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Why do you need this book?

Multivariable analysis is confusing! Whether you are performing your first research 
 project or attempting to interpret the output from a multivariable model, you have 
undoubtedly found this to be true. Basic biostatistics books are of little or no help to 
you, since their coverage often stops short of multivariable analysis. However, existing 
multivariable analysis books are too dense with mathematical formulae and derivations 
and are not designed to answer your most basic questions. Is there a book that steps 
aside from the math and simply explains how to understand, perform, and interpret 
multivariable analyses?
 Yes. Multivariable Analysis: A Practical Guide for Clinicians and Public Health 
Researchers, as this new edition is titled, is precisely the reference that will lead your way. 
In fact, Dr. Mitchell Katz has asked and answered all of your questions for you!
 Why should I do multivariable analysis?
 How do I choose which type of multivariable to use?
 How many subjects do I need to do multivariable analysis?
 What if I have repeated observations of the same persons?
Answers and detailed explanations to these questions and more are found in this book. 
Also, it is loaded with useful tips, summary charts, figures, and references.
 If you are a medical student, resident, or clinician, Multivariable Analysis: A Practical 
Guide for Clinicians and Public Health Researchers will prove an indispensable guide 
through the confusing terrain of statistical analysis.
 This third edition has been fully revised to build on the enormous success of its pred-
ecessors. New features include new sections on Poisson and negative binomial regression, 
proportional odds analysis, and multinomial logistic regression, and an expanded sec-
tion on interpretation of residuals.
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“This is the first nonmathematical book on multivariable analysis addressed to clinicians. 
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guide for self-study. This book is ‘a practical guide for clinicians.’”

Leonard E. Braitman, Ph.D., Annals of Internal Medicine
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Preface

There has been astounding growth in the use of multivariable analysis in clin-
ical research. When the first edition of this book was published in 1999 logis-
tic regression and proportional hazards models were cutting-edge techniques. 
Now for many researchers, these are old, staid models and the new edge is 
mixed-effects models, generalized estimating equations, Poisson regression, 
and propensity score analysis.

The use of these more sophisticated models is fueled by the development 
of user-friendly software for constructing multivariable models, increased 
availability of electronic databases (medical records, disease and procedure 
registries) that provide longitudinal data on large populations, and increased 
funding for and interest in clinical effectiveness studies – studies comparing 
different treatments in use – as a method of improving quality and reducing 
healthcare costs.

What hasn’t changed in the past 11 years is the need for an easy-to-follow 
guide for nonstatisticians on how to perform and interpret these models. 
Although the available software (e.g., SPSS, SAS, S-plus, R) doesn’t require 
programming experience or mathematical aptitude to conduct the analyses, if 
the analysis is not set up correctly, the answer is sure to be wrong! Even when 
the analysis is performed correctly, researchers may not draw the correct con-
clusions from the output.

To prevent these problems, throughout the book I have focused on how to 
set up and interpret multivariable analysis. I use examples from the medical 
and public health literature because illustrations of how to correctly analyze 
data and present the results will help you analyze and present your data cor-
rectly. Modeling your work based on successful published studies is one of the 
best and most efficient strategies for correctly analyzing data.

The biggest changes in this edition are that I have written new sections 
on Poisson and negative binomial regression, proportional odds analysis, 
and multinomial logistic regression because these models are increasingly 
in use. I have improved the section on mixed-effects models and generalized 
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estimating equations, and also expanded the section on checking the under-
lying assumptions of multivariable models (Chapter 9) using residuals and 
other techniques.

While taking on new and more complicated material, I have maintained 
the basic organization of the book. Besides retaining the question-and-answer 
approach, the order of the book mirrors the process of doing multivariable 
analysis: deciding whether you need to do multivariable analysis (Chapters 
1 and 2), choosing the correct model (Chapter 3), preparing your independ-
ent variables (Chapters 4 and 5), setting up the model (Chapter 6), perform-
ing the analysis (Chapter 7), interpreting the basic output (Chapter 8), delving 
deeper into the underlying assumptions of the model (Chapter 9), validating 
your model (Chapter 12) and publishing your study (Chapter 14). One of the 
reasons I prefer this approach to the more traditional approach (i.e., having 
a separate chapter on each type of multivariable model) is that it illustrates 
the similarities and differences of the different approaches. In my experience, 
when the results are strong, different (but reasonable) approaches lead to simi-
lar answers; conversely, when the results are very different with different tech-
niques be suspicious. Also, I have found that the most efficient way to end 
an argument over what the best way is to analyze a data set is to analyze it 
multiple ways and see whether the results differ. If there are few differences 
then you have strengthened your results. When there are differences, you have 
probably learned something important about the nature of your data. Also, by 
structuring the book to parallel the research process, it allows readers to join 
the book at whatever stage they are at in the research process.

This book assumes that you are familiar with basic biostatistics. If not, I 
recommend S. Glantz’s Primer of Biostatistics (sixth edition, McGraw-Hill, 
2005). I have also written a basic statistics book using a question-and-answer 
approach similar to that used in this book called Study Design and Statistical 
Analysis: A Practical Guide for Clinicians (Cambridge University Press, 2006). 
Some reviewers have suggested that the two books be combined, and while I see 
the merit in that, I also see a much fatter text that might be more expensive and 
off-putting to clinical researchers. Please forgive me therefore if I cite that book 
or my other book on performing interventions (Evaluating Clinical and Public 
Health Interventions, Cambridge University Press, 2010). It is not an exercise of 
ego, but rather an attempt to keep each book inexpensive and short.

One of the challenges in writing a book for clinical researchers is deciding 
how much detail to include. One could easily have (and many have) written 
books larger than this about just one of the procedures described. To keep 
the presentations short and the material accessible, I direct readers who wish 
to know more about a particular procedure to more detailed sources in the 
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footnotes. Since statistical textbooks are expensive, and many journal articles 
are not easy to find, I have particularly emphasized web resources that I have 
found useful.

Twenty years of students in the University of California, San Francisco, Clin-
ical Research Program have contributed to this book through their insightful 
questions and observations. Serving as the Deputy Editor for the Archives of 
Internal Medicine during the past two years has definitely sharpened my eye 
as to how best to conduct multivariable research. For this opportunity I am 
grateful to the Editor, Rita Redberg, M.D., our two biostatistical editors who 
have taught me much, John Neuhaus, Ph.D. and David Glidden, Ph.D., and the 
other editors, Patrick O’Malley, M.D. and Kirsten Johansen, M.D., who have 
shared their critical observations with me on hundreds of articles. I greatly 
appreciate the support of my editor Richard Marley and the staff at Cambridge 
University Press for encouraging me to do this third edition.

The best part of writing and updating this book is the number of research-
ers who have emailed me with their comments, compliments, and ques-
tions. Writing textbooks is a lonely business and I wouldn’t do it unless I 
had evidence that the books were actually helping people to conduct better 
research. If you have questions or suggestions for future editions, email me at  
mhkatz59@yahoo.com
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1

Introduction

1.1 Why should I do multivariable analysis?

We live in a multivariable world. Most events, whether medical, political, 
social, or personal, have multiple causes. And these causes are related to one 
another. Multivariable analysis1 is a statistical tool for determining the relative 
contributions of different causes to a single event or outcome.

Clinical researchers, in particular, need multivariable analysis because most 
diseases have multiple causes, and prognosis is usually determined by a large 
number of factors. Even for those infectious diseases that are known to be 
caused by a single pathogen, a number of factors affect whether an exposed 
individual becomes ill, including the characteristics of the pathogen (e.g., vir-
ulence of strain), the route of exposure (e.g., respiratory route), the intensity 
of exposure (e.g., size of inoculum), and the host response (e.g., immunologic 
defense).

Multivariable analysis allows us to sort out the multifaceted nature of risk 
factors and their relative contribution to outcome. For example, observational 
epidemiology has taught us that there are a number of risk factors associated 
with premature mortality, notably smoking, a sedentary lifestyle, obesity, ele-
vated cholesterol, and hypertension. Note that I did not say that these factors 
cause premature mortality. Statistics alone cannot prove that a relationship 
between a risk factor and an outcome are causal.2 Causality is  established on  

1 The terms “multivariate analysis” and “multivariable analysis” are often used interchangeably. In 
the strict sense, multivariate analysis refers to simultaneously predicting multiple outcomes. Since 
this book deals with techniques that use multiple variables to predict a single outcome, I prefer the 
more general term multivariable analysis.

2 Throughout the text I use the terms “associated with” and “related to” interchangeably. Similarly, 
I use the terms “risk factor,” “exposure,” “predictor,” and “independent variable,” and the terms 
“outcome” and “dependent variable,” interchangeably. Although some of these terms such as “risk 
factor,” “predictor,” and “outcome” imply causality remember that causality can never be proven 
with statistical analysis. The best way for establishing causality is through rigorous study design 
(e.g., randomization to eliminate confounding, longitudinal observations to minimize the chance 
that the “outcome” caused the “risk factor”).
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2 Introduction

the basis of biological plausibility and rigorous study designs, such as rand-
omized controlled trials, which eliminate sources of potential bias.

Identification of risk factors of premature mortality through observational 
studies has been particularly important because you cannot randomize people 
to many of the conditions that cause premature mortality, such as smoking, 
sedentary lifestyle, or obesity. And yet these conditions tend to occur together; 
that is, people who smoke tend to exercise less and be more likely to be obese.

How does multivariable analysis separate the independent contribution of 
each of these factors? Let’s consider the case of exercise. Numerous studies 
have shown that persons who exercise live longer than persons with sedentary 
lifestyles. But if the only reason that persons who exercise live longer is that 
they are less likely to smoke and more likely to eat low-fat meals leading to 
lower cholesterol, then initiating an exercise routine would not change a per-
son’s life expectancy.

The Aerobics Center Longitudinal Study tackled this important ques-
tion.3 They evaluated the relationship between exercise and mortality in 
25, 341 men and 7080 women. All participants had a baseline examination 
between 1970 and 1989. The examination included a physical examination, 
laboratory tests, and a treadmill evaluation to assess physical fitness. Par-
ticipants were followed for an average of 8.4 years for the men and 7.5 years 
for the women.

Table 1.1 compares the characteristics of survivors to persons who had died 
during the follow-up. You can see that there are a number of significant differ-
ences between survivors and decedents among men and women. Specifically, 
survivors were younger, had lower blood pressure, lower cholesterol, were less 
likely to smoke, and were more physically fit (based on the length of time they 
stayed on the treadmill and their level of effort).

Although the results are interesting, Table 1.1 does not answer our basic 
question: Does being physically fit independently increase longevity? It 
doesn’t answer the question because whereas the high-fitness group was 
less likely to die during the study period, those who were physically fit 
may just have been younger, been less likely to smoke, or had lower blood 
pressure.

To determine whether exercise is independently associated with mortality, 
the authors performed proportional hazards analysis, a type of multivariable 
analysis. The results are shown in Table 1.2. If you compare the number of 
deaths per thousand person-years in men, you can see that there were more 

3 Blair, S. N., Kampert, J. B., Kohl, H. W., et al. “Influences of cardiorespiratory fitness and other 
precursors on cardiovascular disease and all-cause mortality in men and women.” JAMA 276 
(1996): 205–10.

 

 



3 1.1 Why should I do multivariable analysis?

deaths in the low-fitness group (38.1) than in the moderate/high fitness group 
(25.0). This difference is reflected in the elevated relative risk for lower fitness 
(38.1/25.0 = 1.52). These results are adjusted for all of the other variables listed 
in the table. This means that low fitness is associated with higher mortality, 
independent of the effects of other known risk factors for mortality, such as 
smoking, elevated blood pressure, cholesterol, and family history. A similar 
pattern is seen for women.

Was there any way to answer this question without multivariable analysis? 
One could have performed stratified analysis. Stratified analysis assesses the 
effect of a risk factor on outcome while holding another variable constant. So, 
for example, we could compare physically fit to unfit persons separately among 
smokers and nonsmokers. This would allow us to calculate a relative risk for 
the impact of fitness on mortality, independent of smoking. This analysis is 
shown in Table 1.3.

Unlike the multivariable analysis in Table 1.2, the analyses in Table 1.3 are 
bivariate.4 We see that the mortality rate is greater among those at low fitness 

DEFINIT ION

Stratified analysis 
assesses the effect of a 
risk factor on outcome 
while holding another 
variable constant.

Table 1.1 Baseline characteristics of survivors and decedents, Aerobics Center Longitudinal Study.

Men Women

Characteristics
Survivors 
(n = 24 740)

Decedents 
(n = 601)

Survivors 
(n = 6991)

Decedents 
(n = 89)

Age, y (SD) 42.7 (9.7) 52.1 (11.4) 42.6 (10.9) 53.3 (11.2)
Body mass index, kg/m2 (SD) 26.0 (3.6) 26.3 (3.5) 22.6 (3.9) 23.7 (4.5)
Systolic blood pressure, mm Hg (SD) 121.1 (13.5) 130.4 (19.1) 112.6 (14.8) 122.6 (17.3)
Total cholesterol, mg/dL (SD) 213.1 (40.6) 228.9 (45.4) 202.7 (40.5) 228.2 (40.8)
Fasting glucose, mg/dL (SD) 100.4 (16.3) 108.1 (32.0) 94.4 (14.5) 99.9 (25.0)
Fitness, %
Low 20.1 41.6 18.8 44.9
Moderate 42.0 39.1 40.6 33.7
High 37.9 19.3 40.6 21.3
Current or recent smoker, % 26.3 36.9 18.5 30.3
Family history of coronary heart disease, % 25.4 33.8 25.2 27.0
Abnormal electrocardiogram, % 6.9 26.3 4.8 18.0
Chronic illness, % 18.4 40.3 13.4 20.2

Adapted with permission from Blair, S. N., et al. “Influences of cardiorespiratory fitness and other precursors on 
cardiovascular disease and all-cause mortality in men and women.” JAMA 276 (1996):205–10. Copyright 1996, 
American Medical Association. Additional data provided by authors.

4 Some researchers use the term “univariate” to describe the association between two variables. 
I think it is more informative to restrict the term univariate to analyses of a single variable (e.g., 
mean, median), while using the term “bivariate” to refer to the association between two variables.

 

 

 

 

 



4 Introduction

compared to those at moderate/high fitness, both among smokers (48.0 vs. 
29.4) and among nonsmokers (44.0 vs. 20.1). This stratified analysis shows that 
the effect of fitness is independent of smoking status.

Table 1.2 Multivariable analysis of risk factors for all-cause mortality, Aerobics Center Longitudinal Study.

Men Women

Independent variable
Deaths per 10 000 
person-years

Adjusted relative 
risk (95% CI)

Deaths per 10 000 
person-years

Adjusted relative 
risk (95% CI)

Fitness
 Low 38.1 1.52 (1.28–1.82) 27.8 2.10 (1.36–3.26)
 Moderate/High 25.0 1.0 (ref.) 13.2 1.0 (ref.)

Smoking status
 Current or recent smoker 39.4 1.65 (1.39–1.97) 27.8 1.99 (1.25–3.17)
 Past or never smoked 23.9 1.0 (ref.) 14.0 1.0 (ref.)

Systolic blood pressure
 ≥140 mm Hg 35.6 1.30 (1.08–1.58) 13.0 0.76 (0.41–1.40)
 <140 mm Hg 27.3 1.0 (ref.) 17.1 1.0 (ref.)

Cholesterol
 ≥240 mg/dL 35.1 1.34 (1.13–1.59) 18.0 1.09 (0.68–1.74)
 <240 mg/dL 26.1 1.0 (ref.) 16.6 1.0 (ref.)

Family history of coronary heart disease
 Yes 29.9 1.07 (0.90–1.29) 12.8 0.70 (0.43–1.16)
 No 27.8 1.0 (ref.) 18.2 1.0 (ref.)

Body mass index
 ≥27 kg/m2 28.8 1.02 (0.86–1.22) 15.9 0.94 (0.52–1.69)
 <27 kg/m2 28.2 1.0 (ref.) 16.9 1.0 (ref.)
Fasting glucose
 ≥120 mg/dL 34.4 1.24 (0.98–1.56) 29.6 1.79 (0.80–4.00)
 <120 mg/dL 27.9 1.0 (ref.) 16.5 1.0 (ref.)

Abnormal electrocardiogram
 Yes 44.4 1.64 (1.34–2.01) 25.3 1.55 (0.87–2.77)
 No 27.1 1.0 (ref.) 16.3 1.0 (ref.)

Chronic illness
 Yes 41.2 1.63 (1.37–1.95) 17.5 1.05 (0.61–1.82)
 No 25.3 1.0 (ref.) 16.7 1.0 (ref.)

Adapted with permission from Blair, S. N., et al. “Influences of cardiorespiratory fitness and other precursors on 
cardiovascular disease and all-cause mortality in men and women.” JAMA 276 (1996): 205–10. Copyright 1996, 
American Medical Association. Additional data provided by authors.
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But what about all of the other variables that might affect the relationship 
between fitness and longevity? You could certainly stratify for each one indi-
vidually, proving that the effect of fitness on longevity is independent not only 
of smoking status, but also independent of elevated cholesterol, elevated blood 
pressure, and so on. However, this would only prove that the relationship is 
independent of these variables taken singly.

To stratify by two variables (smoking and cholesterol), you would have to 
assess the relationship between fitness and mortality in four groups (smok-
ers with high cholesterol; smokers with low cholesterol; nonsmokers with 
high cholesterol; nonsmokers with low cholesterol). To stratify by three vari-
ables (smoking status, cholesterol level, and elevated blood pressure [yes/no]), 
you would have to assess the relationship between fitness and mortality in 
eight groups (2 × 2 × 2 = 8); add elevated glucose (yes/no) and you would have 
16 groups (2 × 2 × 2 × 2 = 16); add age (in six decades) and you would have 
96 groups (2 × 2 × 2 × 2 × 6 = 96); and we haven’t even yet taken into account 
all of the variables in Table 1.1 that are associated with mortality.

With each stratification variable you add, you increase the number of 
subgroups for which you have to individually assess whether the relation-
ship between fitness and mortality holds. Besides producing mountains of 
printouts, and requiring a book (rather than a journal article) to report your 
results, you would likely have an insufficient sample size in some of these 
subgroups, even if you started with a large sample size. For example, in the 
Aerobics Center Longitudinal Study there were 25, 341 men but only 601 
deaths. With 96 subgroups, assuming uniform distributions, you would 
expect only about six deaths per subgroup. But, in reality, you wouldn’t have 
uniform distributions. Some samples would be very small, and some would 
have no outcomes at all.

Table 1.3 Stratified analysis of smoking and fitness on all-cause mortality 
among men, Aerobics Center Longitudinal Study.

Deaths per 10 000 
person-years

Stratum-specific relative risk 
(95% CI)

Smokers
 Low fitness 48.0 1.63 (1.26–2.13)
 Moderate/high fitness 29.4 1.0 (ref.)

Nonsmokers
 Low fitness 44.0 2.19 (1.77–2.70)
 Moderate/high fitness 20.1 1.0 (ref.)

Data supplied by Aerobics Center Longitudinal Study.
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Multivariable analysis overcomes this limitation. It allows you to simul-
taneously assess the impact of multiple independent variables on outcome. 
But there is (always) a cost: The model makes certain assumptions about the 
nature of the data. These assumptions are sometimes hard to verify. We will 
take up these issues in Chapters 3, 4, and 9.

1.2 What are confounders and how does multivariable analysis  
help me to deal with them?

The ability of multivariable analysis to simultaneously assess the independent 
contribution of a number of risk factors to outcome is particularly important 
when you have “confounding.” Confounding occurs when the apparent asso-
ciation between a risk factor and an outcome is affected by the relationship of 
a third variable to the risk factor and the outcome; the third variable is called 
a confounder.

For a variable to be a confounder, the variable must be associated with the 
risk factor and causally related to the outcome (Figure 1.1).

A classically taught example of confounding is the relationship between 
carrying matches and developing lung cancer (Figure 1.2). Persons who carry 
matches have a greater chance of developing lung cancer; the confounder is 
smoking. This example is often used to illustrate confounding because it is 
easy to grasp that carrying matches cannot possibly cause lung cancer.

Stratified analysis can be used to assess and eliminate confounding. If you 
stratify by smoking status you will find that carrying matches is not associ-
ated with lung cancer. That is, there will be no relationship between carrying 
matches and lung cancer when you look separately among smokers and non-
smokers (Figure 1.2). The statistical evidence of confounding is the difference 

Figure 1.1 Relationships among risk factor, confounder, and outcome.

Figure 1.2 Relationships among carrying matches, smoking, and lung cancer.
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7 1.2 Confounders and multivariable analysis

between the unstratified and the stratified analysis. In the unstratified analysis 
the chi-squared test would be significant and the odds ratio for the impact of 
matches on lung cancer would be significantly greater than one. In the two 
stratified analyses (smokers and nonsmokers), carrying matches would not 
be significantly associated with lung cancer; the odds ratio would be one in 
both strata. This differs from the example of stratified analysis in Table 1.3 
where exercise was significantly associated with mortality for both smokers 
and nonsmokers.

Most clinical examples of confounding are more subtle and harder to diag-
nose than the case of matches and lung cancer. Let’s look at the relationship 
between smoking and prognosis in patients with coronary artery disease fol-
lowing angioplasty (the opening of clogged coronary vessels with the use of a 
wire and a balloon).

Everyone knows (although the cigarette companies long claimed igno-
rance) that smoking increases the risk of death. Countless studies, including 
the Aerobics Center Longitudinal Study (Table 1.2), have demonstrated that 
smoking is associated with increased mortality. How then can we explain 
the results of Hasdai and colleagues?5 They followed 5437 patients with coro-
nary artery disease, who had angioplasty. They divided their sample into 
nonsmokers, former smokers (quit at least six months before procedure), 
recent quitters (quit immediately following the procedure), and persistent 
smokers. The relative risk of death with the 95 percent confidence intervals 
are shown in Table 1.4.

How can the risk of death be lower among persons who persistently smoke 
than those who never smoked? In the case of recent quitters, you would expect 
their risk of death to return toward normal only after years of not smoking – 
and even then you wouldn’t actually expect quitters to have a lower risk of 
death than nonsmokers.

Before you assume that there is something wrong with this study, several 
other studies have found a similar relationship between smoking and better 
prognosis among patients with coronary artery disease after thrombolytic 
therapy. This effect has been named the “smoker’s paradox.”6 What is behind 
the paradox? Look at Table 1.5. As you can see, compared to nonsmokers and 

5 Hasdai, D., Garratt, K. N., Grill, D. E., et al. “Effect of smoking status on the long-term 
outcome after successful percutaneous coronary revascularization.” N. Engl. J. Med. 336 
(1997): 755–61.

6 Barbash, G. I., Reiner, J., White, H. D., et al. “Evaluation of paradoxical beneficial effects of smok-
ing in patients receiving thrombolytic therapy for acute myocardial infarction: Mechanisms of 
the ‘smoker’s paradox’ from the GUSTO-I trial, with angiographic insights.” J. Am. Coll. Cardiol. 
26 (1995): 1222–9.

 

 

 

 



8 Introduction

former smokers, quitters and persistent smokers are younger, have had angina 
for a shorter period of time, are less likely to have diabetes and hypertension, 
and have less severe coronary artery disease (i.e., more one-vessel disease and 
less three-vessel disease). Given this, it is not so surprising that the recent quit-
ters and persistent smokers have a lower risk of death than nonsmokers and 
former smokers: They are younger and have fewer underlying medical prob-
lems than the nonsmokers and former smokers.

Compare the bivariate (unadjusted) risk of death to the multivariable risk 
of death (Table 1.6). Note that in the multivariable analysis the researchers 
adjusted for those differences, such as age and duration of angina, that existed 
among the four groups.

With statistical adjustment for the baseline differences between the groups, 
the former smokers and persistent smokers have a significantly greater risk 
of death than nonsmokers – a much more sensible result. (The recent quit-
ters also have a greater risk of death than the nonsmokers, but the confidence 
intervals of the relative risk do not exclude one.) The difference between the 
bivariate and multivariable analysis indicates that confounding is present. 
The advantage of multivariable analysis over stratified analysis is that it would 

Table 1.5 Association between demographic and clinical factors and smoking status.

Nonsmokers Former smokers Recent quitters Persistent smokers

Age, year ± SD 67 ± 11 65 ± 10 56 ± 10 55 ± 11
Duration of angina, months ± SD 41 ± 66 51 ± 72 21 ± 46 29 ± 55
Diabetes, % 21% 18% 8% 10%
Hypertension, % 54% 48% 38% 39%
Extent of coronary artery disease, %
 One vessel 50% 51% 57% 55%
 Two vessels 36% 36% 34% 36%
 Three vessels 14% 13% 10% 9%

Adapted from Hasdai, D., et al. “Effect of smoking status on the long-term outcome after successful percutaneous 
coronary revascularization.” N. Engl. J. Med. 336 (1997): 755–61.

Table 1.4 Bivariate association between smoking status and risk of death.

Bivariate Nonsmokers Former smokers Recent quitters Persistent smokers

Relative risk of death 1.0 (ref.) 1.08 (0.92–1.26) 0.56 (0.40–0.77) 0.74 (0.59–0.94)

Adapted from Hasdai, D., et al. “Effect of smoking status on the long-term outcome after successful percutaneous 
coronary revascularization.” N. Engl. J. Med. 336 (1997): 755–61.

T IP

Multivariable analysis 
is preferable to 
stratified analysis 
when you have 
multiple confounders.

 

 

 

 

 



9 1.3 Suppressers and multivariable analysis

have been difficult to stratify for age, duration of angina, diabetes, hyperten-
sion, and extent of coronary artery disease.

1.3 What are suppressers and how does multivariable analysis  
help me to deal with them?

Suppresser variables are a type of confounder. As with confounders, a sup-
presser is associated with the risk factor and the outcome (Figure 1.3). The 
difference is that on bivariate analysis there is no effect seen between the risk 
factor and the outcome. But when you adjust for the suppresser, the relation-
ship between the risk factor and the outcome becomes significant.

Identifying and adjusting for suppressers can lead to important findings. 
For example, it was unknown whether taking antiretroviral treatment would 
prevent HIV seroconversion among healthcare workers who sustained a nee-
dle stick from a patient who was HIV-infected. For several years, healthcare 
workers who had an exposure were offered zidovudine treatment, but they 
were told that there was no efficacy data to support its use. A randomized con-
trolled trial was attempted, but it was disbanded because healthcare workers 
did not wish to be randomized.

Since a randomized controlled trial was not possible, a case-control study 
was performed instead.7 The cases were healthcare workers who sustained 
a needle stick and had seroconverted. The controls were healthcare workers 
who sustained a needle stick but had remained HIV-negative. The question 
was whether the proportion of persons taking zidovudine would be lower in 
the group who had seroconverted (the cases) than in the group who had not 
become infected (the controls). The investigators found that the proportion 
of cases using zidovudine was lower (9 of 33 cases or 27 percent) than the 

7 Cardo, D. M., Culver, D. H., Ciesielski, C. A., et al. “A case-control study of HIV seroconversion in 
health-care workers after percutaneous exposure.” N. Engl. J. Med. 337 (1997): 1485–90.

Table 1.6 Comparison of bivariate and multivariable association between smoking status and risk of 
death.

Nonsmokers Former smokers Recent quitters Persistent smokers

Relative risk of death 
(bivariate)

1.0 (ref.) 1.08 (0.92–1.26) 0.56 (0.40–0.77) 0.74 (0.59–0.94)

Relative risk of death 
(multivariable)

1.0 (ref.) 1.34 (1.14–1.57) 1.21 (0.87–1.70) 1.76 (1.37–2.26)

Adapted from Hasdai, D., et al. “Effect of smoking status on the long-term outcome after successful percutaneous 
coronary revascularization.” N. Engl. J. Med. 336 (1997): 755–61.
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10 Introduction

proportion of controls using zidovudine (247 of 679 controls or 36 percent), 
but the difference was not statistically significant (probability [P] = 0.35). Con-
sistent with this nonsignificant trend, the odds ratio shows that zidovudine 
was protective (0.7), but the 95 percent confidence intervals were wide and did 
not exclude one (0.3–1.4).

However, it was known that healthcare workers who sustained an espe-
cially serious exposure (e.g., a deep injury or who stuck themselves with 
a needle that had visible blood on it) were more likely to choose to take 
zidovudine than healthcare workers who had more minor exposures. 
Also, healthcare workers who had serious exposures were more likely to 
seroconvert.

When the researchers adjusted their analysis for severity of injury using 
multiple logistic regression, zidovudine use was associated with a significantly 
lower risk of seroconversion (odds ratio [OR] = 0.2; 95 percent confidence 
interval (CI) = 0.1 – 0.6; P < 0.01). Thus, we have an example of a suppresser 
effect as shown in Figure 1.4. Severity of exposure is associated with zidovu-
dine use and causally related to seroconversion. Zidovudine use is not associ-
ated with seroconversion in bivariate analyses but becomes significant when 
you adjust for severity of injury.

Although this multivariable analysis demonstrated the efficacy of zidovu-
dine on preventing seroconversion by incorporating the suppresser variables, 
it should be remembered that multivariable analysis cannot adjust for other 
potential biases in the analysis. For example, the cases and controls for this 
study were not chosen from the same population, raising the possibility that 
selection bias may have influenced the results. Nonetheless, on the strength 
of this study, postexposure prophylaxis with antiretroviral treatment became 
the standard of care for healthcare workers who sustained needle sticks from 
HIV-contaminated needles.

Figure 1.4 Relationships among zidovudine, severity of injury, and seroconversion.

Figure 1.3 Relationships among risk factor, suppresser, and outcome.
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1.4 What are interactions and how does multivariable analysis  
help me to deal with them?

An interaction occurs when the impact of a risk factor on outcome is changed 
by the value of a third variable. Interaction is sometimes referred to as effect 
modification, since the effect of the risk factor on outcome is modified by 
another variable.

An interaction is illustrated in Figure 1.5. The risk factor’s effect on outcome 
(solid lines) differs depending on the value of the interaction variable (whether 
it is 1 or 0). The dotted line indicates the relationship without consideration of 
the interaction effect.

In extreme cases, an interaction may completely reverse the relationship 
between the risk factor and the outcome. This would occur when the risk fac-
tor increased the likelihood of outcome at one value of the interaction variable 
but decreased the likelihood of outcome at a different value of the interac-
tion variable. More commonly, the effect of the risk factor on the outcome is 
stronger (or weaker) at certain values of the third variable.

As with confounding, stratification can be used to identify an interaction. 
By stratifying by the interaction variable, you can observe the effect of a risk 
factor on outcome at the different values of the interaction variable. You can 
statistically test whether the association between a risk factor and an outcome 
at different levels of the interaction variable are statistically different from one 
another using a chi-squared test for homogeneity.

However, as with the use of stratification to eliminate confounding, 
use of stratification to demonstrate interaction has limitations. It is cum-
bersome to stratify by more than one or two variables; yet you may have 
multiple interactions in your data. Whereas stratification will accurately 
quantify the effect of the risk factor on the outcome at different levels of 
the interaction variable, this analysis will not be adjusted for the other 
variables in your model (e.g., confounders) that may affect the relation-
ship between risk factor and outcome. Multivariable analysis allows you 

Figure 1.5 Illustration of an interaction effect.
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12 Introduction

to include interaction terms and assess them while adjusting for other 
variables.

For example, Zucker and colleagues evaluated whether specific signs or 
symptoms of myocardial infarction were different in men than in women pre-
senting to the emergency department with chest pain or other symptoms of 
acute cardiac ischemia.8

In Table 1.7 you can see the association between the independent variables 
and confirmed diagnoses of acute myocardial infarction. The coefficients and 
odds ratios are from a multiple logistic regression model. The authors found 
three significant interactions involving gender: male gender and ST elevation 
(on electrocardiogram), male gender and congestive heart failure, and male 
gender and white race.

Table 1.7 Association of independent variables with confirmed diagnosis of 
acute myocardial infarction based on multiple logistic regression model.

Independent variables Coefficients Odds ratio

Male gender 0.4852 1.6
Age <50 0.1432 1.2
Chest pain 0.8792 2.4
Chief complaint: chest pain 0.4399 1.6
Nausea/vomiting 0.5153 1.7
Congestive heart failure 0.6759 2.0
White race 0.0987 1.1
ST elevation 2.0948 8.1
ST depression 1.2632 3.5
Q waves 0.5311 1.7
History of diabetes mellitus 0.2781 1.3
History of hypertension 0.2032 1.2
History of angina –0.2976 0.7
History of peptic ulcers –0.3210 0.7
Dizziness –0.4437 0.6
Interactions
Male gender and congestive heart failure –0.6899 0.5
Male gender and ST elevation –0.5187 0.6
Male gender and white race 0.5206 1.7

Adapted with permission from Zucker, D. R., et al. “Presentations of acute myocardial 
infarction in men and women.” J. Gen. Intern. Med. 12 (1997): 79–87.

8 Zucker, D. R., Griffith, J. L., Beshansky, J. R., et al. “Presentations of acute myocardial infarction in 
men and women.” J. Gen. Intern. Med. 12 (1997): 79–87.
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What do these interactions mean? Let’s use the interaction involving male 
gender and ST elevations as an example (I have put these two variables and 
their interaction term in bold print). Note that men were more likely than 
women to have an acute myocardial infarction (OR = 1.6), even after adjust-
ing for other variables associated with an infarction. Similarly, ST elevations 
were more likely to indicate ischemia (OR = 8.1). Given this, you would expect 
that males with ST elevations would have a markedly higher risk of myocar-
dial infarction (1.6 × 8.1 = 13.0) than women (1.0 × 8.1 = 8.1) (the wonderful 
property of odds ratios that allows you to multiply them this way is explained 
in Section 9.7).

The multiplication of the odds ratios of gender and ST elevations would lead 
you to believe that men with ST elevations would have a significantly higher 
risk of an acute myocardial infarction than women (13.0 vs. 8.1). In fact, the 
risk for men and women with ST elevations was similar. This is reflected in the 
negative coefficient for male gender × ST elevations and the odds ratio of 0.6. 
If you multiply out the odds ratio for the interaction of male gender with ST 
elevations, men with ST elevations (1.6 × 8.1 × 0.6 = 7.8) and women with ST 
elevations (1.0 × 8.1× 1.0 = 8.1) have a similar risk of myocardial infarction.

ST elevations are highly specific for (although not diagnostic of) myocardial 
infarction. It is not surprising, therefore, that the risks of myocardial infarc-
tion are similar in men and women with ST elevations. Had being male made 
it even worse to have ST elevations the coefficient would have been positive, 
the odds ratio would have been greater than one, and we would have seen 
an even greater difference between the risk of an acute myocardial infarction 
for men and for women in the presence of ST elevations than the difference 
between 13.0 and 8.1.

Because interaction effects can be difficult to assess and interpret, I will 
return to this topic in Sections 7.3, 8.4, and 9.7.
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2

Common uses of multivariable models

2.1 What are the most common uses of multivariable models in clinical 
research?

The four most common uses of multivariable models are:

A observational studies of etiology
B intervention studies (randomized and nonrandomized)
C studies of diagnosis
D studies of prognosis

These different uses are discussed in the Sections 2.2–2.5.

2.2 How is multivariable analysis used in observational studies of 
etiology?

The goal of etiologic studies is to identify causes of an outcome, usually with 
the goal of removing a harmful substance (e.g., tobacco) or promoting a health-
ful activity (e.g., exercise).

Although observational studies cannot prove causality, multivariable ana-
lysis may strengthen the argument for causality by excluding confounding, an 
alternative explanation of an association. Look back at the example of fitness 
and mortality in Chapter 1. If the association between fitness and longevity is 
causal, encouraging people to exercise more will extend their life. If the asso-
ciation between fitness is confounded by smoking (i.e., smoking is the real 
cause of the decreased lifespan, and because smokers exercise less it appears 
that fitness is associated with longevity) increasing fitness will not change lon-
gevity. The data in Table 1.2 indicate that the effect of fitness on longevity is 
not confounded by smoking or other factors (at least not the ones the authors 
adjusted for) and therefore fitness programs are a promising intervention for 
extending survival.

 

 

 

 

 

 



15 2.2 Uses in observational studies of etiology

Part of why multivariable analysis has become indispensable to observa-
tional studies of etiology is that as we have learned more about certain multi-
factorial diseases, such as cardiac disease, we have identified a larger and larger 
number of risk factors for the disease. Because many of these variables are 
associated with one another, stratification becomes an unwieldy technique for 
eliminating confounding. For example, when Gardner and colleagues assessed 
whether the size of low-density lipoprotein particles affected the incidence of 
coronary artery disease they adjusted their analysis for those risk factors long 
known to increase the risk of coronary artery disease, such as smoking, blood 
pressure, and body mass index.1 But they also adjusted their model for more 
recently identified risk factors such as HDL cholesterol, nonHDL cholesterol, 
and triglycerides. One of the most extensive studies of cardiovascular disease, 
the Framingham study, which began in 1948, did not even collect data on HDL 
cholesterol until 1972.2

Unfortunately multivariable analysis has limitations when used for obser-
vational studies of etiology. Perhaps the greatest one is that it is impossible to 
adjust for those variables that are unmeasured or unknown! Therefore, even 
after you have adjusted for all those variables that have been measured, there 
remains the possibility that the association is still confounded.

A second limitation of multivariable analysis is that including a potential 
confounder in a model does not guarantee elimination of bias owing to the 
confounder. For multivariable models to adequately adjust for confounding, 
there must be sufficient overlap of the confounders in the different groups 
or outcomes. For example, if almost all of the smokers are in one group and 
almost all of the nonsmokers are in another group, adjusting for smoking will 
not remove confounding caused by smoking. This is why it is important to 
use bivariate analysis to verify that there is sufficient overlap of your potential 
confounders prior to conducting a multivariable analysis.

Even if there is sufficient overlap, no adjustment is perfect. Just as there is 
error in the measurement of your dependent and independent variables, there 
is error in your confounders. Once you appreciate that your measurement of 
confounding variables is imperfect, you realize that including a variable in a 
model cannot completely eliminate confounding. Moreover, the models them-
selves contain error. Important variables may be omitted, they may be incor-
rectly specified (Section 4.3), or interactions between the variables may not 
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1 Gardner, C. D., Fortmann, S. P., and Krauss, R. M. “Association of small low-density lipopro-
tein particles with the incidence of coronary artery disease in men and women.” JAMA 276 
(1996): 875–81.

2 Levy, D., Wilson, P. W. F., Anderson, K. M., et al. “Stratifying the patient at risk from coronary 
disease: New insights from the Framingham heart study.” Am. Heart. J. 119 (1990): 712–17.

 

 

 

 

 

 



16 Common uses of multivariable models

be appropriately accounted for (Section 9.7). This warning is not meant to be 
discouraging; rather, it is stated to promote humility about what you can and 
cannot do with statistical models.

2.3 How is multivariable analysis used in intervention studies 
(randomized and nonrandomized)?

When analyzing data from intervention trials, whether the trials are rand-
omized or nonrandomized, whether the intervention is a drug, a counseling 
session, or a change in law, it is critical to adjust for baseline differences in the 
groups. Why? Because if the groups being compared are different at the start 
of the study it is impossible to know whether differences between the groups 
at the end of the study are owing to the intervention or are owing to the inher-
ent differences between the groups. For example, what if those who received a 
drug were older than those who received a placebo, or if those who received a 
counseling session were more educated than those who received usual care, or 
if those living in a state that passed a law have higher incomes than those liv-
ing in a state that did not pass the same? In all these cases it will be impossible 
to know whether any differences between the groups at the end of the study are 
owing to the intervention or these baseline differences.

In nonrandomized intervention studies, substantial differences between the 
groups at baseline are the rule, rather than the exception. In the real world 
people do not randomly allocate themselves. People on medicines are likely 
to be sicker, or have better access to medical care, or have more aggressive 
physicians than people who are not taking medicines. People who sign up for 
counseling sessions are likely to be more motivated about their health than 
those receiving usual care. People living in states that pass certain laws are 
likely different from people living in other states.

None of this should discourage you from conducting nonrandomized inter-
vention trials. In fact there are many instances when expense, logistical, or 
ethical difficulties preclude randomizing patients. In such cases multivariable 
analysis can be used to statistically approximate comparable groups.

Multivariable analysis was used to adjust for known confounders in an 
important nonrandomized study of statin therapy in patients admitted to hos-
pital with acute coronary syndromes (i.e., symptoms and signs of ischemia).3 
The investigators compared 5959 patients who were begun on statin treat-
ment during hospitalization to 9522 patients who were not. They found that 
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3 Spencer, F. A., Allegrone, J., Goldberg, R. J., et al. “Association of statin therapy with outcomes of 
acute coronary syndromes: The Grace study.” Ann. Intern. Med. 140 (2004): 857–66.

  

 

 

 

 



17 2.3 Uses in intervention trials

patients treated with statins were significantly less likely to die in the hospital 
(OR = 0.19; 95% CI = 0.16 – 0.23).

Does this bivariate analysis prove that statins decrease death owing to acute 
coronary syndromes? No! Since treatment was not randomized, it is likely 
that there were important differences between patients who received statin 
treatment in the hospital and those who did not. Indeed, as you can see from 
Table 2.1, patients receiving statin therapy were different from those who did 
not receive it, in terms of their demographics, medical history, presenting 
characteristics, long-term medications, in-hospital medications, and interven-
tions. Perhaps it is these differences that resulted in patients who were treated 
with statins being less likely to die.

To adjust for these baseline differences, the authors performed a multi-
variable analysis. With adjustment for differences in demographics, medical 
history, presenting characteristics, long-term medications, in-hospital medi-
cations, and interventions, statin use was still significantly associated with a 
decreased likelihood of death (OR = 0.38; 95 % CI = 0.30 – 0.48). The fact that 
the adjusted odds ratio is somewhat higher than the bivariate odds ratio indi-
cates that there was confounding. But even after adjustment for multiple con-
founders, statin use does have an independent effect on reducing mortality in 
patients with acute coronary syndromes.

The major limitation of this study is the same as the major limitation of all 
nonrandomized intervention studies. Multivariable analysis cannot adjust for 
unknown or unmeasured confounders – so if there is some other difference 
between those patients who were receiving statins and those patients who were 
not and this difference was associated with mortality then the use of statins 
may not be the true cause of the decreased mortality. Only randomization can 
create groups that are equal with respect to both measured and unmeasured 
confounders.

Figure 2.1 illustrates the elegance of randomization. If group assignment 
is determined through a nonbiased randomization, there is no association 
between a potential confounder and group assignment. I put nonbiased in 
italics to remind you that the advantages of randomization are lost if bias 
creeps in. This can occur if, for example, a research assistant knows which 
group the next person enrolled in the study will be assigned to and there-
fore seeks to enroll a particular patient next. This is why randomization 
should be done by someone with no contact or extraneous information 
about the subject.

Unfortunately, even when randomization occurs without bias, it some-
times happens by chance that one group is different from another group. 
For example, Mittelman and colleagues conducted an intervention to delay 
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Table 2.1 Differences between patients who received statin treatment in the 
hospital and those who did not.

Characteristic
In-hospital statin use  
(n = 5959)

No statin use 
(n = 9522) P Value

Demographic
 Median age, y 62.7 69.8 <0.001
 Women, % 29.6 36.7 <0.001
Medical history, %
 Smoking 63.7 52.6 <0.001
 Myocardial infarction 19.6 28.2 <0.001
 Transient ischemic attack or stroke 5.6 9.4 <0.001
 Diabetes 20.1 23.7 <0.001
 Positive angiogram 15.5 20.2 <0.001
 Peripheral vascular disease 7.5 9.9 <0.001
 Hypertension 52.1 58.7 <0.001
 Hyperlipidemia 43.0 25.0 <0.001
 Pe rcutaneous coronary 

intervention
8.0 9.6 <0.001

 Co ronary artery bypass graft 
surgery

6.4 9.5 <0.001

Presenting characteristics, %
 Killip class
  I 86.2 76.7 <0.001
  II 10.8 16.3
  III 2.5 5.3
  IV 0.5 1.7
 Heart rate ≥100 beats/min 13.8 19.5 <0.001
 Systolic blood pressure <90 mm Hg 1.6 3.2 <0.001
 ST-segment elevation 49 36.7 <0.001
Other long-term medication, %
 Aspirin 26.9 36.2 <0.001
 ACE inhibitors 17 24.9 <0.001
 β-blockers 17.5 24.1 <0.001
 Other lipid-lowering agents 2.4 2.6 >0.2
Other in-hospital medication, %
 Aspirin 96.6 90.9 <0.001
 Ticlopidine or clopidogrel 46.9 25.9 <0.001
 Unfractionated heparin 53.5 49.9 <0.001
 Enoxaparin 48.3 38.5 <0.001
 Ot her low-molecular-weight 

heparin
12.9 9.6 <0.001
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Figure 2.1 Relationships among randomized group assignment, potential confounder, and 
outcome.

4 Mittelman, M. S., Ferris, S. H., Shulman, E., et al. “A family intervention to delay nursing home 
placement of patients with Alzheimer disease.” JAMA 276 (1996): 1725–31.

nursing-home placement of patients with Alzheimer’s disease.4 They rand-
omized families to a treatment group (counseling and support for caregiv-
ers) and a control group. By chance (and bad luck!), the primary caregiver 
was significantly more likely to be female among the families randomized 
to the control group than among the families randomized to the treatment 
group. Moreover, patients of female caregivers were significantly more likely 
to be placed in a nursing home (the main outcome of this study). Thus, with-
out adjustment for the gender of the caregiver, the results of the study would 
have been difficult to interpret. With adjustment for the gender of the care-
giver, the authors demonstrated that the treatment was associated with a 
decrease in nursing-home placement.

Characteristic
In-hospital statin use  
(n = 5959)

No statin use 
(n = 9522) P Value

 ACE inhibitor 64.8 56.7 <0.001
 β-blockers 85.9 71.4 <0.001
 Other lipid-lowering agents 2.1 4.6 <0.001
 Glycoprotein IIb/IIIa inhibitors 27.1 13.2 <0.001
Interventions, %
 Cardiac catheterization 59.9 41.7 <0.001
 Pe rcutaneous coronary 

intervention
40.9 22.8 <0.001

 Co ronary artery bypass graft 
surgery

5.4 5.3 >0.2 

Data from: Spencer, F. A., Allegrone, J., Goldberg, R. J., et al. “Association of statin 
therapy with outcomes of acute coronary syndromes: The Grace study.” Ann. Intern. 
Med. 140 (2004): 857–66.
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In the case of this study, the difference in the baseline variable (gender 
of primary caregiver) was statistically significant. However, even if none 
of the differences is statistically significant, smaller differences between 
the groups may raise questions as to whether the baseline groups really are 
comparable. Therefore, with randomized trials most investigators will test 
the effect of their intervention using both bivariate and multivariable anal-
yses. When bivariate and multivariable results are similar, this is strong 
evidence that there is not confounding, at least not owing to those vari-
ables included in the model. When bivariate and multivariable results are 
different in a randomized study the results are harder to interpret, in part 
because statistical adjustment introduces model error. Thus if your rand-
omized clinical trial shows no or only a borderline effect in the bivariate 
analysis but a statistically significant effect in the multivariable analysis, 
some readers will be suspicious that the apparent effect is actually owing 
to error in the model.

Another use of multivariable analysis in randomized controlled trials is to 
determine whether other factors besides treatment group are associated with 
outcome. This use is akin to using multivariable analysis to determine etio-
logic risk factors in an observational study (Section 2.2); even though the study 
is “randomized”, subjects are not randomized on the factors other than the 
main intervention.

For example, Swain and colleagues conducted a randomized trial to deter-
mine whether concurrent or sequential chemotherapy would be better for 
women with operable, lymph-node-positive breast cancer.5 The women 
were randomized to three different groups. Those randomized to sequential 
chemotherapy did the best, answering the main question of the study. How-
ever, a secondary aim of the study was to determine the association between 
amenorrhea (loss of menstrual periods for at least six months) and survival. 
Using a proportional hazards analysis the investigators found that survival 
was significantly longer among women who had amenorrhea than those 
who did not (relative hazard 0.76; P value = 0.4). The analysis was adjusted 
for treatment assignment, estrogen-receptor status, age, lymph-node status, 
tumor size, and use of hormone therapy. It is important to understand that 
this is an independent effect of amenorrhea and not an interaction (Section 
1.4). The authors explicitly checked to see if there was an interaction between 
developing amenorrhea and treatment assignment, estrogen-receptor status, 

5 Swain, S. M., Jeong, J., Geyer, C. E., et al. “Longer therapy, iatrogenic amenorrhea, and survival in 
early breast cancer.” N. Engl. J. Med. 362 (2010): 2053–65.
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6 Pozen, M. W., D’Agostino, R. B., Selker, H. P., et al. “A predictive instrument to improve coronary-
care-unit admission practices in acute ischemic heart disease: A prospective multicenter clinical 
trial.” N. Engl. J. Med. 310 (1984): 1273–8.

T IP

Use multivariable 
models to determine 
the best combination 
of diagnostic 
information.

and age, and found that the effect of amenorrhea was consistent across all 
subgroups analyzed.

2.4 How is multivariable analysis used in studies of diagnosis?

Multivariable models can identify the best combination of diagnostic infor-
mation to determine whether a person has a particular disease. The most 
extensive work on diagnostic algorithms has been done for determining the 
likelihood of a myocardial infarction in patients presenting to emergency 
departments with chest pain. The reason this question has received so much 
attention is that the stakes are high. Chest pain is a common presenting symp-
tom in the emergency department. It can be due to something as minor as 
heartburn or something as serious as a heart attack. Every day, in every emer-
gency department, clinicians decide whom to send home and whom to admit 
to the coronary care unit. Although coronary care units save lives for patients 
with acute ischemia, less than half of those receiving this costly interven-
tion actually have ischemia. There is no one test available at the time of an 
emergency- department visit that distinguishes those patients who should be 
admitted from those who could be sent home.

Pozen and colleagues developed a diagnostic model for determining the 
likelihood that a patient presenting to an emergency department with chest 
pain had acute ischemia.6 From 59 different clinical features they identified 
seven clinical features that, when used together in a logistic regression model, 
produced a prediction of ischemia from 0 to 1.0. To determine the useful-
ness of the model, the researchers gave the results (during the experimental 
period) to treating physicians before they had to determine whether to admit 
patients or send them home. During the control period, the physicians were 
not given the estimates of the probability of acute ischemia. The researchers 
found that when the physicians were given the information, their decision-
making improved. In particular, the number of coronary-care-unit admis-
sions decreased by 30 percent without any missed cases of ischemia.

So when confronted with a patient with chest pain, do most emergency 
department physicians whip out their hand-held calculator and compute the 
probability of ischemia? Sadly, no. Corey and Merenstein tested the accept-
ability of this model to physicians by providing a worksheet version of the 
algorithm in a convenient dispenser in the emergency department, but not 
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requiring the physicians to use them. Physicians used it in only 2.8 percent of 
the cases.7 Low use of well-validated, diagnostic rules by physicians in clinical 
practice has been noted elsewhere.8

The reasons that diagnostic rules are not more widely used are complicated. 
Physicians, especially in emergency departments, are pressed for time. Pozen’s 
algorithm can be computed in less than 20 seconds, but it requires a prepro-
grammed hand-held calculator – something most physicians do not carry 
around with them. Using the worksheet version (if you had one in front of you) it 
would take you 30–60 seconds to calculate the probability of ischemia. Although 
this may not seem like a long time, in the emergency department, with many 
patients in gurneys in front of you, it can seem like an impossibly long task.

Psychological factors also impede the use of diagnostic models by physicians. 
Medical training has traditionally been akin to apprenticeship. You work with 
physicians more experienced than yourself until you have enough experience 
to function on your own. At a certain point, physicians feel that their judgment 
is accurate (even if studies show that, for some conditions, diagnostic models 
are more accurate than decisions made by physicians). The physicians in the 
Corey and Merenstein study complained that they lost confidence in the model 
when they discovered that two patients with very different characteristics could 
have the same predicted probability of ischemia. Perhaps, most importantly, 
as a profession, physicians are not yet comfortable using computer-generated 
models. But the potential is there. A good diagnostic model can make an intern 
instantly as good a diagnostician as the head of the department of medicine!

Before diagnostic models can be used in clinical practice they must be 
shown to be highly accurate in predicting outcome (Section 12.1). For this 
reason, developing diagnostic models can be challenging. However, in one 
respect they are easier to construct than explanatory models. In diagnostic 
settings, causality is unimportant. For example, diagonal ear lobe creases are 
associated with coronary events, even with adjustment for known cardiac risk 
factors including age, left ventricular ejection fraction, cholesterol level, smok-
ing, diabetes, family history, and obesity.9 No one believes that ear lobe creases 
cause coronary events. Looked at from a different point of view, lowering a 
patient’s cholesterol level may decrease the risk of a myocardial infarction, but 

7 Corey, G. A. and Merenstein, J. H. “Applying the acute ischemic heart disease predictive instru-
ment.” J. Fam. Pract. 25 (1987): 127–33.

8 Pearson, S. D., Goldman, L., Garcia, T. B., et al. “Physician response to a prediction rule for the triage 
of emergency department patients with chest pain.” J. Gen. Intern. Med. 9 (1994): 241–7; Wasson, 
J. H. and Sox, H. C. “Clinical prediction rules: Have they come of age?” JAMA 275 (1996): 641–2; 
Gehlbach, S. H. “Commentary.” J. Fam. Pract. 25 (1987): 132–3.

9 Elliott, W. J. and Powell, L. H. “Diagonal earlobe creases and prognosis in patients with suspected 
coronary artery disease.” Am. J. Med. 100 (1996): 205–11.
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10 Schuchter, L., Schultz, D. J., Synnestvedt, M., et al. “A prognostic model for predicting a 10-year 
survival in patients with primary melanoma.” Ann. Intern. Med. 125 (1996): 369–75.

removing an ear lobe crease with plastic surgery would have no effect on the 
risk of an infarction. The association of ear lobe creases with coronary events 
is confounded by some yet-to-be determined cardiac risk factor.

But a patient’s ear crease still provides useful clinical information. This is 
especially true if you are a paramedic evaluating patients with chest pain in 
the field and have little other information about them. Thus in constructing 
diagnostic algorithms, we are interested in variables that together accurately 
predict outcome regardless of whether the effect is confounded by some other 
variable.

2.5 How is multivariable analysis used in studies of prognosis?

How bad is it, Doc? Will the cancer come back? How long do I have to live? 
These are some of the most difficult questions clinicians face from their 
patients. Most ethicists and clinicians agree that patients have a right to an 
honest answer to these questions. While we will never be able to predict the 
outcome for any one person, multivariable analysis can provide information 
on the prognosis of a group of patients with a particular set of known prog-
nostic factors.

For example, Schuchter and colleagues developed a prognostic model using 
logistic regression for estimating 10-year survival in 488 patients with primary 
melanoma.10 They prospectively followed patients with primary melanoma. 
Ten-year survival was 78 percent. Using multiple logistic regression, they 
identified four factors associated with survival at ten years (yes/no): age, sex, 
location (extremity versus axis of body), and lesion thickness. At one extreme, 
women who were 60 years or younger with a lesion <0.76 mm of thickness on 
their extremity had an estimated 10-year survival of 99 percent. At the other 
extreme, men who were older than 60 with a lesion >3.6 mm of thickness on 
their trunk had an estimated 10-year survival of only 10 percent.

This prognostic model illustrates how different survival can be with the 
same disease but different patient characteristics. Schuchter and colleagues’ 
model correctly predicted outcome in 74 percent of cases. In other words, if 
you knew age, sex, location, and lesion thickness, you would correctly predict 
survival or death at ten years for 74 percent of the sample.

The cynics among you may say: I can do better than that without any prog-
nostic information. If I predict that all patients will be alive at ten years, I will 
be correct in 78 percent of the cases (10-year survival = 78 percent). This is 
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true, but you would not have correctly predicted any of the deaths. Methods 
for judging the success of models at predicting dichotomous outcomes are dis-
cussed in Section 8.2.B.

Prognostic models provide valid estimates of risk only for patients with 
 similar characteristics to those in the study population. For example, if a prog-
nostic model is based on a sample of males over the age of 50, it will not be 
helpful in predicting the survival of a 45-year-old woman.

Prognostic models work only when there is a known set of risk factors. They 
are most useful when they include only those variables readily available to a 
clinician. If the model requires knowing the genetic markers of the cancer, 
and testing for those markers is not universally available, the model will be of 
less help. 11

Even if all these conditions are met, as is the case with the melanoma study, 
a model will generally not predict outcome prospectively (with new cases) as 
well as it does retrospectively (with the cases in the data set from which it was 
developed). Why? Because the models maximize the correct prediction of the 
outcome based on the values of the independent and dependent variables in 
the data set (Section 12.1).

11 For an excellent review of using multivariable models to determine prognosis, see: Braitman, 
L. E. and Davidoff, F. “Predicting clinical states in individual patients.” Ann. Intern. Med. 125 
(1996): 406–12.
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3

Outcome variables in multivariable 
analysis

3.1 How does the nature of the outcome variable influence the  
choice of which type of multivariable analysis to do?

The choice of multivariable analysis depends primarily on the type of outcome 
variable that you have (Table 3.1). Therefore, I have organized this chapter by 
outcome variable: interval (Section 3.2), dichotomous (Section 3.3), ordinal 
(Section 3.4), nominal (Section 3.5), time to occurrence (Sections 3.6–3.9), 
count (Section 3.10) and incidence rate (Section 3.11). To help orient you, I 
have included in Table 3.1 examples of each type of outcome variable, and the 
statistic generally used to perform a bivariate analysis with the same type of 
data. My hope is that this will ease your transition from performing bivariate 
analyses to multivariable analyses.

Although different models are used for different outcome variables, it is 
sometimes possible to change the nature of the outcome variable (or to test 
more than one form of your outcome variable). Therefore, in Section 3.12, I 
discuss ways to transform variables so that they can be analyzed using differ-
ent multivariable techniques.

Each of the multivariable models has a different set of underlying assump-
tions. Therefore to help you choose the correct model and interpret the output 
correctly I have included the underlying assumptions for each of the models 
within each section. In Chapter 9, I review methods of testing the underlying 
assumption of the multivariable models. Although it may seem artificial to 
separate the explanation of the assumptions from the testing of them, this dis-
tinction mirrors the data analytic process. We choose models that we believe 
will fit the structure of our data. After we perform the analysis, we check to see 
if the assumptions of the models are satisfied.

All the models discussed in this chapter assume that each subject has only 
one value on the outcome variable and that the observations of different sub-
jects are independent. Therefore special methods are needed for longitudinal 
studies where subjects may be observed repeatedly on the same outcome (e.g., 

 

 

 

 



26 Outcome variables in multivariable analysis

blood pressure at 6 months, blood pressure at 12 months) or for cross-sectional 
or longitudinal studies where the outcomes of different subjects are correlated 
(i.e., subjects from the same family will have correlated outcomes). These 
methods are discussed in Chapter 11.

3.2 What type of multivariable analysis should I use with an  
interval outcome?

With an interval variable (also called continuous) each unit (interval) of 
change on the scale has an equal (numerically) quantifiable value. Examples of 
interval variables are blood pressure, body weight, and temperature. In these 
examples, a one-unit change at any point on the scale is equal to a millimeter 
of mercury, a pound (or kilogram), or a degree, respectively.

If you were performing a bivariate analysis with an interval outcome you 
would use a t test (with a dichotomous independent variable), a correlation 

DEFINIT ION

With an interval 
variable each unit 
(interval) of change on 
the scale has an equal 
quantifiable value.

Table 3.1 Type of outcome variable determines choice of multivariable analysis.

Type of outcome
Example of outcome 
variable Type of bivariate analysis

Type of multivariable 
analysis

Interval Blood pressure, weight, 
temperature

Correlation coefficient, linear 
regression, t test, ANOVA

Multiple linear 
regression, analysis 
of variance (and 
related procedures)

Dichotomous Death, cancer, intensive 
care unit admission

Chi-squared, Fisher’s exact, t test, 
chi-squared for trend, Mann–
Whitney test

Multiple logistic 
regression

Ordinal Stage of disease, severity of 
symptoms

Chi-squared for trend, Mann–
Whitney test, Spearman’s rank 
correlation coefficient

Proportional odds 
regression

Nominal Cause of death, site of 
cancer

Chi-squared, ANOVA, 
Kruskal–Wallis

Multinomial logistic 
regression

Time to outcome Time to death, time to 
cancer

Log-rank Proportional hazards 
analysis

Counts Number of infections, 
number of hospital 
admissions

Poisson regression, negative 
binomial regression

Poisson regression, 
negative binomial 
regression

Incidence rates 
 

Rate of new infections, rate 
of car accidents 

z scores 
 

Poisson regression, 
negative binomial 
regression

 

 

 

 



27 3.2 Multivariable analysis with an interval outcome

coefficient or linear regression (with an interval-independent variable), an 
analysis of variance (with a nominal independent variable), or Spearman’s 
rank correlation coefficient (with an ordinal or non-normal interval-inde-
pendent variable) (Table 3.1). Of these techniques only linear regression and 
analysis of variance can incorporate multiple independent variables; they are 
discussed below.

3.2.A Multiple linear regression

As implied by the name, multiple linear regression determines the best line 
for predicting the outcome variable based on the values of the independent 
variables.

For example, Figure 3.1 shows the relationship between B12 levels and the 
increase in antibody levels following receipt of pneumococcal vaccination 
among elderly persons.1 Each square represents an observation (a person), 

1 Fata, F. T., Herzlich, B. C., Schiffman, G., et al. “Impaired antibody responses to pneumococ-
cal polysaccharide in elderly patients with low serum vitamin B12 levels.” Ann. Intern. Med. 124 
(1996): 299–304.
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Figure 3.1 Linear association between vitamin B12 levels and and the difference between 
antibody titers before and after pneumococcal vaccination. Reproduced 
with permission from: Fata, F. T., et al. “Impaired antibody responses to 
pneumococcal polysaccharide in elderly patients with low serum vitamin B12 
levels.” Ann. Intern. Med. 124 (1996): 299–304.
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their vitamin B12 level (the independent variable), and the increase in their 
antibody titer after vaccine (the dependent variable). Although arbitrary, the 
convention is to show the independent variable on the x-axis and the depend-
ent variable on the y-axis.

Least squares linear regression (the most commonly performed method of 
linear regression) determines the line that minimizes the distance between 
the data points and the line itself. Although the linear regression line shown 
in Figure 3.1 may be the best single representation of the data, note that none 
of the points actually falls on the line and many points are not even that close 
to the line. Statistical models are, at best, approximations of data. In the case 
of this data a line is a good, but imperfect representation of the fact that as 
vitamin B12 levels increase, the levels of antibodies also increase from prevac-
cination levels.

The relationship between vitamin B12 levels and development of antibodies 
shown in Figure 3.1 is based on a bivariate analysis. That’s the reason the 
authors perform a simple correlation coefficient (r = 0.61) to summarize the 
relationship. Bivariate statistics may be sufficient if there are no potential con-
founders of the relationship being studied.

But what if the relationship between B12 levels and antibody development 
is confounded by age? This is a distinct possibility since older persons tend to 
have lower B12 levels and are less likely to respond to vaccinations.

To eliminate confounding by age, the authors adjusted for age, as well as 
mean corpuscular volume, in a multiple linear regression analysis, adjusting 
for age. They found that higher vitamin B12 levels were significantly associated 
with greater increases in pneumococcal titers in response to vaccination. Illus-
trating that multiple analysis is useful not only for eliminating confounding, 
but also for identifying independent risk factors for an outcome (Section 2.2), 
the authors found that mean corpuscular volume was also significantly associ-
ated with the response to vaccination.

3.2.B Analysis of variance (ANOVA)

Analysis of variance (ANOVA) can also be used to analyze the relationship 
between multiple independent variables and an outcome variable. The “vari-
ance” in the name of the technique refers to the difference between the values 
of the individual subjects and the mean. The “between-groups” variance is 
based on the differences between the subjects and the mean of the sample. 
The “within-groups” variance is based on the differences between the group 
members and the group mean.

Least squares 
linear regression 
determines the line 
that minimizes the 
distance between the 
data points and the 
line itself.
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If the means of the groups are very different then the variance calculated, 
based on the mean of the entire sample (between-groups variance), will be 
larger than the variance based on the mean of each group (within-groups vari-
ance). Assuming there is a large enough sample size, the difference will be 
statistically significant. If the means of the groups are not very different then 
the variance calculated, based on the mean of the entire sample, will be similar 
to the variance calculated based on the mean of each group.

There are several different types of analysis of variance (Table 3.2). The sim-
plest type of ANOVA is a one-way (or one-factor) design in which two or more 
groups are compared on a single interval variable.2 For example, we might 
compare the blood pressure of persons randomized to receive different treat-
ments (e.g., diuretic, beta-blocker, ACE inhibitor). In this case, ANOVA is 
being used as a bivariate tool not a multivariable one. 

ANOVA and related procedures can also be used to answer multivariable 
questions. For example, a two-way ANOVA can be used to determine the effect 
of (1) group assignment, (2) other categorical variables (e.g., ethnicity, gender), 
and (3) the interaction between the assigned group and a categorical variable 
on an interval outcome. For example, Grande and colleagues used ANOVA to 
analyze data from a randomized experiment on the impact of drug promo-
tional material.3 Third- and fourth-year medical students at two schools were 
randomized to exposure or non-exposure to promotional items for  Lipitor® 
(atorvastatin). One of the schools had a restrictive policy in place limiting 
pharmaceutical marketing (Penn) and one did not (Miami). The outcome was 
preference for Lipitor® measured on an interval scale.

The results of the experiment are shown in Figure 3.2. In the top panel you 
can see that compared to control students, fourth-year students at Miami 
exposed to Lipitor promotion materials exhibited more favorable attitudes to 
Lipitor than to Zucar® (simvastatin) a competitor drug. The opposite effect 
was seen in students at Penn where there was a very restrictive policy concern-
ing drug promotions.

In the second panel, you can see that scores for third-year students, who had 
not yet formed attitudes towards treatment options, were not affected by the 
promotion materials. An ANOVA analysis demonstrated that the interaction 

2 For a review of analysis of variance see: Katz, M. H. Study Design and Statistical Analysis: A Practi-
cal Guide for Clinicians. Cambridge: Cambridge University Press, 2006, pp. 88–9; for an excellent 
free statistical book that includes a thorough discussion of analysis of variance, go to: www.statsoft.
com/textbook/stanman.html.

3 Grande, D., Frosch, D. L., Perkins, A. W., Kahn, B. E. “Effect of exposure to small pharmaceutical 
promotional items on treatment practices.” Arch. Intern. Med. 69 (2009): 887–93.
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between experimental group and school and class was statistically significant 
(P = 0.003). 

In this study the independent variables were categorical (school, class), 
which are easily incorporated into ANOVA. However, if the independent vari-
ables that you need to incorporate are interval (e.g., age, weight) you will need 
to use analysis of covariance (ANCOVA). With ANCOVA you can incorporate 
both interval and categorical variables.

For example, in a large multicenter study, diabetics were randomized to 
receive either continuous glucose monitoring or standard home monitoring.4 
The outcome was a change in the glycated hemoglobin level from baseline 
to 26 weeks. Because the investigators needed to adjust for both continuous 
variables (baseline glycated hemoglobin levels) and categorical variables (clin-
ical center) they analyzed their data using ANCOVA. They found that there 
was a significant interaction between study group and age group. Specifically, 

Table 3.2 Analysis of variance techniques.

Types Indication

Analysis of variance 
(ANOVA)

Compares two or more groups on an interval outcome. 
Can incorporate categorical independent variables and 
the interaction of categorical variables with the main 
effect.

Analysis of covariance 
(ANCOVA)

Similar to analysis of variance but can incorporate 
continuous as well as categorical independent variables 
in the model.

Multivariate analysis of 
variance (MANOVA)

Similar to analysis of variance but used when there is 
more than one dependent variable. Use of MANOVA 
decreases the chance of making a type I error.

Multivariate analysis of 
covariance (MANCOVA)

Similar to analysis of covariance but used when there is 
more than one dependent variable. Use of MANCOVA 
decreases the chance of making a type I error.

Repeated measures analysis 
of variance/covariance

Similar to analysis of variance/covariance but can 
incorporate repeated observations of the same subjects 
(Section 11.3.D).

Repeated measures 
multivariate analysis of 
variance/covariance

Similar to multivariate analysis of variance/covariance 
but can incorporate repeated observations of the same 
subjects (Section 11.3.D).

4 The Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. “Con-
tinuous glucose monitoring and intensive treatment of type 1 diabetes.” N. Engl. J. Med. 359 
(2008): 1464–76.
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Figure 3.2 Preference for Lipitor® by fourth- and third- year medical students exposed or 
not exposed to promotional material. Preference is measured using the implicit 
association test (IAT). Reproduced with permission from Grande, D., et al. 
“Effect of exposure to small pharmaceutical promotional items on treatment 
practices.” Arch. Intern. Med. 69 (2009): 887–93.
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glycated hemoglobin levels were better among the continuous monitoring 
group than among the usual care group, but only among subjects greater than 
25 years of age. In the other two age groups (8 to 14 years and 15 to 24 years) 
there was no difference between the glycated levels for the subjects in the two 
arms of the study. In further analysis, the investigators found that subjects 
older than 25 years wore the sensors significantly more than younger patients. 
To the extent that younger patients didn’t wear the sensors (which have to be 
placed subcutaneously and replaced every few days), it is not surprising that 
the sensors didn’t help them to control their glucose levels.

Because of the similarities between analysis of variance and analysis of 
covariance, your software program may automatically choose which of the 
two to perform, based on whether or not you enter into the model interval-
independent variables.

Multivariate analysis of variance (MANOVA) and multivariate analysis of 
covariance (MANCOVA) are extensions of analysis of variance and analysis of 
covariance, respectively, that are used when studying more than one depend-
ent variable. The outcome variables are generally correlated. These procedures 
are used to decrease the chance of making a type I error (falsely rejecting the 
null hypothesis).

A MANOVA produces a multivariate F (Wilks’ lambda). If the multivari-
ate F test were significant, you would then examine the bivariate F test values. 
Conversely, if the multivariate F test were not significant you would ignore the 
individual F tests. Multivariate designs require that the intercorrelations of the 
outcome variables are homogeneous across the cells of the design.5

Adaptations of analysis of variance and analysis of covariance, multivariate 
analysis of variance and multivariate analysis of covariance, are also available 
for analyzing repeated observations of the same individuals (Section 11.3.D).

3.2.C Underlying assumptions of multiple linear regression and ANOVA

The underlying assumptions of multiple linear regression and ANOVA are the 
same (Table 3.3). With both multiple linear regression and ANOVA the outcome 
can take any positive or negative numeric value, Both techniques assume the 
outcome has a normal distribution and equal variance around the mean for any 
value(s) of the independent variable(s).6 To fulfill this condition your outcome 

5 French, A. and Poulsen, J. “Multivariate analysis of variance (MANOVA).” http://online.sfsu.
edu/~efc/classes/biol710/manova/manova.htm.

6 The technical term for equal variance for any value of X is homoscedasticity; “homo” meaning 
same and “scedastic” from the Greek word “to scatter.” For a more detailed explanation of these and 
the other assumptions of linear regression, see: Kleinbaum, D. G., Kupper, L. L., and Muller, K. E. 

 

 

 

 

 

 



33 3.2 Multivariable analysis with an interval outcome

Table 3.3 Underlying assumptions of multiple linear regression and analysis of 
variance.

Type of outcome variable Interval

Range of values for outcome variable Any positive or negative number
What is being modeled Mean
Distribution of outcome variable Normal
Variance of outcome variable Equal around the mean

variable should have a bell-shaped curve for any value of your independent vari-
able. This is shown in Figure 3. 3(a). Note that for each of the three values of the 
independent variable (X1, X2, and X3), the range of values of the dependent vari-
able forms a bell-shaped curve. Equal variance means that the spread of depend-
ent variable values (indicated by arrows) from the mean (indicated with a dotted 
line) is equal for each value of X. This is the case in Figure 3.3(a).

If you have an interval-independent variable, it is easier to assess these 
assumptions if you group the independent variable into a few groups. So, for 
example, in Figure 3.3(a), X1, X2, and X3 may represent a range of values (e.g., 
age 20–39 years, 40–59 years, 60–79 years).

Figure 3.3(b) shows a bivariate relationship that does not fulfill the assump-
tions of normal distribution or equal variance. Note that the values of the 
dependent variable for X1 and X2 both produce bell-shaped curves, but the vari-
ance is not equal. It is much smaller for values of X1 than for values of X2. At X3 
we see a curve with a skewed distribution (long tail). This curve does not have a 
bell-shaped distribution and the variance is not equal to either of the other two 
curves. Therefore, the relationship between this independent and dependent 
variable does not fit the assumptions of normal distribution or equal variance.

Some investigators mistakenly believe that they can evaluate the assump-
tion of normal distribution by assessing only the univariate characteristics of 
the variable. In other words, they print a histogram for all values of X. If the 
distribution is bell-shaped they conclude that it fulfills the assumption of nor-
mal distribution. However, as explained above, the assumption of normal dis-
tribution and equal variance applies to each level of the independent variable, 
not all values together. Nonetheless, a simple histogram of all your independ-
ent variables is a useful first step.

If you find that the univariate distribution of your variable has a signifi-
cant departure from the bell-shaped curve, it is likely that it will violate the 

Applied Regression Analysis and Other Multivariable Methods (2nd edn). Boston: PWS-Kent, 1988, 
pp. 44–9.

Multiple linear 
regression and ANOVA 
assume a normal 
distribution and equal 
variance around the 
mean.

 

 



34 Outcome variables in multivariable analysis

assumption of normal distribution and equal variance in bivariate analysis. 
Since it is easier to review a univariate distribution than a bivariate associa-
tion, this procedure alerts you to which variables to watch especially carefully 
in your analysis. In addition to eyeballing the histogram, you can use one of 
many statistical packages to provide you with a normal probability plot, which 
should approximate a line if the data are normally distributed. The statistics 
skewness and kurtosis when high also indicate that the data do not fit a normal 
distribution, but these are less informative than looking at the histogram.

Besides alerting you to potential violations of the assumptions of normal 
distribution and equal variance, printing histograms of your dependent and 
independent variables is a necessary step in cleaning your data. Histograms 

(a)

(b)

Figure 3.3 Plots of an interval-dependent variable at three different values of the 
independent variable X. In Figure 3.3(a), the assumptions of normal distribution 
and equal variance are fulfilled because at all three values of X the curves are 
bell-shaped and the spread from the mean (indicated by arrows) is equal. 
In Figure 3.3(b) these assumptions are not met. The assumption of normal 
distribution is violated because the distribution of values for X3 does not form a 
bell-shaped curve. The equal variance assumption is invalid because the spread 
of values from the mean is different for the three values of X.

T IP

Run histograms for all 
your variables. They 
will alert you to: (a) 
Potential violations 
of normality and 
equal variance, (b) 
implausible values, (c) 
gaps in your values, 
and (d) extreme 
values.

 

 



35 3.2 Multivariable analysis with an interval outcome

allow you to detect implausible values (e.g., age of 120 years) and help iden-
tify gaps in your values. If, for example, you have few observations of persons 
older than 60 years of age, your results will not necessarily generalize to this 
older group. Univariate statistics will also help you to detect extreme (but 
plausible) values (outliers) that might affect your results, such as two octoge-
narians. If you happen to have two octogenarians and they happen to have 
extreme values on your outcome variable, they may unduly influence your 
results (Section 9.5).

Now that you have read all of the above theory and considered what a pain 
it would be to perform the recommended analysis for each of your independ-
ent variables, I am happy to tell you that if your sample size is large (greater 
than 100), you can assume that the assumption of normal distribution is met 
(assuming you do not have any unduly influential points). We have the central 
limit theorem to thank for this great gift,7 the details of which are beyond the 
scope of this book.

Only significant departures from equal variance are likely to affect your 
results. The usual effect would be to decrease the power of your analysis to dem-
onstrate an association between your independent and dependent variables.

If you find significant departures from the assumptions of normal distribu-
tion and equal variance, and have a small sample, what should you do? You 
can attempt to transform either the independent or dependent variable so that 
the relationship fits these assumptions. Commonly performed transforma-
tions are the natural logarithm, the square root, the reciprocal, the square, 
and the arcsine.8

Once you have transformed the variable you need to repeat the bivariate 
relationship to see if indeed the variable more closely fits the assumptions of 
your model. More sophisticated methods of testing the normality and equal 
variance are discussed in Section 9.3.

3.2.D Choosing between multiple linear regression and ANOVA

Either technique will yield the same answer, assuming you set up the models 
in similar ways. Assuming you have more than two groups, to analyze the data 
using multiple linear regression you will need to create multiple dichotomous 
variables to represent the groups (see Section 4.2).

T IP

If your sample size is 
large (greater than 
100), you can assume 
that the assumption of 
normality is met.

T IP

If you find significant 
departures from 
the assumptions 
of normality and 
equal variance try 
transforming the 
independent or 
dependent variable.

7 For more on the central limit theorem see: Rosner, B. Fundamentals of Biostatistics (5th edn). 
Pacific Grove: Doxbury, 2000, pp. 174–6.

8 For a fuller discussion of these transformations see: Kleinbaum, D. G., Kupper, L. L., and Muller, 
K. E. Applied Regression Analysis and Other Multivariable Methods (2nd edn). Boston: PWS-Kent, 
1988, pp. 220–1.

T IP

Multiple linear 
regression and ANOVA 
will yield the same 
answer if you set up 
the models in similar 
ways.

 

 

 

 

 

 

 

 

 



36 Outcome variables in multivariable analysis

In general, multiple linear regression is more commonly used with observa-
tional data, and analysis of variance is more commonly used with experimen-
tal designs. Multiple linear regression is more commonly used in the medical 
literature, and analysis of variance is more commonly used in the behavioral 
literature.

3.3 What type of multivariable analysis should I use with a  
dichotomous outcome?

A dichotomous variable (the simplest kind of categorical variable) has two dis-
crete values (categories) at a discrete point in time, for example: alive or dead; 
development of cancer: yes or no.

For bivariate analyses of dichotomous outcomes we use chi-squared and 
Fisher’s exact test with dichotomous and nominal independent variables, t test 
with interval-independent variables, and chi-squared for trend and Mann–
Whitney test with ordinal and non-normal interval-independent variables 
(Table 3.1). But these statistics cannot be used if there is more than one inde-
pendent variable. To perform multivariable analysis with dichotomous out-
comes use multiple (binary) logistic regression.9

To appreciate the value of logistic regression for analyzing dichotomous 
variables, look at Figure 3.4. It shows the association between skeletal muscle 
strength (measured in the deltoid muscle) and presence of cardiomyopathy 
among alcoholics.10 You can see that at low levels of muscle strength (left-hand 
side of the curve), there are several closed circles (representing patients with 
cardiomyopathy) while there are no open circles (patients with normal car-
diac function). In contrast, at high levels of muscle strength (right-hand side 
of the curve) there are many open circles and few closed circles, reflecting 
that patients without cardiomyopathy have normal muscle strength. The tri-
angles indicate the probability of cardiomyopathy at different levels of muscle 
strength. The curve connecting the triangles shows that at intermediate levels 
of muscle strength, there is a rapidly decreasing proportion of patients with 
cardiomyopathy as muscle strength increases.

The probability of cardiomyopathy, as with any event, cannot be less than 
zero or greater than one. The value of logistic regression is that it incorpo-
rates this assumption (Table 3.4). Logistic regression models the “logit” of the 

9 Generally people simply refer to this technique as multiple logistic regression or logistic regres-
sion. I have used the binary here, and in other places, to help distinguish it from the related ordinal 
logistic regression and multinomial (polytomous) logistic regression.

10 Fernandez-Sola, J., Estruch, R., Grau, J. M., et al. “The relationship of alcoholic myopathy to car-
diomyopathy.” Ann. Intern. Med. 120 (1994): 529–36.

DEFINIT ION

A dichotomous variable 
has two discrete 
values.

  

 

 

 

 

 



37 3.3 Multivariable analysis with a dichotomous outcome

outcome. The logit is the natural logarithm of the odds of the outcome. The 
odds of the outcome is the probability of having the outcome divided by the 
probability of not having the outcome. Whereas the logit can take on any value 
from minus to plus infinity, the probability, which is the inverse of the logit, 
can only take on values of zero to one. This gives the logistic function an S or 

Figure 3.4 Z-shaped association between skeletal muscle strength and presence of 
cardiomyopathy among alcoholics. The closed circles are patients with 
cardiomyopathy and the open circles are patients without cardiomyopathy. The 
triangles show the observed proportion of patients with cardiomyopathy at 
different levels of muscle strength. Data are from Fernandez-Sola, J., Estruch, R., 
Grau, J. M., et al. “The relationship of alcoholic myopathy to cardiomyopathy.” 
Ann. Intern. Med. 120 (1994): 529–36.
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Z shape (depending on which way the outcome variable is configured). As you 
can see in Figure 3.4, this shape fits the data. Note that as the probability of 
outcome approaches zero or one, further increases or decreases in the inde-
pendent variable have little effect on the outcome.

I have drawn a linear regression line (the dotted line) so that you can appre-
ciate that a linear function would not be as good a model for the data. Cardio-
myopathy is either present or not. Yet the line would predict that a patient with 
muscle strength of less than 100 newtons would have a value greater than one 
on the cardiomyopathy variable. The line would also indicate that a patient 
with muscle strength of 300 newtons or greater would have a negative value on 
the cardiomyopathy variable. Obviously, these values are impossible.

Although this S- or Z-shaped function is useful, remember that it is still just 
a model. The curve I have drawn in Figure 3.4 is based on the actual data. The 
estimated curve would be of a similar shape but would not go exactly through 
the boxes. We will take up the issue of how to assess how well a model fits the 
observed data in Section 8.2.

With logistic regression, the dependent variable is assumed to have a bino-
mial distribution. A binomial distribution describes the number of successes 
or failures (e.g., yes or no; survival or death) in a series of independent trials. 
Independent trials mean that the outcome for one subject is independent of 
the outcome for another subject. In other words, the outcomes are not clus-
tered owing to being from the same individuals, families, or medical practices. 
There are methods for dealing with clustered effects (Chapter 11). The vari-
ances in logistic regression are assumed to depend only on the mean.

The model in Figure 3.4 illustrates the bivariate relationship between skele-
tal muscle strength and cardiomyopathy. However, the value of multiple logis-
tic regression analysis compared to bivariate techniques is that the former can 
assess the relationship of an independent variable to a dichotomous outcome 
with adjustment for other factors.

For example, logistic regression was used to demonstrate that cardio-
pulmonary resuscitation (CPR) might be effective with just chest compres-
sions and no rescue breathing. The reason that this is important is that some 

Table 3.4 Underlying assumptions of logistic regression.

Type of outcome variable Dichotomous

Range of values for outcome variable 0 to 1
What is being modeled? The logarithm of the odds of the outcome 

(referred to as logit)
Distribution of outcome variable Binomial
Variance of outcome variable Depends only on the mean

DEFINIT ION

The logit is the natural 
logarithm of the odds 
of the outcome. The 
odds of the outcome 
is the probability of 
having the outcome 
divided by the 
probability of not 
having the outcome.

 

 



39 3.4 Multivariable analysis with an ordinal variable

bystanders do not perform CPR because of concern about transmission of 
disease with  mouth-to-mouth rescue breathing. Others find CPR with both 
cardiac compressions and rescue breathing to be too complicated to learn. If 
CPR with only chest compressions were as good as CPR with both chest com-
pressions and rescue breathing, public education campaigns should focus on 
chest compressions.

This question was studied in Japan by having paramedics record whether 
patients with bystander-witnessed cardiac arrest were receiving bystander CPR 
and if so of which kind.11 The investigators compared persons who received 
chest compressions only to those who received both chest compressions and 
rescue breathing. Although the difference is not statistically significant, the 
percentage of persons having a favorable neurologic outcome is actually higher 
in the group of persons who received only chest compressions. However, this 
result could be confounded because there were statistically significant differ-
ences between the two groups. In particular, persons who received CPR with 
chest compressions only were more likely to be male, to experience their arrest 
at home, and to have their CPR performed by laypersons. Perhaps one of these 
differences explains the better outcomes?

As you can see from Table 3.5, this is not the case. Using multiple logistic 
regression to adjust for male sex, where the arrest occurred, as well as who 
performed the arrests, the investigators found that the effect actually got 
stronger:12 persons who received only chest compressions were statistically 
more likely to have a positive neurologic outcome (95% confidence intervals 
exclude 1.0). If it seems to you impossible that CPR that has only chest com-
pressions could be superior to CPR with both, consider that if there is only 
one bystander performing CPR, time spent doing respirations takes time away 
from compressions, which may be more valuable. Despite this being an obser-
vational study, an accompanying editorial recommended changing the CPR 
guidelines to compressions only for cardiac arrests.13

3.4 What type of multivariable analysis should I use with an  
ordinal variable?

An ordinal variable (also known as a ranked variable) has multiple categories 
that can be ordered or ranked. For example, the New York Heart Association’s 
functional classification of cardiac function is an ordinal scale with four levels. 

11 Sos-Kanto Study Group. “Cardiopulmonary resuscitation by bystanders with chest compression 
only (SOS-Kanto): an observational study.” Lancet 369 (2007): 920–6.

12 As the effect became stronger with statistical adjustment this is an example of a suppressor effect 
(Section 1.3).

13 Ewy, G. A. “Cardiac arrest – guideline changes urgently needed.” Lancet 369 (2009): 882–4.

 

 

 

 

 

 

 

 



40 Outcome variables in multivariable analysis

Although the levels can be ordered, there is not a numerically quantifiable 
difference between level I (no limit in physical activity) and level II (slight limi-
tation in physical activity). The difference between level I and II is not equal 
to the difference between level III (marked limitation of physical activity) and 
level IV (inability to carry out any physical activity without discomfort).

For bivariate analysis of ordinal outcomes, we use chi-squared for trend 
and Mann–Whitney test with dichotomous independent variables, Kruskal–
Wallis test with nominal independent variables, and Spearman’s rank cor-
relation coefficient with interval and ordinal independent variables (see 
Table 3.1). However, none of these procedures can incorporate multiple inde-
pendent variables.

To perform multivariable analysis with ordinal outcomes use an adaptation 
of logistic regression: proportional odds regression.14 Proportional odds regres-
sion (also referred to as ordinal logistic, ordered logistic regression, ordered 
logit, cumulative odds models, or constrained cumulative logit model) models 
the cumulative logit across the categories of an ordinal outcome (Table 3.6).

Proportional odds regression assesses the relationship between the independ-
ent variables and the ordinal variable at all possible cut-points of the ordinal 
outcome. For example, in a 5-level ordinal outcome, there are 4 possible cut-
points: 1 vs. 2–5, 1–2 vs. 3–5, 1–3 vs. 4–5, and 1–4 vs. 5 (there is one cut-point 
less than the number of categories). If we were to use multiple logistic regres-
sion to calculate a logit for each of these cut-offs, we would have 4 logits, rep-
resenting the log odds of the outcome at each cut-off. With proportional odds 
regression we can estimate one logit, a “cumulative” or “average” of the logits 
for the different cut-points. The advantage of this approach is that we then have 
one estimate of the impact of each independent variable on the outcome, rather 
than four different estimates corresponding to the four different cut-points.

14 See: Scott, S. C., Goldberg, M. S., and Mayo, N. E. “Statistical assessment of ordinal outcomes in 
comparative studies.” J. Clin. Epidemiol. 50 (1997): 45–55; Menard, S. Applied Logistic Regression 
Analysis. Thousand Oaks, CA: Sage Publications, 1995, pp. 80–90.

Table 3.5 Compressions-only versus conventional CPR in producing a good neurologic outcome.

Compressions-only  
Good neurologic  
outcome N (%)

Conventional CPR  
Good neurologic 
outcome N (%)

Bivariate odds ratio 
(95% CI)

Multivariable odds 
ratio (95% CI)

Yes 27 (6%) 30 (4%) 1.5 (0.9–2.5) 2.2 (1.2–4.2)
No 412 (94%) 682 (96%)

Chi-squared P value = 0.14

Proportional odds 
regression calculates 
an “average” of the 
logits that would 
be obtained if you 
calculated separate 
logits at each of the 
possible cut-points of 
the outcome variable.

DEFINIT ION

An ordinal variable has 
multiple categories 
that can be ordered.

Use proportional odds 
regression with ordinal 
outcomes.

 

 

 

 

 



41 3.4 Multivariable analysis with an ordinal variable

For example, Hylek and colleagues used proportional odds regression to 
identify independent predictors of the severity of stroke in patients with non-
valvular atrial fibrillation.15 Seriousness of stroke was ranked in three ordered 
levels:

1. Minor stroke: no neurologic sequelae or a deficit that did not interfere with 
independent living.

2. Major stroke: neurologic impairment preventing independent living.
3. Severe stroke: hospital death or total dependence after hospital discharge.

Since there are three levels, there are two possible cut-points: 1 versus 2 
and 3 (minor stroke versus major and severe stroke); 1 and 2 versus 3 (minor 
and major versus severe stroke).

Table 3.7 shows the odds ratios for the association between a number of dif-
ferent independent variables and the severity of the stroke. Patients with heart 
failure, older patients, and patients who received no therapy or  warfarin at a 
nontherapeutic dose were significantly likelier to have a more serious stroke. 
These odds ratios are adjusted for all of the other variables shown in the table. 
This study is important because it shows that even when anticoagulation 
doesn’t prevent a stroke, it appears to lessen the severity.

Because there is only one odds ratio for each independent variable even 
though there are two possible odds ratios that could be calculated at the dif-
ferent cut-points, you will immediately appreciate that for the odds ratio to be 
meaningful it must be about the same at the different possible cut-points. This 
is referred to as the proportional odds assumption.

For example, the odds ratio for the association between no antithrombotic 
therapy and severity of stroke is 2.2 (Table 3.7), indicating that not being 
on therapy increases the risk of having a more harmful stroke. But what if 
this “average” odds ratio is not a good representation of the two odds ratios 

Table 3.6 Underlying assumptions of proportional odds  
logistic regression.

Type of outcome variable Ordinal

Range of values for outcome variable Number of categories
What is being modeled The cumulative logit
Odds ratios at different cut-offs of the 

outcome variable
Homogeneous 

15 Hylek, E. M., Go, A. S., Chang, Y. “Effect of intensity of oral anticoagulation on stroke severity and 
mortality in atrial fibrillation.” N. Engl. J. Med. 349 (2003): 1019–26.

T IP

The proportional odds 
assumption means 
that the result is about 
the same regardless 
of the cut-point of the 
ordinal variable.

 

 

 

 



42 Outcome variables in multivariable analysis

representing the two possible cut-offs? What if the odds ratio is 1.0 for the 
association between no antithrombotic therapy and minor stroke versus major 
and severe stroke, but 4.0 for the association between minor and major versus 
severe stroke? In this case the “average” odds ratio of 2.2 from the propor-
tional odds model does not capture the true relationship between antithrom-
botic therapy and severity of stroke at all cut-points of severity.

To assess the validity of the proportional odds assumption use the score 
test. It is discussed in Section 9.8.

3.5 What type of multivariable analysis should I use with a  
nominal outcome?

A nominal variable has multiple categories that cannot be ordered. For exam-
ple, there is no sensible numeric ordering of cause of death or type of cancer. 
In your database you may have assigned numbers to represent the differ-
ent categories of a nominal variable (e.g., 1 = breast cancer, 2 = colon cancer, 
3 = lung cancer, etc.) but the numbers are purely symbols and have no numeric 
meaning. The mean and the median are equally meaningless, if you make the 
mistake of calculating them.

For bivariate analyses of nominal outcomes we use chi-squared  analyses 
for dichotomous and nominal independent variables, ANOVA for 

Table 3.7 Independent predictors of the severity of ischemic stroke in patients 
with nonvalvular atrial fibrillation.

Risk factor Odds ratio (95% CI) P value

Heart failure 1.6 (1.1–2.2) 0.009
Age (per decade) 1.5 (1.2–1.8) <0.001
Antithrombotic medication at admission
  None 2.2 (1.3–3.8) 0.004
  Aspirin 1.3 (0.7–2.3) 0.40
  Warfarin, nontherapeutic dose 1.9 (1.1–3.4) 0.03
  Warfarin, therapeutic dose 1.0 (reference) –
Female sex 1.1 (0.8–1.5) 0.54
Coronary heart disease 1.1 (0.8–1.5) 0.59
Diabetes mellitus 1.3 (0.9–1.9) 0.18
Hypertension 1.2 (0.9–1.7) 0.24
Prior ischemic stroke 1.1 (0.8–1.5) 0.71

Data from Hylek, E. M., et al. “Effect of intensity of oral anticoagulation on stroke 
severity and mortality in atrial fibrillation.” N. Engl. J. Med. 349 (2003): 1019–26.

Use multinomial 
logistic regression with 
nominal outcomes.
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 interval-independent variables, and Kruskal–Wallis test for ordinal and non-
normal interval-independent variables (Table 3.1).

When you need to analyze a nominal outcome and adjust for multiple inde-
pendent variables, use multinomial logistic regression (also referred to as poly-
tomous logistic regression) (Table 3.8).16

With multinomial logistic regression, one of the categories is designated (by 
the investigator) to be the reference category. The choice of reference category 
does not affect the mathematical answer, but it does affect how the results are 
reported. Choose for your reference category either the largest category or the 
one to which you wish to draw contrast.

In a multinomial logistic regression, the model compares each of the catego-
ries of the outcome variable to the reference category for each of the independ-
ent variables. The number of comparisons is equal to one minus the number of 
categories of the outcome variable. If there are four categories, A, B, C and D, 
and the reference category is A, a multinomial logistic regression will calculate 
the logit for being in category B versus A, category C versus A, and category D 
versus A. Of note, it will not calculate the logit for being in category B versus 
C, or C versus D.

For example, Murphy and colleagues were interested to see whether there 
had been improvement over time in the inclusion of ethnic minorities in clin-
ical cancer trials.17 Since ethnicity is a nominal outcome, they used multinomial 
logistic regression to determine the impact of calendar year (independent vari-
able) on ethnic composition of subjects (outcome), with adjustment for age, 
sex, and cancer type. As you can see in Table 3.9, participants enrolled in 
2000–2002 were less likely to be African-American (compared to whites – the 
reference group) than persons enrolled in 1996–1998; in other words, there 
was less inclusion of African-Americans. There were no significant changes 
over time among the other ethnic populations compared to Caucasians.

16 Multinomial means more than two categories, so actually proportional odds regression (Section 
3.4) is a special type of multinomial logistic regression. But usually the term multinomial logistic 
regression refers to a logistic model with a nominal outcome.

17 Murphy, V. H., Krumholz, H. M., Gross, C. P. “Participation in cancer clinical trials: race-, sex-, 
and age-based disparities.” JAMA 291 (2004): 2720–6.

Table 3.8 Underlying assumptions of multinomial logistic regression.

Type of outcome variable Nominal

Range of values for outcome variable Number of categories; one category must serve 
as the reference category

What is being modeled The logit (compared to the reference category)

T IP

Multinomial logistic 
regression requires 
choosing a reference 
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either the largest 
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44 Outcome variables in multivariable analysis

Considering the relative risk ratios for each ethnic category you may real-
ize that you could estimate a similar risk ratio by performing four different 
logistic regression analyses (five categories equal four models); in each analysis 
you would include only the subjects in one of the categories (e.g., African-
Americans) and those in the reference group (e.g., Caucasians). Indeed, if you 
were to do this, the relative risk you would obtain from each logistic regression 
model would likely be similar to the estimates produced by the multinomial 
logistic regression model.18 The difference is that with the individual logistic 
regression models the relationship of the independent variables to the out-
come would be based on the separate samples, while with multinomial logistic 
regression, the relationship of the independent variables to the outcome would 
be based on the entire sample. Because each of the categories is compared to a 
reference group, there is no proportional odds assumption with multinomial 
logistic regression.

3.6 What type of multivariable analysis should I use with a  
time-to-outcome variable?

Time-to-outcome refers to the study of events – such as death or development 
of cancer – that occur over a period of time (e.g., five years) (Table 3.1). For 
bivariate analysis of time-to-outcome variables we draw a Kaplan–Meier curve 

18 For an illustration see: Hosmer D. W., and Lemeshow, S. Applied Logistic Regression. (2nd edn) 
New York, NY: Wiley, 2000, p. 279–80.

Table 3.9 Changes in enrollment of ethnic minorities over time, 2000–2002 vs. 
1996–1998.

Enrollment of ethnic minorities vs. Caucasians,
2000–2002 vs. 1996–1998

Group Relative risk ratio* (95% CI) P value

Caucasian 1.0 (Referent)
Hispanic 0.88 (0.72–1.08) 0.023
African-American 0.76 (0.65–0.89) <0.001
Asian/Pacific Islander 0.99 (0.83–1.18) 0.91
American Indian/Alaskan Native 0.80 (0.57–1.10) 0.17

* Adjusted for age, sex, and cancer type using multinomial logistic regression.
Data from Murphy, V. H., et al. “Participation in cancer clinical trials: race-, sex-, and 
age-based disparities.” JAMA 291 (2004): 2720–6.

 

 

 

 

 

 

 



45 3.6 Multivariable analysis with a time-to-outcome variable

for each group and compare the curves using log-rank statistics. However, log-
rank statistics cannot incorporate multiple independent variables.

When you need to perform multivariable analysis with time-to-outcome 
data, use proportional hazards analysis (Table 3.10). For example, Hannan 
and colleagues compared time to death for patients who received drug-eluting 
stents to those who received coronary artery bypass grafting (CABG).19 For 
patients with three-vessel disease the survival of those who received CABG 
and those who received drug-eluting stents was almost identical (at 18 months 
93.4% vs. 93.7%) (Figure 3.5). However, patients were not randomized to 
receive CABG versus a drug-eluting stent. In general, patients who receive 
CABG were older, had more cardiac disease, and more comorbid conditions. 
When the authors used proportional hazards analysis to adjust for potential 
confounders, including age, ejection fracture, prior myocardial infarction, and 
comorbid disease, they found that CABG was associated with a significantly 
lower rate of death (relative hazard = 0.80; 95% CI 0.65–0.97).

Proportional hazards analysis, unlike the other multivariable techniques 
discussed thus far in this chapter, enables you to incorporate subjects with 
differing lengths of follow-up in your analysis. Differing lengths of follow-up 
occur commonly in longitudinal studies for a variety of reasons. Subjects may 
decide they no longer wish to participate. They may move. They may die. They 
may have to be withdrawn owing to a side effect they have developed. Some-
times you will not know why a person is lost to follow-up; they just are.

Coping with subjects who do not finish a study is one major way in which clin-
ical research is different from other types of research. In laboratory research, it 
is usually possible to control conditions (e.g., laboratory animals, cell cultures) 
so that no observations are lost. Much of social science research (and some 
clinical research) is conducted using cross-sectional designs (surveying people 
about independent variables and outcomes at the same time). Thus while there 

19 Hannan, E. L. Wu, C., Walford, G. et al. “Drug-eluting stents vs. coronary-artery bypass grafting 
in multivessel coronary disease.” N. Engl. J. Med. 358 (2008): 331–41.

Table 3.10 Underlying assumptions of proportional hazards regression.

Type of outcome variable Time to outcome

Range of values for outcome variable 0 or 1; time from point 0
What is being modeled The logarithm of the relative hazard
Censored observations Censored cases have the same rate of 

outcome as noncensored cases
Relative hazards over time Proportional
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46 Outcome variables in multivariable analysis

are always people who choose not to participate, subjects are not lost during the 
study. However, for longitudinal studies (studies of people over time) subjects 
are invariably lost. For example, if you look at the legend under  Figure 3.5 from 
the study of CABG vs. drug-eluting stents, you will note that there are only 
3139 CABG patients at risk for death at 18 months, even though there were 5202 
patients at the start of the observation period. This is a decrease of 39% of the 
sample, even though only 6.3% of patients died.

One method of dealing with such subjects is to delete them. Indeed, if you 
are using a simple cumulative outcome at a particular point in time (e.g., death 
at three years: yes or no) you have no choice but to drop subjects who leave the 
study prior to completion. If the investigators of the CABG vs. drug-eluting 
stents had chosen this method, they would have to have deleted all subjects 
who were not available for observation at 18 months and were not known to be 
dead. Omitting subjects decreases the power of a study and potentially intro-
duces bias.

What we would ideally like is a technique that allows subjects to con-
tribute information until they leave the study. Such a technique exists. It is 
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Figure 3.5 Kaplan–Meier curves showing very similar survival rates among patients with 
three-vessel disease receiving a CABG versus a drug-eluting stent. Reproduced 
with permission from Hannan, E. L., et al. “Drug-eluting stents vs. coronary-
atery bypass grafting in multivessel coronary disease.” N. Engl. J. Med. 358 
(2008): 331–41. Copyright 2008, Massachusetts Medical Society. All rights 
reserved.
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called censoring and it is a major element of all types of survival analysis, 
including proportional hazards analysis, which was the technique that was 
used to adjust for confounders in the analysis of CABG vs. drug-eluting 
stents.

Besides allowing us to incorporate subjects who are lost to follow-up, cen-
soring has broader implications. It allows us to analyze, within one study, sub-
jects with unequal lengths of follow-up for a variety of reasons (Table 3.11). 
Indeed, all subjects in a proportional hazards analysis who do not experience 
the outcome of interest are censored, if not during the course of the study, then 
at the end of the study.

The underlying assumption of censoring is that if subjects could be followed 
beyond the point in time when they are censored, they would have the same 
rate of outcome as those not censored at that time. Another way of saying this 
is that the censoring occurs randomly, independent of outcome.

To understand the assumptions of censoring, let’s look at the Kaplan–Meier 
survival graph of 100 persons shown in Figure 3.6. The tick marks on the sur-
vival function show where persons are censored – that is, where they leave the 
analysis. Under the x-axis of Figure 3.6, I have shown the number of persons 
who are at risk for outcome (i.e., have not yet experienced the outcome and 
have not been censored) and the percent survival.

At time 0, everyone is alive and we have 100% survival. As time passes, peo-
ple die and percent survival decreases. At two years, survival is 86%. Does this 
mean that 14 participants died and 86 are still alive? No. In fact, there were 
only 10 deaths.

When you have censoring, the probability of surviving to the end of the 
follow-up period is not simply the proportion of the original sample known to 
be alive at the end of the study. The censored subjects contribute information 
until the time that they leave the analysis. To account for this, we compute a 
current event rate based on the number of subjects alive and not censored at 
each point that an event occurs. These current event rates can then be used 
to compute cumulative survival at the end of the study period (in this case 
two years). Here’s how: Survival to the end is equivalent to surviving each 
moment in the entire period. We can write the probability of surviving each 
moment as a product: the product of surviving the first moment times the 
conditional probability of surviving the second, given that you survived the 
first, times the conditional probability of surviving the third, given that you 
survived the first two, and so on, through the last moment. In turn, we can 
estimate each of these conditional probabilities as one minus the current 
event rate.
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The cumulative survival at a particular time is simply the conditional prob-
ability for that time multiplied by the conditional probability for the prior time 
at which an event occurred. Because the conditional probabilities are multi-
plied, this method is sometimes referred to as the product-limit method. For 
all moments when no event occurs (such as at 3 months in Figure 3.6 and 
Table 3.12 when there are six censored subjects but no outcome events), the 

Table 3.11 Reasons for censoring observations.

Reason for censoring Examples

1 Lost to follow-up. Subject moves, doesn’t wish to participate, stops attending 
a particular clinic.

2 Subject has an outcome that precludes the study 
outcome (also known as alternative outcomes or 
competing risks).

Death from coronary artery disease in a study of cancer 
incidence.

3 Subject is withdrawn from study. Development of side effects, not ethical to continue 
treatment or placebo.

4 Varying dates of enrollment. Study enrolls subjects over a two-year period.
5 End of study. All subjects who have not experienced outcome are 

considered censored at the end of the study.

Figure 3.6 Hypothetical survival experience of 100 subjects.
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conditional probability is one, and so it doesn’t change the product. These cal-
culations are illustrated in Table 3.12.

Note that censored observations contribute to the analysis until they leave 
the study, with the provision that they must be in the study at the time that 
at least one outcome event occurs. Looked at from a different perspective, if 
observations are censored before any events occur, as is the case with the two 
censored observations that occur in this example at 1 month, the censored 
observations would not contribute to the analysis at all (because to be included 
in the denominator of the current event rate they must still be in the study 
when the outcome occurs).

What does survival analysis assume about those persons who are censored? 
It assumes that their rate of outcome is no higher or lower than subjects who 
stay in the analysis at that point. So if all subjects could be followed to two years 
in my hypothetical example, how many would have died? The answer is 14. 
Why? Because if no one were censored then at two years we would have the full 
sample size of 100. To yield a survival rate of 86%, 14 persons would have died.

Table 3.12 Calculation of cumulative survival.

Study time 
(months)

No. of subjects 
at risk for 
outcome

No. of 
outcomes

No.  
censored

Current event 
rate (no. 
outcomes/ no. 
subjects at risk)

Conditional 
probability  
(1– current event 
rate)

Cumulative 
survival

1 100 0 2 0/100 = 0 1 – 0 = 1 1
2 98 1 0 1/98 = 0.01 1 – 0.01 = 0.99 (1)(0.99) = 0.99
3 97 0 6 0/97 = 0 1 – 0 = 1 (0.99)(1) = 0.99
4 91 1 0 1/91 = 0.01 1 – 0.01 = 0.99 (0.99)(0.99) = 0.98
5 90 0 7 0/90 = 0 1 – 0 = 1 (0.98)(1) = 0.98
6 83 1 0 1/83 = 0.01 1 – 0.01 = 0.99 (0.98)(0.99) = 0.97
8 82 1 0 1/82 = 0.01 1 – 0.01 = 0.99 (0.97)(0.99) = 0.96
9 81 0 6 0/81 = 0 1 – 0 = 1 (0.96)(1) = 0.96
10 75 1 0 1/75 = 0.01 1 – 0.01 = 0.99 (0.96)(0.99) = 0.95
11 74 0 6 0/74 = 0 1 – 0 = 1 (0.95)(1) = 0.95
12 68 1 0 1/68 = 0.01 1 – 0.01 = 0.99 (0.95)(0.99) = 0.94
13 67 0 5 0/67 = 0 1 – 0 = 1 (0.94)(1) = 0.94
14 62 1 0 1/62 = 0.02 1 – 0.02 = 0.98 (0.94)(0.98) = 0.92
15 61 0 2 0/61 = 0 1 – 0 = 1 (0.92)(1) = 0.92
16 59 1 0 1/59 = 0.02 1 – 0.02 = 0.98 (0.92)(0.98) = 0.90
18 58 1 0 1/58 = 0.02 1 – 0.02 = 0.98 (0.90)(0.98) = 0.88
20 57 1 0 1/57 = 0.02 1 – 0.02 = 0.98 (0.88)(0.98) = 0.86
22 56 0 2 0/56 = 0 1 – 0 = 1 (0.86)(1) = 0.86
24 54 0 2 0/54 = 0 1 – 0 = 1 (0.86)(1) = 0.86
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I’m sure you can appreciate that this is not a trivial assumption you are 
making about censored observations. After all, you cannot prove that cen-
sored observations have the same rate of outcome as those that are uncen-
sored. If you actually knew the time to outcome for the censored observations 
they wouldn’t need to be censored! What you as an investigator must address 
is the likelihood that the censoring assumption is valid based on your under-
standing of why people have been censored (Section 3.7).

Although I have put tick marks on the survival curve and put the number of 
subjects at risk for outcome under the graph, most published studies will show 
you one or the other. The number of persons at risk decreases as persons are 
censored or experience the outcome. This can be seen in Figure 3.5 from the 
study of CABG vs. drug-eluting stents.

Sometimes published survival curves do not show either ticks for censored 
observations or the number of subjects at risk as the study progresses. This 
is a serious limitation because without this information you cannot assess 
how much the sample is shrinking as the study progresses. As the sample size 
shrinks, the data no longer represent the survival experience of the full sam-
ple. One tip-off that the sample size is shrinking is large “steps” at the end of 
the curve. As the sample size decreases, the steps of the curve become larger, 
because an outcome makes a larger difference in the proportion surviving. 
This is illustrated in Figure 3.6 and Table 3.12. (Note in the table that a single 
outcome occurring at the end of the study has a larger current event rate than 
an outcome occurring earlier on in the study.)

3.7 How likely is it that the censoring assumption is valid in my study?

The likelihood that the censoring assumption is valid depends a great deal on 
the reason for the censored observations.

3.7.A Loss to follow-up

Subjects may be lost to follow-up because they have grown weary of participat-
ing in a study (especially if it involves frequent office visits and blood draws). 
For this reason, many longitudinal studies go to great effort to keep subjects 
involved, including providing stipends for each visit with a bonus for complet-
ing the study, newsletters to keep subjects informed about the progress of the 
study, and socials to enhance the cohesion of participants.

In the case of retrospective medical record review studies, subjects will be 
lost to follow-up and you will not know why. You will know only that after a 
certain period of time there are no further entries in the chart.
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Of all reasons for censoring, losses to follow-up are the most problematic 
for meeting the censoring assumptions. Since the participants are lost, you are 
unlikely to know what has happened to them after leaving the study. For this 
reason, it may be problematic to assume that the rate of outcome for the cen-
sored observations is the same as that for the uncensored subjects. Also, several 
studies have found that persons who drop out of studies are different from those 
who remain in the study. For example, a randomized controlled trial of zido-
vudine in HIV-infected persons found that persons who were lost to follow-up 
were more likely to have deteriorating immune function during the trial than 
those who remained in the trial.20 (They probably left the trial because they 
knew they were not doing well and wanted to seek other treatment.)

3.7.B Alternative outcome

Some of your subjects may need to be censored because they experience an 
outcome that precludes the outcome of interest in your study. This is often 
referred to as competing risks. For example, consider a study that randomized 
persons with atrial fibrillation to warfarin or to the standard treatment at that 
time (aspirin or no treatment at all).21 Stroke was the outcome of interest. The 
investigators therefore censored persons who died from causes other than 
stroke (e.g., cardiac events, cancer).

Although it is common to censor persons who have an alternative outcome 
that precludes the outcome of interest, most studies with a main outcome 
other than death will also report the results for death as an outcome. There are 
several reasons for this. Even if warfarin prevents stroke in patients with atrial 
fibrillation as shown in this study, if subjects treated with warfarin do not also 
live longer, the therapy may not be as strongly recommended. Knowing that 
the rate of stroke was lower but the rate of death was higher certainly would 
sway your view of warfarin as a treatment. This could happen if the treatment 
was effective against stroke but had a life-threatening side effect (such as bleeds 
in the case of warfarin).

Another reason to include death as an outcome is that there may be some 
question as to whether an alternative outcome truly excludes the outcome of 
interest. Even events that appear unrelated to the outcome of interest may be 
related. In the context of the atrial fibrillation study, consider someone who 

20 Volberding, P. A., Lagakos, S. W., Koch, M. A., et al. “Zidovudine in asymptomatic human immu-
nodeficiency virus infection: A controlled trial in persons with fewer than 500 CD4-positive cells 
per cubic millimeter.” N. Engl. J. Med. 322 (1990): 941–9.

21 The Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators. “The effect of low-dose 
warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation.” N. Engl. J. Med. 
323 (1990): 1505–11.
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52 Outcome variables in multivariable analysis

died in a car accident. Could you be certain that they did not have a stroke 
while behind the wheel?

To minimize bias in determining whether an outcome is truly unrelated 
to the outcome of interest, a study should have objective a-priori criteria as to 
what constitutes an alternative outcome. In addition, a review committee that 
is masked to the treatment assignment should make judgments on individual 
cases. This is exactly what was done in the study of warfarin in patients with 
atrial fibrillation.

However, even with the best criteria and objective reviewers, you may mis-
takenly assume that some outcomes are unrelated to your outcome of interest 
when, perhaps, they are related. In the atrial fibrillation study there were 37 
deaths; only one was caused by stroke. The warfarin group had a lower rate of 
death overall, a lower rate of death owing to cardiac causes, and a lower rate 
of death owing to noncardiac causes. Since warfarin was not anticipated to 
have any effect on mortality other than decreasing deaths caused by stroke, 
these findings suggest two possibilities. Warfarin may prevent death owing 
to other causes, or some of the deaths attributed to other causes may have 
actually been caused by unrecognized strokes. The possibility of unrecognized 
strokes does not weaken the findings. If there were missed strokes in the non-
warfarin group it would only strengthen the treatment effect of warfarin. But 
for the purposes of this discussion, I think this is a good example of how hard 
it is to correctly categorize nonoutcome-related events.

When death is a common alternative outcome, as it is in any long-term 
study of elderly or very ill people, competing mortality may bias your esti-
mates of time to outcome. This will occur if the likelihood of outcome would 
have been higher in those persons who died had they not died. The bias of 
competing risks can be avoided by not using outcomes other than death (since 
no outcome precludes death). But in many cases we are interested in these 
other outcomes. A reasonable compromise is to report both (as was done in 
the atrial fibrillation trial). More sophisticated methods for dealing with com-
peting risks are beyond the scope of this book.22

3.7.C Withdrawal

Persons may withdraw from a study because they do not think the treatment 
is helping, because they want to receive a treatment and believe they were ran-
domized to placebo, because they have a side effect, or because they find the 

22 Pepe, M. S., Longton, G., Pettinger, M., et al. “Summarizing data on survival, relapse, and chronic 
graft-versus-host disease after bone marrow transplantation: Motivation for and description of 
new methods.” Br. J. Haematol. 83 (1993): 602–7.
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protocol too demanding of their time. Subjects are usually withdrawn by the 
investigators for safety reasons (a side effect that makes it dangerous for the 
subject to continue treatment).

Less commonly, investigators may withdraw a subject because they develop 
a condition that precludes them from participating in one of the arms of the 
study. For example, in the study of warfarin in atrial fibrillation, the inves-
tigators had to withdraw a participant who required valvular replacement 
during the study. Why? Although valvular replacement does not preclude the 
development of stroke nor is it a side effect of treatment (or nontreatment), a 
patient receiving valvular replacement requires anticoagulation with warfa-
rin. Since treatment with warfarin was mandatory, the person could not be 
continued in a study comparing warfarin to standard treatment.

At first glance, subjects who voluntarily withdraw or are withdrawn by the 
investigators may seem like losses to follow-up, but there is an important dif-
ference. The difference is that withdrawn participants may be willing to let you 
passively follow them for outcome, even though they do not want to actively 
participate in your protocol. (This may not be true if they have a side effect and 
blame you for it!) If the withdrawn subjects will allow you to follow them for 
outcome, you do not have to censor them prior to the end of the study. Instead 
you can perform an intention-to-treat analysis.

Intention-to-treat means that participants are counted as members of their 
originally assigned group, no matter what happens during the study period. 
For example, in a study with a treatment and a placebo arm, if you perform an 
intention-to-treat analysis, persons who were assigned to treatment would be 
part of the treatment group even if they stopped taking the treatment during 
the study. Intention-to-treat analysis protects against treatments appearing to 
be more favorable than they are. If subjects with side effects are less likely to 
benefit from treatment than those without side effects, removing them from 
the analysis at the time of their side effect will bias your results. It will make 
your treatment appear more effective than it is. For example, if 100 people are 
given a new treatment that is effective but causes nausea so severe that only 
50 percent of subjects are able to tolerate the treatment long enough to benefit 
from it, removing 50 study participants will make the treatment look more 
effective than it is (because a very high proportion of those subjects left in the 
trial will benefit from the treatment).

The downside of intention-to-treat analysis is that it dilutes the effect of 
treatment. Keeping to the same example, if you keep 50 subjects who did not 
take the full treatment in your treatment arm, the treatment arm will be simi-
lar to the nontreatment arm. You might ask: Isn’t this justified? What good is 
a treatment if patients cannot tolerate it? But remember there is a difference 
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between a sample and an individual patient. If I had a terrible disease, I might 
be interested in trying an efficacious medicine that caused unrelenting vomit-
ing for 50 percent of persons. After all, if I am in the half of persons who doesn’t 
develop vomiting, why should I forgo an efficacious treatment? If the authors 
only report the results of the intention-to-treat analysis you would not know 
how efficacious the treatment is for the subgroup of people who can tolerate 
it. Limiting your analysis to persons who tolerate or comply with treatment is 
sometimes referred to as an efficacy analysis (how efficacious is the treatment 
for people who take it?) whereas intention-to-treat analysis is referred to as an 
effectiveness analysis (how effective is the treatment in the real world?).

If the number of subjects who stop treatment or withdraw from your study 
is small, it won’t matter whether you perform intention-to-treat analysis or 
censor them at the time they leave the study. Since intention-to-treat is a more 
conservative approach for estimating the efficacy of treatment than censoring 
subjects when they withdraw from a treatment arm, most researchers prefer it. 
In studies where a large number of subjects are withdrawn, you may want to 
report the analysis both ways.

3.7.D  Varying time of enrollment

Varying times of enrollment (starting times) is an important issue for large 
prospective studies and for studies of rare diseases. For studies enrolling thou-
sands of participants, logistic constraints preclude everyone from starting the 
study on the same day. Most large studies are conducted in multiple centers 
and it is rare for all sites to begin enrollment at the same time. Similarly, with 
studies of rare diseases it may take several years to identify and enroll enough 
persons.

In observational studies, varying times of enrollment is the rule, rather 
than the exception. For example, in the Aerobics Center Longitudinal Study 
discussed in Section 1.1, the investigators enrolled participants over a 19-year 
period. Indeed, their study is an open cohort with ongoing accrual of subjects. 
Subjects are enrolled when they complete the baseline medical examination 
and are then followed prospectively. Similarly, the investigators of the study of 
prognosis with melanoma (Section 2.5) included patients who were diagnosed 
over a nine-year period.

Theoretically, varying start times could be dealt with by following all sub-
jects for a fixed time period (e.g., three years) regardless of when they started 
the study. In this instance, all subjects who did not drop out, were withdrawn, 
or experienced the outcome, would have the same length of follow-up. How-
ever, this method would decrease the power of the analysis because you would 
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55 3.8 Testing the censoring assumption

lose the additional follow-up time supplied by the persons who began the study 
early on. In most studies, the greatest cost (in time and funds) is the initial 
enrollment and evaluation. The cost of continuing follow-up for the outcome 
is usually minimal, while the gain, in terms of follow-up time, can be great. 
Also, waiting until the last enrolled participant completes a preset follow-up 
period will extend the length of the study often beyond the time that the ana-
lytic staff is being supported. Finally, we are all impatient to learn the results 
of our work. Thus, most investigators will censor results at a common point 
in calendar time. At this point in time, length of follow-up will differ for the 
participants. If the longest follow-up is three years, all participants who have 
follow-up of less than three years and have not experienced an outcome will 
be censored at the amount of time of follow-up, which in all cases will be less 
than three years. Those with three years of follow-up and no outcome will be 
censored at three years.

3.7.E  End of study

It may have surprised you that a subject who completes a study (or who in an 
observational trial has the longest follow-up) without experiencing the out-
come is still censored. This is counter-intuitive because in common usage we 
think of censored subjects as those who do not complete the study. Although 
all subjects who do not experience the study outcome are ultimately censored, 
there is an important difference between those censored at the end of a trial 
and those censored for other reasons. The difference is that for those subjects 
censored at the end of the study, no assumptions need be made about the 
future – the study is over. Usually, in the published report, the authors will 
tell you the date that subjects who completed the study without experiencing 
an outcome were censored. It is the last date of the study or the last day of 
observation.

3.8 How can I test the validity of the censoring assumption for my data?

There is no ideal test for assessing the validity of the censoring assumption. 
It is primarily a judgment call by the investigators, reviewers, and readers of 
the data. That’s why in Section 3.7 I took you through a long discussion of the 
reasons for censoring and how censored observations may or may not fulfill 
the assumptions of censoring. Nonetheless, it is possible to make a general 
assessment about censored observations. First, and foremost, studies that have 
a large number of censored observations prior to the end of the study are more 
problematic than studies that have just a few censored observations.
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Graphical methods, showing when censoring occurred during the trial, can 
be used to gauge the validity of the censoring assumption. Figures 3.7(a) and 
3.7(b) show two very different patterns of censoring. In Figure 3.7(a) it would 
appear that subjects (shown with asterisks) dropped out evenly through the 
course of the study. In Figure 3.7(b) it would appear that a clump of subjects 
dropped out around six months. Whereas the latter suggests some event that 
occurred at around six months, the former suggests the kind of censoring that 
you would expect if people dropped out for random reasons such as moving 
out of town, other obligations, etc.

Graphical displays can also be used to compare censoring in two or more 
different arms of a study. Figures 3.8(a)–(c) show a treatment and a placebo 
group. Note how in Figure 3.8(a) the number of persons censored between 
the treatment and placebo groups is the same and the pattern of censoring 
between the two groups is also similar. In Figure 3.8(b), the number of cen-
sored persons is the same but the pattern between the two groups is different. 
In Figure 3.8(c), there are many more censored observations in the treatment 
group. Whereas Figure 3.8(a) is consistent with random censoring, Figures 
3.8(b) and 3.8(c) suggest that the causes of censored observations are different 
for the treatment and placebo group.

A useful method for assessing the validity of the censoring assumption 
is to compare subjects lost to follow-up to those not lost to follow-up. This 
can be based on baseline characteristics. So, for example, you can examine 
whether there are differences by age, race, etc. of persons lost to follow-up 
compared to persons not lost to follow-up. In particular, you might wish to 
explore whether subjects at high risk of outcome are differentially lost to fol-
low-up. The censoring assumption can also be tested using time-dependent 
covariates (Section 9.9.D).

(a)

(b)

Figure 3.7 Different patterns of censoring. In Figure 3.7(a) censored observations have 
occurred evenly over the study period, whereas in Figure 3.7(b) censored 
observations are clumped at 6 months.
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To be certain that censoring owing to alternative outcomes is not affecting 
your results, report rate of death where possible, in addition to whatever more 
proximal outcome you are studying. Since there is no alternative outcome to 
death (no alternative outcome can exclude death), these curves reassure the 
reader.

For withdrawn cases, it is best to test the censoring assumption by conduct-
ing intention-to-treat analyses as described above. Since you may be able to 
follow withdrawn patients for outcome, you may test whether leaving them in 
or taking them out makes a difference.

Censoring owing to varying starting times is usually assumed to fulfill the 
censoring assumptions, since subjects who enroll at the start of a study should 
be the same as subjects who enroll towards the end. I say “should be” because 
sometimes investigators become more flexible about the enrollment criteria 
as studies progress, especially if enrollment is running slowly. Changing the 
enrollment criteria after a study has begun should be avoided.

But even assuming a group of investigators rigidly used the same enrollment 
criteria over the course of a long study, one should compare subjects enrolled 
in the early years of a study to those enrolled in the later years. The reason is 
that subjects enrolled in later years may be more likely to have received tech-
nical advances that were not available in the earlier years of the study. If they 

(a)

(b)

(c)

Figure 3.8 Different patterns of censoring between a treatment and a placebo group. In 
Figure 3.8(a) the patterns of censoring between the two groups are similar. In 
Figure 3.8(b) there are an equal number of censored observations in the two 
groups, but the patterns are different. In Figure 3.8(c), there are more censored 
observations in the treatment group than in the placebo group.
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were, and these advances could affect development of the outcome of interest, 
then the assumptions of censoring are not valid.

It is also possible to determine how sensitive your results are to different pos-
sibilities of what happened to censored observations. For example, Vittinghoff 
and colleagues evaluated the impact of multiple risk factors on the occurrence 
of coronary heart disease among women.23 Of the sample of 2763 women, 60 
were lost to follow-up. The investigators considered two extremes for what 
could have happened to those women: 1) they had a heart disease event on 
the day they were censored; 2) their censored date was equal to the longest 
observed follow-up time. Rerunning their proportional hazards analysis both 
ways, they found no major changes in the importance/nonimportance of most 
of the risk factors, with two exceptions: there were changes on the impact of 
HDL-cholesterol level and smoking on coronary heart disease events.

In conclusion, censoring is a very helpful tool for clinical research. It pre-
vents you from having to delete valuable cases. A randomized controlled trial 
comparing fluoride to placebo for the prevention of fractures among women 
with osteoporosis greatly benefited from censoring.24 Only 135 (67 percent) 
of the 202 enrolled women were able to complete four years of treatment. If 
the investigators had deleted these cases they would have lost a third of their 
sample size. As with any powerful statistical tool, however, censoring should 
be used carefully. Ask yourself (and tell your reader) the circumstances of 
persons censored. When you know the outcome of censored cases, perform 
intention-to-treat analyses.

3.9 What is the proportionality assumption of proportional  
hazards analysis?

Having reviewed the assumptions underlying censoring, we need to discuss 
another important assumption of proportional hazards analysis: the propor-
tionality assumption. The assumption is that the hazards for persons with 
different patterns of covariates are constant over time. In other words, if the 
relative hazard of heart attack among diabetics is three times higher than 
among nondiabetics in the first year of the study, the relative hazard of heart 
attack must also be (about) three times higher among diabetics than nondia-
betics in the second year of the study. Note that the hazard for a heart attack 

23 Vittinghoff, E., Shlipak, M. G., Varosy, P. D, et al. “Risk factors and secondary prevention in women 
with heart disease: The heart and estrogen/progestin replacement study.” Ann. Intern. Med. 138 
(2003): 81–9.

24 Riggs, B. L., Hodgson, S. F., O’Fallon, W. M., et al. “Effect of fluoride treatment on the fracture rate 
in postmenopausal women with osteoporosis.” N. Engl. J. Med. 322 (1990): 802–9.

 

 

 

 

 

 



59 3.9 Proportionality assumption of proportional hazards analysis

can be very different in the first year than in the second year (e.g., much 
higher in the first year than in the second year), but the difference between 
the hazards for diabetics and nondiabetics must be constant throughout the 
study period.

While the proportionality assumption may, at first, sound complicated, it 
is really very simple. Since proportional hazards analysis, like multiple linear 
and logistic regression, provides you with a single coefficient for each vari-
able, that coefficient, and its associated relative hazard, must represent the risk 
throughout the time period. If the risk of outcome associated with a particular 
variable is higher at one point in time and lower at another, a single coefficient 
cannot represent that relationship.

For example, in Figure 3.9 we see that the risk of death among patients with 
acute nonlymphoblastic leukemia was not constant over time in the two arms 
of the study.25 Patients who received a bone marrow transplant were more 

25 Appelbaum, F. R., Dahlberg, S., Thomas, E. D., et al. “Bone marrow transplantation or chemo-
therapy after remission induction for adults with acute nonlymphoblastic leukemia.” Ann. Intern. 
Med. 101 (1984): 581–8.

Figure 3.9 Kaplan–Meier curves show the estimated probability of survival for the 
chemotherapy group (broken line) and the transplantation group (solid line). 
Reproduced with permission from Appelbaum, F. R., et al. “Bone marrow 
transplantation or chemotherapy after remission induction for adults with acute 
nonlymphoblastic leukemia.” Ann. Intern. Med. 101 (1984): 581–8.

DEFINIT ION

The proportionality 
assumption is that the 
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60 Outcome variables in multivariable analysis

likely to die in the first year. But, thereafter, the risk was lower than with con-
ventional chemotherapy.

If you used proportional hazards analysis to analyze the effect of transplant-
ation on death, the relative hazard would probably be one. The higher risk of 
death associated with transplantation in the first year-and-a-half and the lower 
risk of death associated with transplantation in the period between a year-and-
a-half and three years would average out. Although this average risk of one is 
arguably the best single estimate of the difference in risk of death with trans-
plantation compared to chemotherapy, you would not want to tell your patients 
that the risk of death with the two treatments was the same. It would be more 
informative to tell them that a bone marrow transplant is a toxic treatment and 
that there are a significant number of deaths caused by it. However, if they sur-
vive the treatment, their survival at three years is significantly better than with 
conventional therapy.

More sophisticated methods of assessing the proportionality assumption, 
and strategies for analyzing data where the proportionality assumption is not 
valid, are discussed in Sections 9.9 and 9.10.

3.10 What type of multivariable analysis should I use with counts?

Sometimes a research project will produce count data: for example, the num-
ber of hospital admissions or the number of accidents over some period of 
time. The unit of analysis may be a person (e.g., falls per patient per year), or an 
institution (e.g., number of admissions per hospital per month), or a popula-
tion (e.g., number of car accidents per city per day). Usually, the time period for 
count data will be the same for each unit of analysis, but it is possible to have 
count data where the time per unit of analysis is different. For example, you can 
calculate a count variable for number of falls per patient where some patients 
have been followed for one month to five years. The count for each subject is 
simply the number of falls (numerator) divided by the number of months of 
observation for that patient (denominator). In contrast, with incidence rates 
(Section 3.11) person-time (the denominator) is pooled over the entire popu-
lation. It is also possible to have counts for community-wide indicators where 
the numerator is the number of events and the denominator is the number of 
persons in that community.

As a first pass, you might think that you could analyze this data as an 
interval outcome. After all, each unit change of a count score has an equal 
quantifiable value (e.g., the difference between a count of two accidents and 
four accidents is the same as the difference between three accidents and five 
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accidents). However, unlike an interval variable, with counts there cannot be 
negative numbers. Also the distribution of counts often does not fit a normal 
distribution with equal variance. In situations such as these, analyzing the 
data with a technique such as linear regression is incorrect and the standard 
errors on which the inferential statistics are based will not be accurate.

What about treating counts as an ordinal variable? This might work if the 
maximum count is low (e.g., less than four or five) and there are enough obser-
vations in each category. But it will not work if there are many different counts 
and categories with no subjects in them (e.g., if you have 75 subjects and the 
count can range from 0 to 100, you will have many categories with no subjects; 
if the person-time of observation varies by subject, you may have no two sub-
jects in the same category). In cases like this you could group the counts (e.g., 
0–10 counts equals 1, 11–20 counts equals 2, etc.) but this will result in loss of 
information.

Instead, with count data whether you are doing a bivariate or multivariable 
analysis use one of two procedures: Poisson regression or an extension of Pois-
son regression, negative binomial regression (Table 3.1).26

3.10.A Poisson regression

As implied by the name, Poisson regression is based on the Poisson distri-
bution. The Poisson distribution excludes negative numbers, is skewed to the 
right, and has a variance equal to the mean (Table 3.13). This distribution fits 
count data from many clinical scenarios because 1) counts cannot have a nega-
tive number; 2) counts tend to be skewed to the right since there is no limit to 
how high a count may go; 3) count data do not generally fit the assumption of 
equal variance at all values of the independent variable (Section 3.2C). Since 
negative numbers are not possible with counts, if you have a subgroup with a 
very low mean you would expect that almost all the values would be equal to 
zero. This would result in a very small variance. In a different subgroup with 
a higher mean, you would expect the distribution to be spread across a larger 

26 For more on Poisson regression and negative binomial regression see: Hubbard, A. “Modelling 
counts – The Poisson and negative binomial regression.” Available at : http://ehs.sph.berkeley.
edu/hubbard/longdata/webfiles/poissonmarch2005.pdf; Kleinbaum, D. G., Kupper, L. L., and 
Muller, K. E. Applied Regression Analysis and Other Multivariable Methods (2nd edn). Boston, 
MA: PWS-Kent, 1988, pp. 497–512; Gardner, W., Mulvey, E. P., and Shaw, E. “Regression analyses 
of counts and rates: Poisson, overdispersed Poisson, and negative binomial models.” Psych. Bull. 
118 (1995): 392–404; Simon, S. “Poisson regression model.” Available at: http://www.cmh.edu/
stats/model/poisson.asp; Grace-Martin, K. “Regression models for count data.” StatNews #43, 
New York, NY: Cornell University, available at: http://www.human.cornell.edu/admin/statcons/
statnews/stnews43.htm. 
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62 Outcome variables in multivariable analysis

group of values and therefore have a larger variance.27 Because the Poisson 
distribution does not assume that the variance is equal in all subgroups but 
rather that the variance is equal to the mean, the Poisson distribution is often 
a good fit for count data.

Since Poisson regression models the natural log of the outcome it is some-
times referred to as a log-linear model when it is used to model counts.28

A study of the association between income and availability of neighborhood 
food stores illustrates the value of Poisson regression.29 The number of stores 
per persons living in a neighborhood is a count variable (numerator equals 
number of stores in the neighborhood; denominator equals number of persons 
living in that neighborhood); this count cannot take on a value less than zero, 
but could be skewed to the right if some areas have a large number of stores 
per population.

To assess the association between number of food stores and income the 
investigators needed to adjust for the density of the area. The reason is that 
density could confound the relationship between the number of food stores 
and income; for example, richer people may live in less dense suburbs and 
lower density encourages placement of more stores (because people don’t wish 
to travel long distances to buy food).

Table 3.14 shows the relationship of income to the count of stores, based on 
a Poisson regression model adjusted for census tract density (population and 
tract area size). Note that compared to higher-income tracts, lower-income 
tracts are less likely to have supermarkets, bakeries, natural food stores, but 
more likely to have convenience stores, grocery stores, liquor stores, and meat 

27 Gardner, W., Mulvey, E. P., and Shaw, E. “Regression analyses of counts and rates: Poisson, over-
dispersed Poisson, and negative binomial models.” Psych. Bull. 118 (1995): 392–404.

28 Poisson regression is not referred to as a log-linear model when it is used to analyze rates (Section 
3.11).

29 Moore, L. V. and Roux, A. V. D. “Associations of neighborhood characteristics with the location 
and type of food stores.” Am. J. Public Health 96 (2006): 325–31.

Table 3.13 Underlying assumptions of Poisson and negative binomial regression.

Poisson Negative binomial regression

Type of outcome variable Count or incidence rate Count or incidence rate
Range of values Non-negative Non-negative
What is being modeled Natural logarithm of outcome Natural logarithm of outcome
Distribution of outcome Dependent on the mean Overdispersed
Variance Equal to the mean Variance greater than the mean
Rate of event over time Constant Constant
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and fish markets. The findings are important because we can’t expect people to 
eat better if there are fewer places to buy fresh fruits and vegetables at afford-
able prices (e.g., supermarkets).

3.10.B  Negative binomial models

Sometimes with count data the variance of the count is much larger than the 
mean. This is referred to as overdispersion. A common situation where this 
occurs is when there are a large number of zero values (because with many 
zero values the mean is likely to be very small). In such cases, Poisson regres-
sion underestimates the standard errors for the coefficients.

When the variance of the count is greater than the mean, use negative bino-
mial regression (Table 3.13). This technique is a form of Poisson regression 
that includes a random component with the result that the model may better 
represent the relationship between the dependent variables and the outcome 
than a standard Poisson regression when the count is overdispersed.

For example, Leveille and colleagues assessed the association between 
chronic musculoskeletal pain and falls among older adults.30 Because the vari-
ance is typically greater than the mean with fall data, the authors used nega-
tive binomial regression to adjust for potential confounders. The outcome was 

30 Leveille, S. G., Jones, R. N., Kiely, D. K. et al. “Chronic musculoskeletal pain and the occurrence of 
falls in an older population.” JAMA 302 (2009): 2214–21.

Table 3.14 Association between income and presence of food stores.

Type of store

Lowest-income tracts
(< $25,000),
Ratio (95% CI)

Middle-income tracts
($25,000– $45,000),
Ratio (95% CI)

High-income tracts
($45,001– $175,000),
Ratio (95% CI)

Supermarkets 0.5 (0.3, 0.8) 0.8 (0.6, 1.0) 1.0 (reference)
Bakeries 0.6 (0.5, 0.8) 0.9 (0.7, 1.1) 1.0 (reference)
Specialty food stores 0.2 (0.1, 0.4) 0.5 (0.3, 0.8) 1.0 (reference)
Natural food stores 0.3 (0.2, 0.5) 0.5 (0.3, 0.8) 1.0 (reference)
Convenience stores 2.4 (1.8, 3.2) 1.6 (1.2, 2.1) 1.0 (reference)
Grocery stores 4.3 (3.6, 5.2) 2.8 (2.3, 3.3) 1.0 (reference)
Liquor stores 1.3 (1.0, 1.6) 0.9 (0.7, 1.2) 1.0 (reference)
Meat and fish markets 2.1 (1.5, 2.8) 1.5 (1.1, 2.1) 1.0 (reference)
Fruit and vegetable markets 0.9 (0.6, 1.4) 0.8 (0.5, 1.2) 1.0 (reference)

Data from Moore, L. V. and Roux, A. V. D. “Associations of neighborhood characteristics with the location and type 
of food stores.” Am. J. Public Health 96 (2006): 325–31.

DEFINIT ION
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64 Outcome variables in multivariable analysis

the rate of falls, determined by dividing the number of falls of each person by 
the amount of time each person was followed. As you can see in Table 3.15, 
older persons with pain, especially with polyarticular pain, had higher rates of 
falls than elders without pain.

3.11 What type of multivariable analysis should I use with  
an incidence rate?

Incidence rate measures the rate at which a group of people develops a disease 
or condition(Table 3.1). The numerator is the number of cases of the outcome 
in a population and the denominator is the observation time for the popula-
tion (note how this is different than a count variable where the number of 
events occurring to a person is divided by the observation time of that per-
son –  Section 3.10).31 Often it is of interest to compare incidence rates. For 
example, we may want to know if the incidence of diabetes is higher in one 
city than another or is higher among men than women. To perform a simple 
bivariate comparison of rates we can use the z statistic. However, a z statis-
tic cannot incorporate adjustment for potential confounders. Instead we use 
Poisson regression and the related procedure negative binomial regression. 
As is true of counts,  incidence rates cannot be negative. Poisson and negative 
binomial regression are known to fit the incidence of rare diseases particu-
larly well.

You may be wondering if the goal is to compare the incidence of diabetes 
between two populations why not use proportional hazards analysis. Indeed, 
this technique would work well if you knew when the observation period began 

Table 3.15 Association between musculoskeletal pain  
and falls.

Chronic musculoskeletal pain

None 1 [Reference]
Single site 1.15 (0.86–1.53)
Polyarticular pain 1.71 (1.33–2.20)

Data from Leveille, S. G., et al. “Chronic musculoskeletal pain  
and the occurrence of falls in an older population.” JAMA 302  
(2009): 2214–21.

31 For more on calculating incidence rates and comparison of incidence rates see: Katz, M. H. 
Study Design and Statistical Analysis: A Practical Guide for Clinicians. Cambridge: Cambridge 
 University Press, 2006, pp. 64–65, 106–7.
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65 3.11 Multivariable analysis with an incidence rate

for all subjects and when each of them developed the disease. But sometimes 
when working with population level registries you may not know when the 
observation period begins for each person, but you may still be able to estimate 
total observation time.

This point is illustrated by a study examining whether the incidence of 
stroke is elevated during pregnancy.32 The investigators used a hospital-based 
registry in a geographic area to identify strokes in women 15 to 44 years of 
age. During a three-year period, 31 strokes occurred in women who were preg-
nant or postpartum (six-week period following pregnancy) and 223 strokes in 
women who were not pregnant. The person-time at risk during pregnancy was 
estimated based on the average number of spontaneous and induced abor-
tions, stillbirths, and live births in the population and the average length of 
each pregnancy state. The person-time not at risk was based on determining 
the total population of women aged 15 to 44 years of age and subtracting out 
the estimate of person-time spent pregnant.

The investigators used Poisson regression to adjust for age and race. They 
found that there was a significantly elevated risk of stroke associated with 
pregnancy (rate ratio for pregnancy was 2.4; 95% CI = 1.6–3.6), after adjust-
ment for age and race.

Just as occurs with counts (Section 3.10) you may have an incidence rate that 
is more widely dispersed than the Poisson distribution, for which the mean 
and the standard deviation are equal. For example, Myers and colleagues stud-
ied factors associated with tuberculosis transmission among children 0 to 14 
years of age in California.33 Combining all the census tracts together, the rate 
of pediatric tuberculosis was 4.1 cases per 100,000 person-years. However, 
the rates varied widely in different census tracts from 0 to 230 per 100,000 
person-years. With widely dispersed rates, the authors appropriately chose 
negative binomial regression. They found in their multivariable model that 
Asian race (RR = 1.22; 95% CI = 1.14–1.30), African-American race (RR = 1.19; 
95% CI = 1.14–1.23), Hispanic ethnicity (RR = 1.25; 95% CI = 1.12–1.40), for-
eign birth (RR = 1.26; 95% CI = 1.14–1.40), and low income (RR = 1.62; 95% 
CI = 1.48–1.78) were associated with higher rates of pediatric tuberculosis. In 
this multivariable model, crowded housing was associated with a lower rate of 
pediatric tuberculosis (RR = 0.87; 95% CI = 0.77–0.98). This was the opposite of 
the finding from the bivariate analysis (RR = 1.59; 95% CI = 1.54–1.64), under-
scoring the importance of multivariable analysis.

32 Kittner, S. J., Stern, B. J., Feeser, B. R., et al. “Pregnancy and the risk of stroke.” N. Engl. J. Med. 335 
(1996): 768–74.

33 Myers, W. P., Westenhouse, J. L., Flood, J., Riley, L. W. “An ecological study of tuberculosis trans-
mission in California.” Am. J. Public Health 96 (2006): 685–90.
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A limitation of Poisson and negative binomial regression for comparing 
incidence rates is that the procedures assume that the probability of an occur-
rence is constant over time. These techniques are therefore inappropriate for 
studying occurrences of highly contagious diseases such as chicken pox. (In 
contrast, proportional hazards analysis (Section 3.6) does not assume that the 
rate of outcome is constant). Also with incidence rates we are considering only 
the first occurrence of the event.

3.12 May I change the coding of my outcome variable to use a different 
type of multivariable analysis?

To this point, the focus of this chapter has been on choosing the appropriate 
type of multivariable analysis based on the nature of your outcome variable. 
So it may seem that I am throwing you a curved ball in now suggesting the 
possibility of changing the outcome variable to use a different type of analysis. 
However, sometimes there are advantages to analyzing your data in a differ-
ent way, if only to see whether a different method produces similar or differ-
ent results. The advantages and disadvantages of some commonly performed 
changes of an outcome variable are listed in Table 3.16 and discussed below.

3.12.A.  Dichotomizing an interval variable

As I will discuss more in Chapter 8, the outputs of multiple logistic regression – 
odds ratios – have an intuitive appeal to clinicians that is not as true of the out-
puts of multiple linear regression – beta weights. Also, clinicians tend to think 
dichotomously, even about variables that are inherently interval. For example, 
clinicians tend to think of a patient as being hypertensive or not, even though 
blood pressure is an interval variable. For a clinician the difference between a 
systolic blood pressure of 126 and 136 mm Hg may be unimportant but the dif-
ference between a blood pressure of 136 and 146 may be of great importance. 
In such situations, it may be attractive to dichotomize systolic blood pressure 
at 140 mmHg and to perform a multiple logistic regression model looking at 
the factors that significantly increase the risk of hypertension.

A study looking at the impact of parental education on child stunting (linear 
growth failure owing to poor nutrition and infections) illustrates the practice of 
dichotomizing interval outcomes to perform logistic regression.34 As you can see 

34 Semba, R. D., de Pee, S., Sun, K., Sari, M., Akhter, N., Bloem, M. W. “Effect of parental formal edu-
cation on risk of child stunting in Indonesia and Bangladesh: a cross-sectional study.” Lancet 371 
(2008): 322–8.

Clinicians tend to think 
dichotomously.
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68 Outcome variables in multivariable analysis

in Figure 3.10, there is a strong linear relationship between parental education 
and having a lower height-for-age z score (an interval variable) in Bangladesh. 
Despite this, rather than use multiple linear regression the authors dichot-
omized the z score of height-for-age as less than –2 or greater or equal to –2 and 
used multiple logistic regression. Adjusting for a number of factors, they found 
that maternal education (years) in a rural setting (odds ratio = 0.950; 95% CI 
0.946–954), maternal education (years) in a urban setting (odds ratio = 0.956; 
95% CI 0.950–961), and paternal education (odds ratio = 0.970; 95% CI 0.967–
974) were all associated with decreased likelihood of stunting.

At times dichotomizing a variable may be a reasonable strategy for deal-
ing with interval outcomes that do not fulfill the assumptions of normality 
and equal variance, even after they have been transformed (e.g., logarithmic 
transformation).

Three disadvantages of dichotomizing an interval outcome are 1) loss of 
information; 2) loss of power; and 3) the cut-off point for dichotomizing the 
variable may seem to readers (or be!) arbitrary. In the case of the study of 
stunting, a height-for-age z score is an accepted cut-point. But there is no simi-
larly accepted cut-off for most other variables (e.g., weight, creatinine).
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Figure 3.10 Linear relationship between fewer parental years of education and lower 
height-for-age z score among families living in Bangladesh. Diamonds are for 
maternal education and squares are for paternal education. Reproduced with 
permission from Semba, R. D., et al. “Effect of parental formal education on risk 
of child stunting in Indonesia and Bangladesh: a cross-sectional study. ” Lancet 
371 (2008): 322–8.
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3.12.B.  Changing time-to-outcome to a dichotomous outcome (yes/no)

When reading the section on proportional hazards regression you may have 
wondered if it wouldn’t be simpler to analyze the data in terms of the occur-
rence of an outcome at a particular point in time. In other words, instead of 
the outcome “time to myocardial infarction” recode it to “myocardial infarc-
tion by five years: yes/no.” This would have the advantage of enabling you 
to analyze your data with logistic regression, which is easier to conduct and 
interpret than proportional hazards analysis. Also, if you used logistic regres-
sion analysis, you would not need to worry about meeting the proportionality 
assumption.

However, there are two major problems with using the simpler dichotomous 
outcome variable. First, clinical medicine consists more of treatments than 
of cures. Given this, what matters is not whether or not the disease occurs or 
recurs, but how soon the disease occurs or recurs.

For example, metastatic colorectal cancer is an extremely deadly disease. 
Even with chemotherapy the cancer will progress quickly in the majority of 
patients. Hurwitz and colleagues studied the efficacy of a novel compound, 
bevacizumab, in patients with metastatic colorectal cancer.35 Bevacizumab 
is a monoclonal antibody against vascular endothelial growth factor. The 
investigators randomized patients to receive either standard chemotherapy 
with irinotecan, fluorouracil, and leucovorin (IFL) plus placebo, or IFL plus 
bevacizumab.

As illustrated in Figure 3.11, by 20 months the cancer had progressed in 
almost all patients in both groups so if you analyzed their data as yes/no sur-
vival at 20 months, it will appear that the treatment is ineffective. Yet, the 
rate of progression between the groups is significantly different. The median 
progression-free survival is 6.2 months for those who received IFL + placebo, 
and 10.6 months for those who received IFL + bevacizumab.

One may reasonably ask, especially in these cost-conscious times, how 
important is it to slow the progression of a disease, if ultimately the same pro-
portion of patients will suffer a recurrence or die? The answer to this ques-
tion is more philosophical than statistical. In general, time to outcome matters 
more for serious outcomes than for minor ones. Patients with life-threatening 
diseases value additional time, whether of days or months, especially if it will 
allow them to see a child graduate from college or watch a grandchild take her 
first steps.

35 Hurwitz, H., Fehrenbacher, L., Novotny, W., et al. “Bevacizumab plus irinotecan, fluorouracil, and 
leucovorin for metastatic colorectal cancer.” N. Engl. J. Med. 350 (2004): 2235–42.
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At the other extreme, for minor outcomes, increased time may not be 
clinically meaningful. For example, studies have shown that children with 
chicken pox treated with acyclovir have one day less fever, and experience a 
decrease in the number of chicken pox lesions one day sooner than those given 
 placebo.36 If the investigators had used symptoms at seven days as the outcome 
of their study they would have found no effect for acyclovir because, treated 
or untreated, immunocompetent children with chicken pox are almost invari-
ably well at seven days. Is it worth the expense of acyclovir for one day less of 
symptoms? Is it worth the trouble (those of you who have attempted to give a 
toddler a medicine four times a day know what I mean)? Clearly, this is not a 
statistical question. In practice, most pediatricians do not prescribe acyclovir 
for immunocompetent children.

At times, small improvements in the time to outcome may spur scien-
tific progress, even if there is minimal benefit to individual patients. Most 
medical advances are incremental. Proving that a particular strategy 

Figure 3.11 Kaplan–Meier estimates of progression-free survival. Although the cancer 
progresses in almost all patients in both groups by 20 months, the patients 
who received bevacizumab progressed more slowly. Figure is from Hurwitz, H., 
Fehrenbacher, L., Novotny, W., et al. “Bevacizumab plus irinotecan, fluorouracil, 
and leucovorin for metastatic colorectal cancer.” N. Engl. J. Med. 350 (2004):  
2235–42. Copyright 2004, Massachusetts Medical Society. All rights reserved.

36 Balfour, H. H., Kelly, J. M., Suarez, C. S., et al. “Acyclovir treatment of varicella in otherwise healthy 
children.” J. Pediatr. 116 (1990): 633–99.
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increases survival, if only marginally, may provide a valuable lead to a better 
treatment.

A second reason for not using logistic regression analysis in place of pro-
portional hazards analysis is that the former procedure cannot accommodate 
censored observations. Subjects who are withdrawn from the trial, lost to fol-
low-up, etc. will need to be excluded from a logistic regression analysis. This 
may result in a substantial loss of power, if a large number of subjects have to 
be excluded. Excluding subjects may also introduce bias into the study if the 
subjects who are excluded from the final analysis are different from those who 
remain in the study.

Overall, studies using both logistic regression and proportional hazards 
analysis have found that if you have relatively few outcomes, length of follow-up 
is relatively short, and few subjects are lost to follow-up, then logistic regression 
will provide similar results as proportional hazards analysis.37 For example, 
Kravitz and colleagues assessed the impact of coronary revascularization on 
mortality.38 Of 671 patients, 70 (10.4%) were known to have died, the median 
follow-up was 797 days, and mortality data were available for all subjects. Mul-
tiple logistic regression, adjusted for a number of potential confounders, showed 
that the odds of death at one year were significantly lower among patients who 
received coronary revascularization (OR = 0.49; 95% CI = 0.30–0.84) compared 
to those who did not receive it. A proportional hazards analysis, which also 
adjusted for confounders, found that revascularization significantly reduced 
the risk of death (relative hazard [RH] = 0.59; 95% CI = 0.36–0.97).

3.12.C  Dichotomizing ordinal variables or treating them as nominal variables

Because ordinal outcomes are infrequently used with multivariable analysis, 
it is common to dichotomize them and use logistic regression. For example, 
New York Heart Association classification is often grouped as level I and II 
(mild shortness of breath) or level III and IV (severe shortness of breath). The 
advantage is that readers better understand logistic regression than propor-
tional odds regression. Also, with logistic regression the proportional odds 
assumption need not be met. The disadvantage, as is true of dichotomizing an 
interval variable, is loss of information and power and the arbitrary nature of 
any cut-off.

37 Green, M. S. and Symons, M. J. “A comparison of the logistic risk function and the proportional 
hazards model in prospective epidemiologic studies.” J. Chron. Dis. 36 (1983): 715–24.

38 Kravitz, R. L., Laouri, M., Kahan, J. P., et al. “Validity of criteria used for detecting under- use of 
coronary revascularization.” JAMA 274 (1995): 632–8.
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Another option with ordinal variables is to treat them as nominal variables 
(essentially ignoring the inherent ordering in them) and to use multinomial 
logistic regression to analyze them. The advantage of this approach is that 
the proportional odds assumption need not be met. For example, Galanis 
and colleagues assessed the impact of alcohol intake on cognitive function.39 
Cognitive function was measured using an established scale with a range of 
0 to 100. The distribution of scores did not fit a normal distribution – they 
were skewed with most scores on the high end. The investigators handled 
this issue in two different ways. They used a (cubic) mathematical transform-
ation (Section 4.3.A) that resulted in an approximately normal distribution 
and maintained the interval nature of the variable. They also transformed the 
variable into an ordinal scale by trichotomizing it (dividing it into  terciles – or 
3 groups): good cognition (score > 82), intermediate cognition (score 74 –81), 
and poor cognition (score < 74).

Although the trichotomized version of their cognitive measure was an 
ordinal scale, in their multivariable analysis the investigators treated it as a 
nominal variable and used multinomial regression analysis. The results are 
shown in Table 3.17. The good cognition group is the reference. There are two 
sets of risk ratios for each category change in alcohol consumption. The risk 
ratios on the 2nd row show you the change in risk between the intermedi-
ate cognition function group and the good cognition function group as you 
increase alcohol consumption. The risk ratios on the fifth row show you the 
change in risk between the poor cognitive function group and the good group 
as you increase alcohol consumption.

Had the authors used proportional odds regression there would have been 
only one set of risk ratios representing the average of the change in cognitive 
function as alcohol consumption increased. Because they used multinomial 
regression their data need not fulfill the proportional odds assumption. Of 
course, anytime you treat an ordinal variable as nominal you will decrease the 
power of your analysis to detect a statistically significant linear relationship.

3.12.D.  Converting a count to time to outcome or to a dichotomous outcome

Some count variables are actually dichotomous variables that can occur more 
than once over time. For example, if you look back at the study of the impact of 
musculoskeletal pain on falls (Section 3.10), you will see that the count variable 

39 Galanis, D. J., Joseph, C., Masaki, K. H., Petrovitch, H., Ross, G. W., White, L. “A longitudinal study 
of drinking and cognitive performance in elderly Japanese American men: The Honolulu – Asia 
Aging Study.” Am. J. Public Health 90 (2000): 1254–9.
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“falls” consists of a dichotomous variable (fall: yes/no) divided by the obser-
vation time for each person. If we were to look at only the first occurrence 
of the outcome, we could use proportional hazards regression to determine 
time to outcome, and the relative hazards of falls for persons with or without 
musculoskeletal pain.  The advantage is that this procedure is more familiar to 
readers than Poisson or negative binomial regression. The disadvantage is that 
unless the majority of subjects have no falls or only one fall, we would lose a 
great deal of information. We could also simplify this outcome even further to 
a fall (yes/no) for each subject within a certain period of time and use multiple 
(binary) logistic regression. In this case, we would not only lose information 
owing to repeated falls, but would also be unable to accommodate subjects 
who were lost to follow-up or censored for some other reason.

3.12.E  General advice for changing the coding of outcome variables

In general it is best to analyze data fully, to not simplify outcomes in order 
to use simpler analytic techniques. On the other hand, changing the nature 
of your outcome variable is often the best alternative when assumptions are 
not met. Also, demonstrating similar results with different analytic methods 
strengthens your findings.

Table 3.17 Association of alcohol intake with cognitive function score, trichotomized as poor, 
intermediate, and good score.

Alcohol intake (oz/mo)

None 1–2 3–15 16–30 31–60 >60

Inte rmediate vs. good cognitive 
function

 Number interm./good scores 180/634 107/546 155/676 65/241 46/208 39/123
 Risk ratio 1.00 0.78 0.89 0.89 0.68 1.02
 95% confidence interval 0.59, 1.03 0.69, 1.15 0.64, 1.25 0.46, 1.00 0.67, 1.55
Poor vs. good cognitive function
 Number poor/good scores 182/634 98/546 95/676 56/241 57/208 48/123
 Risk ratio 1.00 0.74 0.60 0.72 0.78 1.29
 95% confidence interval 0.54, 1.01 0.44, 0.82 0.49, 1.06 0.52, 1.17 0.83, 2.01

Data from Galanis, D. J., et al. “A longitudinal study of drinking and cognitive performance in elderly Japanese 
American men: The Honolulu–Asia Aging Study.” Am. J. Pub. Health 90 (2000): 1254–9.
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4

Independent variables in multivariable 
analysis

4.1 How do I incorporate my independent variables into a  
multivariable analysis?

Having determined, based on your outcome variable, the type of multivari-
able analysis you will be doing (Chapter 3), it is now time to consider how you 
will enter your independent variables into your multivariable model. While 
dichotomous variables can be entered into all multivariable analyses with-
out special coding or transformation, there are special considerations for the 
treatment of nominal, interval, and ordinal independent variables. These are 
considered in Sections 4.2–4.4.

4.2 How do I incorporate nominal independent variables into a 
multivariable analysis?

Nominal independent variables, such as race or type of cancer, cannot be 
entered into a multivariable analysis, unless they are transformed. The reason 
is that the numeric codings for the variables have no meaning. You may have 
coded your variable 1 = Caucasian, 2 = African-American, but the numbers 
don’t reflect a meaningful order. Therefore, any multivariable estimate of the 
change of going from one category to another is meaningless.

To incorporate a nominal independent variable into a multivariable model 
you must transform it into multiple dichotomous variables. This process is 
usually called “dummying” by epidemiologists and biostatisticians. However, 
the terms “dummying” and “dummy variables” are slang. In manuscripts, you 
should refer to this process as creating multiple categorical variables (if you 
refer to it as dummying, you may, as I did, receive complaints from the review-
ers of your article).

Ethnicity is probably the most common nominal variable in clinical 
research. (You will remember I used ethnicity as an example for a nominal 
dependent variable in Section 3.5). When ethnicity is used as an independ-
ent variable in multivariable analysis it should be represented as several 
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75 4.2 Incorporating nominal independent variables

dichotomous variables. For example, ethnicity can be represented as five 
dichotomous variables:

African-American (yes/no)
Latino/Hispanic (yes/no)
Asian/Pacific Islander (yes/no)
Native American (yes/no)
Other nonwhite (yes/no)

What happened to persons who are white/Caucasian? When you represent 
a nominal variable as several dichotomous variables in multivariable analy-
sis you need one variable less than the number of categories of your variable. 
Why? To answer this question, think about it from the computer’s point of 
view. If you create five dichotomous variables, all of which are either 1 (yes) or 
0 (no), the computer will see six patterns as shown in Table 4.1.

We don’t create a variable white/Caucasian because it is represented by the 
other five variables (zero on all five variables). In multivariable analysis, this is 
called a reference group.

Ethnicity is an interesting example of a nominal variable because how you 
choose to code it will depend on your study population. For example, in a 
small clinical study performed in the southeast of the United States, there may 
be very few Native Americans or Asian/Pacific Islanders. If a group represents 
less than 5 percent of the total sample, creating a variable for that group may 
not carry much statistically important information. In this case you might 
only create variables for the larger ethnic groups and then have a group that 
is “other.” For example, your variables would be African-American (yes/no), 
Latino/Hispanic (yes/no), and other nonwhite ethnicity (yes/no), with white as 
the reference group.

Although decreasing the number of groups may prevent having dichoto-
mous variables that convey little information, grouping people of different 

Table 4.1 Creation of multiple dichotomous variables to represent a nominal independent variable.

African-
American

Latino/
Hispanic

Asian/Pacific 
Islander

Native 
American

Other 
nonwhite

African-American 1 0 0 0 0
Latino/Hispanic 0 1 0 0 0
Asian/Pacific Islander 0 0 1 0 0
Native American 0 0 0 1 0
Other nonwhite 0 0 0 0 1
White/Caucasian 0 0 0 0 0
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ethnicities in one group may not adequately represent the data. Even if you 
retain the category “Asian/Pacific Islander” remember that this category con-
tains more than a dozen disparate cultures, each with their own language, 
traditions, and genetic composition, all of which could affect the development 
of disease. As with all really hard questions in multivariable analysis, the ques-
tion of how to code ethnicity is not a statistical question. The best way to group 
a nominal independent variable such as ethnicity will depend on the research 
question, the distribution of the nominal variable (how many people are in 
each group), and the relationship between the different categories of the nomi-
nal variable and the outcome.

4.3 How do I incorporate interval-independent variables into a 
multivariable model?

As you will remember, each unit of an interval variable is equal. Therefore, a 
multivariable model will assume that a unit change anywhere on the scale of 
the interval variable will have an equal effect on the modeled outcome. For 
example, the change due to a 10 kg weight gain on the dependent variable is 
the same whether it is from 50 kg to 60 kg or 90 kg to 100 kg. However, the 
change in the outcome of a given change of an interval variable (say 10 kg) 
varies with the different multivariable models because of differences in what 
is being modeled. For example, with a linear regression model, an equal size 
change of an interval-independent variable will have an equal size change 
to the mean value of the outcome; with a logistic regression, an equal size 
change of an interval-independent variable will have an equal size change to 
the logit of the outcome; with a proportional hazards analysis an equal size 
change of an independent variable will have an equal size change to the loga-
rithm of the relative hazard.

The assumption that an equal change of an interval-independent variable 
will have an equal effect on outcome is referred to as the linearity assump-
tion, and is easiest to appreciate in the case of linear regression. If the linearity 
assumption is true, then a scatter plot of the two variables should show a line. 
For example, look back at Figure 3.1. It is a scatter plot of the relationship of 
two interval variables. A line fits the data because equal increases in the values 
of B12 anywhere along the scale are associated with equal increases in titers 
after vaccine.

However, sometimes a scatter plot will not show a linear relationship. For 
example, Figure 4.1(a) is an illustration of a logarithmic relationship between 
an independent variable and an outcome. At the low end of the scale changes 
in the independent variable are associated with very large changes in the 
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Figure 4.1 Variety of nonlinear relationships between an independent variable and an 
outcome.
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outcome; at the high end of the scale, changes in the independent variable have 
very little effect on the outcome.

A variety of nonlinear relationships are possible. Some common ones, in 
addition to logarithmic, are: antilogarithmic, curvilinear (U-shape, upside 
down U–shape, J-shape), and threshold.

A limitation of the use of a bivariate scatter plot to determine linearity is that 
it is possible for a relationship between an interval-independent variable and 
an interval outcome to be linear in a bivariate analysis but not in a multiple 
linear regression analysis owing to confounding. Methods of testing for linear 
relationships in multiple linear regression models are described in Section 9.4.

To assess whether an interval variable fits the linear assumption of logis-
tic regression (or the closely related techniques of proportional odds regres-
sion and multinomial regression), proportional hazards analysis, and Poisson 
regression (or the closely related technique of negative binomial regression), 
you cannot assess the linear assumption by making a simple scatter plot. This 
is because the linear relationship does not exist on a simple arithmetic scale. 
Instead, categorize the interval variable into multiple dichotomous variables 
(Section 4.2) of equal units on the variable’s scale. So, for example, if the varia-
ble you are testing is age, and the ages of your subjects range from 20 to 79, have 
age 20–29 be your reference group. Then create variables 30–39 (yes/no), 40–49 
(yes/no), 50–59 (yes/no), 60–69 (yes/no), and 70–79 (yes/no). If you would have 
too few subjects being yes in these decade categories, you can group them into 
20-year periods.

Perform the logistic or proportional hazards or Poisson analysis with these 
several dichotomous variables. Each variable will have an estimated coefficient. 
The coefficient for the reference group is, by definition, 0. Graph the coefficient 
against the midpoint of each dichotomous variable (e.g., 35 years for the vari-
able that represents the 30–39 group). The graph will show you the relationship 
between your independent and outcome variable. If you have a linear effect, the 
coefficients will steadily increase (or decrease) as you go from one age group to 
another, and you will get a straight line (as shown in Figure 4.2). Alternatively, 
your graph may appear like one of the nonlinear relationships in Figure 4.1.

Even without graphing, if you have a linear effect, you should be able to see 
it because the numeric difference between the coefficients of each successive 
group should be about equal (e.g., the numeric difference between the coef-
ficient of the 30–39 group and the coefficient of the 20–29 group will be equal 
to the difference between the coefficient of the 40–49 variable and the 30–39 
variable). Remember, of course, they are not going to be exactly equal (just as 
the points do not fall exactly on a straight line). The important issue is whether 
the data can be reasonably expressed as a linear relationship.
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This technique can be used to determine whether a linear relationship exists 
between an independent variable and an outcome variable after adjustment 
for potential confounders. Besides being useful for testing a linear associa-
tion, this technique is also useful for demonstrating a linear dose–response 
curve between an independent variable and outcome.1 Plots of residuals are 
also helpful in determining whether a variable fulfills the linearity assump-
tion; they are described in Section 9.4.

There is another bivariate method of assessing whether an interval-inde-
pendent variable has a linear association with the outcome that can be done 
prior to logistic regression. It requires grouping your interval-independent 
variable data into categories that preserve the interval nature of the vari-
able (e.g., 1 = ages 20–29, 2 = ages 30–39, 3 = ages 40–49, etc.) and are large 
enough to provide a reasonable number of outcomes in each category. You 
can then perform a simple cross-tabulation of your independent variable 
and outcome. The cross-tabulation table should show a steadily increasing 
(or decreasing) proportion of outcomes as you increase (or decrease) along 
the levels of your interval-independent variable. The chi-squared for trend 
test should be significant. A bar graph can demonstrate the same trend 
visually. 

Figure 4.2 Coefficients graphed against age form a straight line.

1 If you are unfamiliar with multiple logistic regression and proportional hazards analysis, this sec-
tion will make more sense to you after you have read Section 8.3 on interpretation of coefficients. 
For a more detailed explanation of this technique see: Hosmer, D. W. and Lemeshow, S. Applied 
Logistic Regression. 2nd edn. New York, NY: Wiley, 2000, pp. 110–11.
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If your interval-independent variable does not have a linear relationship 
with your outcome, don’t be discouraged. You have learned something impor-
tant about the relationship of your variables. Three options for incorporating 
nonlinear relationships are shown in Table 4.2 and discussed below.

4.3.A Mathematical transformations

The simplest method of incorporating an interval-independent variable that 
does not have a linear relationship with outcome is to transform it so that 
it does fulfill the linearity assumption. For example, if changes in value at 
the high end of your independent variable have less impact on your outcome 
variable than changes at the lower end (as indicated by a steadily decreasing 
slope), with the high end of the independent variable asymptotically approach-
ing a horizontal level as in Figure 4.1(a), a logarithmic transformation of the 
independent variable (the logarithm of the variable) may linearize the trend. 
The natural logarithm is used more often than the logarithm to the base 10, 
although both may linearize the effect. Remember that with either logarithmic 
transformation, values for the variable must be positive (i.e., you cannot take 
the logarithm of zero or negative numbers). If your scale has a true zero you 
can still use a logarithmic transformation by adding one to all values.

T IP
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Table 4.2 Methods for incorporating interval-independent variables into a multivariable model when 
they do not have a linear relationship with outcome.

Method Advantages Disadvantages

Mathematical transformation Simple to perform May be difficult to interpret 
clinically.

There may not be a mathematical 
transformation that captures the 
relationship between the interval- 
independent variable and the 
outcome

Splines Can model complex relationships 
between the interval-
independent variable and the 
outcome

Does not result in a single measure of 
the association of the independent 
variable with the outcome.

Difficult for many nonstatisticians to 
understand

Multiple dichotomous variables 
 

Easy to interpret 
 

Choice of cut-offs may be arbitrary.
Loss of the interval nature of the 

variable
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If changes in value at the high end of your independent variable have a 
greater impact on your outcome variable than changes at the lower end (as 
indicated by a steadily increasing slope as in Figure 4.1(b)), an antilogarithm 
transformation (i.e., ex or 10x) of the independent variable may linearize the 
trend. Logarithmic or antilogarithmic transformations can be made of the 
independent or dependent variable.2

At times you may find that there is a U-shaped relationship between your 
interval-independent variable and your outcome. For example, Figure 4.3 
shows a U-shaped relationship between cholesterol level and all-cause mortal-
ity in a sample of 1102 women.3 Mortality is highest for women with the lowest 
and the highest values of cholesterol. When the investigators treated choles-
terol as an interval variable, there was no significant relationship between 
cholesterol level and mortality, because the two trends statistically cancel each 
other out. Treating cholesterol as an interval variable misses the vital infor-
mation contained in the curvilinear relationship: High cholesterol levels are 
associated with increased mortality from coronary artery disease, whereas low 

2 Other mathematical transformations are possible: See: Armitage,P. and Berry,G. Statistical Meth-
ods in Medical Research (2nd edn). Oxford: Blackwell Scientific Publications, 1987, pp. 358–68.

3 Isles, C. G., Hole, D. J., Gillis, C. R., Hawthorne, V. M., Lever, A. F. “Plasma cholesterol, coronary 
heart disease, and cancer in the Renfrew and Paisley survey.” Br. Med. J. 298 (1989): 920–4.

Figure 4.3 Relationship between cholesterol level and all-cause mortality among 1102 
women. Adapted with permission from: Isles, C. G., et al. “Plasma cholesterol, 
coronary heart disease, and cancer in the Renfrew and Paisley survey.” Br. 
Med. J. 298 (1989): 920–4. Copyright BMJ Publishing Group.
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levels of cholesterol are associated with increased mortality from cancer and 
other causes.

When you note a U-shaped relationship consider creating a quadratic form 
of the variable. To create the quadratic form of a variable first subtract out the 
mean of the untransformed variable (X) and then square the result: (value of 
X – mean of X for sample). Now enter both the quadratic form of the variable, 
and the untransformed variable into the model. The untransformed variable 
must be in the model because the quadratic term is comparing extremes to 
the mean of the untransformed variable. Large differences from the mean in 
either direction cause the term to be statistically significant. If the relationship 
is U-shaped both terms will be statistically significant in your model.

A quadratic form of a variable will also work with a J-shaped relationship. 
As you can tell from Figure 4.1(e), a J-shaped curve is just like a U-shaped 
curve with a few missing data points.

A limitation of the use of mathematical transformations is that they can be 
difficult to interpret. For example, what would it mean to a practicing clini-
cian to know that the logarithm of the cholesterol level was associated with 
increased mortality? Quadratic terms can be particularly difficult to interpret 
because a unit change in the interval-independent factor affects the outcome 
through two variables – each with a different relationship with the outcome. 
However, the greatest weakness of mathematical transformations is that for 
many associations there is no simple mathematical transformation that will 
fulfill the linearity assumption. This brings us to splines.

4.3.B Splines

Splines enable us to model complex relationships between interval-independ-
ent variables and outcomes.4 The term spline originates from the flexible strip 
of metal used by draftsmen to draw curves. In the statistical sense, splines are 
polynomials (an algebraic function of two or more summed terms) that are 
connected to one another. The points at which they are connected are called 
knots. Because each piece of the curve is represented by a different polynomial, 
splines can be used to model a variety of complex relationships.

The simplest type of spline is a linear spline function. Although each piece 
of the function is linear, because you have multiple pieces, you can model non-
linear relationships between interval-independent variables and outcomes. For 
example, Figure 4.3 could be modeled as a linear spline function consisting of 

DEFINIT ION

Splines are 
polynomials linked 
together; they are used 
to model complex 
relationships between 
interval-independent 
variables and 
outcomes.

4 For a very lucid explanation of splines see: Harrell, F. E. Regression Modeling Strategies: With 
 Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer-
 Verlag, 2001, pp. 18–24.

T IP

When you note a 
U-shaped relationship 
consider creating a 
quadratic form of the 
variable.

 

 

 

 

 

 



83 4.3 Incorporating interval-independent variables

5 Michaelsson, K., Lithell, H., Vessby, B., et al. “Serum retinol levels and the risk of fracture.” N. Engl. 
J. Med. 348 (2003): 287–94.

T IP

For rounded curves 
use a restricted cubic 
spline function.

four linear segments. (If Figure 4.3 were a spline function it would have three 
knots at the cholesterol levels 212–236, 237–254, and 255–280; these are the 
points where the segments touch. The number of knots will always be one less 
than the number of segments.)

When modeling the relationship between a risk factor and an outcome 
you may find that not all the pieces are linear. Instead, you may have rounded 
curves. In this case you should use a cubic spline function. Because cubic 
spline functions are higher-order polynomials they better approximate 
curves.

A weakness of cubic spline functions is that they may not perform well at 
the tails (before the first knot and after the last knot). To overcome this prob-
lem use a restricted cubic spline function (also referred to as a natural cubic 
spline), which constrains the function to be linear beyond the boundary knots. 
The restricted cubic spline function also requires fewer parameters to be esti-
mated than the cubic spline function.

Michaelsson and colleagues used a restricted cubic spline function and 
proportional hazards analysis to assess the relationship between serum ret-
inol levels and the risk of bone fracture.5 As you can see in Figure 4.4 the 

Figure 4.4 Smoothed plots of rate ratios (solid line) and 95% confidence intervals (dotted 
lines) for having a fracture according to the serum retinol level. Plot based 
on use of restricted cubic splines and Cox regression analysis. Figure is from 
Michaelsson, K., Lithell, H., Vessby, B., et al. “Serum retinol levels and the risk of 
fracture.” N. Engl. J. Med. 348 (2003): 287–94. Copyright 2003 Massachusetts 
Medical Society. All rights reserved.
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relationship between serum retinol level and fracture rate is not linear. In par-
ticular, the rate of fractures increases sharply at higher levels of retinol. As was 
done in this figure, splines can be smoothed.

Although statistically splines are a very satisfying solution, they are only 
slowly catching on in the medical literature. The major reason is that splines 
do not result in a single measure (e.g., odds ratio, relative risk) of the asso-
ciation of a risk factor with an outcome (as you would get if you treated the 
variable as if the association were linear). Also, they are difficult for nonstatis-
ticians to understand.

4.3.C Multiple dichotomous variables

The third method for incorporating nonlinear relationships between an inter-
val risk factor and an outcome in a multivariable model is to create multiple 
dichotomous variables from the interval variable. This is the same procedure 
as you would use for incorporating a nominal variable into your analysis (Sec-
tion 4.2) or for testing whether an interval-independent variable has a linear 
relationship with the outcome (Section 9.4). Multiple dichotomous variables 
allow each category to be its own independent variable and have its own rela-
tionship to the outcome.

For example, in the study of serum retinol levels and fracture risks described 
above, the authors demonstrated their results using multiple dichotomous 
variables in addition to the analysis with a restricted cubic spline function. 
The results are shown in Table 4.3.

The risk of fracture is 1.64 times higher among persons in the highest 
quintile level compared with those in the middle quintile. You can see that 
presenting relative risks associated with the different quintiles of the serum 
retinol level tells the same story as the cubic spline function, but much less 
elegantly.

One of the major challenges with using multiple dichotomous variables 
is determining the cut-offs. In general, it is best to use cut-offs that reflect a 
 natural, clinically relevant standard. For example, with systolic blood pres-
sure, sensible cut-offs would be < 90 mm, 90–140 mm, >140 mm.

A disadvantage of choosing natural cut-offs, is that the cut-offs may divide 
the sample into groups with unequal sample sizes. For example, if you divide 
your sample into decades of age, you may only have 2 percent of your sample 
as “yes” on the variable 80–89 years. If the number of persons who are yes on 
this variable is too small, the variable will not be meaningful in the analysis. 
In comparison, if you choose cut-offs that provide equal sample sizes then the 
distributions of the multiple dichotomous variables will be equal. For example, 

T IP

Choose cut-off points 
by using natural 
cut-offs if they are 
available.

  

 



85 4.3 Incorporating interval-independent variables

Table 4.3 Rate ratio for any fracture according to the  
base-line serum retinol level.

Retinol quintile Multivariate RR* (95% CI)

1 (<1.95 μmol/liter) 0.93 (0.62–1.41)
2 (1.95–2.16 μmol/liter) 0.78 (0.50–1.23)
3 (2.17–2.36 μmol/liter) 1.00 (reference)
4 (2.37–2.64 μmol/liter) 0.91 (0.60–1.38)
5 (>2.64 μmol/liter) 1.64 (1.12–2.41)

*  The analysis was adjusted for age, weight, height, and serum beta 
carotene, calcium, and albumin values (all continuous variables); 
smoking status (never smoked, former smoker, or current smoker); 
marital status (married or living with a partner vs. single); 
socioeconomic class (low, middle, or high); and physical activity 
at work, leisure physical activity, and alcohol consumption (all in 
three categories).
Data from: Michaelsson, K., et al. “Serum retinol levels and the 
risk of fracture.” N. Engl. J. Med. 348 (2003): 287–94.

let’s assume you divide the sample into terciles of age and make the young-
est people the reference group. One dichotomous variable will have a “yes” 
value for a third of the sample (the middle-aged people) and a “no” value for 
two thirds of the sample (the youngest and oldest persons); the other dichoto-
mous variable will also have a “yes” value for a third of the sample (the oldest 
persons) and a “no” value for two-thirds of the sample (the youngest and the 
middle-aged persons).

One method for assuring equal-sized groups is to choose cut-offs based 
on an equal distribution of subjects, such as terciles, quartiles, quintiles of 
values of the independent variable, as was done in the study of serum retinol 
levels and fractures. While this guarantees groups of equal sizes, dropping 
the natural units of the independent variable may make your results sound 
less compelling. Which of the following sounds more compelling? Persons in 
the highest tercile of age are three times more likely to die than persons in the 
lowest tercile of age, or persons aged 70–89 years are three times more likely 
to die than persons aged 30–49 years. The latter sounds more compelling. 
Don’t you think?

Regardless of the method of choosing cut-offs a downside of using multiple 
dichotomous variables to represent an interval variable is that they increase 
the number of variables in your model. This can be a problem if you do not 
have a large enough sample size (Section 6.5).
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4.4 Assuming that my interval-independent variable fits a linear 
assumption, is there any reason to group it into interval categories  
or create multiple dichotomous variables?

Even when an interval-independent variable, such as age, blood pressure, or 
cholesterol, fits the linear assumption it is often not left in its original interval 
form. There are several reasons for this.

For one thing, if you have a small sample size (e.g., 100 persons) it may 
be difficult to evaluate whether an interval variable (e.g., age) fits the linear 
assumption unless you group it into categories. Left ungrouped your model 
will assume that the difference in the likelihood of outcome between a subject 
age 55 and a subject age 57 is the same as that between a subject age 61 and 
a subject age 63. Yet you may have no one or just one or two persons in your 
entire sample with these ages. Also, your audience is likely to be more inter-
ested in the impact of ten years on outcome, than the impact of a single year 
(which is likely to be very small for most diseases).

When grouping an interval variable maintain the interval nature of the 
scale (e.g., group age by decades). This will allow you to retain the advantages 
of an interval scale (because the difference between being 20–29, 30–39, and 
40–49, etc. is the same – 10 years). Yet, you will be better able to assess whether 
the variable fits the assumptions of the statistical model and you will be able to 
report a more meaningful result.

Sometimes researchers create multiple dichotomous variables even though 
the variable approximates a linear relationship. The reason is that creation of 
multiple dichotomous variables is a more conservative strategy. Since a lin-
ear relationship is not assumed, you do not have to prove to your readers (or 
your reviewers!) that the linear assumption is fulfilled. However, this strategy 
results in an increase in the number of variables in your model; this may be a 
problem if your sample size is small (Section 6.5). Also a statistically signifi-
cant linear trend between an interval risk factor and an outcome may no longer 
appear to be statistically significant when the interval variable is represented 
as multiple dichotomous variables because none of the variables themselves is 
significantly different from the reference group.

4.5 How do I incorporate ordinal independent variables into a 
multivariable model?

Ordinal variables pose a challenge similar to nominal variables when used as 
independent variables in a multivariable model. Because there is not an equal 
distance between each level of an ordinal variable, having a single estimate of 
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the impact of moving from one level of the variable to another on a depend-
ent variable may not be accurate, and therefore you should create multiple 
dichotomous variables. On the other hand, there may be variables that are 
technically ordinal in nature but can be treated as if they are interval because 
they operate as if they are ordinal. In other words, a single estimate of an equal 
change anywhere along the scale is valid. This is often the case for interval 
measures based on psychological and sociological scales that are derived from 
multiple questions (Section 6.5.C.3).
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5

Relationship of independent variables 
to one another

5.1 Does it matter if my independent variables are related  
to each other?

As discussed in Section 1.1, the strength of multivariable analysis is its a bility 
to determine how multiple independent variables, which are related to  one 
another, are related to an outcome. We would not need multivariable analysis 
to determine the independent effect of exercise on mortality if it weren’t for 
the fact that exercise, smoking, age, hypertension, and cholesterol level were 
all related to each other and the outcome of interest. Multivariable analysis 
helps us to separate the effects of these different variables on outcomes such 
as mortality.

However, if two variables are so closely correlated that if you know the value 
for one variable you know the value of the other, multivariable analysis can-
not separately assess the impact of these two variables on the outcome. This 
problem is called multicollinearity.1 I can best illustrate it with an extreme 
example.

Let’s say you were studying factors that affected length of hospital stay 
among patients with pneumonia. At your hospital, to accommodate the dif-
ferent preferences of the staff, the nurses record patients’ temperature in both 
Fahrenheit and Celsius. When you do your medical abstraction, you record 
both Fahrenheit and Celsius temperatures. If you entered both variables in a 
model assessing length of stay, your model would be incorrect, and you would 
get an error message or unpredictable answers. This is because temperature in 
Celsius and temperature in Fahrenheit is the same variable even though the 
numbers are different. There is a simple mathematical conversion from one to 
the other: Celsius = (Fahrenheit – 32) × 0.56.

1 Some authors distinguish between collinearity – two variables that are highly related to one 
another – and multicollinearity – more than two variables that are highly related to one another. 
More commonly, both situations are lumped as multicollinearity, and this is the term I use through-
out the book.

 

 

 

 

 

 



89 5.2 Assessing multicollinearity

Your model cannot possibly assess the independent contribution of temper-
ature in Fahrenheit and in Celsius because they are really the same variable. 
However, unless you make a mistake and include two variables that really are 
the same variable (such as temperature in Fahrenheit and in Celsius) it would 
be very unlikely to have a situation where two variables are exactly correlated 
with one another. A more likely scenario is to have variables that are not suf-
ficiently different for the model to distinguish them. For example, Phibbs and 
colleagues found that birth weight and gestational age were too closely related 
to include both in their analysis of neonatal mortality.2

If you include two or more variables that are multicollinear, the coeffi-
cients (Section 8.3) of the variables will be unstable: they will likely have very 
large standard errors and wide confidence intervals. You will not be able to 
accurately judge the importance of the individual variables to the outcome. 
However, the overall model will still be accurate. In fact one clue of poten-
tial multicollinearity is that the overall model is statistically significant even 
though the individual coefficients are not.3

5.2 How do I assess whether my variables are multicollinear?

The correlation coefficient (also called Pearson correlation coefficient 
or r) is a bivariate statistic that measures how strongly two variables are 
related to one another. The correlation coefficient assumes the relationship 
between the two variables is linear. It can range from –1 to 1. When the 
coefficient is –1 or 1 the two variables change together exactly (i.e., knowing 
one variable tells you the value of the other variable). The only difference 
between –1 and 1 is that the negative sign indicates that the two variables 
change exactly together in opposite directions (i.e., as one goes higher the 
other goes lower). Zero indicates that there is no relationship whatsoever. If 
you square the correlation coefficient and multiply by 100 you get a measure 
of how much information the two variables share ranging from 0 percent 
to 100 percent.

The correlation between temperature in Fahrenheit and in Celsius is 1.0. 
The two variables share 100 percent of the same information. In contrast, 
the correlation between vitamin B12 level and pneumococcal antibody titer 
following immunization was found to be 0.61 (Figure 3.1). The two variables 
share 37 percent (0.612 × 100 = 37) of the same information.

DEFINIT ION
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contribution of each 
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2 Phibbs, C. S., Bronstein, J. M., Buston, W., et al. “The effects of patient volume and level of care 
at the hospital of birth on neonatal mortality.” JAMA 276 (1996): 1054–9.

3  Computing Center at University of Kentucky. “Multicollinearity in Logistic Regression” available 
at http://www.uky.edu/ComputingCenter/SSTARS/MulticollinearityinLogisticRegression.htm.

 

 

 

 

 

 

 

 



90 Relationship of independent variables to one another

To determine how correlated your independent variables are you may run a 
correlation coefficient matrix with all your proposed independent variables. In 
general, two variables that are correlated at more than 0.90 will pose problems 
in your analysis. Variables correlated at 0.80 or more may also pose problems. 
Unfortunately, even if all the correlations in the matrix are less than 0.80 this 
is no guarantee that you will not have problems with multicollinearity.

A major reason that the correlation matrix is inadequate for assessing 
whether you will have problems owing to multicollinearity is that a correlation 
matrix only provides information on the relationship between two variables.
However it is equally problematic – but harder to diagnose – when you have 
three or more independent variables that are highly related to one another. In 
a sense we have already dealt with this concept in Section 4.2 on converting 
nominal variables into multiple dichotomous variables (“dummy variables”). 
Look back at Table 4.1. You will recall that I said you did not need to create a 
variable for white ethnicity because if a subject were 0 (no) on the variables for 
African-American, Latino/Hispanic, Asian/Pacific Islander, Native American, 
and other nonwhite ethnicity the subject would be of white ethnicity. What 
if you didn’t read this section and entered into your model a yes/no variable 
for each ethnicity including white? Then you would have a situation where a 
combination of independent variables completely accounts for the value of a 
different independent variable. Prove this to yourself, by correctly answering 
the following questions:

1. A subject is “yes” on any one of the five variables: African-American, Latino/
Hispanic, Asian/Pacific Islander, Native American, or other nonwhite eth-
nicity. What is the subject’s value on the white ethnicity variable?

2. A different subject is “no” on all five of the variables: African-American, 
Latino/Hispanic, Asian/Pacific Islander, Native American, or other non-
white ethnicity. What is the subject’s value on the white ethnicity variable?

You knew that the answer to the first question was No and the answer to the 
second question was Yes, even though I didn’t tell you anything about the 
subject’s value on the variable of white ethnicity. This is a situation where a 
combination of variables completely determines the value of another variable. 
If you entered a variable for white ethnicity, in addition to the others, this 
would result in spurious results in your multivariable model.

How will you know if a combination of variables accounts for another vari-
able’s value? Two related measures of multicollinearity are tolerance and the 
reciprocal of tolerance: the variance inflation factor. Both measure how much 
the regression coefficient for a particular variable is determined by the other 
independent variables in the model.
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Because multicollinearity concerns the relationship of the independent var-
iables to each other, rather than the relationship of the independent variables 
to the dependent variables, the calculation of these two measures of multicol-
linearity does not vary based on the type of multivariable analysis you will 
be performing. You may find that these statistics are calculated within the 
linear regression section of your computerized statistical software packages. 
Go ahead and use the routines within linear regression even if you will be per-
forming a logistic, proportional hazards, or Poisson regression analysis, since 
neither the outcome variable nor the method of multivariable analysis changes 
the calculation of these statistics.

There are no hard and fast rules about what cut-offs of these statistics indi-
cate a degree of multicollinearity that would jeapordize the validity of your 
analysis. In general, small tolerance values, including those below 0.25, are 
worrisome, and those below 0.10 are serious. As you would expect with a 
reciprocal value, it is high values of the variance inflation factor that indicate 
multicollinearity. Variance inflation factors greater than 2.5 may be problem-
atic, whereas values greater than ten are serious.4

If the values of some of your variables are worrisome, you will need to do 
additional analyses to determine which of the other variables in the model are 
closely related with the problematic variable. This can be done by perform-
ing regression analyses using the other variables as independent variables to 
estimate the value of the problematic variable. This will show you which vari-
ables are highly related and enable you to decide which variables to keep in the 
analysis.

Besides the situation where the overall model is statistically significant but 
none of the predictors are (Section 5.1), another clue that you may have a prob-
lem with multicollinearity is when addition or deletion of a variable causes 
substantial changes in the coefficients of the other variables.

5.3 What should I do with multicollinear variables?

If you have variables that are highly related, consider your options:

omit the variable•	
use an “and/or” clause, or•	
create a scale•	

4 For more on measures of multicollinearity and when to worry, see: Glantz, S. A. and Slinker, 
B. K. Primer of Applied Regression and Analysis of Variance. New York, NY: McGraw-Hill, 1990, 
pp. 181–99.
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If you are going to omit one of the variables, how do you decide which one 
to delete? Omit the one that is theoretically less important, has more missing 
data, has more measurement error, or is less satisfactory in some other way. In 
the study of neonatal mortality referred to above, the investigators kept birth 
weight and excluded gestational age. They excluded gestational age because 
there were more missing cases on this variable than on birth weight and it 
was less reliably coded. Ironically, as the authors point out, gestational age is 
theoretically the more important factor in accounting for mortality (because 
age, not weight, is the deciding factor in reaching certain fetal developmental 
milestones). Therefore they included two additional variables in their analysis 
(small for gestational age [yes/no] and large for gestational age [yes/no]) to 
adjust for the fact that weight might not be an accurate measure of gestational 
age in some cases.

Using “and/or” clauses works well for correlated variables that represent the 
same process. For example, if you asked patients with pneumonia whether 
they had diaphoresis (sweats) or rigors (shaking), these two variables would 
be expected to be closely correlated since rigors are a more extreme form of 
diaphoresis. However, some patients who had rigors may not have noticed that 
they were first diaphoretic; some who were diaphoretic may have taken aspirin 
thereby preventing the rigor. The new variable could be diaphoresis and/or 
rigor. Patients who had one or both would be reported as “yes” on this variable; 
those who had neither would be reported as “no.”

Creating multi-item scales is a strategy often pursued with psychological 
and sociologic data. In creating scales, the values of multiple variables for 
each subject are summated or averaged to form a single variable that summa-
rizes the meaning of the separate variables (Section 6.5.C.3). Researchers may 
intentionally ask subjects multiple related questions to test the reliability of the 
subject’s responses (i.e., when asked a similar question, using different word-
ing, will subjects answer in the same way?). In this case, researchers usually 
plan ahead of time which questions will form a scale. Other times researchers 
will use factor analysis (Section 6.5.C.4) to determine which questions provide 
similar information.

These techniques for dealing with multicollinear variables also work when 
you need to decrease the number of independent variables in your analysis 
because of insufficient sample size. However, they will not work for decreasing 
sample size if your variables are not highly related. A variety of methods for 
decreasing the number of independent variables are detailed in Section 6.5.
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6

Setting up a multivariable analysis

6.1 What independent variables should I include in my  
multivariable model?

On the surface this seems like a simple question. You should include the risk 
factor(s) of interest and any variables that may potentially confound the rela-
tionship between the risk factor and the outcome. However deciding which 
variables may confound your analysis is not always easy. Variables that are 
extraneous, redundant, have a lot of missing data, or intervene between your 
risk factor and outcome should be excluded.

Recommendations on what variables to include and exclude in your model 
are reviewed in Table 6.1 and discussed in the next two sections.

6.2 How do I decide what confounders to include in my model?

Ideally researchers should include all those variables that have been theorized 
or shown in prior research to be confounders. Depending on the outcome you 
are studying, there may be a large number of variables that have been shown 
in prior research to be associated with the risk factor and the outcome. For 
example, studies of cardiovascular outcomes must include a large number of 
potential outcomes including age, sex, smoking status, hypertension, diabe-
tes, obesity, LDL-cholesterol, HDL-cholesterol, reactive C-protein, aspirin use, 
and beta-blocker use because all of these variables have already been shown to 
affect cardiovascular disease.

In addition to including variables that have been theorized or shown in 
prior research to be confounders, include in your model those variables that fit 
the empiric definition of confounders in your data. Specifically, include those 
independent variables that are associated with the risk factor and the outcome 
in bivariate analysis, unless you believe that those variables are intervening 
between the risk factor and the outcome (Section 6.3).

Unfortunately, there is no single standard of how strong an association 
should be to result in a variable being included as a potential confounder. 
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In general, you want to err on the side of inclusion. Most investigators will 
include in their multivariable model any variable that is associated with the 
outcome at a P value of < 0.20 or 0.25, regardless of whether or not the variable 
has been shown to be associated with the risk factor. (In using empiric criteria 
for choosing variables to enter into your multivariable analysis, keep in mind 
that if you have a suppresser effect, the variable may not be even weakly associ-
ated with the outcome in bivariate analysis. Recall the example in Section 1.3 
of zidovudine treatment, which affected the likelihood of seroconversion in 
multivariable analysis even though it was not significantly related to serocon-
version in bivariate analysis.)

Remember that even if you use an empiric criterion to decide which vari-
ables to enter into your model, you should still include those that are theoret-
ically important or have been confounders in prior research even if they did 
not meet your criterion. For example, Spencer and colleagues in their study of 
the effectiveness of statin therapy in patients with acute coronary syndrome 
(described in Section 2.3) included in their multivariable models variables that 
were associated with the outcome of interest in bivariate analysis at a P value 
of < 0.25.1 They then used a stepwise model (Section 7.8) to exclude variables 
that were not associated with the outcome at a P value of ≤ 0.05. However, they 
included age, sex, and history of hyperlipidemia in all final models regardless 
of their statistical significance because of their clinical relevance to coronary 
artery syndromes.

6.3 What independent variables should I exclude from my  
multivariable model?

In building accurate models, what variables you exclude is as important as 
what variables you include (Table 6.1). Exclude from your multivariable model 
extraneous variables, i.e., variables that are not on the causal pathway to your 
outcome. For example, if you are developing a model estimating HIV preva-
lence, and you are using the large multipurpose National Health and Nutrition 
Examination Survey (NHANES), exclude from your model seat-belt use, even 
though it may well be associated with safer-sex practices (because people who 
are health conscious are likely to use both seat belts and condoms). Because 
seat-belt use is not on the causal pathway between behavior and HIV infection, 
including it can only add error to your model (since all measurements have 
error) and confusion to your readers.

T IP

Include in your models 
those variables that 
are associated with 
the risk factor and the 
outcome in bivariate 
analysis.

1 Spencer, F. A., Allegrone, J., Goldberg, R. J., et al. “Association of statin therapy with outcomes of 
acute coronary syndromes: The Grace study.” Ann. Intern. Med. 140 (2004): 857–66.
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It is also important to exclude redundant variables. The strength of multi-
variable analysis is that it can determine the unique contribution of related 
variables to outcome. However, if two variables are too closely related, mul-
tivariable analysis cannot accurately separate the impact of the two variables 
on outcome. This problem is called multicollinearity (Chapter 5) and requires 
that you enter only one of the highly related variables. For example, in a study 
of factors associated with adherence to combination antiretroviral medication 
among HIV-infected persons, the investigators found that ethnicity was col-
linear with acculturation; they chose to put ethnicity in the model and exclude 
acculturation.2

When deciding which of two duplicative variables to include, choose the 
one that is theoretically more important, has less missing data, or has less 
measurement error.

It is also important to exclude variables with a lot of missing data. Miss-
ing data is a much greater problem with multivariable analysis than bivariate 
analysis. This is because subjects with missing values on any of the variables 
entered into the model are tossed out of the analysis even if the subject has 
valid values on the other variables. (With a bivariate analysis, you lose only 
those subjects with missing values on the two variables used, not those with 
missing values on the other variables.)

Dropped subjects decrease the power of your analysis and, perhaps even 
more problematically, bias your study because subjects missing on a particular 
variable may be systematically different than subjects not missing on that vari-
able. Because it is generally better to lose variables than subjects, drop vari-
ables that have a lot of missing data.

That being said, sometimes you have a variable of such great importance 
that it must be included in your analysis even if there are many missing cases. 

With duplicative 
variables include the 
one that is theoretically 
more important, has 
less missing data, or 
has less measurement 
error.

2 Golin, C. E., Liu, H., Hays, R. D., et al. “A prospective study of predictors of adherence to combina-
tion antiretroviral medication.” J. Gen. Intern. Med. 17 (2002): 756–65.

Table 6.1 Variables to include and exclude in multivariable models.

What to include? What to exclude?

Risk factor(s) Extraneous variables (variables not on the causal 
pathway to your outcome)

Potential confounders, based 
on theory, prior research, 
empirical findings 

Redundant variables
Variables with a lot of missing data
Intervening variables (variables that are on the causal 

pathway between a risk factor and an outcome)
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If this is the case, acknowledge to your readers that the missing cases may bias 
your results in ways that are hard to assess. You can provide some reassurance 
to your readers if a comparison of cases with missing data to cases without 
missing data shows no difference on important characteristics. Alternatively, 
you may use one of the available methods for assigning values to missing cases, 
thereby enabling you to use the variable in the analysis (Section 6.6).

You should also exclude variables that are on the causal pathway to your 
outcome. Such variables are referred to as intervening variables. It may seem 
confusing that I recommend excluding intervening variables since I said 
 earlier that you should exclude variables not on the causal pathway to your 
outcome. Why am I now telling you to exclude variables that are on the causal 
pathway?

The reason is that if you statistically adjust for an intervening variable, you 
may adjust away the very effect you are trying to demonstrate. For example, it 
is known that moderate alcohol consumption is associated with a lower inci-
dence of coronary artery disease. The mechanism appears to be that moderate 
alcohol consumption increases the HDL-cholesterol, the “good cholesterol” as 
shown in Figure 6.1.

If you adjust for HDL level in an analysis of the effect of alcohol consumption 
on coronary artery disease, it may appear that alcohol has no effect. However, 
that’s not accurate; alcohol use is causally related to coronary heart disease, 
but the effect is mediated by HDL-cholesterol. This problem is referred to as 
overadjustment.3

 Unfortunately there is no test for whether a variable is a confounder or an 
intervening variable. Statistically confounders and intervening variables act 
the same. Therefore the decision on whether to include a variable in a model 
because you believe it is a confounder, or exclude it because you believe it is an 
intervening variable, should be made based on prior research and biological 
plausibility.

One circumstance in which it is appropriate to include an intervening varia-
ble is if you are trying to demonstrate that the effect of a risk factor on outcome 

Figure 6.1 HDL is an intervening variable between moderate alcohol consumption and 
decreased coronary artery disease.

3 Szklo. M. and Nieto, F. J. Epidemiology: Beyond the Basics. Gaithersburg: Aspen Publishers, 2000, 
p. 333.
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is mediated by an intervening variable. In such cases, you will want to run the 
model first without the intervening variable and then a second time with the 
intervening variable. If it is an intervening variable, the statistical association 
between the risk factor and the outcome seen in the first model will be elimi-
nated or dampened in the second model. This can be helpful in understanding 
the mechanism by which a risk factor affects the outcome. (But keep in mind 
that the association between risk factor and outcome will also diminish with 
inclusion of a confounding variable.)

6.4 How many subjects do I need to do multivariable analysis?

The sample size needed for multivariable analysis, as with bivariate analysis, 
depends on the size of the effect you are trying to demonstrate and the vari-
ability of the data. It takes a much larger sample size to show that a risk factor 
is mildly (but statistically) associated with an outcome (e.g., odds ratio of 1.5) 
than to show that it is strongly associated with an outcome (e.g., odds ratio of 
4.0). The reason is that the smaller the sample size, the larger the confidence 
intervals. The closer the odds ratio is to 1.0 then the more likely wide confi-
dence intervals are to include one. Similarly, although you can never prove the 
null hypothesis (i.e., no association: odds ratio of 1.0), the larger the sample 
size the smaller the chance that you have missed an association that was really 
present. It also takes a larger sample size to demonstrate a difference between 
groups on a variable that has a great deal of variability (i.e., a large standard 
deviation).

Determining the needed sample size is referred to as a power calculation 
(the power to detect a result). Power calculations for multivariable analysis are 
complicated and generally require consultation with a biostatistician. How-
ever, as a start, determine the sample size needed for a bivariate analysis (i.e., 
a comparison of two proportions, a comparison of two means, a comparison 
of two times to outcome without adjustment for other variables). Several free 
and easy-to-use computer software programs exist to do this.4 If your power 
calculation shows that you do not have enough subjects to demonstrate the 
effect in bivariate analysis, you definitely will not have enough subjects in your 

T IP

The smaller the 
effect, the larger the 
sample size needed 
to demonstrate a 
statistically significant 
effect.

T IP

The more variability 
there is in your 
measures the 
larger the sample 
size needed to 
demonstrate a 
statistically significant 
effect.

4 Free software packages for doing sample size calculations are available: Statistical Considera-
tions for Clinical Trials and Scientific Experiments by David Schoenfeld (http://hedwig.mgh.
harvard.edu/sample_size/quan_measur/defs.html) and Simple Interactive Statistical Analysis 
(SISA) (http://home.clara.net/sisa/sampshlp.htm). See: Katz, M. H. Study Design and Statistical 
Analysis: A Practical Guide for Clinicians. Cambridge University Press, 2006, Chapter 7, for expla-
nations of the needed ingredients to input into these computer programs. Alternatively, for an 
easy-to- follow sample-size guide that doesn’t require computer software, see: Hulley, S. B., Cum-
mings, S. R., Browner, W. S., et al. Designing Clinical Research (2nd edn). Baltimore, MD: Lippin-
cott  Williams and Wilkins, 2001, pp. 65–91.
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multivariable analysis. If it shows that you do have enough subjects, the next 
question would be whether the sample size is sufficient for your multivariable 
analysis.

For those ready to go to the next level, the easiest way to perform a mul-
tivariable sample-size calculation is to use an available software program. 
Power and Precision (http://www.power-analysis.com/specifications.htm) 
calculates the needed sample size for multiple linear regression and multiple 
logistic regression. The NCSS Statistical and Power Analysis Softwear (PASS) 
program (http://www.ncss.com) calculates the needed sample size for multiple 
linear regression, multiple logistic regression, proportional hazards analysis, 
and Poisson regression. Both have free trial periods. Although the programs 
are easy to use, I strongly advise having a biostatistician check your assump-
tions if you have not done sample-size calculations for multivariable analysis 
previously.

For all of the sample-size calculations you will need to state the alpha (usu-
ally 0.05 and two-tailed) and the beta (usually 0.80).

To compute the needed sample size for a multiple linear regression design 
using the Power and Precision program you need to specify the number of var-
iables that represent your hypothesis (i.e., the risk factor[s]) and the number 
of variables that are covariates (i.e., the set of potential confounders). For the 
set of risk factor(s) and the set of covariates you need to specify the increment 
of R2 (Section 8.2.A) that you anticipate that each set will explain. The pro-
gram will also allow you to calculate the needed sample size for more compli-
cated models (e.g., a linear regression model with an interaction term, a linear 
regression model with a risk factor, the square of the value of the risk factor, 
and a cubic transformation of the value of the risk factor).

The PASS program uses different parameters than Power and Precision for 
calculating the sample size for multiple linear regression. Specifically, you will 
need to enter the slope assuming the null hypothesis, the slope assuming the 
alternative hypothesis, the standard deviation of the independent variables, 
and the standard deviation of the dependent variable (the latter is needed in 
addition to the slope of the alternative hypothesis, and the standard devia-
tion of the independent variables, for calculating the standard deviation of 
the residuals; the package also offers an alternative method for calculating the 
standard deviation of the residuals.)

To calculate sample size for logistic regression with a dichotomous inde-
pendent variable using Power and Precision, you will need to specify the rela-
tive proportion in each group (e.g., 1:1 if equal numbers of subjects in each 
group; 2:1 if twice the number in one group as the other). A convenient feature 
of Power and Precision is that it will allow you to enter a categorical variable 
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(e.g., ethnicity in four categories) and it will automatically create multiple 
dichotomous variables with a reference category, so that you can determine 
the needed sample size for a logistic regression model with a categorical inde-
pendent variable.

To calculate sample size for multiple logistic regression with an interval-
independent variable you will need to specify the mean and standard devia-
tion of the independent variable, the event rate at the mean (the event rate 
at the mean is the same for all variables), and the event rate at a point other 
than the mean for the independent variable. The program Power and Pre-
cision can accomodate two interval-independent variables. If you include 
two you will need to specify the correlation between them (with the correct 
sign).

To calculate sample size for multiple logistic regression using the PASS 
program, you will need to specify the baseline probability (the probability 
of outcome when the dichotomous covariates equal 0 or if you have interval 
covariates when they are equal to the mean), the expected odds ratio, the R2 
when the independent variable of interest is regressed on the other independ-
ent variables in the regression (i.e., the independent variable of interest is used 
as the dependent variable in a regression design where the other independent 
variables are used to predict it).

To calculate sample size with proportional hazards analysis, you can use the 
PASS program. You will need to specify the event rate, which is the proportion 
of noncensored subjects in whom the outcome occurs during the duration of 
the study. You will also need to specify the natural log of the expected hazard 
ratio, and the R2 when the independent variable of interest is regressed on 
the other independent variables in the regression (i.e., independent variable 
of interest is used as the dependent variable in a regression design where the 
other independent variables are used to predict it).

To calculate the needed sample size for Poisson analysis using PASS, 
you will need to specify the baseline response rate, the response rate ratio 
(the response rate owing to a one-unit change in the independent variable 
divided by the baseline response), the mean exposure time, the phi (over-
dispersion parameter) of the response, and the R2 when the independent 
variable of interest is regressed on the other independent variables in the 
regression (i.e., independent variable of interest is used as the dependent 
variable in a regression design where the other independent variables are 
used to predict it.).

Although not an alternative to formally calculating the needed sample size, 
a useful rule-of-thumb for planning multiple logistic regression and propor-
tional hazards analysis is that for every independent variable in your model 
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you need at least ten outcomes.5 The reason I say ten outcomes for each inde-
pendent variable, rather than 20 subjects for each independent variable (which 
would be equivalent if your outcome occurred in half your subjects), is that 
your model is assessing a particular outcome. In most medical studies, less 
than half of the subjects experience the outcome (e.g., develop cancer or have 
a heart attack). If your outcome occurs in only five subjects in your study you 
may not have enough power to answer your research question even if you 
have a thousand other subjects in whom the outcome does not occur. This is 
because the model is determining the likelihood of outcome based on those 
five people. It does not help you to determine the likelihood of no outcome 
if this is the larger group. The needed sample size is based on the smaller of 
the two groups. The reason is that outcome and not outcome are mathemati-
cally equivalent: the likelihood of not outcome is simply 1 – (the likelihood of 
outcome).

The ten outcomes per variable is just a guideline. Just because your sample 
size does not meet this criterion does not mean that your study won’t appear in 
the New England Journal of Medicine (see Chambers and colleagues, example 
in Section 6.5.A). Conversely, even if you have ten outcomes for each inde-
pendent variable you still may not have an adequate sample size to answer 
your study question. For example, you may not have enough subjects in one of 
the categories of a dichotomous independent variable to study its association 
with outcome. Just as the sample size depends on the less common outcome 
state, the sample size to demonstrate that a particular independent variable is 
associated with your outcome will depend on the less common of the values of 
the dichotomous independent variable.

An example will help to illustrate this principle. Schwarcz and colleagues 
performed a logistic regression analysis to assess the factors associated with 
having received pneumocystis prophylaxis prior to a diagnosis of pneumo-
cystis pneumonia (PCP) among HIV-infected persons.6 The total sample size 
was 326 persons diagnosed with PCP. Of these, 114 (35 percent) had received 
prophylaxis prior to their diagnosis of PCP and 212 (65 percent) had not. The 
model included six independent variables. Since the smaller group (those who 
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For multiple logistic 
regression and 
proportional hazards 
analysis you should 
have at least ten 
outcomes for each 
independent variable 
in your model.

5 Peduzzi, P., Concato, J., Kemper, E., et al. “A simulation study of the number of events per vari-
able in logistic regression analysis.” J. Clin. Epidemiol. 49 (1996): 1373–9; Peduzzi, P., Concato, J., 
 Feinstein, A. R., et al. “Importance of events per independent variable in proportional hazards 
regression analysis II. Accuracy and precision of regression estimates.” J. Clin. Epidemiol. 48 
(1995): 1503–10; Harrell, F. E., Lee, K. L., Matchar, D. B., et al. “Regression models for prognostic 
prediction: Advantages, problems, and suggested solutions.” Cancer Treat. Rep. 69 (1985): 1071–7.

6 Schwarcz, S. K., Katz, M. H., Hirozawa, A., et al. “Prevention of Pneumocystis carinii pneumo-
nia: Who are we missing?” AIDS 11 (1997): 1263–8.
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had received prophylaxis) was 114 there would appear to be enough subjects; 
using our rule of thumb we would need only 60 subjects in the smaller group.

As you can see in Table 6.2, two variables were significantly associated 
(adjusted P value < 0.05) with a lower likelihood of having received prophy-
laxis in the logistic regression analysis: being nonwhite and being uninsured. 
Note that the confidence intervals for these two variables exclude one and are 
reasonably narrow.

Gender was not significantly associated with receipt of prophylaxis: The odds 
ratio was 0.81. However, before concluding that the study showed that gender 
was not important, one must note that the 95 percent confidence intervals for 
gender were 0.06 to 10.12. In other words, it is equally likely that women are a 
sixteenth as likely or ten times more likely to receive prophylaxis. Obviously, 
this result is of little scientific value. The study only had seven women (2 percent 

Table 6.2 Frequency of primary PCP prophylaxis among patients whose AIDS-defining diagnosis was 
PCP.

Characteristic

Did not receive 
PCP prophylaxis 
n (%)

Received primary 
PCP prophylaxis 
n (%)

Adjusted 
P value

Adjusted odds 
ratio

95% confidence 
limits

Total 212 (65.0) 114 (35.0)
Age group
 < 35 years 61 (69.3) 27 (30.7) 1.0 (ref.)
 ≥ 35 years 151 (63.5) 87 (36.6) 0.55 1.19 0.68, 2.07
Ethnicity
 Nonwhite 74 (77.9) 21 (22.1) 0.49 0.28, 0.87
 White 138 (59.7) 93 (40.3) 0.01 1.0 (ref.)
Sex
 Male 206 (64.6) 113 (35.4) 0.81 0.06, 10.12
 Female 6 (85.7) 1 (14.3) 0.87 1.0 (ref.)
Sexual orientation
 Gay/bisexual man 185 (62.7) 110 (37.3) 3.19 0.78, 13.03
 Heterosexual 27 (87.1) 4 (12.9) 0.11 1.0 (ref.)
Injection drug use
 Yes 35 (72.9) 13 (27.1) 1.11 0.49, 2.54
 No 177 (63.7) 101 (36.3) 0.80 1.0 (ref.)
Insurance
 None 52 (82.5) 11 (17.5) 0.35 0.17, 0.73
 Public/private 151 (59.5) 103 (40.6) 0.005 1.0 (ref.)

Adapted with permission from Schwarcz, S. K., et al. “Prevention of Pneumocystis carinii pneumonia: Who are we 
missing?” AIDS 11 (1997): 1263–8. Copyright Rapid Science Publishers Ltd.
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of sample); the model had little information on which to base an estimate of the 
likelihood of having received prophylaxis for this group and this is reflected in 
a large standard error and a broad confidence interval. A similar situation can 
be seen for the variable of sexual orientation. Because there were only 31 het-
erosexuals (10 percent of sample), the confidence intervals for the risk estimate 
associated with sexual orientation were very broad: 0.78 to 13.03.

In general, large standard errors and large confidence intervals (which are 
based on standard errors) are clues of an inadequate sample size. Another, 
more dramatic indication that you do not have a large enough sample size in 
logistic regression, proportional hazards analysis, and Poisson regression is if 
the model does not converge. There is simply not enough information, usually 
because of too few outcomes, for the computer to solve the equation. Although 
you can increase the number of attempts the computer makes to solve the 
equation if your model fails to converge, you should consider the possibility 
that you do not have enough subjects to answer your research question.

For multiple linear regression 20 subjects (rather than outcome events) per 
independent variable is recommended.7 The reason that the sample size rule 
of thumb for multiple linear regression is based on study subjects rather than 
numbers of outcome as with logistic regression and proportional hazards 
regression is that with linear regression you can consider all subjects as hav-
ing experienced the outcome (because the outcome is interval). However, just 
as with these other techniques you will have very large standard errors (and 
therefore large confidence intervals) if you do not have a large enough sample 
size. Although this is a very reasonable standard, it does not mean that all 
analyses with fewer subjects are invalid; you just need to show more caution in 
interpreting the coefficients.

The formulae for calculating sample size for Poisson regression for both 
bivariate and multivariable analyses are also available.8

6.5 What if I have too many independent variables given my  
sample size?

If your power calculations or analyses show you have too many independent 
variables for your sample size, you need to increase the number of subjects 
or decrease the number of independent variables. Although increasing the 
number of subjects is more desirable, it is usually impossible in the analysis 

T IP

For multiple linear 
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7 Feinstein, A. R. Multivariable Analysis: An Introduction. New Haven: Yale University Press, 1996, 
p. 226.

8 Signorini, D. F. “Sample size for Poisson regression.” Biometrika 78 (1991): 446–50.
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phase. Most researchers will therefore attempt to reduce the number of inde-
pendent variables in their analysis.

For example, let’s say you have determined from Sections 6.1–6.2 that you 
would like to include 20 independent variables in your multivariable model 
but your sample size is sufficient for inclusion of only ten variables. What 
should you do?

Assuming that you have already excluded extraneous variables, redun-
dant variables, variables with a lot of missing data, and intervening variables 
(Table 6.1), then you will need additional options. Other methods for reducing 
the number of variables in your model are shown in Table 6.3.

6.5.A Exclude variables that are not empirically operating as confounders

In Section 6.2, I explained that it is best, where possible, to use an inclusive 
definition of potential confounders, so as to lessen the chance that you are 
missing subtle forms of confounding (e.g., several weakly associated variables 
may together have a substantial impact on the main effect).

However, when you do not have a sufficient sample size you must set more 
stringent criteria for inclusion of variables in your model. For example, you 
may want to include only those variables that are associated with both the 
independent variable of interest and the outcome variable in bivariate analy-
ses. Remember, unless both of these conditions are met, the variable cannot be 
a confounder or a suppresser.

A variation of this strategy is to include only those independent variables that 
change the size of your main effect by a predetermined amount. For example, 
Chambers and colleagues studied whether fluoxetine (Prozac) affected birth 

Table 6.3 Methods for decreasing the number of independent variables.

1. Exclude variables that are not empirically operating as confounders.
 Va riable unrelated to main independent variable and outcome in bivariate 

analysis
 Variable has minimal impact on main effect in multivariable analysis
 Variable excluded by variable selection algorithm
2. Choose one variable to represent two or more related variables.
3. Combine variables into a single variable, score or scale.
  “And/or” constructions
 Scores
 Multi-item scales
 Factor analysis
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outcomes.9 They compared the rate of prematurity among 98 infants whose 
mothers had taken fluoxetine early in pregnancy only to 70 infants whose 
mothers had taken it late in pregnancy. Only 14 infants were born prema-
turely. To limit the number of variables in the model, they included only those 
independent variables that changed the estimate of the main effect (early-only 
versus late exposure to fluoxetine on prematurity) by more than ten percent. 
Eleven variables met this criterion and were included in the model, in addi-
tion to two other variables (maternal age and dose of fluoxetine), which were 
included for theoretical reasons.

With a total of 13 independent variables and only 14 outcomes, the investi-
gators were far from fulfilling the guideline of ten outcomes per variable. Late 
exposure to fluoxetine was associated with an increased risk of prematurity: 
odds ratio of 4.8. Reflecting the relatively small number of outcomes and the 
large number of independent variables, the 95 percent confidence intervals for 
the effect of fluoxetine on prematurity were large, ranging from 1.1 to 20.8. 
Because the confidence intervals excluded one, the data suggest that late expo-
sure to fluoxetine is associated with an increased risk of prematurity. However, 
in weighing the benefits versus risks, there is a large difference between an 
odds ratio of 1.1 and one of 20.8.

Variable selection algorithms (statistical procedures used to select which of 
your independent variables to include or keep in your multivariable model) 
are also used to deal with small sample sizes. However, these procedures have 
substantial drawbacks (Section 7.8).

6.5.B Choose one variable to represent two or more related variables

When you have two or more variables that are moderately correlated with 
one another, you may want to choose one to enter into your model to jointly 
represent the others. (I have italicized moderately as a reminder that we are 
not talking about variables that are multicollinear [Sections 5.1–5.3].) For 
example, income, education, and job status are correlated in the United States, 
but not to a degree that they would usually cause problems with multicolline-
arity. Ideally, in an analysis where it was important to adjust for socioeconomic 
status you would include all three variables. However, if this were impos-
sible because of inadequate sample size, then including one would partially 
adjust your analyses for socioeconomic status. When variables are correlated, 
by including one, you include some of the information from the other vari-
ables. However, unless they are perfectly correlated, you will lose potentially 

9 Chambers, C. D., Johnson, K. A., Dick, L. M., et al. “Birth outcomes in pregnant women taking 
fluoxetine.” New. Engl. J. Med. 335 (1996): 1010–15.

 

 

 

 



105 6.5 Too many independent variables

important information by excluding one or more. The amount of information 
lost depends on the degree of correlation. In terms of the decision as to which 
variable to keep and which to exclude, the decision-making process is the same 
as with multicollinearity. Keep the variable that is theoretically superior, has 
less missing data, or has less measurement error. When available, a better solu-
tion than choosing one variable to represent a set of variables is to construct a 
score or scale to represent a group of variables (see next section).

6.5.C Methods of combining multiple variables into a single variable, score or scale

Sometimes you can reduce the number of independent variables in your ana-
lysis without omitting a variable. This is done by combining variables into 
a single variable. Four methods are commonly used: “and/or” constructions, 
scores, multi-item scales, and factor analysis.

6.5.C.1 Use of “and/or” constructions

Two or more related variables can be combined with the use of an “and/or” 
clause (Section 5.3). For example, in the study of the effect of perinatal expos-
ure to fluoxetine on birth outcomes, the investigators combined hyperten-
sion, pre-eclampsia, and eclampsia as one variable. In other words, women 
who suffered from hypertension, pre-eclampsia, eclampsia, or more than 
one of the three, would be “yes” on the variable; women who had none of 
these conditions would be “no.” This fits the pathophysiology in that the three 
conditions are progressive states of the same underlying condition. And/or 
clauses may also be helpful when you have variables that are multicollinear 
(all women with eclampsia by definition have pre-eclampsia) or when you 
have an independent variable with almost everyone in the same group (as 
you would if you had a variable of eclampsia yes/no – almost everyone would 
be no, since eclampsia is relatively rare). Independent variables where almost 
everyone is in the same group tend to have large standard errors and large 
confidence intervals.

6.5.C.2 Scores

One straightforward method of reducing the number of independent variables 
is simply to score the number of risk factors for the disease that each subject 
has. For example, Turner and Lloyd computed a score to measure the lifetime 
exposure to adversity.10 Subjects were assessed as to whether they had been 

10 Turner, R. J. and Lloyd, D. A. “Stress burden and the lifetime incidence of psychiatric disorder in 
young adults.” Arch. Gen. Psych. 61 (2004): 481–8.

 

 

 

 

 

 

 

 

 

 



106 Setting up a multivariable analysis

exposed to 33 adverse life events (e.g., failing a grade in school, losing a home 
due to a natural disaster, being physically abused or injured). The number of 
adverse events experienced was totaled (i.e., the score could range from 0 to 33). 
The investigators found that higher scores were associated with an increased 
risk of developing a depressive and/or anxiety disorder.

6.5.C.3 Multi-item scales

Investigators may use scales (sets of closely related questions) to measure con-
structs that are difficult to assess by a single question (e.g., attitudes, treatment 
preferences). The decision to create a scale is usually made in the design phase, 
although researchers sometimes find, in the analytic phase, that a group of 
variables measure a reliable construct.

To create a scale, first code all questions in the same direction, so that, for 
example, a higher score is better on all items. You must also recode variables 
so that they are all on the same numeric scales. Otherwise variables measured 
on a 0 to 10 scale will have twice the weight in the total score as variables meas-
ured on a 0 to 5 scale. Dividing a 0 to 10 scale by two will put it on the same 
scale as a 0 to 5 scale. You can then summate the items or average them by 
dividing the sum by the number of variables in the scale. In creating scales you 
must pay close attention to the handling of missing data on individual items. 
If, for a particular subject, the majority of items that constitute the scale have 
missing values then the value for the scale should be missing for that subject. 
If at least half of the items, for a particular subject, have a valid response, you 
can replace the missing values with the mean for the sample on the particular 
items that are missing. Once you have replaced the missing values, you can 
then summate the scale and divide by the number of variables in the scale.

There is an alternative method for handling missing cases when construct-
ing scales. You can compute the average for each subject by dividing the total 
by the number of variables for which the subject has valid responses. For exam-
ple, if a particular subject had valid responses for four of the five variables that 
constitute a scale, you could summate their four questions and divide by four. 
In comparison, for subjects with complete values, you would summate their 
five questions and divide by five. If you are using this technique, at least half of 
the variables that constitute the scale for each subject must have complete data. 
Assign a missing value to subjects who have more than half the variables with 
missing data. (Some would assign a missing value only if a fourth or more of 
the questions have missing responses.)11

11 Hull, C. H. and Nie, N. H. SPSS Update 7–9. New York, NY: McGraw-Hill, 1989, p. 257.
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This type of multi-item scale will work only if the variables are highly cor-
related. The usual measure of how correlated the variables are to one another is 
the alpha (also referred to as a reliability coefficient). Alphas greater than 0.65 
generally indicate that the variables form a reliable scale. To achieve alphas of 
this level, the questions are usually written with the intention of scoring them 
together.

The biggest difference between scales and scores is this requirement that 
scales use related questions. In the case of a score, the items do not need to 
be related. Using the example of the lifetime exposure to adversity score dis-
cussed above, failing a grade in school and witnessing a natural disaster would 
not be expected to be highly correlated, but are both certainly significant life 
stresses.

6.5.C.4 Factor analysis

Factor analysis is a popular strategy in the behavioral sciences for reducing the 
number of variables in cases where you have multiple related independent vari-
ables. Factor analysis summarizes multiple related independent variables (say 
15) into a few underlying factors (say two or three). The procedure minimizes 
the correlations between the factors (so that they represent distinct dimen-
sions). Each factor is a weighted combination of the original variables. As such 
you can develop a factor score for each subject based on that subject’s values for 
each of the variables, thereby reducing the number of variables to the number 
of factors. Each of the independent variables will be correlated with each of the 
factors, but to varying degrees. For any one of the factors, a few of the variables 
will be strongly correlated with it, indicating that the factor primarily repre-
sents this cluster of variables. Based on these correlations (referred to as load-
ings) you can characterize the nature of the factor (i.e., what it represents).

The major problem with factor analysis for clinical researchers is the loss 
of the original variables. Let’s say, for example, you used factor analysis to 
develop factor scores for variables associated with survival from pneumonia. 
Assume the first factor was characterized by patient comorbidity (age, under-
lying lung disease, history of congestive heart failure), the second factor was 
characterized by virulence of attack (severity of radiological findings, peak 
of fever, specific organism recovered), and the third factor was characterized 
by efficacy of treatment (speed of first dose, appropriate choice of antibiotics). 
This would be a very satisfying characterization of the data from the point of 
view of the pathophysiology of pneumonia.

Assume that a proportional hazards model demonstrates that the factors 
of patient co-morbidity and virulence of attack are associated with a worse 
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108 Setting up a multivariable analysis

survival, whereas efficacious treatment is associated with an improved sur-
vival. How useful would these results be to a clinician? Certainly, clinicians 
could not use the information to generate a probability of survival for their 
patients because it would be mathematically too complicated to generate factor 
scores. Also, you couldn’t tell clinicians how important any one variable was 
to the outcome (only the importance of the factor to the outcome). Whereas 
a particular variable may have a strong loading on a factor that is related to 
outcome, that variable may be only weakly related to outcome. This is because 
factor analysis groups independent variables based on their relationship to one 
another, not their relationship to the outcome variable.

For these reasons, factor analysis has a relatively small place in the analysis 
of medically oriented data. In the behavioral sciences, where we are dealing 
with constructs that are complicated to measure (e.g., self-esteem, autonomy), 
the “loss” of single variables is more than compensated for by the strength of 
the technique for dealing with multiple related independent variables.12

6.6 What should I do about missing data on my independent variables?

Missing data is a problem in all types of analyses. However, the problems 
caused by missing data in bivariate analysis are magnified in multivariable 
analysis. Why? Because different subjects will likely have missing values on 
different variables. Imagine a study of 300 persons with ten independent vari-
ables. Each variable has ten missing subjects. In bivariate analysis, the sample 
size (n) will be 290 persons or 97 percent of your study population. But in 
multivariable analysis, there will likely be significantly more than ten missing 
subjects because cases will be dropped from the analysis if they have a miss-
ing value on any of the independent variables. At one extreme, if each of the 
ten variables is missing on a different ten subjects, you will lose ten cases per 
variable, or 100 cases for ten variables. Your n will be 200 or only 66 percent of 
your study population. With this amount of missing data, your power to find 
a significant result is less. Furthermore, your results may not be generalizable 
to the study population if the missing cases are systematically different from 
those cases where the data are not missing.

Usually, subjects who have missing values on one variable are more likely 
to have missing values on other variables. Therefore, the number of cases that 

12 For more on factor analysis see: Glantz, S. A. and Slinker, B. K. Primer of Applied Regression and 
Analysis of Variance. New York, NY: McGraw-Hill, 1990, pp. 216–36; Kleinbaum, D. G., Kupper, 
L. L., and Muller, K. E. Applied Regression Analysis and Other Multivariable Methods (2nd edn). 
Boston, MA: PWS-Kent, 1988, pp. 595–640.
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109 6.6 Missing data on independent variables

will need to be dropped will likely be less than 100. How much less depends on 
how many cases have missing values on more than one independent variable. 
The opposite extreme from my example would be if all ten variables had miss-
ing values for the same ten cases, in which case your multivariable analysis 
would have no more missing data than your bivariate analysis.

In preparation for deciding how you will deal with missing data in your 
analysis, it is often helpful to know ahead of time how many missing cases you 
will have in your multivariable analysis. To determine this, create a variable 
whose value is 1 if data are missing on any of the independent variables in your 
analysis and 0 if all the data are present. A simple frequency will then tell you 
how many cases will be missing in a multivariable analysis that includes all of 
these variables.

After you have determined how much missing data you have, what can you 
do? Table 6.4 shows five methods for dealing with missing data on independ-
ent variables in multivariable analysis. These are discussed in what follows.

Deleting cases with missing values on any independent variable is cer-
tainly straightforward and remains the most common method of dealing 
with missing data in clinical research. However, this strategy has two prob-
lems: loss of power and introduction of bias. Although it is easy to determine 
the loss of power, determining whether you have introduced bias by delet-
ing missing data is more complicated. In general, if the cases are missing at 
random (such as might occur if different subjects missed answering different 
questions on a long questionnaire) deleting these cases should not bias the 
results. In contrast, if the cases with missing data are different from cases 
without missing data (less compliant with filling out forms, less trusting of 
interviewers, cognitively impaired, etc.) then deleting them will introduce 
bias into your results.

To assess whether your data are missing randomly, compare persons with 
and without missing data on the important independent and dependent vari-
ables of your study. If there are no differences, this strengthens the argument 
that the data are missing randomly, and omitting cases with missing data 
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110 Setting up a multivariable analysis

should not bias your study (although there still may be bias owing to unmeas-
ured factors). If there are significant differences between persons with missing 
data and those without, you can report these differences, so as to better char-
acterize the potential bias in your study. Characterizing how missing cases 
differ from nonmissing cases is also useful information prior to estimating 
missing values (method no. 5).

You will note that assessing bias caused by missing cases is similar to assess-
ing bias introduced by subjects choosing not to participate in a study (response 
bias). Ironically, although the bias introduced by excluding cases with missing 
data is of equal importance as the bias introduced by nonparticipation, it is 
much less often reported in published reports. Of course, if you are missing 
only a few cases, it may not be necessary to evaluate the bias introduced by 
excluding them.

If you plan on deleting cases in your multivariable analysis that have miss-
ing values on any independent variable, you will have to decide how you want 
to deal with these cases in the univariate and bivariate analyses. You have two 
choices: You can exclude such cases right from the start of your analysis or you 
can wait until starting the multivariable analysis.

In published clinical research reports, investigators tend to exclude such 
cases right from the start. The advantage of this method is that all analyses 
(univariate, bivariate, and multivariable) in the report then have the same 
sample size. The disadvantage is that much can be learned from univariate 
and bivariate analysis. It seems pointless to delete cases from a univariate 
or bivariate analysis just because they are missing on some other variable 
that will be part of the multivariable analysis. However, it does make it 
harder to follow the published analysis if the sample size changes for each 
analysis.

If the missing data are scattered over a large number of variables it is reason-
able to delete cases with missing data on any independent variable. However, 
if one or two variables account for most of the missing data, it is not worth the 
loss of a large number of cases on the univariate and bivariate analysis to have 
the same sample size on all analyses. Remember, if you don’t exclude the cases 
with missing values right from the start of the analysis, you should be careful 
to tell the reader the sample size for each analysis.

A second strategy for handling missing data is to create multiple dichotom-
ous variables (as you would with a nominal variable or with an interval-in-
dependent variable that has a nonlinear relationship with the outcome), with 
one variable signifying persons with missing data. This strategy was used for 
dealing with missing data in a study of determinants of kidney transplant 
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111 6.6 Missing data on independent variables

failure.13 The investigators coded the variable – amount of cold ischemia 
time – as six dichotomous variables: 9–16 hours (yes/no), 17–24 hours (yes/
no), 25–36 hours (yes/no), 37–48 hours (yes/no), greater than 48 hours (yes/
no), and missing value (yes/no). The reference group was 0–8 hours.

The advantage of using a dichotomous variable to indicate missing data is 
that it allows all subjects to be included in the multivariable analysis, without 
making a strong assumption about the missing subjects’ values. It has the add-
itional advantage that you get some sense of the bias caused by missing data. 
In the case of the kidney transplant study, those “yes” on the missing variable 
had the highest risk of graft failure. This would suggest that those with missing 
values actually had cold ischemia times greater than the other categories (since 
long cold ischemia time was associated with higher rates of graft failure). The 
authors also reported that the fit of models that included a dichotomous vari-
able representing those cases with a missing value on cold ischemia time were 
not significantly different from the fit of models that excluded cases with miss-
ing data.

Since this book is primarily about data analysis, it may surprise you that I 
have listed “additional effort to obtain data” as the third strategy for dealing 
with missing data. Won’t it be too late to go back to obtain additional data once 
you are already in the data analysis phase? Certainly, the data collection phase 
is the most appropriate and efficient time to obtain complete data. I mention 
this strategy here because the impact of missing data is often felt most acutely 
in the data analytic phase and sometimes researchers are subsequently able to 
obtain data that were previously missing. In the case of one study I was involved 
in, the missing data were in another city. When a thoughtful reviewer pointed 
out the weakness in our study caused by the missing data, we sent a research 
assistant on a trip to obtain the data. Some of you may complain that we should 
have sent a research assistant to collect the data from the other city right from 
the start. But, research, like any enterprise, is a series of trade-offs between 
costs (e.g., time, travel) and gains (e.g., more data). It was only after the variable 
proved to be so important to the analysis (and to the odds that the paper would 
be published!) that it seemed worth the effort and expense to get the data.

The fourth method for dealing with missing data, decreasing the number 
of independent variables in the analysis, works only if you have variables 
that can be eliminated without compromising your analysis. In Section 6.5, 
I discussed strategies for decreasing the number of independent variables in 
instances where your sample size is insufficient for the number of variables 

13 Chertow, G. M., Milford, E. L., Mackenzie, H. S., et al. “Antigen-independent determinants of 
cadaveric kidney transplant failure.” JAMA 276 (1996): 1732–6.
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112 Setting up a multivariable analysis

in your analysis. These strategies can also help with missing data. There 
are a few differences worth mentioning. Usually, some variables have more 
missing data than other variables in the study. Those variables with a large 
number of missing observations are the variables you should try to elim-
inate. If you have two related variables and one has a lot more missing data 
than the other, exclude the one with the greater number of missing obser-
vations. For example, education and income are highly correlated. If you 
have education level for everyone but income level for only 75 percent of the 
subjects (people are more sensitive about disclosing income than education 
level), it may be preferable to drop income and use only educational level 
in the analysis. Since income is not the same as educational level you will 
certainly lose information by doing this. Only you as the researcher can 
answer the question of whether you lose more by dropping the cases or by 
dropping the variable.

The fifth method for dealing with missing data, estimating the value of 
missing cases, is the most satisfying but also the most dangerous method. It is 
the most satisfying because you don’t lose any cases; it is the most dangerous 
because you may bias your results in ways that are difficult to predict. Several 
methods of estimating missing values are shown in Table 6.5.

The simplest method of assigning a missing value for an independent vari-
able is to assign the sample mean (or median) for that variable. (Choose the 
median if the distribution is skewed.) By assigning the mean/median you are 
saying that you believe the missing data are occurring randomly and therefore 
the mean/median provides the best estimate. The benefit of this procedure is 
that you get to keep the case with missing data in your analysis. However, this 
method is only sensible if the subjects for whom you are assigning the mean/
median have only one or two independent variables with missing values. If, 
for example, you have 15 cases that have missing values on only one of ten 
independent variables, by assigning the mean/median for the missing vari-
able you keep all 15 cases in your analysis. They are useful cases because the 

Table 6.5 Methods of estimating missing values.

Assign the sample mean.
Assign the mean by subgroup (conditional mean).
Model the value of the missing data by using the other covariates in 

the analysis (simple imputation).
Model the value of the missing data by using the other covariates 

in the analysis and include a random component (multiple 
imputation).
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113 6.6 Missing data on independent variables

information on the other nine independent variables is real. Viewed from the 
other extreme, if you have 15 cases with missing values on all ten variables, it 
would serve no purpose to assign them the mean for each of the ten variables. 
Since all of the data on the independent variables are missing, they contribute 
no information to your multivariable analysis. Therefore prior to assigning 
values to missing data make sure that the cases have true values for at least 
half of the independent variables in your analysis.

When you assign missing values, you may want to assign mean/median 
values by subgroups rather than using the mean/median for the entire sam-
ple. This procedure is referred to as a conditional mean (conditional on the 
value of other variables). For example, if you have a number of cases with 
missing data on income, rather than assigning the mean/median for the 
whole sample, you may assign these cases the mean/median for other sub-
jects of the same educational level and occupational status. Since income is 
correlated with educational attainment and occupational status, assigning 
the mean/median by subgroup will likely yield more accurate estimates of 
missing values.

A more sophisticated method of estimating the mean is to perform a multi-
ple linear or logistic regression analysis using the other independent variables 
to estimate the missing value. This method, usually referred to as imputation, 
may allow a more precise estimate of the missing value than assigning the 
mean/median. For example Smith and colleagues followed 383 patients for 24 
months to assess the impact of a primary care intervention on depression.14 
Sixty-two of the subjects had a missing value for income. The researchers 
therefore used multiple linear regression to estimate the missing values. They 
included eight independent variables in the model: age, gender, race, educa-
tion, marital status, employment, physical health rating, and mental health 
rating. Because all of these variables would be expected to be associated with 
income (older, white, well-educated, married, employed, healthy men would 
be expected to have a higher income than younger, nonwhite, less educated, 
unmarried, unemployed women in poor physical and mental health).

However, as with all the above methods of estimating missing values, if you 
use the estimated values in your multivariable analysis (as if it were an observed 
value) you will underestimate the error associated with your co efficients. The 
reason is that once you have filled in the missing values based on your regres-
sion analysis, the computer does not know that the filled-in values have more 

14 Smith, J. L., Rost, K. M., Nutting, P. A., et al. “Impact of ongoing primary care intervention 
on long term outcomes in uninsured and insured patients with depression.” Med. Care 40 
(2002): 1210–22.
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114 Setting up a multivariable analysis

“error” than those values that are actually observed. This results in confidence 
intervals surrounding the estimates that underestimate the actual variability 
of those estimates.

To overcome this problem, multiple imputation methods allow you to add 
in a random component.15 With multiple imputation, you fit a multiple regres-
sion or logistic model for the variable with missing values using subjects with 
complete data on this variable and its important correlates. The fitted model 
provides an estimate of the mean and variance of each missing value, given 
the data on the correlates available for that subject. Next, for each missing 
value, you use a random number generator to simulate an observation from 
the estimated distribution, under the assumption that interval variables are 
normally distributed and that dichotomous variables have a binomial distri-
bution. Then the primary analysis is carried out using this data set completed 
by the imputed missing values. This procedure is repeated at least ten times, 
and the results are combined using available formulae.16 Repeating the proce-
dure makes it possible to compute standard errors that take into account the 
extra uncertainty induced by the imputation, since each data set is completed 
with different imputed values for the missing data.

Since each method of dealing with missing values has its advantages and 
disadvantages, some studies will use a combination of methods. For example, 
Halfon and colleagues conducted a study on access to health services among 
Latino children.17 Income was not reported for 13 percent of the sample. They 
estimated income by replacing missing values with the sample mean. In addi-
tion, they created a dichotomous variable representing the cases with missing 
data on income (in other words, the variable equals 1 if cases are missing and 
0 if the cases are not missing). In this way, they were able to provide a value for 
income for their entire sample and adjust for the possibility that the cases with 
missing data were different from those without missing data.

One advantage of trying a variety of methods for dealing with missing data 
(e.g., eliminate cases, assign the mean, impute values) is that you can see if 
your choice of method makes a difference in the results. It is reassuring to 
researchers and to readers when different methods of dealing with missing 
data produce similar findings.

My general guidance on this complicated issue is:

1. Collect your data to minimize missing information.

15 Heitjan, D. F. “What can be done about missing data? Approaches to imputation.” Am. J. Pub. 
Health 87 (1997): 548–50.

16 Rubin, D. B. Multiple Imputation for Nonresponse in Surveys. New York, NY: Wiley, 1987.
17 Halfon, N., Wood, D. L., Valdez, B., et al. “Medicaid enrollment and health services access by 

Latino children in inner-city Los Angeles.” JAMA 277 (1997): 636–41.
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115 6.7 Missing data on outcome variable

2. Assess how much missing data you have on individual independent 
variables.

3. If you have one or two independent variables that have significantly more 
missing cases than your other variables, consider deleting the variables 
rather than the cases. No matter how important the variable is to your the-
ory, if you have a lot of missing data on that variable, your information is 
likely to be biased.

4. After you have minimized missing data through steps 1 and 3 above, check 
to see how many cases have missing values on any of the independent vari-
ables you are planning to use in your multivariable model. If you have few 
cases with missing data, delete them right from the start. It is easier to fol-
low a paper that has the same sample size for all analyses.

5. If you have a large number of cases with missing data, determine if cases 
with missing values differ from cases without missing values.

6. If missing cases do not differ from nonmissing cases, consider assigning 
means or conditional means. Before you do this, make sure that the cases 
have true values for at least half of the independent variables in your analy-
sis. If you have cases that are missing data on most of your independent 
variables, delete them. With the help of a biostatistician consider using a 
multiple imputation approach.

7. If missing cases differ from nonmissing cases, you are in a tough spot. Go 
forward as in step 6, but be clear in your own mind, and to your read-
ers, that assigning values based on the other cases is problematic since you 
know that the cases with missing values are not the same as nonmissing 
cases. Of course, excluding them is problematic for the same reason.

8. If possible, try more than one method for dealing with missing data.
9. Read more about the theory and practice of dealing with missing data.18

6.7 What should I do about missing data on my outcome variable?

Of those strategies listed in Table 6.4 for dealing with missing data on inde-
pendent variables, only deleting cases and making additional effort to get 
the data will work reliably for a missing outcome variable. You can’t elimin-
ate your outcome variable (that is, what you are studying). You also cannot 

18 Marascuilo, L. A. and Levin, J. R. Multivariate Statistics in the Social Sciences: A Researcher’s 
Guide. Monterey, CA: Brooks/Cole Publishing Co., 1983, pp. 64–6; Delucchi, K. L. “Methods for 
the analysis of binary outcome results in the presence of missing data.” J. Consult. Clin. Psych. 62 
(1994): 569–75; Little, R. J. A. and Rubin, D. B. Statistical Analysis with Missing Data. New York, 
NY: Wiley, 1990; Greenland, S. and Finkle, W. D. “A critical look at methods for handling missing 
covariates in epidemiologic regression analyses.” Am. J. Epidemiol. 142 (1995): 1255–64.
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estimate your outcome variable prior to the multivariable analysis. The whole 
purpose of multivariable analysis is to estimate the outcome variable based 
on the independent variables. For longitudinal studies, data from persons lost 
to follow-up can contribute to the analysis by censoring observations (Sec-
tion 3.6). However, it is best not to think of censored observations as missing 
outcome data. For a censored observation you know what the outcome is at a 
particular time. You just don’t know the outcome beyond that time.

In this section, I want to focus on a strategy for dealing with a missing out-
come measure at a particular point in time: multiple imputation. How does 
multiple imputation work? Remember that multivariable models estimate out-
come based on the relationship of the independent variables to the outcome. 
Once you have estimated outcome based on cases where you have informa-
tion on independent variables and outcome, you can estimate the outcome of 
cases where you only have information on the independent variables. What 
good does this do? By estimating the outcome variable for cases with missing 
outcomes and including a component that takes into account the variability of 
this estimate, you can repeat your multivariable analysis with the additional 
cases and see if your results differ. If they do not, it strengthens the validity of 
your analysis.

This procedure was used in an evaluation of an HIV-prevention interven-
tion tailored for young gay men.19 The researchers assessed the sexual risk 
activities pre- and post-intervention. They found significant decreases in HIV-
risk activities between the pre- and post-assessment for the intervention group 
compared to the non-intervention group. However, of 191 young men who 
received the pre-intervention assessment, only 103 (54 percent) were available 
for the post-intervention assessment. This substantial loss of the sample raises 
questions about the validity of the observed differences.

Even more problematic for the researchers, there were significant differ-
ences between those subjects lost to follow-up and those not lost to follow-up. 
Could these differences, rather than the intervention, explain why there were 
decreases in sexual risk activities following the intervention? There is no way 
to definitively answer this question since the subjects were lost and we do not 
know their ultimate outcome. But we do know something about their pre-
intervention behavior.

What the researchers did is to estimate outcome for those subjects who had 
both pre-intervention and post-intervention interviews using logistic regres-
sion analysis. They then used these models to estimate outcome for those cases 

19 Kegeles, S. M., Hays, R. B., and Coates, T. J. “The Mpowerment project: A community-level HIV 
prevention intervention for young gay men.” Am. J. Pub. Health 86 (1996): 1129–36.
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without a post-intervention assessment. Next, using a multiple imputation 
procedure, they generated 100 data sets in which the missing outcomes were 
randomly imputed from the distribution of the missing value according to the 
logistic model and the observed baseline covariates for the subject. The treat-
ment effect was estimated by the average of the effect estimates for each of the 
100 data sets. The standard errors were corrected for the multiple imputation 
by a factor depending on the variance of the 100 effect estimates. The results 
of this repeated analysis were similar to those of the analysis in which these 
cases were excluded. While this strengthened the conclusion of the paper, it 
certainly does not exclude bias as the explanation of their findings.
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7

Performing the analysis

7.1 What numbers should I assign for dichotomous or ordinal variables 
in my analysis?

Let’s take the simplest case of a dichotomous variable based on an interview 
question: Do you have a history of diabetes: yes or no?

The equations used to solve multivariable analysis need numerical repre-
sentations of yes and no. Since this scale only has two points, the numeric 
distance between the two points can be represented by any two numbers that 
are separated by one: 0 and 1, 1 and 2, 0 and –1, etc. It doesn’t really matter. 
The sign of the coefficient may change depending on whether you assign 
“yes” the higher or the lower value, but the coefficient and significance level 
will be the same (Section 8.3). However, you will not get the same answer 
if you code your variables such that there is more than one point between 
the two numbers. For example, coding schemes like +1 and –1 will give you 
a different answer because there is more than one unit between the two 
points.

Although any two numbers that are one number apart will give you the 
same answer, a sensible convention, for both independent and dependent vari-
ables, is to use 1 and 0, with 1 representing the presence and 0 representing the 
absence of the condition. This convention is easy to remember and decreases 
the chance that you will be confused at the direction of the effect. This coding 
scheme has another advantage: When a variable is coded this way, the mean 
of the variable represents the prevalence of the condition. For example, if you 
have 100 subjects and 10 experience the outcome, the mean of the variable (if 
coded 0,1) will be ([0 × 90] + [1 × 10])/100 = 0.10. This can be handy when you 
want to know the prevalence of a risk factor or outcome in a particular group 
of patients.

For some variables, such as gender, where there is no absence or presence 
of a condition, assign the 1 to the value that will make the most sense in how 
you will discuss your results. For example, if your hypothesis is that women 
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with coronary artery disease receive fewer procedures owing to gender bias, it 
would be sensible to assign women the 1 and men the 0.

You may feel that I have already belabored the point about coding, but if 
you are not careful it is so easy to get confused about your results. As you 
can see from Table 7.1 with just one dichotomous independent variable and 
one dichotomous outcome there are four possible codings. The different cod-
ings will all give you the same result statistically, but the interpretation of 
the results will be different. For example, if you get confused about how you 
have coded your variable you may report that a factor increases the risk of an 
outcome when actually it decreases it. Although this same problem can occur 
with bivariate analysis, with multiple independent variables it is easier to get 
confused.

Researchers rarely report in their manuscripts how they have coded their 
variables. Thus it is unlikely that a miscoded variable will be discovered 
in peer review. It is up to you to make sure you are reporting your results 
correctly.

Besides coding your variables in a sensible way and reviewing your work 
carefully, there are other strategies for minimizing the chance of reporting a 
result opposite to what your data show. First, name your variables as specifi-
cally as you can within the limits of what your statistical packages will allow 
(usually up to eight characters). For example, it is better to name your variable 
“femgend” than “gender.”

Another useful strategy is to use value labels. The computer will print out the 
values you have assigned each time you use the variables in the analysis. You 
are less likely to make a mistake if you see on your printout “1 =  employment, 
0 = unemployment” next to the variable. Entering value labels takes a bit of 
extra time at the start of your analysis, but it is worth the effort.

With ordinal variables, the numeric representations of the different levels 
make no difference so long as the numeric difference between the levels is one 
unit. So, for example, it would not matter whether a 4-level ordinal variable 
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Name your variables as 
specifically as you can.

Table 7.1 Coding of a dichotomous independent variable and outcome.

Possible coding 1 Possible coding 2

Unemployed = 0; Employed = 1 Unemployed = 1; Employed = 0
No treatment = 0; Treatment = 1 No treatment = 0; Treatment = 1

Possible coding 3 Possible coding 4

Unemployed = 0; Employed = 1 Unemployed = 1; Employed = 0
No treatment = 1; Treatment = 0 No treatment = 1; Treatment = 0
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(very satisfied, satisfied, dissatisfied, very dissatisfied) were coded as 0, 1, 2, 3, 
or 1, 2, 3, 4 or 9, 10, 11, 12. However, as with dichotomous variables, the direc-
tion of the coding will affect the sign of the regression coefficient. So it would 
matter for the interpretation of the result whether the variable was coded as 
very satisfied = 1, satisfied = 2, dissatisfied = 3, and very dissatisfied = 4, or very 
dissatisfied = 1, dissatisfied = 2, satisfied = 3, and very satisfied = 4. As with 
dichotomous variables the key issue is to keep track of how you have coded 
your variables and interpret the coefficients accordingly.

7.2 Does it matter what I choose as my reference category for multiple 
dichotomous (“dummied”) variables?

We have reviewed how to create multiple dichotomous variables from a single 
variable to represent nominal variables (Section 4.2) and how to use multiple 
dichotomous variables to deal with interval-independent variables that are 
related to outcome in a nonlinear fashion (Section 4.3.C).

In Section 4.2, I explained that a variable representing the reference group 
would not be entered into the analysis; rather that the other categories would 
be compared to this group. Given that, does it matter which category you 
choose as your reference group? The answer is that your choice of reference 
group makes a difference in how you report your results and a small difference 
in the results themselves.

Table 7.2 illustrates the implications of varying your reference group. 
Assume the data are from a study on the association between ethnicity and 
access to health care. In column 1, the reference group is white/Caucasian. 
The odds ratios indicate that African-Americans and Native Americans are a 
fourth as likely as whites/Caucasians to receive medical care, whereas Latinos, 
Asian/Pacific Islanders, and other nonwhites are half as likely as whites/Cau-
casians to receive medical care.

Column 2 lists exactly the same data, but now African-Americans are the 
reference group. We see that whites are still four times more likely to receive 
medical care as African-Americans. Latinos, Asian/Pacific Islanders, and other 
nonwhites are about twice as likely as African-Americans to receive medical 
care, whereas Native Americans are equally likely as African-Americans to 
have received medical care.

Although column 1 and 2 are mathematically equivalent, the reporting of 
the results is slightly different. If the hypothesis of your study was that persons 
of color have less access to medical care than persons who are white/Cauca-
sian, it would be sensible to have the white/Caucasian group be the reference 
group as in column 1. This gives you the ability to report to your readers how 
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Table 7.2 Implications of changing the reference group for  
dichotomous variables.

Odds ratio Odds ratio

White/Caucasian 1.0 (reference) 4.0
African-American 0.25 1.0 (reference)
Latino 0.50 2.0
Asian/Pacific Islander 0.50 2.0
Native American 0.25 1.0
Other nonwhite ethnicity 0.50 2.0

access to medical care differs for persons of color compared to persons who 
are white/Caucasian. If you made African-Americans your reference group 
as in column 2, you would not be able to directly compare Latinos, Asian/
Pacific Islanders, Native Americans, and other nonwhites to the white/Cau-
casian group because the reference is to African-Americans. If, however, your 
research question concerns whether African-Americans are less or more likely 
to receive medical care than other ethnicities, coding African-Americans as 
the reference category, as in column 2, is sensible.

For this reason, investigators generally choose the reference category 
based on the main hypothesis being tested. If you have no main hypoth-
esis, and your dummied variables represent an interval variable (such as 
age), it is generally easier to report your results in a manner consistent with 
your empirical findings. For example, if age is associated with increasing 
(or decreasing) rate of outcome, you should use the extreme category (e.g., 
the youngest or the oldest subjects) as the reference group. This allows you 
to summarize your results by saying older persons are more likely (or less 
likely) than younger persons (the reference category) to experience the out-
come. Conversely if the variable underlying the dummied variables has a 
U-shaped distribution (Section 4.3), it may be best to code the middle group 
as the reference group so that you can demonstrate the elevated risk at the 
two extremes.

Which group you choose as your reference group makes a small statisti-
cal difference. If you choose the largest group as your reference category, the 
standard errors will be slightly smaller and the confidence intervals will be 
somewhat narrower because the model has a larger comparison group and 
can therefore make more precise estimates. Although this is not a major factor 
in most studies, if your hypothesis and empirical findings do not lead you to 
choose a particular category as your reference group, choose the one with the 
largest sample size.
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7.3 How do I enter interaction terms into my analysis?

In Section 1.4, I explained that an interaction occurs when the association of an 
independent variable on outcome is changed by the value of a third variable. 
How do you deal with interaction terms in a multivariable analysis?

The most common method of incorporating an interaction in a multivaria-
ble model is to create a product term. This is done by creating a variable whose 
value is the product of two independent variables (i.e., the two variables mul-
tiplied by each other). A product term between two independent variables is 
referred to as a two-way interaction or a primary interaction. A product term 
between three independent variables is referred to as a three-way interaction 
or a secondary interaction.

In Section 1.4, I reviewed an example of an interaction between gender and 
ST elevations. The coding for the product term for male gender and ST eleva-
tions is shown in Table 7.3. Note that the two variables male gender (yes/no) 
and ST elevations (yes/no) divide the sample into four groups: men with ST 
elevations, men without ST elevations, women with ST elevations, and women 
without ST elevations. Each cell has its own unique combination of these two 
variables. In bold is the value of the product term. Note how the product term 
highlights those subjects who have both risk factors (male and ST elevations).

To determine if an interaction was present between male gender and ST 
elevations, the authors entered the product term into their multiple logistic 
regression analysis, along with the two variables constituting the product term 
(male gender and ST elevations). If there had been no interaction, meaning 
the effect of the two risk factors on outcome (heart attack) is captured by the 
two variables, male gender and ST elevations, then the product term would 
have been nonsignificant. The authors would have established that there was 
no interaction between male gender and ST elevations. Instead the product 
term was significant, indicating that there was an interaction. In this case the 
sign on the product term was negative, indicating that the effect of being male 
and having ST elevations had significantly less impact on the likelihood of 
heart attack than you would have expected from the individual effects of male 
gender and hypertension.

Because a product term describes the relationship between two risk factors 
and an outcome, it can only be interpreted as an interaction if the two risk 
factors (in this case male gender and ST elevations) are in the model. If you 
enter only the product term, without assessing the individual risk factors in 
the model and the product term is significant, you don’t know if the product is 
significant because there is an interaction between the risk factors or because 
the risk of outcome is significantly higher when both risk factors are present 

The most common 
method of 
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(compared to subjects who do not have both risk factors). In this example, if 
the investigators did not include the separate variables for male gender and 
ST elevations, and entered only the product term, the product term certainly 
would have been statistically significant and positive (since males with ST ele-
vations are at higher risk of heart attack than the rest of the sample). But the 
importance of the product term is that it is statistically significant and nega-
tive when both male gender and ST elevations are in the model.

Although I have stressed the importance of initially including the variables 
that constitute the product term in the model, it would not be incorrect to 
have a model that had only the product term. If, for example, the two variables 
constituting the product term are not on their own statistically associated with 
the outcome in initial models, it would be acceptable to drop them from sub-
sequent models.

An alternative method for incorporating product terms into your analysis 
is to create multiple dichotomous variables representing the interaction. Look 
back at Table 7.3. There are four distinct codings of the variables gender and 
ST elevations. Rather than entering three variables representing gender, ST 
elevations, and the product of gender and ST elevations, you could create three 
dichotomous variables:

men with ST elevations (yes/no)
men without ST elevations (yes/no)
women with ST elevations (yes/no)

The reference group would be women without ST elevations. One advantage 
of this coding is that it will be easier for you to see and interpret the impact of the 
combinations of gender and ST elevations on outcome. A second advantage is 
that you can see the effect of the double-exposed group (male and ST elevations) 
compared to persons with only one risk factor and persons with neither risk fac-
tor (the reference group). (When you use product terms you see the risk of the 
doubly-exposed persons compared to persons with only one or no risk factors.)

A disadvantage of multiple dichotomous variable coding is that if you are 
looking at multiple interactions involving a particular variable (e.g., male 

Because a product 
term describes the 
relationship between 
two risk factors and an 
outcome, it can only 
be interpreted as an 
interaction if the two 
risk factors are in the 
model.

Table 7.3 Creation of an interaction (product) term.

ST elevations

Male gender Yes ( = 1) No ( = 0)

Yes ( = 1) 1 × 1 = 1 1 × 0 = 0
No ( = 0) 0 × 1 = 0 0 × 0 = 0
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gender) you will have to create more additional variables than you would if 
you were using product terms. For example, if in addition to the interaction 
between male gender and ST elevation you wanted to describe the interac-
tion between gender and congestive heart failure you would need three 
variables: men with congestive heart failure, men without congestive heart 
failure, and women with congestive heart failure. If you wanted instead to 
create an interaction term you would enter only two variables: (1) congestive 
heart failure and (2) the product of congestive heart failure and male gender. 
You would not have to add a variable for male gender because it is already in 
the model.

7.4 How do I enter time into my proportional hazards or other  
survival analysis?

For linear and logistic regression you need only enter your independent and 
dependent variables. For proportional hazards analysis and other types of 
survival analysis you must also enter a time for each subject. The time is the 
interval from a subject’s participation in the study to the date the subject expe-
rienced an outcome, was lost to follow-up, was withdrawn, or completed the 
study.

The starting point (“zero time”) will depend on the kind of study you are 
performing, as shown in Table 7.4. For a randomized controlled trial the start-
ing time is the date of randomization. For a trial that prospectively enrolls 
subjects but does not randomize them to a treatment, the starting point is 
usually the date of enrollment.

In observational studies, the choice of starting point is complicated. The 
goal is to choose a starting point that best represents the start of the process 
you are studying. For example, in evaluating the rate of death in patients with 
coronary artery disease, the starting point should be the onset of coronary 
artery disease. But how do you determine the date that coronary artery disease 
began? Is the starting point the date that the patient first developed chest pain? 
This sounds good, but remember some patients have coronary artery disease 
without ever having chest pain. Others have chest pain for years from some 
other cause before they develop coronary artery disease. Also, some patients 
will not remember their first episode of chest pain; they may report that they 
have had chest pain for “years.”

What can you do to get a more precise starting time? You could use the date 
coronary angiography first demonstrated coronary artery stenosis. This start-
ing date has the advantage of being the most objective (angiography is the gold 
standard for diagnosing coronary artery disease). But many patients never 
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Table 7.4 Starting time for survival analysis.

Type of study Start time

Randomized controlled trial Date of randomization
Nonrandomized trial Enrollment into trial
Observational study Varies:

Date of first visit
Date of first symptom
Date of diagnosis
Date of start of treatment

require angiography, and access to care and patients’ willingness to undergo 
testing will affect whether and when they have angiography.

Often with observational studies, no one starting point truly represents the 
onset of the disease process for all participants. You have to choose the best 
one you have available. In a study of patients seen in a clinical setting this may 
be the date the patient first presented for medical care. In a prospective cohort 
study the starting point may be the first cohort visit. Although not ideal, date 
of first visit has been used in many studies. Notably, many natural-history 
studies of HIV infection use the date of first visit because this was the first date 
that the participant was documented to be HIV-antibody positive. The actual 
disease process had begun months to years earlier when the person actually 
seroconverted to HIV. Although use of first visit did bias the results from these 
cohorts and has led to some inaccurate observations, these studies were none-
theless extremely helpful in understanding the nature of HIV disease.1

In conclusion, choose the starting point that best represents the start of the 
process you are studying and clearly state the choice in the methods section 
of your paper.

The endpoint for survival analysis is the date of the outcome of interest or 
the censor date (Section 3.6). For subjects lost to follow-up prior to outcome 
the censor date is the last date of known follow-up. For subjects who did not 
experience an outcome and were not lost to follow-up, the censor date is the 
end date of the study (assuming intention-to-treat analysis for patients who 
are withdrawn).

In some studies there may be ambiguity about the appropriate censor date 
because the investigators have access to supplemental sources of data about 
study participants. Analysis of survival time following an AIDS diagnosis 

1 For a perspective on the biases of prevalent cohorts of HIV-infected persons see: Alcabes, P., 
 Pezzotti, P., Phillips, A. N., et al. “Long-term perspective on the prevalent-cohort biases in studies 
of human immunodeficiency virus progression.” Am. J. Epidemiol. 146 (1997): 543–51.
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provides a good illustration of this principle. Let’s say you want to determine 
whether persons who are lost to follow-up in your study have died. You know 
that death certificates are part of the public record and it is therefore possi-
ble to determine whether subjects who are lost to follow-up have died. How-
ever, you are also aware that there is usually a delay between when a subject 
dies and when you will learn about their death from a local, state, or national 
death registry. Conversely, matching with a death registry may enable you to 
learn about the deaths of some participants sooner than you otherwise would 
have. This can occur if you interview subjects only periodically (e.g., every 
six months to a year) but perform frequent reviews with a death registry (e.g., 
weekly to monthly). How should you deal with this supplementary informa-
tion about survival?

In San Francisco, we follow all persons who are diagnosed with AIDS by 
reviewing their medical records every six months. We also review all of the 
death certificates in San Francisco weekly. Each year we perform a match with 
the National Death Index.2 This index covers the deaths of all persons in the 
United States. Thus, when someone dies we almost certainly find out about 
it. We need to decide what is the appropriate date to use as the last date of 
follow-up for someone who is not known to have died. The algorithm we use 
to determine this date is somewhat complicated but illustrates the types of 
decisions you must make about the last date of follow-up.

For subjects not known to have died, we check the medical record for the 
date of the last medical visit or laboratory test. What about people whose 
records show no recent entries and yet are not listed as being dead? These 
people either died outside San Francisco (because if they died in San Fran-
cisco we would know it since we do weekly reviews of San Francisco’s death 
certificates), moved, switched their site of care, or stopped receiving medi-
cal care altogether. What should our last date of follow-up be for these 
individuals?

For persons not known to have died, with no recent medical follow-up, 
we use for their censor date the date to which the National Death Index is 
current at the time we match our database with theirs. The National Death 
Index receives all state death certificates and updates their computer files for 
the deaths that occurred in a calendar year within 12 months of the end of 
the calendar year. For example, if we performed our match in June of 2005, the 
data would be complete for the calendar year of 2003. For those cases lost to 
follow-up, we would use December 31, 2003 as the censor date.

2 For information about the National Death Index (for the United States) along with an application 
for matching your data with the Index see: www.cdc.gov.nchs/r&d/ndi/ndi.htm.
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3 van Benthem, B. H. B., Veugelers, P. J., Schecter, M. T., et al. “Modelling the AIDS incubation 
time: Evaluation of three right censoring strategies.” AIDS 11 (1997): 834–5.

Of course, matches with the National Death Index are not perfect. The index 
is not 100 percent complete (nothing ever is). Also, it is possible that a case is 
listed in the National Death Index but we are unable to match with it because 
we have incorrect identifying information (e.g., the wrong date of birth). A 
more conservative strategy than using the date for which the National Death 
Index is current would be to use the last dates listed in the medical records of 
those patients not known to have died. The problem with this strategy is that it 
underestimates survival because it counts those deaths that we know occurred 
after the last date of follow-up, but not the survival time beyond the date of 
follow-up. At the other extreme, we could censor everyone at the date of analy-
sis. Supporting this strategy is the fact that most San Francisco AIDS patients 
die in San Francisco and we review the death certificates weekly. Therefore, in 
most cases we will know promptly if someone has died. However, using the 
date of analysis would overestimate survival because it would count all of the 
follow-up time but would miss some of the deaths. Our method is something 
of a compromise.

As you can see, the date of censor can be quite a complicated issue. Your 
choice will affect the survival time. van Benthem and colleagues illustrate 
this using a similar example to mine, that of AIDS incubation time (time 
from HIV seroconversion to AIDS diagnosis).3 In their example, they show 
that AIDS incubation time varies based on when participants are censored. 
When participants with no known AIDS diagnoses are censored at the date of 
their last visit, incubation time is underestimated (because information about 
deaths from registry-matches is included but additional AIDS-free time is not 
included). When participants with no known AIDS diagnoses are censored at 
the date of analysis, incubation time is overestimated (because it assumes that 
the information from the registries is complete, which it is not). In their exam-
ple, they advocate for an alternative method: Persons seen in the year prior 
to the analysis, who are not in the AIDS registry, are censored at the date of 
analysis; persons not seen in the year prior to the date of analysis and persons 
who developed AIDS more than a year after their last visit are censored one 
year after their last visit.

The most interesting thing about the analysis of van Benthem and colleagues 
is that they demonstrate that differences in AIDS incubation time reported by 
different studies may actually be caused by differences in the censoring tech-
niques. Thus, in handling supplementary information, I recommend you bal-
ance information about outcomes with information about outcome-free time 
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and try to be consistent with how others in your field have dealt with this 
issue.

Once you have settled on the start date and end date for each subject, the 
difference between these dates represents the survival time for each subject in 
your analysis.

Table 7.5 illustrates calculations of time for different types of subjects. Sub-
jects were enrolled between May 1, 2004 and August 1, 2004 and were followed 
until August 1, 2005 unless they dropped out or were withdrawn. The outcome 
of interest is heart attack.

Subject 1 experienced a heart attack one year (365 days) after enrollment but 
continued to be followed after the outcome. This is common in clinical stud-
ies. You might follow someone beyond their main outcome of interest because 
you are assessing the development of side effects or a secondary outcome (e.g., 
death). However, note that to determine time to heart attack for this analy-
sis, you subtract the start date from the date of outcome, not the date of last 
follow-up. Let’s contrast this with subject 2. This subject did not have a heart 
attack. Therefore time is the difference between the start date and the date of last 
follow-up. Subject 3, like subject 2, did not experience a heart attack. But this 
subject enrolled in the study later than subjects 1 and 2. Therefore, even though 
the subject stayed till the end of the study, the subject would be censored at 365 
days. Subject 4 dropped out of the study and is censored at 61 days.

The four subjects shown in Table 7.5 illustrate two important points about 
survival analysis.

Survival analysis tracks length of time without reference to calendar time. •	
If you changed the decade in which the study occurred by subtracting ten 
years from all the dates, you would get the same survival time. This is the 
reason that many analyses adjust for year of diagnosis or birth cohort (i.e., 
year or period of years of birth).
There is no special designation for cases that are censored. All subjects that •	
do not experience an outcome are censored. The only difference between 

Table 7.5 Illustration of time calculations for individual subjects.

Subject Start Date
Did heart attack 
occur? Date of heart attack Date of last follow-up Time (days)

1 May 1, 2004 Yes May 1, 2005 August 1, 2005 365
2 May 1, 2004 No Not applicable August 1, 2005 457
3 August 1, 2004 No Not applicable August 1, 2005 365
4 May 1, 2004 No Not applicable July 1, 2004 61
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subjects 2, 3, and 4, from the computer’s point of view, is the amount of time 
they contribute to the analysis.

There is another method for incorporating time into a proportional hazards 
model: Use of age of subject rather than study time. Using age instead of study 
time makes sense in observational studies of healthy persons. This is because 
the hazard of an outcome such as death for a 55-year-old man observed for 15 
years is likely to be more similar to the hazard for a 55-year-old man observed 
for 5 years, than that for a 40-year-old man observed for 15 years.

Korn and colleagues argue persuasively for the use of age instead of study 
time for observational studies of healthy persons drawn from national sur-
veys.4 However, their empirical analysis demonstrates that the more usual 
method of study time, with adjustment for subject’s age, produces unbiased 
estimates even when age may be a more appropriate time scale.

Although the use of age in place of study time has its adherents, it is not 
commonly done, even for surveys of healthy persons. It would certainly not be 
appropriate in studies of persons with disease. In persons with an illness (e.g., 
cancer, heart disease) the amount of time that they have the disease is likely to 
be more closely related to their rate of outcome (e.g., death) than their age.

If you do choose to use age as your time scale, it is important to adjust for 
birth cohort. Otherwise, your model will not take into account treatment 
changes that have occurred during the lives of your participants.

7.5 What about subjects who experience their outcome on their  
start date?

It sometimes happens that subjects experience their outcome on their start 
date. If this occurs, the time for such subjects would be zero. Since, at time 
zero, by definition, none of the subjects have experienced an outcome, persons 
with time equal to zero must be excluded from the analysis. Is this fair? Can 
you do anything to prevent this?

To answer this question, you have to distinguish those cases where the out-
come truly occurred on the start date from those cases where the start date 
and the outcome are recorded as occurring on the same date, but the start date 
is really unknown. I will illustrate with a few examples.

Imagine you are studying hospital survival with a rapidly progressive dis-
ease, such as adult respiratory distress syndrome (ARDS). A certain number 
of patients will die on their day of admission to the hospital. In this case, if you 

4 Korn, E. L., Graubard, B. I., and Midthune, D. “Time-to-event analysis of longitudinal follow-up of 
a survey: Choice of the time scale.” Am. J. Epidemiol. 145 (1997): 72–80.
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computed survival in days, patients who died on their date of admission would 
appear to have a survival of zero days and would be excluded from the analy-
sis. Clearly, this is not what you would want. The true survival time for these 
patients is in hours. Our use of a day as the unit of survival analysis is arbi-
trary. For this example, you should switch your unit of analysis to hours. This 
will work well for ARDS or other diseases that have a very rapid progression 
time. Day is the convention for most survival analyses because improvement 
and worsening of most clinical conditions occur in days not in hours.

Consider a more complex example: How to categorize patients who are diag-
nosed with AIDS and die on the same day. If you were to review data from 
the San Francisco Health Department’s AIDS registry, you would discover that 
some of our cases have the same date for AIDS diagnosis and death. There are 
two reasons for this. In some cases, HIV-infected patients without an AIDS 
diagnosis are admitted to the hospital, diagnosed with an AIDS-defining ill-
ness for the first time, and die the same day they are admitted. In this case, 
as with the ARDS example, there is a real survival time, measured in hours. 
Unfortunately, our records do not contain the hour of AIDS diagnosis or death. 
In other cases, the patients’ date of diagnosis is the same as their date of death 
because they are diagnosed by the medical examiner (coroner). In these cases, it 
is unclear what the true survival time is because you don’t know if they had an 
AIDS illness for a short or a long time before death. How do we deal with these 
two types of cases, both of whom have a survival time of zero?

For cases diagnosed on the day of admission, we consider their survival to 
be 0.5 days. The half-day acknowledges that the death truly occurred after the 
diagnosis of AIDS, but after an interval of less than one day. (Some statistical 
software programs will automatically add 0.5 units to cases with a survival 
time of zero. However, you as the investigator should determine whether this 
is a reasonable assumption or not.) For those cases diagnosed by the medical 
examiner, we exclude the case because we do not know what the true interval 
is between diagnosis and death.

The AIDS registry of the New York City Health Department has an even 
more complicated problem. Unlike San Francisco, they only record the month 
and year of AIDS diagnosis. Thus a case who died in the same calendar month 
as their AIDS diagnosis would have a survival time of zero. They therefore 
have a large proportion of cases (11 percent) with a survival time of zero.5

How do the investigators deal with New York City AIDS cases with sur-
vival time equal to zero? They exclude them from the analysis. This may be 
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deficiency syndrome in New York City.” Am. J. Epidemiol. 139 (1994): 351–61.
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problematic. To the extent that such persons truly had a short survival, the 
investigators’ method will artificially lengthen survival by excluding these 
subjects. Because such cases represented a large group, the investigators 
assessed whether the survivors were different from other participants. In fact 
they were: They were more likely to be female, persons of color, and injec-
tion drug users. This illustrates another important point. You cannot always 
eliminate bias whether caused by loss of cases or some other reason. Nonethe-
less, you should always investigate it and describe it to your readers (as these 
authors did).

7.6 What about subjects who have a survival time shorter than 
physiologically possible?

It sometimes happens that subjects experience their outcome so soon after 
their start date that the survival time is not physiologically possible. This is 
most likely to pose a dilemma with slowly progressive diseases, for which the 
physiology of the disease does not support a survival time of a day or a week. 
For example, what do you do with a subject enrolled in a study of cancer inci-
dence who is diagnosed with lung cancer a week after enrollment? We know 
it takes years from the first malignant cell division to the time that the cancer 
is detectable. Do you exclude the subject who is diagnosed with cancer a week 
after enrollment? If you say yes, what about the subject diagnosed a month 
after, or a year after? The longer the time, the murkier the decision.

As with most things, prevention is the best defense. To avoid this problem, 
develop rigorous pre-enrollment criteria to ensure that subjects do not have 
the outcome at the time the study starts (at least as best as can be determined). 
Staying with the example of lung cancer, you may want subjects to have a res-
piratory symptom review and a pre-enrollment chest x-ray.

Unfortunately, certain diseases are difficult to rule out without subjecting 
participants to very invasive tests (which would increase the expense of your 
trial and decrease enrollment). For example, some HIV-infected patients 
have pneumocystis carinii pneumonia (PCP) with minimal or no symptoms 
and normal chest x-rays. If you wanted to be sure that subjects do not have 
PCP prior to enrolling them in a PCP-prevention trial, you would have to 
perform bronchoscopy on all of them. However, it is not feasible or ethical 
to subject asymptomatic persons to an invasive test prior to enrollment in a 
trial to prevent the disease. Instead, most investigators performing studies 
on preventing PCP limit the pre-enrollment evaluation to a chest x-ray and 
symptom review. Invariably, a few patients are diagnosed with PCP just days 
after enrollment.
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Besides being difficult to diagnose, PCP usually develops slowly, over a 
period of weeks. If a patient is diagnosed with PCP a week after starting a 
treatment protocol designed to prevent PCP, should the patient be considered 
a treatment failure (since the outcome of interest occurred while the patient 
was on the study) or should the subject be deleted from the analysis (since the 
subject almost certainly had PCP at the time of enrollment)? This is a judg-
ment call. What most investigators do is to exclude those cases of PCP that 
occur within twenty-eight days of enrollment.6 Cases that occur after twenty-
eight days are considered treatment failures.

In considering this example you may wonder: Would it not be safer to include 
people who develop PCP after enrollment in the study no matter how soon after 
the start date? In support of this, remember that in a randomized controlled 
trial implausibly early outcomes should be evenly distributed in the different 
arms of the study. Therefore, including these early-outcome subjects will not 
bias your analysis, although it will result in your reporting higher treatment 
failure rates in the different arms of the study. But, in observational studies, 
improbably early outcomes would not necessarily be evenly distributed in the 
different arms of your study and could thus be a source of bias in your study.

My general advice in this area is develop pre-enrollment criteria that will 
lower the chance of implausibly early outcomes. Beyond this, decide ahead 
of time what you will do if a subject develops the outcome of interest a day 
after your study begins. If it will be important to you to exclude such early 
outcomes, develop objective exclusion criteria for subjects prior to the start 
of a study. Even if you have a-priori criteria for exclusion it is best to have a 
review committee that is blind to the treatment assignment make the decision 
to exclude a subject.

At times, it may be worth excluding early outcomes as a way of testing a 
hypothesis on the cause-and-effect relationship between your risk factor and 
outcome. For example, in the study of cholesterol level and mortality dis-
cussed in Section 4.3.A, the investigators excluded cancers that occurred in 
the first four years of the study. They did this to test whether low cholesterol 
levels might be a consequence of cancer that was present but unsuspected at 
the time of entry into the cohort. When they excluded these cases, the rela-
tionship between low cholesterol level and cancer persisted, suggesting that 
the relationship between the low cholesterol level and mortality was not a con-
sequence of unsuspected cancer at the time of enrollment.

6 Leoung, G. S., Feigal, D. W., Montgomery, A. B., et al. “Aerosolized pentamadine for prophylaxis 
against pneumocystis carinii pneumonia.” N. Engl. J. Med. 323 (1990): 769–75; Golden, J. A., Katz, 
M. H., Chernoff, D. N., et al. “A randomized comparison of once-monthly or twice-monthly high-
dose aerosolized pentamadine prophylaxis.” Chest 104 (1993): 743–50.
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7.7 How do I incorporate time into my Poisson analysis?

You will remember from Section 3.11, that Poisson regression (or the related pro-
cedure of negative binomial regression) can be used to compare the incidence 
rates of two or more groups with statistical adjustment for other variables.

An incidence rate is the number of (first-time) events in a group divided by 
the total at-risk time of the group. The at-risk time for most medical studies 
is person-years. To determine the total at-risk time for the group, you need to 
sum the amount of at-risk time each participant contributes to the analysis. 
The process of calculating the at-risk time for each participant is very similar 
to the process of determining time for survival analysis. Each person has a 
zero time (start time) and is at risk until they either experience the outcome 
(counted in the numerator), develops an outcome that precludes development 
of the outcome under study, is withdrawn, or is no longer being followed. 

The assumptions underlying calculation of incidence rates are similar to 
those underlying survival analysis such as proportional hazards analysis. Spe-
cifically, for incidence rates to be valid the likelihood of outcome for subjects 
that drop out, develop an alternative outcome, or are withdrawn, must be the 
same as that for subjects who continue in the study. There must also be no 
temporal changes during the period being summarized by a single rate.

An important difference in the calculation of total at-risk time between sur-
vival analysis and incidence rates is that it is possible to calculate a total at-risk 
time for a population without having the risk time for individuals. To illustrate, 
look back at the study on whether pregnancy increases the risk of stroke (Sec-
tion 3.11). Since there was not a cohort study into which subjects were enrolled, 
the investigators did not know when women in the catchment area became 
pregnant. This is essential information for calculating individual at-risk time. 
Nonetheless, it was still possible to estimate the group time at-risk. To do so, 
the investigators first determined the person-time “at risk during pregnancy” 
based on the average number of spontaneous and induced abortions, still 
births, and live births in the population and the average length of each preg-
nancy state. The person-time not at risk owing to pregnancy was calculated by 
subtracting the estimate of person-time spent pregnant from the total time at 
risk. To calculate the total time at risk the investigators simply needed to know 
the population of girls and women aged 15 to 44 years (the study inclusion cri-
teria) in their catchment area, a number that would be available in any locality 
through census data. This number of girls and women could then be multi-
plied by the years that strokes were ascertained (1988–1991) to determine the 
total time at risk. Although calculating group at-risk time based on population 
registries and estimates of lengths of time spent in different pregnancy states 
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is certainly less precise than summing individual at-risk times from a cohort 
of women of reproductive age, the latter would have been unfeasible given the 
low rates of stroke in pregnant women.

7.8 What are variable selection techniques?

Variable selection techniques are automatic procedures that determine which 
independent variables will be included in a multivariable model. They can also 
determine the order in which the variables enter the model. The parameters of 
the algorithms are determined by the investigator.

I have already referred to variable selection techniques as a flawed strat-
egy for decreasing the number of independent variables in your analysis. This 
may be necessary because of an insufficient sample size for the number of 
independent variables in your model (Section 6.5). The other major reason 
for using selection procedures is that you want to determine the minimum 
number of independent variables necessary to accurately estimate outcome. 
This is particularly important in the development of diagnostic and prognostic 
models (Sections 2.4 and 2.5, respectively) because the fewer the variables the 
more likely clinicians are to remember and use them.

In Section 2.4, I detailed a decision rule for determining which patients pre-
senting with chest pain to an emergency room were probably having acute 
ischemia. The investigators used forward stepwise-regression to create the 
prediction rule. Using forward selection they evaluated a total of fifty-nine 
clinical characteristics; the selection algorithm chose the seven variables that 
best accounted for ischemia. If instead the investigators developed a model 
using all fifty-nine characteristics, it would undoubtedly have had better diag-
nostic capability than the seven-variable model. But what clinician would use 
a fifty-nine variable model in a clinical setting? Patients would require hospi-
tal admission just so that their physician would have enough time to record 
the values of the fifty-nine clinical characteristics and compute each patient’s 
probability of ischemia!

Most statistical software packages offer a variety of variable selection tech-
niques (Table 7.6). What all selection methods have in common is that they 
use statistical criteria to decide which variables should enter the model and the 
order of the variables entering the model.

Using forward selection, the model will select the variable most strongly 
related to the outcome and enter it first into the model. In fact, you can pre-
dict which variable will enter first in a forward-selection model by looking 
at your bivariate analysis. The variable with the strongest association with 
your outcome in the bivariate analysis will enter first. You will not be able to 
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predict the second variable that will enter simply by looking at the bivariate 
analysis because the model will choose the variable that best improves the fit 
of the model after adjusting for the first variable. This may not be the variable 
with the second strongest association with outcome in the bivariate analysis. 
It depends how closely these two independent variables are related to each 
other. If they are very closely related, it is possible that once you know the 
value of the first variable, the value of the second variable does not substan-
tially improve the fit of your model. Instead a variable that is less strongly 
associated with outcome in the bivariate analysis, but unrelated to the first 
variable that entered, may be the second strongest variable in improving the 
fit of your model.

Forward selection will continue to evaluate each variable for how it improves 
the fit of your model. When none of the remaining variables significantly 
improves the fit, it will stop entering variables. You as the researcher must decide 
what statistical cut-off to use for determining that the addition of another vari-
able does not significantly improve the fit of the model. With lower cut-offs 

Table 7.6 Methods of variable selection.

Type of selection technique Method Advantages and disadvantages

Forward Enters variables into the model 
sequentially. The order is determined 
by the variable’s association with 
outcome (variables with strongest 
association enter first) after 
adjustment for any variables already 
in the model.

Best suited for dealing with studies 
where the sample size is small. Does 
not deal well with suppresser effects.

Backward Deletes variables from the model 
sequentially. The order is determined 
by the variable’s association with 
outcome (variables with weakest 
association leave first) after 
adjustment for any variables already 
in the model.

Better for assessing suppresser effects 
than forward selection.

Best subset Determines the subset of variables that 
maximizes a specified measure.

Computationally difficult.

None (all variables) 
 
 

Enters all variables at the same time. 
 
 

Including all variables may be 
problematic if there are many 
independent variables and you have a 
small sample size.
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fewer variables will be included, but you will be more likely to miss important 
confounders. With higher cut-offs you will be less likely to miss important con-
founders but you will have a model with more variables in it.

Forward models can be modified to allow you to delete variables that were 
significant on entry into the model but are not statistically significant after 
other variables have entered. To do this, you will need to specify a statistical 
cut-off for removal of a variable that was already entered. You may want to set a 
less stringent (higher p value) cut-off to remove a variable once entered, or use 
the same cut-off for both. Forward-selection models with deletion of entered 
variables that are no longer significant will produce a model with potentially 
fewer variables than simple forward selection.

Backward selection is similar to forward selection – except it proceeds back-
wards! At step one all variables enter into the model. If you have ten independ-
ent variables, all ten will enter in this step, no matter how unrelated they are to 
outcome. The algorithm then assesses which of the ten variables in the model 
is least important in accounting for the outcome, and deletes it, so that there 
are now nine variables in the model. The model then assesses which of the 
nine is least important in accounting for the outcome. It deletes this variable 
and then repeats the process until all the remaining variables are significantly 
associated with the outcome. At this point no further variables are deleted. As 
with forward selection, the researcher determines what statistical cut-off will 
be used for retaining (or not deleting) a variable.

You may, at first, think that forward or backward selection would arrive in 
the same place just by different routes, like two cars converging on a city from 
opposite directions. While it is a sign of a robust model when forward and 
backward selection give you the same answer, this does not always occur. The 
reason that forward and backward selection do not necessarily produce the 
same answer is that the importance of a particular variable often depends on 
what other variables are in the model at the time of selection. A variable may 
be statistically important when a variable (or a group of variables) is in the 
model and yet not significant when that variable (or group of variables) is not 
in the model. This is referred to as a suppresser effect (Section 1.3). In forward 
selection, it is less likely that the variable needed to demonstrate the suppresser 
effect would be in the model. For this reason, backward selection is more likely 
to detect a variable that is significant only when the suppresser variable is in 
the model.

Forward selection is preferable over backward selection when your sample 
size is small for the number of independent variables in your analysis or when 
you have concerns about multicollinearity. This is because in backward selec-
tion all the variables are in the model initially. If you have doubts about the 
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reliability of a model with all the variables in it, then there is reason to worry 
about having this model be the starting point for decisions on which variables 
to delete.

In best subset regression, the computer chooses the best combination of 
variables from all possible models. In the case of an analysis with only five 
variables, there are thirty-one possible combinations of variables (including 
models that have one, two, three, four, and five variables). The number of pos-
sible combinations increases exponentially as you increase the number of pos-
sible variables. “Best” is determined by a specified measure of the ability of the 
model to account for the outcome. For example, in multiple linear regression, 
you could have the computer choose the combination of variables that pro-
duces the highest adjusted R2 (Section 8.2.A).

In some ways, best subset regression is hard to argue with. It is, after all, the 
best statistical answer to the question. However, because of the computational 
time involved, this technique cannot always be done. For logistic regression 
and proportional hazards analysis, best subset regression is usually modified 
to include the best possible combination of two variables, then of three vari-
ables, then of four variables, up to the maximum number of variables in your 
model (some programs will limit the maximum number of variables to ten). 
This is a simplification in that the computer is not comparing models of differ-
ent size to one another (e.g., comparing those that have five variables to those 
that have four variables). Also, just because it is the best statistical answer does 
not mean it truly reflects the physiology of what you are studying. Confound-
ers may be included in the model while the main effects are missing. Con-
versely, confounders that may change the coefficients of certain variables in 
important ways may be omitted.

Although I have described these selection algorithms as distinct, there are 
many hybrids. A popular hybrid is to enter certain variables in the model at 
the start of the analysis and not allow them to be deleted even if they are not 
significantly related to the outcome. The computer then enters the remaining 
independent variables in a forward or backward manner. This strategy works 
well when there are certain variables that you absolutely want in your analysis 
for theoretical or practical reasons. For example, if every prior analysis of your 
outcome shows that age is an important confounder, it makes sense to add age 
right at the start, and not allow it to leave the model.

Forward- and backward-selection techniques can be modified to minim-
ize the effect of missing data in your analysis. With forward or backward 
selection, after you have derived your model, you can rerun it with only the 
variables that entered (or were not deleted). By rerunning the model with a 
smaller number of variables, missing data on the excluded variables will no 
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longer result in missing cases in the multivariable model. With backward 
selection, you can rerun the model with each deletion of a variable, so that 
each iteration of the model has a larger sample size. With both forward- and 
backward-selection techniques you will need to specify what level of stat-
istical significance should result in the inclusion or exclusion of a variable. 
Most researchers use a p value of < 0.05 or, for smaller sample sizes, a p 
value of <0.10 or <0.15. However, just because a variable does not meet the p 
value criterion does not mean that it is unimportant. The algorithm does not 
evaluate whether entry of the variable changes the coefficients of the other 
variables in the model. While it is unlikely that a variable that has no associ-
ation with outcome will make a significant impact on the other coefficients, 
it is possible that a variable that is marginally associated with the outcome 
will change the coefficients of the other independent variables in important 
ways. This is one reason many researchers favor higher (less restrictive) cut-
offs than p < 0.05.

Now that you understand the different types of selection algorithms, I have 
one more piece of advice: If at all possible DON’T USE THEM! With all of the 
variable selection procedures you run the risk of the model eliminating (or not 
selecting) a variable that is on the causal pathway to your outcome, in favor of 
a variable that is a confounder. Because forward and backward selection algo-
rithms evaluate variables singly, there is a possibility that your final model will 
not include two variables that together are important in changing your main 
effect. Also, a variable may be very important in explaining an outcome, and 
yet get kicked out of the model because it is related to a variable that is already 
in the model.

Therefore, you (not some computer algorithm) should determine, based on 
your theoretical understanding and your empirical findings, what variables 
to include in your model. Without a variable selection algorithm, all variables 
that you specify will be entered simultaneously (this is sometimes referred to 
as forcing all variables into the model). You will not have to worry about the 
possibility of missing suppresser effects or important changes in coefficients 
caused by exclusion of a modest confounder. Another advantage of all vari-
able models is that when you submit your paper for publication, you will not 
have to explain why certain variables are not included in your model. While 
one can certainly defend exclusion of a variable in selection models because it 
was not statistically related to the outcome, the reviewer may cite the possibil-
ity that the missing variable is a modest confounder or a suppresser variable. 
With all your variables entered into your model you can demonstrate that the 
variable of interest is included and does or does not affect the outcome and the 
relationship of the other independent variables to the outcome.
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As with other rules of thumb, there is an exception. It’s okay to use a selec-
tion algorithm if your goal is to identify the best possible diagnostic model 
with the fewest number of variables. With predictive models for diagnosis and 
prognosis (Sections 2.4 and 2.5, respectively) we are not concerned with caus-
ality. If knowing the value of a risk factor enables you to diagnose accurately 
a condition it does not matter whether the variable is or is not causally associ-
ated with the condition. Also, diagnostic models are much more likely to be 
used by busy clinicians if they have a small number of variables.

7.9 My model won’t converge. What should I do?

You may sometimes get a message that your logistic or proportional hazards or 
Poisson model won’t converge. What this means is that the computer cannot 
solve the equation. There are several reasons this can happen. In the simplest 
cases, you have made an error in your coding. If you have coded an outcome 
variable, such that everyone has the same outcome (this can happen if you are 
not careful with your if/then statements), the computer cannot solve the equa-
tion. It cannot compute the odds of outcome versus no outcome if everyone 
has the outcome.

Recognizing this, you can probably imagine another reason that a model 
will not converge: You have too few outcomes for the number of independent 
variables in your model (Section 6.4). Your independent variables (e.g., smok-
ing status, gender, age) may be defining subgroups for which there are no out-
comes. For example it may be that among nonsmoking women under the age 
of forty-five years no heart attacks have occurred. Because this group has no 
members, the computer cannot determine the parameters for the variables of 
smoking status, gender, and age.

What can you do if your model won’t converge and your outcome variable is 
correctly coded? You should check to see if your independent variables define 
any subgroups with no outcomes. If this is not the case, you may be able to 
increase the number of attempts (iterations) the program makes to solve the 
equation. However, beware that if the equation is not solved with the default 
criteria of the number of iterations, there may be an inherent problem with your 
model. Try decreasing the number of independent variables in your model so 
that there are no subgroups with very few outcomes. Removing independent 
variables that have very skewed distributions, especially less than 5 percent of 
subjects in a particular category, usually helps the most.
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8

Interpreting the results

8.1 What information will my multivariable analysis produce?

Multivariable techniques produce two major kinds of information: Infor-
mation about how well the model (all the independent variables together) fit 
the data and information about the relationship of each of the independent 
variables to the outcome variable (with adjustment for all other independent 
variables in the analysis). In this chapter, we will review information that is 
routinely output from multivariable software programs. In the next chapter 
we will delve deeper into how well the assumptions of the models are fulfilled 
and how to improve the fit of the models by looking at supplementary tech-
niques that you may request.

8.2 How do I assess how well my model fits the data?

Although there is some overlap, the methods for determining how well a model 
accounts for the outcome differ by type of multivariable analysis (Table 8.1). 
The methods for each model are discussed below.

8.2.A  Multiple linear regression

We start the assessment of a multiple linear regression model by testing 
whether the independent variables predict the outcome better than assuming 
that everyone in the study had the mean value for the outcome.1 If knowing 
the values of the independent variables improves the fit more than would be 
expected by chance, then the value of F will be large. A large F value for a given 

1 Within ANOVA, the F test has an analogous meaning. However, because multiple linear regres-
sion is performed more commonly than ANOVA in clinical research with interval variables, and 
because I want to keep the prose of this section simple, I will refer only to multiple linear regression. 
To see how to set up the same analysis using either ANOVA or multiple linear regression and how 
the F test is calculated for each see: Glantz, S. A. and Slinker, B. K. Primer of Applied Regression & 
Analysis of Variance. 2nd edn. New York, NY: McGraw-Hill, 2001, pp. 294–302.
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sample size and a given number of variables in the model (which determines 
the degrees of freedom) will result in a small P value. This indicates that the 
null hypothesis of no association between the independent variables and the 
outcome can be rejected.

A major limitation of the F test is that it does not tell you which or how 
many variables in your model are significant. You can have a model with five 
variables in it, four of which are unassociated with the outcome, and still have 
a significant overall test. Methods for determining the statistical significance 
of the individual variables are dealt with in Section 8.3.

Another limitation is that knowing that the variables as a group are more 
closely associated with outcome than you would expect by chance does not tell 
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Table 8.1 Methods for assessing how well a model accounts for the outcome.

Multiple 
linear 
regression

Multiple (binary) 
logistic regression

Proportional 
odds regression

Multinomial 
logistic 
regression

Proportional 
hazards 
analysis

Poisson 
regression 
(negative 
binomial 
regression)

Independent 
variables are 
associated 
with outcome 
more than 
would be 
expected by 
chance

F test Likelihood ratio 
test

Likelihood ratio 
test

Likelihood ratio 
test

Likelihood 
ratio test

Likelihood ratio 
test

Quantitative/ 
qualitative 
assessment 
of how 
well model 
accounts for 
outcome

R2* Pearson goodness-
of-fit

Deviance 
goodness-of-fit

Comparison of 
estimated to 
observed value

Hosmer–Lemeshow 
test*

Sensitivity, 
specificity, 
accuracy 
(requires 
choosing a cut-
off)

c index*

c index  
Create 
separate 
binary models 
and use same 
statistics as 
with binary 
logistic 
regression.

Create separate 
binary models 
and use same 
statistics as 
with binary 
logistic 
regression.

Comparison 
of estimated 
to observed 
outcome.

Deviance 
goodness-of-
fit test*

* Best tests/most commonly reported tests are shown with an asterisk.
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you quantitatively how well your independent variables account for outcome. 
Given these limitations, what is this test useful for? If you get a global F test 
that is not significant, you should worry that your model is a poor representa-
tion of your data. If individual variables are significantly related to outcome, 
and the overall model is not statistically significant, it suggests that there are 
many variables included in the model that are unrelated to outcome. Consider 
deleting variables from your model that are not associated with outcome.

The R2 is generally more useful than the F test because it provides a quan-
titative measure of how well the independent variables explain the outcome. 
The R2, also called the coefficient of variation, indicates how much better you 
can account for the outcome by knowing the values of the independent vari-
ables than by assuming that everyone had the mean value on the outcome 
variable.

The value of R2 ranges from 0 (indicating that the independent variables do 
not explain the outcome any better than assuming everyone has the sample 
mean) to 1 (the independent variables completely account for the outcome). 
When R2 is multiplied by 100 it can be thought of as the percentage of the vari-
ance in the dependent variable explained by the independent variables.

While R2 is generally more informative than F, it has the limitation that 
its value will increase as you include additional independent variables, even 
if these variables add only a little bit of information. For example, a model 
with ten independent variables will have a higher R2 than a model with five of 
these variables, even if the additional five variables add little to the model. To 
account for this, the statistic-adjusted R2 charges you a price for each variable 
in your model. As you add variables, adjusted R2 can increase (the gain in hav-
ing the variable is greater than the charge), decrease (the charge is greater than 
the gain), or stay the same (the gain and the charge are equal).

8.2.B  Multiple logistic regression

With multiple (binary) logistic regression the likelihood ratio test (often 
referred to as model chi-squared) is used to test whether the independent vari-
ables are associated with outcome more than would be expected by chance. It 
is analogous to the F test but has a chi-squared distribution. If knowing the 
values of the independent variables predicts the outcome better than assuming 
the mean outcome for the subjects (in the case of a dichotomous outcome the 
mean is simply the proportion of persons who experience an outcome), and 
this improvement is more than you would expect by chance, then the value of 
the chi-squared associated with the likelihood ratio will be large.

Use the likelihood ratio 
test to assess the fit of 
a logistic regression 
model.
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When the chi-squared of the likelihood ratio test is large, for a given num-
ber of parameters in the model (degrees of freedom), the P value will be small. 
As with a large F test value, you will reject the null hypothesis and conclude 
that the independent variables are related to the outcome. The P value associ-
ated with the chi-squared assumes a “large” sample size; sample sizes greater 
than 80–100 give a good approximation.2

In addition to the likelihood ratio test, software programs will routinely 
calculate two goodness-of-fit statistics: Pearson and deviance. The statistics 
compare observed and expected values from the model, with a high value indi-
cating a lack of fit. The tests produce P values calculated from a chi-squared 
distribution, which is generally appropriate for these tests.3

The Hosmer–Lemeshow test is a better test of goodness of fit. The statistic 
compares the estimated to observed likelihood of outcome for groups of sub-
jects. To appreciate the basis of this test, recall that the estimated probability 
of outcome is based on the pattern of independent variables for each subject. 
If your model has three variables, gender (male/female), age (in terciles), and 
hypertension (yes/no), then the number of distinct patterns of these three vari-
ables is 2 × 3 × 2 = 12. In other words, whether you have 15 subjects or 15 mil-
lion there are only 12 distinct patterns. For each of these patterns, there is 
an observed rate of outcome (the proportion of persons who experienced the 
outcome based on the data) and an estimated rate of outcome (based on the 
model).

The Hosmer–Lemeshow test is based on dividing the sample into approx-
imately ten groups based on the range of estimated probability of outcome 
(the first group contains the ten percent of subjects with the lowest estimated 
likelihood of outcome, the second group contains the ten percent of subjects 
with the next-lowest estimated likelihood of outcome, etc.). In a well-fitting 
model, the estimated likelihood will be close to the observed likelihood of out-
come. This will result in a small chi-squared and a non-significant P value.

From this explanation, you can appreciate that the Hosmer–Lemeshow 
test is essentially a summary of how well the estimated values of a logistic 
model fit the observed values. Rather than obtain a summary, it is often use-
ful to directly compare the estimated probability of outcome (according to 

2 For a more detailed explanation of the likelihood ratio test, see: Hosmer, D. W. and Lemeshow, 
S. Applied Logistic Regression. New York, NY: Wiley, 1989, pp. 8–18; Menard, S. Applied Logistic 
Regression Analysis. Thousand Oaks, CA: Sage Publications, 1995, pp. 19–21.

3 Harrell, F. E. Regression Modeling Strategies: With applications to linear models, logistic regression, 
and survival analysis. New York: Springer, 2001, p.231; Kluss, O. “Global goodness-of-fit tests in 
logistic regression with sparse data.” At http://oliverkuss.de/science/publications/Kuss_Poster_
Global_Goodness-of-fit_Tests_in_Logistic_Regression_with_Sparse_Data.pdf. 
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the model) to the observed probability of outcome (the original data) using a 
tabular or graphic form.

If you have a large number of distinct covariate patterns, you may need to 
group subjects with similar estimated likelihood of outcomes together. Thus, 
for example, you may divide your sample into ten groups of estimated likeli-
hood of outcome: 0–0.10, 0.11–0.20, etc. If you have a few persons who have 
very high or very low estimated probabilities of outcome and you group sub-
jects into equal divisions of likelihood of outcome, you may still have very 
small groups. An alternative is to divide the probabilities such that there are 
approximately equal numbers of outcomes in each group.

For example, Gordon and colleagues evaluated racial variation in pre-
dicted and observed in-hospital death rates.4 The investigators used logis-
tic regression to develop an estimated probability of in-hospital death. They 
included in their model age, sex, race, type of health insurance, emergency 
department admission, and a mortality measure based on data from the 
first 48 hours of hospitalization. They divided the estimated risk of death 
into ten strata so that there would be equal numbers of outcomes in each 
group (653–654 deaths). Note that since the strata are based on the number 
of outcomes rather than the estimated risk of death, the different strata have 
varying widths of estimated risks of death (stratum 1 ranges from only 0.00 
to 0.03, whereas stratum 10 ranges from 0.81 to 1.00). You can see that the 
estimated risk of death was similar to the observed probability of death in 
the ten strata (Table 8.2).

Although the authors published their data in tabular form, qualitative 
assessments of the fit of a logistic model can sometimes be better appreciated 
in graphic form. For example, I have created Figure 8.1 by plotting the mid-
point of the estimated probability of death on the x-axis against the observed 
probability of death along the y-axis for a study of racial variation in hospital 
death. You can see that the points (connected by a solid line) are all close to the 
dotted diagonal line, which represents perfect calibration.

If the points fall close to the diagonal, as in Figure 8.1, your model is an 
excellent estimate of outcome. If the points are scattered far from the line, it 
indicates that the model is not very accurate at estimating observed outcomes. 
An advantage of this approach is that it also allows you to see if your model 
performs better at certain probabilities of disease.

Another way to assess the fit of a model is to quantify how well it predicts 
the outcome of study subjects. To do this you must dichotomize the estimated 

4 Gordon, H. S., Harper, D. L., and Rosenthal, G. E. “Racial variation in predicted and observed in-
hospital death.” JAMA 276 (1996): 1639–44.
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Table 8.2 Comparison of estimated to observed risk of death among 
hospitalized patients.

Stratum Estimated risk of death Observed risk of death

1 0.00–0.03 0.01
2 0.03–0.06 0.05
3 0.06–0.10 0.09
4 0.10–0.17 0.14
5 0.17–0.24 0.24
6 0.24–0.34 0.32
7 0.34–0.47 0.38
8 0.47–0.63 0.52
9 0.63–0.81 0.66
10 0.81–1.00 0.87

Adapted with permission from Gordon, H. S., et al. “Racial variation in predicted and 
observed in-hospital death.” JAMA 276 (1996): 1639–44. Copyright 1996, American 
Medical Association.

Figure 8.1 Estimated (x-axis) versus observed values (y-axis) for risk of death among 
hospitalized patients. The dotted diagonal line represents perfect calibration. 
Data from Gordon, H. S., et al. “Racial variation in predicted and observed 
in-hospital death.” JAMA 276 (1996): 1639–44.
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outcome. In other words, you must choose a cut-off of what estimated proba-
bility of outcome you will consider to be a prediction of outcome. Once you do 
this, you can compute the sensitivity (proportion of persons who are predicted 
to have the outcome who really have it), specificity (proportion of persons who 
do not have the outcome who are predicted not to have it), and the proportion 
of correctly identified persons.

Choosing the cut-off for probability of outcome is not always easy. Each 
cut-off has a different sensitivity, specificity, and proportion of correctly iden-
tified persons. One simple cut-off is to assume that anyone with probability 
of outcome greater than 50 percent is predicted to have the outcome. How-
ever, the choice of 0.5 as the cut-off for measuring the predictive ability of 
your model may not be best. This is especially true for clinical diseases (e.g., 
ischemic heart disease) where even relatively low probabilities of disease are 
worrisome because of the seriousness of the disease. For example it would not 
be appropriate to send a patient with chest pain home who had a 49 percent 
probability of having acute ischemia. For this reason, models predicting acute 
ischemia choose a much lower cut-off, such as seven percent for computing 
sensitivity and specificity.5

Another useful measure of how well your logistic regression model predicts 
outcome is the c index.6 It is a measure of the concordance between predicted 
and observed outcomes. Here’s how it works: In any data set there will be pairs 
of subjects who have the same observed outcome (e.g., both have had heart 
attacks, neither have had heart attacks) and some who have different outcomes 
(e.g., one had a heart attack, one did not). For each pair of subjects with dif-
ferent outcomes, one can ask whether the model predicts a higher likelihood 
of outcome for the subject in the pair who experiences the outcome or for the 
subject who does not experience the outcome. If the subject with the higher 
predicted likelihood of outcome actually experiences the outcome the pair is 
concordant (with outcome). If the case with the higher predicted likelihood 
of outcome does not have the outcome, the pair is discordant. If the model 
predicts the same probability of outcome for both cases, the pair is tied. The c 
index equals the proportion of concordant cases plus half of the ties. A value 
of 0.5 would indicate that the model does not discriminate any better than 
chance. The higher the c value is (maximum 1) the greater the ability of your 
model to predict outcome.
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5 Goldman, L., Cook, E. F., Brand, D. A., et al. “A computer protocol to predict myocardial infarction 
in emergency department patients with chest pain.” N. Engl. J. Med. 318 (1988): 797–803.

6 Harrell, F. E., Lee, K. L., Matchar, D. B., et al. “Regression models for prognostic prediction: Advan-
tages, problems, and suggested solutions.” Cancer Treat. Rep. 69 (1985): 1071–7.
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Although there is an R2 measure for logistic regression, it does not perform 
as well for this type of analysis as it does for multiple linear regression and is 
rarely reported in the literature.

8.2.C  Proportional odds regression model

Proportional odds regression, as with (binary) multiple logistic regression, 
generates a likelihood ratio test. A significant P value indicates that you can 
reject the null hypothesis that the independent variables are unassociated with 
outcome. However, the test has the same limitations as with binary multiple 
logistic regression: it does not tell you which variables are associated with out-
come nor how strongly the variables are associated with outcome, just that the 
association is more than you would expect by chance.

As with (binary) multiple logistic regression it is possible to calculate a c 
statistic. The higher the c value the greater the ability of your model to predict 
outcome.

To get a better sense of the fit of a proportional odds logistic regression 
model, you can create separate binary logistic models (the number of models 
would be one less than the number of levels of the outcome variable). For each 
model the program will calculate the same statistics that you would have with 
a binary logistic model (e.g., Hosmer–Lemeshow test, c test). If each of the 
individual models fit well, it is likely that the overall proportional odds model 
also fits well.7

8.2.D Multinomial logistic regression

Multinomial logistic regression also generates a likelihood ratio test that when 
significant tells you that you can reject the null hypothesis that the independ-
ent variables are unassociated with outcome.

To get a better sense of the fit of a multinomial logistic regression model, 
you can create separate binary logistic models (the number of models would 
be one less than the number of groups of the outcome variable).8 Each binary 
logistic model compares the reference group chosen for the multinomial logis-
tic regression model to one of the other groups. For each model the program 
will calculate the same statistics that would be generated with a binary logistic 
model (e.g., Hosmer–Lemeshow test, c test). If each of the individual models 

7 For more on this strategy see: Hosmer, D. W. and Lemeshow, S. Applied Logistic Regression. 2nd 
edn. New York: John Wiley, pp. 305–8

8 For more on this strategy see: Hosmer, D. W. and Lemeshow, S. Applied Logistic Regression. 2nd 
edn. New York: John Wiley, pp. 280–7.
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fit well, it is likely that the overall multinomial logistic regression model also 
fits well.

8.2.E  Proportional hazards analysis

As with logistic regression analysis, the likelihood ratio test is used to assess 
whether the independent variables are associated with the outcome. If the 
time to outcome of subjects with certain values on their independent variables 
are different from the baseline rate (more than you would expect by chance) 
then the chi-squared associated with the likelihood ratio test will be statisti-
cally significant.

It is also possible to compare estimated and observed time to outcome. 
This can be done using Kaplan–Meier survival curves for each important 
subgroup of patients defined by your model. For example, Colford and col-
leagues found in their proportional hazards analysis that two variables, CD4 
count and hematocrit (both split at the median), had the strongest association 
with survival among HIV-infected patients with cryptosporidiosis.9 To assess 
how well their model estimated survival, they stratified their patients into 
four groups based on CD4 count and hematocrit. As shown in Table 8.3, they 
found that the estimated and observed median survival times were similar.

Because the underlying survival function is not automatically estimated in 
proportional hazards analysis, you need to use adjunct estimators to calcu-
late estimated median survival. Also, this procedure will not work if there are 
few subjects who experienced the outcome. (To calculate an estimated median 
survival, half of the sample for each covariate pattern must experience the 
outcome.)

8.2.F  Poisson regression and negative binomial regression

To assess the fit of a Poisson or negative binomial regression model, report 
the likelihood ratio test.10 If the test is significant then the independent 
variables are associated with outcome more than would be expected by 
chance.

To determine whether the Poisson distribution fits the data, look at the 
deviance goodness-of-fit test. The value of the deviance divided by the degrees 

9 Colford, J. M., Tager, I. B., Hirozawa, A. M., et al. “Cryptosporidiosis among patients infected with 
human immunodeficiency virus: Factors related to symptomatic infection and survival.” Am. J. 
Epidemiol. 144 (1996): 807–16.

10 This test is also referred to as the deviance test statistic. I prefer likelihood ratio to distinguish it 
from the deviance goodness-of-fit test. See: “Poisson Regression” at: www.statsdirect.com/help/
regression_and_correlation?poisson_regression.htm.
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of freedom (this may be output as Deviance Value/df) should have a value of 
about 1 if the data fit a Poisson distribution. In this case, the P value will be 
non-significant. On the other hand, if the value of the deviance divided by 
the degrees of freedom is much larger than one and the P value is statistically 
significant, the data may be overdispersed, in which case you should retry the 
model using a negative binomial distribution.

8.3 What do the coefficients tell me about the relationship between 
each variable and the outcome?

With multivariable analysis a variable’s coefficient (also called beta) tells you 
how the outcome changes with changes in the independent variable, while 
adjusting for the other independent variables in the model. Coefficients can be 
positive or negative. Because the different multivariable techniques are mod-
eling different outcomes, there are differences in how these coefficients are 
interpreted (Table 8.4).

8.3.A Coefficients in multiple linear regression11

In multiple linear regression, the mean value of the outcome is modeled 
(Table 8.4). For each increase (decrease) in the independent variable, the mean 

Table 8.3 Survival among subgroups of HIV-infected patients with 
Cryptosporidium.

Subgroup
Relative 
hazard

95% confidence 
interval

Median survival (days)

Estimated Observed

CD4 count ≤53 cells/ml and 
hematocrit ≤37%

15.9 6.0–42.2 213 204

CD4 count ≤53 cells/ml and 
hematocrit > 37%

8.1 2.8–23.6 465 341

CD4 count >53 cells/ml and 
hematocrit ≤37%

3.1 1.1–8.8 688 878

CD4 count >53 cells/ml and 
hematocrit > 37%

1.0 (ref.) 1,119 1,119

Adapted with permission from Colford, J. M., et al. “Cryptosporidiosis among patients 
infected with human immunodeficiency virus.” Am. J. Epidemiol. 144 (1996): 807–16.

11 Strictly speaking, ANOVA does not produce regression coefficients and therefore I have not listed 
it in the title of the subsection. However, when you perform an ANOVA analysis your printout may 
well show you regression coefficients. These coefficients are based on a linear regression approach 
to the problem. As explained in Section 3.2.D, ANOVA and linear regression produce the same 
results if set up in the same way.
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Table 8.4 Meaning of individual variable coefficients from multivariable models.

Multivariable 
technique

What is being 
modeled? What does coefficient mean? Special meaning of coefficient

Multiple linear 
regression

Mean value of the 
outcome

For each increase (decrease) in the 
independent variable, the mean 
value of the outcome increases 
(decreases) by the amount of the 
coefficient

Coefficient = slope of line 
describing the relationship of 
the independent variable to the 
outcome

Multiple (binary) 
logistic 
regression

The logarithm of 
the odds (the 
logit) of the 
outcome

For each increase (decrease) in the 
independent variable, the logit of 
the outcome increases (decreases) 
by the amount of the coefficient

Exponentiated coefficient = odds 
ratio (ecoefficient = odds ratio); 
odds ratio is the likelihood of 
having the outcome compared 
to not having the outcome

Proportional odds 
regression

Cumulative logit 
of the outcome

For each increase (decrease) in the 
independent variable, the logit for 
going from one level to the next 
level of the outcome increases 
(decreases) by the amount of the 
coefficient.

Exponentiated coefficient = odds 
ratio (ecoefficient = odds ratio); 
odds ratio is the likelihood 
of being in one level of the 
outcome compared to being in 
the next level of the outcome

Multinomial 
logistic 
regression

Logit of being in 
one category 
of the outcome 
versus the 
reference 
category of the 
outcome

For each increase (decrease) in the 
independent variable, the logit 
of being in a particular category 
compared to the reference group 
increases (decreases) by the 
amount of the coefficient

Exponentiated coefficient = odds 
ratio (ecoefficient = odds ratio); 
odds ratio is the likelihood 
of being in one category 
compared to the reference 
category

Proportional 
hazards analysis

The logarithm 
of the relative 
hazard

For each increase (decrease) in 
the independent variable, the 
logarithm of the relative hazard 
increases (decreases) the amount 
of the coefficient

Exponentiated 
coefficient = relative hazard 
(ecoefficient = relative hazard); 
relative hazard is the likelihood 
of having the outcome versus 
not having the outcome

Poisson regression 
and negative 
binomial 
regression 
 
 
 

The logarithm of 
the outcome 
 
 
 
 
 

For each increase (decrease) in 
the independent variable, the 
logarithm of the outcome 
increases (decreases) by the 
amount of the coefficient 
 
 

Exponentiated 
coefficient = relative risk 
(or relative incidence) 
(ecoefficient = relative risk); relative 
risk is how much higher the 
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change in the independent 
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value of the outcome increases (decreases) by the amount of the coefficient. A 
positive coefficient indicates that the independent variable and the outcome 
variable are moving (up or down) together. A negative coefficient indicates 
that the independent variable and the dependent variable are moving in oppo-
site directions.

For example, let’s say that you are assessing the association between the age 
(measured in years) and the outcome variable, cholesterol level (measured in 
mg/dl), with statistical adjustment for dietary intake of cholesterol. In your mul-
tiple linear regression model, the adjusted coefficient for age is 0.2. The units for 
the coefficient would be mg/(dl year). This means that for each year the mean 
cholesterol value increases by 0.2 mg/dl. If the coefficient were –0.2, it would 
mean that for each year the mean cholesterol value decreases by 0.2 mg/dl.

With linear regression, the coefficient has a special property: it is the slope 
of the line describing the relationship of the independent variable to the out-
come. With the slope and one point you can draw a line showing the best 
estimated value for all possible values of your dependent variable. One point 
which the software program will automatically output is the intercept (the 
point on the y-axis where x is zero).

For each coefficient of your multiple linear regression model your software 
program will calculate a P value. The P value is based on a t test, where t is

t = coefficient
standard error

The t value has an intuitive meaning. If the coefficient is much bigger than 
the error associated with estimating the coefficient, the t value will be large and 
the P value will be small and statistically significant. Indeed, t values greater 
than 2.0 (coefficient is two times the standard error) are statistically significant 
at the traditional P < 0.05 value (as long as the degrees of freedom are at least 
60). When the P value is statistically significant, we reject the hypothesis that 
the coefficient is zero (which is equivalent to saying the slope of the line is zero, 
or that the line is horizontal).

8.3.B Coefficient in multiple (binary) logistic regression

The meaning of the coefficient in logistic regression is different from its mean-
ing in linear regression because logistic regression is modeling the logarithm 
of the odds of the outcome; this is known as the logit (Table 8.4). With logistic 
regression the coefficient tells you how a one-unit change in the independent 
variable changes the logit. A positive coefficient means that as the variable 

If the coefficient is 
much bigger than 
the error associated 
with estimating the 
coefficient, the t value 
will be large and the P 
value will be small and 
statistically significant.

With linear regression, 
the coefficient equals 
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increases, the logit increases. A negative coefficient means that as the variable 
increases, the logit decreases.

To interpret the meaning of the coefficients in logistic regression, you must 
know which value of the outcome the logit is estimating. The default on most 
software programs is to determine the logit for the lower numerical value 
(determined by how you have coded your variables). But you could ask the 
computer to determine the logit of the higher numerical value. Either way, the 
results would be the same but the signs of the coefficients would be different. 
Make sure you know for which value of your outcome variable the computer 
is estimating the logit.

The coefficients in logistic regression have a special meaning. If you expo-
nentiate (take the antilogarithm of) the coefficient, you will obtain the odds 
ratio. This is simply the mathematical constant e raised to the power of the 
coefficient’s value:

odds ratio ecoefficient=

Although your statistical program will output the odds ratio automatic-
ally, if you needed to calculate it yourself from the coefficient simply enter the 
co efficient in your calculator, add a negative sign if the coefficient is negative 
and press the button with the little e on it. If your calculator has no e button, 
buy a new calculator or use Excel (the ‘exp’ function).

The odds ratio tells you how much the likelihood of the outcome changes 
with a one-unit change in the independent variable. When the odds ratio is 
greater than 1 then the risk of the outcome increases as an independent vari-
able increases or when a dichotomous independent variable is yes/present 
(assuming it is coded 1 = yes/present and 0 = no/absent). When the odds ratio 
is less than 1 then the risk of the outcome decreases as an interval-independent 
variable increases or when a dichotomous independent variable is yes/present 
(assuming it is coded 1 = yes/present and 0 = no/absent). An odds ratio of 1 
indicates that there is no change in the likelihood of outcome with changes in 
the independent variable.

In published work, you will see many other terms used for the odds ratio 
including relative risk, risk, and risk ratio. The odds ratio is the preferred 
term because it will alert your reader that you have used logistic regression. 
Odds ratios approximate the relative risk, but only when the outcome is 
uncommon (<15 percent). However, even when the outcome is common, it 
is okay to report the odds ratio as long as you are clear that it does not equal 
the relative risk.

To assess the precision of the odds ratios you will want to calculate the 
95% confidence intervals. They are easily obtained by the extension of the 
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formula for computing the odds ratio. Your statistical packages will auto-
matically compute the confidence intervals, but it is handy to know how to  
calculate it, in case you ever need to. To obtain the upper confidence interval 
use the addition sign; to obtain the lower confidence interval use the subtrac-
tion sign. The standard error is usually next to the coefficient on the computer 
printout.

Looking at the formula you can also see how the precision of the estimate 
(measured by the standard error) is reflected in the confidence intervals. If 
the standard error is large you will be adding (or subtracting) a large number 
from the coefficient. This will result in the upper limit being much bigger than 
the odds ratio/relative hazard and the lower limit being much smaller than the 
odds ratio/relative hazard.

Of course, you don’t have to use 95 percent confidence intervals. For some 
exploratory studies you may wish to report 90 percent confidence intervals. 
For other studies, where precision is very important, you may wish to report 
99 percent confidence intervals. The formula is the same as the one shown 
above except that instead of 1.96, which is the standard normal deviate for 95 
percent confidence intervals, you substitute the standard normal deviate for 
the confidence intervals you want (1.66 for 90 percent confidence intervals; 
2.576 for 99 percent confidence intervals).

You will also want to know whether the coefficients (and by extensions the 
odds ratios) are statistically significant. To do this use the Wald test. It is based 
on either the chi-squared or the z distribution:

chi-squared
distribution

coefficient
standard error

or= 







2 zz
distribution

coefficient
standard error

=

With either formula, coefficients that are twice their standard error will be 
significant at P < 0.05. The Wald test assumes a large sample size (i.e., 80–100 
or more subjects).

There are two other tests that you can use to determine the statistical signifi-
cance of a particular coefficient: the likelihood ratio test and the score test.12  

95% confidence interval for odds ratio  = ecoefficient ± 1.96 (standard error)
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12 You met the likelihood ratio test in Section 8.2.B on evaluating whether your model accounts for 
outcome better than chance. The difference is that here you are comparing models with a particu-
lar variable present to models where that variable is absent (but the other independent variables are 
present). In Section 8.2.B this test compared models that contained all of the independent variables 
to models that contained none of the independent variables.

 

 

 

 

 



154 Interpreting the results

The likelihood ratio test is based on comparing the likelihood when the vari-
able is not in the model to the likelihood when the variable is in the model. 
To compute the test statistic for models where you have multiple independent 
variables, each variable is singly dropped while retaining the other variables 
in the model. The statistic follows a chi-squared distribution. Computation of 
the score test is based on derivatives of the likelihood ratio. It also follows a 
chi-squared distribution.

Although there are situations when the likelihood ratio test may perform 
better,13 most researchers use the Wald chi-squared. If your results are robust 
you should get similar results with all three tests.

To better understand the meaning of coefficients in logistic regression 
(and because it will also help in understanding the coefficients from propor-
tional odds regression, multinomial regression, proportional hazards analy-
sis, Poisson and negative binomial regression), look at Table 8.5. The data are 
from the observational study of chest compression only CPR discussed in 
Section 3.3.14

Column 1 shows the regression coefficient; column 2 shows the standard 
error of the regression coefficient, column 3 shows the Wald chi-squared, 

Table 8.5 Output from a multiple logistic regression model of the relationship between individual 
variables and favorable neurologic outcome.

Coefficient
Standard 
error

Wald 
chi-
squared P value Odds ratio

95% 
confidence 
interval

Age (per year) –0.020 0.005 16.32 0.0001 0.98 0.96–0.99
Cardiac cause vs. no cardiac cause 0.802 0.581 1.90 0.16 2.23 0.72 – 6.96
Time from collapse to first bystander 

resuscitation attempt (min)
–0.051 0.051 1.01 0.31 0.95 0.86–1.05

Cardiac-only resuscitation vs. 
conventional CPR

0.798 0.327 5.94 0.01 2.22 1.17– 4.21

Time from first bystander resuscitation 
attempt to first AED analysis (min)

–0.287 0.076 14.43 0.0001 0.75 0.65– 0.87

Ventricular fibrillation or pulseless 
ventricular tachycardia vs. other 
rhythm

2.079 
 

0.425 
 

23.9 
 

0.0001 
 

8.00 
 

3.48–18.41 
 

13 Hauck, W. W. and Donner, A. “Wald’s test as applied to hypotheses in logit analysis.” J. Am. Stat. 
Assoc. 72 (1977): 851–3.

14 SOS-Kanto Study Group. “Cardiopulmonary resuscitation by bystanders with chest compression 
only (SOS-Kanto): An observational study.” Lancet 369 (2007): 920–6.
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155 8.3 Coefficients from multivariable models

column 4 shows the P value of the Wald chi-squared, column 5 shows the odds 
ratio, and column 6 shows the 95% confidence interval for the odds ratio.

Looking first at the coefficients in column 1, we see that certain coefficients 
are positive and certain coefficients are negative. When the coefficient is posi-
tive the logit of the outcome (in this case a favorable neurologic outcome) 
increases as the independent variable increases or when a dichotomous inde-
pendent variable is yes/present (assuming variable is coded as 1 = yes/present 
and 0 = no/absent). Therefore having a cardiac cause of the arrest (row 2), would 
make a favorable neurologic outcome more likely (assuming that the variable 
is coded cardiac cause yes = 1 and no = 0). When the coefficient is negative, the 
logit of the outcome decreases as the independent variable increases or when a 
dichotomous independent variable is yes/present (assuming variable is coded 
as 1 = yes/present and 0 = no/absent). Therefore as age increases (row 1) a favor-
able neurologic outcome is less likely.

If the outcome were coded such that we were predicting an unfavorable 
neurologic outcome, the coefficients would be the same but the signs would be 
in the opposite direction. Similarly, if the variable in row 2 were coded as no 
cardiac cause  = 1 vs. cardiac cause = 0, the coefficient would be the same, but 
the sign would be in the opposite direction. I hope you can appreciate why I 
took you so laboriously through the issue of coding of variables in Section 7.1. 
If you don’t keep track of how your variables are coded you will not correctly 
interpret your analysis.

A second critical lesson from Table 8.5 is that the size of the coefficient 
does not allow you to compare the variables and determine which one is 
most strongly associated with the outcome unless all the variables are in 
the same units and have the same level of precision. Said in the opposite 
way: the size of the coefficient hinges on the units it is measured in and 
its precision reflects the size of the standard error. To illustrate, if you look 
at column 1, you see that the coefficient for age (–0.020) is the smallest of 
all the coefficients. But this is not because age has the weakest association 
with neurologic outcome; it is because age is measured in single years. If age 
were measured in 10 years, the coefficient would be –0.20 or 10 times bigger. 
That’s because if the coefficient associated with 1 year were –0.02 then the 
coefficient associated with 10 years would be –0.02 + –0.02 +–0.02 +–0.02 
+–0.02 –0.02 + –0.02 +–0.02 +–0.02 +–0.02 or –0.20. Looking back at Table 
8.5 you can appreciate that for a 10-year period, age would no longer be the 
smallest coefficient; however, grouping the units in 10-year bands in no way 
changes the importance of a variable.

Another interesting aspect of the variable age is how small the standard error 
is relative to the coefficient. That’s probably because age – compared to many 
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other variables – can be measured with more precision and is more likely to be 
accurate in observational medical records. Because the standard error is very 
small, the Wald test for the variable age is one of the largest even though the 
coefficient for age is one of the smallest. A large value of the Wald test, yields 
a small P value. Compare the variable age to the variable time from collapse 
to first bystander resuscitation attempt in minutes. Although the coefficient 
for the latter variable is larger than for age, the standard error is as big as the 
coefficient. Given that, it is no surprise that the coefficient is not statistically 
significant.

Those coefficients with a positive sign yield odds ratios that are greater 
than one, while those with a negative sign yield odds ratios less than one. In 
studies such as this, where the outcome is uncommon (only 5% of subjects 
with any type of bystander resuscitation had a favorable neurologic outcome) 
the odds ratios tell you how the likelihood of the outcome changes with a 
one-unit change of the independent variable. So a 1-year increase in age (odds 
ratio = 0.98) is associated with a 2% decrease in the likelihood of favorable 
neurologic outcome. Conversely receiving cardiac-only resuscitation (odds 
ratio = 2.2) more than doubles (multiplies by 2.2) the chance of a favorable 
neurologic outcome.

To determine the impact of a multiple unit change, you would take the 
odds ratio to the power of the number of units of change. For example, a 
10-year increase in age would be associated with an odds ratio equal to 
(0.98)12 or 0.82. (You may be surprised that to determine the coefficient for 
a multiple unit change you add the coefficients for a single unit change, 
and that to determine the odds ratio for a multiple unit changes you multi-
ply odds ratio. To prove to yourself that this is correct, exponentiate the 
coefficient for a 10-unit change of age [–0.20] and you will get an odds 
ratio of 0.82.)

Looking back at the formula for calculating the 95% confidence intervals for 
the odds ratios, you will appreciate that if the standard error is large compared 
to the coefficient, then the confidence intervals will be wide; this is the case for 
the variable of arrest owing to a cardiac cause. Wide confidence intervals may 
signify error in measurement, insufficient sample size, or skewed distribution 
of the independent variable.

8.3.C Coefficients in proportional odds regression

Since proportional odds regression is an extension of logistic regression, there 
are many similarities in the meaning of the coefficients. For example, the 
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The odds ratio of 
proportional odds 
regression tells you 
how the likelihood of 
going from one level of 
the outcome variable 
to the next level of 
the outcome variable 
changes with a change 
in the independent 
variable.

exponentiated coefficient is also equal to the odds ratio, and the 95% confi-
dence intervals and the P values are calculated in the same way. The major dif-
ference is that with binary logistic regression the logit of the outcome is being 
modeled while with proportional odds regression it is the cumulative logit 
of the outcome that is being modeled (Table 8.4). Therefore, the odds ratio of 
proportional odds regression tells you how the likelihood of going from one 
level of the outcome variable to the next level of the outcome variable changes 
with a change in the independent variable.

When the odds ratio is greater than 1 then the likelihood of the outcome 
going from one level to the next level increases as the independent vari-
able increases or when a dichotomous independent variable is yes/present 
(assuming it is coded 1 = yes/present and 0 = no/absent). When the odds ratio 
is less then one then the likelihood of the outcome going from one level 
to the next level decreases as an interval-independent variable increases 
or when a dichotomous independent variable is yes/present (assuming it 
is coded 1 = yes/present and 0 = no/absent). As with binary logistic regres-
sion, the odds ratio only approximates the relative risk when the outcome is 
uncommon.

8.3.D Coefficients in multinomial logistic regression

With multinomial logistic regression the exponentiated coefficient is equal to 
the odds ratio and the 95% confidence intervals and the P values are calculated 
just as they are with binary logistic or proportional odds regression. However, 
multinomial logistic regression is modeling the logit of being in one category 
of the outcome compared to being in the reference category (Table 8.4). There-
fore, the odds ratio of multinomial regression tells you how the likelihood 
of being in one category versus being in the reference group changes with a 
change in the independent variable.

When the odds ratio is greater than 1 then the likelihood of being in one cat-
egory versus being in the reference group increases as an interval-independent 
variable increases or when a dichotomous independent variable is yes/present 
(assuming it is coded 1 = yes/present and 0 = no/absent). When the odds ratio 
is less than one then the likelihood of being in one category versus being in the 
reference group decreases when an interval-independent variable increases or 
when a dichotomous independent variable is yes/present (assuming it is coded 
1 = yes/present and 0 = no/absent). As with binary logistic regression and pro-
portional odds regression, the odds ratio only approximates the relative risk 
when the outcome is uncommon.
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8.3.E Coefficients in proportional hazards analysis

Proportional hazards analysis models the logarithm of the relative hazard. The 
coefficient tells you how much a one-unit change in the independent variable 
changes the logarithm of the relative hazard.

The meaning of the signs of the coefficients in proportional hazards analy-
sis is similar to that in logistic regression. A positive coefficient indicates that 
as the independent variable increases, the logarithm of the relative hazard 
increases. A negative coefficient indicates that as the independent variable 
increases, the logarithm of the relative hazard decreases.

If you take the antilogarithm of the exponentiated coefficient of a propor-
tional hazards analysis, you will obtain the relative hazard. The relative hazard 
is the ratio of time to outcome given a particular set of risk factors to time to 
outcome without these factors.

Authors may refer to the relative hazard as a relative risk, risk ratio, rate 
ratio, and hazard ratio. However, relative hazard is the preferred term because 
it alerts your reader that you have performed proportional hazards analysis. 
The 95% confidence intervals and the P values for the relative hazard are cal-
culated in the same way as with logistic regression.

When the relative hazard is greater than 1 then the risk of the outcome 
increases as an independent variable increases or when a dichotomous inde-
pendent variable is yes/present (assuming it is coded 1 = yes/present and 0 = no/
absent). When the relative hazard is less than 1 then the risk of the outcome 
decreases as an interval-independent variable increases or when a dichotom-
ous independent variable is yes/present (assuming it is coded 1 = yes/present 
and 0 = no/absent).

8.3.F Coefficients in Poisson regression and negative binomial regression

Poisson regression and negative binomial regression model the logarithm of 
the outcome (Table 8.4). The coefficients tell you how much a one-unit change 
in the independent variable changes the logarithm of the outcome. The mean-
ing of the signs of the coefficients is similar to that of the other types of multi-
variable analysis discussed in this chapter. A positive coefficient indicates that 
as the independent variable increases, the logarithm of the outcome increases. 
A negative coefficient indicates that as the independent variable increases, the 
logarithm of the outcome decreases.

With Poisson regression and negative binomial regression the exponenti-
ated coefficient equals the relative risk (or relative incidence when comparing 
rates of developing a disease or condition). When the relative risk is greater 
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than one then the risk of the outcome or rate of outcome increases as an inde-
pendent variable increases or when a dichotomous independent variable is 
yes/present (assuming it is coded 1 = yes/present and 0 = no/absent). When the 
relative risk is less than 1 then the risk of the outcome decreases as an interval-
independent variable increases or when a dichotomous independent variable 
is yes/present (assuming it is coded 1 = yes/present and 0 = no/absent).

As you would for an odds ratio or relative hazard, you will want to report 
the 95% confidence interval for the relative risk or relative incidence as well as 
the P value.

8.4 How do I interpret the results of interaction terms?

Having reviewed the meaning of coefficients, let’s return to the question of 
how to interpret product terms used to represent interaction effects (Section 
7.3). If the impact of the two variables together is substantially greater than 
the additive effect of the two variables, the coefficient will be positive and the 
associated P value will be statistically significant. If the impact of the two vari-
ables together is substantially less than the additive effect of the two variables, 
the coefficient will be negative and the associated P value will be statistically 
significant. If the impact of the two variables together is equal to the additive 
effect of the two variables, the coefficient will be close to zero and the associ-
ated P value will not be statistically significant.

8.5 Do I have to adjust my multivariable regression coefficients for 
multiple comparisons?

To answer this complicated question it is best to consider first the simpler case 
of bivariate analyses. Let’s say, for example, that you are assessing the associ-
ation of age (40–59 years, 60–79 years, 80–99 years) on cholesterol levels using 
analysis of variance. In addition to being interested in the comparison of the 
three groups, you are also interested in a pair-wise comparison of the young-
est group to the oldest group. Intuitively, it makes sense that if you compare 
three groups, one group will be highest and one group will be lowest. There-
fore, if you compare the highest and the lowest group, you are running a risk 
that you are capitalizing on chance. One way to deal with this issue is not to 
consider pair-wise comparisons unless the overall F (for the comparison of 
the three groups) is significant. In addition, you should set a more stringent 
cut-off for pair-wise comparisons before rejecting the null hypothesis. This is 
usually done using the Bonferroni correction. It “charges” you for the number 
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of  pair-wise comparisons by requiring a lower P value before concluding that 
a comparison is statistically significant. To calculate the correction, simply 
divide the usual P value (e.g., 0.05) by the number of pair-wise comparisons 
you are performing. If you are performing three pair-wise comparisons, you 
would reject the null hypothesis only if P ≤ 0.016 (0.05/3 = 0.016).

When you perform multiple bivariate comparisons (for example, compar-
ing two groups on 20 different variables), some statisticians also recommend 
adjusting for multiple comparisons. The theory is that, by chance, at least one 
of your 20 comparisons will be statistically significant at the P < 0.05 level 
(that’s because 1/20 = 0.05). However, instead, what most investigators do is 
perform a multivariable analysis. With multivariable analysis, you need not 
worry about multiple comparisons when performing tests of the significance 
of the overall model (F or likelihood ratio test). The reason is that you are 
performing only a single test to assess whether the independent variables (as a 
group) are associated with the outcome.

But when you turn to the question of whether the individual independent 
variables from your multivariable model are statistically associated with your 
outcome, you are essentially making multiple comparisons. As with bivari-
ate comparisons, some statisticians advocate adjusting your P value for the 
number of independent variables in your model. If you have ten variables, you 
would require that the P value be < 0.005 (0.05/10) before concluding that the 
association between the independent variable and the outcome is significant.

However, there are major disadvantages to adjusting for multiple compari-
sons. They have been well articulated by the epidemiologist Kenneth Roth-
man.15 He points out that the basis of adjustment for multiple comparisons is 
the assumption that chance is the most common explanation for an associa-
tion between two things. But this assumption is flawed because the universe 
is governed by natural (physical) laws. Most associations in the universe have 
a true (rather than chance) connection. (Note that a true connection does not 
mean a causal connection.)

In addition, an individual comparison cannot “know” how many other 
comparisons you have made. Therefore an individual association cannot be 
more or less likely to be caused by chance based on how many other asso-
ciations you have assessed. Rothman illustrates the absurdity of strict adher-
ence to the principle of adjusting for multiple comparisons by asking: If you 
favor adjusting for multiple comparisons, should you adjust for the number 
of comparisons you assessed in a single paper, or the number of comparisons 

15 Rothman, K. J. “No adjustments are needed for multiple comparisons.” Epidemiology 1 (1990): 
43–6.
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161 8.5 Adjusting for multiple comparisons

assessed in a series of papers analyzing the same data set, or the number of 
comparisons performed during your career?

Personally, I am swayed by Rothman’s arguments and do not adjust for mul-
tiple comparisons with multivariable models. Nonetheless, if you are not going 
to adjust for multiple comparisons, there are measures that you should take to 
minimize potential problems. Tell your reader how many variables (compari-
sons) were tested in your analysis. Do not report only the independent vari-
ables that were significantly associated with outcome. Nonsignificant results, 
while much less sexy, are every bit as informative. Do not be a slave to the 
cut-off of P < 0.05, in either direction. Don’t assume something is insignificant 
just because its P value is 0.06 or that something is significant just because its 
P value is 0.04. Use confidence intervals, whenever possible, instead of P val-
ues (although, as discussed above, confidence intervals are also subject to the 
potential multiple comparison problem, since they are based on the 95 percent 
probability that 95 percent of repeated samples of the population would pro-
duce 95 percent confidence intervals that would contain the true value). Most 
importantly, evaluate your findings in the light of previous work and biologi-
cal plausibility. If you anticipate that a reviewer will not be convinced by the 
above, cite Rothman’s article. It sometimes helps.16

16 For more on the debate about multiple comparisons, see: Savitz, D. A. and Olshan, A. F. “Multiple 
comparisons and related issues in the interpretation of epidemiologic data.” Am. J. Epidemiol. 142 
(1995): 904–8; Thompson, J. “Re: ‘Multiple comparisons and related issues in the interpretation of 
epidemiologic data.’” Am. J. Epidemiol. 147 (1997): 801–6; Goodman, S. N. “Multiple comparisons 
explained.” Am. J. Epidemiol. 147 (1997): 807–12; Savitz, D. A. and Olshan, A. F. “Describing data 
requires no adjustment for multiple comparisons: A reply from Savitz and Olshan.” Am. J. Epide-
miol. 147 (1997): 813–14; Thompson, J. R. “A response to ‘Describing data requires no adjustment 
for multiple comparisons.’” Am. J. Epidemiol. 147 (1997): 815.
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9

Delving deeper: Checking the 
underlying assumptions of the 
analysis

9.1 How do I know if the assumptions of my multivariable  
model are met?

In the last chapter, I covered how to assess how well your model fit your data 
based on those parameters that are typically output by standard computer 
software packages. In this chapter, we are going to delve deeper to check the 
underlying assumptions of the models and to determine strategies for improv-
ing the fit of models. Reader beware: keep your biostatistician near for this 
chapter. Not only are some of the concepts hard, but many of these supple-
mentary procedures require judgment that comes from having done many 
prior analyses. Also for many of the issues described below there is contro-
versy as to what procedures are best and whether some have value at all.

The content of this chapter is often referred to as regression diagnostics (as 
in diagnosing problems with regression models). One of the most useful tools 
for assessing whether there are problems with the model is analysis of residu-
als, the subject of the next section. In that section I will review how you can 
use residuals to assess the overall fit of multivariable models. In the subse-
quent section I will review how to use residuals and other techniques to iden-
tify departures from specific assumptions of multivariable models.

9.2 What are residuals? How are they used to assess the fit of models?

Residuals are the difference between the observed and the estimated value. 
They can be thought of as the error in estimation.

 Besides “raw” residuals, there are a number of possible transformations of 
residuals for different multivariable procedures (Table 9.1). Standardized and 
studentized residuals are especially helpful with interpreting linear regression 
models. Pearson residuals and influence tests are used to interpret multiple 
logistic regression models. Cox–Snell, Martingale, deviance, and Schoenfeld 
residuals are useful for interpreting proportional hazards analyses. These 
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163 9.2 Residuals assess the fit of models

different residuals are output by standard software programs, as are the plots 
described below. I will explain each of these different types of residuals in the 
context of their specific uses. 

To use residuals to assess the overall fit of a multiple linear regression or 
binary logistic regression model, plot the raw residuals on the y-axis and 
the estimated outcome on the x-axis. In a well-fitting model, the residu-
als will be close to 0, meaning that the observed and estimated values are 
close to one another. When the observed is greater than the estimated 
value the residual is positive; when the observed value is less, the residual 
is negative.

Table 9.1. Type of residual with purposes.

Type of residual used Purposes

Multiple linear regression
Raw residuals Fit of model

Test of normality and equal variance
Test of linearity

Standardized residuals Test of normality and equal variance
Identification of outliers

Studentized residuals Identification of outliers that are leverage points
Leverage Identification of outliers that are leverage points
Cook’s distance Identification of outliers with strong influence
Multiple logistic regression
Raw residuals Fit of model
Change in chi-squared statistic with exclusion  

of subjects with particular covariate pattern
Fit of model, identification of influential observations

Change in deviance with exclusion of subjects with 
particular covariate pattern

Fit of model, identification of influential observations

Standardized Pearson residuals Outliers
Change in logistic coefficients with exclusion of 

subjects with particular covariate pattern
Fit of model, identification of influential observations

Proportional hazards analysis
Cox–Snell residuals Fit of model
Martingale residuals Verification of linearity
Deviance residuals Identification of outliers
Schoenfeld residuals Verification of proportionality assumption
Poisson analysis
Standardized residuals Fit of model, outliers
Standardized deviance residuals Fit of model, outliers

 



164 Checking the underlying assumptions of the analysis

When the residuals are larger at certain points of the predicted value of 
the outcome than at other points (e.g., large at extreme values of the outcome 
and small at intermediate values) it suggests a violation in the assumptions 
of the model such as non-normal distribution (Section 9.3), nonlinearity 
(Section 9.4), or a mis-specification of the model [e.g., an important variable 
omitted). If there are one or two points with extreme residuals it suggests 
outliers (Section 9.5)

For logistic regression it is also helpful in assessing the fit of the model to 
plot either 1) the change in the value of the Pearson chi-square statistic (based 
on the Pearson residual) on the y-axis versus the estimated probability of the 
outcome on the x-axis, or 2) the change in the value of the deviance (based 
on deletion of subjects with a given covariate pattern) on the y-axis versus the 
estimated probability of the outcome on the x-axis. Points falling at the top 
right and left corners of the plot (above the two quadratic curves that you will 
see at the bottom of the plot) indicate covariate patterns that do not fit well.1 
Investigation of these particular covariate patterns may give you insight into 
why they do not fit the overall model.

For proportional odds and multinomial regression check the fit of the model 
by creating two or more (depending on whether you have three or more cat-
egories of your outcome variable) binary logistic regression models and assess 
the fit of each of these models.2

For proportional hazards analysis, the fit of the model may be assessed using 
the Cox–Snell residuals, which can range from zero to infinity. A Kaplan–
Meier survival curve for the outcome is generated using the Cox–Snell residu-
als as the time variable. This curve is then compared to a survival function for 
the outcome with a unit exponential distribution. If the proportional hazards 
model fits well the curves will be closely aligned.3

For Poisson regression, the fit of the model can be assessed by plotting either 
the standardized residuals or the standardized deviance residuals against the 
expected rate of the outcome. Very large (positive or negative) residuals indi-
cate covariate patterns that do not fit the model (outliers). In a well-fitting 
model 95% of the residuals should be between 2 and –2. If you draw a lowess 
line you would expect that the line would be flat and near zero. If the line 

1 For a detailed review of residuals with logistic regression see: Hosmer, D. W. and Lemeshow, S. 
Applied Logistic Regression. 2nd edn. New York, NY: Wiley, 2000, pp. 167–86.

2 Hosmer, D. W. and Lemeshow, S. Applied Logistic Regression. 2nd edn. New York, NY: Wiley, 2000, 
pp. 280–7, 305–8.

3 For a more detailed discussion of this, along with an illustration and an explanation of an alter-
native way of using the Cox–Snell residuals to test the fit of the proportional hazards analysis, 
see: Dupont, W. D. Statistical Modeling for Biomedical Researchers: A Simple Introduction to the 
Analysis of Complex Data. Cambridge: Cambridge University Press, 2002, pp. 239–41.
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165 9.3 Normality and equal variance assumptions

deviates substantially at certain estimated rates of outcome, it suggests that the 
model does not fit well at those points.4

It is important to understand that residual analysis is more art than sci-
ence. You may get alarming patterns of residuals even though your data fit 
the assumptions of your model. For example, with logistic regression you may 
get residuals that appear disturbing when you have strong dichotomous inde-
pendent variables (rather than interval-independent variables) even if your 
model is sound. It is also possible for your residuals to look fine, and yet the 
assumptions of your model have been violated. Small samples are especially 
likely to yield messy residuals. With large samples, multivariable models are 
sufficiently robust that departures from the assumptions of the model seen on 
residual analysis may not cause significant problems.

9.3 How do I test the normal distribution and equal variance 
assumptions of a multiple linear regression model?

Multiple linear regression assumes normal distribution and equal variance 
around the mean (Section 3.2.C).

To test whether your outcome has a normal distribution and equal vari-
ance around the mean for any value(s) of the independent variable(s), plot the 
raw residuals against each of the independent variables and the estimated out-
come variable. When these assumptions are met the residuals should be close 
to zero and the spread of values should be equal both above and below zero. 
If, instead, the residuals are far from zero and there is not an equal spread 
of values above and below zero, the assumptions of normal distribution and 
equal variance are not met.5

A better method of detecting departures from the normality assumption 
is to construct a normal probability plot of the standardized residuals. The 
standardized residuals are simply the residuals divided by the standard devi-
ation of the residuals. A normal probability plot is a plot of the cumulative 
frequency of the distribution of the residuals versus the residuals on a nor-
mal probability graph scale. If the assumption of normality is correct, the plot 
should be a straight line. A curve indicates that the normality assumption is 
not true. Points far from the line are outliers (Section 9.5).

4 For a good example of this type of plot, as well as a discussion of residuals with Poisson analysis 
see: Dupont, W. D. Statistical Modeling for Biomedical Researchers: A Simple Introduction to the 
Analysis of Complex Data. Cambridge: Cambridge University Press, 2002, pp. 325–6.

5 For a detailed description of analysis of residuals including numerous graphs see: Glantz, S. A. and 
Slinker, B. K. Primer of Applied Regression and Analysis of Variance. New York, NY: McGraw-Hill, 
1990, pp. 110–80.

T Ip

Use normal probability 
plots to detect 
departures from 
the assumptions of 
normality.

Residual analysis is 
more art than science.

 

 

 

 

 

 

 

 



166 Checking the underlying assumptions of the analysis

If your plots do not fit the assumptions of normality and equal variance, 
don’t give up. Look back in the section on transforming variables (Section 
3.2.C). It may be that by transforming one of your independent or dependent 
variables you will achieve a better model. Also, if your sample size is greater 
than 100, you can assume that the assumption of normal distribution is met 
for your independent variables (Section 3.2.C).

9.4 How do I test the linearity assumption of a multivariable model?

Residuals can also be used to test the linearity assumption of interval-inde-
pendent variables entered into a multivariable model. To test whether your 
interval-independent variables fit a linear relationship with outcome in a lin-
ear or binary logistic regression multivariable model, plot your raw residuals 
against each of your independent variables and the estimated value of the out-
come variable. If the relationship is linear, the points will be symmetric above 
and below a straight line, with roughly equal spread along the line. In contrast, 
if residuals are particularly large at very high and/or low levels of one of the 
independent variables or of the outcome variable, it suggests that there may be 
a departure from linearity.6

In the case of proportional hazards analysis, linearity of interval variables 
can be assessed using Martingale residuals, which are a linear transform-
ation of Cox–Snell residuals; they range from negative infinity to 1.7 The Mar-
tingale residuals (y-axis) are plotted against the interval predictor (x-axis).  
The shape of the smoothed curve will indicate whether the relationship is 
linear or some other shape.8 This information can help you to determine 
whether it is necessary to transform your interval variable to satisfy the lin-
earity assumption.

Another method of assessing the linear assumption of interval variables 
is to create multiple dichotomous variables of equal intervals of your vari-
able. This technique is very flexible and can be used with multiple logistic 
regression (binary, proportional odds, and multinomial), Poisson regression 
(including negative binomial regression), and proportional hazards regres-
sion; I explained this technique in Section 4.3.C. For multivariable analysis 

6 For a detailed description of analysis of residuals including numerous graphs see: Glantz, S. A. 
and Slinker, B. K. Primer of Applied Regression and Analysis of Variance. 2nd edn. New York, 
NY: McGraw-Hill, 2001, pp. 113–80.

7 For a great explanation of the different types of residuals with proportional hazards analysis 
see: Gillespie, B. “Checking assumptions in the Cox proportional hazards regression model”,Center 
for Statistical Consultation and Research, University of Michigan, 2006, available at: www. 
lexjansen.com/mwsug/2006/Statistics_DataAnalysis/SD08.pdf.

8 Hosmer, D. W. and Lemeshow, S. Applied Logistic Regression. 2nd edn. New York, NY: Wiley, 2000, 
pp. 480–2.
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167 9.5 Detecting outliers

you will be using the technique to assess whether your independent variable 
fits the linearity assumption after adjustment for other independent variables. 
If the numeric difference between the coefficients of each successive group is 
approximately equal, this is consistent with a linear gradient.

Finally, some researchers will assess whether an interval variable has a lin-
ear gradient by substituting a transformed version of the variable for the vari-
able itself. Commonly, logarithmic and quadratic transformations are tested. 
If the coefficient for that variable increases and the fit of the model improves 
with the transformation, this would suggest that the variable more closely fits 
a logarithmic or quadratic gradient.

9.5 What are outliers and how do I detect them in a multivariable 
model?

Outliers are points that do not follow the pattern of the other points. For 
example, Figure 9.1 shows a linear relationship with higher values of the inde-
pendent variable associated with higher values of the outcome. While most of 
the points conform to this linear relationship, two points (A and B) do not fit 
this relationship. Point A has a much higher value for outcome than you would 
expect given the intermediate value on the independent variable. Point B has 
a much lower value of outcome than you would expect given the high value of 
the independent variable.

Although you can gain some insight from the raw residuals, it is easier to 
detect outliers using standardized residuals, studentized residuals, leverage, 
and Cook’s distance.

Standardized residuals are residuals divided by the standard deviation of 
the residuals. Because raw residuals depend on the scale of the dependent vari-
able, we cannot set any uniform rules of thumb of what is a large raw residual. 
However, by standardizing them, we eliminate the units, and can create guide-
lines for what is a large residual.

Standardized residuals help pinpoint outliers. Standardized residuals larger 
than two are the extreme 5 percent of values, whereas those larger than three 
are the extreme 1 percent of values.

Studentized residuals adjust for how far each individual value is from the 
center of the line. The result is that two points an equal distance from the line 
will have different studentized residuals: The studentized residual will be lar-
ger for the value at the extremes of the line than the value at the center. This 
is because values at the extremes can exert greater leverage: they can more 
easily tilt the line. Think of a seesaw, with the center point as the fulcrum and 
the extreme points as the ends of the plank. Exerting pressure on the end will 
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168 Checking the underlying assumptions of the analysis

cause the entire plank to change slope. Such points are referred to as leverage 
points. With studentized residuals, leverage points will get a larger residual 
than an outlier whose value is close to the center of the line. So in Figure 9.1 
point B will have a larger studentized residual than point A even though these 
points are the same distance from the line. I have used a thicker dotted line in 
Figure 9.1 to point to B to illustrate the greater leverage of point B compared to 
point A. As with standardized residuals, studentized residuals of greater than 
2–3 suggest problems.

The measure leverage quantifies the leverage of individual points on the 
line. Ideally, all your observations should have leverage measures less than 
two times the expected value. The expected value is: (the number of variables 

Figure 9.1 Linear relationship between an independent variable and outcome with two 
outliers (point A and point B). The thicker dotted line pointing to B illustrates 
the greater leverage of point B compared to point A.
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169 9.5 Detecting outliers

plus one) divided by the sample size. Leverage values higher than: (two multi-
plied by the number of variables plus two) divided by the sample size warrant 
consideration.

Inf luence refers to how removing an observation changes the estimate 
of coefficients. Inf luence is affected by both whether an observation is an 
outlier and the leverage of that observation. Observations that are out-
liers and have a large leverage will be inf luential. Cook’s distance assesses 
how inf luential an individual point is to the overall model. It is equal to 
the change in the regression coefficients if the observation was deleted. 
Cook’s distance of greater than four divided by the sample size is cause for 
concern. 

For multivariable (binary) logistic regression, standardized Pearson residu-
als greater than 2.0 deserve further concern. A plot of the standardized Pearson 
residuals versus the estimated outcome will show you whether cases are par-
ticularly likely to be outliers at particular probabilities of outcome. Remember 
though with logistic regression we are speaking of covariate patterns (there-
fore likely multiple cases) rather than a single observation as in multiple linear 
regression.

For multiple logistic regression there are three methods for identifying 
influential covariate patterns. All three assess how the model changes when 
particular covariate patterns are deleted. The three methods are:

1) change in chi-squared statistic
2) change in the deviance
3) change in the regression coefficients.9

If you plot each of these changes (y-axis) against the estimated probability 
of outcome, you may see points that have a particularly strong influence on the 
result. It is also possible to plot the change in the chi-squared statistic (y-axis) 
versus the estimated probability of outcome with the size of the circle of the 
covariate pattern equal to the influence diagnostic parameter. The largest cir-
cles will indicate the patterns with the greatest influence.10

 9 This statistic may be referred to as DfBeta or dbeta when only a case is dropped rather than drop-
ping all cases with a particular covariate pattern. In general with logistic regression it makes more 
sense to drop all cases with a particular covariate pattern when trying to figure out observations 
that have particular influence on the results.

10 For a picture of such a curve see: Hosmer, D. W. and Lemeshow, S. Applied Logistic Regression. 2nd 
edn. New York, NY: Wiley, 2000, p. 180.
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170 Checking the underlying assumptions of the analysis

Outliers can be detected in proportional hazards analysis using deviance 
residuals. Deviance residuals are a transformation of Martingale residuals 
which gives them a symmetric distribution around zero. Positive observations 
have a shorter survival time than expected and negative observations have a 
longer survival time than expected.11 If you plot the deviance residual against 
the subject identification number you will easily see those cases with a par-
ticularly high or low residual.

Covariate patterns that are outliers can be detected in Poisson regression 
with standardized residuals or with standardized deviance residuals.

9.6 What should I do when I detect outliers?

Let’s say that your analysis of residuals suggests you have certain extreme 
values. What do you do? First, check to make sure there is no error in the 
recording of this data point. You may think that this is an unnecessary step 
if you have already reviewed your univariate results for extreme values. But 
review of outliers from multivariable analysis complements the univari-
ate analysis. For example, residual analysis of a multivariable model may 
detect an obese diabetic with a heavy fat consumption whose cholesterol is 
abnormally low (140 mg/dl). This may result in your discovering a data-entry 
error: The value was really 410 mg/dl. Since a cholesterol level of 140 mg/dl is 
not an extreme value you would not have noticed a problem in the univari-
ate analysis.

But what if you verify from the original data that this subject’s value really 
is 140 mg/dl? Do you delete it from the data set? No. If you were performing a 
laboratory experiment, and had a residual value that did not fit your analysis, 
you might want to repeat the experiment. But in clinical trials this is rarely an 
option. While it may be tempting to delete such values from the study (espe-
cially if they are preventing you from getting the answer you were hoping for) 
this is rarely justified. Just because certain subjects are outliers, it doesn’t mean 
their values are wrong. In fact, it is “normal” to have a few extreme values.

However, if your residuals indicate leverage points, you may want to con-
sider removing them from the analysis, repeating the analysis, and seeing 
whether your findings hold. If deletion of a couple of observations changes 
your entire analysis, the analysis may not be valid. In general, the larger your 
data set is, the less likely it is that your results will be heavily influenced by 

11 Gharibvand, L. A step-by-step guide to survival analysis. University of California, Riverside. 
http://www.wuss.org/proceedings08/08WUSS%20Proceedings/papers/tut/tut08.pdf 

 

 

 

 



171 9.7 Additive assumption and multiple independent variables

one or two points. Therefore, the need to closely examine the residuals of all of 
your points becomes less important.

When the residuals represent covariate patterns, outliers may represent 
more than one or two cases, and omitting them may be an unsatisfactory reso-
lution. Therefore, it is more sensible to think of outlying covariate patterns 
as cases for which the model is not very good at predicting outcome. They 
deserve further investigation, but not necessarily omission.

9.7 What is the additive assumption and how do I assess whether my 
multiple independent variables fit this assumption?

All the multivariable models discussed in this book assume that your mul-
tiple independent variables have an additive effect on the outcome. Under-
standing what it means that these multivariable models are additive is 
complicated because the different models estimate different outcomes. For 
example, with multiple linear regression the sum of the individual variables 
estimates the change in the mean value of the outcome. With logistic regres-
sion, the sum of the individual independent variables estimates the logit of 
the outcome. With proportional hazards analysis, the sum of the independ-
ent variables estimates the logarithm of the relative hazard. With Poisson 
regression, the sum of the independent variables estimates the logarithm of 
the outcome.

A consequence of the additive assumption is that the odds ratios, relative 
hazards, or relative risks from logistic, proportional hazards, and Poisson 
regression models (respectively) have a multiplicative rather than an additive, 
effect on outcome. Statisticians refer to this with the somewhat confusing term 
of “additive on a multiplicative scale.” Although I didn’t refer to it as the addi-
tive assumption, we have dealt with this concept in the discussion of interac-
tions (Sections 1.4, 7.3, and 8.4). Interactions are present when the variables are 
not additive but rather something greater or less than additive.

If you look back at the discussion on the interaction of gender and ST ele-
vations shown in Section 1.4, you see that I multiplied the odds ratios to show 
the meaning of the interaction. Specifically, in Table 1.7, the odds ratio for 
male gender was 1.6 and the odds ratio for ST elevations was 8.1. Since the 
model is “additive on a multiplicative scale” the odds ratio associated with 
being male and having ST elevations should be the product of the two or 13.0 
(1.6 × 8.1 = 13.0).

But the risk of heart attack for men with ST elevations was not 13 times 
the risk for women without ST elevations. How do we know this? Because the 
product term was statistically significant. To find out the true risk for men 
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172 Checking the underlying assumptions of the analysis

with ST elevations, you need to include the interaction term, which had an 
odds ratio of 0.6. When you include the product term you learn that the risk 
for men with ST elevations is less than 13.0; it is actually only 7.8 (1.6 × 8.1 × 
0.6 = 7.8). After reading Section 8.3B, you would have known that the over-
all risk was lower just from the negative sign of the coefficient of the product 
term.

What does all this mean? Clinically, as discussed in Section 1.4, it means 
that the difference in the likelihood of heart attacks between men and women 
vanishes in the presence of ST elevations. (The risk for women with ST eleva-
tions is 8.1 (1.0 × 8.1 × 1.0 = 8.1), essentially identical to the risk of 7.8 in men 
with ST elevations (1.6 × 8.1 × 0.6 = 7.8). In terms of your model, this means 
that in the absence of including an interaction term for gender and ST eleva-
tions, your model would have been mis-specified because the additive assump-
tion would not have been fulfilled.

You may be asking yourself, why does the model without interaction terms 
estimate that men with ST elevations have a significantly higher risk of heart 
attack than women with ST elevations, if the risk for these two groups is simi-
lar? To understand why, remember that each variable (e.g., gender, ST eleva-
tions) has only one coefficient. Therefore, the best coefficient for the sample 
as a whole may not be best for every subgroup of subjects as defined by the 
independent variables. In other words, just because men have a greater risk of 
heart attack than women and persons with ST elevations have a greater risk 
than persons without ST elevations does not mean that men with ST eleva-
tions have a greater risk than women with ST elevations. This illustrates how 
models without product terms can be wrong for particular subsets of subjects. 
Product terms solve this problem by having another variable that can improve 
the fit of the model for particular subgroups of subjects.

Assessing whether your variables fulfill the additive assumption becomes 
especially complicated when you realize that in most analyses there are a large 
number of possible interaction terms. For example there are forty-five pos-
sible two-way interactions between just ten independent variables. And there 
is nothing to prevent interactions from being three-way (e.g., male × ST eleva-
tions × prior heart attack). Short of trying all possible product terms, there is 
no way to know for certain if your data contain an important interaction.

One clue indicating that you may need an interaction term is that a variable 
that you thought, based on clinical grounds, would have an important effect 
on an outcome variable did not. Could it be that the variable is important only 
under certain conditions? Other clues may come from your analysis of how 
well your data fit the assumptions of your model. For example, if the standard-
ized residuals do not form a straight line on the normal probability plot or if 
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173 9.7 Additive assumption and multiple independent variables

your logistic regression residuals are particularly large, the reason may be that 
you have an interaction.

Besides the fact that interactions are difficult to detect there are other prob-
lems. Some statistically significant interactions are very difficult to interpret 
clinically. In addition, if you test a large number of interactions, it is likely that 
at least one of them will be statistically significant. Does that mean that this is 
an important interaction?

In this regard, testing for interaction is similar to performing subgroup analysis. 
Let’s say that a study finds that a new drug is no better than placebo in the sample as 
a whole. However, when the investigators looked within ten subgroups, they found 
one group (e.g., hypertensive women with diabetes) for whom the drug worked. 
Would you conclude that the drug works for hypertensive women with diabetes?

In general, unless there is some reason to believe that the drug should work 
only in hypertensive women with diabetes, and the authors had therefore 
planned this subgroup analysis, one would conclude that the drug does not 
work and the finding was chance. That is, in some subgroups, the drug worked 
better than placebo. In other subgroups, the drug worked worse than placebo. 
Overall, there was no effect. The same issue exists if you test ten product terms. 
If the main effect is null, and nine of the product terms are insignificant, and 
one of them is significant, do you conclude that overall the drug works in that 
special condition? Probably not.

Because of these problems, many clinical researchers do not test for inter-
actions at all. In contrast, it is common in the epidemiologic literature to 
evaluate all possible two-way interactions. The methodological justification 
is that if a product term is significant, it is improving the statistical quality of 
the model. However, this strategy is not usually pursued in the medical litera-
ture because of the difficulty of making clinical sense out of product terms.

My own preference is to test only for those interactions that are theoretically 
important. That is the strategy that was pursued in the study described above 
of the impact of gender on heart attack risk. The researchers evaluated all pos-
sible interactions involving gender because it was known that the variables 
associated with heart attack are different in men and women and because this 
was the focus of their study. But they did not assess all possible interactions in 
their data set (e.g., age × race).

Whatever strategy you employ for assessing interactions, it is important to 
tell your reader whether and how you have tested for interactions. Depending 
on what strategy you have chosen, you can tell your reader that you:

tested all primary (second-degree) interactions, or•	
tested specific interactions (and detail them), or•	
chose not to test any interactions•	
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9.8 How do I test the proportional odds assumption?

You will remember from Section 3.4 that proportional odds regression 
assumes that the coefficients for the independent variables would be the 
same regardless of the cut-point of the ordinal variable. To assess whether 
this assumption is met use the score test. When it is nonsignificant you 
can assume that the odds ratios are constant across the different cut-points 
of the outcome variable. Unfortunately, the test may be too sensitive when 
the sample size is large with the result that you may get a statistically sig-
nificant score test even if the odds are not that different with the different 
cut-offs. Therefore, if you have a significant score test, a good first step is 
to create separate logistic models for each of the possible cut-offs of the 
outcome variable.12 Each logistic regression will yield an odds ratio and a 
confidence interval for each independent variable. You can then compare 
the odds ratios and their respective confidence intervals at the different 
cut-offs to each other and to the cumulative odds ratio from the propor-
tional odds regression to determine whether the odds ratios really are 
different.

9.9 How do I test the proportionality assumption?

Remember from Section 3.9 that for proportional hazards analysis to be valid 
the proportionality assumption must be true. The assumption is that the haz-
ards for persons with different covariate patterns are constant over time. I 
illustrated a violation of the proportionality assumption in Figure 3.9. In this 
figure, we see the two Kaplan–Meier survival curves crossing, because the risk 
of death is not constant between the two arms of the study.

There are more sophisticated methods for assessing whether the propor-
tional hazards assumption is met. Four commonly used methods are: log-
minus-log survival plots, Schoenfeld’s partial residuals, dividing time into 
discrete intervals, and time-dependent covariates.13 There is no consensus on 
which of these techniques is best and, appropriately, many investigators will 
perform more than one test.

12 Scott, S. C., Goldberg, M. S., and Mayo, N. E. “Statistical assessment of ordinal outcomes in com-
parative studies.” J. Clin. Epidemiol. 50 (1997): 45–55.

13 There is a fifth technique, the Kolmogorov-type supremum test that is increasingly appearing in 
the literature. However, because the methods are too complicated for this book and because many 
biostatisticians regard it as an experimental test, I don’t discuss it further here; readers who want 
to know more should see: Lin, D. Y., Wei, L. J., Ying, Z. “Checking the Cox model with cumula-
tive sums of Martingale-based residuals.” Biometrika 80 (1993): 557–72, available at: http://www.
lexjansen.com/mwsug/2006/Statistics_DataAnalysis/SD08.pdf. 
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175 9.9 proportionality assumption

9.9.A log-minus-log survival plot

A log-minus-log survival plot is drawn in Figure 9.2. If there is a constant 
(vertical) difference between the two curves then you know that the haz-
ards of subjects with different values on a particular independent variable 
are proportional over time. If however, the curves cross, or are much closer 
together at some points in time and much further apart at other points in 
time, then the assumption is not true. The curves do not have to be perfectly 
equidistant. Especially at the ends of the curves, where there tend to be fewer 
observations, there may be some coming together or greater splitting of the 
curves.

A nice feature of log-minus-log survival curves is that they illustrate that pro-
portional hazards analysis makes no assumption about the absolute risks (the 
lines change direction and slope). Proportional hazards analysis only assumes 
that as the hazards change, the distance between the two curves stays about the 
same.

Figure 9.2 Log-minus-log survival plot showing a constant difference between group A 
(solid line) and group B (broken line). Reprinted with permission from Katz, 
M. H. and Hauck, W. W. “Proportional hazards (Cox) regression.” J. Gen. Intern. 
Med. 8 (1993): 702–11.
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9.9.B Schoenfeld’s residuals

The proportionality assumption can also be tested using Schoenfeld partial 
residuals. A plot is drawn of the scaled Schoenfeld’s residuals (y-axis) ver-
sus a transformation of time (x-axis) for each covariate.14 If the proportional 
hazards assumption is met the smoothed line should be approximately hori-
zontal. Some statistical programs (e.g., cox.zph procedure in S-plus) will 
calculate a chi-squared and P value for each variable, representing the cor-
relation between the scaled Schoenfeld’s residuals and transformed time. If 
the P value is significant then the variable does not fulfill the proportionality 
assumption.

9.9.C. Divide time into discrete intervals

An intuitively easy way to verify the proportional hazards assumption is to 
divide the time interval into discrete parts. For example, Liou and colleagues 
studied the effect of lung transplantation on survival in children with cystic 
fibrosis.15 Children had been placed on the waiting list for transplantation over 
a relatively long period of time. To determine whether the relative hazards 
of death varied over time for the different independent variables, the investi-
gators divided the study patients by year into two approximately equal-sized 
groups: those placed on the waiting list between 1992–1998 and those placed 
on the waiting list between 1999–2002. They then ran two proportional haz-
ards models – one for each sample. Had there been a departure from the pro-
portionality assumption, the relative hazards for the independent variables 
from the two models would have been different. The authors found that the 
relative hazards in the two models were similar, thereby supporting the pro-
portionality assumption.

9.9.D. Time-dependent covariates

Another way of testing the proportionality assumption is to add interaction 
terms to the proportional hazards model that allow the relative hazard to vary 

14 For more on how to use Schoenfeld’s residuals to check the proportionality assumption see:Fox, 
J. Cox. Proportional-hazards regression for suvival data: Appendix to an R and S-Plus Compan-
ion to Applied Regression. February 2002. http://cran.r-project.org/doc/contrib/Fox-Companion/
appendix-cox-regression.pdf; Harrell, F. E. Regression Modeling Strategies: With Application to 
Linear Models, Logistic Regression, and Survival Analysis. New York: Springer, 2001, pp. 486–7. 

15 Liou, T. G., Adler, F. R., Cox, D. R., Cahill, B. C. “Lung transplantation and survival in children 
with cystic fibrosis.” N. Engl. J. Med. 357 (2007): 2143–52.

 

  

 

 

 

 

 

 

 

 



177 9.10 Violations of proportionality assumption

over time. The interaction terms are called time-dependent covariates (Sec-
tion 13.1); they require special coding, which varies with different statistical 
packages. They can be created so that the logarithm of the relative hazards is 
allowed to vary linearly with time or with the logarithm of time. When the 
proportionality assumption is valid, the interaction term will have a hazard 
ratio near 1.0 (no effect) and will not be statistically significant. If the odds 
ratio is significantly different from 1.0 it means that the effect of the independ-
ent variable does vary over time (the proportionality assumption is not met).

The advantage of time-dependent covariates is that you can create more 
than one such term and assess simultaneously whether the proportionality 
assumption is met for multiple independent variables. However, if your sam-
ple size is small, you may not be able to enter interaction terms for all variables 
in the model simultaneously (there may be too many variables for the sample 
size). In that case, you can add each product term individually to your other 
variables to see if the product term is significant with adjustment for the other 
variables in the model. A potential disadvantage of time-dependent covari-
ates is that, if your sample is really large, time interaction terms may be too 
sensitive. You may get statistically significant terms even though the graph-
ical representation does not show a major departure from the proportionality 
assumption.

9.10 What if the proportionality assumption does not hold for my data?

You have a few choices (besides abandoning your research career!). You can 
divide your observation period such that within any one period the odds are 
proportional. If you do this, you will have two or more proportional hazards 
analyses. The factors associated with outcome would differ for the two periods 
(e.g., diabetics will have a higher risk in the model estimating heart attack dur-
ing the first three months and a lower risk in the model estimating heart attack 
in the second three-month period).

A second strategy is to perform a stratified proportional hazards analysis. 
The sample is stratified by the variable that does not fit the proportionality 
assumption. Each stratum has its own baseline hazard. Therefore each stratum 
has a component that can vary over time differently from the other strata. The 
limitations of this strategy are the limitations of any stratified analysis. You 
cannot assess the effect of the stratification variable on your outcome. Also, 
stratification is cumbersome if you have more than one or two variables that 
do not fit the proportionality assumption.

A third strategy is to switch your analysis to logistic regression. Because 
time is not taken into account in logistic regression models, the risks do not 
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have to be proportional over time. The researchers assessing the factors associ-
ated with survival with AIDS in New York City (Section 7.5) switched their 
model from proportional hazards analysis to logistic analysis after they dis-
covered the proportionality assumption “was seriously violated and could not 
be remedied through stratification.” They created a dichotomous outcome 
variable: survival for 15 months or longer (yes/no). They found several vari-
ables that were associated with survival at 15 months. Although this solution 
avoided violating the proportionality assumption, one problem is that their 
results may have been dependent on the cut-off they chose for their outcome. 
In other words, they may have found different factors associated with survival 
if they had chosen a cut-off of 6 or 24 months. This is especially problematic 
because the important research question is: What is associated with survival? 
Not: What is associated with survival at 15 months? Also, any subjects who 
were lost to follow-up prior to 15 months would have to be excluded from the 
analysis. Nevertheless, the researchers deserve credit for verifying the propor-
tionality assumption and adapting their analysis; many authors do not report 
if and how they assessed the proportionality assumption.16

A fourth, and probably the best, strategy is to account for the lack of propor-
tionality in the hazards. In other words, construct your model such that the 
relative hazard varies by period, taking on one value in the first X time units, 
another value in the next Y time units, and so on. This approach is analogous 
to transforming an interval-independent variable (in this case time) into a cat-
egorical variable.

For example, my colleagues and I were performing an analysis of the impact 
of socioeconomic status on survival with AIDS.17 We assessed the proportional-
ity assumption using log-minus-log survival curves. Most of the curves looked 
fine. But one of the covariates, an initial AIDS diagnosis of cryptosporidiosis, 
looked suspicious for violating the proportionality assumption. Because we were 
not sure, we tested the hypothesis. Instead of the single variable cryptosporidi-
osis (yes/no), we created two covariates: cryptosporidiosis in the first period of 
study time (yes/no) and cryptosporidiosis in the second period of study time 
(yes/no). The cut-off for the time period was chosen based on the log-minus-log 
survival plot (the point where it seemed the relative hazard changed).

Using proportional hazards analysis we tested the hypothesis that the two 
variables were significantly different from one another. The P value was only 

16 Katz, M. H. and Hauck, W. W. “Proportional hazards (Cox) regression.” J. Gen. Intern. Med. 8 
(1993): 702–11; Concato, J., Feinstein, A. R., and Holford, T. R. “The risk of determining risk with 
multivariable models.” Ann. Intern. Med. 118 (1993): 201–10.

17 Katz, M. H., Hsu, L., Lingo, M., et al. “Impact of socioeconomic status on survival with AIDS.” Am. 
J. Epidemiol. 148 (1998): 282–91.
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179 9.10 Violations of proportionality assumption

marginally significant (0.07). Although this was above the conventional cut-off 
of P value < 0.05, P values less than < 0.20 can indicate important changes in 
risk over time. In case this potential departure of the proportionality assump-
tion had an important effect on our overall model, we included these two 
time-period variables, instead of the one covariate. By having the two covari-
ates in the model, we were no longer violating the proportionality assumption. 
Because these types of models are complex to set up, it would be best to consult 
with a biostatistician for help.

No matter what strategy you choose for your analysis, report to the reader 
how you assessed the assumption and whether it held. If it did not hold, don’t 
feel discouraged. You have learned something, potentially important, about 
how the risk of your outcome changes over time under certain conditions.
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10

Propensity scores

10.1 What are propensity scores? Why are they used?

Propensity scores are calculations of the likelihood of a subject being in a par-
ticular treatment group, conditional on that subject’s values on those inde-
pendent variables thought to influence group membership.1 They are used to 
statistically adjust for differences between nonrandomized groups, typically 
for studies comparing different treatments.2

To calculate a propensity score, you first identify the variables that influ-
ence treatment group membership, including demographics, disease severity, 
and characteristics of the treatment system (e.g., physician specialty, hospital, 
etc.). These variables are entered into a model (typically logistic) estimating 
the likelihood of treatment group membership. This model yields a score for 
each subject; the score is the estimated likelihood of being in one group versus 
the other, conditional on a weighted score of that subject’s values on the set of 
independent variables used to create the propensity score.

Once calculated there are different ways you can use propensity scores. You 
can include each subject’s propensity score in your multivariable model as an 
independent variable. Or you can use this score to individually match sub-
jects with different treatment assignments but an equal likelihood of being in 
a particular group and assess the outcome using a matched analysis (Section 
11.1). Alternatively you can assess the likelihood of outcome within quintiles 
of the propensity score. Attentive readers will recognize that these three differ-
ent methods of using propensity scores correspond to three different methods 
for adjusting for baseline differences: multivariable modeling, matching, and 

1 Rubin, D. B. “Estimating causal effects from large data sets using propensity scores.” Ann. Intern. 
Med. 127 (1997): 757–63; D’Agostino, R. B. “Propensity score methods for bias reduction in the 
comparison of a treatment to a non-randomized control group.” Statist. Med. 17 (1998): 2265–81.

2 For a more detailed discussion of propensity scores, along with two other techniques used when 
comparing nonrandomized groups – instrumental variable analysis and sensitivity analysis – 
see: Katz, M. H. Evaluating Clinical and Public Health Interventions: A Practical Guide to Study 
Design and Statistics. Cambridge: Cambridge University Press, 2010, pp. 101–27.
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181 10.1 Propensity scores

stratification.  A fourth strategy, less commonly used, is to use the propensity 
score to weight the observations in a multivariable analysis.

But, wait you say! If multivariable analysis (along with matching and strati-
fication) can adjust for baseline differences between nonrandomized groups 
(Section 2.3), why do we need to complicate things further with propensity 
scores? Why not simply enter the variables used to construct a propensity 
score into a multivariable model?

The answer is that propensity scores often produce a better adjustment 
for baseline differences than simply including potential confounders in your 
multivariable model. This is especially true when outcomes are rare and the 
proportions of subjects in the treatment groups are relatively equal.3 With 
rare outcomes you often will not have a sufficient sample size to include all 
the potential confounders in your analysis estimating outcome. Omitting 
important variables may result in an incorrectly specified model. On the other 
hand, including too many variables in your multivariable model may result in 
an unreliable model (Section 6.4). But assuming the distribution of subjects 
between your groups is relatively equal, then you will have a sufficient sample 
size to use all your prognostic variables to estimate group assignment. When 
you return to your model estimating outcome you can enter your propensity 
score as a single variable stand-in for your multiple potential confounders.

Another advantage of propensity scores is that they make no assumption 
about the relationship between the individual confounders and the outcome. 
Of course, for the propensity score to be accurate, the relationship of the inde-
pendent variables to treatment assignment must fit the assumptions of the 
model you are using.

Propensity scores were important in demonstrating that right-heart cath-
eterization (a procedure used extensively in critically ill patients during the 
time I was an internal medicine resident) is not a useful procedure, and may 
be harmful.

Right-heart catheterization involves inserting a monitoring (Swan–Ganz) 
catheter directly into the right heart. It began to be widely used in the 1970s 
without any studies proving its efficacy. Many clinicians felt that the read-
ings enabled them to better monitor and treat their patients. Thus, the prac-
tice became the standard of care in certain settings, including the intensive 
care units of the hospitals I trained in. When some studies found higher rates 
of death in patients who received right-heart catheterization, the validity of 
the association between right-heart catheterization and death was questioned 

A propensity score can 
be used in three ways: 
(1) as a covariate in a 
multivariable model 
estimating outcome; (2) 
as a variable on which 
to match subjects; (3) 
as a variable on which 
to stratify subjects. 
Propensity scores work 
especially well when 
outcomes are rare 
and the proportions 
of subjects in the 
treatment groups are 
relatively equal.

3 Braitman, L. E. and Rosenbaum, P. R. “Rare outcomes, common treatments: Analytic strategies 
using propensity scores.” Ann. Intern. Med. 137 (2002): 693–5.
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because the studies were not randomized. In particular, persons who received 
right-heart catheterization were known to be sicker than persons who did not 
receive this procedure. This could have confounded the results of the obser-
vation trials, resulting in persons who received right-heart catheterization 
appearing more likely to die because of the catheterization when they were, in 
reality, more likely to die because of their underlying disease. This relationship 
is illustrated in Figure 10.1.

When a randomized controlled trial was launched to definitively answer 
the question, the study was terminated because physicians were unwilling to 
randomize their patients. They believed that right-heart catheterization was 
beneficial; therefore, how could they deny the intervention to their patients?

Since randomization was not an option, Connors and colleagues addressed 
the effectiveness of right-heart catheterization by prospectively following 5735 
critically ill adults cared for in an intensive care unit.4 Of these, 2184 patients 
received a right-heart catheterization (38 percent) and 3551 (62 percent) did 
not. Because the decision of whether or not a patient received a right-heart 
catheterization was not random, the investigators developed a propensity 
score to assess the likelihood of each patient receiving a right-heart catheteri-
zation. To do this, they had a group of seven specialists in critical care specify 
the variables they would expect to be related to the decision to use or not use 
a catheter. They identified over 65 variables to include. These variables were 
included in a logistic regression analysis estimating the outcome of right-heart 
catheterization in the first 24 hours of hospitalization. When they adjusted for 
the propensity score for right-heart catheterization in a proportional hazards 
analysis, along with additional adjustment for potential confounders, patients 
managed with a right-heart catheterization had an increased risk of death (OR 
= 1.21; 95% CI = 1.09 – 1.25) at 30 days.

To strengthen their findings, the investigators also used the propensity 
scores to perform a matched analysis. Patients managed with and without 
right-heart catheterizations were matched on the basis of disease category 
and the propensity score. Patients were matched to the patient with the closest 

Figure 10.1 Relationships among right-heart catheterization, severity of illness, and death.

4 Connors, A. F., Speroff, T., Dawson, N. V., et al. “The effectiveness of right-heart catheterization in 
the initial care of critically ill patients.” JAMA 276 (1996): 889–97.
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propensity score (within 0.03 on a scale of 0 to 1). This procedure resulted in 
1008 pairs (note: not all of the 2184 patients who received a right-heart cath-
eterization could be matched). The likelihood of survival at 30 days was higher 
for those patients who did not receive right-heart catheterization (67.2) than 
those who did (62.5) with an odds ratio of 1.24 (95% CI 1.03–1.49).

One ironic aspect of their study is that it created enough uncertainty about 
the use of right-heart catheterization that a randomized clinical trial became 
feasible.5 Published in 2003, seven years after the publication of the study by 
Connors and colleagues, it showed no benefit for right-heart catheterization 
among high-risk surgical patients and a higher rate of pulmonary embolism 
in the catheter group.6

The limitations of propensity scores are similar to the limitations of all forms 
of multivariable adjustment. Propensity scores can only adjust for measured 
confounders.

Although you can never adjust for unknown confounders, it is possible to 
assess how large such a confounder would have to be to affect your results. 
With the right-heart catheterization study, the investigators used sensitivity 
analysis to determine how strong a missing confounder would have to be to 
change the relationship they found from right-heart catheterization being 
associated with an increased risk of death (OR = 1.21), to right-heart cath-
eterization being associated with a decreased risk of death (OR = 0.80).7 They 
found that the missing covariate would have to increase the risk of death six-
fold and increase the probability of right-heart catheterization six-fold for the 
true relative hazard to be 0.80. While this analysis certainly does not prove 
that such a covariate does not exist, it seems unlikely. This is substantiated by 
the investigators determining that singly removing the known confounders 
that have the largest effect on the probability of right-heart catheterization 
changed the relative hazard of death by only 0.01.

For propensity scores to be effective in adjusting for baseline differences 
there must be sufficient overlap between the treatment groups on the inde-
pendent variables you are using to estimate group assignment. One way to 
assess this is to look at the propensity scores themselves. In the right-heart 
catheterization study the mean propensity score of patients who received 
a right-heart catheterization was 0.577 (95 percent confidence interval 

5 Dalen, J. E. and Bone, R. C. “Is it time to pull the pulmonary artery catheter?” JAMA 276 
(1996): 916–18.

6 Sandham, J. D., Hull, R. D., Brant, R. F. et al. “A randomized, controlled trial of the use of pulmo-
nary-artery catheters in high-risk surgical patients.” N. Engl. J. Med. 348 (2003): 5–14.

7 For more on sensitivity analysis see: Rosenbaum, P. R. and Rubin, D. B. “Assessing sensitivity to 
an unobserved binary covariate in an observational study with binary outcome.” J. R. Stat. Soc. 45 
(1983): 212–18.
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0.108–0.943), while the score for those who did not receive a right-heart cath-
eterization was 0.253 (95 percent confidence interval 0.011–0.779).

A second important test of whether there is sufficient overlap of the groups 
is to stratify the groups within quintiles8 of the propensity score. Then com-
pare the independent variables used to create the scores within the quintiles. 
You should find similar distributions of the independent variables (e.g., if age 
is one of the variables used to create a propensity score then the ages of subjects 
within each of the quintiles should be similar). If not, then there is insufficient 
overlap between the groups for the propensity score to satisfactorily adjust 
for baseline differences. This is analogous to adjusting for a confounder using 
multivariable modeling without a propensity score: to satisfactorily adjust for 
a confounder there must be sufficient overlap of the groups on the confounder 
(Section 2.2).

For example, in the right-heart catheterization study, within quintiles of 
propensity scores there were no differences between those who received and 
those who did not receive right-heart catheterization on severity of illness, 
mean blood pressures, heart rate, respiratory rate, pH, PaO2/FIO2, PaCO2, dis-
ease category, or prognosis.

Despite these limitations propensity scores are the best available method for 
adjusting for baseline differences in nonrandomized studies of treatments or 
interventions.

8 The reason for using quintiles is because of an analysis by W. G. Cochran showing that stratifica-
tion into five or six groups will typically remove 90 percent of the bias present in unadjusted analy-
ses. For a more detailed explanation see: Rubin, D. B. “Estimating causal effects from large data sets 
using propensity scores.” Ann. Intern. Med. 127 (1997): 757–63.
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11

Correlated observations

11.1 What circumstances lead to correlated observations?

The multivariable methods that we have discussed thus far assume that each 
observation (subject) is independent (i.e., the outcomes of different subjects 
are not correlated). However, it has become increasingly common to study 
data where the observations are correlated with one another, often referred to 
as clustered observations or clusters.

 As you can see from Table 11.1, a variety of circumstances leads to corre-
lated observations. One common circumstance leading to correlated obser-
vations is longitudinal studies, where subjects are observed repeatedly (e.g., 
baseline and every six months thereafter). Because it is the same subject being 
observed multiple times, the responses are correlated (i.e., the same subject 
is more likely to have a similar response each time he or she is observed than 
a different subject would).

Also, when the same subject receives different treatments, as occurs in 
a crossover study, responses will be correlated because the same person is 
more likely to respond to different circumstances in a similar way than dif-
ferent individuals receiving different treatments. And the responses of dif-
ferent body parts of the same person (e.g., the right and left eye of Mr. A) 
will be correlated because the body parts of the same person are more likely 
to respond similarly than body parts belonging to different persons (e.g., 
the right eye of Mr. A and the left eye of Mr. B).

Another instance that leads to correlated observations is when subjects 
are enrolled from established groups or clusters (e.g., families, clinic prac-
tices, hospitals, cities) as occurs in randomized and nonrandomized cluster 
studies. In this case, subjects recruited from the same group are more likely 
to respond in similar ways than subjects from different groups, leading to 
correlated outcomes.

Repeated observations 
of subjects in 
longitudinal studies 
lead to correlated 
responses.
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An important instance of correlated observations that is often missed is the 
multicenter randomized controlled trial.1 In contrast to the clustered rand-
omized study – where the groups (e.g., hospitals) are randomly chosen, in a 
randomized multicenter study the individuals are randomized within centers. 
However, because the responses of subjects within centers are likely to be more 
closely related to one another than to the responses of subjects within other 
centers, the observations are correlated. 

Finally, when cases have been individually matched to controls, the case is 
more likely to respond in a similar fashion to the individually matched control 
than to other controls. Therefore, the analysis must take into account the cor-
relation between cases and their matched control.

Table 11.1 Circumstances leading to and advantages of studying correlated observations.

Circumstance leading to 
correlated observations Study design

Advantages of studying correlated 
observations

Multiple observations of the 
same subjects at different 
times

Longitudinal study with multiple 
follow-up assessments

Increases power; strengthens causality

Multiple observations of the 
same subjects after receiving 
different treatments

Crossover study Reduces number of subjects who must be 
recruited; subjects serve as their own 
control

Multiple observations of 
different body parts of the 
same subjects

Cross-sectional or longitudinal 
study

Increases power without recruiting more 
subjects

Study designs where subjects 
have been enrolled from 
randomized or nonrandomized 
groups (clusters) of related 
individuals (e.g., families, 
doctors’ practices, or hospitals)

Clustered randomized or 
nonrandomized design

Valuable in circumstances where it is 
easier to enroll subjects by group or 
when the intervention has an effect on 
the behavior of the group rather than 
the individual

Studies where individuals have 
been randomized at different 
centers

Randomized, multicenter trial Increases generalizability of the results

Matched study designs where 
cases and controls have been 
individually matched

Case-control study  
 

Efficient design especially for rare 
diseases; can be used in circumstances 
where randomization is not possible

1 Localio, A. R., Berlin, J. A., Ten Have, T. R., Kimmel, S. E. “Adjustments for center in multicenter 
studies: an overview.” Ann. Intern. Med. 135 (2001): 112–23.
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11.2 Should I avoid study designs that lead to correlated observations?

No! Although the analysis of correlated observations is somewhat more com-
plicated than that of independent observations there are a number of import-
ant advantages in collecting correlated data (Table 11.1).

First, collecting repeated observations of the same persons can increase the 
power of your study without increasing the number of subjects. For example, 
Guskiewicz and colleagues used repeated observations of college football play-
ers to assess the effects of recurrent concussion on neurologic function.2 They 
followed 2905 players for a total of 4251 player-seasons with an estimated  
240, 951 exposures. As you would expect, with multiple observations there are 
more outcomes. Even so, despite the 240, 951 exposures, only 184 players had a 
concussion and only 12 had a repeat concussion within the same season.

A second reason for collecting repeated observation of subjects is that it 
facilitates assessment of time trends. For example, Conter et al. studied the 
effect of maternal smoking during pregnancy.3 They found that children born 
to smoking mothers had significantly lower birth weights, but that the rate of 
growth between 0 and six months of age was greater for babies born to smoking 
mothers than those born to nonsmoking mothers. The result was that by six 
months of age the babies of smoking mothers were the same weight as those of 
nonsmoking mothers. (You have to marvel at the ability of nature to triumph 
over poison!) Longitudinal observations may also help to establish causality if 
the effect gets stronger with repeated exposure to the intervention.

Observing the same subject under different conditions can increase the 
power of your study without increasing your sample size. For example, Paz 
and colleagues studied the effect of ingestion of ethanol on obstruction of the 
left ventricular outflow tract in patients with hypertrophic obstructive car-
diomyopathy.4 They performed echocardiography on 36 patients before and 
after ingestion of ethanol or of placebo. They found that compared to placebo 
even small amounts of ethanol increased obstruction of the outflow tract – an 
important finding for patients with hypertrophic obstructive cardiomyopathy 
who are considering drinking alcohol.

Similarly, if you are studying an outcome in one of the many body parts 
that occurs in duplicate (e.g., eyes, most joints) or in higher multiples (e.g., 
teeth, fingers), using all body parts can increase your sample size with the 

T IP

Use repeated 
observations of 
subjects to assess time 
trends.

2 Guskiewicz, K. M., McCrea, M., Marshall, S. W., et al. “Cumulative effects associated with recur-
rent concussion in collegiate football players.” JAMA 290 (2003): 2549–55.

3 Conter, V., Cortinovis, I., Rogari, P., et al. “Weight growth in infants born to mothers who smoked 
during pregnancy.” BMJ 310 (1995): 768–71.

4 Paz, R., Jortner, R., Tunick, P. A., et al. “The effect of the ingestion of ethanol on obstruction of the left 
ventricular outflow tract in hypertrophic cardiomyopathy.” N. Engl. J. Med. 335 (1996): 938–41.
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188 Correlated observations

same number of subjects. For example, McAlindon and colleagues studied the 
relationship of vitamin D to development of osteoarthritis of the knee using 
data from the Framingham study.5 Although this cohort consisted of over 
5000 subjects, only 556 participants had x-rays of their knees and assessments 
of their vitamin D intake and serum levels. Therefore, the investigators needed 
to maximize their statistical power. They did this by looking at both knees. 
They found that low intake of vitamin D was associated with progression of 
osteoarthritis of the knee.

A reason you might choose to randomize by group (as in a particular clinic 
or town) rather than by an individual is that you are interested in interven-
tions that operate on the level of the community, rather than on the level of the 
individual.6 For example, you might be interested in studying the effect of the 
impact of traffic-calming strategies on pedestrian injuries. Also, sometimes it 
is impossible to randomize individuals within a group because the interven-
tion affects the entire group. For example, Jensen and colleagues randomized 
nine residential care centers to receive either a multidisciplinary program to 
reduce falls or standard care.7 Because the intervention included many center-
wide changes such as removing environmental hazards, staff education, and 
improving transfer techniques, everyone in the center would potentially ben-
efit from the changes. Adjusting their analysis for clustering by center, the 
investigators found that residents who lived in an intervention center had 
fewer falls than residents in the centers that did not receive the intervention 
(OR = 0.49; 95% CI 0.37–0.65).

At other times you may be unable to randomize groups, but instead you will 
recruit subjects from nonrandomized groups. For example, you may be inter-
ested in the effect of air quality on asthma rates. You can’t randomize subjects 
to different levels of air quality, nor can you randomize cities to different levels 
of air quality. However, you can recruit subjects (randomly or nonrandomly – 
in this case the randomization is to assure generalizability to the population, 
not to eliminate bias between cities) from different cities with different levels 
of air quality and compare their rates of hospitalization for asthma. In such 
cases, you will need to account for the correlation between subjects living in 
the same cities.

5 McAlindon, T. E., Felson, D. T., Zhang, Y., et al. “Relation of dietary intake and serum levels of vita-
min D to progression of osteoarthritis of the knee among participants in the Framingham study.” 
Ann. Intern. Med. 125 (1996): 353–9.

6 Murray, D. M., Varnell, S. P., and Blitstein, J. L. “Design and analysis of group-randomized trials: A 
review of recent methodological developments.” Am. J. Public Health 94 (2004): 423–32.

7 Jensen, J., Lundin-Olsson, L., Nyberg, L., et al. “Fall and injury prevention in older people living in 
residential care facilities: A clustered randomized trial.” Ann. Intern. Med. 136 (2002): 733–41.
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189 11.3 Analyzing correlated observations

Another advantage of using established groups to collect data is that it can 
be logistically simpler. For example, Gandhi and colleagues assessed adverse 
drug events in 661 patients seen by 24 physicians.8 Because physician practice 
style would be expected to influence prescribing practices, the investigators 
needed to adjust for clustering by physicians. However, it would have been a 
logistic nightmare to review the medical records of 661 patients seen by 661 
physicians. At this point you might wonder why not just study 661 patients 
from the same physician. Then you would not have to adjust for clustering by 
physician and you would have an easy job with data collection. The problem 
is that when you collect data from a single practitioner your data are not very 
generalizable.

Increased generalizability is also the reason that randomized multicenter 
trials are such a strong study design. By randomizing patients at multiple cent-
ers we have greater confidence that the results will apply to a broad group of 
patients than if we randomize patients at only a single site. However, we must 
then adjust for the correlation between the subjects at the same centers.

Finally, the reason we conduct individually matched studies is to decrease 
confounding (the key word here is individually matched; it is not a matched 
design if you choose controls that as a whole are comparable to the cases). 
Matching cases and controls on potentially confounding variables will enable 
you to answer the same question with a smaller sample because you will no 
longer have to adjust for differences between the cases and the controls on the 
variables for which you have matched (they are the same for each pair of cases 
and controls).

11.3 How do I analyze correlated observations?

Regardless of why you have correlated data, you will need multivariable meth-
ods that adjust for the correlations (Table 11.2).9 Failure to do so will result 
in inaccurate standard errors, leading to inaccurate P values and confidence 
intervals.

Although there are major differences in these methods, one commonal-
ity is that you will need to have a variable that identifies repeated or related 
observations. Without such a variable there would be no way for the software 
to know which observations are repeated or related. In the case of repeated 

8 Gandhi, T. K., Weingart, S. N., Borus, J., et al. “Adverse drug events in ambulatory care.” N. Engl. J. 
Med. 348 (2003): 1556–64.

9 For a review of bivariate statistics for analyzing correlated observations see: Katz, M. H. Study 
Design and Statistical Analysis: A Practical Guide for Clinicians. Cambridge: Cambridge University 
Press, 2006, pp. 107–19.
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190 Correlated observations

observations of the same person this variable may be the identification num-
ber of the subject. In the case of data from clustered groups, it will be the iden-
tification of the group (e.g., the medical practice or the hospital) from which 
the case was drawn. For individually matched data, you will need a variable 
identifying each matched set of observations (i.e., the variable could be called 
match, and the value of the variable for the first pair of matches could be 1, the 
value of the variable for the second pair of matches could be 2, etc.).

Table 11.2 Methods for studying correlated observations.

Method Features

Transform into a single measure
Change score
Slope

May be used with repeated observations of the same 
subject on an interval outcome. Change scores are 
useful when there are only two time points. Slopes 
can accommodate multiple observations, an unequal 
number of observations per cluster, and unequal time 
intervals between observations, but can only be used 
for linear trends.

Generalized estimating equations (also called a 
marginal model or a population-averaged model)

Models the effect of intervention/exposure within and 
among clusters. Can model a variety of different 
relationships between risk factors and outcomes; 
adjustment widens confidence interval but does not 
change point estimate. Can accommodate unequal 
number of observations and unequal time intervals 
between observations.

Mixed-effects models (also called multilevel models, 
random effects regression models, random 
coefficient models, and hierarchical models)

Models the individual-level effect of the intervention/
exposure (within cluster effect only). Can model 
a variety of different relationships between risk 
factors and outcomes; adjustment affects both the 
point estimate and the confidence interval. Can 
accommodate unequal number of observations and 
unequal time intervals between observations.

Repeated measures analysis of variance Can only be used with interval outcomes, an equal 
number of observations per subject and fixed periods 
between observations.

Conditional logistic regression May only be used with dichotomous outcomes, an equal 
number of observations per subject, and fixed periods 
between observations.

Anderson–Gill counting process for proportional 
hazards analysis

Adaptation of proportional hazards analysis for repeated 
outcomes of a time-to-outcome variable.

Marginal approach for proportional hazards analysis Adaptation of proportional hazards analysis for repeated 
outcomes of a time-to-outcome variable.

T IP
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Having created a common identifier, you may next wish to measure the strength 
of the correlation between observations. At first blush you might think you could 
do this with the correlation coefficient. But the correlation coefficient measures 
the correlation between variables not between linked observations. The intraclass 
correlation tells you how strong the correlation is between linked observations. 
The larger the coefficient the stronger the correlation of the observations and the 
greater the impact adjusting for the correlation will have on your results.

The different methods of adjusting for correlated observations are discussed 
in Sections 11.3.A to 11.3.F.

11.3.A Transform repeated observations into a single measure

One straightforward method of analyzing repeated observations of a subject is 
to transform the repeated observations into a single measure. This can be done 
using a change score. A change score is the absolute or relative change of an 
outcome variable over the study period.

For example, Penninx and colleagues were interested in assessing whether 
depression contributes to subsequent functional decline in older persons.10 
They assessed the physical performance of 1286 elders at baseline and then 
four years later. To determine the absolute change in performance, they sub-
tracted the baseline score from the follow-up score. They then used change 
in performance as their outcome measure. Because they used a single change 
score rather than the two correlated observations, they were able to use multi-
ple linear regression, without adjustment for the correlation between observa-
tions. They found that older persons who reported depressive symptoms were 
at higher risk of subsequent physical decline.

Change scores can also be adapted to weigh relative changes more than abso-
lute changes. This is done by dividing the change score by the baseline score. 
For example, with CD4 lymphocyte counts (an immunologic measure used to 
assess persons with HIV disease), a 100-cell change in six months would more 
likely be associated with progression of disease, if it reflected a drop from 200 
cells to 100 cells than if it reflected a drop from 1200 cells to 1100 cells. Both 
result in an absolute change of 100 cells but the relative change of the former is 
much larger (100/200 = 0.5) than the latter (100/1200 = 0.08).

Change scores will not work when you have more than two observations. 
However, you can develop a measure of change over the course of the study 
period. This is usually done by plotting the observations for each case over 
time and determining the slope for each case. You can then use the slope as 

10 Penninx, B. W. J. H., Guralnik, J. M., Ferrucci, L., et al. “Depressive symptoms and physical decline 
in community-dwelling older persons.” JAMA 279 (1998): 1720–6.
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192 Correlated observations

a continuous outcome variable. This works well for variables that increase (or 
decrease) in a linear fashion over time. Continuing with the example of serial 
CD4 lymphocyte counts, the slope of the CD4 count is often used by investiga-
tors as a measure of the rate of progression of disease over time because these 
counts decrease in a linear fashion (in the absence of therapy).11

Analogous to dividing a change score by the baseline value, you can divide 
the slope by its intercept. The result will be that changes that occur in subjects 
with high intercepts will be weighted less than changes that occur at the lower 
values. This method was used by Riggs and colleagues to evaluate change in 
bone mineral density in their study of fluoride treatment of osteoporosis.12

An advantage of slopes is that they can be performed when you have an 
unequal number of observations between clusters (e.g., one subject has four 
observations and a different subject has six observations) or when you have 
unequal time intervals between observations (e.g., one subject has measure-
ments at 3 months, 6 months and 18 months and a different subject has meas-
urements at 6 months, 12 months and 24 months).

To calculate a slope only two points at any time are needed. However, 
researchers usually will set a minimum of points needed to have a valid slope. 
(For example, Phillips and colleagues included only subjects who had at least 
five measurements of their CD4 count.11) If the minimum number of measure-
ments is not available, the case is excluded.

Although the use of change scores or slopes may seem simplistic, it can be 
a very powerful method of dealing with repeated observations. For example, 
D’Amico et al. used slopes to characterize changes in prostate-specific anti-
gen (PSA) levels (PSA velocity) among patients with prostate cancer.13 Over 
a thousand men were followed for an average of five years, with PSA levels 
measured about every six months. They found that men with a PSA velocity 
of more than 2.0 ng per milliliter per year were significantly more likely to 
die from prostate cancer than men who had smaller changes in their serial 
PSA levels.

A disadvantage of slopes is that they only apply when the outcome changes 
linearly over time. Any other time trend would yield incorrect results when 
analyzed by this method. (Any change between two points can be statistically 
treated as linear.)

11 Phillips, A. N., Lee, C. A., Elford, J., et al. “Serial CD4 lymphocyte counts and development of 
AIDS.” Lancet 337 (1991): 389–92.

12 Riggs, B. L., Hodgson, S. F., O’Fallon, W. M., et al. “Effect of fluoride treatment on the fracture rate 
in postmenopausal women with osteoporosis.” N. Engl. J. Med. 322 (1990): 802–9.

13 D’Amico, A. V., Chen M-H., Roehl, K. A., et al. “Preoperative PSA velocity and the risk of death 
from prostate cancer after radical prostatectomy.” N. Engl. J. Med. 351 (2004): 125–35.
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193 11.3 Analyzing correlated observations

11.3.B Generalized estimating equations

Generalized estimating equations represent an extremely flexible method of 
adjusting for correlated observations.14 They can be used to model a variety 
of different relationships between the risk factors and an outcome including 
linear, logistic, or logarithmic; generalized estimating equations can be used 
with interval, dichotomous, ordinal, and categorical outcomes;15 t̀hey allow 
for inclusion of independent variables that do not change (fixed variables such 
as ethnicity) as well as variables that change at each observation (e.g., blood 
pressure).

Generalized estimating equations are population-averaged models (also 
referred to as marginal models). The mean of the dependent variable is mod-
eled as a function of the independent variables, assuming that the variance is 
a known function of the mean.16 Generalized estimating equations are classi-
fied as unconditional models because they estimate the effect without regard 
to what cluster the individual is from. Therefore, estimates from generalized 
estimating equations represent the joint impact of within- and among-cluster 
effects of the treatment or exposure.1

Generalized estimating equations can incorporate different numbers of 
observations for different clusters (e.g., two observations for one subject and 
four observations for another subject; 20 subjects from one hospital and 40 
subjects from a different hospital). This is a major advantage of this method.

In cases where the different number of observations stems from missing 
data, you have to distinguish between data that are not missing at random, 
also referred to as “nonignorable” or “informative” missing data, and data that 
are missing randomly, also referred to as “ignorable” missing data.17 Missing 
data is nonignorable if (1) the occurrence of a missing value can be predicted 
by a prior value of the outcome (e.g., patients with missing CD4 counts are 
more likely to have had a low CD4 count prior to the missing value); and/or 
(2) certain groups of patients are more likely to have a missing value on the 

14 For a comprehensive text of generalized linear models see: Hardin, J. W. and Hilbe, J. M. Gener-
alized Estimating Equations. Boca Raton, FL: Chapman & Hall, 2003; for more on the original 
development of the methods see: Zeger, S. L. and Liang, K.-Y. “Longitudinal data analysis using 
generalized linear models.” Biometrika 73 (1986): 13–22; Zeger, S. L. and Liang, K.-Y. “Longitudi-
nal data analysis for discrete and continuous outcomes.” Biometrics 42 (1986): 121–30.

15 For an ordinal outcome, the model underlying generalized estimating equations would be propor-
tional odds logistic regression. For a good example of how to set up such a model see: Tishler, P. V., 
Larkin, E. K., Schluchter, M. D., et al. “Incidence of sleep-disordered breathing in an urban adult 
population.” JAMA 289 (2003): 2230–7.

16 Murray, D. M., Varnell, S. P., and Blitstein, J. L. “Design and analysis of group-randomized trials: A 
review of recent methodological developments.” Am. J. Public Health 94 (2004): 423–32.

17 In their classic test, Little, R. J. A. and Rubin, D. B. Statistical Analysis with Missing Data. New York, 
NY: John Wiley and Sons, 1987, distinguish three types of missing data: “data missing completely 
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194 Correlated observations

outcome (e.g., Caucasian women are more likely to have a missing observation 
for bone density than women of other ethnicities).

To test whether observations are missing randomly assign each subject a 
value of 0 or 1, depending on whether or not the subject has one or more miss-
ing observations on the outcome. Using multivariable logistic regression, test 
the association between this variable and the independent variables and the 
prior values of the outcome. If the data are missing randomly, there should be 
no association between the independent variables and the prior values of the 
outcome, and whether or not the subject has missing values.

Generalized estimating equations can accommodate missing responses if 
the data are missing randomly.18 Some investigators have found that when the 
outcome variable is continuous (but not when it is dichotomous), generalized 
estimating equations may also accommodate missing data that are not miss-
ing randomly.19 My view is that when you have a lot of missing data or nonran-
dom missing data you need to worry that your analysis is biased. On the other 
hand, small amounts of data, or data that you can empirically show are ignor-
able, are unlikely to cause problems with generalized estimating equations.

Another advantage of generalized estimating equations is that they can 
handle unequal intervals between observations.

The effect of generalized estimating equations is to increase the standard 
errors (and therefore the confidence intervals) of the point estimates as a 
reflection of the correlation of clustered observations. However, generalized 
estimating equations do not change the point estimates (e.g., regression coef-
ficients, odds ratios) themselves.

For example, in a study related to the one described at the start of this chap-
ter, McCrea and colleagues used generalized estimating equations to evaluate 
the effect of concussion on cognitive function among collegiate football play-
ers.20 Injured athletes and uninjured controls were assessed on repeated occa-
sions. Generalized estimating equations were needed to adjust for correlations 
between repeated observations of the same person. Potential confounders 
included in the model were baseline neuropsychiatric function, academic year, 
number of previous concussions, history of learning disability, and collegi-
ate institution. The study found that athletes with concussion exhibited mild 

at random,” “data missing at random,” and “data not missing at random.” However, in practice, 
most investigators distinguish just two groups: missing at random or not missing at random.

18 Diggle, P. J., Heagerty, P., Liang, K-Y., and Zeger, S. L. Analysis of Longitudinal Data (2nd edn). 
Oxford: Oxford University Press, 2002, p. 284.

19 Twisk, J. W. R. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. Cambridge 
University Press, 2003, pp. 208–12.

20 McCrea, M., Guskiewicz, K. M., Marshall, S. W., et al. “Acute effects and recovery time following 
concussion in collegiate football players.” JAMA 290 (2003): 2556–63.
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195 11.3 Analyzing correlated observations

impairment in cognitive processing speed and fluency two and seven days 
after concussion compared to uninjured controls.

To run a model using generalized estimating equations you will need to 
specify three things:

(1) a link function
(2) a working correlation matrix
(3) a method for estimating the variance–covariance matrix

The link function is the type of model you are using to fit to your data. 
Common choices are linear, logit, or log. Each model has a corresponding 
distribution of the random component (Gaussian [normal], binomial or Pois-
son, respectively).

The working correlation matrix indicates how the observations of each clus-
ter are related to one another. You have several choices as shown in Table 11.3.

The most common choice for a working correlation matrix for correlated 
observations is the exchangeable working correlation matrix (also referred to 
as a compound symmetric working correlation). This structure assumes that 

Table 11.3 Types of working correlation matrices for generalized estimating equations.

Type Description When to use

Exchangeable working correlation 
matrix (also referred to as 
compound symmetric working 
correlation).

Assumes that any two observations 
within a cluster have the same 
correlation.

Most common choice for analyzing 
data for nonindependent 
observations.

M-dependent structure. Assumes that the correlation of 
any two measurements an equal 
distance apart within a cluster are 
the same.

May use when correlations between 
repeated observations are known 
to decrease as the distance 
between them increases.

First-order autoregressive 
correlation model (also known 
as the exponential correlation 
model).

Assumes that the correlation within a 
cluster decreases (in an exponential 
fashion) as the distance between 
observations increases.

May use when correlations between 
repeated observations are known 
to decrease over time (e.g., 
longitudinal studies).

Independent correlation model. Assumes that the repeated 
observations within a cluster are 
independent (are not correlated).

May be used for studies where 
the number of observations per 
cluster is small relative to the 
number of clusters.

Unstructured correlation model. Makes no assumption about the 
correlation of observations within 
a cluster.

May use when the number of 
observations within a cluster is 
small and balanced. Otherwise 
computationally difficult.
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any two correlated observations are correlated equally (e.g., the first and third 
observations of a particular subject have the same correlation as the first and 
second observations of that subject, but a [possibly] different correlation than 
that of the observations of a different subject, or the first and third child in a 
family have the same correlation as the first and second child in that family, but 
a [possibly] different correlation than two children from a different family).

In some cases the assumption of equal correlations within clusters will not 
be true. Certain observations may be more highly correlated than others (e.g., 
observations of the same individual that are close in time are usually more 
highly correlated than those that are far apart in time; siblings who are close in 
age may respond more similarly than siblings born far apart). The correlation 
matrix may be different for different groups of subjects (e.g., the observations 
of patients from small hospitals may be more highly correlated than the obser-
vations of patients at larger hospitals).

The M-dependent structure assumes that the correlations of observations 
measured an equal distance apart within a cluster are equal. In other words, 
the correlation of any two measurements six months apart is equal, the corre-
lation of any two measurements a year apart is equal, etc. With the M-depend-
ent structure you can also stipulate that the correlation of measurements that 
are separated far in time (time equals M) is zero.

The first-order autoregressive working correlation matrix (also known as 
the exponential correlation model) assumes that the correlation between 
repeated/related observations within a cluster decreases (in an exponential 
fashion) as observations are further apart. This is often the case with longitu-
dinal studies.

The independent correlation matrix assumes that the repeated measure-
ments within a cluster are independent. You may wonder why I would even 
include it among your choices for dealing with correlated outcomes. The 
reason is that when the number of clusters is large relative to the number of 
observations per cluster, the impact of the correlation may be small enough 
to ignore. When using generalized estimating equations with an independent 
correlation matrix and a normally distributed interval outcome, the procedure 
is the same as fitting a linear regression model.21

As implied by the name, the unstructured working correlation matrix 
makes no assumption about how the data within a cluster are correlated. 
This may seem like a major advantage since the true correlation matrix may 
be unknown. However, when there are many observations and/or a varying 

21 Davis, C. S. Statistical Methods for the Analysis of Repeated Measurements. New York, NY:  
 Springer-Verlag, 2003, p. 297.
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number of observations, the unstructured working correlation matrix is hard 
to estimate accurately.

Although the goal is to choose a working correlation structure that fits 
your data, it turns out that the generalized estimating equation analysis only 
needs a rough estimate of the true correlation structure to get started; the final 
parameter estimates are not generally dependent on the accuracy of the choice 
of working correlation matrix.22 Therefore you should take into account the 
computational difficulty of the different working correlation matrices. For this 
reason, the exchangeable structure, which is computationally easier than the 
M-dependent, autoregressive or unstructured correlation structure, is often 
chosen.

The variance–covariance structure is a function of the working correlation 
and the link function. The two commonly used methods for estimating it are 
the Huber–White sandwich estimator and a model-based estimate. In general, 
the Huber–White sandwich estimator is preferred since it makes no assump-
tion about the variance model; because it will produce correct inferences even 
when the chosen correlation structure is incorrect, the standard errors are said 
to be robust. Unfortunately, the estimator is biased downward (i.e., the stand-
ard errors will not be accurately inflated, resulting in overstating the signifi-
cance of the results) when the number of clusters is small (< 40).23 Therefore 
the model-based estimate is preferred when the number of clusters is small, 
especially less than 20.24

Once you have chosen your link function, a working correlation matrix, 
and a method for estimating the variance–covariance matrix, you can conduct 
your analysis. Your output will look similar (i.e., coefficients, standard errors, 
P values for your different risk factors) to a standard analysis (e.g., linear 
regression, logistic regression, or Poisson regression) but the standard errors 
will be adjusted for the correlation within your clusters.

11.3.C Mixed-effects model

Perhaps the most confusing aspect of mixed-effects models is all the different 
names that this procedure goes by in the literature: mixed models, random 
effects regression models, random coefficient models, random-regression 

22 Dupont, W. D. Statistical Modeling for Biomedical Researchers: A Simple Introduction to the Analy-
sis of Complex Data. Cambridge: Cambridge University Press, 2002, pp. 356–67.

23 Murray, D. M., Varnell, S. P., and Blitstein, J. L. “Design and analysis of group-randomized trials: 
A review of recent methodological developments.” Am. J. Pub. Health 94 (2004): 423–32.

24 Horton, N. J. and Lipsitz, S. R. “Review of software to fit generalized estimating equation regres-
sion models.” American Statistician 53 (1999): 160–9.
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198 Correlated observations

models, multilevel models, and hierarchical models. Some authors add the 
word linear to describe them, as in: linear mixed-effects models or hier-
archical linear models. The linear is added to distinguish them from non-
linear mixed-effects models, which can also be constructed.

The different names of these models refer to different features of them. 
Mixed-effects models are referred to as “mixed” because they contain both 
fixed and random effects. The models assume that individuals deviate ran-
domly from the average (fixed) response. The underlying fixed model may 
be linear, logistic, or Poisson. Because of the random effect, the slope and 
intercept of each individual subject may be different.25

These models are referred to as “multilevel” or “hierarchical” because 
they incorporate two or more “levels” of “random” variation where one level 
is “higher” than the other. For example, 1000 patients (level 1) may be cared 
for by one of 100 treating physicians (level 2) working in one of ten hospitals 
(level 3). Observations are correlated (clustered) at each of these levels.

Although you might think from this explanation that you cannot use 
these models to analyze repeated observations of the same subject, this is 
not true. Repeated observations (level 1) are clustered at the “higher” level of 
the subject (level 2). Similarly, observations of two body parts (level 1) of the 
same subject are clustered at the level of the subject (level 2) as well.

An example of clustered data that does not fit a hierarchical model would 
be surgical complication rates of physicians who work in multiple different 
hospitals. Because the physicians do not exclusively work in one hospital, they 
cannot all be fitted within a higher level. Although multiple-level nonhierar-
chical mixed-effects models are available, they are computationally difficult 
and their use is controversial.26

In contrast to generalized estimating equations which are unconditional 
models, mixed-effects models are conditional models. They estimate the 
individual-level impact of the intervention/exposure conditional on the 
cluster (within-cluster effect only).

As with generalized estimating equations, mixed-effects models can incorpor-
ate interval, dichotomous, ordinal, and categorical outcomes, as well as independ-
ent variables that are fixed and those that may change value at each observation.

Unlike generalized estimating equations, for which you must specify a cor-
relation structure, mixed-effects models assume that the correlation within 

25 Ker, H.-W., Wardrop, J., and Anderson, C. Applicaton of linear missed-effects models in longitu-
dinal data: A case study. http://www.hiceducation.org/edu_proceedings/hsiang-wei%20ker.pdf.

26 Panageas, S. S., Schrag, D., Riedel, E., et al. “The effect of clustering of outcomes on the association 
of procedure volume and surgical outcomes.” Ann. Intern. Med. 139 (2003): 658–65.
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199 11.3 Analyzing correlated observations

the cluster arises from the common random effects of the cluster. It is also 
possible to specify a variance and correlation structure, and use your data to 
estimate its parameters.27

As is true of generalized estimating equations, mixed-effects models can 
handle unequal intervals between observations, unequal numbers of obser-
vations per cluster, and randomly missing data. Again as with generalized 
estimating equations, some authors report that mixed-effects models can 
handle data that are not missing randomly when the outcome is interval (but 
not when the outcome is dichotomous).28 However, I would be cautious about 
using these models if you have a lot of missing data (because you can never 
be sure if the data are missing randomly), or when you know the data are not 
missing randomly.

With a dichotomous outcome, the meaning of the coefficients differs between 
generalized estimating equations and mixed-effects models. With generalized 
estimating equations, the coefficient is the between-person difference in the 
log odds of the outcome comparing the effect of the intervention to no inter-
vention (or the effect of being in one group to being in a different group) as if 
the intervention and the no intervention (or the group assignment) had been 
performed on two separate individuals. The coefficient in the mixed-effects 
models is the within-person change in the log odds of the outcome comparing 
the effect of the intervention to no intervention as if the intervention had been 
performed on the same individual.29 Unlike generalized estimating equations, 
mixed-effects models can change the point estimate of effect as well as the 
confidence intervals.

Kandel and colleagues used a mixed-effects model to study racial and eth-
nic differences in cigarette smoking among adolescents.30 The data were drawn 
from a representative sample of 90, 118 adolescents. The investigators used a 
three-level hierarchical model: adolescents (level 1), school (level 2), and state 
(level 3). Observations of adolescents within the same school would be expected 
to be correlated because of characteristics particular to each school (e.g., prin-
cipal, equipment) and observations from schools within the same state would 
be expected to be correlated because of similar statewide education policies. 

27 Gueorguieva, R. and Krystal, J. H. “Move over ANOVA: Progress in analyzing repeated-measures 
data and its reflection in papers published in the Archives of General Psychiatry.” Arch. Gen. Psy-
chiatry 61 (2004): 310–17.

28 Twisk, J. W. R. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. Cambridge 
University Press, 2003, pp. 208–12.

29 Murray, D. M., Varnell, S. P., and Blitstein, J. L. “Design and analysis of group-randomized trials: 
A review of recent methodological developments.” Am. J. Public Health 94 (2004): 423–32.

30 Kandel, D. B., Kiros, G.-E., Schaffran, C., et al. “Racial/ethnic differences in cigarette smok-
ing initiation and progression to daily smoking: A multilevel analysis.” Am. J. Public Health 94 
(2004): 128–35.

 

 

 

 

 

 

 

 



200 Correlated observations

A hierarchical structure works because each school is in a particular state and 
children do not attend more than one school. The study found that transition 
to daily smoking was significantly higher among white and Hispanic youth 
than among black youth.

An advantage of mixed-effects models over generalized estimating equa-
tions is that they require no minimum sample size for a particular group.31

In addition, if your focus is on predicting how the values of individual units 
(e.g., persons, clinics, hospitals) change rather than the mean of the popu-
lation, mixed-effects models are a better choice than generalized estimating 
models.32 For example, it would be better to use a mixed-effects model for 
predicting the bone mineral density of a 66-year-old Caucasian woman with 
a history of smoking and alcohol consumption, and use the generalized esti-
mating model to estimate the impact of age, smoking, and alcohol consump-
tion on average bone marrow density in a sample of community elders.

With interval outcomes the results from generalized estimating equations 
and mixed-effects models will be similar. Of note, two articles on the same 
topic (relationship of procedure volume on mortality in cardiac patients) pub-
lished in the same issue of the same journal used different techniques: Magid 
and colleagues used generalized estimating equations to adjust for within-
hospital clustering and McGrath and colleagues used mixed-effects models to 
adjust for clustering of physicians.33

11.3.D Repeated measures analysis of variance/repeated measures  
analysis of covariance

Repeated measures analysis of variance is an adaptation of analysis of variance. 
It is used to compare means of an interval outcome measure (e.g., cholesterol 
level) when you have two or more groups defined by an experiment or char-
acteristic (e.g., ethnicity). Additional categorical independent variables can be 
incorporated into repeated measures analysis of variance (e.g., occupation).

Unlike generalized estimating equations and mixed-effects models, repeated 
measures analysis of variance can only accommodate interval outcome 

31 Christiansen, C. L. and Morris, C. N. “Improving the statistical approach to health care provider 
profiling.” Ann. Intern. Med. 127 (1997): 764–8.

32 Diggle, P. J., Heagerty, P., Liang, K.-Y., et al. Analysis of Longitudinal Data (2nd edn). Oxford: Oxford 
University Press, 2002, p. 130; Davis, C. S. Statistical Methods for the Analysis of Repeated Meas-
urements. New York, NY: Springer-Verlag, 2003, pp. 294–8.

33 Magid, D. J., Calonge, B. N., Rumsfeld, J. S., et al. “Relation between hospital primary angioplasty 
volume and mortality for patients with acute MI treated with primary angioplasty vs thrombolytic 
therapy.” JAMA 284 (2000): 3131–8; McGrath, P. D., Wennberg, D. E., Dickens, J. D., et al. “Relation 
between operator and hospital volume and outcomes following percutaneous coronary interven-
tions in the era of the coronary stent.” JAMA 284 (2000): 3139–44.
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variables and independent variables that are fixed (i.e., do not change their 
value during the course of the study).

Another disadvantage of repeated measures analysis of variance is that you 
must have the same number of observations of each subject and the observations 
must be made at the same time. This explains why repeated measures analysis 
of variance and covariance is more likely to be used with small experiments 
than with larger observational studies. If you have missing data, as is almost 
always the case with observational data, you must impute the data point, carry 
the last observation forward or drop the case from the analysis. Any of these 
strategies, especially the latter two, are likely to bias your analysis.

Although standard repeated measures models require an equal number of 
observations, repeated measures analysis of variance for an unequal number of 
observations (referred to as unbalanced designs) exist.34 However, these meth-
ods are complicated and require consultation with a biostatistician. When you 
have clusters with an unequal number of observations, it is generally better to 
choose generalized estimating equations or mixed-effects models.

Despite these limitations, repeated measures analysis of variance is a per-
fectly acceptable method of analyzing small experimental studies with an 
equal number of observations made at the same point in time in each clus-
ter. For example, Schmidt and colleagues used repeated measures analysis of 
variance to tease out the cause of premenstrual syndrome.35 Ten women with 
premenstrual syndrome were compared to 15 women without the syndrome 
on their response to leuprolide (a gonadatropin-releasing hormone agonist) 
or leuprolide plus hormone replacement. The investigators found a signifi-
cant interaction between treatment group (leuprolide alone or with hormone 
replacement), diagnosis (women with premenstrual syndrome or not), and 
week of study. Specifically, women with premenstrual syndrome experienced 
greater sadness and more anxiety at week three after receiving leuprolide and 
hormone replacement than after receiving only leuprolide. Also at week three, 
women with the premenstrual syndrome who received leuprolide plus hor-
mone treatment experienced more sadness and anxiety than women without 
this syndrome. The findings suggest that women with premenstrual syndrome 
experience an abnormal response to normal hormonal changes.

Repeated measures analysis of covariance is similar to repeated measures 
analysis of variance but it allows for incorporation of continuous independent 

34 Jennrich, R. I. and Schluchter, M. D. “Unbalanced repeated-measures models with structured cov-
ariance matrices.” Biometrics 42 (1986): 805–20.

35 Schmidt, P. J., Nieman, L. K., and Danaceau, M. A. “Differential behavioral effects of gonadal 
steroids in women with and in those without premenstrual syndrome.” N. Engl. J. Med. 338 
(1998): 209–16.

Repeated measures 
analysis of variance 
requires an 
equal number of 
observations for each 
subject made at the 
same time.
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202 Correlated observations

variables. For example, Barsky and Ahern studied the efficacy of cognitive 
behavior therapy for hypochondriasis (a persistent fear that one has a serious 
undiagnosed medical illness).36 Clients were randomized to treatment or to 
usual care. The effect of treatment was measured using the Whiteley index 
(a measure of hypochrondriacal symptoms). Changes on the Whiteley index 
over time are shown in Table 11.4.

You can see that the mean Whiteley index shows that symptoms decreased in 
both groups over time. To test whether the decrease over time was significantly 
greater in the treatment group than in the control group, the investigators used 
repeated measures analysis of covariance; this procedure was used because the 
investigators wished to adjust their results for several variables, including psy-
chiatric comorbidity, a continuous measure. The repeated measures ANCOVA 
showed that there was a significant interaction effect for group by time.

Besides the other assumptions of analysis of variance (Section 3.2.C), 
repeated measures analysis of variance and of covariance assumes sphericity. 
Sphericity in a longitudinal study means that the correlation between any 
two measurements at different time points is the same and that within sub-
jects there is equal variance of the measurements. (The former is similar to 
the assumption of an exchangeable working correlation matrix in generalized 
estimating equations.) The sphericity assumption is always met if you have 
only two measurements. But when you have three or more measurements, this 
assumption is often not met. Observations close in time to one another tend to 
be more highly correlated than observations taken far apart. Variability of the 
measurements tends to increase over time.

36 Barsky, A. J. and Ahern, D. K. “Cognitive behavior therapy for hypochondriasis: A randomized 
controlled trial.” JAMA 291 (2004): 1464–70.

Table 11.4 Effect of cognitive behavior therapy (treatment group) versus usual therapy 
(control group) for patients with hypochondriasis.

Treatment group (n = 102) 
mean (95% CI)

Control group (n = 85) mean 
(95% CI) P value

Whiteley index baseline 3.58 (3.47–3.68) 3.51 (3.38–3.62) <0.001
6-month follow-up 2.82 (2.68–2.97) 3.21 (3.05–3.38)
12-month follow-up 2.65 (2.48–2.81) 3.02 (2.85–3.21)

Barsky, A. J. and Ahern, D. K. “Cognitive behavior therapy for hypochondriasis: A randomized 
controlled trial.” JAMA 291 (2004): 1464–70.

Repeated measures 
analysis of variance 
and covariance require 
that the data meet the 
sphericity assumption.

 

 

 

 

 



203 11.3 Analyzing correlated observations

You can use the Mauchly test to assess whether your data fit the sphericity 
assumption. The test is available in standard statistical software programs. The 
null hypothesis is that the data fit the sphericity assumption. If the P value is 
less than 0.05 you would reject the null hypothesis and conclude that your data 
do not meet the sphericity assumption. Unfortunately, the Mauchly test is very 
sensitive to sample size. With a large sample size, you may get a significant 
result even though the departure from the assumption is small, and with a 
small sample size you may get an insignificant result even though the depar-
ture from the assumption is large.37

If this assumption is not met, you can use the Greenhouse–Geisser correc-
tion. This correction reduces the degrees of freedom for the numerator; this 
in turn has the effect of increasing the P value. It is a conservative adjustment 
that makes it harder to detect differences between the groups. Therefore, if you 
find differences despite the adjustment you can have greater confidence that 
your results are robust to violations of the sphericity assumption. For example, 
the trial of cognitive behavioral therapy for hypochondriasis reported above 
used the Greenhouse–Geisser correction in reporting their results, including 
the results shown in Table 11.4.

When you have more than one outcome variable, you should use the 
multivariate forms of repeated measures analysis of variance and repeated 
measures analysis of covariance: multivariate repeated measures analysis of 
variance and multivariate repeated measures analysis of covariance. If this 
analysis is statistically significant, then you can look at the individual out-
come variable.

One advantage of the multivariate approach is that the sphericity assump-
tion does not need to be met. However, if you then wish to tease out the effects 
of the risk factors on each of the outcome variables, you will still need to test 
for departures from the sphericity assumption and adjust for violations of 
this assumption. A disadvantage of multivariate designs is that you lose one 
degree of freedom for each added outcome variable, making your analyses 
less powerful.

In general, as shown in Table 11.5., repeated measures analysis of vari-
ance is much less flexible than generalized estimating equations or mixed-
effects models. For this reason, its use is declining.38

37 Twisk, J. W. R. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. Cambridge 
University Press, 2003, pp. 25–6.

38 Gueorguieva, R. and Krystal, J. H. “Move over ANOVA: Progress in analyzing repeated-meas-
ures data and its reflection in papers published in the Archives of General Psychiatry.” Arch. Gen. 
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204 Correlated observations

11.3.E Conditional logistic regression

Clustered data with a dichotomous outcome can be analyzed using condi-
tional logistic regression. This procedure is very similar to standard logis-
tic regression. It produces similar outputs (e.g., coefficients, standard errors, 
odds ratios) and you can use similar diagnostics to assess the fit of your mod-
el.39 In fact, “standard” logistic regression is often referred to as uncondi-
tional logistic regression. The difference between these two procedures is that 
conditional logistic regression takes into account the correlation between the 
observations.

As with standard logistic regression, conditional logistic regression does 
not accommodate variables that change their value during the course of 
the study. As implied by the name, it is a conditional technique: it produces 
estimates of individual-level effects conditional on membership in a cluster. 
Unlike mixed-effects models, another form of conditional model, condi-
tional logistic regression cannot adjust for correlated observations owing to 
more than one cause (e.g., matching and clustering by sites). But when you 
have a dichotomous variable and observations correlated for a single reason, 

Psychiatry 61 (2004): 310–7. Besides documenting the decline in the use of ANOVA methods for 
repeated measures, this article provides a lucid explanation of many aspects of the analysis of 
clustered data.

39 Hosmer, D. W. and Lemeshow, S. Applied Logistic Regression. 2nd edn. New York, NY: Wiley, 2000, 
pp. 223–259.

Table 11.5 Comparison of generalized estimating equations, mixed-effects models, and repeated 
measures analysis of variance.

Method

Types of outcome 
variables 
accommodated

Accommodate 
covariates that 
change value 
during study?

Accommodate 
unequal number of 
observations?

Accommodate 
missing 
observations?

Accommodate 
unequally 
spaced 
observations?

Generalized 
estimating 
equations

Interval, ordinal, 
dichotomous, 
and categorical

Yes Yes Yes, when data 
are missing 
randomly

Yes

Mixed-effects 
models

Interval, ordinal, 
dichotomous, 
and categorical

Yes Yes Yes, when data 
are missing 
randomly

Yes

Repeated 
measures 
analysis of 
variance

Interval only No No No No

Clustered data with a 
dichotomous outcome 
can be analyzed using 
conditional logistic 
regression.

 

 

 

 

 

 



205 11.3 Analyzing correlated observations

conditional logistic regression may be easier to explain and perform than 
generalized estimating equations or mixed-effects models.

For example, Abenhaim and colleagues were interested in evaluating 
whether appetite-suppressing drugs cause primary pulmonary hyperten-
sion.40 Because primary pulmonary hypertension is a rare disease with a 
large number of suspected but unproved risk factors, the investigators chose 
a matched design. Ninety-five patients with primary pulmonary hypertension 
were individually matched to 335 controls by age (within five years), gender, 
and the number of visits to the physician per year. However, beyond the vari-
ables that they used to match cases and controls, they also needed to adjust for 
other potential confounders including systemic hypertension, use of cocaine, 
and smoking status. They therefore needed to use a multivariable technique. 
They found, using conditional logistic regression, that after adjustment for 
potential confounders, use of appetite suppressants was significantly associ-
ated with an increased risk for primary pulmonary hypertension (OR = 6.3; 
95% CI = 3.0 –13.2). They also showed a dose–response relationship, with sub-
jects who used appetite suppressants for more than three months having a risk 
of development of hypertension 23 times greater than that of persons who did 
not use appetite suppressants (OR = 23.1; 95% CI = 6.9 – 77.7).

In situations where you have a choice as to which method to use to analyze 
data with correlated observations, you may want to analyze the data more than 
one way and see whether or not you get similar answers. For example, Sethi 
and colleagues looked at the association between the isolation of a new strain 
of a bacterial pathogen and an exacerbation of chronic obstructive pulmo-
nary disease.41 Because patients made multiple visits (81 patients made a total 
of 1975 visits) they needed to adjust for correlations within patient clusters. 
Their outcome was dichotomous: exacerbation or not. They reported similar 
results using conditional logistic regression and using generalized estimating 
equations.

11.3.F Anderson–Gill formation of the proportional hazards model

When you have censored data (Section 3.6) and an outcome that can occur 
more than once to a subject over time, you can use the Anderson–Gill count-
ing process, which is an adaptation of the proportional hazards model.42 In 

40 Abenhaim, C., Moride, Y., Brenot, F., et al. “Appetite-suppressant drugs and the risk of primary 
pulmonary hypertension.” N. Engl. J. Med. 335 (1996): 609–16.

41 Sethi, S., Evans, N., Grant, B. J. B., et al. “New strains of bacteria and exacerbations of chronic 
obstructive pulmonary disease.” N. Engl. J. Med. 347 (2002): 465–71.

42 Anderson, P. K. and Gill, R. D. “Cox’s regression model for counting processes: a large sample 
study.” Ann. Stat. 10 (1982): 1100–20.

Conditional logistic 
regression cannot 
adjust for correlated 
observations owing to 
more than one cause.

 

 

 

 

 

 

 

 

 



206 Correlated observations

this model subjects are considered at risk for the first event from the start of 
the study to the first event; they are then considered at risk for the second event 
from the day following the first event until the second event occurs and so on. 
While this gives you a method of incorporating all of the outcomes as well 
as all of the person-time, you still must account for the correlation between 
events in the same individuals. To do this use a robust variance estimate.43

For example, Berl and colleagues compared the incidence of congestive heart 
failure between patients receiving irbesartan (an angiotensin-receptor blocker) 
and those receiving placebo among diabetics with nephropathy.44 Because 
congestive heart failure can occur more than once in the same individual the 
investigators used the Anderson–Gill formulation of the proportional hazards 
model with robust variance estimates. They found that patients receiving irbe-
sartan had a significantly lower incidence of congestive heart failure than pla-
cebo recipients (hazard ratio = 0.72; 95% CI = 0.52–1.00; P = 0.048).

11.3.G Marginal approach for proportional hazards analysis

Another method for analyzing censored data with outcomes that can occur 
more than once to a subject over time is to model the marginal distribution of 
each time to outcome with a proportional hazards analysis.45 An advantage of 
this approach is that the nature of the dependence of correlated observations 
is unspecified.

For example, Gabriel and colleagues used the marginal approach for propor-
tional hazards analysis in a study of complications after breast implantation.46 
Most women in the study had bilateral implants; some had multiple implants 
in the same breast. The investigators therefore performed follow-up of each 
breast implant until a complication occurred, the implant was removed, or the 
end of follow-up occurred. Using a marginal approach to adjust for the cor-
relation between times to implant failure for women who had more than one 
implant, they found that the rate of complication was significantly higher for 
women who had an implant for cancer or cancer prophylaxis than for those 
who had an implant for cosmetic reasons.

43 Lin, D. Y. and Wei, L. J. “The robust inference for the Cox proportional hazards model.” J. Am. Stat. 
Assoc. 84 (1989): 1074–8.

44 Berl, R., Unsicker, L. G., Lewis, J. B. et al. “Cardiovascular outcomes in the irbesartan diabetic 
nephropathy trial of patients with type 2 diabetes and overt nephropathy.” Ann. Intern. Med. 138 
(2003): 542–9.

45 Wei, L. J., Lin, D. Y. and Weissfeld, L. “Regression analysis of multivariate incomplete failure time 
data by modeling marginal distributions.” J. Am. Stat. Assoc. 84 (1989): 1065–73.

46 Gabriel, S. E., Woods, J. E., O’Fallon, W. M., et al. “Complications leading to surgery after breast 
implantation.” N. Engl. J. Med. 336 (1997): 677–82.

 

 

 

 

 

 

 

 

 

 



207 11.4 Calculating the needed sample size

11.4 How do I calculate the needed sample size for studies with 
correlated observations?

The sample-size calculations discussed in Section 6.4 assume that the observa-
tions are independent. Special methods are needed to determine sample size 
requirements for multivariable analysis involving clustered data.

Although these methods are beyond the scope of this text, instructions and 
software for calculating sample sizes for analyses of correlated outcome data 
are available.47

47 Delucchi, K. L. “Sample size estimation in research with dependent measures and dichotomous 
outcomes.” Am. J. Public Health 94 (2004): 372–7; Twisk, J. W. R. Applied Longitudinal Data Analy-
sis for Epidemiology: A Practical Guide. Cambridge University Press, 2003, pp. 280–5.
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12

Validation of models

12.1 How can I validate my models?

A valid model is one where the inferences drawn from it are true. Many f actors 
can threaten the validity of a model including imprecise or inaccurate meas-
urements, bias in study design or in sampling, and mis-specification of the 
model itself.

Because the development of a model maximizes the probability of obtaining 
the values of the original outcome data, models will not generally perform as 
well with new data as with the original data. This is a particularly important 
issue when you are creating models to predict diagnosis or prognosis and a 
high degree of certainty is needed.

Although predictions based on the original cases will likely not be as accu-
rate in predicting the outcome of new cases, the important question is how 
large is the decrement in performance. If the decrement is small, the model is 
said to be validated.

The methods of model validation are:

1. Collect new data
2. Divide your existing data set:
 a. split-group
 b. jack-knife method
 c. bootstrap

Without question, the best method of validating an empirical model is to 
collect more data and test the performance of the initial model with the new 
data. This was the case with the prognostic model for estimating survival for 
patients with primary melanoma (described in Section 2.5). The investigators 
found that four factors correctly classified the vital status (alive or dead) of 
74 percent of the patients. To validate their model, they studied the success of 
this four-variable model in predicting outcome among 142 patients who were 
diagnosed with primary melanoma in the same center in the two years follow-
ing the enrollment of the initial sample. When applied to this new sample, the 
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209 12.1 Validating models

model correctly classified 69 percent of the patients, a relatively small decre-
ment in performance from the original model.

Although testing the model with a second set of patients strengthens the 
validity of the model, it is not as strong a validation as testing the model on 
patients seen at a different center. The reason is that a model may not per-
form as well under a different set of circumstances (e.g., a different prevalence 
of disease, referral pattern, patient mix, clinician practice style, or temporal 
changes). In the case of the melanoma prediction rule the only difference 
between the circumstances of the original and the second data set was the 
year of diagnosis, which makes it a somewhat less rigorous validation than if 
the investigators had enrolled subjects from a different institution.

With a split-group validation you randomly divide your data set into two 
parts – a derivation set (also called a training set) and a validation set (also 
called a confirmatory set). The parts can be equal halves or you can split the 
data set such that the derivation set is larger than the confirmatory set. You 
develop your model on the derivation set and then test it on the confirma-
tory set.

A split-group validation was used to test the validity of a model designed 
to predict recurrence of seizures.1 The sample consisted of 1013 people who 
were free of seizures on medication for at least two years. The researchers were 
taking advantage of an existing data set to develop a prognostic model. Collec-
tion of additional data was not an option. Instead, the investigators randomly 
divided their existing sample into two parts, with 60 percent of their sample in 
the derivation set and 40 percent in the validation sample.

 Using the derivation set they developed a proportional hazards model 
with eight prognostic factors. To validate the model they used it to estimate 
the probability of a recurrent seizure for each of the subjects in the validation 
data set. They grouped the estimated probabilities of seizure for the patients 
in the validation group into eight groups of increasing probability of recur-
rence. As shown in Figure 12.1, for each of the eight groups they compared 
the proportion of actual recurrences to that predicted by the model. The bars 
show the confidence intervals for the predicted values, and the dash near the 
middle of the line shows the mean predicted value. If the validation had been 
perfect, all dashes would fall exactly on the diagonal line. While the dashes 
are close to the diagonal line, the confidence intervals are broad, especially 
for those predicted values where the number of subjects (shown in parenthe-
ses) is small.

DEFINIT ION

With a split-group 
validation you randomly 
divide your data set into 
two parts – a derivation 
set and a validation set.

1 Medical Research Council Antiepileptic Drug Withdrawal Study Group. “Prognostic index for 
recurrence of seizures after remission of epilepsy.” Br. Med. J. 306 (1993): 1374–8.
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You will note that Figure 12.1 uses essentially the same technique as Figure 
8.1. Figure 8.1 is also based on comparing predicted to observed probabilities. 
The difference is that in Figure 8.1 the predicted and observed probabilities are 
based on the same subjects. In Figure 12.1 the predicted probabilities are based 
on a model that was derived from a different group of subjects.

One final note about validating your model using a second sample or a split 
sample. Once a model has been validated, investigators will often combine the 
multiple samples or reunite the split sample for the final model. Investigators 
do this so that the larger sample size can give their final model tighter confi-
dence intervals.

In cases where it is impractical to collect more data or split your sample, you 
may use a jack-knife procedure (often called cross-validation). With a jack-
knife procedure you sequentially delete subjects from your data set, one at a 
time, and recompute your model with each subject missing once. This allows 
you to assess two things. First, you can assess the importance of any one sub-
ject to your results. A model that substantially changes with deletion of a sin-
gle case is not valid because the results hinge on that one case. Second, once 

Figure 12.1 Comparison of the probability of predicted recurrences (probabilities are based 
on the model generated by the derivation set) to the observed probability of 
recurrences of seizures in the validation set. The bars show the confidence 
intervals for the predicted values, and the dashes near the middle of the line 
show the mean predicted value. Reprinted with permission from Medical 
Research Council Antiepileptic Drug Withdrawal Study Group. “Prognostic 
index for recurrence of seizures after remission of epilepsy.” Br. Med. J. 306 
(1993): 1374–8. Copyright BMJ Publishing Group.
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you drop a case, you can predict that subject’s outcome from the remaining 
cases. This is done sequentially such that you are predicting the values of each 
subject using the rest of the subjects. In this sense, the jack-knife is like a split-
group validation: The split is the whole sample minus one case (the derivation 
set) versus the one case (the confirmatory set). When you have a relatively 
small sample, jack-knife procedures are likely to be more sensible than split-
ting your sample. You should be aware that jack-knife procedures are easy to 
do in multiple linear regression, but they are very computer time intensive in 
logistic and proportional hazards models.

The bootstrap procedure provides limited support of the validity of your 
model. With bootstrap procedures you take random samples of the subjects in 
your data set with replacement (meaning that after a case is chosen it becomes 
eligible to be chosen again). Thus, your random samples may include the same 
subject more than once, whereas some subjects will not be included at all. 
Once the samples are drawn, you test the strength of the relationships found in 
your main model in the random samples. The results from these samples can 
be used to construct 95 percent confidence intervals by excluding the extreme 
2.5 percent and 97.5 percent of values. If the confidence intervals are relatively 
narrow, you can feel more confident in your results.

For example, Hamberg and colleagues used logistic regression to create a 
model based on clinical and laboratory data that would accurately predict cir-
rhosis among 303 alcohol-abusing men.2 Such a model would have clinical 
significance if it decreased the need for liver biopsies. At a cut-off of 10 percent 
probability of having cirrhosis, the sensitivity and specificity of their model 
was 88 percent. They then tested their model using the same cut-off in 1000 
samples drawn from their study population. The 95 percent confidence inter-
vals for the sensitivity and specificity were 85–91 percent and 85–95 percent 
respectively.

Besides producing confidence intervals, bootstrap procedures produce 
mean coefficients and mean standard errors for your random samples. These 
confidence intervals and standard errors are likely to be more valid than those 
created from one simple model.3

The bootstrap procedure is a weaker test of the validity of a model than 
a split-group or a jack-knife. This is because the 1000 bootstrap samples of 
303 subjects will have the majority of subjects in common. In contrast, a split 

2 Hamberg, K. J., Carstensen, B., Sorensen, T. I., et al. “Accuracy of clinical diagnosis of cirrhosis 
among alcohol-abusing men.” J. Clin. Epidemiol. 49 (1996): 11:1295–301.

3 Readers interested in learning more about bootstrap techniques should see: Efron, B. and 
T ibshirania, R. J. An Introduction to the Bootstrap. New York, NY: Chapman & Hall, 1993.
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sample and the jack-knife procedures would have no subjects in common. 
Thus, in the strictest sense, bootstrap does not fit the definition of validation.

The importance of validation varies with the goals of your study. Validation 
is rarely performed for observational studies of etiology (Section 2.2). Your 
results will be judged primarily on the strength of your methods, the biologic 
plausibility of your results, and prior findings in this area. Other investigators 
may seek to replicate or refute your findings. Similarly, model validation is not 
generally the major issue with interventional trials, in which, it is naturally 
assumed that the results need to be replicated in different populations, even if 
no multivariable modeling is performed. In contrast, models predicting diag-
nosis or prognosis of disease (Sections 2.4 and 2.5, respectively) are rarely pub-
lished (at least not in the best journals) without validation.

The reason for the distinction is that models used to determine factors asso-
ciated with a particular outcome do not need to be highly accurate. For exam-
ple, while exercise is significantly associated with mortality, the decrease in 
mortality owing to exercise is relatively small. You certainly would not try to 
predict a patient’s life span based on knowing how much he or she exercises. 
But that’s not the point. The point is that, in a population, exercising will result 
in increased longevity for the group as a whole. Improving risk factor profiles 
may have a substantial effect on the development of disease in a large popula-
tion, even if the absolute effect for an individual is small. This is especially true 
if the disease and the risk factor are common.

In contrast, with studies designed to predict diagnosis or prognosis, a high 
degree of certainty is required because you are using the model to predict for 
an individual patient. Clinicians are not likely to trust a model that has not 
been validated. (Even then, physicians are notorious for ignoring diagnostic 
algorithms, preferring instead their gut instinct; see Section 2.4.)

T IP
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13

Special topics

13.1 What if the independent variable changes value during the course 
of the study?

Let’s say that over the course of a longitudinal study a subject’s value 
changes on an independent variable. This may happen because the patient 
quits (or starts) a habit such as smoking, begins a new medicine, or develops 
a new symptom or illness. How can you deal with this in your analysis? The 
answer is that within proportional hazards analysis you can create time-
dependent variables. These variables change value at a particular point in 
time. So, instead of having a variable such as smoking at baseline (yes/no), 
you create a time-dependent variable, where each subject is 0 (nonsmoker) 
or 1 (smoker) at a particular point of survival time.

In the simplest case, time-dependent variables change their value only once 
(e.g., a nonsmoker starts to smoke – the variable is 0, 0, 0, at several points in 
time before the subject begins smoking and then the variable changes value 
to 1 at the time the subject begins smoking and remains 1 for the remainder 
of the observational time). It is also possible to construct time-dependent 
variables that change their value back and forth multiple times (reflecting 
what sometimes happens when smokers try to quit). Time-dependent vari-
ables need not be dichotomous; that is, the variable may take the value of an 
interval measure, such as blood pressure, at each point that it is measured.

While the interpretation of time-dependent variables can be complicated, 
their construction is easy. You need to look up the exact formatting in your 
statistical package, but in general, the package will have a special designation 
for time-dependent variables. You tell the computer when (in study time) each 
subject changes value on the variable.

13.2 What are the advantages and disadvantages of time-dependent 
covariates?

The advantage of time-dependent covariates is that you can incorporate 
important events that occur during the course of the study. For example, 

D E F I N I T I O N
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Mayne and colleagues wanted to determine if depression shortened sur-
vival of HIV-infected men.1 Their subjects were part of a longitudinal study 
that began in 1984 with more than seven years of follow-up. The simplest 
design for answering this question would be to measure depression in 1984 
and then follow subjects longitudinally for mortality. The problem with 
this design is that depression may not be present initially (in 1984) but may 
develop subsequently. Using depression at baseline only will weaken your 
study (because people who become depressed six months after baseline will 
not be considered depressed in the analysis, even though this may affect 
their mortality). Second, using depression only at baseline decreases your 
power because relatively few persons will be classified as depressed at one 
time. Third, a single instance of a participant being rated as depressed might 
not affect mortality, since it might reflect only a short episode of depression, 
rather than a more chronic condition.

To overcome these issues, the researchers created a time-dependent vari-
able that took the value of the proportion of visits at which the person was 
depressed. So for each visit (subjects were interviewed every six months) the 
variable had a value between 0 percent and 100 percent (of visits to date) at 
which the person was depressed. They found that depression was associated 
with a higher rate of mortality. They also created time-dependent variables 
that represented each subject’s actual score on the depression index at each 
visit. The results were similar.

The depression measure was not the only variable that changed value over 
the course of this study. The subjects’ immune function also changed value 
as patients progressed. The investigators therefore created time-dependent 
covariates that represented the subjects’ CD4 counts, as well as other meas-
ures of immune function. They found that depression increased the risk of 
death, even with adjustment for changes in immune function. This would 
suggest that the mechanism of depression on mortality is not mediated by 
more rapid immune function decline (within the limits of the investigators’ 
ability to measure it). This analysis also weakens an “effect–cause” hypoth-
esis (that participants became depressed because they learned of their CD4 
count results), since the analysis adjusts for recent CD4 counts.

Another advantage of time-dependent covariates is that they do not have 
to fit the proportionality assumption (Section 3.6). The reason is that they 
incorporate time and therefore do not have to be independent of time.

1 Mayne, T. J., Vittinghoff, E., Chesney, M. A., et al. “Depressive effect and survival among gay and 
bisexual men infected with HIV.” Arch. Intern. Med. 156 (1996): 2233–8.
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The disadvantages of time-dependent covariates are less obvious than the 
advantages. The two major disadvantages are: overadjustment and decreased 
usefulness of the model for clinicians.

Adjusting for prognostic markers that are on the pathway to your outcome 
may prevent you from identifying the effect you are investigating (overadjust-
ment). Let’s go back to the example of depression and mortality in HIV-infected 
persons. Assume that the overall finding is accurate, that is, that depression 
increases mortality. But, let’s assume that the mechanism by which this hap-
pens is that depression leads to worsening immune function, which, in turn, 
leads to more opportunistic infections and death (in other words, change in 
immune function is an intervening variable between depression and mortal-
ity) (Section 6.3). If this is the case, then including time-dependent variables 
measuring immune function will eliminate the effect you are trying to sub-
stantiate. Depression will not be associated with mortality because adjusting 
for changes in immune function will eliminate the effect. In comparison, if 
you adjust only for immune function at baseline you will not eliminate the 
effect.

The use of time-dependent covariates may also decrease the value of your 
models for clinicians. The reason is that clinicians must advise their patients 
based on information they have at the time they are counseling the patient. A 
clinician can’t know how a risk factor will change in the future. It would be 
confusing to a patient to counsel them on their risk of heart attack in case they 
were to develop hypertension at a particular time in the future.

With time-dependent models it is important to include only events that have 
occurred before the outcome. Remember that an advantage of a longitudinal 
design compared to a cross-sectional one is that a longitudinal study is more 
likely to support causality. That’s because if the outcome is not yet present 
(at least, as best as can be measured), the chance that the “outcome” causes 
the “risk factor” (i.e., effect–cause) is much less likely. (Remember, in a cross-
sectional study you are measuring risk factors and outcomes at the same time.) 
With time-dependent variables, you are including factors that are more proxi-
mal to outcome than baseline measurements. Thus, effect–cause becomes a 
greater danger. One way to deal with this issue is to “lag” the time-dependent 
measure substantially before the outcome (but still after the baseline).

A lag for time-dependent variables was used by the investigators to see if 
depression would still be associated with mortality if the depression meas-
ure was lagged by periods of one, two, and three years from the outcome. 
With these time lags, depression was still associated with mortality, sup-
porting the hypothesis that depression increases mortality, and weakening 
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the case for the alternative hypothesis that depression reflects worsening 
health status.

13.3 What are classification and regression trees (CART) and should  
I use them?

Classification and regression trees (CART), also known as recursive partition-
ing, is a technique for separating (partitioning) your subjects into distinct sub-
groups based on the outcome.2

The technique is easiest to follow visually. In Figure 13.1, you see an algo-
rithm for assessing the risk of heart attack that was developed using CART.3 
The algorithm is based on 1379 patients, of whom 259 (19 percent) had a 
heart attack. The investigators assessed the diagnostic ability of 50 variables, 
including patients’ history, physical examination, and electrocardiogram 
results.

The CART technique attempts to divide the sample into subgroups that 
have as many patients with the outcome (e.g., heart attack) in one group (high 
risk) and as few patients with the outcome in the other group (low risk). You 
can see that at the first branch point of Figure 13.1 (ST elevation or Q waves 
in two or more leads, not known to be old), CART separates the sample into 
two groups with very different probabilities of heart attack: 80% and 9%. At 
the next branch point (chest pain began ≥48 hours ago), the sample is also 
separated into two groups with different probabilities of outcome (10% vs. 3%), 
although this difference is not as large as the difference in the first branch 
point. Selecting from the candidate variables, CART will continue partition-
ing until it reaches a point where it is no longer possible to partition the sample 
into subgroups with distinctly different risks of outcome. If your CART model 
partitions your sample into subgroups where the risks are not sufficiently dis-
tinct, you can prune your tree back.

What advantage does CART have over other multivariable techniques? It 
is similar to forward stepwise logistic regression in that you are estimating 
a dichotomous outcome by sequentially choosing the strongest risk factors 
for your outcome. The major difference between CART and forward multiple 
logistic regression is that with CART one branch can have different risk factors 
for outcome than a different branch. With multiple logistic regression your 
risk factors are for your entire sample, not one branch of it. For this reason, 

2 See the bible of CART: Breiman, L., Friedman, J. H., Olshen, R. A., et al. Classification and Regres-
sion Trees. Pacific Grove, CA: Wadsworth & Brooks, 1984, p. 189.

3 Goldman, L., Cook, E. F., Brand, D. A., et al. “A computer protocol to predict myocardial infarction 
in emergency department patients with chest pain.” N. Engl. J. Med. 318 (1988): 797–803.
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Figure 13.1 Classification and regression tree for predicting the likelihood that the patient 
has a myocardial infarction. The data are from Goldman, L., et al. “A computer, 
protocol to predict myocardial infarction in emergency department patients 
with chest pain.” N. Engl. J. Med. 318 (1988): 797–803. The figure is adapted 
from Lee, T. H., et al. “Ruling out acute myocardial infarction.” N. Engl. J. Med. 
324 (1991): 1239–46. Copyright (c) 1991 Massachusetts Medical Society. All 
rights reserved.
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CART is better suited to data where there are interactions (because with inter-
actions a variable may be important for only a portion of the sample) (see Sec-
tions 1.4, 7.3, 8.4, and 9.7).

An advantage of diagnostic trees is that compared with multiple logistic 
regression they more closely reflect how physicians make decisions. Certain 
pieces of information take you down a particular diagnostic path; you seek 
more information to prove or disprove that you are on the right path. Most cli-
nicians do not, in their mind, total up all the information, positive and nega-
tive, and make a decision.

Having said that, clinicians have shown no greater willingness to adopt 
this decision rule than that of Pozen and colleagues (Section 2.4). When 
the authors attached their prediction tree to the back of the patient data 
forms in their own hospital, physicians looked at it in only 46 percent of 
the cases; in the 115 cases in which the prediction rule was used, it changed 
the triage decision only once. Moreover, the likelihood of using the rule 
decreased with increased level of physician training (i.e., interns used it 
more than residents, who used it more than attendings). This is despite the 
fact that the decision model shown in  Figure 13.1 was shown to perform 
better than physicians at university and community hospitals when tested 
prospectively.

One disadvantage of the chest pain model is the large number of variables 
it includes. A widely used algorithm that was developed using CART predicts 
whether or not a patient has an ankle fracture based on only three variables.4 
The model, referred to as the Ottawa ankle rules, has a sensitivity of 100 per-
cent for predicting fracture. Therefore, patients who are negative on the deci-
sion rule do not need to be sent for an x-ray film. This saves a great deal of 
money and time for the patient. The lower specificity of the model (50 percent) 
is not a major problem because at one time practically all patients with an 
ankle injury would have received an x-ray.

Because of their convenience and high sensitivity, the Ottawa ankle 
rules have received much wider acceptance than the heart attack predic-
tion models. This should not, however, be taken as a negative reflection on 
heart attack prediction models. It is not surprising that it takes more vari-
ables to accurately predict a heart attack than a broken ankle, and that even 
with a large number of variables, there is greater uncertainty in the predic-
tion of a heart attack than a broken ankle. It does highlight, however, that 

4 Stiell, I. G., Greenberg, G. H., McKnight, D., et al. “Decision rules for the use of radiography in 
acute ankle injuries: Refinement and prospective validation.” JAMA 269 (1993): 1127–32; Stiell, 
I. G., McKnight, R. D., Greenberg, G. H., et al. “Implementation of the Ottawa ankle rules.” JAMA 
271 (1994): 827–32.
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clinicians are more likely to adopt diagnostic rules that are simple and have 
high sensitivity.

13.4 How can I get best use of my biostatistician?

Working with a biostatistician should be an iterative process, a dynamic inter-
action between the clinical details and the statistical realities of your study.

With a complicated study, a biostatistician should be consulted at each phase 
of the analysis. At the design phase, review with a biostatistician the statisti-
cal implications of different study designs and seek their help in conducting 
or reviewing your power calculation. After conducting your univariate and 
bivariate data analysis, discuss with your biostatistician strategies for deal-
ing with skewed distributions, nonlinear relationships, multicollinearity, and 
missing data. Based on the preliminary analysis, determine together the best 
type of multivariable analysis to perform. Finally, once you have your multi-
variable model, review it with your biostatistician so as to assess whether the 
model fits. At this stage a review of the residuals may be particularly helpful.

You will find that all biostatisticians are not alike. Some are primarily inter-
ested in developing new methods of analyzing data (data at the service of 
methods). Others are interested in using methods for improving the analysis 
of the data (methods at the service of data). In general, you will do better if you 
have the latter type of biostatistician, although we wouldn’t have so many use-
ful statistical techniques if it were not for the former type.

Just as it helps to know more about your car in dealing with car mechanics, 
the more you know about your research project, and the statistical issues sur-
rounding it, the more helpful your biostatistician will be to you. Or, to switch 
to a medical metaphor, think of yourself as the primary care doctor and the 
biostatistician as the specialist.

13.5 How do I choose which software package to use?

Almost all of the popular statistical packages (SAS, SPSS, BMDP, STATA, 
S-PLUS) perform the same types of analyses. The best one to choose will prob-
ably depend on what others in your research group use. Programming ques-
tions invariably arise and it is always helpful to have other users nearby. 

As with foreign languages, some statistical packages are harder to learn 
than others, but once you know one it is easier to learn others. While I have not 
performed any formal polling, most medical researchers use SAS. On the one 
hand, SAS is somewhat more difficult to learn than the others, in part, because 
the manuals are poorly organized and confusing. On the other hand, SAS is 
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more flexible and powerful than most of the others. The flexibility is particu-
larly important for longitudinal studies, where you have multiple observations 
of the same person. The SAS package also allows you to write your own sta-
tistical programs, but it also costs more than some of the others. The STATA 
package is running a close second to SAS in popularity because it can perform 
many of the same analyses of complicated longitudinal data as SAS (e.g., gen-
eralized estimating equations) but is easier to learn and use.

Some packages are particularly good at certain functions. The S-PLUS pack-
age has dramatically increased in popularity because it has fantastic graphing 
capabilities. R (http://www.r-project.org) is modeled after S-PLUS and is free, 
making it an excellent choice if you are doing research on your own with a 
tight budget. The software package MlwiN was specially created to perform 
multilevel models (Chapter 11). It is available free (http://multilevel.ioe.ac. uk/
download/index.html) on the Internet. The SUDAAN package is often chosen 
for analyzing weighted data sets.
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Publishing your study

14.1 How much information about how I constructed my multivariable 
models should I include in the Methods section?

The editors of the major biomedical journals have developed guidelines on how 
much detail of the statistical analysis to include in manuscripts. While the guide-
lines are general, the editors articulate an important rule of thumb: “Describe 
statistical methods with enough detail to enable a knowledgeable reader with 
access to the original data to verify the reported results.”1

Although that goal is important, anyone who has performed statistical ana-
lysis knows that it would be impossible to include every detail of the analysis 
in a manuscript. Imagine writing: “for each independent variable we assessed 
whether there was any difference in outcome between the ‘don’t know’ cat-
egory and the ‘missing’ category” or “for one variable, we found that there 
was a somewhat increased frequency of outcome in the ‘don’t know’ versus 
the ‘missing’ category, so we …” I think you get the idea. Research requires 
thousands of decisions. The readers rely on you to make the right ones. It is 
your responsibility, however, to report on the important choices you made, 
especially those that influence the results.

Published articles and journals differ in how they organize the information 
in the Methods section. I prefer dividing the Methods section into a review of 
how subjects were enrolled (Subjects), what interventions were used or how 
data were acquired (Procedures), how the variables were coded (Measures), 
and how the data were analyzed (Statistical analysis). But some published 

1 International Committee of Medical Journal Editors. “Uniform requirements for manuscripts sub-
mitted to biomedical journals.” Ann. Intern. Med. 126 (1997): 36–47 (also available at www.icmje.
org); See also: Moher, D., Schulz, K. F., Altman, D., et al. “The CONSORT statement: Revised rec-
ommendations for improving the quality of reports of parallel-group randomized trials.” JAMA 
285 (2001): 1987–91; Des Jarlais, D. C., Lyles, C., Crepaz, N., et al. “Improving the reporting quality 
of nonrandomized evaluations of behavioral and public health interventions: The TREND state-
ment.” Am. J. Public Health. 94 (2004): 361–6. For an excellent guide on writing up your research 
for publication see: Browner, W. S. Publishing and Presenting Clinical Research. Philadelphia, 
PA: Lippincott Williams and Wilkins, 1999.
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articles group all of the information under a general heading of Methods. 
Before writing this section for your manuscript, consult a recent issue of the 
journal to which you plan to submit your paper; you will get a sense of the 
journal’s preferences. At a minimum, include a description of the following in 
your Methods section:

1. The population from which your subjects were chosen and your method of 
choosing them (e.g., probability sample of households in low-income cen-
sus tracts, consecutive sample of patients presenting to a specialty clinic 
with sinusitis).

2. Your sample size. If any sampled subjects were excluded, explain why (e.g., 
three subjects were excluded because of insufficient blood samples).

3. Response rate, including differences between persons who participated in 
your study and those who did not. (Some journals prefer that this infor-
mation be reported in the Results section.)

4. Nature of intervention (e.g., patients were randomized to one of three 
arms of drug therapy), if applicable.

5. How data were acquired (e.g., interviews, matches with registries).
6. How your independent and dependent variables were chosen and 

measured.
7. How your independent and dependent variables are categorized in the 

analysis (e.g., nominal, multiple dichotomous variables).
8. What bivariate statistics you used (e.g., chi-square statistics for categorical 

variables, t tests for interval variables).
9. What type of multivariable model you used (e.g., multiple linear regres-

sion, conditional logistic regression).
10. How you dealt with missing data.
11. What independent variables were eligible for inclusion in the model (e.g., 

all variables listed, those independent variables associated with the out-
come at P < 0.15).

12. If you used a variable selection procedure, state type (e.g., forward, back-
ward) and what the inclusion/exclusion criteria were (e.g., P < 0.10).

13. If you had censored observations, when you censored them (e.g., alterna-
tive outcomes, date of the end of the observation period).

14. How you tested the linearity assumption for interval-independent 
variables.

15. How you tested the proportional odds assumption for proportional odds 
regression.

16. How you tested the proportionality assumption for proportional hazards 
model.
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17. Whether you tested for interactions and, if so, how.
18. What statistical software you used. (The reason for this is that some pack-

ages differ in their computational methods for certain statistics.)
19. Whether P values were one- or two-tailed.

Within the Methods section, my preference is to report 1–3 in the Subjects 
subsection, 4 and 5 in the Procedures subsection, 6 and 7 in the Measures 
subsection, and 8–19 in the Statistical analysis subsection; but, journals and 
reviewers vary in their preferences.

14.2 Do I need to cite a statistical reference for my choice of method of 
multivariable analysis?

There are two reasons for providing a citation for the type of analysis you are 
performing:

1)  To provide a source for interested readers who are unfamiliar with the pro-
cedure you are performing and want to learn more

2)  To defend your method of analysis in an area where there is controversy 
concerning the best way to perform your analysis

There are no hard-and-fast rules about which procedures need explanation 
beyond the name of the procedure, in part because the sophistication of read-
ers differs by journals. However, it is certainly unnecessary to cite a reference 
for multiple linear regression and logistic regression. Some people provide a 
citation for proportional hazards regression and it is usually the same classic 
citation:

Cox, D. R. “Regression models and life tables.” J. R. Stat. Soc. 34 (1972): 
187–220. 

However, I don’t see the value of this type of citation because this classic article 
would not be the right place for a beginning reader to go to learn about this 
procedure – it is too complicated, and explanations of proportional hazards 
analysis are easy to find in statistics textbooks. On the other hand, if you were 
writing an article using Poisson regression and/or negative binomial regres-
sion for an audience that is unfamiliar with these procedures it may be helpful 
to cite a general article that addresses these techniques specifically:

Gardner, W., Mulvey, E. P., and Shaw, E. “Regression analyses of counts and 
rates: Poisson, overdispersed Poisson, and negative binomial models,” Psych. 
Bull. 118 (1995): 392–404.
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When you are performing an analysis that is both unfamiliar and may be 
controversial, it is often helpful to provide a reference. A reference can both 
support your choice and help readers to obtain more detail about how you 
set up your analysis without your including a long description in the statis-
tics section, which is often difficult given the word limits of most journals. 
For example, it may be helpful to provide a reference for the method used for 
assessing the proportionality assumption of proportional hazards regression 
or for why you chose a particular working correlation matrix for generalized 
estimating equations.

14.3 Which parts of my multivariable analysis should I report in the 
Results section?

As with the question of what to include in the Methods section, there are no 
absolute rules on what results to report in your published paper.

Unless there are no missing data, you should report the n for each analysis. 
For multiple linear regression models, most investigators report the regression 
coefficients, the standard errors of the coefficients, and the statistical signifi-
cance levels of the coefficients. As a test of how well the model accounts for the 
outcome, most researchers report the adjusted R2.

For logistic regression and proportional hazards analysis, even though the 
coefficients are similar to those from linear regression, they are not generally 
reported. Instead, report the odds ratio or relative hazard and the 95 percent 
confidence interval. The latter incorporates information from the standard 
error and the P value, and so it is not necessary to report these as well. Report-
ing on how well the model fits the data is variable. Some authors will report the 
likelihood ratio test or the Hosmer–Lemeshow test, or they may compare the 
estimated to observed probabilities of outcome in graphical or tabular form, 
or they may do none of the above (Section 8.2.B). For diagnostic or prognos-
tic studies, some measure of prediction (sensitivity, correctly identified cases, 
c index) will usually be provided (Section 8.2.B).

There is an increasing tendency for clinical researchers to show only the 
results from the main variables of interest. This is illustrated in Table 14.1, 
reproduced from a study of the risk of cardiovascular disease and stroke in 
women.2 The investigators assessed, using proportional hazards analysis, 
whether current estrogen or current estrogen/progestin increased the risk of 
coronary artery disease or stroke.

2 Grodstein, F., Stempfer, M. J., Manson, J. E., et al. “Postmenopausal estrogen and progestin use and 
the risk of cardiovascular disease.” N. Engl. J. Med. 335 (1996): 453–61.
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In the published table, the investigators report the person-years, the number 
of cases of outcome for the analysis, the relative risk (I would prefer the term 
relative hazard), and the 95 percent confidence intervals. The relative risk was 
adjusted first for just age and then for numerous other variables that affect 
the likelihood of coronary disease and stroke. These variables are listed at the 
bottom of the table next to the cross sign. Although each of these variables 
has a relative risk and a 95 percent confidence interval, these values are not 
presented. Based on other studies, we know that some of the variables listed 
at the bottom of the table (e.g., age, smoking) are significantly associated with 
coronary artery disease and stroke.

The advantage of not showing the relative risks and confidence intervals 
for these variables is that these results would take up a whole page. Also, this 
study was designed to show the influence of estrogen and estrogen/progestin 
use on coronary artery disease and stroke. It was not designed to estimate 
the effect of age or cigarette smoking on these outcomes. Other studies have 
answered these questions.

However, there are disadvantages to showing your data in this way. The 
reader cannot assess whether the impact of estrogen and estrogen/progestin 

Table 14.1 Relative risk of cardiovascular disease among current users of conjugated estrogen alone or 
with progestin as compared with nonusers, 1978 to 1992.

Major coronary disease Stroke (all types)

Relative risk (95% CI) Relative risk (95% CI)

Hormone use
Person-
years

No. of 
cases Age adjusted

Multivariate 
adjusted †

No. of 
cases Age adjusted

Multivariate 
adjusted†

Never used 304 744 431 1.0 (ref.) 1.0 (ref.) 270 1.0 (ref.) 1.0 (ref.)
Currently used
 Estrogen alone 82 626 47 0.45 (0.34–0.60) 0.60 (0.43–0.83) 74 1.13 (0.88–1.46) 1.27 (0.95–1.69)
 Estrogen with 

progestin
27 161 8 0.22 (0.12–0.41) 0.39 (0.19–0.78) 17 0.74 (0.45–1.20) 1.09 (0.66–1.80) 

†  The analysis was adjusted for age (in five-year categories), time (in two-year categories), age at menopause (in 
two-year categories), body-mass index (in quintiles), diabetes (yes or no), high blood pressure (yes or no), high 
cholesterol level (yes or no), cigarette smoking (never, formerly, or currently [1 to 14, 15 to 24, or 25 or more 
cigarettes per day]), past oral-contraceptive use (yes or no), parental history of myocardial infarction before the 
age of 60 years (yes or no), and type of menopause (natural or surgical).
Reprinted with permission from Grodstein, F., et al. “Postmenopausal estrogen and progestin use and the risk of 
cardiovascular disease.” N. Engl. J. Med. 335 (1996): 453–61. Copyright © 1996 Massachusetts Medical Society. All 
rights reserved.
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use on coronary disease and stroke is as strong (or stronger) as other factors, 
such as smoking. Second, your study may be less helpful to future researchers. 
For example, if someone was doing a meta-analysis on the effect of past oral-
contraceptive use (a variable that has been inconsistently related to outcomes 
such as coronary disease and stroke) they wouldn’t learn anything from the 
table. You don’t know whether oral contraceptives are or are not related to the 
outcomes in this study.

Finally, when evaluating a published report, one feels greater confidence if 
the independent variables operate in ways you would expect them to based on 
prior research. For example, if the investigators reported that cigarette smok-
ing was related to coronary artery disease and stroke it would give you confi-
dence that their model was sound. Conversely, if smoking was not related to 
these outcomes you would worry about the validity of their model.

All this being said, demands and cost of journal space are likely to dictate 
more presentations of data like Table 14.1. With large models, and multiple 
independent variables, it is hard to show all the results. One solution to this 
dilemma is gaining in popularity: Investigators inform readers where they can 
obtain the full analysis (usually by contacting the authors or by accessing the 
journal’s website). This seems a good balance between publishing extensive 
tables and having results available to the public.

T IP
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Summary: Steps for constructing  
a multivariable model

Step 1.  Based on the type of outcome variable you have, use Table 3.1 to 
determine the type of multivariable model to perform (if you have 
repeated observations of your outcome see Table 11.2).

Step 2.  Perform univariate statistics to understand the distribution of your 
independent and outcome variables. Assess for implausible values, 
significant departures from normal distribution of interval vari-
ables, gaps in values, and outliers (Section 3.2C).

Step 3.  Perform bivariate analysis of your independent variables against 
your outcome variable.

Step 4.  If you have any nominal independent variables transform them into 
multiple dichotomous (“dummied”) variables (Section 4.2).

Step 5.  Assess whether interval-independent variables have a linear relation-
ship with the outcome (Section 4.3). If not, transform the variable, 
use splines, or create multiple dichotomous variables.

Step 6.  Run a correlation matrix. If any pair of independent variables are 
correlated at > 0.90 (multicollinearity), decide which one to keep and 
which one to exclude. If any pair of variables are correlated at 0.80 to 
0.90 consider dropping one (Chapter 5).

Step 7.  Assess how much missing data you will have in your multivari-
able analysis. Choose a strategy for dealing with missing cases from 
Table 6.4.

Step 8.  Perform the analysis (Chapter 7).
Step 9.  Assess how well your model fits the data. (e.g., F test, likelihood ratio 

test, adjusted R2, Hosmer–Lemeshow test, c index) (Section 8.2).
Step 10.  Assess the strength of your individual covariates in estimating out-

come (Section 8.3).
Step 11.  Use regression diagnostics to assess the underlying assumptions of 

your model and to determine strategies for improving the fit of the 
model (Chapter 9). For proportional odds regression make sure the 
proportional odds assumption is met (Section 9.8); for proportional 
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hazards models, be sure that the proportionality assumption is met 
(Section 9.9).

Step 12.  Decide whether to include interaction terms in your model (Sec-
tions 1.4, 7.3, 8.4, and 9.7).

Step 13.  Consider whether it would be possible to validate your model 
 (Chapter 12).

Step 14.  Publish your results in the New England Journal of Medicine and be 
the envy of your friends and colleagues.

If you have questions or suggestions for future editions send them to me at 
mhkatz59@yahoo.com.
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Index

additive assumption, 171–3
Aerobics Center Longitudinal Study, 2, 5, 7, 54
alpha, 98, 107
analysis of covariance (ANCOVA), 30–2

repeated measures, 200–3
analysis of variance (ANOVA), 26–32, 35–6

assumptions, 32–5
one-way, 29
repeated measures, 200–3

ANCOVA. See analysis of covariance
Anderson–Gill counting process. See counting 

process
ANOVA. See analysis of variance (ANOVA)
antilogarithmic transformation, 80
arcsine transformation, 35
assumptions, 162–79

additive, 171–3
censoring, 50–8
equal variance, 32–5, 68, 165–6, 202
linearity, 76
logistic regression, 78
multiple linear regression, 32–5, 165–6
multiplicative, 171
normality, 35, 68, 165–6
proportionality, 58–60, 174, 176–9
proportional odds, 42, 174 
sphericity, 202–3

backward selection, 136–8
bell-shaped distribution, 32–4
best subset regression, 137
beta, 98, 149. See also coefficient
bias, 10, 15, 17–19, 52, 109–10, 131–2, 194
binomial distribution, 38, 114
biostatistician, 74, 97–8, 162, 219
bivariate analysis, 3–4, 8–9, 15–17, 25–7, 33–4, 

40, 44–5, 93–5, 97–8, 108–10, 134–5

BMDP, 219
Bonferroni correction, 159–60
bootstrapping, 208, 211–12

c index, 146–7
CART. See classification and regression trees 

(CART)
case-control study, 9–10
categorical variable, 29–32, 36, 74, 

98–9. See also nominal variable. 
See also dichotomous variable

causality, 1–2, 14, 187
censoring, 46–51, 54, 127–8

and alternative outcome, 51–2
and loss to follow-up, 50–1
and study withdrawal, 52–4
and varying time of enrollment, 54–5
assumptions of, 50–8
end point, 55
nonrandom, 56
validity of, 55–8

central limit theorem, 35
change score, 191–2
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