, 
we account for the effect that our next measurement will have on the length of the 
uncertain interval. 

10.2 STOCHASTIC MEASUREMENTS 

We now return to our more familiar setting where measurements of the function are 
noisy. We consider the stochastic version of bisection search, where we assume we 
have access to a noisy indicator that tells us whether we think the optimum is to the 
left or the right of our measurement. In generalizing the bisection search we make 
a particular assumption about the measurement noise. We explain this assumption 
by noting that the bisection search operates by separating two regions of the search 
space: the region to the left of x* and the region to the right. Measuring the derivative 
of the function f(x) at a point x reveals in which part of the search space x belongs. 

Even without a function f(x), we can use a bisection search to solve any problem 
where we want to find the boundary between two regions, and where measuring a 
point reveals in which region it resides. In the error-free case, this revelation is always 
correct. In the noisy version of the problem we instead assume that the revelation is 
incorrect with a probability that is known and constant. While these conditions are 
typically not going to be satisfied in practice, they provide an elegant search model 
and they are certainly more realistic than assuming the measurement is perfect. 

This assumption of constancy would tend to be met in applications where the 
transition between regions is abrupt. As an example, if a city's water supply were 
contaminated with a dangerous chemical we would want to localize the extent of 
contamination as quickly as possible, and if the chemical did not dissolve well in water 
but instead tended to stay concentrated, we would find a situation with this abrupt 
transition between contaminated and uncontaminated water. In contrast, when we 
measure a smooth function with additive noise, noise tends to cause incorrect region 
assignments more frequently near the function's maximum. With this in mind, we 
should be careful in applying the stochastic bisection algorithm presented here to 
situations not meeting its assumptions. 

10.2.1 The Model 

We formulate our problem mathematically by again supposing that we have a point 
x* whose location is unknown beyond that it resides in the interval [0,1]. The point 
x* corresponds to the boundary between the two regions in [0,1], so in the water 
contamination example, the water in region (x*, 1] would be contaminated and the 
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water in region [0, x*] would not. We adopt a Bayesian prior density po on the location 
of this point x*, where po(x) gives the likelihood (density) that x* = x. It could be 
uniform on [0,1] if we had little real information about its location, or it could be some 
more complicated distribution expressing a stronger belief. We then suppose that we 
are offered the opportunity to take a sequence of measurements x°, x1,..., xN in the 
interval. With each measurement xn, we get a noisy response yn+1, suggesting into 
which region xn resides. Given xn and x*, this response will be independent of all 
other responses and will have the distribution 

„n+i = f I{X* <x- } with probability q, 
[ I{x* >xn} with probability 1 — q. 

We may also express this as P{y n + 1 = Ix*<xn} = q. Here q is the probability 
our measurement is correct, and we assume this probability is known and constant. 
Equivalently, 1 — q is the error rate in our measurements. 

10.2.2 Finding the Posterior Distribution 

These measurements alter our prior belief about the location of x*, giving us a poste-
rior belief, all according to Bayes' rule. We use the notation pn to denote the posterior 
density at time n. To write the updating rule for pn explicitly, we introduce two pieces 
of notation. Let Fn be the cumulative distribution function of the posterior at time 
n, by which we mean that, for any dummy variable x, 

Fn(x) := P{x* < x | pn} = / pn(x) dx. 
J[0,x] 

We may also think of Fn (x) as giving the probability that x is in the region to the left 
of x*, and in our water contamination example we think of it as giving the probability 
that the water at x is not contaminated. As our second piece of notation, let g be the 
function defined by g(a, 1) = a and #(a, 0) = 1 — a, where a will be a probability 
(such as the probability the true value is to the left or the right). Now we are ready to 
compute our updating rule. 

Noting that nature's correct response to the measurement xn would be I{x*<xn}» 
we write 

F{yn+1=y\x\xn} 

So, g(q, 1) = q corresponds to two cases: Either xn < #*, and we observe yn+l = 1 
which correctly indicates that the optimum x* is greater than our measured point; or 
xn > x* and yn+1 = 0, which correctly indicates that the optimum x* is less than 
our measured point. The outcome g(q,0) = 1 — q corresponds to the opposite of 
both of these cases. 

= \<1 ify = I{x*<x™}, 
\ l - q ify^I{x*<X"}, 

= 9faI{y=Iix.<xn}})-



STOCHASTIC MEASUREMENTS 2 2 5 

We may also write 

P{yn+1 = y | pn} = F{x* < xn | pn}¥{yn+l = y \ x* < xn} 
+ F{x* > xn | pn}V{yn+1 =y\x* >xn} 

= Fn(xn)g(q, V) + (1 - Fn(xn))g(l - q, y) 
= g(qFn(xn) + (l-q)(l-Fn(xn)),y), 

where the last line may be seen by considering the cases y — 0 and y = 1 separately. 
Fixing some dummy variable y, we may then use Bayes' rule and these two relations 
to write 

pn + 1 (x) dx = P{x* e dx | p n , £ n + 1 = y} 

p{£n+l _ ^ | pnj 

Kg'V/{.<.n}}) -^^(X) dX. 
<7 (?F"(a-) + (1 - q){l - F"{x")),yy 

Substituting yn+1 for y shows that our updating rule is 

n+1/ x = V \y H*<*n}jJ nt \ Q Q 2 ) 
P [ 9 (qF*(xn) + (1 - q)(l - F*(x»)), y"+ 1) W " 

The essential content of this updating rule is as follows. Our observation, if correct, 
would tell us into what region xn lies and would tell us whether x* is to the left or 
right of this measurement point. Let us give the name "suggested region" to the 
region in which the observation, if correct, would indicate x* resides. Since we know 
that the observation is only correct with probability q, we multiply the density in the 
suggested region by q, and we also multiply the density in the other region by 1 — q. 
This leaves us with a density which does not integrate to 1, so we then finish the 
update by normalizing. 

As a numerical example, assume that q — .7, xn = .6, and that we observe 
£n+i _ | Assume that the distribution pn(x) is uniform, as depicted in Figure 
10.2(a). Figures 10.2(b) and 10.2(c) show the conditional distribution given yn+l = 1 
and y n + 1 = 0, respectively. Finally, Figure 10.2(d) shows the updated distribution 
for p n + 1 given y n + 1 = 1, overlaid on top of the original uniform distribution for 
pn(x). This distribution is computed using 

vn+l(x) = L.7(.6)+
7:3(.4),0)P"(*) = i i ^ O * ) = l-296p"(x) X < X™, 

U(.7(.g+
7:3J.4),o)P"(^) = M P " ( Z ) = 0.556p»(x) x > x". 

Let us briefly consider the case when our measurements are always correct. Then 
q — 1 and we are back in the deterministic case. Suppose for the moment that pn is 
uniform on some interval (an, bn]. Then our updating rule can be simplified to 

P y> g{F"{xn)),yn+1) b"-an 1 £fj§£L£ll i f y » + 1 = 0 . 



2 2 6 OPTIMIZING A SCALAR FUNCTION 

(C) (d) 

Figure 10.2 Illustration of the effect of an observation of y for xn = .6, starting with an 
initial uniform prior (a). The new beliefs are shown in (b) and (c) for y = 1 and y = 0. The 
updated distribution pn+1 (x) is given in (d). 

Thus we see that the posterior is now still uniform but on some smaller interval, where 
either the points to the left or right of xn have been removed. Thus, if we begin with 
a uniform prior, i.e., with p°(x) = Ixe[o,i] > m e n o u r posterior at each time will again 
be uniform on a smaller interval. Comparing our knowledge in the deterministic 
case, where we had an interval in which we knew x* resided, to our knowledge here 
suggests that a natural way to express knowledge that x* lies in an interval is through 
a uniform probability distribution on that interval. 

10.2.3 Choosing the Measurement 

Now let us return to the stochastic case where q < 1. With our updating rule in 
hand, we could take any given method for choosing our measurements, and compute 
the posterior density of the location of x* after our allotted number of measurements 
N, but before proceeding to say which measurement methods are best we need a 
way to evaluate the quality of the knowledge that we arrive to at the final time. In 
the deterministic case we knew that x* resided in an interval, and we evaluated how 
happy we were with our final knowledge according to the length of this interval. 
In the stochastic case, however, we no longer have an interval but instead a density 
expressing a continuum of belief about the location of x*. 

The objective function we use should correspond to our notion of length in the 
deterministic case, and it should punish greater uncertainty. There are many choices, 
but one possibility is the entropy. Denote the entropy of any particular density p on 
the location of x* by H(p), 

H(p) '=- \og2(p(x))p(x)dx. 
Jo 
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The entropy corresponds to uncertainty about x* in several senses. First, measure-
ments always decrease entropy on average, no matter what is measured. Second, the 
entropy is largest for the uniform prior, which we may understand intuitively as the 
density we have when we are most uncertain about x*. Third, the entropy approaches 
—oc as our posterior density sharpens to a point at the true location of x*. 

Additionally, the entropy corresponds in a very nice way to our use of interval 
length as the objective function in the deterministic case. In the deterministic case, 
we may know at a point in time that x* is in [a, b], but we have no information about 
it beyond that. A natural belief to take on the location of x* in this situation is the 
uniform density on [a, b], which is p(x) = Ixe[a,b]/(b — a). This density has entropy 

H(p) = - I log2(l/(6 - a))/{b -a)dx = \og2(b - a), 
J a 

which is a strictly increasing function of the length b — a of the interval. Thus mini-
mizing the length of the interval [6, a] is in some sense equivalent to minimizing the 
entropy. We characterize this equivalence more concretely later, when we show that 
the stochastic bisection algorithm is the same as the deterministic bisection algorithm 
when the probability q of measurement error is 0. Finally, an additional and very 
important reason for using entropy is that it provides an analytic and easy-to-use 
solution to the sequential problem. 

Now with the transition function worked out and the entropy as our objective 
function, we have a well-defined sequential information collection problem. This 
problem can be solved and the optimal solution computed using dynamic program-
ming. Let us define our value function Vn by taking V\pn) to be the smallest 
value of E[H(pN) \ pn] than can be achieved starting from the density pn at time N. 
Bellman's principle then tells us that 

Vn(pn) = minE \Vn^\pn+1) \ pn,xn = xl 
X L 

In addition, we know that VN(pN) — H(pN) since there are no measurements left 
to make at time N. 

We can use Bellman's recursion to compute VN~l from VN. Since V ^ = H, 
this recursion is VN-1(pN~1) = minx E [H(pN) | xN~l = x , ^ " 1 ] . Rather than 
computing this here, we simply state the following formula, which can be confirmed 
by direct computation: 

mmE[H(pn^) | xn = x,pn] = H(pn)-q\og2 q-(l-q) l o g 2 ( l - g ) - l , (10.3) 

and the minimum is achieved by choosing x to be a median of pn. The median of pn 

is defined to be the point where Fn(x) = 1/2. If there is more than one median, any 
point satisfying Fn{x) = 1/2 achieves the minimum. 

Now, using (10.3) and the Bellman recursion, we see that VN~X is given by 

^ " V - 1 ) = H{pN^) - q\og2q- (1 - q) log2(l - q) - 1, 
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and that the optimal decision xN~x is the median of pN~x. Moreover, we see that 
the form of the value function at time TV — 1 is the same as it is at time TV, but with a 
constant subtracted. This constant does not depend o n p ^ - 1 , nor does it depend on n. 
This tells us that, if we repeat the computation of the Bellman recursion, we will find 
that VN~2(pN-2) = H(pN~2) -2(q log2 q+(l-q) log2(l - q) + 1) and that in 
general 

Vn(pn) = H(pn) -(N-n) (qlog2 q + (1 - q) log2(l - q) + 1). (10.4) 

Furthermore, since the minimizer of the Bellman recursion at each time n is the 
median of the density pn at that time, we have discovered that the optimal policy is 
to always measure at the median. Denoting the optimal measurement at time n by 
x*'n, we summarize this conclusion by saying that x*,n is such that 

Fn(x*'n) = 1/2. 

Let us spend a few moments interpreting these results. First, the computation (10.3) 
tells us that if our goal is to minimize the expected entropy after one measurement, 
then the best xn has the expected posterior entropy equal to the original entropy at 
time n minus a deterministic factor q log2 q + (1 — q) log2(l — q) 4-1. This factor is 
actually the mutual information between the measurement yn+1 and x*, given that 
we measure at the median. This fact can be confirmed by computing the mutual 
information directly from its definition, although we do not perform this computation 
here. 

We can view this reduction another way: The expected reduction in entropy about 
x* is equal to the information about x* contained in the measurement, and this mutual 
information is maximized if we measure at the median of x*. The mutual information 
is largest at the median because at this point we are "maximally uncertain" about to 
which region, [0, x*] or (x*, 1], it belongs since our belief assigns an equal probability 
of 1/2 to each possibility. This conveys a general principle of information collection: 
Often the measurement that is most valuable is the one whose result is least predictable. 
Put another way, if we already knew the result of a measurement before we took it, 
there would be no point in actually taking that measurement. 

Then, the formula (10.4) shows that this general principle applies not just to single 
but to multiple measurements. That is, the best we can do is to measure each time at the 
median of our belief, which is the measurement whose outcome is most uncertain, and 
the resulting decrease in expected entropy of x* is equal to the sum of the mutual in-
formation in all the measurement outcomes combined. From measurement n onward, 
this decrease is (TV — n) (q log2 q + (1 - q) log2(l — q) + 1) since there are TV — n 
measurements left to make and each contributes q log2 q + (1 — q) log2(l — q) + 1. 

We may also gain insight by taking the special case q = 1 and comparing to the 
deterministic case. As previously noted, when q — 1 and when we begin with a 
uniform prior on [0,1], the posterior remains uniform on a smaller interval. Then, 
the median of any such uniform posterior is simply the middle of the interval, and 
so we again always measure in the middle of the current interval, just as we did with 
deterministic bisection. Thus we see that the stochastic bisection algorithm reduces 
in the error-free case to exactly the classic bisection algorithm. 
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10.2.4 Discussion 

We make one additional note about the usefulness of the stochastic bisection algorithm 
when our objective function is something different than the entropy objective we have 
assumed here. Although we have not shown it here, the decrease in entropy one obtains 
from measuring at the median is deterministic, even though the final density pN itself 
is certainly random. This is similar to the situation in the deterministic case, where 
the location of the final interval containing x* is unknown a priori, but the length of 
that interval is deterministic as long as we use the bisection measurement rule. 

This is a very nice property because it means that the optimal policy for the entropy 
objective function is also optimal for a broader class of objective functions. In partic-
ular, if our objective function is E[L(H(pN))], where L is some concave increasing 
function, then again one can show that the same stochastic bisection rule is optimal. 
We can think of L as inducing some kind of risk aversion, in that using it would indi-
cate we fear uncertainty about x* more than than we hope for certainty. For example, 
earlier we saw that the length of an interval is equal to the logarithm of the entropy 
of a uniform distribution on this interval, and so if we wanted to minimize the length 
of the final interval in the deterministic case, then perhaps we should minimize the 
logarithm of the entropy rather than just the entropy. But we have already minimized 
using this criterion, since the logarithm is concave and increasing and the stochastic 
bisection algorithm is optimal for this objective function as well. 

10.3 BIBLIOGRAPHIC NOTES 

Section 10.1 - For a proof of the optimality of the Fibonacci search sequence for 
unimodular functions, see Avriel & Wilde (1966). 

Section 10.2 - The stochastic bisection algorithm originates from Horstein (1963). 
The optimality properties of this algorithm with respect to entropy minimization 
are discussed by Jedynak et al. (2011). 

PROBLEMS 
10.1 How many iterations of a Fibonacci search sequence are needed to ensure that 
we can find the optimum of a unimodular function within 1 percent? 

10.2 Considerthefunction/(x|a,/?) = xoc-1(l-x)^-1 forO < x < 1.0. Perform 
the Fibonacci search to find the optimum of this function for the following values of 
(a,/3). 

a) a = 8,0 = 2. 

b) a = 3, P = 12. 

c) a = 6,/3 = 8. 

10.3 Repeat exercise 10.2 using the golden section search. 
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10.4 Assume that we are trying to find the maximum of the function f(x) = 
x6(l — x)2, but now we are going to assume that we can compute the derivative. 

a) Using the derivative to indicate whether the optimum is to the left or the right, 
perform eight iterations of deterministic bisection search and report your best 
estimate of the optimal solution. Plot your distribution of belief describing 
where the optimum lies after eight observations. 

b) Now assume that we can estimate the sign of the derivative correction with prob-
ability q = .70 (even though we are computing it perfectly). Use the method 
described in Section 10.2 to find the optimum. Again plot your distribution of 
belief describing the location of the optimum. 

c) How would your answer to (b) change if q = .5? You should be able to answer 
this without repeating any of the calculations. 



CHAPTER 11 

OPTIMAL BIDDING 

Imagine that industrial customers come to you requesting price quotes on contracts 
to provide a product of some type. This might be laptops for a large company, a 
component for a product that the customer is building (such as disk drives for the 
laptops), or materials used in a manufacturing process. You have to quote a price, 
recognizing that you have to match or beat competing prices. If you win the contract, 
you might be left wondering if you could have asked for a little more. If you lose the 
contact, you are kicking yourself if you feel that a slightly lower price would have 
helped you win the contract. 

Figure 11.1 illustrates the economics of different prices. There is a breakeven price 
pb, below which you will lose money on the contract. Then there is a price point 
pc for each customer c. If you quote a price above this number, you will lose the 
contract. The problem, of course, is that you do not know pc. As the figure illustrates, 
increasing the price above pb produces dramatic increases in profits, especially for 
competitive, commodity products. 

We are going to assume that we have several opportunities to quote a price and 
observe a buy/not-buy decision from the customer. We are not allowed to observe pc 
directly, even after the fact. After each iteration of quoting a price and observing a 
decision of whether or not to accept the bid, we have an opportunity to use what we 
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P Pc 

Figure 11.1 Illustration of the value of quoting a price p that is greater than the break-even 
price pb but lower than the cuttoff price pc for customer c. 

have learned before deciding on our next bid. We know that we have to bid prices 
above pb, and we know what prices have been accepted in the past. If we discover that 
we can get higher prices, the impact on our profits can be significant. Our challenge 
is trying to learn pc while balancing the profits we realize against the information 
gained while trying higher prices (and potentially losing some contracts). 

We can also consider a version of this problem from the customer's point of view. 
Suppose that there are now multiple sellers offering a single product. A customer 
makes a bid for the product at a price of his or her choosing. The bid is successful if 
there is a seller willing to accept it, but the customer does not get to observe the sellers' 
willingness to sell before making the bid. In this case, higher bids are more likely to be 
successful, but the customer can save money by finding the optimal price. Bidding too 
low and failing to secure an offer carries an opportunity cost (perhaps we are forced 
to wait a period of time before bidding again). We might call this the "Priceline 
problem," because of its similarities to the business model of the well-known online 
travel agency. 

Overall, we can see a clear potential for optimal learning in the bidding problem. 
In fact, variations of this problem have attracted a great deal of attention in the revenue 
management community, precisely from an optimal learning perspective. However, 
it is less clear precisely how learning should be applied. The problem has a number 
of features that bring us outside the scope of the clean, fundamental models presented 
in Chapters 4 and 6. For example, in the bidding problem, we are not able to observe 
an unbiased sample of the truth. That is, in the industrial setting, the company does 
not get to observe the exact amount that the client was willing to pay for the contract, 
only whether or not the quoted price was accepted. As we will see in this chapter, 
this creates an additional challenge for our analysis. We are no longer able to make 
use of an elegant conjugate prior, as in Chapter 2. 

New challenges call for new methods. In contrast with our earlier focus on knowl-
edge gradient methods, we look at a simpler greedy policy for the bidding problem. 
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However, this policy is still in line with our general approach to optimal learning. 
We will use a Bayesian model to represent our uncertainty about customer demand. 
Our policy incorporates this uncertainty into the decision-making. As a result, we 
will tend to quote higher prices to the customers than we would without the learning 
dimension. How much higher will depend on the amount of uncertainty we have. By 
doing so, we will take on more risk with the first few contracts, but the information 
we collect will help us to make money in the long run. The bidding problem shows 
that optimal learning provides value in a slightly messier setting that goes beyond the 
standard models we have discussed up to this point. 

11.1 MODELING CUSTOMER DEMAND 

Suppose that we are working with a sequence of bids. The customers' behavior is 
modeled using the concept of valuation or willingness to pay. The nth customer 
values a product or service at Wn. We make the sale as long as this valuation is at 
least as much as our quoted price p, that is, Wn > p. Our revenue, in this case, is 
the price p. If Wn < p, our revenue is zero. Thus, our expected revenue, for a fixed 
price p, is given by 

R(p)=p.p(Wn >p). (11.1) 

In most applications, we will work with the expected profit 

P(p) = (p-c).P(Wn>p), (11.2) 

where c is the cost of the product to the seller. 
In real life, many customers may not have an exact number for the most they 

are willing to pay. In any case, we will never observe this quantity, only whether 
it is larger or smaller than p. However, the idea of the valuation gives us a way to 
think about the bidding problem formally and put a number on the probability that 
a price will be accepted. Initially, let us assume that the valuations W°, W1,... are 
independent and identically distributed. Thus, while different customers can have 
different valuations, all customers come from the same population. This may be a 
reasonable assumption if a type of industrial contract serves a particular market (such 
as semiconductor manufacturers). Later, in Section 11.1.2, we begin to push the 
boundaries of this assumption. 

11.1.1 Some Valuation Models 

Nearly any standard distribution might be used to model customer valuation. We list 
several distributions that have been used in the literature on bidding. We will make 
use of some of these models to illustrate some of the issues inherent in the problem, 
although our main focus will be the logistic model of Section 11.1.2. Many of these 
same distributions also appeared in Chapter 2 as sampling models. 

Uniform Valuation The simplest model assumes that the valuation follows a uni-
form distribution, Wn ~ U[a,b]. It follows that the probability of making the sale 
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is 

{ 1, P < a , 

^ - ^ , J>e[a,&], 
0, p > 6, 

which is a linear function of p. This is known as linear demand. If we assume that 
a = 0, the only parameter in this model is the maximum valuation b. If this parameter 
is unknown, a natural choice for a distribution of belief would be a Pareto prior (see 
Section 2.3.3). 

The uniform valuation is clean, but involves several strong assumptions. We are 
assuming that there is a fair amount of variation; customers are equally likely to have 
low or high valuations. Additionally, we assume that there is a cutoff point. A high 
enough price is guaranteed to lose the sale. 

Exponential Valuation An exponential valuation assumes that Wn ~ Exp(X). 
The demand curve then has the simple form P (Wn >p) = e~Xp. As in the linear 
model, higher prices are less likely to be successful. However, now any price will 
have a non-zero probability of being successful. We are assuming that there will be 
a small proportion of customers willing to pay very large prices. 

Lognormal Valuation In the lognormal model, we assume that 

where \x and o are the parameters of the demand curve. This model implies that 
log Wn ~ AT(/i, <J2) . If we had a way to observe the exact values Wn, we could put 
a normal prior on p, and treat log Wn as a normal observation, enabling the use of the 
normal-normal learning model. 

11.1.2 The Logit Model 

The logit model is a particularly attractive method of approximating the probability 
that a customer will accept a bid. The logic model expresses the probability of making 
a sale as 

P(WU >P) = \ r. (11.3) 

When p2 > 0, plotting (11.3) as a function of p yields a logistic curve, a well-known 
mathematical model for predicting demand, population growth, technology adoption, 
and other cyclical phenomena. Figure 11.2(a) gives an example for a particular choice 
of ji\ and /i2- We see a classic S-curve, flipped around so that higher prices lead to 
lower success probabilities. Balancing the decreasing success probability with the 
increasing potential revenue, the expected revenue function (11.1) has a maximum at 
approximately p* « 3.9. 

The parameters /zi and /i2 determine the customer's reaction to different price 
offers. We can view fix as the market share of the seller. Even if the seller were to 
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Price Price 

(a) (b) 

Figure 11.2 Example of (a) probability of making a sale and (b) expected revenue under a 
logistic model with in = 5, \ii — 1. 

give away the product for free, the probability of success would only be 1 l M 1 ; that 
is, some customers would still prefer to buy from a competitor. Essentially, these 
customers have a negative valuation of our product, and there is no way we could 
convince them to buy it. The higher the value of \i\, the higher the market share and 
the closer P (Wn > 0) is to 1. 

The second parameter \i2 can be viewed as the price sensitivity of the customers. 
Large values of fi2 tend to make the curve in Figure 11.3 steeper, causing the prob-
ability of success to decrease faster as the price goes up. We typically require that 
/i2 > 0, to preserve the S-curve shape of the success probability. Negative values of 
fi2 would imply that higher prices are more likely to be successful, which does not 
make sense for our problem. 

One important advantage of the logistic model is that it allows us to move beyond 
the assumption that the customers come from the same population. We could, for 
example, allow the demand curve to depend on attributes of the customer, as given 
by 

P(W«>P)=i + e_Jxn_mp+i). (11.4) 

Here, xn — [x^, x%,..., Xp] is a vector representing P attributes of the customer. 
For example, the attributes could reflect the location of the customer and its size. 
The vector /J, contains the parameters assigned to the attributes. We also have a 
single price sensitivity parameter /xp+i > 0. This model is an example of the 
logistic regression technique in statistics, which fits a set of parameters to a success 
probability. Throughout this chapter, we mostly focus on the simple two-parameter 
model of (11.3), but it is important to remember that our analysis can easily be 
extended to the multi-parameter case. 

Optimal learning comes into play when we, as the seller, do not know the exact val-
ues of the parameters / i i , /i2- We may have some prior estimates of these parameters, 
based on past sales figures. However, what makes this problem especially difficult is 
that even small changes to the parameters will greatly change the expected revenue 
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(a) (b) 

Figure 11.3 Sensitivity of the revenue curve to changes in (a) market share and (b) price 
parameter. 

function. Figure 11.3(a) shows the expected revenue curve for different values of [i\, 
with //2 fixed at 1. Figure 11.3(b) shows the same curve for different values of [i2, 
with /ii fixed at 5. 

Higher values of [i\ move the optimal price to the right, but they also expand 
the magnitude of the entire revenue curve. Increasing /ii from 1 to 3 moves the 
optimal price roughly from 1.5 to 2.5, but triples the expected revenue collected in 
the process. Smaller values of //2 (that is, closer to zero) have the same two effects, 
but move the optimal price more than they increase optimal revenue. When we allow 
both parameters to change at the same time, as in Figure 11.4, even small changes 
will allow for a wide range of possible optimal prices and revenues. 

Figure 11.4 Sensitivity of the revenue curve to changes in both parameters. 



BAYESIAN MODELING FOR DYNAMIC PRICING 2 3 7 

11.2 BAYESIAN MODELING FOR DYNAMIC PRICING 

We will use a Bayesian model to represent our uncertainty about the parameters. In 
this setting, it becomes especially important to construct our prior in such a way as 
to realistically cover our range of uncertainty about the optimal price. Furthermore, 
the nature of the observations in this problem creates additional challenges. We are 
not able to observe the customer valuations Wn. Rather, we only observe whether or 
not Wn > p. The clean, conjugate Bayesian models introduced in Chapter 2 cannot 
be directly applied, and we need to do additional work to be able to use them. 

11.2.1 A Conjugate Prior for Choosing Between Two Demand Curves 

Before we delve into the intricacies of nonconjugate Bayesian learning, let us first 
begin with a simple, stylized model that allows for a conjugate prior. In dynamic 
pricing, our observations are binary: either the customer accepts the offer (that is, 
Wn > p), or not. One way to obtain a conjugate prior is if the truth is binary, as well. 
Suppose that there are only two possible demand curves. Each curve has known, fixed 
parameters, but we do not know which curve is the right one for describing customer 
valuations. Figure 11.5 gives an example where we are trying to choose between a 
uniform valuation on the interval [3,7], and an exponential valuation with parameter 
0.2. 

This model is somewhat stylized, but may be useful in some cases. It may be that 
we, as the seller, have a large amount of historical data on sales figures, enough to fit 
any particular type of demand curve. We could conduct a statistical analysis to fit a 
uniform valuation model, or an exponential model, or perhaps a logistic model. For 
each model, we would fit a different set of parameters. However, we are not sure which 
type of demand curve is most appropriate. A logistic model may be fundamentally 
better-suited to the data than a uniform model. In that case, the binary-truth problem 
may help us to distinguish between two competing types of demand models. 

(a) (b) 

Figure 11.5 Examples of (a) demand curves and (b) revenue curves for a pricing problem 
with two truths. 
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Let / i and f2 be the two demand curves under consideration. That is, fa (p) = 
P (Wn > p) under two different models i — 1,2. Let A be the event that / i is the 
correct demand curve; then, Ac is the event that f2 is correct. We begin with a prior 
probability q° = P°(A). For a fixed price p, the revenue function is given by 

Rip) = P[q°fi (P) + (1 - «°)/2 (P)]. (H.5) 

We then make a pricing decision p° and observe either W1 > p° orW1 < p°. First, 
let us consider the case where W1 > p°, that is, we make the sale with price p°. 
Using Bayes' rule, we can derive 

P(A \ W > tP) = P(W^>p°\A)P(A) 
v ' - p ' P(W1>p°\A)P(A) + P(W1>p°\Ac)P(Ac)' K ' 

Observe that 

P(W1>p°\A) = /i(p), 
PiW^pOlA') = f2{p), 

P(A) = q° 

We can let q1 — P(A \ W1 > p°) denote our posterior probability of the event A. 
Then, (11.6) becomes 

g°/i(p) 
q «°/I(P) + (I-«°)/2(P)" 

Repeating the same analysis for the event that W1 < p° produces the updating 
equation 

g ° ( i - / i ( p ) ) 
q 9 ° ( l - / i ( p ) ) + ( l - « ° ) ( l - / 2 ( p ) ) -

Let Xn — I{wn>pn}- That is, Xn — 1 if our price pn is successful, and Xn — 0 
otherwise. Then, we obtain a clean updating formula 

Q Qnfi (pn)XU+1 (1 " / i ( p n ) ) 1 ~ X n + 1 + (1 - 9n) h (pn)Xn+1 (1 " /2 ( P " ) ) 1 - * ^ 1 ' 
(11.7) 

This may be the simplest possible conjugate model. We put a simple discrete (actually 
binary) distribution of belief on the probability that the truth is given by a particular 
demand curve. When we make a binary observation, the posterior distribution is also 
discrete. 

We might then apply a variety of techniques to make our pricing decision. A 
common approach in the literature is to use a simple myopic policy, 

pn = argmaxEi?(p) = argmaxp[g°/i(p) + (l - q°) / 2(p)]. 
P P 

We could also apply some of the ideas from Section 5.5.4, where the observation was 
also binary, to this problem. There is one important issue to keep in mind, however. 
Observe that Figure 11.5(a) has a point where the two demand curves intersect. That 
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is, there is a price p for which / i (p) = $2 (p) = /• Substituting this price into (11.7) 
gives us 

q^1 = Qnfxn+\l-f) i-x71 

qnfXn+1(l ~ / ) 1 _ X " + 1 + (1 - qn) F" + 1 ( l - / ) 1 _ J f n + 1 

qnfXn+\l-!)l-Xn+1 

/ ^ + 1 ( l - / ) 1 _ X n + 1 

= Qn-

If our policy chooses the price p, our beliefs about P (A) will remain unchanged. 
Furthermore, since the policy determines what to do based on our beliefs, it will 
continue to choose the same price p thereafter. We would thus get stuck with the 
same beliefs forever. For that reason, the price p is known as the noninformative 
price or the confounding price. 

Fortunately, since we have both demand curves specified exactly (we just don't 
know which is the right one), we can calculate the confounding price before we set 
out to solve the problem. The literature suggests a simple fix for the problem of 
confounding. We simply fix another price p^p beforehand. If our policy tells us to 
choose the price p, we choose p instead. Otherwise, we follow the policy. 

11.2.2 Moment Matching for Nonconjugate Problems 

Although the simple model of Section 11.2.1 has its uses, we are really interested in 
the case where we do not know the parameters of the demand curve. In any case, 
before we settle on two demand curves to choose from, we first need to find good 
parameters for those curves. So, we might focus on one particular type of curve, and 
then try to learn the right parameters for that type. This will lead us to the problem 
of non-conjugacy. 

Let us illustrate this issue using a simple example. Suppose that the customers' 
valuations are drawn from a uniform distribution on the interval [0, B], where B is 
unknown. Recalling Chapter 2, a natural choice of prior distribution on B is the 
Pareto distribution. If B ~ Pareto(a°, b°), and if we were able to observe the exact 
valuation W1 ~ U [0, B], we could apply the conjugate update 

a a° + l, 
b1 = m a x ^ 0 , ! ^ 1 ) . 

Unfortunately, we are never able to see the exact valuation. However, we can still 
derive a posterior distribution of belief, given the incomplete information that we do 
observe. For simplicity, let us assume that we set a price p° < b°. We will first 
consider the case where W1 < p°, that is, we lost the sale. We apply Bayes' rule and 
write 
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Conditionally given B = u, the valuation W1 has a uniform distribution on [0, u], 
Thus, 

P{W<p«\B = u) = { f P°<U> 
I I, p > u. 

Next, the likelihood that B = u is given by the Pareto density, 

a°(b0)a° 

Thus, in our calculations, we are implicitly assuming that u > b°, since B > b° by 
the definition of a Pareto distribution. Since we are also assuming p° < b°, it follows 
that p° < u for all possible u. The numerator of the right-hand side of (11.8) thus 
becomes 

P{Wl <p°\B = u)g(u) = PjJ . (11.9) 

Integrating this expression from b° to infinity, we obtain the denominator of the right-
hand side of (11.8), 

Dividing (11.9) by (11.10) yields 

This is a Pareto density with parameters a1 = a0 -j- 1 and &1 = 6°. That is, if we 
lose the sale, conjugacy is maintained. The conjugate updating equations hint at this. 
From (11.8), we see that b1 — max(6°, W1), if we could observe the exact valuation 
W1. However, we are assuming that p° < b°. Thus, if we observe W1 < p°, it 
follows automatically that max(6°, W1) = b°. We do not really need to know the 
exact value of W1 in this case. For any value of W1 less than b°, we will not change 
the scale parameter of our distribution of belief. 

In the other case, however, we run into trouble. Suppose that W1 > p°, with 
p° < b° as before. Then, 

P(W1>p°\B = u) = ( 1 _ ^ ' p°<u> V J \ 0, p° > u, 

and 

Integrating this quantity from 6° to infinity yields 

p(w1>P°) = i a p 

a 0 + 1 6° ' 
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and the posterior density turns out to be 

a°(6°) t t 

1 -

a°p0(b0)a 

u<*°+2 

a° + l 6° 
g(u\W1<p°) = "*"+' " T 2 , U > 6 ° . (11.11) 

What are we to do with this strange expression? It does not correspond to any standard 
density. (The difference of two Pareto densities is not the density of the difference of 
two Pareto random variables!) It is certainly not a Pareto density. 

We get around this problem by using a technique called moment-matching. Define 
a random variable U that has the density given by (11.11). As long as we have the 
density, we can compute the first two moments of U as follows. First, 

EU 

(11.12) 

a°(b0)a° poo V / 

Jb° 1 -

a°-l r 
-j a 0 £°_ * 
1 a° + l 6° 

a°p0(b0)a° 
u<*°+2 

QO £°_ 
CK° + 1 6° 

Similarly, 

,00 «°(»T° °V(»°) 

^+16° 

q ° - 2 qO-1 
1 _ c*° P° 1 a° + l 6° 

(11.13) 

Let y be a random variable following a Pareto distribution with parameters a1 and 
61. The first and second moments of Y are given by 

a 1 - ! . v 7 a 1 - 2 

Moment matching works by setting the moments of Y equal to the moments of U and 
solving for a1 and b1 in terms of a0 and b°. Essentially, we are forcing the posterior 
distribution to be Pareto, and choosing a1 and b1 to make this Pareto distribution 
resemble the actual posterior distribution, at least up to the first two moments. To do 
this, we have to solve two sets of nonlinear equations 

U l «°b° rfi 

a i_^oTl6°-

a1 (b1) 2 a°(b°)2
 ao^ 

a ° - 2 Q O - 1 
I _ ™° 

a° + l 6° 
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The solution gives us the nonconjugate updating equations, 

/ E(U2) 
]jE(U2)-(EU)2' 

a1-2E(U2) 
^ - 1 EC/ ' 

where EU and E (U2) are given in (11.12) and (11.13) in terms of a0 and b°. Notice 
that, for compactness, the updating equation for b1 is written in terms of a1. To use 
these equations, we should first compute a1, then use that value to find 61. 

Keep in mind that we have not computed updating equations for the case where 
p° > b°. In this case, neither success nor failure will give us a Pareto posterior, 
and we have to repeat the above analysis. Choosing a different demand curve and 
prior distribution would also require a new round of moment-matching, and most 
likely new sets of nonlinear equations to solve. Moment-matching is no easy task. 
However, it is the simplest way to obtain clean updating equations in a problem where 
the observations are incomplete; that is, we can only obtain imperfect information 
about the customer valuations. 

11.2.3 An Approximation for the Log it Model 

The issue of nonconjugacy is also present in the logit model. There is no natural choice 
of prior for the logistic regression parameters \i\, //2 in (11.3). That is, there is no 
clean prior distribution that is conjugate with observations sampled from the logistic 
distribution. The simplest choice of prior, from the decision-maker's point of view, is 
a multivariate normal distribution on (fii, /i2)- Especially if we extend our model to 
incorporate customer attributes, as in (11.4), a multivariate normal prior would allow 
us to include correlations in our beliefs about the parameters of different attributes. 
We followed this same approach in Chapter 8 when we fit a linear regression model 
to our observations. As we saw earlier, the linear regression model admits an elegant 
conjugate normal-normal learning model. 

Unfortunately, there is no direct analog in the case of logistic regression, because 
our observations are now binary, of the form 

[0 otherwise. 

Recall that Xn = 1 if we make the sale, and Xn = 0 if we do not. If we start with 
a normal prior on the logistic parameters, then see an observation of this form, the 
posterior distribution will not be normal. However, there is an approximation that 
gives us a set of recursive updating equations. Like we did in (11.2.2) with moment 
matching, we can use this approximation to force the posterior to be normal. If 
\i = (/ii, ^2) has a multivariate normal distribution with mean vector 9n = (0™, #2) 

a 

b1 = 
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and covariance matrix E n , these approximate recursive updating equations are 

£ n + 1 = ( ( E n ) _ 1 + 2 A ( D ( ^ n ) ( ^ n ) T ) _ 1 , (11-14) 

gn+l = Sn+1 f ^ n y l Qn + /^n+l _ }_\ \ ( 1 U 5 ) 

rp 

The vector xn — (1, —p") corresponds to the explanatory variables in (11.4). The 
function A is given by 

_ tanh(£/2) 
A ( 0 - ^ • 

The value £n is an artificial parameter used in the approximation of the measurement 
precision. This parameter is also updated recursively, using the equation 

We can apply the same technique we used for correlated normal beliefs back in Chapter 
2 to get a cleaner form for the updating equations 

9n+i = 0n+ 2A(e) ^ Sna:n, (11.16) 

(11.17) ^n+1 

0n + 
Xn+1-

1 
2A(e) 

E n 

1 
2A(eo 

i 
2 

0 
+ 
xn 

■ + 

- ( x n ) T 0 n 

( z n ) T X ! n £ n ' 

(x n ) T E n 

(x n ) T X!^71 

These equations closely resemble the recursive updating rules we used for linear 
models in Section 8.2.2. Writing the update in this way gives us some insight into 
the way the approximation works. The quantity 2XCF) *s use(* m t w o w a v s - First, in 
the denominator of the fractional terms in (11.16) and (11.17), it serves as a stand-in 
for the variance of the observation. In the correlated normal model considered in 
Section 2.2.3, the same role is played by the measurement noise. Second, in the 
numerator of the fractional term in (11.16), the same quantity is used to convert the 
binary observation X n + 1 — \ into a continuous quantity. We can rewrite (11.3) as 

The right-hand side of (11.18) is called the log-odds of making a sale. The quantity 
(xn) 6n can be viewed as our prediction of the log-odds. Thus, the continuous 

Xn + l_l 
quantity 2\(£n)2 c a n ^ e interpreted as an approximate observation of the log-odds. 

We are forcing the problem into the framework of Chapter 8, where our regression 
model is used to predict continuous observations. To do this, we are artificially 
creating a set of continuous responses from our binary observations. If Xn+1 = 1, 
that is, we make the sale, the continuous response is positive, and we conclude that 
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the log-odds are more likely to be greater than zero, and adjust our prior if it is under-
estimating them. If we lose the sale and Xn+1 = 0, the continuous response is 
negative, leading us to believe that the log-odds are more likely to be negative. 

One advantage of this approach is that it can easily handle customer attributes, as in 
(11.4). We simply place a multivariate prior on the vector \x = (/ii,..., /ip+i) on the 
parameters of the customer attributes, as well as on the price sensitivity. We then make 
a pricing decision pn and apply (11.16) and (11.17) using xn = (x^, . . . ,#p, — pn). 

It is important to understand that our posterior distributions in this model are not 
really normal, just as our posterior distributions in Section 11.2.2 were not really 
Pareto. The updating equations in (11.16) and (11.17) can only serve as an approx-
imation of the way we learn in this problem. The approximation may not always 
be accurate. We do not necessarily need to use this approach. For example, we can 
simply collect our observations X 1 , X2,. . . , Xn+1 and fit a logistic regression model 
to obtain estimates of fi\ and /i2. This approach may give us better fits for some 
particular values of /x, but it is frequentist in nature. It does not incorporate any idea 
of our prior uncertainty about the parameters, as represented by the prior covariance 
matrix E. Thus, on average across many different truths, we may do better with the 
Bayesian approximation. 

There is no perfect model for learning in this setting, making it difficult to create 
a sophisticated learning policy. For example, if we try to construct a look-ahead 
policy such as knowledge gradient, we are forced to rely on an approximation for the 
predictive distribution of the future beliefs, and another approximation for the optimal 
implementation decision under those future beliefs. Even so, we can still improve 
our decision-making by considering some concepts of optimal learning, such as the 
idea of our uncertainty about the problem parameters. 

11.3 BIDDING STRATEGIES 

Recall that the revenue function for the logit demand model, under the parameters fi\ 
and fi2»is given by 

i Z ( P ; A i 1 , M 2 ) = 1 + e_fw_wp). 
Suppose that we have some estimates O™ and #£ °f m e logistic parameters in (11.3). 
These estimates may be obtained using the approximate Bayesian model from Section 
11.2.3, or they may come from a frequentist statistical procedure. Either way, once 
we have these estimates, a simple and intuitive course of action would be to simply 
assume that these are the true values, and make a pricing decision by solving 

pn = argmaxii(p;0?,0?) = argmax £ r-. (11.19) 

For simplicity, let us assume that the set of possible prices is finite. Then, it is very easy 
to compute (11.19). We need only plug our estimated values into the revenue function 
and solve. This is known as a point-estimate policy, or a certainty-equivalent policy. 
We are making the decision that would be optimal if the true values were exactly 
equal to our estimates. 
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11.3.1 An Idea From Multi-Armed Bandits 

The main insight of optimal learning, however, is that the true values are not exactly 
equal to our estimates. If we assume that they are, we may under-perform. Consider 
a very simple bandit problem with a single arm. The one-period reward of the arm 
follows an exponential distribution with unknown parameter A. We use a gamma-
exponential learning model from Section 2.3.1, and assume that A ~ Gamma (a, b). 

The average one-period reward is j , a very simple function of A. Our estimate 
of A is EA = f. If we assume that the true value is exactly equal to our estimate, 
then our resulting estimate of the average one-period reward becomes ^ = ^. This 
reasoning seems straightforward, but it ignores the uncertainty in our beliefs about A. 

Instead of merely plugging in our estimate of A into the average reward, let us 
view that reward as a function of a random variable A. We can then take an expected 
value of that reward over our distribution of belief, arriving at 

EQ)=^i' (1L20) 

a different estimate of the average reward. This approach accounts for the fact that A 
is unknown. Not only do we have an estimate of this parameter, we also have some 
amount of uncertainty about that estimate. That uncertainty is encoded in the gamma 
distribution that we use to represent our beliefs. 

Suppose now that we have M independent arms. The one-period reward ob-
tained by playing arm x is exponential with parameter A^, and we assume that 
Xx ~ Gamma (ax, bx). Suppose also that our goal is simply to use a greedy, pure-
exploitation strategy for pulling arms. On average over many truth values, the policy 
that plays arg maxx Q

b^1 will do better than the policy that plays arg maxx ^ . We 
do better by incorporating the uncertainty in our beliefs into our decision-making. 

11.3.2 Bayes-Greedy Bidding 

We apply the same idea to the bidding problem. Rather than using (11.19) to make 
decisions, we take an expectation of the revenue function over our distribution of 
belief, 

P pn = a r g m a x E # ( p ; / i i , ^ 2 ) = arg max E — j-——-r. (11.21) 

Of course, this requires us to have a distribution of belief in the first place. Thus, this 
policy only really makes sense if we use the Bayesian model from Section 11.2.3 to 
learn about the unknown parameters. Under this model, we can assume that, at time 
n, // ~ N {6n, Hn). After we make a decision pn and observe Xn+l, we use (11.16) 
and (11.17) to change our beliefs. We refer to this policy as a Bayes-greedy policy, 
to distinguish it from the point-estimate greedy policy. 

A well-known property of multivariate normal distributions is that a linear function 
of a multivariate normal vector is also normal. That is, if ji ~ Af (0, E) and c is a 
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vector, then cTx ~ J\f (cT0, cTY,c). In our case, c = (1, — p) and 

cT0 = 61-62p, 
cTXc = S 1 i - 2 p E 1 2 + p 2 E 2 2 . 

Here we are using the fact that £12 — £21 due to the symmetry of the covariance 
matrix. Consequently, we can rewrite (11.21) as 

p n = a rgmaxp.E( * ) , (11.22) 
p \l + e-y) 

where Y ~ J\f (Qi — 92p, £11 — 2p£ i 2 + ^£22 ) • Note that Y is a one-dimensional 
normal random variable. The right-hand side of (11.22) now seems straightforward: 
we need to compute an expectation over a normal density. We can view E( 1 , *_y ) 
as the Bayesian probability of success. 

Unfortunately, this expectation is impossible to compute analytically by integra-
tion. We have to resort to yet another approximation. One approach is to generate 
a large number of Monte Carlo samples of Y from a normal distribution with the 
appropriate mean and variance. We can then take a sample average 

< T T M ^ £ I T ^ ) ' (1L23) 
v ' k=l 

where Y (ujk) is the fcth sample realization. Figure 11.6(a) plots the right-hand side of 
(11.23), as a function of the mean and standard deviation of Y. For very large values 
of K, we will get more accurate estimates. However, generating enough samples 
may be fairly expensive computationally. 

From this figure, we can make an interesting observation. If we fix a value of the 
standard deviation, and view the left-hand side of (11.23) as a function of the mean 

(a) (b) 

Figure 11.6 Bayesian success probability, as a function of the mean and standard deviation 
of Y using (a) Monte Carlo simulation and (b) closed-form approximation. 



BIDDING STRATEGIES 2 4 7 

of Y, this function also appears to be a logistic curve. In fact, this is borne out by 
observing that, if Var (Y) = 0, then 

E[ * 

which is itself a logistic function in EY. If we fix a larger value of the standard 
deviation, the expectation continues to look like a logistic function, only with a 
gentler slope. 

This insight has led to a clever closed-form approximation for the difficult expec-
tation. We can write 

E(TT^Y)* ^ ' (1L24) 

where 

l=]/l + -Var(Y). 

Figure 11.6(b) plots this approximation for different values of EY and Var (Y). The 
result does not exactly match the values we got from Monte Carlo sampling (there 
are errors on the order of 0.01), but one can easily see that the two surfaces are quite 
close. 

Converting this result back into the language of our bidding problem, our Bayes-
greedy policy makes pricing decisions according to the rule 

pn = argmax en_enp , (11.25) 
p i + e--W)~ 

where 

7
n (p) = y 1 + — (Eft - 2p£?2 + jPTfo). 

Interestingly, the calculation in (11.25) is very similar to what we use for the point-
estimate policy. The only difference is that we divide the point estimate 6™ — O^p by an 
additional factor 7 n (p) that depends on the uncertainty in our beliefs (the covariance 
matrix), as well as the price decision p. 

11.3.3 Numerical Illustrations 

We will examine the performance of Bayes-greedy pricing in an example problem. 
Suppose that we are running an online bookstore and selling copies of a certain 
textbook (perhaps this one!) over the Internet. Suppose, furthermore, that the cost 
of buying the textbook from the publisher wholesale is $40 per copy. We are thus 
interested in maximizing the profit function (11.2) with c = 40. We will never set a 
price below $40, and it is also highly unlikely that anyone will buy the book for more 
than, say, $110. 

Figure 11.7 shows a realistic starting prior (0® = 15, 0§ = 0.2) for a logistic 
demand curve in this setting. Notice that the prior logistic curve is a bit narrower 
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than the proposed range of $40-$ 110. This prior seems to be saying that we believe 
customer valuations to be contained roughly in the range [50,100]. However, we also 
create a prior covariance matrix 

s°=[3o° 0.2*4 (1L26) 

which allows for some uncertainty in this belief. Note the difference in magnitude 
between the variances on the market share and price sensitivity. Figure 11.7 also 
displays three possible true demand curves, representing scenarios where customer 
valuations are higher, lower, or about the same relative to the prior. The parameters 
of these truths are as follows: 

High truth: /xi = 25, fi2 = 0.25 
Medium truth: [i\ = 10, fi2 = 0.125 
Low truth: \i\ = 20, /x2 = 0.3 

The variation in the price sensitivity for these three scenarios is much smaller than 
the variation in the market share. This is reflected in our choice of E°. By starting with 
a prior curve roughly in the middle of our price range, then placing some uncertainty 
on the parameters, we are able to allow for a wide range of true demand curves. 

Figure 11.8(a) shows the uncertainty factor 7 0 (p) as a function of the pricing 
decision p, for the first time step of this problem. We see that 70 (p) increases with 
price. We can think of this as expressing the risk involved in choosing higher prices: 
the penalty for losing the sale is greater, but so is the potential reward if the truth is 

Figure 11.7 Comparison of our starting prior distribution with several possible truth values 
in a logistic valuation model, along with a realistic prior. 
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(a) (b) 

Figure 11.8 Graphs of (a) the uncertainty factor 7 (p) and (b) the modified profit curve as a 
function of price. 

higher than we think. Figure 11.8(b) compares the estimated profit curves 

PPE{PAA) 

PBG{P'AA) 

p-
l + e-V"i-

p — c 

(11.27) 

(11.28) 
I _j_ e -yO(p) 

based on the point estimate and the Bayesian distribution, respectively. These are the 
functions maximized by the point-estimate and Bayes-greedy policies. We see that 
the Bayes-greedy curve is wider, representing higher uncertainty or variation in the 
profit, and the maximum is shifted right. In other words, the Bayes-greedy policy 
places more value on exploratory behavior such as setting higher prices, and (usually) 
makes more aggressive pricing decisions than the point-estimate policy. 

It remains to show how this aggressive pricing impacts performance. Figure 11.9 
compares the performance (profit, averaged over 1000 sample paths) and pricing de-
cisions of the point-estimate and Bayes-greedy policies in the first 20 iterations, on 
each of the three truths graphed in Figure 11.7. We also compare these policies to 
a frequentist logistic regression technique, a standard approach for fitting a logistic 
distribution to binary observations. We have focused on Bayesian models and al-
gorithms in most earlier chapters. In this setting, however, the Bayesian modeling 
assumptions do not hold, and our updating equations are approximations. Thus, it is 
relevant to compare to a frequentist technique in order to see whether the inaccuracy 
of the Bayesian model has any negative impact on performance. We deliberately use 
the same set of axes for each comparison, to get a better sense of the magnitude of 
the difference between policies. 

The graphs reveal several interesting behaviors. First, the Bayes-greedy policy 
consistently prices more aggressively than the point-estimate policy, particularly in 
the very early iterations. If these aggressive decisions are unsuccessful (for example, 
if the truth is lower than we believe), the policy quickly corrects its behavior and 
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Figure 11.9 Average profits and pricing decisions for different policies across 20 iterations. 

chooses lower prices. If the optimal price (shown as a dashed line) is higher than 
expected, both point-estimate and Bayes-greedy gradually ramp up their pricing 
decisions. However, because Bayes-greedy starts out more aggressively, it is able to 
make a bigger profit more quickly. Thus, the Bayes-greedy policy exhibits a kind 
of robustness. If the truth is higher than expected, Bayes-greedy adds considerable 
value (roughly an extra $10 profit per iteration in Figure 11.9(a)), and if the truth 
is lower than expected, Bayes-greedy tends to lose the first sale, but adjusts almost 



WHY DOES IT WORK?* 251 

immediately and obtains comparable profits to the point-estimate policy in subsequent 
iterations. 

The frequentist method is able to fit a good model eventually. After around 20 iter-
ations, it comes closer to the optimal pricing decision than the two policies using the 
approximate Bayesian model. At the same time, it does not use any prior information, 
and so it requires some time in order to fit a good model. In the first ten iterations, it 
exhibits volatile behavior and consistently chooses prices that are unreasonably high, 
even in the case when the truth itself is higher than we think. It would seem that 
Bayes-greedy is able to achieve robust performance in the critical early stages of the 
problem. In some applications, such as the setting of pricing industrial contracts, ten 
or twenty iterations may be all we ever get. 

11.4 WHY DOES IT WORK?* 

11.4.1 Moment Matching for Pareto Prior 

We now solve the system of nonlinear equations 

jr=m (H.29) a1 - 1 1 a° P1 

a x I " ^0 + 150 

V r̂ ^ T ^ y =E{u2)- (1L30) 

To find the solution for 61, we simply divide (11.30) by (11.29). This yields precisely 

k l _ a 1 - 2 E ( [ / 2 ) 
a1-! WJ ' 

It remains to solve for a1. We substitute (11.31) into (11.29) to obtain 

a 1 (a1 - 2) E (U2) 

(11.31) 

( a i _ l ) 2 EU 

whence 

= EU, 

a1 (a1 - 2) _ (EU) 2 

( Q i _ l ) 2 E(C/2)' 

Let A = j7jj5T. We now rewrite (11.32) as a quadratic equation 

(A - 1) ( a 1 ) 2 - 2 (A - 1) a 1 + A = 0. 

(11.32) 
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The solution is found using the quadratic formula, 

a1 = 
2(A-

2(A-

- l ) + v / 4 ( y l -
2(A-

-l) + y/4{A-

- l ) 2 -
-1) 

- l ) 2 -

-4A(A 

-4(A-

- 1 ) 

I)2 _A_ l) A-l 

2(A-1) 

1 + W1+ A 
1-A 

Observe now that 
1 1 E(U2) 

l~A l - g $ E(f/2)-(Et/)2' 
as required. Notice that the quantity inside the square root is greater than 1, so we 
take the positive quadratic root. 

11.4.2 Approximating the Logistic Expectation 

The elegant approximation to the logistic expectation in (11.24) is based on two 
transformations involving the Gauss error function. First, we approximate 

-, l—r ~ \ + ^ e r f f ^ - A (11.33) 
l + e-y/c 2 2 U c / ' ' 

for fixed values of y and c. The notation erf represents the Gaussian error function, 
2 fy _ 2 erf(y) = -j= / e z dz. 

V ̂  Jo 
Letting Y ~ A/* (/i, cr2), it can be shown that 

E J+H5")] - £G-HW)VB V27T02 
e *?* ay 

- 5 + H£4 
with 

7 = i / l + ^ 2 -

Applying (11.33) with c = 1, calculating (11.34), and using (11.33) again with c = 7 
yields 

1 \ 1 
l + e - y y 1 + e - ^ ' 

as required. 



BIBLIOGRAPHIC NOTES 2 5 3 

11.5 BIBLIOGRAPHIC NOTES 

Section 11.1 - A seminal work on dynamic pricing with stochastic demand is the 
paper by Gallego & Van Ryzin (1994), which also considers some of the val-
uation models described in Section 11.1.1. This work, however, assumes a 
known demand distribution (but with finite inventory), and uses dynamic pro-
gramming to characterize the optimal pricing policy. The general problem of 
optimal learning, that is, gradually discovering the true demand distribution 
through experimentation, was posed by Aghion et al. (1991). A connection to 
multi-armed bandits was made by Rothschild (1974); this work shares our mod-
eling assumption of binary observations, but focuses on a simple two-armed 
bandit model with only two possible pricing decisions. A slightly different 
connection, looking at the problem from the buyer's point of view, is made in 
Bergemann & Valimaki (1996). Theoretical properties of general classes of 
valuation models (mostly suboptimality bounds) are derived in Broder & Rus-
mevichientong (2010a), while Broder & Rusmevichientong (2010&) focuses 
specifically on the logistic model. Parametric log-normal valuation models 
were studied under the name of "log-linear models" by Kalyanam (1996) and 
Carvalho & Puterman (2003), with the assumption that exact demands could 
be observed. A logistic valuation model was studied by Carvalho & Puter-
man (2005). This work also derives a KG-like algorithm based on a one-step 
look-ahead idea, though without an explicit Bayesian model. Other models for 
dynamic pricing incorporate customer arrival rates, which may be unknown. 
Bayesian models for such problems may assume that the set of possible truths 
is finite (Araman & Caldentey 2009), or they may use gamma priors on the 
arrival rate (Farias & Van Roy 2010). 

Section 11.2 - The simple binary-truth conjugate model in Section 11.2.1, and the 
insight into confounding prices, come from Harrison et al. (2010). Moment 
matching is a general technique for approximate Bayesian inference. It is used 
in multiple communities and known under various names such as "assumed 
density filtering" (Minka 2001), "moment updating" (Dearden et al. 1998), 
and "monitoring" (Boyen & Roller 1998). An application of this technique 
to dynamic pricing with binary observations can be found in Chhabra & Das 
(2011). The moment-matching approximation for Pareto priors is the subject of 
ongoing work by Chhabra & Das (2012). The approximate Bayesian updating 
equations for the specific case of logistic regression were proposed by Jaakkola 
& Jordan (2000). 

Section 11.3 - Point-estimate policies are also known as "certainty equivalent" poli-
cies, and are frequently studied in the literature on optimal learning in dynamic 
pricing (for example, see Aviv & Pazgal 2005). Sometimes, as in Harrison et 
al. (2010) and Broder & Rusmevichientong (2010a), simple modifications to 
these policies are made to allow for more exploration (or, for instance, to avoid 
the confounding prices described in Section 11.2.1). The distinction between 
point estimates and Bayesian estimates in multi-armed bandit problems with 
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exponential rewards is made in Ryzhov & Powell (201 lc). The approximation 
of the logistic expectation is due to Crooks (2009). The work by Araman & 
Caldentey (2009) proposes a method that is similar to our Bayes-greedy policy, 
but uses a model in which the set of possible truths is discrete, and it is possible 
to obtain exact observations from the true demand distribution. 

PROBLEMS 
11.1 Imagine that we are using a logistics curve to model the probability that a 
customer will accept a bid, which gives us the revenue function 

Assume the prior is 9° = (4,2) for prices that are between 0 and 5. 

a) Discretize prices into increments of 0.10 and find the optimal price pExP>1 given 
this prior. This represents the choice you would make using a pure exploitation 
policy. 

b) Assume we choose a price p° = 2 and we observe that the customer accepts 
the bid (that is, W1 = 1). Use equations (11.16) and (11.17) to find an updated 
model. Note that we did not need to assume a variance for the measurement 
noise. Why is this? 

c) Now use the Bayes-greedy policy in equation (11.25) to compute the price 
pBG,i rpry t 0 e X p i a m intuitively the difference between pBG^ and pExP^. 

d) Simulate the Bayes-greedy policy for 20 measurements, using (11.16) and 
(11.17) to update your beliefs. At each iteration, using the beliefs generated by 
the Bayes-greedy policy, compute pExP^, and compare the two policies over 
20 iterations. 

e) Finally, simulate the pure exploitation policy and the Bayes-greedy policy for 
20 iterations. Repeat this process 100 times and summarize the difference. 



CHAPTER 12 

STOPPING PROBLEMS 

Stopping problems are a simple but important class of learning problems. In this 
problem class, information arrives over time, and we have to choose whether to view 
the information or stop and make a decision. In this setting, "learning" means to 
continue to continue to receive information. We do not choose which information to 
observe, as we have done in the past, but we do have to decide whether to continue 
observing or stop and make a decision. 

In this chapter we consider two classical stopping problems. The first is the 
sequential probability ratio test, where we have to quickly identify when a signal from 
some source is changing. The second is a classic problem known as the secretary 
problem, where we have to find the best out of a sequence of offers which arrive one 
at a time. 

12.1 SEQUENTIAL PROBABILITY RATIO TEST 

A fundamental problem arises when we need to decide as quickly as possible when 
something is changing. For example, we may think we are observing data being 
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generated by the sequence 

W n = /z° + en, (12.1) 

where we assume that e is normally distributed with mean 0 and variance a2. But we 
are aware that the mean might change to /x1, which means the observations would 
come from the model 

Wn = n1+en. (12.2) 

We would like to design a method that allows us to determine when the mean has 
changed as quickly as possible. 

A more general statement of the problem would be that the observations Wn are 
coming from an initial model that we refer to as the null hypothesis HQ. We then 
want to determine when the data is coming from a different model that we refer to as 
the alternative hypothesis, H±. We start with a prior probability p0 = p[J that H0 is 
true. Similarly, p\ is our prior probability that H\ is true. After we observe W1, we 
would update our prior using Bayes' rule to obtain 

pi = P{H0\Wl) 
P(W1\H0)P(H0) 

PiW1) 

where P(WX) = PoP{Wl\H0) + /o?P(^1 |J?i) . The quantity p\ = P^W1) 
would be worked out similarly. For example, if our data are normally distributed, we 
would write 

P(W1 = w\H0) = -pL- exp 
27T<7 

1 f(w-fx°) 
"2 

he-tp0(wn) = P(Wn = wn\H0). After n observations, we can write the posterior 
probability as 

Po = 
p0ni=1po(™k) 

pQn%=Mwk) + p°i^k=Mwk) 
p0Xn(w\...,wn) 

where 

p0+p0
l\n{w1,...,wnY 

xn{w\...,wn) = nn
k=1 

Po(wk) 
Pi{wk)' 

We can write Sn = (W1, W2,..., Wn) as being the set of all measurements, or it 
could be a sufficient statistic (such as the mean and variance of the normal distribution) 
that captures everything we need to know from previous measurements. Later, we let 
Xn = Xn(Sn) = Xn(w1,...,wn). 
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To solve our problem, we need to make two decisions. The first is whether to 
continue to observe Wn, or to stop and make a decision. If we decide to stop, we 
then have to choose between H0 and Hi. We let 

X7 r(5n) = 

Y*(Sn) = 

1 if we decide to stop and make a decision, 
0 if we continue observing. 

1 if we decide Hi is correct, 
0 if we decide H0 is correct. 

We let 7r denote a policy consisting of the two functions (Xn, Yn). Given a policy 
7r, there are two mistakes we can make. The first is a false alarm, which means we 
stop and conclude that H\ is true when in fact H0 is true, and a miss, which means 
that Hi is true, but we did not pick it up and we still think H0 is true. We define the 
probability of these two events using 

Pp = the probability we conclude Hi is true (the false alarm) given 
Ho when using policy ir 

PM = the probability we conclude H0 is true given Hi when using 
policy 7r 

= E [ i - y 7 r ( 5 n ) | i J i ] . 

Now let po be the prior probability that HQ is true. We can define the overall probability 
of an error using 

Pe = ( l - p 0 ) P £ + p 0 P ^ . 

Of course, we can minimize this error by taking many measurements. The number 
of measurements is given by 

Nn = mm{n\X7r(Sn) = l}. 

Nn is a random variable that depends on our policy (the decision function X^) and 
the observations (W1, W2,..., Wn). We can assign a "cost" c to each measurement, 
giving us a utility function 

U7T{c) = Pe-^cEN7r. 

Here, c is not a true cost in the sense of being measured in units of dollars per mea-
surement. Rather, it is a scaling coefficient that allows us to combine the probability 
of being wrong with the number of measurements. Our challenge is to find a policy 
7r that minimizes the utility function Un(c). 

The problem can be solved (approximately) by exploiting some nice structural 
properties. We first write the conditional risk as 

r j = P£ + cE[AH#o], 
r\ = P^ + cElN^Hi], 
r* = p0rJ + ( l - p o K . 
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We would like to find a policy n that minimizes the risk, given by 

BP(p0) ^ m i n r 7 ' . 

We start by observing that if po = 1 (which means we are positive that Hi is true), 
then we can stop and choose Y = 1 with no risk of a false positive (and TV = 0), 
which means that the risk is R°(l) = 0. The same reasoning tells us that R°(0) = 0. 
It is also possible to show that R°(p) is concave in p. 

Assume that we stop after making no measurements. If we choose Y = 0 then the 
risk is R°(po\Y = 0) = Po (which is the same thing as saying that if I have to choose 
now with no information, my probability of being right is my original prior that H0 
is true). Similarly, if we choose Y = 1 then the risk is R°(po\Y = 1) = 1 — p0. Or, 
we could choose to make a single measurement (sort of like choosing curtain number 
3). In this case, we want to choose the measurement policy 7r that solves 

R1(p°0)= min pgrJ + a - ^ K -
{ir,N>0} 

Here, we are solving the same problem as we were at time 0, but we are now forcing 
ourselves to take at least one measurement. So, our policy will be to take a single 
measurement (which means N > 0), and then we have to do the best we can choosing 
between Y = 0, Y = 1 or taking yet another measurement. 

So, we want the smallest of />[] (corresponding to stopping and choosing Ho), 1—p$ 
(corresponding to stopping and choosing Hi) and R\p°) (which means take another 
observation and repeat the process). The problem is depicted in Figure 12.1. Here, 
we plot the lines p[] and 1 — p®, and the concave function R^p0), all as a function 
of po- If c is large enough, it is possible that the midpoint of R\p°) is greater than 
.5, in which case the best choice is to stop right away (N = 0) and choose between 
#0 and Hi. Now assume that the maximum of R1(p°) is less than .5. In this case, 
take one measurement and compute the posterior p\. We then divide the horizontal 
axis into three regions: p0 < pL, pL < po < pu, and po > pu. If po < PL, then 
the best choice is to choose Y = 0. If p0 > pu, then we stop and choose Y = 1. If 
PL < Po < pu, then we make another measurement and repeat the process. After 
each measurement, we face the same problem, where the only change is that we have 
a new prior. 

This seems like a pretty simple rule. The only challenge is finding pL and pu. We 
begin by computing the likelihood ratio 

Ln(sn) = n 2 = i g | ^ = nn
k=iL(wk), 
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Figure 12.1 The expected risk as a function of the prior probability that Ho is true. 

where L(Wk) = ,Wkl is the likelihood ratio for a single observation. We next use 
Bayes' rule to compute the posterior P Q + 1 (Wn) as follows: 

Pi+\Sn) Pl(Sn)(l-p%) 
/>8Po(sn) + (i - P8)Pi(Sn) 

Ln(Sn) 
L"(s») + p 5 / ( i - p g ) 

= f(Ln(Sn),P%/(l-p%)), 

where f{t,P) = l/{l + /3). For /3 > 0, f{£,0) is strictly increasing for £ > 0. 
This means that if 0 < p% < 1, p%+1(Sn) is strictly increasing with Ln{Sn). This 
means that determining if P Q + 1 (Sn) < pL or p%+1 (Sn) > pu is the same as testing 
if Ln(Sn) <Aor Ln(Sn) > B, where A and B satisfy 

f(A,pS/(l-pS)) = pL, 
f{B,p%/{l-pn

0)) = pu. 

We can solve for A and B , which gives us 

.4 = PBPL 

(l-p-)(l-pL) ,L\> 

B PlPU 

{l-pn){i-puy 

This means that we can write our policy in the form 

Ln(Sn) 
> B, stop and choose Yn = 1, 
< A, stop and choose Yn = 0, 
otherwise take an additional observation. 
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Figure 12.2 Sample path of log of the SPRT likelihood function. 

Hence, it is easy to see why this rule is known as the sequential probability ratio test 
(SPRT). The SPRT is controlled by the parameters A and B, and hence we refer 
to the rule as SPRT (A, B). 

Finding A and B exactly is difficult, but we can find good estimates using Wald's 
approximation which gives us 

PI7T 
F 

D7T 

B-A ' 
MB - 1) 

B-A ' 

We then choose the acceptable probability of a false positive, Pp, and the probability 
of a miss, P^, and then solve for A and B, giving us 

A = 

B = 

JD7T 
rM 

l-Pf 
1 — Pn 

JDTV 
rF 

This rule is (approximately) optimal in the sense that it meets these goals for the 
probability of a false positive and the probability of missing a change with the fewest 
number of measurements. We note that it is customary to work in terms of the 
logarithm of L. 

Figure 12.2 plots the log of the likelihood for a set of sample observations. After 
16 observations, we conclude that Hi is true. 
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12.2 THE SECRETARY PROBLEM 

The so-called secretary problem is one of the first (formally defined) learning prob-
lems. The motivation of the problem is determining when to hire a candidate for a 
job (presumably a secretarial position), but it can also be applied to reviewing a series 
of offers for an asset (such as selling your house or car). The problem involves the 
tradeoff between observing candidates (which allows us to collect information) and 
making a decision (exploiting the information). As with the sequential probability 
ratio test in the previous section, our decision is when to stop reviewing new offers 
and accept the most recent offer. In contrast with our work on Bayesian models, at 
the heart of the secretary problem is that we assume that we know absolutely nothing 
about the distribution of offers. 

12.2.1 Setup 

Assume that we have N candidates for a secretarial position (you can also think of 
these as offers to purchase an asset). Each candidate is interviewed in sequence and 
assigned a score that allows us to compare him or her to other candidates (if we are 
trying to sell an asset, these scores are the offers to purchase the asset). While it 
may be reasonable to try to maximize the expected score that we would receive, in 
this case, we want to maximize the probability of accepting the highest score out of 
all that have been, or might be, offered. We need to keep in mind that if we stop at 
candidate n, then we will not interview candidates n + 1 , . . . , N. Also, we only have 
the option of accepting the last candidate or interviewing the next one. Once we have 
turned down a candidate, we cannot return to that candidate at a later time. 

Let 

Wn = score of the nth candidate. 
[ 1 if the score of the nth candidate is the best so far, 

Sn = < 0 if the score of the nth candidate is not the best so far, 
[ A if we have stopped already. 

S = state space, given by (0,1, A), where the states 0 and 1 mean 
that we are still searching, and A means we have stopped the 
process. 

X = {0 (continue), 1 (stop)}, where "stop" means that we hire the 
last candidate interviewed. 

Because the decision function uses the most recent piece of information, we define 
our history as 

hn = {W\...,Wn}. 

To describe the system dynamics, it is useful to define an indicator function 

= ( l ifWn=wBXl<m<n{Wm}, 
] 0 otherwise. 
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which tells us if the last observation is the best. Our transition function can now be 
given by 

+ 1 _ (ln(hn) ifxn = 0mdSn^A, 
[A i fxn = l o r S n = A. 

To compute the one-step transition matrix, we observe that the event the (n + l)st 
applicant is the best has nothing to do with whether the nth was the best. As a result, 
we can write the conditional probability that 7n + 1( / i n + 1) = 1 using 

^r+i(hn+1) = \\in(hn)} = p[ / n + 1 ( / i n + 1 ) = i]. 

This simplifies the problem of finding the one-step transition probabilities. By defi-
nition we have 

F[Sn+1 = l\Sn,xn = 0] = P[Jn + 1( / i n + 1) = l]. 

jn+i (ftn+i) = i if the (n + l)st candidate is the best out of the first n + 1, which 
clearly occurs with probability l / (n + 1). So 

P ( 5 n + 1 = l\Sn,xn = 0) = - , 
n + 1 

F(Sn^ =0\Sn,xn = 0) = 
n + 1 

Our goal is to maximize the probability of hiring the best candidate. So, if we do not 
hire the last candidate, then the probability that we hired the best candidate is zero. If 
we hire the nth candidate, and the nth candidate is the best so far, then our reward is 
the probability that this candidate is the best out of all N. This probability is simply 
the probability that the best candidate out of all N is one of the first n, which is n/N. 
So, the conditional reward function is 

ln{Sn,xn\hn) = I7 c*ar,x«\h«) = r/N tf^1-*^1' 
0 otherwise. 

With this information, we can now set up the optimality equations 

Vn(sn) = max E{Cn(sn, xn\hn) + Vn+1(Sn+1)\sn}. xne.x 

12.2.2 Solution 

The solution to the problem is quite elegant, but the technique is unique to this 
particular problem. Readers interested in the elegant answer but not the particular 
proof (which illustrates dynamic programming but otherwise does not generalize to 
other problem classes) can skip to the end of the section. 

Let Vn(s) be the probability of choosing the best candidate out of the entire 
population, given that we are in state s after interviewing the nth candidate. Recall 
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that implicit in the definition of our value function is that we are behaving optimally 
from time period t onward. The terminal reward is 

VN(1) = 1, 
V ^ O ) = 0, 

VN(A) = 0. 

Let 

CstoP,n = (pn^ s t o p ) + T / " + l ( A ) ) , 

ccontinue,n = I C " (1 , continue) + ^ P(s'\S)Vn+1 (*') 

\ s'e{0,l} 

The optimality recursion for the problem is given by 

Vn(l) = m&x{Cstop'n,Ccontinue'n}. 

Noting that 

C n ( l , continue) = 0, 
77 

C"(l,stop) = - , 

Vn+1(A) = 0, 

P(s'\s) = {1/{n + 1) S' = h 
P[SlS) \n/(n + l) s' = 0, 

we get 

V»(l) = m^,^V^(l) + ^-lV^(0)}. (12.3) 

Similarly, it is easy to show that 

V"(0) = m a X J 0 , ^ l ^ + 1 ( l ) + - ^ V n + 1 ( 0 ) } 

= —!— Vn+1(l) + —"— ^ n + 1 ( 0 ) . (12.4) 
n + 1 v ' n + 1 w 

Comparing (12.4) and (12.3), we can rewrite (12.3) as 

Vn(l) = m a x { ^ , V " ( 0 ) } . (12.5) 

From this we obtain the inequality 
Vn{\) > Vn(0), (12.6) 
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which seems pretty intuitive (you are better off if the last candidate you interviewed 
was the best you have seen so far). 

At this point, we are going to suggest a policy that seems to be optimal. We are 
going to interview the first n candidates, without hiring any of them. Then, we will 
stop and hire the first candidate who is the best we have seen so far. The decision rule 
can be written as 

T, /, x I 0 (continue), n < n, 
x (1) = < 

I 1 (quit), n> n. 

To prove this, we are going to start by showing that if V171 (1) > m/N for some m (or 
alternatively if Vm(l) = m/N = Vm(0)), then Vm'(1) > m'/N for m' < m. If 
Vm(l) > m/N, then it means that the optimal decision is to continue. We are going 
to show that if it was optimal to continue at set m, then it was optimal to continue for 
all steps m! < m. 

Assume that Vm(l) > m/N. This means, from equation (12.5), that it was better 
to continue, which means that Vm(l) = Vm(0) (or there might be a tie, implying 
that Vm(l) = m/N = Vm(0)). This allows us to write 

y ^ - V o ) = - l / m ( l ) + — F m ( 0 ) 
m m 

= Vm(l) (12.7) 

> 2 . (.2.8, 

Equation (12.7) is true because Vm(l) = Vm(0), and equation (12.8) is true because 
Vm(l) > m/N. Stepping back in time, we get 

V " - ' ( l > = m a x | ^ , r r a - ' ( 0 ) | 

> 2 (.2.9, 

> = j ^ . C12..0) 

Equation (12.9) is true because F m - 1 ( 0 ) > m/N. We can keep repeating this for 
m — 1, m — 2 , . . . , so it is optimal to continue for m! < m. 

Now we have to show that if N > 2, then n > 1. If this is not the case, then 
for all n, Vn(l) = n/N (because we would never continue). This means that, from 
equation (12.4), 

""<»» - (STY) ( = £ ) + G^T)""+ 1<°) 

= M;^) '̂̂  <12-n) 
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Using V (0) = 0, we can solve (12.11) by backward induction: 

VN(0) = 0, 

1 

V N-2 (0) = ^ + 
N-2 

N N-2+1\N 
N-2 1 1 

+ N \N-2 N-l 

In general, we get 

Fm (0) m 
TV 

j _ 1 
m ra + 1 + ••• + 

1 
N-l 

We can easily see that V1 (0) > -^; since we were always quitting, we had found that 
V ^ l ) = j ; . Finally, equation (12.6) tells us that ^ ( 1 ) > V^O), which means we 
have a contradiction. 

This structure tells us that, for m < ft, we have 

Vm{0) = Vm{l), 

and for m > n we obtain 

Vm(l) 

Vm(0) 

m 
TV' 
m 
TV 

1 1 
— H 7 
m m + 1 

+ ...+ TV-1 

It is optimal to continue as long as Vm(0) > ra/TV, so we want to find the largest 
value for m such that 

or 

ra 
TV 

r i i 
[m m + 1 

1 1 
— + 7 + " 
ra ra + 1 

1 

1 

> m 

> 1. 

If AT = 5, then we can solve by enumeration: 

n = \ T + 5 + 3 + 3 = 2 - 0 8 

n = 2 l + i + 3 = 1 0 8 

n = 3 | + I = 0.58 
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So for N = 5, we would use ft = 2. This means interview (and discard) two 
candidates, and then take the first candidate that is the best to date. 

For large N, we can find a neat approximation. We would like to find m such that 

1 1 1 
1 « — + -T + --- + m m + 1 N 

/ — dx 
JM X 

log N — log m 

= log (£)■ 
Solving for m means finding log(N/m) = 1 or iV/ra = eor ra/7V = e _ 1 = 0.368. 
So, for large N, we want to interview 37 percent of the candidates, and then choose 
the first candidate that is the best to date. 

The secretary problem is a classic, partly because it illustrates an interesting in-
formation collection problem, and partly because it yields such an elegant solution. 
In real applications, we can translate the result to a rough rule that says "look at a 
third of the candidates, and then choose the first candidate that is better than all the 
others." 

12.3 BIBLIOGRAPHIC NOTES 

Section 12.1 - The sequential probability ratio test is due to Wald & Wolfowitz 
(1948). 

Section 12.2 - The secretary problem was first introduced in Cayley (1875). Our 
presentation is based on Puterman (1994). Vanderbei (1980) provides an elegant 
generalization of the secretary problem to one of finding the best subset. See 
also Bruss (1984) for extensions. 

PROBLEMS 

12.1 Download a spreadsheet illustrating the sequential probability ratio test from 

http://optimallearning.princeton.edu/exercises/SPRT.xls 

In the initial spreadsheet, the standard deviation of a measurement has been set to 
5. 

a) Translate the cells in row 12 to mathematics. Identify the equation in the book 
corresponding to each cell starting in column D. 

b) Change the probability of missing from .02 to .10. How does this change the 
hypotheses HO and HI? Now change the probability of a false alarm from 
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.02 to .10? How does this change the hypotheses? When you are done this 
question, restore both probabilities back to .02. 

c) The sequential probability ratio test stops with a conclusion that either hypoth-
esis HO is true or HI is true when the red line crosses one of the blue lines. 
If it does not cross either line within the measurement budget, then the test is 
inconclusive. Hit the F9 key 20 times, and count the number of times the red 
line crosses one of the blue lines. 

d) Now change the standard deviation (cell B9) to 3. Again perform 20 simulations 
and count how many times the red line crosses one of the blue lines. You should 
see that with a lower standard deviation, SPRT is more effective at declaring 
that one of the two hypotheses is true. Why does a smaller standard deviation 
make it easier to come to a conclusion? 

12.2 Assume you think you can look at up to 20 bids for the house you are selling. 
Completely unknown to you, the bids can be modeled as being drawn from a uniform 
distribution between $380,000 and $425,000. Use the policy that you are going to 
reject the first seven bids (which is 35 percent of 20), and then accept the first bid 
that is better than these seven. If none are better, you have to accept the very last bid. 
Start the process by generating all 20 bids in advance, so that when you are done, you 
can compare the bid you accepted against the best that you might have accepted with 
perfect foresight. 

a) Repeat this policy 100 times and report on: i) how many times you accepted 
the very best bid out of the 20, and ii) the bid you accepted as a percentage of 
the very best bid. 

b) Repeat (a), but now reject only the first four bids before you are ready to accept 
the bid. 

c) Finally, repeat (a), but now you decide to reject the first 10 bids before you are 
ready to accept a bid. 

d) Compare the results of the policies you simulated in (a), (b) and (c). Do you 
see evidence that one policy outperforms the others? 

12.3 You have to choose the best out of up to 30 bids, where the ith bid, Ri, follows 
an exponential distribution given by 

fR(y) = .02e-02«'. 

You can generate random observations from an exponential distribution using 

R= -501ogE7, 

where U is a random variable that is uniformly distributed between 0 and 1. 
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a) Use the policy where you look at the first 11 bids, and then pick the best bid 
which outperforms all previous bids. Repeat this policy 100 times and report 
on: i) how many times you accepted the very best bid out of the 20, and ii) the 
bid you accepted as a percentage of the very best bid. 

b) Repeat (a), but now reject only the first six bids before you are ready to accept 
the bid. 

c) Finally, repeat (a), but now you decide to reject the first 16 bids before you are 
ready to accept a bid. 

d) Compare the results of the policies you simulated in (a), (b), and (c). Do you 
see evidence that one policy outperforms the others? 



CHAPTER 13 

ACTIVE LEARNING IN STATISTICS 

We have focused our attention on problems where we are learning in order to make 
a better decision in some sort of optimization problem, which gives us an economic 
value of information. It is often the case, however, that we are just trying to fit a 
statistical model which might be used for a variety of decision problems. We may 
not know how the model may be used; we are simply interested in carefully choosing 
what to measure to get the best model. 

Most applications of statistics involve problems where we may have to fit a model 
from a fixed set of observations. This is often referred to as batch statistics. We may 
also have a process where observations arrive over time, but where we do not have 
any control over what we observe. This is known as passive learning. 

There are many situations where we can control the inputs of a process. For 
example, we may be able to set the price of a product and then observe sales. We may 
set user preferences on Netflix, thus affecting the movies that are displayed to us; we 
then choose a movie to rent, which in turn affects what Netflix observes. After we 
choose the inputs (these might be referred to as independent variables or covariates) 
xn, we then observe the response yn+1 which is then used to fit the parameters of a 
model. The machine learning community refers to this process as active learning. 

Optimal Learning. By Warren B. Powell and Ilya O. Ryzhov 269 
Copyright © 2012 John Wiley & Sons, Inc. 
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In statistics, active learning refers to the ability to control the choice of independent 
variables. In Chapter 1, we made a distinction between the broad umbrella of active 
learning, where we make choices with the intent to learn, and the subset of policies we 
call optimal learning, where our choice is guided by a well-defined objective function. 
We retain this distinction in this chapter, but cover a variety of heuristic and optimal 
policies for deciding what observations to make when fitting a function. We divide 
these methods into the following classes: 

1) Deterministic policies - These determine all the points to observe in advance, 
without the benefit of learning the results of any measurements. We consider a 
special case where these policies are optimal. 

2) Heuristic sequential policies - These are active learning policies where the 
choice of what to observe uses a rule that is not based on any particular perfor-
mance metric. 

3) Variance minimizing policies - These are sequential policies designed to mini-
mize the variance of an estimator. 

We specifically exclude the consideration of the economic value of a better statistical 
model in the form of better decisions, which has been the focus of most of this 
volume. For the purpose of this chapter, we focus on general metrics for the quality 
of a statistical model without regard to the decisions that it is used to support. 

13.1 DETERMINISTIC POLICIES 

There is an extensive literature in statistics that goes under the name "design of 
experiments." The problem is to choose a set of independent variables x1,..., xn, 
where x™ is an F-dimensional vector of features which generates an observation ym. 
Let xn be the vector of independent variables (features), given by 

/ x\ \ 

where |T\ is a set of features, with F = |,F|. Our goal is to fit a linear model 

y=J2 efxf +£' 

where e is an error term. 
We want to choose 0 to minimize the total errors squared given by 

minF(0) = fl [ y"1 ~ E efx?) ■ (13-D 
m=l V f€T I 
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To find the optimal solution, we begin by defining the matrix Xn as 

/ Xi X<j 

xn = 
\ 

The vector of observations y 1 , . . . , yn is represented using 

( yx \ 
y2 

\vn ) 
As in Chapter 8, the vector 6n that solves (13.1) is given by 

6n = [(Xn)TXn}-l{Xn)TYn. (13.2) 

Equation (13.2) gives us an easy way to find the variance of our estimate 9n. Let 
v be an n-dimensional random vector, let A be a F x n deterministic matrix, and let 
u = Av. Let Cov(v) be the covariance matrix of v. Then we can use the identity 

Cov(u) = ACov{w)AT, 

where Cov(w) is the covariance matrix of w. Recall that for matrices A and B, 
ABT = (BAT)T, and that [ ( X n ) T X n ] _ 1 is a symmetric matrix. We can use these 
observations to find the covariance matrix of 6n if we let A = [{Xn)T Xn]~l {Xn)T, 
giving us 

Cov(6n) = [ ( X n ) T X n ] - H X n ) T C c w ( y n ) ( [ ( X n ) T X n ] - 1 ( X n ) T ) T 

= [(Xn)TXn]-1(Xn)TC(w{Yn)(Xn)[{Xn)TXn]-1. 

Since the elements of Yn are independent, Cov(Yn) = a\l where I is the identity 
matrix and o\ is the variance of our measurement error . This allows us to write 

Cov(0n) = [(Xn)TXn}-1{Xn)TXn[(Xn)TXn]-1a2
€ 

= [(Xn)TXn]-l(jl. 

The observation error of is fixed; we cannot change it through our choice of xn. 
However, we have direct control over the covariance of 0n by our choice of Xn. 
Furthermore, we quickly see that the matrix Cov(6n) is a deterministic function of 
Xn, which means we do not gain anything by observing yn. It is for this reason that 
we can determine the precision of 6n without making any observations. This is the 
theoretical foundation of deterministic policies. 

So this leaves the question, what do we want to minimize? 6n is a vector, and 
Cov(8n) is a matrix. While we would like to minimize all the elements of Cov(9n), 
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y 

Figure 13.1 Learning a line with closely spaced measurements (a) and measurements with 
more separation (b). 

we have to choose a single metric. This issue has created a variety of metrics that 
have come to be known as alphabet-optimality, for reasons that will become clear 
shortly. These metrics include the following: 

A-optimality - Minimize the average (or trace, which is the sum) of the diagonal 
elements of [{Xn)TXn]~1. This is the same as minimizing the average of the 
variances of each element of 8n. 

C-optimality - Given a weighting vector c, minimize cT[(Xn)TXn]c. 

D-optimality - Minimize | [ (X n ) T X n ] _ 1 1 , or, equivalently, maximize the determi-
nant of \{Xn)TXn]. 

E-optimality - Maximize the minimum eigenvalue of [{Xn)TXn]. 

G-optimality - Maximize the largest element in the diagonal of Xn [(Xn)TXn] (Xn)T, 
which has the effect of minimizing the largest variance of 6n. 

I-optimality - Minimize the average prediction variance over a particular region. 

T-optimality - Maximize the trace of [(Xn)TXn\. 

V-optimality - Minimize the average prediction variance over a specific set of points. 

All of these methods aim at making the matrix [{Xn)TX71)-1 smaller in some way, 
or, equivalently, making the matrix [(Xn)TXn] bigger. 

We can illustrate the central intuition behind these strategies using the simple 
example of fitting a line. Figure 13.1(a), (copied here for convenient reading from 
Figure 8.6), shows the lines that we might estimate if we make a small number of 
observations that are close to each other. Figure 13.1(b) illustrates the estimates that 
we might obtain if the measurements are spaced farther apart. It is not surprising that 
the more widely spaced observations provide a better estimate. 

We can quantify this intuitive behavior by computing the matrix [(Xn)TXn]. 
Assume we make two observations each at two different locations. An observation 
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xn might be (1,5), where the 1 corresponds to the constant term, and the 5 is the 
value we are measuring. The closely spaced points might be 

/ 1 5 \ 
1 5 
1 6 

\ 1 6 / 

Xn (13.3) 

The matrix [(Xn)TXn] is given by 

[(Xn)TXn] = 4 22 
22 122 

Now assume we measure at more extreme points (but where the average is still the 
same), given by 

1 10 
V1 10/ 

Xn 

The matrix [(Xn)TXn] is given by 

[(Xn)TXn] = 4 22 
22 202 

The trace of the matrix \{Xn)TXn) for the closely spaced points is 4 + 122 = 126, 
while the trace for the points that are more spread out is 206. We would say that the 
second matrix has more "information," and the result is an estimate of 6 with lower 
variance. 

It is important that the data be scaled so that the average value of the measured 
values x remains the same (as we did above). The best way to do this is to simply 
average the measurements, and compute a corrected value Xn for each dimension, 
using 

x?=x?-iitx< 
We then compute the matrix using [(Xn)TXn]. If we do this to the measurements in 
equation (13.3), we would obtain 

Xn (13.4) 

Regardless of which type of optimality we use, we now have a metric that we 
can use to help decide which measurements to make. Given a set of potential mea-
surements, we generally want to choose measurements that are distributed around a 
center, but as far from the center as possible. 
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It is important to realize that we can choose the best set of potential measurements 
before making any observations. This property is a unique byproduct of the property 
that all statistics relating to the reliability of our estimates of 9 are purely a function 
of the measurements and not the observations. We have not enjoyed this property in 
our previous applications. 

13.2 SEQUENTIAL POLICIES FOR CLASSIFICATION 

An important class of problems in machine learning is known as classification prob-
lems. In this problem class, we are given a set of features xm for the rath object (this 
might be a document, an email or a website), and we are asked to place this document 
into one of a set of discrete classifications, such as {dangerous, threatening, suspi-
cious, safe}. Often, collecting information about the classification of a document for 
training purposes is expensive. For example, we may need to ask a security expert 
to assess the threat level of an email or website. However, given the sheer volume of 
these sources, we cannot ask a trained expert to provide this information on a large 
number of documents. 

This section describes a series of primarily heuristic search policies for efficiently 
collecting information for classification problems. 

13.2.1 Uncertainty Sampling 

Let y be a discrete quantity that indicates the classification of a document with at-
tributes described by x, and let Po(y\x) be the probability of the particular classi-
fication y if we observe x, given a parameter vector 9. Our goal is to observe the 
document where our prediction has the highest level of uncertainty. If the classifica-
tion is binary (for example, dangerous or not), then we want to sample the documents 
where Pe(y\x) is as close as possible to 0.5. 

If there are more than two outcomes, an alternative strategy is to choose to query the 
document whose prediction offers the lowest level of confidence, which we compute 
using 

xLC = a rgmax( l - Pe(y\x)), 

where 

y = arg max P<9 (?/1 #) 
y 

is the most likely classification. The idea here is that if the most likely classification in 
a set is small, then this represents a document (more precisely, a class of documents) 
where we have a lot of uncertainty, and would benefit from more information. We are 
trying to mitigate the effect of a worst-case scenario by learning about the document 
for which we are most likely to make an error in prediction. 

This strategy focuses on the most probable classification, and as a result ignores 
the probabilities of other classifications. For example, we may be much more cer-
tain about one classification, implying that more testing is unlikely to change the 
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classification. An alternative strategy is to focus on documents whose most likely 
classification is close to the second most likely classification. For fixed 9, let 

2/1 = a,rgma,xPe(y\x) 
y 

and 

y2 =aigm8x P0(y\x) 
y^yi 

be the most likely and second most likely classification for a document. The marginal 
sampling policy chooses the document x where the two highest classification proba-
bilities are the closest. We state this policy using 

xM = argmjn (Pe(yi\x) - Pe(y2\x)). 

The previous two policies look at the level of uncertainty indicated by the most 
certain document or the difference between the two most certain documents. An idea 
that takes this thinking a step further uses entropy as a measure of uncertainty. The 
entropy maximization policy is computed using 

xH = a r g m a x - y^ Pe(yi\x) log Pe(yi\x), 

where y\ represents a single classification. Entropy looks at all the potential classifi-
cations, and represents an information-theoretic measure of the information required 
to encode the classification probability distribution. 

Empirical research with these policies has produced mixed results. Clearly there 
will be differences in behavior as the number of potential classifications changes. 
Not surprisingly, performance depends on the true utility function. The margin and 
level of confidence policies work better when the goal is to get the classification right, 
while the entropy maximization policy works if the objective is to minimize the log 
of the loss from an incorrect classification ("log-loss"). 

13.2.2 Query by Committee 

Imagine that we have several competing models for estimating the classification of a 
document. We would refer to this family of models as a "committee," where c e C 
is a particular model in the set C. Let P0(C) (yi\x) be the probability that model c 
(parameterized by 6^) returns classification yi given the attributes # of a document. 

There are several ways to perform active learning in this setting. One is to let each 
model vote for a classification. We might record a vote using the indicator function 

I 0 otherwise. 



2 7 6 ACTIVE LEARNING IN STATISTICS 

The indicator function Ic{y%\x) simply captures if model c thinks that yi is the most 
likely classification. We can then count the number of votes using 

v(y*) = ^2Ic{yi\x)-

cec 

Alternatively, we could compute "soft votes" using 

We can then choose to sample the document with the highest vote entropy, giving us 
the policy 

xvtj = a r g m a x - > ^ - M o g — 7 ^ . 

Another measure is the Kullback-Leibler divergence metric, which is a way of 
measuring the differences between two distributions. We first compute an average 
probability of classification across the competing models using 

| C | cec 

The KL divergence is then computed using 

The Kullback-Leibler divergence is a type of distance metric since it is measuring the 
degree of similarity between two probability distributions: the distribution (across 
potential classifications) obtained when we average all the probabilities across the 
competing models, versus the distribution produced by each model. The quantity 
D(P6(C) \\Pc) is the KL divergence for a particular model c. Our policy for deciding 
which document to evaluate is obtained by maximizing the average KL divergence 
across all the models, given by 

vKL = avgm^x ^^2 D(Pe(c)\\Pc). 
cec 

The idea with this policy is to choose to evaluate the document with the greatest 
disagreement among the different models. If the competing models largely agree, 
then it is unlikely that more information will change this consensus. Additional 
information is likely to have the greatest impact when competing models disagree. 
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13.2.3 Expected Error Reduction 

An interesting policy uses an estimate of the degree to which information reduces 
the likelihood of being incorrect. We are going to assume that we have a set of 
unlabeled documents U, which means that we have not solicited a classification from 
a domain expert. Assume we are considering the possibility of collecting information 
on the document x. We do not know its classification, but our current estimate of the 
probability that it will be classified as yi is Pe(y%\x). If we choose document x and 
observe the classification ^ , we can use this information to update our classification 
probability, which we represent using Pe+ ̂ XtVi )(y\x). This is analogous to a posterior 
belief. 

Now, we are going to use this updated probability model on each document u G M , 
with feature vector xu. We let 

yu = arg max Pe(y | xu) 
y 

be the most likely classification for a particular document xu in our set U. 
If Pe+^x^y.}(yu\xu) is the probability of this most likely classification, then 
1 — Pe+^x^(yu\xu) represents the probability that the document u does not be-
long to the class that we think is the most likely. This is analogous to our posterior 
belief about how likely we are to make a mistake about document u after observing 
a result for x. We then choose x to minimize this probability of error in expectation 
over all possible classifications yi of document x. The policy, then, is given by 

xER = a r g m i n ^ P ^ l x ) ( £ (l - Pe+t{x,Vi)(yu\xu)) )• 
i \u€U ) 

13.3 A VARIANCE-MINIMIZING POLICY 

We are going to describe an information collecting policy with the goal of reducing 
variance, but this time we are going to address a richer set of models and issues than 
we encountered in Section 13.1 when the goal was to minimize variance measures of 
the regression vector 0. 

We start by assuming that there exists a model y(x) = f(x) + e where f(x) is the 
true model and e is a source of measurement noise over which we have no control. Our 
goal is to collect a training dataset Vn = {(x°, y1), (x1, y2),..., (xn~1,yn)}. We 
group the choice ( x ° , . . . , x71'1) of what to measure with the corresponding obser-
vations (y1,..., yn) into a single training dataset. We note that the standard notation 
in statistics is to let x1 be the measurement that produces y1, but as the development 
below illustrates, it is cleaner to let the superscript capture the information content; 
when we choose x m , y m + 1 is a random variable. 

We assume we are using a sequential policy to determine X • X • X , . . . (starting 
with x°) which may depend on the outcomes y1^2, — This means that Vn is a 
random set, constructed sequentially. We use this information to fit an approximation 
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yn — fn(x\Vn). Below, we are going to write the prediction as yn(x\Vn) to express 
its dependence on the query point x, and the data Vn. 

The goal is to design a policy that minimizes the variance in our predictions 
yn(x\Vn), but this depends on the points x where we might query the function. 
We did not have to deal with this issue in Section 13.1, but now we are going to 
assume that we are given a distribution P(x) that gives the probability that we will 
want an estimate of the function at x. In practice, P(x) may be chosen to be uniform 
over some region, or we may specify a normal distribution with some mean /ix and 
a spread ax. Alternatively, we may have a sequence of observations x1,..., xk from 
history which can serve as a probability distribution. Either way, P(x) serves as a 
weighting function that tells us the region in which we are interested. However, it is 
important to recognize that the probability that x is in the random set Vn, which is 
influenced by our learning policy, may be completely different than P(x). 

If we make an observation at x, we are going to observe 

y(x) = f(x) + e, 

where f(x) is our true (but unknown) function, and e is the inherent noise in the obser-
vation. Our approximation is going to give us the estimate yn(x\Vn). A reasonable 
goal is to design a policy for choosing a measurement x to minimize the prediction 
error (yn(x\Vn) — y(x))2 for a single realization of y(x) (which is random because 
of e), and a single estimate yn{x\Vn) from a dataset Vn (which is random because 
Vn is random). To formalize this idea, we need to take expectations. We let Ey(-) be 
the total expectation over the observation noise imbedded in y(x) and the observation 
of Vn. These are independent, so we can write them as 

ET(yn(x\Vn) - y{x)f = EyEv(y(x) - y"(x|D"))2, (13.5) 

where Ê > is the expectation over all the possible outcomes of Vn, and Ey is the 
expectation over all possible realizations of y{x). We can break down the expected 
total variation (for a given x) in (13.5) using 

ET(yn(x\Vn)-y(x))2 = E{(y(x)-E[y(x)})2} 

+ (Ev[y{x\Vn)\-E[y(x)\f 
+EV {{y{x\Dn) - Ev[y{x\Vn)]f}. (13.6) 

The first term reflects the pure noise due to e, which will not be affected by the 
measurement policy. The second term captures the bias in the model, which is purely 
a function of the structural form of the underlying model, as well as the choice of 
x. Again, this is not affected by the choice of Vn. The right-hand side of equation 
(13.6) is also known as a bias-variance decomposition. 

The third term is the variance due to the estimation of the model from the training 
data. This is where we capture the variation in the estimated model (after n obser-
vations) due to the different variations in Vn that might be produced by following 
a specific measurement policy. The variations in Vn arise because of differences in 
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realizations in the observations y1,..., yn that lead to different decisions x2,..., xn. 
This is the term that we wish to minimize by choosing a good learning policy. 

For compactness, we are going to let 

(#" (*) = Ev(yn(x\Vn) - Ev[yn(x\Vn)})2. 

Now assume that we are considering the possibility of adding (xn, y n + 1 ) to create 
an expanded dataset 

£>n+i =T>nU{xn,yn+1). 

The choice xn is a deterministic quantity (given Vn) that we are thinking of measuring, 
while yn+1 is the random observation that we have not yet observed when we choose 
xn. Let Ep be the conditional expectation given Vn. The choice of observation 
xn is a deterministic function of Vn. The new information in £>n+1 is y n + 1 . If we 
choose xn, let a^n{x\xn) be the conditional variance (given Vn) of our estimate if 
we choose xn, which is given by 

a2
y>n(x\xn) =E%(yn+1{x\Vn+1) - W^[yn+1 {x\Vn+l)]f. (13.7) 

The variance d^n{x\xn) is defined in exactly the same way as a in (2.8). However, 
in Chapter 2, we also proved that this quantity coincided with the change in variance 
between two measurements, under a Bayesian learning model. This equivalence does 
not hold in the frequentist model we are considering here. In (13.7), a2'71 represents 
only the conditional variance of our estimate given a choice of measurement, and 
minimizing this quantity is equivalent to minimizing the future variance of our pre-
diction (similar to the posterior variance considered in the Bayesian models). If we 
were to adopt a Bayesian approach here, E[y(x)] would itself be random (since we 
do not know the true mean of the observation), and we would need to consider all the 
terms in (13.6) together in order to minimize the posterior variance. 

In the frequentist model, it is enough to minimize the last term in (13.6). We want 
to choose xn so as to minimize (13.7). However, we do not know that we are going 
to want to observe the function at x, so we need to take the expectation over potential 
observations using our marginal distribution P(x), giving us 

a^n(xn) = f a2
y>n{x\xn)P(x) dx. (13.8) 

The variance a2>n(xn) is the expected variance given that we make the measurement 
xn. Our policy will be to choose the value xn that produces the greatest reduction in 
variance. We state this policy using 

xn = *rgmm&l>n(x'). (13.9) 

The value of this policy is that it is fairly easy to compute. We illustrate the 
calculations for an approximation architecture that uses mixtures of Gaussians. 
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Figure 13.2 
(1994). 

Illustration of fitting data using mixtures of Gaussians, based on Cohn et al. 

13.4 MIXTURES OF GAUSSIANS 

In Section 13.1, we considered the case of estimating a single regression function. 
Here, we turn to a more general approximation architecture where we assume that 
observations come from one of a set of populations that we index i = 1 , . . . , N. We 
assume that each population produces a different behavior that can be reasonably 
approximated by a line, as illustrated in Figure 13.2. 

13.4.1 Estimating Parameters 

We need to estimate the mean and variance of the measurements (independent vari-
ables) x, given by iix^ and a2

 {, the mean and variance of the observations y, given 
by fiy^ and a2

 {, and the covariance between x and y, axy^. Temporarily assume that 
for each population i, we know the expected value of the observation x, \xx,i, and 
its variance a2

xi. We are going to begin by presenting calculations for the remaining 
moments, after which we show how to compute a2(xn). 

We can represent the joint distribution of x and y for a population i. First define 

x 
y 

5 ^ i 

We can now write the joint distribution of x and y for group i using 

P(x,y\i) = 1 
:exp (z-myVi^z-in) 
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We will not know the true means and variances, but we can estimate them from an 
initial sample. 

The conditional variance of y given x is given by 

fxy,i }y\x,i uy,i ^2 

The conditional expectation yf (x\Vn) and variance a? t given x are 

tf?(a:|2>n) = %,i(aO + ^ F ( s - * i x , i ) , 

y\xti I i , \ x Mx,i) 

rii <JZ 

The scalar rii can be viewed as the weight that group i should be given, calculated 
using 

= V — P{xj,yj\i) 

^lY,k=ip(xJiy3\k) 

We next compute the probability that population i contributes to the observation 
corresponding to x using 

hi(x) P(x\i) 

EliW)' 
where 

P(x\i) = v^S exp 
yX l^x,i) 

2*1* 
(13.10) 

Given the observation x, the expectation across all the populations of y™(x\Vn) and 
its variance are given by 

N 

yn{x\Vn) = £ > ( « W " ) , 

i=l l \ x,i / 

We now have the foundation we need to estimate the expected value of an additional 
measurement. 
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13.4.2 Active Learning 
We have to calculate the variance given a measurement xn, where we continue to 
assume that P{x) is known. We have assumed that [ix^ and a2

 i are known for 
each population i, but we cannot derive these statistics directly from the marginal 
distribution P(x). For example, we may approximate P(x) by assuming that it is 
uniformly distributed over some region, or we may represent it from a sample obtained 
from history. 

We could try to estimate fix^ and o2
xi from training data, but these observations 

are chosen according to our learning policy, and may not reflect the true distribution 
that reflects the likelihood of actually needing to calculate the function at some x. If 
we use the training sample, we are effectively using the joint distribution P(xn, y\i) 
instead of P(x, y\i). We can correct for the difference in the sampling distribution 
(at least in principle) using 

P(x,y\i) = P(xn,y\i)-PWl) 

P(xn\i) 

We compute the conditional distribution P(x\i) by using equation (13.10) with the 
mean and variance jj,Xii and a2^ computing using data sampled from P(x) or a 
reference sample. The distribution P(xn, y\i) is also computed using equation (13.10) 
with mean and variance calculated from a training dataset. 

We now have to compute a2'n{xn) which we use in equation (13.9) to determine 
the next point to measure. We first calculate a2,n(x\xn) for a particular query point 
x. The distribution of yn+l given xn can be calculated as a mixture of normal 
distributions, given by 

N 

P ( y n + V ) = ^2hi(xn)P(yn+1\xn
9i) 

i = l 
N 

= ^ / i i ( ^ ) A r ( y r ( x " | P " ) ) a ^ i ( x " ) ) , 
Z = l 

where Af(/i, a2) represents the normal distribution, where yf (xn\Vn) is the mean 
of y n + 1 based on data for group i, and a\ ^x71) is the variance. The conditional 
variance of our prediction of x given the choice of xn can be found using 

" h2(x)aXAx\xn+1) ( (x_u .)\ 
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where 

2,n 
a2'n(x\xn+1) - yA 

+ 
m + hM^1) (^|x,i + («T+1(*l*n+1) - N,i?) 

(m + hi{x\xn+i)y 
~2,n 

,n+l\ (x\xn+1) 
rii + hi(x\xn+1) 

nMx\xn+1){xn+l - iiXti){y?+\x\xn+l) - /iyij) 
+ 

KyM^) = &*v,iY + 

{rii + hi(x\xn+1))2 

2 

{rii + hi) 4 

If we are estimating fix^ and cr^^(xlx72"1"1) from data, we can use the following 
equations 

„n + l / r n + lx = ^ ^ + ^ ( ^ 1 ^ + 1 ) ^ + 1 

2,n+lM n+lx = "«ffi n , ^ ^ ! ^ 1 ) ^ ^ 1 - ^ ) 2 

^ W * j n, + / i , ( x | x - + 1 ) + (ni + fti(x|^+1))2 

With a^n{x\xn) in hand, we use equation (13.8) to integrate over the different 
query points x to obtain a^n(xn). 

13.5 BIBLIOGRAPHIC NOTES 

Section 13.1 - This section covers classic material from experimental design as 
it is known within the statistics community (see DeGroot 1970, Wetherill & 
Glazebrook 1986, Montgomery 2008). 

Section 13.2 - This section is based on Settles (2009). 

Sections 13.3 - This section is from Geman et al. (1992), with material from Cohn 
et al. (1994), Cohn et al. (1996) and Settles (2009). See Hastie et al. (2005) for 
a nice discussion of bias-variance decomposition. 

Section 13.4 - This section is based on Settles (2009). 





CHAPTER 14 

SIMULATION OPTIMIZATION 

At the highest level of abstraction, the ranking and selection problem can be written 
as 

max/(x) , 
xEX 

where X = {1,.. . , M} and f(x) = fix. In most applications, we cannot compute 
f(x) exactly, but instead we are forced to obtain noisy estimates of the function 
through simulation. Let W represent a set of random variables that can be used to 
compute an estimate of the function, which we represent as / (# , W), where 

f(x)=Ef(x,W). 

For ranking and selection, we might have / (# , W) = Wx. The point, however, is that 
f(x) represents the mean of a random quantity that also depends on x. In ranking 
and selection problems, we cannot compute f(x) directly because we simply do not 
know [JLX. In other applications, / (# , W) may represent the results of a discrete event 
simulation, where it is computationally intractable to compute its expectation. 

This general problem is extensively studied by the simulation optimization com-
munity. Our presentation throughout this book has considered applications where 
the observations W can be simulated or obtained through a field experiment (e.g., 
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lab testing of a medical treatment). The simulation optimization community focuses 
on problems where observations come from discrete event simulations such as those 
used to model manufacturing systems. Typically, we have a simulation model of a 
complex system, such as a factory floor, a supply chain, or a transportation network. 
The "output" of the simulator is some sort of aggregate performance measure, such 
as throughput for a manufacturing plant. The simulator also has many inputs, which 
can be stochastic. For example, our supply chain can be subject to randomly arriving 
demand for a product at different locations. We generally assume that the interplay 
between inputs is so complex that it is hopeless to attempt to analytically compute 
expected performance. Instead, we simulate the behavior of the system across many 
sample realizations for the inputs, and use the resulting output to estimate the mean. 

If the simulation model is large enough (e.g., modeling operations for multiple 
manufacturing plants), even a single simulation run will require significant computing 
resources. We may need to spend several hours just to get a single sample realization 
of the mean performance. We give a brief list of applications where this issue may 
arise: 

■ Simulation calibration - Suppose that we have a computer simulation of busi-
ness operations for a trucking company or an airline. Before we can use the 
model to make decisions and recommendations (e.g., which trucks to assign to 
which demand, or how to price airline tickets), we first have to be sure that the 
simulation model is accurate to begin with. That is, the output of our model 
needs to match the historical performance of the real-world system. We can 
achieve this by tuning a relatively small set of parameters, such as a vector of 
bonuses and penalties to encourage the simulated decision-maker to behave in 
a certain way. 

■ Manufacturing throughput - A production line in a manufacturing plant consists 
of a series of machines. A new part is completed when it has passed through 
all the stages of production in order. To prevent the machines from becoming 
blocked or idle, we may place an intermediate buffer between two consecutive 
machines. If a job passes through the ith stage, only to find that machine 
i + 1 is busy, the job will wait its turn in the buffer, while machine i is free to 
work on the next job. The problem is to find the optimal size for the buffers. 
More capacity means improved production rates, but also increased space and 
storage costs. We can evaluate the performance of a particular buffer size via 
a simulation model of the entire factory floor. 

■ Cost management in health care - Patients with different priority levels arrive 
randomly at an emergency room. Higher priority levels must be treated quickly. 
The emergency room is staffed by a number of doctors, nurses, and other 
personnel. The number of beds is also limited. Suppose that we wish to 
improve service (e.g. change the scheduling policy to reduce bed block), or 
to reduce operational costs while minimizing the impact on service. We can 
evaluate the effectiveness of a particular scheduling policy or staff size in a 
simulator. 
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buffer buffer h£>-
Figure 14.1 Diagram of a manufacturing process where three machines are separated by two 
buffers. We can use simulation optimization to find the right buffer capacity. 

The contextual applications which have motivated the simulation optimization 
community have resulted in the development of algorithms which share some common 
features: 

■ Problems are most often motivated by applications where x is a design and 
where we have to choose from among a discrete set { 1 , . . . , M} where M is 
not too large (say, less than 100). 

■ The belief model is typically frequentist, reflecting the lack of any prior belief 
about the performance of any particular design. 

■ The process of running a discrete event simulation model involves a certain 
startup cost (loading the software, reading the data and initializing parameters) 
before the simulation starts. This complicates the process of collecting a dis-
crete measurement of a design x, as we have tended to assume throughout this 
volume. For this reason, it is easier to decide on a run length in advance, and 
then simply execute this run. 

■ The simulation optimization community has introduced a number of alterna-
tive objective functions (originally discussed in Chapter 7) as alternatives to 
expected opportunity cost. 

It is difficult to summarize the entire simulation optimization literature in a single 
chapter. Our goal is to give an overview of those methods which are closest in spirit 
to the theme of this book - the idea of adaptive learning and changing our solution 
strategy over time as we improve some form of belief about the simulation output. 
Unfortunately, the distinction between optimal learning and stochastic optimization 
can become blurred at times. In particular, we discuss the methodology of optimal 
computing budget allocation (OCBA), which can be used in a Bayesian setting like the 
LL method discussed in Chapter 5. We do not, for example, touch on the vast literature 
on stochastic approximation or sample average approximation (SAA). In our view, 
these approaches are closer to traditional conceptions of stochastic optimization with 
fixed (though unknown) distributions, rather than the idea of shifting distributions 
of belief that is our focus here. However, these are very important topics and we 
invite interested readers to examine such references as Spall (2003), Ruszczynski & 
Shapiro (2003), or Ben-Tal et al. (2009) for different perspectives. 
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14.1 INDIFFERENCE ZONE SELECTION 

Let us return to the ranking and selection problem, with M alternatives. An al-
ternative might be a design for a manufacturing system, a policy for dispatching 
ambulances, or a set of parameters for tuning a simulation. Our goal is still to pick 
the alternative x with the highest value JJLX , and we still make N sequential measure-
ment decisions. However, we evaluate the quality of our learning policy through the 
probability of correct selection (PCS). Denote by ji^ the kth biggest value, such that 
M(i) ^ M(2) > ••• > M(M)- A policy is considered to be "good" if 

P(argmax//x = argmaxfl^ \ H(i) > M(2) + #) > 1 — a. (14.1) 

The indifference-zone parameter 6 represents the smallest difference in values that is 
significant. In other words, if the true best value is greater than the second best by at 
least 5, we want to correctly choose the best alternative with some high probability 
1 — a. Otherwise, if the top two alternatives are similar in value (the difference is 
less than 5), we are indifferent between them. 

This formulation originates from the frequentist view of statistics. In this view, the 
values \xx are fixed, though unknown, and we look for a policy that would perform 
well on any fixed configuration of values. In the Bayesian view, the values fix are 
random variables, and so the event {/i(i) > //(2) + 6} has a probability that may be 
difficult to calculate. In our discussion of indifference-zone methods, we shall revert 
to the frequentist notation from Section 2.1, where 6™ denotes our estimate of \xx, 
while <j2'n is our estimate of the variance of the observations. 

14.1.1 Batch Procedures 

The simplest batch procedure dates back to Bechhofer (1954). This method assumes 
that the observations are normal and independent, with means \xx and a common, 
known variance o^. We proceed by computing a number h satisfying 

P(Zi>h) = l-a, z = l , . . . , M - l , (14.2) 

where the vector Zi,..., ZM-I has a multivariate normal distribution with means 
equal to zero, variances equal to 1, and Cov(Zi, Zj) — 1/2 for any Z{ and Zj. We 
then calculate 

kIZ = 2-^, (14.3) 

and round this quantity to the nearest integer. We then sample every alternative exactly 
xIZ times, and implement the alternative with the highest sample mean. 

This procedure is based on a worst-case analysis. We suppose that //(2) = ... = 
M(M) = Ml) — £• We view this as the "least favorable" scenario among all pos-
sible alternative values that still satisfy our modeling assumption /j,^ > //(2) + 8. 
Intuitively, this particular scenario is unfavorable because it makes it as difficult as 
possible (under the modeling assumption) to distinguish between the true best al-
ternative and any of the others. Without loss of generality, we can assume that 
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/4(2) = ... = /X(M) = 0 a nd M(i) — -̂ Because the measurement noise is common 
for all alternatives, we can also suppose that o^ — \. The quantity Zi in (14.2) 
then represents the deviation of the difference in the sample means from the expected 
difference, 

Zi = (§(i) - 8W) - (0 - 6), (14.4) 
where (1) through (M) denote the indices of the alternatives arranged in order of 
decreasing [ix. We can see that the variances and correlations between Zi and Z$ are 
1 and 1/2. 

When computing the sampling allocation, we rescale by 2a^v. The sampling 
allocation is chosen so that the sample variance G2

X is small enough to ensure 

P{0(i) > 0(2),...,fl(i) > 0 ( A O ) = !-<*> 

where (1) through (M) denote the indices of the alternatives arranged in order of 
decreasing jix. 

Table 14.1 provides approximate values of ft (rounded to the nearest 0.05) for some 
different problem sizes M and values of a. In MATLAB, we can approximate ft by 
using the function mvncdf to evaluate the multivariate normal cdf for (Z\,..., ZM-I) 
repeatedly. Larger values of a lead to smaller ft, since we need to increase the size 
of the region [ft, oo) ~ over which we are calculating the cdf in order to ensure 
a greater level of coverage. The same is true when we increase the problem size. 
Unfortunately, numerical approximations of the multivariate normal cdf are much 
less accurate than the univariate version, and it is very time-consuming to find ft 
in many dimensions. Later, we will discuss how ft can be approximated without 
resorting to a brute-force search. 

When the variances of the observations are different (but still known), that is, 
the variance of Wx is \x, computing the analog of (14.2) is quite complicated (and 
requires us to solve an integral equation), because the variances of the multivariate 
normal vector {Z\,..., ZM-I) are now different. However, we can compute sampling 
allocations to make the sample variances equal, thereby allowing ourselves to use the 
original procedure. We let s = Y^x Xx and compute kIZ assuming that a^y = s. We 
then let 

s 

Table 14.1 Calculations of ft for Bechhofer's procedure in some small problems. 

r - i 
5 
10 
15 
20 
25 

a = 0.1 

-1.95 
-2.15 
-2.30 
-2.35 
-2.45 

a = 0.05 

-2.25 
-2.45 
-2.60 
-2.65 
-2.75 

a = 0.01 

-2.85 
-3.05 
-3.15 
-3.25 
-3.30 

a - 0.001 

-3.55 
-3.70 
-3.85 
-3.85 
-3.95 
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be the sampling allocation for kx. 
When the variances of the observations are unknown, indifference-zone methods 

are typically divided into two stages. The first stage allocates some number fc° 
simulations to each alternative, from which we obtain the first-stage sample means 0* 
and variances a^1. The second-stage sampling allocation follows a Bechhofer-like 
argument. We ensure the indifference-zone condition (14.1) by considering the more 
general condition that P (| (6^. — 0y) — (fix — ny)\ < 5) = 1 — a for all x and y. 
The deviation from (14.4) is now defined as 

_ ( % - g g ) - ( / * , - f t , ) 
Ax Jxy -f- in. 

and we solve an integral equation to find hy such that 

P\Zxv>-=h==,x^y) =l-a. 
V yj^r + ^r ) 

2h2a2,1 

The second-stage sampling allocation ky is then set to ky = —^—. 
In all of these cases, the fundamental reasoning is essentially the same: We want 

to ensure the indifference-zone condition for a worst-case set of true values, thereby 
ensuring it for all possible truths. This is a different philosophy from the one under-
lying our more familiar Bayesian procedures, where we maximize an expected value 
of a performance measure rather than a worst-case value. 

14.1.2 Sequential Procedures 

In simulation optimization, the word "sequential" can be used to mean that we are 
simulating one sample per alternative at a time. We are not, however, restricted 
to simulating only one alternative. The most basic sequential procedure, due to 
Paulson (1964), simulates from multiple alternatives in each time step, and gradually 
eliminates alternatives that do not look promising. We make the same assumptions 
as in Bechhofer's procedure, namely that observations are independent and normal 
with common variance a^r. 

We first choose a number 0 < q < S and define 

a ) 6 — q 

The set V° = {1,. . . , M} keeps track of the promising alternatives (initially all alter-
natives appear promising). At time n, we collect one observation W^1 for every 
x G Vn. We then update 

V^1 = L e Vn : 0£+ 1 > Qmax O^A - max^O, -^—\ j . 
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In other words, an alternative is promising only if its sample mean continues to be 
"close" to the current biggest sample mean. The procedure ends when a single 
alternative remains in the promising set. We are familiar with this notion: recall that 
the expected improvement factor in Chapter 5 depended on the difference between 
our beliefs about a given alternative and the current best. 

The same idea can be extended to the setting where the variances of the observations 
are unequal and unknown. Once again, we employ a two-stage algorithm in which 
the first stage provides us with estimates of the variances, and the second stage is 
used to thin out the set of promising alternatives. The resulting method is a hybrid 
of Bechhofer's and Paulson's procedures: we sequentially update the promising set 
as in Paulson's procedure, but use the batch sampling allocation as a limit on our 
simulation budget. 

In the first stage, we simulate k° samples from each alternative, obtaining indepen-
dent observations W*j for j = 1,..., k° and x — 1,..., M with the relevant sample 
means 9l. We then calculate 

*£ = wzj E [(^- - K) - @ - ~°l)Y 
k0 

£ 
3 = 1 

the sample variances of the pairwise differences between alternatives. We then let 

h2a2^ 
v*x 52 

be the maximum allowable number of samples for alternative x. This calculation is 
reminiscent of (14.3), where h is the solution to an integral equation ensuring that the 
sample variance will be small enough to allow us to differentiate between alternatives. 
We can approximate 

h^2r)(k°-l), 

where 
2a 

M-l 

We now create the set Vx = {1,..., M } and turn to the sequential part of the procedure. 
At time n, we collect one observation W^ + 1 for every x £ Vn and update 

{■ VnJrl = {xeVn : 6>£+1 > max 0"+ 1 - max 

The procedure ends either when only one alternative remains in the promising set, or 
n > maxa; k^atch. In the latter case, we implement the alternative with the highest 
sample mean among the promising set. 
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14.1.3 The 0-1 Procedure: Connection to Linear Loss 

There is also a Bayesian batch procedure for indifference-zone selection that closely 
follows the linear loss method introduced in Section 5.6. Let us pause to remind 
ourselves of the Bayesian notation. The LL(N) method is designed for ranking 
and selection with independent but unknown means as well as unknown sampling 
variances. As in Sections 2.3.5 and 5.6, we place a joint prior on the unknown 
value fix of alternative x, and the unknown precision fiY of our observations for 
this alternative. We say that (/J,X,/3^) follows a normal-gamma distribution with 
parameters 0°, r ° , ax, bx, meaning that (3}^ ~ Gamma(ax, &°) and the conditional 
distribution of [ix given 0™ = r is J\f (0£, r%r). The equations (2.37)-(2.40) are 
used to update our beliefs. 

The LL (N) procedure was designed to choose a sampling allocation 
k = (fci,..., &M), with k\ + ... + kM = iV, to maximize the objective (5.29) with 
Fk (//, f3w, W) = maxx 0X. For indifference-zone selection, we simply replace 
this objective by 

^ \V"> P 5 V* ) -t{argmaxx / ix=argmaxx 0£}i 

which is known as the 0-1 objective function. The expected value of this function is 
precisely the probability of selecting the true best alternative. Instead of specifying 
an explicit indifference-zone parameter, we simply seek to maximize the probability 
of correct selection. 

Section 5.6 describes how (5.29) can be approximated by an expression that has a 
closed-form optimal solution, using the fact that the predictive distribution of 6^ is 
the ^-distribution. Analogous approximations for the 0-1 objective function lead us 
to the sampling allocation 

^ = i V + 2 ^ = i ^ - T x ° , ( 1 4 5 ) 

srM b*fK*' 

which is identical to (5.32, but with 

«° 
Sl^x'^X* KX' X = X , 

and A°jX* exactly as in (5.33). 
The right procedure to use depends on how much we know about the problem. In 

the case of known, common variances, we may prefer to use the simple computations 
of Bechhofer's procedure. If the variances are unknown, and it is important for us 
to ensure a certain level of performance in the worst case, the two-stage sequential 
procedure may be preferable. If the variances are unknown, and we simply wish to 
do as well as possible, the 0-1 procedure is computationally straightforward. 
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14.2 OPTIMAL COMPUTING BUDGET ALLOCATION 

The value of the indifference zone strategy is that it focuses on achieving a specific 
level of solution quality, being constrained by a specific budget. However, it is often 
the case that we are trying to do the best we can within a specific computing budget 
(as in linear loss or the 0-1 method). This setting has inspired an entire methodology 
under the name optimal computing budget allocation, or OCBA. 

Just like the procedures in Section 14.1, OCBA ensures the indifference-zone crite-
rion by requiring the more restrictive condition P (| (0% — 0%) — (fix — fiy)\ < S) = 
1 — a for all alternatives x ^ y at the end of the second stage. Unlike Bechhofer's 
procedure, we do not assume that the true values follow the worst-case configuration, 
but rather work with the distribution of 02

x directly. Unlike Paulson's procedure, we 
do not gradually reduce the choice set. Rather, the OCBA methodology is closer to 
the 0-1 procedure, assuming instead that the simulation budget is fixed, but that any 
alternative can be simulated. 

14.2.1 Indifference-Zone Version 

Figure 14.2 illustrates a typical version of an OCBA algorithm. The algorithm pro-
ceeds by taking an initial sample Nx = no of each alternative x, which means we 
use B° — Mno measurements from our budget B. Letting M be the number of 
alternatives, we divide the remaining budget of measurements B — B° into equal 
increments of size A, so that we do N = (B — Mno)A iterations. 

After n iterations, assume that we have measured alternative x N™ times, and let 
W™ be the rath observation of x, for ra = 1 , . . . , N™. The updated estimate of the 
value of each alternative x is given by 

1 K 
x Mn / J x 

x m=l 

Let xn = arg max 0X be the current best option. 
After using Mno observations from our budget, at each iteration we increase our 

allowed budget by Bn = Bn~l + A until we reach BN = B. After each increment, 
the allocation Nx1 x = 1,..., M is recomputed using 

x - x 'v x x ' x y^xf ^xn, (14.6) 

(14.7) 

We use equations (14.6)-(14.7) to produce an allocation N£ such that ^2X N£ — Bn. 
Note that after increasing the budget, it is not guaranteed that N£ > N™~x for some x. 
If this is the case, we would not measure these alternatives at all in the next iteration. 
We can solve these equations by writing each N£ in terms of some fixed alternative 

K>+1 

K+1 --

<#7(&>-W 
h 7 

2 

) 
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Step 0. Initialization: 

Step 0a. Given a computing budget B, let n° be the initial sample size for each of the M 
alternatives. Divide the remaining budget T — Mno into increments so that N = (T — 
Mno)/8 is an integer. 

Step Ob. Obtain samples W™, m = 1 , . . . , no samples of each x = 1,..., M. 

Step Oc. Initialize JV* = no for all x = 1,..., M. 

Step Od. Initialize n — 1. 

Step 1. Compute 

Nx 

K = — y* w™. 
x ra=l 

Compute the sample variances for each pair using 

A T " 

*z,n=jtr-[iw?-%)'-
Step2. LQtxn = argmax x = i ) . . . ) M 0n. 

Step 3. Increase the computing budget by A and calculate the new allocation A T ^ 1 , . . . , 7V^+1 so that 

Arn+l A2'n /(fin fin \2 
N* =

 a x n0xn-0x>> x , x > < x n 

Nn+1 &2r/(0n
n-0n,)2' ' 

x' x' I v xn x'' 

N?+l = 
M / M-n+1 

M £ 

Step 4. Perform max IN£+1 — AT™, 0 J additional simulations for each alternative x. 

Step 5. Set n = n + 1. If J2X=I,...,M NX < B , go to step 1. 

Step 6. Return xn arg maxx=i,. . . , M #2? • 

Figure 14.2 Optimal computing budget allocation procedure. 

(other than xn), such as TVf (assuming xn ^ 1). After writing N™ as a function of 
N™ for all x, we then determine TVf so that J^ iV™ « l?n (within rounding). 

In a sense, OCBA can be viewed as a frequentist version of the 0-1 procedure, using 
different approximations for the probability of correct selection. The one difference 
is that 0-1 allocates the entire simulation budget in one go, whereas OCBA divides it 
into small batches (see Steps 4 and 5). Because the probability of correct selection 
can only be computed approximately, we simulate one small batch at a time to see if 
the approximate PCS changes in the way we expect. 
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14.2.2 Linear Loss Version 

There is also a Bayesian version of OCBA for the linear-loss objective function (5.29), 
a very close relative of the LL (N) policy discussed in Section 5.6. For simplicity, 
let us consider the normal-normal learning model with known sampling variance. 
That is, each observation Wx ~ M (fix, f3w), and fix ~ Af (#£, /?£), and we learn 
according to (2.5) and (2.6). 

Let x* = arg maxx 0X be the alternative that seems to be the best. Now define the 
quantities 

x° = I1 l 

i° = J-+ — 
V )9g / & " 

Here, 5® represents an estimate of the opportunity cost resulting from choosing al-
ternative x instead of x*. The other two quantities are standard errors of a pairwise 
comparison of two alternatives, but £x represents a prior comparison, based only 
on the time-0 beliefs, and Xx X, is a posterior comparison assuming that one of the 
alternatives has been simulated B/m times. 

We then define 

j ^ /G^y-£ / (§ ) , x±x*> 
Dx ~ j Exvx-A-'.-*/ (J?-) -i0*>f (S;). x = x*> 

l \ x,x* / \ x' / 

analogously to rj® in LL (N) or KX in 0-1. The function / is the familiar / (z) = 
z& (z) + (j){z). Finally, for some number m < M , we allocate ^ samples for the m 
alternatives with the lowest values of Dx. We do not simulate any other alternatives. 

This version of OCBA should be viewed as an easily computable alternative to 
LL (N). Essentially, we are computing an expected improvement factor with the 
approximation that only one alternative is simulated B/m times. While the derivation 
of the policy assumes that the measurement noise is known, the approximations used 
for the expected value of the batch are such that the measurement noise never appears 
in the calculations. The policy can thus be easily applied to problems with unknown 
measurement noise. 

14.2.3 When Does It Work? 

The simulation optimization literature contains numerous empirical studies compar-
ing the performance of different procedures. A landmark study by Branke et al. (2007) 
made several general conclusions: 

■ Linear loss and OCBA procedures tended to perform efficiently in a variety 
of settings: the "slippage configuration," when there is one best alternative, 
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and the others all have the same true value; the "monotone decreasing means" 
configuration, when the true values are evenly spaced; and randomly generated 
configurations. 

■ Indifference-zone methods are sensitive to the choice of the indifference-zone 
parameter 6, They can also "over-deliver," that is, produce a better PCS than 
what we actually require. Indifference-zone methods also perform better when 
the number of alternatives is relatively small. 

■ The performance of Bayesian methods can be improved by using an adaptive 
stopping rule, rather than cutting off simulation after a fixed time N. For 
example, we may recalculate the estimated PCS at each time step (accounting 
for the new observations we have collected), and stop only when this quantity 
is high enough. 

14.3 MODEL-BASED SIMULATED ANNEALING 

A recent approach that has attracted attention within the simulation optimization 
community is known variously as annealing adaptive search (AAS) or model-based 
annealing random search (MARS). It is essentially a novel take on a familiar heuristic, 
the Boltzmann exploration policy from Section 17.2. Recall that, under this policy, 
we would randomly choose to sample alternative x at time n with probability 

ep°2 
v
n = 

£*e(<*:<)" 

where p is a tunable parameter. In simulated annealing, the probability that x is the 
best alternative is estimated as 

ann,n Q 4 gx 

The definition in (14.8) is based on the frequentist philosophy. If we were to adopt a 
Bayesian model, the right-hand side of (14.8) would be a random variable with a very 
complicated distribution. In the frequentist philosophy, we view (14.8) as simply an 
unknown number that we would like to approximate. 

Notice that the tunable parameter is now allowed to depend on n. In simulated 
annealing, the reciprocal l/pn is referred to as the "temperature" at time n. This 
is an analogy to materials science. Annealing is a process in metallurgy whereby a 
metal is alternately heated and cooled to improve the internal energy of its atomic 
configuration. In simulation, increasing the temperature (decreasing pn) will encour-
age random exploration, while decreasing the temperature promotes exploitation. In 
simulated annealing, we choose pn to eventually converge to a large value p* such 
that our policy will eventually prefer to sample from the true best alternative almost 
all of the time. 
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Of course, the main issue is that we cannot sample from the Boltzmann distribution 
in (14.8). The probabilities depend on the true values fix, and if we knew those, there 
would be no need for random sampling to begin with. Therefore, MARS focuses on 
approximating (14.8) with what is known as a surrogate distribution. 

The procedure works as follows. We wish to create surrogate probabilities that are 
as close to (14.8) as possible. For time n, we define 

qn = are; min Evan log 
anri.r, 

Px 
Qx J 

M 

arg max V e ^ ^'logqx. 

(14.9) 

(14.10) 

In (14.9), X represents a discrete random variable whose probability mass function 
is given by P (X = x) = p£n n ' n for x = 1, .. . ,M. The expectation Epann,n is 
taken over this discrete distribution. The quantity inside the expectation is known as 
the Kullback-Leibler divergence between pann^n and q, a measure of the difference 
between these distributions. (Recall that we have already encountered the KL diver-
gence in Section 13.2.) We minimize the KL divergence, so we are choosing qn to 
be as close as possible to the desired Boltzmann probabilities pann'n. 

Since JJLX in (14.10) continues to be unknown, we replace the theoretical KL di-
vergence by its sample average and compute an approximation. We suppose that, at 
time n, we have access to a current set of surrogate probabilities qn~l. Then, we 
randomly sample K alternatives x™,..., x\ from the probabilities g n _ 1 , simulate an 
observation Wg for alternative x%, and let 

qn arg max 
1 K 

iT,^^1**** (14.11) 
k=i 

We can make our simulations more efficient and increase the accuracy of our approx-
imation by averaging them together with the results of past simulations. It turns out 
that we can rewrite (14.11) as 

M 
qn = arg max ^ S£ log qx, 

* £ £ ! * = ! £T 
where 

an _ ™ J- o n - 1 1 
+ -

n 

1 £>('"*?) fcj1 

fc=l 

(14.12) 

(14.13) 

is a recursive sample average of the simulated KL divergences over all time steps up 
to n. Note that we can define S° any way we want (or not define it at all), as no 
weight is placed on it in the calculation of 5 1 . 

The payoff of this technique is that the optimization problem in (14.12) has a very 
clean solution 

£ = ̂ r V (14-14) 
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All we really need to do is to keep track of the recursive sample average in (14.13). 
From there, the surrogate probabilities qn follow automatically with (14.14). 

Just as in Paulson's procedure, we are allowed to simulate the values of K different 
alternatives at each time step. In fact, if our simulation budget permits, we could 
simulate multiple replications for each alternative, and replace W% by a sample 
average. We still need to set the temperatures pn; practitioners of simulated annealing 
recommend pn = X^?=i i > which increases to infinity over time. 

14.4 OTHER AREAS OF SIMULATION OPTIMIZATION 

Our presentation has only scratched the surface of simulation optimization. The 
field encompasses a wide variety of problems and solutions. For example, a very 
popular and general technique is stochastic approximation, often applied to problems 
where the set of possible alternatives or decisions is continuous and possibly multi-
dimensional, and we do not know enough about the problem to make some of the 
strong modeling assumptions used by the other techniques in this chapter (such as 
known variance). Stochastic approximation follows a recursion 

x n + 1 = x n + a n V / ( x ) , 

where V / (x) is an estimate of the gradient of / , and an is a stepsize. In this manner, 
we gradually improve our guess of the optimal alternative or decision. The literature 
on stochastic approximation focuses on developing good stepsizes and gradient esti-
mation methods. We do not discuss this field here because it takes us away from our 
domain of adaptively learning a distribution; however, interested readers are referred 
to Spall (2003). We do, however, discuss optimal learning in the setting of continuous 
decision spaces in Chapter 16 of this book. 

Another popular school of thought studies what is known as evolutionary or genetic 
algorithms. As their name suggests, these methods work by analogy to biology. 
The properties of a solution or alternative are encoded in a genetic representation. 
Different representations are then compared via a fitness function. We then select a 
subset of the decision space where the solutions appear to be fit, and generate new 
solutions with similar genetic representation (hence the use of the term "evolution"). 
In short, we select solutions that appear to have high potential, then find similar 
solutions, focusing more attention on parts of the decision space that appear to be 
promising. 

The key to the algorithm is that the genetic representation takes the form of a fixed-
length string of numbers. The fitness value for a string is the simulation output for 
the corresponding alternative. Optimizing the function may be difficult, but we can 
generate a few candidate solutions, then focus on the ones with the highest fitness. 
To generate a new solution, we can take numbers from two different strings, and 
randomly change (or "mutate") some of them to encourage exploration. One way of 
doing this is to splice two strings together, that is, combine the first half of one string 
and the second half of another string to create a new candidate solution. 
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The method allows us to handle potentially immense problems. Consider a manu-
facturing application where we have to route a new part through a production process. 
At each stage of the process, we can choose one of several machines to handle the part, 
and we can also choose a layout for the whole system. The genetic representation of a 
single decision is a string containing the chosen machine for each stage, as well as the 
characteristics of the chosen routing policy. If we have six possible alternatives for 
each of 13 components of the decision (six machines per stage, six routing decisions, 
six factory layouts), the number of possible decisions is 613. The algorithm never has 
to enumerate these alternatives. 

At the same time, the method can be slow, and it is difficult to guarantee good 
performance. The algorithm may converge to an arbitrary solution, not necessarily 
even locally optimal. There is no explicit belief model on the fitness of previously 
untested solutions; rather, we simply hope that combining two solutions that seem to 
be good, in a heuristic way, will produce an even better solution. Thus, one might 
view the genetic algorithm as falling outside the scope of optimal learning, but it is 
an important technique that can make progress on otherwise intractable problems. 

14.5 BIBLIOGRAPHIC NOTES 

Section 14.1 - A good introduction to simulation optimization is available in Hong 
& Nelson (2009), which briefly surveys the most important classes of algo-
rithms in this field. Applications are routinely surveyed in the proceedings of 
the Winter Simulation Conference; see Fu et al. (2005) for a recent example. 
Better et al. (2008) discusses some applications in risk management, including 
the health care example used in the beginning of this chapter. Bechhofer's 
procedure originates from Bechhofer (1954), and is generalized to the case of 
unequal variances by Rinott (1978). The two-stage batch procedures for the 
case of unknown variance are set forth in Matejcik & Nelson (1995) and Nelson 
& Matejcik (1995). The sequential procedures come from Paulson (1964) and 
Kim & Nelson (2001). See also Kim & Nelson (2006) for further extensions. 
The monograph by Gosavi (2003) offers a nice introduction to some of these 
methods. The 0-1 procedure is due to Chick & Inoue (2001). 

Section 14.2 - There is a rich literature on OCBA methods; for an introduction, see 
the monograph by Chen & Lee (2010). The basic algorithm in Figure 14.2 is 
described, for instance, by Chen et al. (2008). Variations and improvements on 
the OCBA concept were developed by Chen et al. (2000) and Chen et al. (2006). 
The Bayesian version of OCBA for linear loss is due to Chick et al. (2007), with 
a theoretical analysis in Frazier & Powell (2011). There are also extensions of 
OCBA for handling correlated observations; see Fu et al. (2004) for an example. 
Branke et al. (2007) undertook an extensive empirical comparison of OCBA to 
other policies, including linear loss and indifference-zone methods. 

Section 14.3 - Annealing adaptive search was introduced by Romeijn & Smith 
(1994). The model-based adaptive variant that we discuss here is due to Hu & 
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Hu (2010), Hu & Hu (2011), and Hu & Wang (2011). We chose to focus on this 
version because of the connection to Boltzmann exploration. However, there 
are also other versions of simulated annealing; for example, see Alrefaei & 
Andradottir (1999). Other adaptive random search methods include the model 
reference adaptive search approach of Hu et al. (2007), also described in Chang 
et al. (2007). 

Section 14.4 - Stochastic approximation first appeared with the seminal paper of 
Robbins & Monro (1951). A good introduction to stochastic approximation 
and search is the book by Spall (2003). Kushner & Yin (2003) provides an in-
depth theoretical treatment. See also Pasupathy & Kim (2011) for an overview 
from the perspective of stochastic root-finding. A powerful tool for practical 
simulation optimization, based on random search methods, is the COMPASS 
algorithm of Hong & Nelson (2006). With regard to genetic algorithms, a 
general overview can be found in Davis & Mitchell (1991). See also Goldberg 
& Deb (1991) for an overview of selection methods, i.e. how to choose the most 
fit solutions for reproduction. Applications of genetic algorithms to simulation 
optimization include Azadivar & Tompkins (1999), Azadivar & Wang (2000), 
Hedlund & Mollaghasemi (2001), and Can et al. (2008). An overview of 
applications in operations management is given in Chaudhry & Luo (2005). The 
manufacturing example of a genetic algorithm is from Azadivar & Tompkins 
(1999). 



CHAPTER 15 

LEARNING IN MATHEMATICAL 
PROGRAMMING 

There are applications where we have to collect information to be used in a larger 
optimization problem such as a shortest path problem or linear program. Ranking 
and selection can be viewed as the solution to a simple linear program 

M 

vn = max V^ /J>iXi, 
x *—* 

i=l 

subject to 

M 

i=l 

Xi > 0. 

The solution to this linear program requires sorting (^ ) for all i and choosing the 
index i* with the largest value of [i{, which gives us a solution where x^ = 1, 
and Xi = 0, i ^ i*. Our learning challenge is to choose an element j to measure, 
producing a value vn+1(j) computed using the vector /i^. The goal is to choose the 
index j that maximizes the expected value of vnJrl. Note for this discussion that we 
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are using indices % and j for our choices, and we are switching (for this chapter) to x 
as the vector of implementation decisions. 

We can take this perspective one step further. Assume now that we have a more 
general linear program which we write as 

min y^ cfxi, 
iez 

subject to 

Ax = 6, 
Xi > o, i ex. 

Here, x is a vector with potentially hundreds or even tens of thousands of dimensions. 
More significantly, the A matrix might be general, although there are specific problem 
structures that are of interest to us. 

Linear programming has numerous applications, including a broad class of prob-
lems on networks, where the matrix A is used to represent flow conservation equations. 
The objective can be to minimize the travel distance across the graph (shortest-path 
problems) or to efficiently move resources between nodes (such as the "transportation 
problem" or general network flow problems). Many other optimization problems can 
also be expressed as linear programs. A classic example is the problem of formulating 
a production plan to maximize profit. A company produces M products, and wishes 
to produce Xi units of product i = 1,..., M to maximize the total profit cTx with 
Ci being the profit from selling one unit of product i. The products are made using 
J different resources, with bj being the total amount of resource j available. The 
matrix A denotes the production constraints, with A^% being the amount of resource 
j needed to create one unit of product i. 

In the basic LP model, we assume that the parameters A,b, and c are known. In 
reality, we are unlikely to know them exactly, just as we do not know fi in ranking and 
selection. Suppose that our company has developed a new product, and now needs to 
decide how much of it should be produced. We may have an estimate of Q based on 
some preliminary data. Perhaps our sales figures for our old line of MP3 players may 
give us some idea of the profitability of the new line. At the same time, we are still 
quite uncertain about the true value of Q . But now, suppose that we have the ability 
to collect additional information about Q before we commit to a production plan x. 
Perhaps we have a chance to run a test market where we can get a sense of how well 
product i might perform. The results might change our estimate of C*, thus affecting 
our final production plan. Given our limited time and money, which products should 
be included in the test market? Or, in other words, which information will help us 
make the best possible decision? 

Optimal learning has a role to play here, but it is not a simple matter of picking up 
and applying the formulas and algorithms from Chapters 4 and 5. In mathematical 
programming applications, our measurement decision (say, measuring the coefficient 
c^ is distinct from our implementation decision, which we now represent as the vector 
x. We may learn about a single product or a single region in the network, but our 
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overall goal is to solve an optimization problem. The coefficients i — 1, ...,M in 
our LP are a bit like the "alternatives" from Chapter 4, in that we have a choice 
of which coefficients to learn about, but we are not simply interested in finding the 
largest coefficient. The part should teach us about the whole; we should learn about 
those coefficients that contribute the most to our ability to optimize. Running a test 
market for product i should lead us to a better production plan. 

Although we cannot recycle the knowledge gradient formulas from Chapter 5 in a 
straightforward way, we can still apply the concept of the knowledge gradient. In this 
chapter, we show how the value of information can be expressed in problems with 
uncertain objective functions. After describing several applications, we reinterpret 
the knowledge gradient concept, first for simple shortest path problems, and then for 
more general linear programs. 

15.1 APPLICATIONS 

In this section, we introduce three models where the implementation decision requires 
solving a mathematical program. We begin with a model for piloting a hot air balloon, 
where the challenge is moving the balloon up and down to find the fastest wind. Given 
a current set of estimates about the wind, the balloon can solve a linear program to 
find the best path to the destination. Then, we describe a common problem in the 
investment community where it is necessary to visit different companies to learn about 
their potential for future profits. The challenge is determining which companies to 
visit (we do not have the time to visit all of them), after which we have to take estimates 
of expected returns, variances and covariances to determine the best portfolio. We 
close with a discussion of graph problems. 

15.1.1 Piloting a Hot Air Balloon 

Consider the problem faced by a balloonist trying to get from one point to another 
in the presence of changing winds that can be different at different altitudes. Her 
ability to make progress depends on finding wind that moves in the right direction. 
She observes the speed and direction of the wind at her current location, but she may 
wonder if the conditions are better at a different altitude. Observing the wind at one 
altitude provides some information about the wind at other altitudes, as well as the 
wind at later points in time. But it takes time and (if she has to raise her altitude) 
energy to make these observations. 

The Model Optimizing the trajectory of a hot air balloon is a fairly difficult control 
problem, even when we do not include learning as a dimension. For our purposes, 
we are going to simplify the problem by assuming that our balloon can only move 
in two dimensions: forward and up or down. Our interest is in finding a path that 
balances distance against changing (and uncertain) wind speeds so that we get to the 
destination as quickly as possible. 

Our view of the problem is depicted in Figure 15.1, where our balloon is currently 
at horizontal location x and vertical location y and is faced with one of three decisions: 
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y 

Figure 15.1 Configuration of a two-dimensional hot air balloon trajectory. 

dup takes the balloon on an upward trajectory, dstay holds the balloon at its current 
altitude while ddown takes the balloon on a downward trajectory. Although we would 
like to model energy expenditure, we are only going to capture the time required to 
complete each decision. We assume that the balloon moves 30 percent slower moving 
up, and 20 percent faster moving down. 

The physical state Rn — (xn, yn) captures the location of the balloon. Our state 
of knowledge about the wind is given by Kn = (6™y, <J^)x,y where 8™y is what 
we think the wind speed is at time n, location x, y, and cr^y is the variance in our 
distribution of belief. When the balloon is at location (x, y) at time n, the true wind 
speed is //£ which we measure with noise according to 

xy M'xy ' ^ ' 

We assume measurements are independent across space and time, and are normally 
distributed with mean 0 and variance Ae. The true wind speed also evolves over time 
according to 

An+l — a 
xy xy U n + 1 

r^xy ' 

where ji™yl describes the actual change in the wind from time period to time period. 
The random changes in the wind, p%y, are correlated across both space and time, 
since if the wind is high at time n, location (x, y), then it is likely to be high at nearby 
locations, and at the same location at later points in time. The covariance between 
wind observations at two different altitudes at the same point in time is given by 

Cov(w:y, w?y,) = a2
we-^y-y'\ + \xv. 

Similarly, we assume the covariance between a location x and a location x' > x at 
the same altitude is given by 

Cov(Wl., W" ,) = <&e-^l*-* ' l + A*„. 
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We combine these two to give us a general covariance structure 

Cov(wzy,w:yl) = a2
we-My-y'^*-x'\ + \xy. 

Using this function, we can construct a covariance matrix E n with elements E™, „.,„,,. 
We use this structure to initialize our covariance matrix Eo- Next let exy be a vector of 
0's with a 1 corresponding to the location (x, y). The general formulas for updating 
the vector of estimates of the mean and covariance matrix for our distribution of belief 
about the wind is given by 

#n+i = E n + 1 ( (E n ) - 1 f l n + (Ax y)-1Wn + 1e a : y) , 

E*,n+i = {{^)^ + {\xy)^exy{exy)')-1-

This gives us the updated estimate of the mean and variance, where the variance takes 
into account the measurement error. But this ignores the changing velocity due to 
jln. When we take this into account, our updated covariance matrix is given by 

So, E B ' n + 1 will shrink relative to E n , but it will grow due to the effect of E^. We 
note that this is not a very realistic model for wind. For example, if we did not do any 
measurements (and possibly even if we do), the covariance matrix will grow without 
bound. However, this model will illustrate an interesting learning problem without 
becoming buried in the details of the physics. 

Planning a Trip The next step is to plan a trip given what we know now. We use 
our current estimates of speeds at each altitude. Without additional information, our 
best estimate of the speed in the future is the same as it is now, for each altitude, which 
means that 9%y = 9™',y for n' > n and x' > x. Using the assumption that speeds 
are 30 percent slower going up and 20 percent faster going down, we can construct a 
speed graph over the entire distance, similar to what is depicted in Figure 15.2. If we 
convert speeds to travel times, we now have a simple shortest path problem to find 
the fastest path from the current location to the end (presumably at an altitude of 0). 

This problem can be formulated as a linear program by defining the decision 
variable 

{1 if we decide to make the move from (x, y) to (#', y'), 
0 otherwise. 

This entire vector is chosen at time n and can be thought of as the current planned 
trajectory given what we know now. From a particular point (x,y), we assume that 
there are only three points that can be reached, by using the decisions up, down or 
stay. Let cxy,x>y> (/in) be the time required to move from (x, y) to (#', yf). Our linear 
program would be given by 

Fn{fin) = m i n ^ ^ cxy^y\[in)uxy^y>, (15.1) 
x,y x',y' 
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Figure 15.2 
knowledge. 

Speeds for each decision at each (x, y) location given the current state of 

subject to 

x'y' 

x'y' xy 

^xy^x'y' — ^* 

(15.2) 

(15.3) 

(15.4) 

Here, RQV — 1 if the balloon starts the process at an altitude y. Equation (15.3) 
requires that if the balloon arrives to (x,y), then it must also leave. Equation (15.4) 
requires that the flows be nonnegative. We would also like the decision ut to be 0 or 
1, but we will get this as a natural result of the structure of the problem. 

We are assuming that we are solving the problem deterministically, using our 
current estimates of the speeds. We could put probability distributions around the 
speeds and solve a stochastic optimization problem, but this would not contribute to 
our understanding of how to handle the learning aspects of the problem. 

Learning While Flying Imagine that the wind at your altitude has dropped signif-
icantly. You are, of course, wondering if the wind is better at a different altitude. If we 
move to (xf, yx), we are going to observe W^it} • Because of the covariance structure, 
this observation will allow us to update our estimate of the entire vector 9n giving us 
0n+1{W£+}). This would allow us to solve the problem Fn+1(6n+1(W^})) using 
our new state of knowledge. We have three possible decisions (up, down, or stay). If 
we want to use pure exploitation, we would solve the problem Fn (6n), which would 
tell us which action to take. But this ignores the potential value of learning. As an 
alternative, we could choose the best value of (x'y') (corresponding to one of the 
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three decisions) to solve 

maxE n {Fn+\en+1{W^v})) - Fn(6n)\ . (15.5) 
(x'y1) I y ) 

We have written this function in the form of the knowledge gradient, recognizing 
that Fn(6n) is a constant (given what we know at time n) which does not affect the 
solution. 

When we first introduced the knowledge gradient, we presented it in the context 
of ranking and selection where we had to choose from among a small, discrete set 
of choices. Now, we have to solve a linear program for each possible measurement, 
which means we can no longer compute the expectation exactly. But we can take 
advantage of the fact that we have a small number of potential measurement decisions 
(up, down or stay), which means we effectively face a ranking and selection problem. 
We cannot compute the expectation exactly, but we can use Monte Carlo methods. 
Let W™,~^} (ou) be a sample observation of the wind if we were to choose to go to 
location (x'y'). This is not a true observation - it is a simulated observation for the 
purpose of approximating the expectation. 

Given this observation, we can update the mean and covariance matrix and solve 
the linear program. Note that this observation does not just change the speed out 
of node {x'y') (take another look at Figure 15.2); it changes estimates of speeds 
over the entire network, partly because of the presence of correlations, and partly 
because we solve our linear program by assuming that as we step forward in time, we 
do not collect additional information (which means that speeds at the same altitude 
for larger values of x' are the same). Let Fn+l (x'y'\UJ) be the resulting "sample 
observation" of EnFn+1(0n+1(W^l

/+/
1)). We could then repeat this, say, 100 times, 

for each possible decision and take an average. We could then make the decision that 
has the highest estimated value. 

Sound familiar? This is precisely the ranking and selection problem. Solving the 
linear program 100 times and taking an average is a bit clumsy (famously known as 
the "brute force" solution). A more elegant approach would be to use (drum roll 
please) the knowledge gradient algorithm to choose the best decision. This would 
allow us to avoid making 100 measurements of a choice that does not look promising. 
We can build a prior by initially evaluating each choice assuming that we do not learn 
anything (the wind does not change from the prior), so that we start with a solution 
built around the pure exploitation policy. 

Optimal Learning Versus Stochastic Optimization It is useful to contrast 
our learning algorithm versus what we might have done if we were solving this as 
a stochastic optimization problem. In a stochastic optimization model, we would 
acknowledge that we do not know what wind we will face when we arrive to a 
location (x'y') (above, we solved the problem deterministically). For example, a 
deterministic solution might take us closer to the ground if the wind seems to be 
fastest there. However, a stochastic solution might recognize that the wind near the 
ground might be much lower than expected, and if we are close to the ground, the only 
place to go is up (at a high cost). A stochastic solution to this problem is relatively 
difficult, and probably requires the techniques of approximate dynamic programming. 
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The issue of whether to use a deterministic or stochastic algorithmic strategy did 
not arise with the simpler problems such as ranking and selection, because the optimal 
solution was to pick the index j * with the highest expected value of 0^. Our stochastic 
shortest path problem, however, is different because it involves finding a path over a 
sequence of steps with uncertain costs. Even if we fix our distribution of belief, it is 
still a stochastic optimization problem. 

The essential difference between a stochastic optimization algorithm and a learning 
algorithm is that with a learning algorithm, we accept that observations of the wind 
(the external measurement) come from an exogenous distribution that may be different 
from our true distribution of belief. As a result, we use these observations to update 
our distribution of belief. With a classical stochastic optimization formulation, we 
acknowledge that we do not know the actual wind, but we do know the probability 
distribution, which means that observations do not change our distribution of belief 
about the distribution. 

15.1.2 Optimizing a Portfolio 

Imagine that you are looking at investing in a group of companies. The companies 
are organized by industry segment (retailing, financial services, transportation), so we 
will refer to the jth company within the zth industry segment. We start by assuming 
that 0®j is the expected return (over some period of time) for company j in segment 
i. We also let E° be the matrix that captures the covariances in our beliefs about / i ^ , 
where the diagonal elements S^5^ represent the variance. 

In general, we assume that the covariance between two companies has the structure 

Eij,i'j' = a0 + Gi 1 {»=*'}• 

Thus, (JQ captures the common covariance (e.g. the extent to which companies re-
spond to the general economy), and of captures the common covariance for companies 
within industry segment i. 

Before we invest in a company, we have the ability to visit the company and 
learn more about the management team, marketing plans and facilities. We might 
assume that our observation W of each company is independent with variance A^. 
Let Xij = 1 if we visit company (i,j). If we choose to visit company (i,j), we 
can update the mean and variance using our standard formulas, giving us an updated 
0}j(x). If x^ = 0, then 0}j(x) = 0^, and we let U1(x) be the updated covariance 
matrix. 

Given the vector x of visits (presumably chosen to a constraint on how many visits 
we can make), we then have to find an optimal portfolio. Let y^ be the amount that 
we are going to invest in company (ij). We do this by solving the standard quadratic 
programming problem 

F(x) = EF(x, W) = min (01(x)y + 0yTE1(x)y), (15.6) 
y 
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subject to 

ij 
Vij > 0. (15.8) 

Here, x is our measurement decision, W captures what we observe if we choose to 
make the measurement, and y is our implementation decision. R1 is the amount of 
money we have to invest. The measurement problem is given by 

mmEF(x,W), (15.9) 
X 

subject to 

^CijXij = RM, (15.10) 

Xij > 0 and integer. (15.11) 

Here, RM is our measurement budget. The measurement problem is hard to solve 
because it requires integer solutions, but primarily because of the problems computing 
the expectation in (15.9). We suggest simply finding the marginal value of making 
each visit, and then assigning visits in order of decreasing marginal value until the 
budget is exhausted. This is a type of batch ranking and selection problem, where 
instead of finding the best choice, we find the best set of choices. 

Even this simple heuristic is hard to implement. Imagine that there are 100 compa-
nies that we are considering, and we have the budget to make 20 visits. What are the 
best 20 companies to visit? We are not able to compute the expectation EF(x, W) in 
(15.6) either. Instead, we can choose a company to visit, then randomly sample what 
we might learn (Wij(ou)). We can perform 100 samples of each company and take 
an average to obtain an estimate of the value of visiting each company, but this may 
be computationally demanding (and 100 samples may not be enough). Or, we can 
use the knowledge gradient algorithm to allocate our computational budget across the 
100 companies. 

15.1.3 Network Problems 

Optimization on a graph is a well-known class of mathematical programming prob-
lems, with applications in transportation, project management, telecommunication 
and other areas. A graph is described by a set V of nodes (or "vertices") and a set 
£ C V x V of edges, where each edge connects two nodes. Figure 15.3 provides 
a visual illustration. It is easiest to think of a graph as a map of physical locations: 
For example, nodes could represent cities and edges could stand for major highways 
connecting those cities. An edge (z, j) G £ between nodes i and j carries a cost (or 
"length") Ciy The cost can be expressed in terms of money or time. For example, 
we might focus on the economic cost of transporting a shipment of goods from one 
city to another, or on the time needed for the shipment to reach its destination. 
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Figure 15.3 A generic network, with nodes i and j connected by an edge of length Cij. 

Implementation Decisions in Networks The shipment problem is a well-
studied application of minimum-cost flows, a model for optimizing the route of re-
sources across a network. A number bi represents either the supply or demand for a 
commodity at node i. If bi > 0, then i is a supply node (perhaps we have a production 
facility in city i, or we purchase from a manufacturer located in this city). If bi < 0, 
then i is a demand node (perhaps retailers in this city are selling our products). If 
bi = 0, the node is a transit node and our product can be transported through it en 
route to a demand node. 

The cost of transporting a single unit of product from node i to node j is given by 
c^. The objective function can be written as 

min ]T CijXij, 

where Xij represents the quantity of product that we wish to ship from i to j . Obviously 
we require x^ > 0 for all i,j. 

Each node is subject to a flow conservation constraint. Product can only enter the 
network through a supply node and leave through a demand node. Thus, the total 
product leaving node j has to be equal to the amount that entered node j , plus the 
amount that was supplied (or, minus the amount that was used to satisfy demand). 
We can write this constraint as 

i:(i,j)€£ i:(j,i)e£ 

The implementation decision in this problem is the flow schedule, the values of x^ 
that we choose for all edges (i,j). The objective function and constraints are both 
linear in x^, making this a classic application of linear programming. There are many 
variations of the problem. For example, we might add capacity constraints x^ < dij 
if there is a cap on the amount that we can ship along a particular route (perhaps 
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only a limited number of trucks is available). We may also add more flexibility to 
our model by giving ourselves the option to use only part of the available supply, in 
a situation where we have a choice of suppliers. In this case, for bj > 0, we can 
add new decision variables 0 < y3< bj denoting the amount of supply we used, and 
replacing bj with yj in the corresponding flow constraints. We would also incorporate 
additional purchase costs into our objective function. 

In some applications, we may not always know the costs c^ exactly. In a supply 
chain, costs may depend on numerous factors. They are affected by purchase and 
production costs, but also by more vague factors like the reliability of a supplier. Per-
haps a particular supplier has a high chance of experiencing shortages, or a particular 
transit route is more likely to encounter delays. Eventually, the shortages and delays 
will be passed down to us, increasing our own costs. The distribution of the costs, 
or even their expected value, may be difficult to quantify, and has to be learned by 
doing business with a particular supplier or shipping along a particular transit route. 
We will need to model our beliefs about the costs and think about which suppliers we 
would like to experiment with in order to arrive at the best shipment schedule. 

A special case of minimum-cost flows is the well-known shortest path problem. In 
this setting, there is a single supplier s with bs = 1, and a single demand node t with 
bt — —1. All other nodes are transit nodes, and the cost Cij represents the "length" 
of edge (i, j). Our goal is to find a route from s to t with the shortest possible length. 
Like all the other network problems discussed here, the shortest-path problem can 
be formulated and solved as a linear program. There are also many optimization 
algorithms that are specifically tailored to shortest-path problems. We give one well-
known example, the Bellman-Ford algorithm. Given a cost vector c and specified 
source and destination nodes s, £,the algorithm calculates the distance V (i;c) from 
any node i to tin the following way: 

1) Let V (s; c) = 0. For all other nodes i ^ s, let V (i; c) = oo. 

2) For each edge (z, j ) e £, if V (i; c) + c{j <V(j',c), let V(j;c) = V (i; c) + 
Cij. 

3) Repeat step 2) a total of | V| — 1 times. 

4) If V (i; c) + c^ < V (j; c) for any (i, j) e £, the graph contains a negative-cost 
cycle and the shortest path length is — oo (corresponding to an unbounded LP). 
Otherwise, V (t; c) gives the length of the shortest path from s to t. 

Optimal learning becomes an issue when the lengths Cij are unknown. Length 
is often interpreted as travel time. For example, a GPS navigation system finds the 
quickest way to get from a specified origin to a specified destination. However, in 
reality, travel times are highly variable. GPS relies on certain estimates of travel time, 
but they may be outdated or inaccurate when a particular query is received. However, 
in the limited time available to make a decision, we may have an opportunity to collect 
a very small amount of information to help us choose a travel route. Some drivers 
located in different regions of the traffic network may be signed up to participate in a 
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program where their smartphone can send information on traffic congestion (using the 
ability of the phone to tell how fast it is moving) to the GPS. We can choose to query 
a small number of smartphones, receive real-time observations of traffic congestion, 
and use them to update our estimates and improve our implementation decision (the 
route we choose). 

Other Network Representations The graph does not have to represent a phys-
ical structure. Graphs are used in project management to represent precedence re-
lations between different tasks or assignments. Consider the problem of managing 
a software project that consists of a series of tasks. Some tasks must be completed 
in a specific order, whereas others can be tackled in parallel. Figure 15.4 displays 
precedence relationships for the following set of tasks: 

A 

B 

C 

D 

E 

Build preliminary demo 

Alpha testing, user feedback 

Preliminary market study 

Finalize design 

Plan production/distribution 

F 

G 

H 

I 

J 

Compatibility testing/QA 

Train support staff 

Final marketing campaign 

Begin production 

Ship to retailers and launch 

Each node in the graph represents a task, whereas an edge between tasks i and j 
indicates that i must be completed before j . In addition, each task has a duration di. 
Given T tasks, we can schedule the tasks in the following way. Let X{ be the starting 
time of task i and solve 

minxT, 
X 

Figure 15.4 Graph of precedence relations for tasks in software development. 
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subject to 

tj > U + di for all (i,j) E £, 
U > 0 fori = 1,...,T. 

We minimize the starting time of the last job. Another problem that often arises in 
project scheduling is known as the critical path problem. This is essentially the same 
as finding the longest path (the path with the largest total duration) from the first to 
the last job. The critical path is of interest to managers because it shows which jobs 
can be delayed without impacting key deadlines. 

The duration of a particular task is rarely known exactly. Preliminary estimates are 
often inaccurate, leading to unplanned delays. Before beginning the project, we may 
wish to improve our estimates by going into our archives and analyzing data from 
earlier projects that involved similar tasks. The data may be cumbersome to access 
(many such archives have yet to be digitized), so our time is limited. It then becomes 
important to use our learning budget effectively by singling out the tasks that seem 
most important, and focusing on creating good estimates of their duration. 

15.1.4 Discussion 

We have just seen several problems where the decision problem (we sometimes call 
this the implementation problem) is a linear or nonlinear program. Finding the ex-
pected value of a measurement can be computationally difficult. But we have seen 
that we can apply our optimal learning ideas within a learning algorithm to help us 
find a good measurement policy. 

Both of these problems could be formulated in the general framework of finding a 
measurement decision x to minimize EF(x, W). This is a very classical optimization 
problem with a rich algorithmic history. There are many algorithms which depend 
on the structure of the problem. An excellent reference for this problem class is Spall 
(2003) and the references cited there (the literature is extremely large). 

15.2 LEARNING ON GRAPHS 

We show how optimal learning can be incorporated into network optimization using, 
the shortest-path problem from Section 15.1.3 as an example. To make our analysis 
cleaner, we assume that the graph has no cycles, as in Figure 15.3. 

Optimal learning begins to play a role when we no longer know the cost vector 
c. Let us apply our standard modeling assumptions from Chapter 5. Suppose that, 
for each edge (i, j) e £, we have c^ ~ M (0^., /J9.), where /?° denotes precision. 
We put a Gaussian prior on the length of each edge, and assume that the edges are 
independent. This is a strong assumption: For example, if the graph represents a 
traffic network, as in some of the examples discussed in Section 15.1.3, one would 
expect the travel times on neighbouring streets to be heavily correlated. We will allow 
correlations in Section 15.4. For now, we focus on the insights that can be obtained 
if we make the independence assumption. 
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As in ranking and selection, the knowledge state in this problem can be written as 
S = (6, /?), a vector of means and variances. A set of beliefs about the edges induces 
a belief about the best path. Define Vn = V (s; 6n) to be the estimated length of the 
shortest path, given our time-n beliefs about the edge lengths. In other words, we 
simply run the Bellman-Ford algorithm using the estimates 6n as the costs, and use 
the quantity Vn as our time-n estimate of the shortest path. Bellman-Ford can also 
provide us with the path that achieves this estimated length. We refer to this path as 
pn. 

Now suppose that, before we commit to a path through the network, we have N 
opportunities to collect information about individual edges. If we choose to learn 
about (in,jn) at time n, we collect an observation VFn+1 ~ J\f (cij,^) and our 
beliefs evolve according to the familiar updating equations 

OWJMTTI + 1 an nn \oW r r r f i + i 
, Pi30i3^PH Wij j f (j A\ — (jU ATl\ 

IJ 

on+1 _ J h'ij ' rij if (iJ) = (inJn), (15.13) 

Just as in ranking and selection, we change our beliefs about one edge at a time. 
However, a small change in our beliefs about a single edge can have a profound effect 
on our beliefs about the shortest path. Figure 15.5(a) shows the graph from Figure 
15.3, with the addition of prior beliefs about the edge lengths, represented by bell 

(b) 

Figure 15.5 (a) The effect of a measurement of a single edge (dotted line) on our beliefs about 
the shortest path (solid line), (b) The updated shortest path given a particular measurement. 
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curves. The solid line in Figure 15.5(a) represents the path from node 1 to node 9 that 
we currently believe is the shortest. When we measure the edge (6,8), the outcome of 
our observation is smaller than expected, leading us to shift that particular bell curve 
to the left. Because this edge now seems shorter than before, we prefer to route our 
path through it, leading to the new solution in Figure 15.5(b). We only changed our 
beliefs about one edge, but the shortest path now looks very different from before. 

Our objective is to choose a policy TT for allocating the N measurements in a way 
that minimizes 

mmEF^faW), (15.14) 
7T 

where F71" (c, W) = VN, the final time-TV estimate of the length of the shortest path. 
Equation (15.14) reflects the key difference between learning on a graph and ranking 
and selection: we measure individual edges ("alternatives") just as before, but now 
we are no longer interested in finding the single alternative with the best value. We 
seek to measure alternatives that help us improve our solution to the shortest-path 
problem. 

To see how this can be done, let us examine the impact of a single measurement on 
our solution, that is, the difference between Vn and "Kn+1 brought about by measuring 
(i, j). For a fixed edge (i, j) define two paths as follows. The path p^ is defined to 
be the shortest path containing (z, j), based on the time-n beliefs, whereas p^- is the 
shortest path not containing (i, j), again according to the time-n beliefs. Both paths 
are easy to find. For p^-, we can run Bellman-Ford to find the shortest path from s 
to i, and again for the shortest path from i to t. We then use (i, j) to connect these 
two paths. To find pPj, we merely run Bellman-Ford once on a modified graph with 
the edge (i,j) removed. Figure 15.6 gives a visual illustration. 

Keep in mind that these two paths also depend on our beliefs at time n. When we 
run Bellman-Ford to find pfj and p^, we use 6n for the edge costs. The algorithm 
will also provide us with V^ and Vjj , the estimated lengths of both paths. A length 
of a path is simply the sum of the estimates 0g. on every edge (i,j) in the path. 

The key insight of this section is the following. If we measure (i,j) at time-n, the 
path p n + 1 that will be optimal under the time-(n + 1) beliefs (that is, the path that we 
will get by running Bellman-Ford with the costs c n + 1 at time n + 1) will necessarily 
be either p™- or p£-. To understand this result, it helps to think in the following way. 

(a) (b) 

Figure 15.6 Illustration of (a) the best path containing (i,j) and (b) the best path not 
containing (i,j). 
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Suppose that (i,j) is already part of the current optimal pathpn. Then, if we measure 
it, our beliefs about it will either improve (in which case pn will become even better 
than before) or get worse to the point where it is no longer advisable to route a path 
through (i , i ) . In the latter case, the best choice among the remaining paths is p ^ . 
Similarly, if (i, j) is not part of pn, our beliefs about it will either get worse (in which 
case we will keep the current optimal solution), or get better to the point where we 
will choose to route our path through (i, j). In the latter case, p^ will be the best 
such route. 

This argument allows us to calculate 

vr 
KG,n E[Vn _ yn+1 | Sn^ {jn^ j n ) = ( y ) ] ? ( m 5 ) 

the expected improvement contributed to our estimated length of the shortest path 
by a single measurement of (i, j). We reprise the knowledge gradient notation of 
Chapter 5 because i/-• ' n is the exact analog of (5.1), the marginal value of a single 
measurement. We merely replace maxx' 8™+l — max^ 0™,, the improvement in the 
estimated value of the best alternative, with Vn — Vn+1, the improvement in the 
estimated value of our current implementation decision, which is the solution to a 
shortest-path problem. Our measurement decision can then be written as 

( r , r ) = a r g r n a x ^ G ' n , 
(*.J) 

the edge with the highest value of information. 
In fact, (15.15) has a closed-form solution 

( I yn _ yn I \ 

a?.— J' (15,16) 

which is remarkably similar to (5.10), the KG formula for ranking and selection. As 
before, the quantity 

represents the reduction in our uncertainty about (i, j) brought about by a single 
measurement of this edge. The function / (z) = z& (z) + (j) (z) is exactly the 
same as before. The main difference is in the computation of the normalized influ-
ence. Where (5.8) uses the quantity |0£ - m a x ^ * <9£,|, (15.16) uses \Vfi - Vg|. 
This can be thought of as a generalization of (5.8). In ranking and selection, the 
implementation decision was the same as the measurement decision. We measured 
individual alternatives in order to find a good alternative, and the influence was de-
termined by the distance between the alternative we chose and the best of the others. 
In this setting, the influence depends on the distance between the best implementa-
tion decision containing the chosen edge (alternative), and the best implementation 
decision not containing that edge. 
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15.3 ALTERNATIVE EDGE SELECTION POLICIES 

The value of the KG concept, aside from giving us an algorithm for making decisions, 
is that it allows us to think about new problems. It is not immediately clear how to 
carry over ideas like Gittins indices, interval estimation, or UCB methods to a problem 
where the measurement decision is distinct from the implementation decision. On the 
other hand, the concept of the marginal value of information can be easily extended to 
such problems. In (15.15), we defined KG as the expected improvement made in our 
estimate of the value of the optimal implementation decision. We will see in Section 
15.4 that this same idea can be used together with more general optimization models. 

Still, there are always alternatives. For example, it is possible to shoehorn the 
graph problem into the framework of ranking and selection, using the concepts we 
developed in Chapter 9 for subset selection. A shortest-path problem can be viewed 
as a type of subset selection, because a path is just a subset of the edge set £. We 
can convert the problem of learning on a graph into a ranking and selection problem 
where each alternative is a path. The only issue is that a graph is typically described 
by a set of nodes and edges. The set of all possible paths is typically very large and 
difficult to enumerate. Fortunately, we can use Monte Carlo simulation to create a 
small choice set of paths, as in Section 9.3. 

Given the current knowledge state (#n,/3n), fix an integer K. For every (i, j ) G £, 
generate samples c?. (uk), k = 1,..., K from the prior distribution J\f (0^,(3^). 
Now, for every k = 1, ...,if, run the Bellman-Ford algorithm using the sampled 
costs c71 (uJk)> The resulting path p% is the optimal solution for the kth sample. 

Our beliefs about the edges now induce a set of beliefs (0vaths>n, ^aths^n) on the 
K paths we generated, according to the equations 

Tpaths,n _ \ ^ 1 T 1/ _ -. K 

^k,l - Z^ 7jn> AC,AC - 1 , . . . , A . 

We can now apply any standard ranking and selection algorithm (including KG with 
correlated beliefs!) to this prior. The result will be some path p*. We can then use a 
simple heuristic to pick a single edge to measure from this path. One sensible choice 
is 

( i n , j n ) = axg min /^-, 

the edge with the lowest precision on the path of interest. This approach allows us to 
avoid having to re-derive a KG formula every time we work on a new problem class. 
Instead, we can simply use the old framework of ranking and selection a little more 
flexibly. 
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15.4 LEARNING COSTS FOR LINEAR PROGRAMS* 

We now extend the learning problem described in Section 15.2 to the broader setting 
of a general LP. This section is intended for readers with an interest in more advanced 
topics. Some familiarity with LP geometry and duality theory will be very helpful 
for understanding this material; Chvatal (1983) or Vanderbei (2008) are useful LP 
references. 

We return to the optimization problem 

V(c) = maxx cT#, (15.17) 

subject to 

Ax = 6, 
x > 0, 

with which we started this chapter. Recall that, by the strong duality property of 
linear programming, 

V(c)= m i n ^ bTy, (15.18) 

subject to 

ATy - s = c, 
s > 0. 

That is, the dual LP has the same optimal value. We can let x(c), y (c) and s (c) 
represent the optimal primal and dual solutions, that is, the choices of x, y, s in (15.17) 
and (15.18) that achieve the value V (c). 

Now, we assume that c is unknown (the other parameters A and b will still be 
known), and begin with a multivariate Gaussian prior c ~ J\f (0°, E°). As in Section 
15.2, we have a budget of N measurements of individual objective coefficients which 
we can use to improve our solution. Measuring the jth coefficient will give us an 
observation from the distribution N(CJ,\J) where Xj denotes a known variance. 
Measuring j n at time n will cause our beliefs to change according to the equations 

/m+l __ nn 

ym+1 yn 

exactly as in (2.22) and (2.23). We can see that the graph problem in Section 15.2 is 
just a special case of this more general problem. The graph structure can be encoded 
in the matrix A, and we no longer require independent beliefs. Our knowledge state 
Sn = (6n, En) consists of the parameters of the multivariate Gaussian distribution. 

wn+1 — o^ 
Xjn 

E n 

Ai« 

p.^pT yn 
3 W n ^ 

i yn ' 
-T ^jnjn 

lef 
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(a) (b) 

Figure 15.7 The optimal solution V (6n + a (j) z) remains unchanged over a range of values 
of z. 

At time n, our beliefs about the optimal value of the LP are given by V (0n). 
We simply solve the deterministic LP (using the simplex method or any standard 
software package such as Excel) using the vector 0n for the objective coefficients. 
Our objective is to choose a measurement policy TT to maximize 

maxEF*(c,W) 

with F*(c, W) = V(cN). The KG factor in this problem can be defined as 

v 
KG,n _ w r T / / / m + l 
J 

E [V{6nJrl) - V(0n) | SnJn = j] . (15.19) 

Next, recall from (5.16) that the conditional distribution of 6n+l, given that we 
measure j at time n, can be written as 

where Zn+l ~ A/"(0,1) and a(j) = A
 ej is a vector of variance reductions. 

Thus, the challenge of computing the expectation in (15.19) reduces to solving 

E[V{9n+1) | SnJn = j] = EV{6n + a (j) Z n + 1 ) , (15.20) 

which is the expected value of a linear program with a stochastic objective function. 
In general, this problem is computationally intractable. However, in this specific case, 
the randomness in the objective function depends on a single scalar random variable. 
The expression V {0n + a (j) Z n + 1 ) can be interpreted as the optimal value of an 
LP whose objective function 0n is perturbed by a single stochastic parameter Z n + 1 . 
If Z n + 1 were to be replaced by a fixed quantity z, this would be a standard problem 
in LP sensitivity analysis. In our case, we have to analyze the sensitivity of the LP 
over the entire distribution of Z n + 1 . 

Let us recall two facts from linear programming. First, the optimal solution always 
occurs at a corner point (or "extreme point") of the feasible region. Figure 15.7 shows 
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an example in two dimensions where the shaded region represents the set of feasible 
solutions x. For some fixed value z, the dashed lines in Figure 15.7(a) represent 
the level curves of the objective function, or points where (8n + a (j) z) x = afor 
different values of a. The value of a that makes the level curve tangent to the feasible 
region is precisely V(8n-\-a(j)z), and the corner point where the level curve touches 
the feasible region is the optimal solution x (cn + a (j) z). 

The second fact is that, for small enough changes in the sensitivity parameter z, 
the optimal solution x{cn + <J($)Z) does not change. In Figure 15.7(b), we change z 
slightly, rotating all of the level curves. However, the optimal level curve is tangent 
to the feasible region at the same point as before. The range of values of z for which 
the optimal solution does not change is sometimes called the invariant support set. 
We can rewrite EV(On + a (j) Zn+1) as a sum of integrals over the different possible 
invariant support sets. Suppose that z\,..., zj are a finite set of points, arranged in 
increasing order, such that x (9n + a (j) z) is constant for all z\ < z < zi+\. Then, 
for every 2, there is a single corner point xi satisfying Xi = x (6n + a (j) Z n + 1 ) for 
Zi < Z n + 1 < Zi+i. Consequently, taking the expectation over the distribution of 
Z n + 1 , we obtain 

EV(6n + a(J)Zn^) = J2 [Z+1 ( r + ^j)z)Tx^z)dz 

= J2 a»($(2i+i) - *(**)) + biMzi) - <t>(zi+i)), 
i 

wherea, = (9n) xtandbi = a (j) X{. It turns out that this expression is equivalent 
to 

EV(6n + a(j)Zn+1) = (maxoi) + ^ ( & i + i - 6 i ) / ( - W ) , 
i 

where / is once again the familiar function / (z) = z& (z) + (f>(z). We now make 
the observation that 

max a* - max(0n)TXi = V{6n), 
i i 

because max^ a% is the largest time-n objective value at all of the extreme points that 
could ever be optimal for any perturbation z, including z = 0. Therefore, x (9n) is 
one of the points xi and its value is precisely V (0n). Therefore, 

EV(6n + a(j)Zn+1) = V{6n) + ^ (6i + 1 - h) / ( - |«<|) . (15.21) 
i 

Combining (15.19), (15.20), and (15.21) gives us 

vKG,n = ^2 (6.+1 - hi) f{-\zi\), (15.22) 
i 

which looks identical to the computation of KG in ranking and selection with corre-
lated beliefs (Section 5.3), with the important difference that the breakpoints zi now 
represent the values of Z n + 1 that change our implementation decision, which in this 
case is a corner point of the LP. 
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In the remainder of this section, we explain how the breakpoints zi and the cor-
responding corner points Xi can be computed. After this is done, computing the KG 
factor is a simple matter of applying (15.22). We can find the breakpoints by starting 
with x{9n), which is the optimal solution when 2 = 0, finding the breakpoints that 
are nearest to z = 0, and expanding outward until all the breakpoints have been 
found. 

Our first order of business is to determine whether z — 0 is itself a breakpoint. We 
can do this by calculating the smallest and largest values of z for which x(9n) is an 
optimal solution of the perturbed LP. These quantities, which we denote as z- and 
2+, are the optimal values of the LPs 

z- = min^s^ 2, (15.23) 

subject to 

ATy - s - za(j) 
x(6n)Ts 

s 

and 

2_|_ = maxy)Sj2 2, (15.24) 

subject to 

ATy-s-za(j) = 0n, 
x(0n)Ts = 0, 

s > 0. 

The feasible region, which is the same in both (15.23) and (15.24), merely ensures 
that x (6n) continues to be an optimal solution of the perturbed LP. Recall that there 
are three conditions for x to be an optimal solution to the primal LP (15.17) and y, s 
to be an optimal solution to the dual LP (15.18). First, x has to be primal-feasible. 
Second, y and s have to be dual-feasible. Third, we must have xTs = 0, known as 
the complementary slackness property. In our case, x (6n) is automatically feasible 
for the perturbed LP, because it is optimal for the unperturbed LP 

V(9n)= max, (6n)Tx, (15.25) 

subject to 

Ax = 6, 
x > 0, 

which has the same feasible region as the perturbed LP. The constraints ATy — s — 
zcr(j) = 0n and x(6n)Ts — 0 in (15.23) and (15.24) simply ensure that we are able to 
find a solution to the dual of the perturbed LP that maintains complementary slackness 
with x (0n). We are looking for the smallest and largest values of the perturbation 
2 for which this is still possible. We now analyze four possible outcomes of this 
procedure. 

= 6n, 
= 0, 
> 0, 
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(a) (b) 

Figure 15.8 When z~ — 0, the optimal level curve is tangent to a face of the feasible region. 
The endpoints of this face are x(6n) and xi(6n). 

Case 1: z— < 0 < z+ In this case, z = 0 is not a breakpoint. This is the case 
illustrated in Figure 15.7(a). The level curve of 8n is tangent to a single corner point. 
However, both z- and z+ are breakpoints. 

Case 2: Z- = 0, z+ > 0 When zero is a breakpoint, the optimal level curve is 
tangent to a face of the feasible region, rather than to a single corner point, and the 
solution x (9n) is located at one corner of the face. Figure 15.8(a) provides a visual 
illustration. If we apply a positive perturbation 0 < z < z+, the level curves will 
rotate clockwise, but x (6n) will still be the optimal solution. However, any negative 
perturbation will rotate the level curves counterclockwise and change the optimal 
solution. 

To find the next breakpoint zi(9n) < 0, we first need to locate the other corner 
xi(9n) of the face. This solution will still be optimal for the unperturbed LP, but it 
will also be optimal for the perturbed LP with z = zi(9n). 

We can do this by solving two LPs. First, xi(6n) is the optimal solution to the 
problem 

Vi(0n)= minx d{j)Tx, (15.26) 

subject to 

Ax = 6, 
s(Onfx = 0, 

x > 0. 

Any feasible solution to this problem continues to be optimal for the unperturbed LP 
in (15.25). In Figure 15.8(a), such a solution would be located somewhere on the face 
of the feasible region. Of all such points, the x with the lowest a(j)Tx corresponds 
to the opposite corner of the face. The optimal value of the LP 

zi(8n)= m i n ^ , , z, (15.27) 
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subject to 

ATy-s-za(j) = 6n, 

Xl(0n)Ts = 0, 
s > 0, 

corresponds to the next breakpoint, the most negative perturbation for which the 
perturbed LP still has x\ (9n) as an optimal solution. The relationship between x(6n), 
xi(6n), and Zi(9n) can be seen in Figure 15.8(b). 

Case 3: z_ < 0, z + = 0 Zero is still a breakpoint, but x (0n) is now at the 
opposite corner of the face. We can now rotate the level curves counterclockwise 
without changing the optimum, but not clockwise. The next corner point xu (0n) is 
the optimal solution to the problem 

Vu(6n) = max a(j)Tx, (15.28) 
X 

subject to 

Ax = 6, 
s(6n)Tx = 0, 

x > 0. 

The next breakpoint zu(6n) > 0 is the optimal value of the LP 

zu(0n) = maxy)S), z, 

subject to 

ATy-s-zd(j) = 6n, 
xu(On)Ts = 0, 

s > 0. 

Case 4: z- = z+ — 0 Zero is a breakpoint, so the optimal level curve for 
the vector 6n is still tangent to a face of the feasible region. However, x (0n) is no 
longer a corner point. Rather, it is somewhere in the middle of the face. We can 
sometimes discover optimal solutions like this if we use an interior-point algorithm 
to solve (15.25) instead of the simplex method. Fortunately, this case is easy to deal 
with: We simply solve (15.26)-(15.29) all together to find both corner points of the 
face at the same time. 

Putting It All Together We can repeat this analysis to find sequences of positive 
and negative breakpoints. For example, if Z- = 0 and z+ = 0, as in Case 2, 
we can find z\ (0n) and then repeat the analysis of Case 2 again, this time with 
0n -f <J (j) zi (6n) as the "unperturbed" objective function, in place of 0n. This will 
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give us the next negative breakpoint after z\ (6n), and so on, until (15.27) becomes 
unbounded, which means that the same solution will continue to be optimal regardless 
of how much we perturb the objective function. The procedure to find a vector z of 
breakpoints and a vector x of corresponding corner points can be summarized as 
follows. 

1) Solve (15.25) to obtain x(6n), y(6n) and s(6n). 

2) Solve (15.23) and (15.24) to obtain z_, z+. 

2a) Ifz_ < 0 < z + , l e t z = (z_,z+) andx = (x(6n)). 
2b) Otherwise, let z = (0) and let x be an empty vector. 

3) While minz > — oo, do the following: 

3a) \J&0' = 0n + a(j)mm.z. 
3b) Find xx {0') and zx (0') using (15.26) and (15.27). 
3c) Update z <— (min z + z\ (0f), z) and x «- (xi (9f), x). 

4) While maxz < oo, do the following: 

4a) Let 6' = 6n + cr (j) max z. 
4b) Find xu {6') and zu (6f) using (15.28) and (15.29). 
4c) Update z —̂ (z, m a x z i zu (9')) and x <— (x, xu (61)). 

Learning the coefficients of a mathematical programming model is a relatively new 
setting, which we present as a way of hinting at the breadth of potential applications 
of optimal learning. 

15.5 BIBLIOGRAPHIC NOTES 

Section 15.1 - For other important mathematical programming applications (with a 
focus on the network and LP models considered in this chapter), see Vanderbei 
(2008). 

Sections 15.2 -15.3 - These sections are based on Ryzhov & Powell (201 lb). Prior 
to this paper, several authors in the computer science community addressed 
the "bandit shortest path" problem, which would be the online version of the 
shortest path problem that we consider. For example, Abernethy et al. (2008) 
describes an algorithm that requires enumerating all the paths, ignoring the 
structure that arises from overlapping paths. Takimoto & Warmuth (2003) 
describes the use of a hedging algorithm for the online shortest path problems. 
Stochastic shortest path problems have been studied even earlier (Kulkarni 
1986, Snyder & Steele 1995, Peer & Sharma 2007), but usually with the 
assumption of a known distribution for the rewards. 

Section 15.4 - This material is due to Ryzhov & Powell (201 la). The procedure for 
finding breakpoints comes from Ghaffari-Hadigheh & Terlaky (2006). 



CHAPTER 16 

OPTIMIZING OVER CONTINUOUS 
MEASUREMENTS 

There are many applications where we have to choose the best value of a continuous, 
multidimensional vector x. One example arises in the electricity sector, where utilities 
have to deal with the high variability of electricity spot prices. One strategy is to use a 
battery to store energy when prices are low, and release energy when prices are high. 
The idea is illustrated in Figure 16.2, where we store energy when the price goes 
below xstore, and we release energy when the price goes above x

wlthdraw. We now 
face the problem of deciding how to choose x = (x*tore^xwithdrawy L e t ^x) b e 
the expected profits per day that we obtain from using a policy fixed by x, where we 
assume we can only obtain noisy estimates of /JL(X). Our challenge, as with elsewhere 
in this volume, is finding the best value of x as quickly as possible. 

While we do not know the true function /i(x), we imagine it might look like the 
surface shown in Figure 16.2. We are going to assume it is smooth, but not necessarily 
concave (or convex, if we were solving a minimization problem). If x had only one or 
two dimensions, we could discretize it and use the techniques presented in the earlier 
chapters, although even two dimensions starts to become problematic if, for example, 
we would like to discretize each dimension into 100 intervals. If we have three or 
more dimensions, discretization quickly becomes cumbersome. 

Optimal Learning. By Warren B. Powell and Ilya O. Ryzhov 325 
Copyright © 2012 John Wiley & Sons, Inc. 
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Figure 16.1 A battery charging problem, where we storage energy when the price goes below 
xstore ^ a n d withdraw it when the price goes above x

withdraw. 

There are a number of problems which require tuning continuous but relatively 
low-dimensional parameter vectors. Some examples include: 

■ Finding the best parameters that govern a business simulator - We might have 
a model that simulates the use of ambulances, or a manufacturing system that 
depends on the speed of different machines. A model of freight transportation 
may require assumptions on the time that drivers have to rest or the maximum 
time that a customer may be served early or late. 

■ Tuning the concentrations of different chemicals - We may be trying to max-
imize the yield of a chemical process that depends on the concentrations of 
different additives (we may also have to vary the temperature of different steps 
of the process). 

■ Design of devices - The design of an aerosol spray can requires tuning the 
diameter of the feed-in tube, the spacing between the feed-in tube and the 

Figure 16.2 Illustration of the surface generated by varying x
store and x 
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aerosol spray tube, the diameter of the aerosol spray tube, and the pressure in 
the can. 

In some cases, these parameters have to be tuned using field experiments or physical 
lab experiments, while in other cases they can be done using computer simulations. 
Computer simulations may run in a few minutes, but in some instances they can require 
hours or even days to complete a single run. Laboratory and field experiments can be 
even more time-consuming, and are generally much more expensive. For this reason, 
we want to choose our measurements carefully so that we learn as much as possible 
from each function evaluation. 

We are going to continue to use our notation that /i(x) is the true value of the 
function at x. The only difference is that x is now a continuous vector. We are 
going to make a series of measurements x°, x1,..., xn, from which we make noisy 
observations of our function of the form 

£n+1=Mxn)+£n+1. 

We assume that £ is a random variable that is normally distributed with mean 0 and 
variance A. We wish to design a sequential search policy IT that guides the selection 
of x1, giving us an estimate of the value of our function which we represent as 

F* = »(xN), 

where xN = a r g m a x ^ ^ /JLN(X) , and (JLN(X) is our estimate of /x(x) after TV mea-
surements obtained by following policy 7r. Our challenge is to find the policy 7r* that 
solves 

F* = m a x F \ 

This chapter addresses the problem of tuning these multidimensional parameter 
vectors for problems where we do not have access to derivatives. As always, we 
assume that observing fi(x) is time consuming and/or expensive, and noisy. Also, 
while we focus on multidimensional parameter vectors, our experimental work as of 
this writing is for vectors where the number of dimensions is less than 10. 

16.1 THE BELIEF MODEL 

In previous chapters, we have considered different ways of representing our belief in 
the function. We started with a lookup table, where we assumed that x was discrete, 
and there was an estimate 6™ for each x (see, for example, Chapters 4 , 5 , and 6). We 
have also considered models where we used linear regression to approximate fi(x) (as 
in Chapter 8). In this chapter, we need a different belief model since we have almost 
no idea about the structure of our function, but we do know it is continuous. For 
this reason, we are going to use an approach known as Gaussian process regression 
which is a class of nonparametric models which creates an approximation based on 
all prior observations. 
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We begin with a prior 9°(x), which is now in the form of a continuous function. 
We are going to use our policy to generate a sequence of measurements x°,..., xn~l, 
and we are going to use these points to approximate our function. Thus, after these 
n measurements y1,..., yn, we will have a belief 6n (x) at each of these points. We 
also need to capture the covariance in our beliefs about the function at each of these 
points. We define the n x n matrix E n , where E?- = Covn(fi(xl),fjJ(xj)) is the 
covariance in our belief about \x at x% and x-7 after n iterations. Note that each time 
we make a new measurement, 6n grows by one element, while the matrix E n adds a 
row and a column. 

We are going to take advantage of the continuous structure of the problem and 
assume that we can write the covariance in our belief between any two points using 
the function 

p 

CcwV**)./*(**)) = /3exp(- £ atixl - xlj2), a > 0,/3 > 0. (16.1) 
7 7 1 = 1 

It is common to refer to the p-dimensional vector a as the activity of/x, while the scalar 
parameter j3 captures the uncertainty of our belief about fi. The activity parameter 
a controls the degree of smoothness, where the function becomes smoother as a 
becomes smaller. For larger values of a , the covariance between two points shrinks 
with a , which means that we learn less about //(#*) and /x(#J') as x% and xj become 
farther apart. 

16.1.1 Updating Equations 

We have to learn how to update our beliefs about /i(#*), i = 1 , . . . , n as we make 
more observations. We are going to use the property that the vector 0n follows a 
multivariate normal distribution, where En/ji(xl) = 6n(xl) and the covariance matrix 
is given by E n . Throughout this chapter E n refers to the conditional information 
given the history of observations y1,..., yn. 

We start by calculating a vector yn which we call measurement residuals using 

[yn. 
-

' e°(x°) ' 

f{xn~1)_ 

This is the difference between our observations yl, i = 1 , . . . , n , and our original 
belief 9°(x%), i = 1 , . . . ,n. We also define the residual covariance Sn which is 
updated using 

Sn = E° + diag([A(a;0),.., A ^ " 1 ) ] ) . (16.3) 
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Expanded into matrices, this is the same as 

e n 

o n 

S?i • 

sn. • 

on 

e n 
^in 

on ann . 

= 

y° 

4 ■•'• 

" 

+ 

- A(*°) 

0 

. 0 

E?< ••• 

4 ••'• 

0 

0 

0 X(xi) 

: o 

y° ~ 

Z7T, 

0 

0 A 

0 

0 

Finally, we are going to compute the gain matrix, denoted Kn using 

Kn = Euj5nj O r c n i - l (16.4) 

As we see shortly below, the gain matrix is used to weigh new information, which 
plays the same role as a stepsize. 

The updating equations for the mean vector 9n and the covariance matrix Sn are 
now given by 

qn/' 0 (*») 

9n(xn-1)_ 

e°(x°) 
+ Knr 

e°{xn-1)\ 

{In ~ Kn)E°. 

(16.5) 

(16.6) 

where /„ is the n x n identity matrix. 
Equations (16.5) and (16.6) update our beliefs around the points x°,... ,xn that 

we have already measured, but we also need a belief for an arbitrary point x, since 
we need to search over all possible points to determine the next point that we might 
wish to evaluate. We begin by defining 

t,n = En([x°,...,xn-1,x}). 

Let 0 be a column vector of zeroes. Our new gain matrix is given by 

"J ' 
Kn = E° 

O7 
W 7 1 1 - 1 (16.7) 
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We can now find 9° and S° for an arbitrary (n + l)st point x using 

en(x°) ] r 0°(z0) 

en(xn~1) 
en(x) 

9°{xn-1) 
0°(x) 

+ Knyn, 

S" = (In+1-Kn[ln | 0])E°. 

(16.8) 

(16.9) 

If we want the distribution of fi(x) given our n observations at some arbitrary decision 
x, we can use (16.8) and (16.9) to obtain 

9n(x) = 0o(x)+[S°(x°,x) ,..., £0(zn-1,;r)][S'Tl]-1yT\ (16.10) 
r x°(x°,x) ■ 

E"(x,x) = X°{x,x)- [E°(i°,x) , . . . , E 0 ^ - 1 , ^ ) ] ^ " ] - 1 : 
L E 0 ^ " - 1 , ^ ) . 

(16.11) 

Equation (16.10) is known as Gaussian process regression (GPR) in some commu-
nities, and regression kriging in others. 

We have to choose the point xn = x to measure before we have observed the 
outcome yn+l. The updated regression function, given the observations y1,..., yn, 
is normally distributed with distribution 

■ en+1{x°) ' 

en+1(xn-1) 
I en+1(xn) 

n/„0\ en{x{ 

en(xn-1) 
en(xn) 

n „n\yn+l + a(Xn,xn)Z' (16.12) 

(16.13) 

where Z n + 1 = (y n + 1 - 8n(xn)) /^\{xn) + En(xn,xn), with 

y/X(x) + e^ex 

Here ex is a column vector of zeroes with a 1 at the row corresponding to decision x. 
It can be shown that Z n + 1 is a standard normal random variate (mean 0, variance 1) 
because Var(£n+1 - 6n(xn)\Fn) = X(xn) + Zn(xn,xn). 

16.1.2 Parameter Estimation 

Our model is characterized by the p-dimensional vector a, the scalar (3 and the noise 
A, as well as our prior 0°(x). There may be problems where we feel we can assume 
these are known, but in practice we are going to have to estimate them from data. As 
is so often the case with statistical estimation, there is more than one way to solve 
this problem, but a popular method that we have found works quite well is maximum 
likelihood estimation (MLE). 
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MLE starts by creating a likelihood function which is the product of the density 
(using the normal distribution) of all the prior observations given the unknown pa-
rameters. We take the log of this product (giving us the log-likelihood), and then find 
the values of the parameters to maximize the resulting sum. 

We form the likelihood function using 

Ly (a, 0, A ( A ..., A ^ " 1 ) , 0°(x°),..., 0\xn'1)) 

= (27T)" 
- n / 2 I Q n i - 1 / 2 

exp 

/ 

V 

| 0 / „ 0 i -,T 

y'-e\x°) 

yn - f l V " " 1 ) . 
(571)-1 

V) 

V""1). 
Now, if we assume that the variance of the observation noise, A(-), is a constant A 

and 0°(-) is a constant 9°, we can write the likelihood function as 

Lf(a,p, A,0°) = (27r)-n/2|E° + XIn\ - 1 / 2 exp( --(y- ^0l)T(E0 + A7n)-1(y-^°i ; 

where 1 is a n x 1 column vector of ones and y = [y1 • ■ • yn] . Note that in 
this case we are estimating p + 3 parameters using n observations. We can write the 
log-likelihood function as 

«*(£*, 0, A, 0°) n 1 
-- log(27r)-- log( |E° + AJn|) 
~{y - 0°1)T(£° + \In)-\y - 9°1). (16.14) 

We can approximately maximize the likelihood over the parameters by using the 
function pa t t e rnsearch in MATLAB started at multiple points chosen by a Latin 
hypercube sampling (LHS) design using the command Ihsdesign. Also, in the 
above log-likelihood we can easily solve for 6° in terms of a, j3, and A, giving us the 
estimate 

e° = 
yT(^ + \In)-'l 
l ^EO + A ^ ) - 1 ! ' 

Finally, to prevent numerical issues, if |£° + XIn\ is very small in (16.14), a useful 
equivalent expression to log(|E° + A/n|) is trace(logm(£° + A/n)) where logm is 
the matrix logarithm. 

We typically will have to perform an initial sample of measurement points x to 
obtain a starting estimate of a , (3 and A. If d is the dimensionality of our parameter 
vector (the sum of the dimensions of a, /? and A), a common rule of thumb is to perform 
a Latin hypercube design with 2d plus 2 points. In MATLAB, we can use Ihsdesign 
to choose the points x 1 , . . . , x2d+2. However, as the number of dimensions grows, 
the value of a LHS design diminishes, and it is better to simply choose the starting 
measurement points at random. 
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Figure 16.3 Illustration of sample realizations of one-dimensional Gaussian surfaces. 

16.2 SEQUENTIAL KRIGING OPTIMIZATION 

Sequential kriging uses a form of meta-modeling that assumes the surface is repre-
sented by a linear model, a bias model and a noise term, which we can write using 

H(x)= ^Of<l>f(x) + Z(x) + e. 
feT 

Here, T is a set of features, 4>f(x) is a basis function (also known as an independent 
variable) corresponding to feature / , and Z(x) is a term that represents the systematic 
bias due to the limitations of the basis functions. 

The kriging meta-model is based on the idea that the bias function Z(x) is a 
realization of a stationary Gaussian stochastic process. If # is a d-dimensional vector, 
we assume that the covariance between Z(x) and Z{x') can be written as 

Cov{Z{x),Z(x')) = £exp ■J2®i(xi-Xi)2 

=i 

where, as before, /3 is the variance of the stochastic process while oti scales the 
covariance function for each dimension. 

Samples of one-dimensional Gaussian surfaces are illustrated in Figure 16.3, which 
shows curves generated from different values of the activity variable a. Smaller values 
of a produces slower, undulating surfaces, while larger values of a (which reduces 
the correlations between nearby points) produces surfaces that undulate with higher 
frequencies. If this is the bias, it means that the true surface is likely to be reasonably 
smooth. It is important to realize that Z(x) is not a random noise term with zero mean 
(which would imply that the approximation is unbiased). A sample realization oiZ{x) 
is the bias for a specific function fi(x) and a specific approximation represented by 
the set of basis functions (j> and regression vector 8. 
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The best linear predictor Yn(x) of JJL(X) after n measurements is given by 

n n 
+ YJCov{Z{xi),Z{x))Y,Cov(Z{xi),Z{xj)){yi - £ ^ / ( z ) ) , 

*=i j=i feT 

where 6n is the least squares estimator of the regression parameters after n observa-
tions. 

The idea of sequential kriging is to use the expected improvement I(x) resulting 
from measuring the function at x. We start by illustrating this for a function f(x) 
that can be observed deterministically. Let xn be the current best solution given our 
current approximation. After n measurements, let F(x) represent our belief about 
f(x) which is normally distributed with mean Yn(x) and variance a2,n(x). The 
expected improvement, given the history of n observations, can be written as 

En[I(x)] = Enmax(/(x*) - F ( x ) , 0 ) . (16.15) 

We need to build on this idea to handle the issue of noisy measurements. Se-
quential kriging optimization (SKO) uses the following expression for the expected 
improvement 

EnI(x)=En[mBx{Yn(xn-^x)iO)] (1 - J c = ) ■ (16.16) 

The first term on the right hand side of (16.16) mimics the expected improvement 
term used if we could measure the function deterministically in equation (16.15). The 
second term in (16.16) represents a heuristic adjustment term that rewards uncertainty. 
If cr2,n(x) = 0, then this adjustment term is zero and we would not place any value 
in measuring that point. 

The expectation can be calculated analytically using 

E>ax(rv*) -M*)) ] = (rn(*") - ?nW)*(Yn{x**al(Jn{x)) 
+ °W*{ ^ ) )' 

where </> and $ are the standard normal density and cumulative distribution functions. 
Define a utility function that captures the uncertainty associated with a point x 

after n observations. For example, we might choose 
un(x) = -(Yn(X)+(Tn(x)). 

We choose our effective best solution, #**, by maximizing the utility. We could try 
to search over the entire region x G X, but a common shortcut is to limit the search 
over previously sampled locations x1,..., xn, giving us the rule 

x** = arg max [un(x)]. 
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16.3 THE KNOWLEDGE GRADIENT FOR CONTINUOUS 
PARAMETERS* 

We now return to the knowledge gradient concept, and develop an algorithm that is 
adapted to problems with continuous parameters. It helps to remind ourselves of the 
definition of the knowledge gradient, which is given by 

-max6n(x'), (16.17) 
x'ex 

where E n refers to the conditional expectation given all prior measurements. Thus, 
E n means the only random variable is the observation yn+1 from measuring x. The 
knowledge-gradient policy chooses the sampling decision at time n by maximizing 
the knowledge gradient, 

xn e argmaxxeXi/KG'n(x). (16.18) 

When the set of choices X was a small, finite set of discrete measurements, solving 
the maximization problem in (16.18) was easy: We just evaluated the knowledge 
gradient at each of these discrete points and chose the best. Now that x is continuous 
(and probably a vector), solving (16.18) has become its own optimization problem. 
In this section, we describe a search algorithm for solving this optimization problem. 

16.3.1 Maximizing the Knowledge Gradient 

Recognizing that the knowledge gradient vKG'n{x) is a continuous surface, we can 
use a classical steepest ascent algorithm for finding the point xn that maximizes 
uKG,n ^ ^ n e j ( j e a j s t 0 u s e a s t a r tmg point xn>° and run a fixed number of iterations 
M of the algorithm 

x n , m + l = xn,m + ^ V J / K G ' n ( x n ' m ) . (16.19) 

If V
KG^ (x) was a concave function, this algorithm should return the optimal solution. 

However, uKG,n(x) is highly nonconcave. The reason is that each time we measure 
a point xn of our original function, the knowledge gradient tends to form a local 
minimum around this point, reflecting our higher level of confidence at this point 
and its neighboring region. This behavior is illustrated in Figure 16.4, which shows 
the knowledge gradient surface after we have evaluated four corner points and one 
interior point. It is not always the case, however, that a measured point produces a local 
minimum in the knowledge gradient surface, since high outcomes of y can produce 
local maxima. For this reason, we have to run the algorithm in equation (16.19) 
starting from a number of points, searching for local maxima. We then choose the 
best of these as our approximation of the global maximum. 

We face three challenges. The first is that we have to approximate the expectation 
in equation (16.17), since we are no longer able to calculate this exactly as we were 
when the set X was discrete. The second and most difficult is the calculation of the 

vK<"n(x)=En max<9n+V) 
x'ex 
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Figure 16.4 The knowledge gradient surface after measuring four corner points and one 
interior point. 

gradient vKG'n(x) given the approximation of the expectation. Then, we describe 
the process of finding starting points in our search for a global maximum, and how 
we solve the issue of scaling the stepsize am. 

16.3.2 Approximating the Knowledge Gradient 

The first challenge we face when adapting the knowledge gradient to problems with 
continuous parameters is the imbedded maximization within the expectation in equa-
tion (16.17). We do this by replacing the maximum over all x e X with the maximum 
over the previously sampled points x°,..., xn, and the current sampling decision x, 

vKG>n(x) = E n max 6n+l{xi) 
i=0,..,n 

max 6n(xi) 
£=0,. . ,n 

(16.20) 

Of course, we still have the problem of computing the expectation in equation (16.20), 
but we have already designed an algorithm for computing the expectation when our 
search region is limited to a finite set of points (as we do in equation (16.20)). This 
algorithm was presented in Section 5.3 under the name of the knowledge gradient for 
correlated beliefs. 

We define the knowledge gradient for continuous parameters policy, KKGCP , as 
the policy which selects the next sampling decision by maximizing the approximate 
knowledge gradient for continuous parameters, 

xn = axgmaxxexi>KG>n(x). (16.21) 

The knowledge gradient for continuous parameters struggles with the same explo-
ration vs. exploitation tradeoff that we have seen with discrete measurements. There 
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Figure 16.5 Regions of z over which different choices dominate. Choice 3 is always 
dominated. 

is a benefit, for example, from sampling near the current maximum of 8n. At the 
same time, there is value in sampling points farther away from a previously sampled 
point because the uncertainty is higher. The SKO policy uses a heuristic adaptation 
to bias the search toward regions with more uncertainty, while KGCP uses a more 
formal expected value of information calculation. But as we see below, there is a 
computational price for this added elegance. 

16.3.3 The Gradient of the Knowledge Gradient 

The next step is finding the gradient of our approximate knowledge gradient, which we 
denote by VxvKG'n{x). For this, we have to review the material from Section 5.3 on 
how we compute the expectation in our approximate knowledge gradient in (16.20). 
Recall from Section 5.3 that we can represent the maximization in the expectation in 
(16.20) as a series of cuts given by 

vKG^n[x) = argmaxE n max(9n+1 \xn = . 

= argmaxE n max6>z
n + ^ ( E n , ^ n ) Z n + l X — X 

It is useful to reuse a figure first presented in Section 5.3, repeated again in Figure 
16.5 for convenience, which illustrates the step of taking the maximum over the set 
of lines given by 6™ + <7*(I)n, xn)z = ai + b{Z. We are going to assume that the 
lines have been sorted so that bi+i > bi, and we are going to further assume that 
we have removed any lines that are dominated by all the others. Throughout, while 
we will index lines over 0 , . . . , n, we are going to assume that dominated lines are 
skipped. This means that if we compute the values of z that correspond to where the 
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lines intersect, given by 

bi+i - bi' 

then we are assured that Q + I > C{. 
If we let 

h(6n,a(x)) = En\maxO? + &i(fln,xn)Zn+1\xn = . 
L i 

, (16.22) 

then we can substitute (16.22) into (16.22) to obtain 

XKG(s) = axgmaxh{6n,a{tn,x)). 
X 

Now let h(a, b) = Emax^ a* -h hZ, where a = 6?, b = <T*(En, x) and Z is our 
standard normal deviate. We can compute /i(a, b) using 

h(a,b) = ^ ( & i + i - &*)/(- |ci | ) , 
2=0 

where / (z) = 2*(z) + <l>(z). 
We are now ready to talk about how to compute the derivative of the knowledge 

gradient. After some algebra, the gradient of the first term in equation (16.20) is given 
by 

V«E" max 6»n+1(a;i) 
i=0,..,n 
n 

= J2 [ ( V ^ ' V ) ) (*(ci+i) - * ( * ) ) + (Vxnai(tn, xn)) (4>(a) - 0(ci+i))] 
i=0 

n 

+ I Z [(*"(**) + ^(Sn,a?n)c<+i)0(ci+i)VxnCi+i 

(16.23) 

The calculation of V^c* for i = 0, ...,n + 1 is relatively straightforward. An 
equivalent equation for the Q 'S which are output from Algorithm 1 is Q = ^l1

b~_ai 

for i = 1,..., n with Co = — oo and cn + i = +oo. Then using the quotient rule we 
can calculate the following: 

(b, 
VxnCi 

i-bi-i)(Va»-i-Vai)-(ai-i-at)(Vb»-Vbt-i) fnr i _ i 
,, _ , v2 , i u r * — ± , . . . , n, 

0, 
( 6 i - f e i - i ) 2 

for i = 0, n + 1. 
(16.24) 

As long as we can calculate Vxn6n(xl) and V x n ^ ( E n , xn) for i = 0,..., n , we 
can calculate the expression in equation (16.23). We calculate Vxn6n{xl) using 

S/xn0n(xi) = o, if i < n, 
Vxrl0°(a;n) + J n [S n ] - 1 y r \ ifi = n, 
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where we let Jn be the matrix of first-order partial derivatives 

\ai{x\ - x?)E0(z0 ,xn) • • • a i ( ^ _ 1 - x^E0(xn~\xn)' 
= 2 : ■.. : 

[ a p ( x ° - s J J ) E ° ( x V n ) ••• apix^-1 - x%)X°(xn-\xn)] 

We calculate V^no^E™, xn) using 

- , ,™ „ x BVxn el, Znexn - e^ Enexn Vxn B 
Vxn<Ji{Zj , X ) — — , 

where B = y/\(xn) + e^E n e x n and 

V ^ e ^ E ^ n = I 

[2diag(a)(a;i - xn)E°{x\xn) - Jn[Sn]-1E°exi, if i < n, 
E ° ( x V n ) 

n f c n l - 1 -2Jn[5' 

Z°(xn-\xn) 

ifi = n 

and 

VJBnS = -(A(xw) + E n ( x n , x n ) ) - 5 
/ 
Vxn\{xn)-2Jn[Sn]~l 

V 

E°(x°,xn) 

E 0 ^ " 1 , ^ ) 

These equations are a bit tedious, but this is a price we pay to handle more complex 
problems. 

16.3.4 Maximizing the Knowledge Gradient 

We are now ready to use our steepest descent algorithm, but we have to deal with 
a separate issue. The problem is that our knowledge gradient function vKG,n(x) 
is highly nonconcave in x. The situation is illustrated in Figure 16.6(a), where we 
show the knowledge gradient for a scalar function after four noisy observations. 
Figure 16.6(b) shows the knowledge gradient approximation along with the exact 
knowledge gradient calculated on a finely discretized function. The figure illustrates 
the presence of local minima at or near previously sampled points. It also shows that 
the knowledge gradient tends to be largest at points farthest from previously sampled 
points, which hints at how we can run our steepest ascent algorithm. 

Using the gradient, we can design a steepest ascent algorithm to find the maximum 
of vKG>n(x). The biggest challenge here is that the knowledge gradient is noncon-
cave, but there is a lot of structure to its shape. Specifically, the local minima are 
very close to points that have been previously measured, and it is reasonable to expect 
that local maxima will be located halfway between local minima. It is also a good 
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(a) (b) 

Figure 16.6 (a) The estimate of the function along with the 95 percent confidence intervals 
of the estimate after four observations, (b) The knowledge gradient for continuous parameters 
(KGCP) and exact knowledge gradient over a finely discretized set of decisions (KGCB) after 
four observations. 

strategy to do restarts that start at previously sampled points, since local maxima are 
sometimes nearby (and not necessarily in between other previously sampled points). 
This suggests a restart procedure that starts with points that are halfway between 
previously sampled points. 

This structure also gives us a good estimate of a starting stepsize, since we know 
the distance between pairs of local minima, and we can scale the stepsize accordingly. 
For example, a good rule is to set the stepsize so that the first step is one fourth the 
distance between the two previously sampled points. 

After starting the search algorithm at all these points, we choose the best among all 
the optima returned by the steepest ascent algorithm. Of course, this process grows 
with the square of previously sampled points, but the idea is that this method would 
be used for expensive functions where the number of samples is not expected to grow 
very large. If this is not the case, then it is possible to limit the number of pairs of 
points that are used for restarts. 

16.3.5 The KGCP Policy 

We close by summarizing all the steps of the KGCP policy, outlined in Figure 16.1. 
We start in line 1 by choosing a set of initial measurement points x so that we can use a 
statistical procedure such as maximum likelihood to form estimates of the covariance 
parameters a, /3 and A. In line 3 we choose the sampling decision by maximizing the 
knowledge gradient for continuous parameters defined in (16.20). This maximization 
should be approximated by using the algorithm in Section 16.3.4. 



340 OPTIMIZING OVER CONTINUOUS MEASUREMENTS 

Table 16.1 The KGCP Policy. 

(1) Choose an initial sample of points x (either randomly or using a Latin hypercube 
design) to form the basis of initial statistical estimates of a, f3 and A (and possibly 0°). 

(2)Forn = 0 , . . . , 7V- l 
(3) Choose sampling decision: xn = argmaxxG<Y vKG,n(x) using Section 16.3.4. 
(4) Get noisy observation yn+1 of function at xn. 
(5) Update 0 n + 1 and E n + 1 using (16.8) and (16.9). 
(6) Update the estimates of a , f3 and A using maximum likelihood estimation. 
(7) end 
(8) Implement x* G arg max x € ^ 9N (x). 

16.4 EFFICIENT GLOBAL OPTIMIZATION 

While our interest is in solving problems where we can only obtain noisy observations 
of our function fi(x), an important contribution is a procedure known as efficient 
global optimization (EGO) which was developed for the case where there is no noise. 
EGO is similar to the knowledge gradient in that it uses the same idea of choosing to 
measure the point that maximizes the expected value of information. We have already 
seen this concept in Section 5.6, where it was known as the expected improvement 
(El) procedure. In the literature, the names EGO and El are used interchangeably to 
refer to the same technique. 

Following our standard notation, we assume that we choose a measurement xn 

and then observe ynJrl = fi(xn). Our indexing system follows the style of the rest 
of the book, and is designed to handle uncertainty. Below, yn+l will be a random 
variable when we choose xn, but in this section it is deterministic. 

We start by defining 

J n + 1 0 ) = max) 0 n + 1 ( x ) - max y\0 I. 
Y Z=l,..,7l 

(16.25) 

If we have no observation noise, vKG'n(x) < E n [ J n + 1 ( a ; ) ] . Furthermore, E n [ / n + 1 ( x ) ] 
En[maxi=0,.. ,n On+1{xl)\xn — x] — maxi =o, . . ,n- i 0n(xl). We show this using 

-KG,i (x) = En 

< Eri 

= E" 

max 6 (x )\x = x 
i=0,..,n 

max en^l{xl) 
i=0,..,n 

max 6n(xz) 
i=0,..,n 

max 6n(xl) 
i=0,..,n — l 

( V + 1 ( x n ) , max 0 n O r ^ max 9n(xl) 
i=0,..,n — l 
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= E n 
— max y 

i=l,..,n 
<9n+10rn), max y*)\x 

i= l , . . ,n J\ 

(en+1{xn)- max y\o)\ 
y i=l,..,n I 

= En[In+1(x)]. (16.26) 

In the third line, we used the fact that, given what we know at time n, yi+l = 
9n(xl) = 0 n + 1 (xl) for i = 0,..., n - 1 since there is no observation noise. The EGO 
algorithm maximizes the expected improvement given by equation (16.26) at each 
iteration. If we assume that there is no measurement noise, the expectation of (16.25) 
has a closed-form solution 

much like its analog in (5.28). This policy closely parallels the knowledge gradient 
for the case where there is no observation noise, and does not account for correlations 
in the belief structure. 

16.5 EXPERIMENTS 

It will always be hard to draw firm conclusions about the performance of algorithms 
in real experiments. In this section, we draw on a series of experiments reported in 
Scott et al. (2011), where SKO and KGCP were compared using a series of standard 
test problems as well as new test problems that were generated directly from the 
Gaussian process model. The standard test problems are known as Ackley, Branin, 
Hartman3 and the Six Hump Camelback. The Gaussian process datasets generated 
scalar functions using a = .1,1.0,10.0, which captures the structural deviation 
between the true surface and the approximation. Recall that for smaller values of 
a, these deviations are described by smooth undulations, while larger values of a 
produce high frequency ripples. All of the test problems were run with three different 
levels of measurement noise, where we used A = .1,1.0, and 10.0. 

Table 16.2 summarizes seven test problems, along with the results of comparisons 
of SKO and KGCP using the expected opportunity cost as the performance metric. 
These results suggest that the knowledge gradient algorithm consistently outperforms 
SKO, sometimes dramatically so. There was only one dataset where SKO outper-
formed KGCP in a statistically significant way (for the Six Hump Camelback, with 
A = 10), but the expected opportunity cost for KGCP was 1.0264 versus .8488 for 
SKO, which is a small difference, especially compared to the relative performance 
for some of the other problems. As a general pattern, the relative improvement of 
KGCP over SKO was largest for problems where the measurement noise was the 
smallest. We suspect that as a general rule, differences in algorithms will become 
less noticeable as the measurement noise becomes larger. 
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Table 16.2 Comparison of the knowledge gradient algorithm for continuous 
parameters to sequential kriging optimization for noisy measurements. Source: Scott et 
al. (2011). 

Test Function 

Ackley 5 (X = [-15,30]5) 
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KGCP 

E(OC) ( 

5.7304 
10.8315 
17.3670 

.0141 

.0462 

.2827 

.0690 
.5336 

1.8200 

.0714 
.3208 

1.0264 

.0076 

.0454 

.3518 

.0077 

.0270 

.4605 

.1074 

.1846 
1.0239 

7{OC) 

.1874 

.2413 

.1477 

.0044 

.0039 

.0186 

.0063 

.0296 

.0541 

.0087 

.0192 

.0391 

.0057 

.0243 

.0587 

.0022 

.0045 

.1028 

.0259 

.0286 

.1021 

SKO 

E(OC) 

7.8130 
12.6346 
18.1126 

.0460 

.1284 

.4396 

.1079 

.5012 
1.8370 

.1112 

.3597 
.8488 

.0195 

.0888 

.2426 

.0765 

.1993 

.6225 

.5302 

.6638 
1.8273 

a(OC) 

.1802 

.2088 

.1156 

.0023 

.0218 

.0248 

.0075 

.0216 

.0510 

.0059 

.0156 

.0370 

.0041 

.0226 

.0216 

.0311 

.0486 

.0669 

.0799 

.0839 

.1450 

16.6 EXTENSION TO HIGHER-DIMENSIONAL PROBLEMS 

The algorithms we have presented in this chapter can be used for multidimensional 
parameter vectors, but care has to be used when optimizing over higher-dimensional 
parameter spaces. It is not unusual to see algorithms which work in multiple dimen-
sions being tested on problems with one or two dimensions. Transitioning to as few 
as five dimensions can actually be quite difficult for certain algorithms. Searching a 
parameter space with 10 or 20 dimensions is dramatically harder than five dimensions 
without making suitable approximations. 

There are several strategies that can be used to search higher-dimensional parameter 
spaces. Some of these include 
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■ Make a random sample of the parameter space X, producing a set of possible 
parameters x\, x2,..., XM- NOW, use traditional optimal learning policies for 
discrete alternatives. 

■ Assume that the function JJL(X) is approximately separable in x, and use this 
property to search each dimension separately (possibly using the techniques in 
this chapter for continuous parameters). 

■ Stitch together a solution by optimizing over small subsets of dimensions. This 
can be done in parallel for different subsets of dimensions, after which new, 
overlapping subsets can be chosen. 

The challenge of dimensionality exists even with classical stochastic search algo-
rithms, where efficient learning may not be an issue. For example, imagine that we 
have a stochastic function F(x, W) that depends on a controllable vector x and a 
random vector W. Let W{u) be a sample realization of F(x, W), and assume that 
we are able to compute the gradient VxF(x,W(u)). We might be able to solve the 
optimization problem 

maxEF(x,W) 
X 

using a classical stochastic gradient algorithm of the form 

x
n - xn~l + an^VxF{xn-\W{ujn)). (16.27) 

Stochastic gradient algorithms such as (16.27) can handle problems with thousands 
of dimensions, but can exhibit very slow convergence, even when we assume that we 
can compute the gradient VxF(xn~1, W(ujn)). These algorithms work by basically 
linearizing the function and dealing with each dimension individually. Although 
we have not seen this in the research literature, it is possible to envision the use of 
optimal learning techniques applied in each dimension individually. However, for 
high dimensional problems, we would be limited to very simple policies. Needless to 
say, optimal learning for high dimensional problems is an interesting area of research. 

16.7 BIBLIOGRAPHIC NOTES 

There is an extensive literature on stochastic search for continuous variables which 
we have not covered in this chapter because they do not explicitly address the issue 
of value of information. An excellent review of the literature as of 2003 is given by 
Spall (2003). This literature can be largely divided between algorithms that assume 
that we have access to gradient information (or at least stochastic gradient), which is 
our focus. 

There is a number of papers tackling the problem of optimizing noisy functions 
without derivative information. These algorithms primarily depend on methods for 
Monte Carlo sampling of the search region X, and while everyone is looking for algo-
rithms with fast convergence, most of the theory focuses on asymptotic convergence 
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analysis (assuming an off-line application) while convergence rates are studied em-
pirically. Benveniste et al. (1990) and Kushner & Yin (2003) are important references 
for the theory behind stochastic search algorithms. Some recent contributions include 
adaptive search with resampling (Andradottir & Prudius 2010) and model reference 
adaptive search (Hu et al. 2007). 

Sections 16.1- Our belief model is based on material presented in Sacks et al. (1989) 
and Frazier et al. (2009). Our presentation of Gaussian process regression is 
based on Rasmussen & Williams (2006); the material on regression kriging in 
Forrester et al. (2008). The recursive updating equations for the means and 
variances are based on Frazier et al. (2009). The maximum likelihood estima-
tion method for the Gaussian process regression model is based on Rasmussen 
& Williams (2006). 

Sections 16.2 - Sequential kriging optimization was proposed by Huang et al. (2006). 
Stein (1999) provides a thorough introduction to the field of kriging, which 
evolved from the field of spatial statistics. This field continues to be very 
active; see Ankenman et al. (2010) for some recent developments. 

Sections 16.3 - The adaptation of the knowledge gradient for continuous measure-
ments was developed by Scott et al. (2011). 

Sections 16.4 - Efficient global optimization was proposed by Jones et al. (1998). 

Sections 16.5 - We draw on a series of experiments reported in Scott et al. (2011). 
Our test functions are culled from Frazier et al. (2009), Huang et al. (2006), 
and Jones et al. (1998). See also Scott et al. (2010) for additional empirical 
work on calibration of an airline business simulator. 



CHAPTER 17 

LEARNING WITH A PHYSICAL STATE 

All of the problems that we have considered in earlier chapters have one characteristic 
in common. In each of these problems, the decision we make depends only on our 
state of knowledge about the problem. The decision itself can be discrete (as in 
Chapter 4), a subset (Chapter 9), a scalar (Chapter 10), or continuous (Chapter 16), 
and we have considered many different types of objective functions (online, offline, or 
linked to a complex implementation decision) and different belief structures (lookup 
table, parametric and nonparametric). However, within each specific problem class, 
the set of possible decisions has always stayed the same over time, and every policy 
we have looked at has made decisions based purely on the available information. 

There are many problems where this is not the case, and our decision also depends 
on a physical state as well as a state of knowledge. A simple example arises when 
we are trying to learn the travel times on links in a transportation network. We can 
traverse from node i to node j to learn more about the time r^ to get from i to j , but 
doing so puts us at node j , which changes the decisions we can consider next. If we 
decide to go from i to j , we have to balance the information we gain about r^ against 
the impact of now being at location j . 

Another application arises in medical treatments. Consider the problem of treating 
a diabetes patient. The doctor has certain beliefs about the effectiveness of different 
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Figure 17.1 An operational flexibility problem, where the state of the power plant affects the 
energy consumed and the cost of resuming operations. 

treatments. At the same time, the doctor also observes the results of blood sugar 
tests that are regularly undergone by the patient. The decision to recommend a 
particular type of treatment is based on the doctor's beliefs about the effectiveness 
of that treatment, but also on the patient's physical condition. For example, a class 
of diabetes drugs known as "secretagogues" works by stimulating pancreatic cells to 
release insulin. Secretagogues can work well in reducing blood sugar, but may cause 
weight gain as a side effect. The decision to try a treatment can change the physical 
state of the patient (captured by his weight), which can then change the decisions we 
can make in the future. 

A second example involves the management of a sensor moving around to collect 
information. This might be a robot sensing radiation near an accident, or a medical 
technician collecting information about the prevalence of a viral outbreak in the 
population. The information can be used to help us design response strategies. If we 
collect information at one location, it reduces the cost of collecting information at 
nearby locations. Our decision of what information to collect depends on the physical 
location of the sensor. 

We use the term "physical state" somewhat loosely, but we always mean a state 
variable that changes the decisions that we are allowed to make. For example, imagine 
that we are selling a product where we can change the price and then learn how the 
market might respond to the price. We may feel that the market will respond badly 
to rapid changes in the price, and as a result we impose a restriction that we cannot 
change the price by more than one dollar. If we charge $20 during one week, we 
cannot then try charging $28 or $15 the next week. While we may not think of price 
as a physical state, this falls within the problem class that we wish to consider. 

There are many practical problems where learning arises which also have a physical 
state. Below are some additional examples of problems that have a physical state: 

■ Operational flexibility - A manufacturer of industrial gases buys energy on the 
real-time market to run its cryogenic plants. The spot price of energy is subject 
to very sudden spikes, known as "coincident peaks" in the energy literature. 
Each plant runs an air separation unit (ASU) which breaks up air into component 
gases, as well as one or two recycle compressors or liquefiers. Shutting down 
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all of these components allows us to save more money during a coincident peak, 
but if the peak never arrives, we will waste a lot of energy ramping back up to 
normal operations (which can take upwards of 24 hours). We have a state of 
knowledge that helps us predict coincident peaks, but the physical state of the 
power plant also affects the costs incurred. 

■ Competitive games - Imagine a game of chess. Each player has a certain belief 
about the opponent's strategy, and uses this belief to decide on the next move. 
However, the decisions a player can make depends on the state of the board. 

■ Pricing with finite inventory - A store sets a price for a product with the goal 
of maximizing revenue. As in Chapters 8 and 11, we may wish to experiment 
with different prices and observe the effect on revenues. However, if we have 
finite inventory, our decision will depend on the amount we have in stock as 
well as on our beliefs about the revenue curve. Experimentation is less useful 
when there is less inventory remaining. 

■ Mutual fund cash balance - A mutual fund needs cash to meet shareholder 
redemptions. At the same time, keeping more cash on hand means having less 
money to invest, leading to lower profits. Over time, we gradually learn about 
shareholder behavior and the rate at which redemptions arise. Our ability to 
meet redemptions at any given time, however, is constrained by the amount of 
cash on hand. 

The physical state introduces a whole new level of challenge. The question of 
how to make decisions based on both physical and knowledge states is at the very 
frontier of optimal learning. In this chapter, we give a framework for where to begin 
thinking about this problem. We also suggest a few approaches that integrate the 
optimal learning concepts we have developed throughout this book into the world of 
physical states, and close with a discussion of how some of these concepts might be 
taken further. 

17.1 INTRODUCTION TO DYNAMIC PROGRAMMING 

Sequential, stochastic decision problems have long been approached using dynamic 
programming. Assume that we have a process that may be in a physical state St — s at 
time t. (Throughout this book, we have denoted time by n; the reason why we switch 
to t here will become clear shortly.) If we choose a (discrete) action x, we may land 
in a state St+i = s' with probability p(s'\s, x). Assume that we earn a contribution 
C(St,x) from taking action x when we are in state St, and that contributions are 
discounted by 0 < 7 < 1 with each passing time period. If Vt(St) is the value of 
being in state St at time t, then we would like to choose our action xt by solving 

xt = aigmax(c(St,x) +j^p(s'\Sux)Vt+1(s')Y (17.1) 
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The problem is that we do not know Vt+1 (sf). If we have a finite horizon problem with 
T as the last time period, we might assume VT(S) = 0 then compute the remaining 
value functions using 

Vt(St) = m^lc(Sux) + ̂ p ( s ' \ S t ^ (17.2) 

Equation (17.2) needs to be computed by looping over all states St. If St is discrete 
and very low dimensional (as in, three or less), this approach can work quite well. 
But there are many problems where the state St has more than three dimensions, or 
it may be continuous. For these problems (which are quite common), we encounter 
what is widely known as the "curse of dimensionality." 

17.1.1 Approximate Dynamic Programming 

The dynamic programming community has developed an algorithmic strategy known 
broadly as approximate dynamic programming (ADP) that is designed to circumvent 
the curse of dimensionality. ADP is actually an umbrella for a variety of algorithms, 
but its most popular form works as follows. Let's begin by assuming that the state St 
is discrete. Further assume that we are given an approximation V®(s) for all states s 
and times t = 1 , . . . , T (for example, we might start with Vt°(s) = 0). 

If we use equation (17.2), we are solving the problem by proceeding backward in 
time. It is this process that requires that we loop over all possible states, because we 
do not know in advance which states that we might actually visit. With approximate 
dynamic programming, we are going to progress forward in time, starting with a 
given initial state SQ. If we are in state St at time t and choose action xt (according to 
some rule that we discuss below), we are then going to observe a sample realization 
of a random variable Wt+i (which was unknown at time t). Finally, we are going to 
use a transition function (also known as the state transition model), which gives us 
the next state using 

St+1 = SM(St,xuWt+1). 

We are going to simulate our way from time 0 to time T iteratively. To firm up our 
notation, let n the iteration index. In iteration n, let 5t

n be the state that we visit at 
time t. Also let ujn index the sample path of observations of Wt, which means that 
Wt+i(uJn) is the sample realization of what we observe between t and t + 1 while 
following sample path ujn. 

We have to figure out how we are going to make decisions. The most natural policy 
is to mimic equation (17.1) and solve 

x? = argmax (c(S?,x) + 7 £ p ( s ' | S ^ ) t ^ . 7 V ) ) • (17.3) 

Not surprisingly, we are going to refer to this as a pure exploitation policy, because 
it means to choose the best action based on our current belief about the downstream 
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values captured by Vt
n^[1(s'). Before we start criticizing this policy (as we will), we 

need to close the loop by mentioning how we are coming up with these value function 
approximations. First compute 

s' 

We can think of v? as a sample estimate of the value of being in state SJ\ This is 
the value that we experienced while we were following our sample path through the 
states SJ, S{\ . . . , S%. It would be nice to mimic (17.2) and just set Vt(S?) = v?, 
but v™ is a noisy sample estimate. For this reason, we have to do smoothing, which 
we can do using 

Vf(St") = (1 - an-,)Vr\S?) + <*„_!«?. 

Here, a n _ i is known as a stepsize, which is a parameter between 0 and 1. It might be 
a constant (such as cen-i = .001), but more often it is assigned a declining sequence 
such as an = a/(a + n — 1), where a is a tunable parameter. 

Notice that, in the above presentation, we have two time indices, n and t. This 
is because we considered a finite-horizon problem ending at time T. The index t 
denotes a stage of the problem, whereas the index n denotes the number of times we 
have updated our approximation V of the value function. The algorithm works by 
making multiple passes through the problem, so that we solve (17.3) backward for 
t = T — 1,..., 1 for each fixed value of n. 

We can also accommodate infinite-horizon problems (T —> oc), for which the 
optimality equation (17.2) becomes 

V{S) = max(C(S, x) + 7 X ^ ( s ' l 5 ' X)V(S')) • (17-5) 
s' 

for all states S. In this case, the ADP algorithm merges the two time indices into one, 
such that (17.3) becomes 

^ n = a r g m a x j C ( 5 n , o ; ) + 7 5 Z p ( 5 / | 5 n , x ) F n - 1 ( s / ) ) . (17.6) 

and (17.4) becomes 

vn = C(Sn,xn)+1^p{sf\Sn,xn)Vn-1(s'). (17.7) 
s' 

The approximation is updated using 

Vn(Sn) = (1 - a n - i j r - 1 ^ ) + an^vn. (17.8) 

We still run the algorithm by progressing forward in time starting from S°. Now, 
a single iteration consists of a visit to a single state Sn, and n is our only time index, 
as in the rest of the book. We hope that, after a large number of iterations, Vn will 
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Figure 17.2 A two-state dynamic program, where the estimated value of being in each state 
is currently zero. 

be close to the true solution of (17.5). To simplify our presentation, we will focus on 
infinite-horizon problems when developing our algorithms in this chapter, though it 
is important to keep in mind the wealth of finite-horizon applications. 

We now have the beginnings of an algorithm that seems to have considerable 
appeal. We can handle arbitrarily complex state variables St, and even the random 
information Wt can be quite complex (problems have been solved with thousands of 
dimensions), because at any point in time we are working with a single state and a 
single sample realization of Wt. It almost seems like magic, so you know that there 
has to be something wrong. Indeed, the problem is known as the exploration vs. 
exploitation problem, something that should be now be quite familiar to readers of 
this book. 

17.1.2 The Exploration vs. Exploitation Problem 

Unfortunately, the problem with our elementary approximate dynamic programming 
algorithm is not just that it may not work well but that it can, and generally will, 
work terribly. To see why, we only need the very simple two-state dynamic program 
illustrated in Figure 17.2. Assume that we are initially in state 1, and we have to choose 
an action. We can choose to stay in state 1, in which case we earn a $2 contribution 
plus the approximate value of being in state 1, where our initial approximation is 
V(l) = 0. Alternatively, we can choose to go to state 2, where we incur a loss of $5, 
but then we receive the value of being in state 2, where again we have an approximate 
value of V(2) = 0. Looking at these two alternatives, we would naturally decide to 
stay in state 1. As a result, we never discover that the transition from state 2 back to 
state 1 would earn us $12. 

This is hardly an artificial example. A more real-world setting is illustrated with 
an interstate truck driver who arrives in a city and is offered a set of loads of freight. 
He has to choose one of the loads, which has him moving from his current location 
to the destination of the load. Let St be the current location of the driver (typically a 
city or three-digit zip code), let xt be his choice of load from a set of offered loads 
(these arrive randomly and only become known when he arrives at a location), and 
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Figure 17.3 The effect of a pure exploitation policy for our nomadic trucker. 

let C(St, x) be the net profit he receives from accepting the load and moving to its 
destination. For this simple problem, St+i = SM(St,xt,Wt+\) = SM{St)xt) 
captures the destination of the load (which is deterministic). 

A new truck driver might not have any information about the value of being in a 
city, and as a result might reasonably start with V°(s) — 1 for each state s. This 
means that he would initially take the load paying the most. Over time, he will learn 
about the value of being in states that he visits, but this will lead to situations where 
he is choosing between a load that returns him to a city which he has already visited 
(in which case Vn~~l (sf) > 0), and a load that takes him to a city he has never visited 
(which means Vn~1(sf) = 0). As a result, there is a natural bias to take loads to 
cities he has visited before. Sound familiar? This is like returning to restaurants that 
you know, rather than trying new restaurants. Needless to say, this is fairly intuitive 
behavior. 

The problem with this policy is that, as we would expect, there is a tendency to get 
caught visiting a small number of cities. Figure 17.3 shows the results of a simulation 
of this policy, and out of a set of 30 possible locations, the driver finds that he is 
constantly returning to the same seven cities. This might seem familiar, but it is 
hardly optimal. 

17.1.3 Discussion 

Our ADP algorithm has not really solved the curse of dimensionality. While we have 
eliminated the need to loop over all states to calculate the value of being in a state, 
we still need good approximations of the value of each state that we might visit, as 
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shown in equation (17.3). While this may be much smaller than the size of the full 
state space, this is still a large number of states. 

There are two changes we have to consider to overcome this problem. The first 
is that we have to introduce exploration steps, where we visit a state just to collect 
information about the state. We have seen this idea throughout this volume, so there 
should be no surprise that it arises in this setting as well. The second change is that 
we have to use some form of generalized learning. That is, we need to learn more 
than just the value of being in a single state. Again, this has been a common theme 
that we have seen before, first through the mechanism of correlated beliefs, and later 
when we made the transition to parametric belief models as we did in Chapter 8. 

First, we present some simple heuristics for exploration. Then, we progress to more 
formal methods that address both of the issues raised in this discussion. As a rule, 
the exploration strategies in this chapter are designed for infinite-horizon problems, 
so we use a single time index n. 

17.2 SOME HEURISTIC LEARNING POLICIES 

One very simple policy that is frequently used in practice is our old acquaintance 
epsilon-greedy: At time n, we make a random decision with probability e, or follow 
the pure exploitation policy (17.6) with probability 1 — e. We face the usual problem 
of tuning e, but otherwise, it will be possible to achieve good performance as long as 
X is fairly small. 

Two more sophisticated exploration strategies developed within the computer sci-
ence community are known as R-max and E3. Both of these policies are based on 
the idea of categorizing the states according to whether we have "enough" or "not 
enough" information about them. 

The R-max policy makes decisions according to the rule 

xRmax,n(Sn.anj = a r g m a x ( C ( S ' n , x ) + 7 ^ / 9 ^ ( 5 n , x ) F ( s ) ) , 
s 

where 

jp ( \ _ / # m a x if s has been visited fewer than m times, 
^ ' ~~ \ Vn (s) if s has been visited at least m times. 

The integer m is a tunable parameter representing the number of times we need to 
visit a state in order to obtain "enough" information. The value Rmax is deliberately 
chosen to be very large, such that we are more likely to choose an action x if it is 
more likely to lead us to states for which we have little information. Eventually, once 
we visit every state enough times, i^marr reduces to the pure exploitation policy . We 
are still, however, left with the issue of tuning m and i i m a x . 

The E3 policy ("Explicit Explore or Exploit") can be viewed as a modification 
of epsilon-greedy. As in R-max, we have a parameter m representing the amount of 
information that is "sufficient" for us to know the value of being in a state. Upon 
reaching state Sn, our decision is made as follows. If Sn is a state that we have 
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never visited before, we make a random decision. If we have visited Sn before, 
but fewer than m times, we make the decision that we have tried the fewest number 
of times among all our previous visits to the state. Finally, if we have visited Sn 

more than m times, we follow the pure exploitation policy and make our decision 
according to (17.6). Once again, the policy reduces to pure exploitation once we have 
sufficiently explored the state space. In the early stages, the policy encourages us to 
make decisions with which we are unfamiliar, in order to learn about them. 

17.3 THE LOCAL BANDIT APPROXIMATION 

Our first formal technique, known as the local bandit approximation or LBA, attempts 
to convert the dynamic program into a multi-armed bandit problem at each time step, 
and then uses a Gittins-like calculation to make the next decision. The multi-armed 
bandit problem, which we covered in Chapter 6, has no physical state. We make 
our decision based purely on our knowledge about the rewards obtainable from M 
different arms. To apply bandit-style thinking to our current problem, we need a way 
to remove the physical state. 

Let us start by defining a policy 7rn that always makes decisions according to 
(17.6) for V71'1 fixed at the current value of n. At first glance, this sounds like 
the pure exploitation policy. However, pure exploitation updates the approximation 
Vn~x using (17.8) after vn is observed. That is, pure exploitation assumes that the 
approximation is fixed when we make a decision, but we continue to update the 
approximation in every iteration. This is exactly the concept of experiential learning 
discussed back in Section 5.4. 

By contrast, the policy 7rn always makes decisions according to the fixed approx-
imation Vn~l. It is analogous to the "Stop" policy discussed in Section 6.4. If we 
use this policy, we will commit to our current value function approximation and stop 
learning altogether. The dynamic program is thus reduced to a Markov chain (Yn) 
whose transition probabilities are given by 

P(Yn+1 =s,\Yn = s)= p(sf | s, X^n(s)), 

where X7r'n(s) is the decision that solves (17.6) for Sn = s. Our reward for visiting 
state s is thus C(s) = C(s, X^n(a)). 

We use this policy much the same way that we did in Section 6.4: We assume that 
we will make only one more decision before switching to this naive policy. Suppose 
that Sn is our state at time n. Let us adopt a perspective that is centered around the 
state Sn. In this time step, we will make a decision xn and transition to a different 
state. Suppose that, from that point onward, we will only make decisions according 
to the policy 7rn. This policy will lead us to visit many different states, before we 
eventually return to Sn. We use the word sojourn to describe the period of time in 
which we travel around states other than Sn. The sojourn ends as soon as we return to 
this state. Figure 17.4 provides a visual illustration, with states represented by circles 
and decisions represented by squares. 
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As long as we use the policy 7rn to make decisions, we can study the sojourn via 
the Markov chain (Yn). Let 

rSjS/ = min{n > 0 | Yn = s', Y0 = s} 

be the number of transitions needed for the Markov chain (Yn) to reach state s' for 
the first time, provided that it started in state s. The quantities 

R(s,S') = El J2 rf(Yn)\Y0 = sY 

T(s,s') = E ( J2 7n\Yo = sY 

represent the average discount reward collected and the average discounted time 
elapsed, respectively, before our first visit to state sf. We can compute these quantities 
using first-transition analysis on Yn. First, 

p(q „/<| _ / / (*) + 7 £ s " e s P(Yn+i = s" | Yn = s)R(s", s') if s ± s', 
HV>8)-\ 0 if s = s'. 

Similarly, 

T(ss') = l 1 + 1 E*"^ P(Xn+1 = S" ' Yn = S)T(S"'S'} if S * s'' \ 0 if s = s'. 

It follows that, if we visit state Sn and choose action x, the expected reward collected 
during the ensuing sojourn, and the expected length of the sojourn, are given by 

Rsojourn(Sn^ ^ = £ ( 5 ^ + y ^ p ^ | Sn,x)R{s', S"), 

Ts°i°urn(Sn,x) = l + 7 ^ p ( s ' | S ^ ) T ( s ' , 5 n ) . 
s'es 

Figure 17.4 If we visit a state Sn and make decision xn, we enter a sojourn that takes us to 
other states and actions. The sojourn ends as soon as we return to Sn. 
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The quantity 
jDsojoum ( on ~ \ 

vLBA,n{sn } = « g^l ( 1 ? 9 ) 
v 1 ' J^sojournf On rr\ x ' 

represents the expected reward per expected unit time that we receive during the 
sojourn. 

It turns out that the ratio in (17.9) resembles a Gittins index. In Chapter 6, we 
defined the Gittins index of a bandit arm as a risk-free reward that would make us 
indifferent between playing the arm repeatedly or just collecting the reward. An 
equivalent definition describes the Gittins index as the long-term expected reward per 
play that we can obtain from playing the arm over and over. 

Thus, in a sense, this analysis is converting the dynamic program into a bandit 
problem. When we visit state Sn, we behave as if Sn were the only state in the 
dynamic program. All other states are grouped together into the sojourn. The different 
decisions available in state Sn are viewed as "arms" of a bandit, and the expected 
reward that we collect during the sojourn after pulling the "arm" x is treated as the 
"reward" of that arm. Thus, (17.9) is viewed as the Gittins index of decision x. We 
then make decisions according to the simple rule 

XLBA'n(Sn) = argmaxz^ B A ' n , 
X 

analogous to the Gittins index policy for multi-armed bandits. 
Unlike the original Gittins index policy, LBA is not optimal, because we are using 

the policy 7rn instead of the optimal policy in the analysis of the sojourn. However, 
when this approach was first introduced, it was a pioneering example of an attempt to 
bring optimal learning ideas over to learning with a physical state. It also illustrates 
some of the difficulties inherent in carrying optimal learning concepts over to the 
physical state setting. 

17.4 THE KNOWLEDGE GRADIENT IN DYNAMIC PROGRAMMING 

We are going to develop the concept of the knowledge gradient in the context of 
dynamic programs with a physical state. We do this in two steps. First, we are going 
to introduce the idea of approximating a value function using a linear regression 
model. This makes it possible to generalize what we learn from a visit to a single 
state to what we know about all states. Then, we show how to compute the knowledge 
gradient in this setting. 

17.4.1 Generalized Learning Using Basis Functions 

A limitation of all the policies we have reviewed up to now is that they are limited 
by the use of a lookup table belief model for value functions. A much more powerful 
way of learning uses some form of generalization. While there are several ways of 
doing this, by far the most popular involves using linear regression to approximate 
the value of being in a state. 
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Before we do this, we have to solve a small technical difficulty. Our pure exploita-
tion policy would have chosen an action using 

xn
t = argnwxf C(ST,x) + ^p(s'\S?,x)Vt

n
+-1

1(s>)\. 

If we have a large state space (which is the only time where learning is an issue), then 
we would never be able to compute the one-step transition matrix p(s'\S™, x™). A 
more natural way to write this equation is using its expectation form, where we would 
write 

xn
t = argmax(C(Sr,x) + 7E{Vt

n
+-l

1(S')\S?,x}), 

with Sf denoting the randomly determined next state. We have not solved anything yet, 
because we can only compute the expectation for special cases. We can get around 
this by using the concept of the post-decision state variable which we designate 
Sf. The post-decision state is the state immediately after we have made a decision, 
but before we have learned any new information. For example, imagine we have a 
simple inventory problem where at time t we need to serve a random demand Dt 
with some resource, where Rt is the amount of resource (medicine, money, vaccines, 
water, power plants...) currently available. The (pre-decision) state is given by St = 
{Rt,Dt). Unsatisfied demands are lost. The resource variable evolves according to 

Rt+i — Rt — xt H- i?t+i? 

where 0 < Xt < Rt is our decision of how much to withdraw to satisfy demands, and 
Rt+i represents random additions (blood donation, cash deposits). The post decision 
state Sf = Rf, where 

Rx = Rt-xt. 

The key idea with the post-decision state is that it is a deterministic function of the state 
St and the action xt. More generally, we assume we have a function SM,x(St, xt) 
that returns the post-decision state Sf. 

Using this concept, our exploitation policy would be computed using 

x? = a rgmax(c (5 r ,x ) + 7 ^ ' n " 1 ( ^ M ' a : ( ^ n ^ ) ) ) , (17.10) 

where Vt
x,n~1(Sf) is our value function approximation around the post-decision 

state Sf. Note that this is a deterministic optimization problem, which is much easier 
to solve. Below, we will again focus on the infinite-horizon formulation, in which 
(17.10) becomes 

x n = argmax(C(6 , n ,x) + 7 F a : ' n - 1 ( 5 M ' x ( 5 n , x ) ) ) , (17.11) 
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We now just have to resolve the problem of approximating the value function. For 
this purpose, we propose using a simple linear model of the form 

v(sx'n) = ] T of<j)f(sx'n) = ((t){sx^n))Te. 

Here, (f>f(S) is known as a feature or basis function. These are functions that capture 
what an expert feels are the important characteristics of the state variable. Instead of 
having to estimate the value of being in each state, we now have to find the regression 
vector 9. 

In Chapter 8, we showed how we could use the knowledge gradient to estimate 
the parameters of a linear regression model. We are going to do the same here, but 
now we have to deal with the issue of a physical state. We are also going to adopt 
another convention that we have used widely in our presentation which is the idea 
that we have a prior for our regression model. That is, we are going to assume that 
we have an initial estimate 9° as a starting point that is an unbiased estimate of the 
true value. This is like saying that we have a rough idea of what the value function 
looks like. This assumption allows us to claim that vn is an unbiased observation of 
the true value V(SXlU~1) of being in the post-decision state Sx,n~1. We are going to 
further assume that the error e = vn — V(Sx,n~1), in addition to having mean zero 
(since we assume that our prior is unbiased) also has a known error with variance a\. 

With this foundation, we can quickly describe the equations needed to update our 
regression vector 9. We start by defining the matrix 

Xn = 
Msx>°) ,{SX>°) 

4>i{Sx>n-1) ••• 0F(5x'n"1) 

This matrix consists of the value of each basis function evaluated at every state that 
we have visited. Also define the vector of observations 

If we were using traditional linear regression, we could compute the best regression 
vector 9n using 

9n (Xn)TXn (Xnfyn. 

We can compute 9n recursively without having to perform matrix inversion. First let 

Bn = ^Xny Xn T h e up(jating equation for 9n is given by 

+ 
0(5*,n-l)T0n-l 

1 + ^(S^- 1 )^"- 1 ^* '™- 1 ) 
- B ^ V ^ ' " " 1 ) . (17.12) 
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We can also compute the matrix Bn recursively using 

Bn = on-1 _ B^^jS^-^S^-TB^1 

1 + (f)(Sx'n-l)TBn-l(j)(Sx^-1) ' K } 

We are going to make the somewhat heroic assumption that the observations vn 

are independent and identically distributed with variance o\. This means that the 
covariance matrix for the observation vector Yn is Ia\, where / is the identity 
matrix. Our estimate of the regression vector is given by 

6n = Bn(Xn)TYn. 

Thatis, our approximation of the value of state Sx,n at time nisVn(Sn) = <f)(Sx,n)T6n. 
It is also possible to show (as we did in Chapter 8) that the covariance matrix for 6 is 
given by 

£*'n = o\Bn. 

We can now rewrite equation (17.12) as 

t\n _ A( Qx,n—l\Tnn—1 
fin _ an -1 u ^ W ) U y9,n-lA(qx,n-l\ 

and 

E^'n = E 
a\ + (j){Sx^-l)TTl

e^-l(j)(Sx^-1) ' 

17.4.2 The Knowledge Gradient 

We are now ready to compute a knowledge gradient for each potential action in a 
dynamic program. We are going to build on the principles we have developed earlier 
in this volume, but care has to be used in the presence of a physical state. 

We start by writing our exploitation policy (doing the best given what we know 
now) in the form 

XEx^n(Sn) = argmaxQ n (5 n ,x ) (17.14) 
X 

where 

Qn(Sn,x) = C(Sn,x)+-y(l)(Sx'n)T9n. 

When we use the knowledge gradient, we capture the fact that our decision will 
generate information (presumably from an exogenous distribution) that would allow 
us to update our regression vector, giving us an updated estimate 0 n + 1 (which is 
random at time n, when we choose our action). We can write the knowledge gradient 
policy as 

XKG>n(Sn) = a rgmaxQ K G f ' n (5 n ,x) , (17.15) 



THE KNOWLEDGE GRADIENT IN DYNAMIC PROGRAMMING 3 5 9 

where 
0 X G ' n ( S n , x ) = C ( 5 n , x ) | 7 E ^ n + 1 ( ? ' n ) . (17.16) 

To understand this, it is useful to talk through the steps. If we are in state Sn and choose 
action x, we would then observe a random quantity Wn+l that would determine the 
next pre-decision state 5 n + 1 . Once in state 5 n + 1 , we would observe £ n + 1 , which 
would then be used to update our parameter vector 0n to give us an updated estimate 
<9n+1. However, we are still in state Sn and Wn+l (and therefore S n + 1 and vn+l) 
is a random variable. For this reason, we have to take the expectation E™ of Vn+l 

given what we know now (given by Sn, which captures both our physical state as 
well as our state of knowledge), and the action x that we are considering. 

Note that while we are in state Sn, the information we gain from a transition from 
Sn to 5 n + 1 from taking action x updates our belief about the value function that 
may benefit us even though our next decision is from state 5 n + 1 (which is random 
when we are still in state Sn). We did not enjoy this property when we used a lookup 
table representation. If we learned something about state s' from a decision to move 
from s t o s ' , this new information was of little or no value while we were in state 
s'. The information did not add value until we were in some other state where we 
might consider a transition back to state s. We could apply the same principle using 
a lookup table representation if we exploited the idea of correlated beliefs. 

We start by expanding equation (17.16) using 

QKG'n{Sn,x)*i C(Sn,x) 
+ 7 Y piS^^iX^rwLxQ^iS^^x'). (17.17) 

Sn+1 

To compute the expectation in (17.17) we build on ideas we first presented in Chapter 
5 and write 6n+l using 

0«+i ^ en + ^y ) =z ( 1 7 1 8 ) 
y/a\ + </>(Sx>n)TXe>n<l>(Sx>n) 

where Z is a standard normal random variable with mean 0 and variance 1. Multi-
plying both sides in (17.18) by (t>(Sy), for some decision y not necessarily equal to 
x, gives us the relationship between Vn and Vn+1 which we can write as 

Vn+1(SV)~Vn(S«)+ ^SV)T^n~l^SX,n) = z . ( m 9 ) 

The quantity 4>{Sy)T'E^n- 14>{Sx>n) is precisely Covn(Sy, Sx'n). 
Using equation (17.19), the last term in (17.17) can be written as 

E^maxQn + 1(5 '"+ 1 ,a; ' ) =Emax(a™, +b%Z), (17.20) 

where 

< , = C(Sn+\x')+-fVn(SM'x(Sn+1,x')), 
4>(SM'x(Sn+1,x'))TY,e>n-1(f>(Sx'n) 

K> = 7- yja\ + 4>(Sx>n)Ti:e<n<f>{Sx'n) 
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Now we have to use the methods for computing the knowledge gradient with correlated 
beliefs (see Section 5.3) to compute (17.20) using 

E m a x « , + bl,Z) = ( m a x < , ) + 5 > £ , + 1 - W ( " M ) , 
x' \ x' / ' * 

where / is defined as f(z) = z$(z) + <fi(z), where <j> and <I> denote the standard 
Gaussian pdf and cdf. Readers familiar with Section 5.3 will remember that it is 
important that the actions be sorted so that the slopes by are sorted in increasing 
order, and that dominated lines have been eliminated. 

We can now compute the knowledge gradient using 

uKG,n(Sx,n^ grn+lj = E m a x( f ln + fcn ^ _ m a x fln 
x' x' 

= E(6-'+i-6"')/(-i^'D-
x' 

Since an
x, = Q n ( S n + \ x ' ) , the quantity uKG,n(Sx,n^ 5 n+ i j c a n b e v i e w e d a s t h e 

expected improvement in our estimate of the value of being in state 5 n + 1 , obtained as 
a result of making the random transition from Sx,n (which depends on our action) to 
gn+i ^ye c a n su|3Stitute the definition of the knowledge gradient back into (17.17) 
to obtain 

Y ^ ( 5 n + 1 | 5 n , x ) E ^ m a x g n + 1 ( 5 n + 1 , x / ) 
Sn + 1 

= V p ( 5 n + 1 | 5 n , x ) m a x g n ( 5 n + 1 , x / ) 
' J x' 

Sn + 1 

+ ] T p(Sn+1\Sn,x)vKG'n(Sx'n,Sn+1). 
Sn+1 

The value of being in the post-decision state is the expected value of being in the next 
pre-decision state. We can write this expectation using 

Y p(Sn+l\Sn,x)m&KQn(Sn+l,x') « V n (S x ' n ) , 
Sn+1 

and (17.15) reduces to 

XKG>n(Sn) = maxC(Sn
1x) + >yVri{Sx'n) 

X 

+ Y p{Sn+l\Sn,x)vKG>n(Sx>n,Sn+l). (17.21) 

We see that our knowledge gradient policy looks very similar to the pure exploita-
tion policy in equation (17.14), with the exception that we now have one more term 
that captures the value of information. 

One potential problem with equation (17.21) is that we may not be able to compute 
the conditional probability p(Sn+1\Sn

1x), especially if the random variables are 



THE KNOWLEDGE GRADIENT IN DYNAMIC PROGRAMMING 361 

continuous. In this case, a quick work-around is to to approximate the expectation in 
the value of information term using Monte Carlo simulation. In this case, we would 
use 

1 K 

V p(5n+1|5n,x)vKG>n{Sx>n,5n+1) « — Vi/*G 'n(S*'n ,S£+ 1) , 
Sn+1 k=l 

where S£ + 1 = SM>™\Sx'n,Wn+l(ujk)) for the fcth sample path generated. This 
technique works well for relatively low values of K, such as K « 20, as long as we 
have some sort of simulation model from which we can generate transitions. 

The structure of the policy in (17.21) is suited for online learning, as we saw in 
Section 6.4. If we are trying to learn the value functions as quickly as possible in an 
offline setting, we would focus purely on the value of information, giving us a policy 
of the form 

X°ff>n(Sn) = argmax J^ p{Sn^\Sn ,x)uKG^n{Sx^n ,Sn+l). (17.22) 
Sn+1 

This policy will look odd to readers familiar with approximate dynamic program-
ming, since it appears to ignore the contribution from an action and the downstream 
value. However, in an offline setting, our goal is to just learn the value function 
approximation, with the hope that if we can learn this function quickly, then a pure 
exploitation policy (holding the value function fixed) will return good results. 

17.4.3 Experiments 

Experience with this use of the knowledge gradient is quite limited, but we report on 
experimental work that is available as this book went to press. We are going to use 
these ideas to optimize the performance of an energy storage device such as a battery. 
Let Rn be the amount of energy in the battery as a percentage of total capacity, which 
is taken to be 35 megawatt-hours. We allow Rn to take integer values between 0 and 
100. We can buy energy on the spot market at a price Pn which evolves according to 
the model 

pn+l pn 

where Z, as before, is a standard normal random variable with mean 0 and variance 1. 
We use the values a = 0.0633 and a = 0.2, along with an initial price P° = 30. The 
decision xn is an integer from —50 to 50 representing how much to charge (xn > 0) 
or discharge (xn < 0) the storage device. The decisions xn are constrained so that Rn 

does not go negative or above the maximum capacity of the battery. The post-decision 
state is given by 

RX,n = Rn+Xn^ 

px,n pn 

The next pre-decision state is obtained by letting i ? n + 1 = Rx'n (we assume no 
exogenous changes to the amount stored in the battery) and generating P n + 1 using 
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equation (17.23). The single-period reward is given by C(Sn,xn) = —Pnxn, the 
cost incurred or revenue obtained as a result of our decision. Our goal is to determine 
a storage and withdrawal policy that maximizes total discounted profits over time, 
using a discount factor of 7 = .99. 

The spot price Pn is continuous, and thus we cannot solve the problem exactly. We 
use a parametric value function approximation with six polynomial basis functions 
given by 0 (Sx>n) = ( l , Rxn, (Rx'nf , Px'n, (Px>n)2 , RX^PX^\ . We run the KG 
policy with the Monte Carlo approximation from equation (17.22), with K = 20. 

For each sample path, the algorithm started with a prior 8® = 15000, $> ? • • • > #6 = 0 
and a diagonal covariance matrix E61'0 with all diagonal elements equal to 5002. An 
optimistic value for 0° was chosen heuristically to reduce the likelihood of getting 
stuck in a subset of the state space. The measurement noise was chosen to be a2 = 
20002. 

Most experiments with approximate dynamic programming use a series of training 
iterations to estimate the value function approximation, after which 6 is fixed and a 
series of simulations are run to determine how well the policy works. This is classical 
offline learning, and yet it is most common to use the exploitation policy given in 
equation (17.10) which has more of an online structure. For this reason, we report 
the results of four comparisons: We are going to use the online policy XKG,n(Sn) 
in equation (17.21) and the offline policy X°ff'n(Sn) in equation (17.22), tested in 
two different objective functions. The first is an online objective function, where we 
assume that we are accumulating contributions in a real setting as we are learning 
the value function. The second is a more traditional offline setting, where we use a 
budget to fit the value function approximation and then evaluate the policy using a 
series of testing iterations. Naturally, we expect the online policy XKG,n(Sn) to do 
better on the online objective function, and we expect the offline policy X°ff>n(Sn) 
to do better on the offline objective function. 

Table 17.1 compares our two learning policies using basis functions against an 
algorithm that uses a lookup table representation, and an epsilon-greedy learning pol-
icy that we introduced in Section 17.2. The average performance of each algorithm, 
averaged over several hundred problems, shows that as we hoped, the offline KG pol-
icy (using either basis functions or a lookup table representation) does better on the 
offline objective function, and the online KG policy does better on the online objec-
tive function. Interestingly, the basis functions worked best for the offline objective 
function while the lookup table worked best for the online objective function. The 
epsilon-greedy policy performed poorly on both objective functions. 

A separate but important issue involves the computational effort to support a policy. 
For this problem, we can safely say that the epsilon-greedy policy requires virtually no 
computational effort, and for this reason could perhaps be run for more iterations. The 
knowledge gradient policy when using a lookup table representation required 0.025 
seconds for each calculation. The KG policy when using basis functions required 
.205 seconds to determine the best action which is small, but not negligible. In a true 
online problem, these execution times are probably negligible (perhaps we are making 
decisions once a day or once an hour). However, in many approximate dynamic 
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Table 17.1 Means and standard errors for the storage problem. 

Offline KG (basis functions) 
Online KG (basis functions) 

Offline KG (lookup) 
Online KG (lookup) 
Epsilon-greedy (param.) 

Offline ( 
Mean 

1136.20 
871.13 

210.43 
79.36 

-475.54 

objective 
Avg. SE 

3.54 
3.15 

0.33 
0.23 
2.30 

Online objective 
Mean 

-342.23 
44.58 

-277.38 
160.28 

-329.03 

Avg. SE 

19.96 
27.71 

15.90 
5.43 

25.31 

programming applications, this may be considered a fairly significant amount of 
overhead. The value of the policy would have to be judged based on the degree to 
which it accelerated convergence. 

One final note of caution has to do with the basis function model itself. If the 
vector (j> of basis functions is poorly chosen (for instance, if the features do not 
adequately describe the value function, or if V is nonlinear in the features), then ADP 
can perform very poorly. The literature has found cases in which the parameters 0n 

will never converge, regardless of how long we run the algorithm. This issue has 
nothing to do with our particular choice of exploration strategy, but rather is intrinsic 
to the linear model. Notwithstanding, basis functions continue to be a very popular 
algorithmic strategy in ADP, due to their remarkable ease of use. In the above model, 
performance can often be vastly improved by tuning <j| or the starting covariance 
matrix E0,0. Unfortunately, we are not able to avoid tunable parameters altogether 
in our ADP algorithm, the way we did in Chapter 5. It is important to bear in mind, 
however, that other policies such as epsilon-greedy would add even more tunable 
parameters if we were to use them together with basis functions. 

17.5 AN EXPECTED IMPROVEMENT POLICY 

As in Sections 5.6 and 16.4, our version of KG for learning with a physical state 
also has a close relative in the form of an expected improvement policy. This time, 
El appears under the name "value of perfect information" or VPI. The difference in 
name is due to the fact that this method was developed independently in the computer 
science community. Recalling that 

Qn(Sn,x) = C(Sn,x) +70(S* ' n )T0n , 

and defining 
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we calculate 

/ 
i/VP/'n(5x'n) = al'nf 

<p (Sx'n)T 6n - maxx , # x <j> (sx'<n) 6n 

2,1 

\ ) 

We then make our decision according to the formula 

XVPI,U ^ = &rgmaxc(Sn,x) + ^Vn(Sx<n) + vVPI>n(Sx'n). 
X 

Just as the other variants of El, this policy implicitly assumes that we will learn the 
true value of Sx,n immediately after choosing the decision x. Furthermore, just like 
the KG policy, VPI makes a decision by solving Bellman's equation, plus a value of 
information term. 

17.6 BIBLIOGRAPHIC NOTES 

In addition to the models discussed in this chapter, there is a separate stream of 
literature within the computer science community on learning unknown transition 
probabilities in a Markov decision process. This particular learning problem uses the 
Dirichlet distribution that we briefly touched on in Section 2.3 to model the unknown 
probabilities; the resulting algorithms tend to have a high degree of computational 
complexity. The LB A method of Duff & Barto (1996) also grew out of this literature. 
An example of an early approach is Silver (1963). For additional work on this topic, 
see also Dearden et al. (1999), Steele (2000) and Duff (2003). 

Section 17.1 - We give a very streamlined introduction to ADP based on Chapters 
3 and 4 of Powell (2011). Other good references include Puterman (1994), 
Bertsekas & Tsitsiklis (1996), and Si et al. (2005). 

Section 17.2 - The R-max method was developed by Brafman & Tennenholtz (2003), 
whereas E3 is due to Kearns & Singh (2002). Our heuristics from Chapter 4 
can also be used in this setting; implementation is described, for example, in 
Sutton & Barto (1998) and Kaelbling (1993). 

Section 17.3 - The LBA policy was originally proposed by Duff & Barto (1996) as 
a conceptual algorithm. The full implementation was worked out by Ryzhov 
et al. (2010), where some experimental results are given. The expression of 
the Gittins index as expected reward per expected unit time is due to Katehakis 
& Veinott (1987); see also Dupacova (1995). There have also been other 
crossovers of bandit methods into dynamic programming and reinforcement 
learning; see Szepesvari (2010) for a UCB-based approach. 

Section 17.4 - Basis functions are a standard model for generalized learning; the work 
by Tesauro (1992) is an example of an early treatment. The model continues to 
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see widespread use; see Sutton et al. (2009) for some recent advances. The first 
derivation of the knowledge gradient in a dynamic programming setting (that 
is, in the presence of a physical state) was given in Ryzhov & Powell (201 lb). 

Section 17.5 - The VPI policy was proposed by Dearden et al. (1998). 
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