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Preface

So einfach wie möglich, aber nicht einfacher.

As simple as possible, but not simpler. This guideline of Albert Einstein obliges
in particular each presentation of relativistic physics, a subject which often puzzles
laymen, stirs their imagination, and tantalizes their comprehension, unnecessarily,
because relativistic physics relies on simple geometric notions.

If one wants to understand the basic features of the theory of relativity then one
does not need coordinates or virtual systems of clocks, which fill the universe, no
more than millimeter paper and coordinate axes are required for Euclidean
geometry. One only has to consider what observers see rather than to argue that
this or that observer is right. Relativity is a physical, not a judicial theory.

The slowdown of moving clocks and the shortening of a moving measuring rod
unfold naturally from the principle of relativity, just as a tilted ladder is less high
than an upright ladder. Clocks are no more mysterious than mileage meters, and
show a distance between start and end which depends on the way in between. This
is the unspectacular answer to the seemingly paradoxical aging of twins. Just as no
one is puzzled by a triangle, where the straight line between two edges is shorter
than the detour over the third edge, no one should be shocked by the conclusion
and experimental verification, that a clock picks up more time on a straight history
as compared to the twin clock of a traveler who takes a detour.

The first two chapters are intended to be understandable in essence also to non-
physicists with little mathematical knowledge. Their simplicity, however, may be
deceptive. Real understanding requires careful consideration of the arguments, the
equations, and the diagrams, preferably by reading equipped with a pencil and paper.

The following chapters presume mathematical knowledge which physicists and
mathematicians acquire during their undergraduate years. To clarify more com-
plicated questions we introduce coordinates as functions of the measured times and
directions of light rays and deduce the Lorentz transformations which relate these
values to the ones which moving observers measure. These transformations
determine how velocities combine, what pictures are seen by moving observers,
and how the energy and momentum of a particle depend on its velocity.
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Chapter 4 assembles the basics of mechanics and applies them to relativistic
particles. Stress is laid on the correspondence between physics and geometry,
between conserved quantities like energy, momentum and angular momentum, and
symmetries like a shift in time or space or a rotation or a Lorentz transformation.
Jet spaces, which are introduced and used in this investigation, may strike the
reader as an unnecessary complication. But they provide the clearest and therefore
simplest setting to exhibit the correspondence of conserved quantities and infini-
tesimal symmetries.

Chapter 5 presents electrodynamics as a relativistic field theory and in partic-
ular shows that changes of the electric charges cause changes of the electromag-
netic fields with the speed of light. The electrodynamic interactions are invariant
under dilations, which is why they cannot explain the particular values of particle
masses or the particular sizes of atoms.

In the last chapter we discuss the mathematical properties of the Lorentz group.
It acts on the directions of light rays just as the Möbius transformations act on the
Riemann sphere.

The text originated from courses which I taught on the subject and from my
answers to questions which were frequently asked in the newsgroup de.sci.physik.
After a few years the notes changed nearly no more and slumbered on my
homepage with a few hundred interested visitors per year until Christian Caron
from Springer Verlag encouraged me to have them published. Whether this kiss of
a prince awoke a sleeping beauty or a frog, still to be thrown against the wall, is the
reader to judge.

Helpful comments and patient listening were contributed by Frédéric Arenou,
Werner Benger, Christian Böhmer, Christoph Dehne, Jürgen Ehlers, Christopher
Eltschka, Chris Hillman, Olaf Lechtenfeld, Volker Perlick, Markus Pössel, and
Bernd Schmidt. Ulrich Theis translated the early versions of the notes. Sincere
thanks are given to Ulla and Hermann Nicolai for their friendly hospitality during
my stay at the Albert-Einstein-Institut der Max-Planck-Gesellschaft.

Hannover, Germany, January 2012 Norbert Dragon
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Chapter 1
Structures of Spacetime

Abstract Simple geometric properties of spacetime and free particles underlie the
theory of relativity just as Euclidean geometry follows from simple properties of
points and straight lines. The vacuum, the empty four-dimensional curved spacetime,
determines straight lines and light rays. In the absence of gravity, the vacuum is
isotropic and homogeneous and does not allow to distinguish rest from uniform
motion. Therefore, contrary to Newton’s opinion, the vacuum cannot contain the
information about a universal time which could be attributed to events. Whether
two different events are simultaneous depends on the observer—just as in Euclidean
geometry it depends on a given direction whether two points lie on an orthogonal
line.

1.1 Properties of the Vacuum

We can denote a point in space by specifying how far away it is ahead, to the right
and to the top of a chosen reference point. These specifications are called coordinates
of the point. One needs three coordinates in order to specify any one point. Space
is three-dimensional. The coordinates of a point depend of course on the choice of
the reference point and on which directions the observer chooses as ahead, right and
above.

As for appointments in daily life, for physical processes not only the position is
important, where an event takes place, but also the time when it occurs. The set of all
events, spacetime, is four-dimensional, because to specify a single event one needs
four labels, the position where it takes place and the time when it occurs. The position
and time specifications which label an event depend—just as the three coordinates
of a position—on the observer.

The four-dimensional spacetime fascinates and beats our imagination which is
trained in everyday life. Nevertheless it is quite simple. We can easily envisage
a stack of pictures, as they are stored in a film reel, which show the sequel of
three-dimensional situations. Thereby one conceives the four-dimensional space-
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2 1 Structures of Spacetime

time the same way as an architect, who draws two-dimensional blueprints, horizontal
plans and transversal sections to envisage a three-dimensional building.

Using the same means we depict the sequel of events in two-dimensional space-
time diagrams. For example, the geometric figure of two intersecting straight lines
shows the physical process that two particles move uniformly and collide in the event,
where the lines intersect. If one would display only the position and not the time one
would not know whether the particles pass the same position at the same time or fail
to meet each other.

The physical findings add the insight, which is alien to our intuition, that the
four-dimensional spacetime is an entity which is decomposed into layers of equal
time only by the observer. Different from what Newton thought, these slices of equal
time do not coincide for observers which move relative to each other.

That simultaneity depends on the observer is the largest obstacle for understanding
relativity. Not only the three coordinates of the position, but also the time which
denotes an event, depend on the observer. Spacetime has no measurable universal
time which pertains to the events.

Each event E determines the later events which can be influenced by E by means of
light or electromagnetic signals, and vice versa, it determines the earlier events from
which it could have been influenced. These events form the forward and backward
lightcone of E , which both belong geometrically to each event in spacetime.

An unaccelerated clock which passes two events shows the time which passes
in between. This time does not depend on the particular type of clock and is a
geometrical property of the two events, their temporal distance. From this time all
length standards derive, in particular spatial distance is the time which it takes light
to run back and forth (1.5). The temporal distance of events imparts a geometry to
spacetime which is similar to Euclidean geometry in many respects. As we will see,
the events with the same temporal distance from a chosen event lie on a hyperboloid
and not, as in Euclidean geometry, on a sphere. The geometry of spacetime is ordinary
school geometry, with circles replaced by hyperbolas.

To avoid the multitude of possible effects, we investigate processes in an empty
region of spacetime, the vacuum, from which all particles have been removed and
all influences from outside, such as electric and magnetic fields, are shielded. This
vacuum is the stage on which we study the behavior of light and particles that are
seen by observers and are measured with clocks and measuring rods.

As simple as the idea of a vacuum seems, it is an idealization and can be realized
only approximately. We are constantly passed by neutrinos, which come from the
sun and single out a particular direction in the otherwise isotropic space. We cannot
shield our experiments from these neutrinos since they do not interact sufficiently.
But since neutrinos penetrate everything, they do not bother either and cause effects
only if we look for them on purpose.

The cosmos filled by background radiation is not a vacuum. This radiation is a
remnant from the early evolution of the universe and defines a rest frame through
which the sun moves with a speed of roughly 370 km/s [28]. This background
radiation can be shielded by walls, but the walls have to be cooled so that the heat
radiation of the walls does not fill the space.



1.1 Properties of the Vacuum 3

Fig. 1.1 Orbits around the
Earth

Omnipresence of Gravity

Even after removing all particles and shielding from all external influences the vac-
uum retains structure.

Gravity cannot be shielded or extracted from the vacuum. It therefore belongs
to the properties of the empty spacetime, though in special arrangements one can
compensate gravitational attraction in a region by additional masses. For example, if
one completes a segment of a spherical shell, which causes gravitational attraction,
to a complete shell, then in the interior of the shell the gravitation of the segment
is compensated. However, one cannot compensate unforeseen disturbances from
outside by a Faraday cage with particles, which can move freely in a wire with
negligible inertia. For freely moving particles, the state with lowest energy is not a
vanishing gravitational field, but, because gravity is attractive, the closest packing
of the particles and the largest possible gravitational attraction. They do not shield
gravity but enlarge it. Also, there are no bodies which are inert and nearly insensitive
to gravity. Irrespective of their masses all test particles fall in the same way.

One cannot completely transform away gravity by performing experiments in
freely falling laboratories. In a laboratory which orbits the earth in free fall one can
distinguish three different directions, behind, below and beneath, by gravitational
effects without view to the earth and without reference to the walls. Test particles
in the laboratory orbit the earth in ellipses, in the simplest case in circles. If the test
particles orbit circles in the same plane with different radii, then the particle which is
nearer to earth is faster and departs from the other. If the test particles cycle behind
each other in he same circle, then their distance remains unchanged. If they orbit
initially beneath each other in different circles of the same radius, then the orbital
planes intersect and the circles intersect twice per revolution: freely falling particles
beneath each other oscillate around each other with the orbital frequency.
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Straight Worldlines in Curved Spacetime

In the vacuum an observer can determine without reference to other positions whether
he is freely falling or accelerating. This he can read off from an hour glass—it does
not run in free fall—or from a pendulum, which he carries along. If it swings back and
forth, an acceleration acts vertically to the axis of rotation, otherwise the pendulum
rotates with constant angular velocity.

An observer passes in the course of time a set of events. This line in spacetime is his
worldline. For each freely falling particle this line is determined by an event, which
it passes and by the velocity in that instant, corresponding to a point and a direction
with which the worldline traverses the point. These worldlines do not depend on
particulars of the particles, because all particles fall the same way. Therefore the
worldlines of freely falling particles define a geometrical structure of spacetime
itself: the set of straight lines.

Note well: the worldlines of freely falling particles and of flashes of light are
the straight lines of the four-dimensional spacetime, but their spatial projection are
not straight lines of the three-dimensional space. Through each point in space and
with given direction there pass different parabolas which are traced out by falling
particles with different velocities. These curves in three-dimensional space are not
determined—differently from what one has to require from straight lines—by a point
and a direction.

Among the spatial curves of freely falling particles one can and does choose a
class of curves to define straight lines, if gravity does not change with time. Straight
is the path of light. Whether an edge is straight is checked by comparing with light, by
sighting along the edge. But light rays are gravitationally deflected and can intersect
each other repeatedly. They do not satisfy Euclid’s axiom of parallels. They define
straight lines in a space which is curved by gravity.

If gravity changes in time because the masses move which generate gravity, then
the light rays do no longer define straight spatial lines, because the ways to and fro
differ.

One could imagine to attribute the label straight to other lines in spacetime, for
example to lines which in some coordinate system can be drawn with a ruler. But
these lines are no property of spacetime and test particles traverse them only if they
are subject to forces which differ for different particles. The only worldlines which
are singled out by nature are the worldlines of freely falling particles, including the
worldlines of flashes of light.

If one follows mentally the path of freely falling particles, which in Fig. 1.1 orbit
the earth in different circles, then one realizes that spacetime is curved. If one relates
the positions of the second particle to the positions of the first particle, then the
straight worldline of the second particle oscillates around the straight worldline of
the first particle, straight lines can intersect each other repeatedly.

The reason for the curvature of spacetime and the relative motion of freely falling
particles is the fact, that gravity is not the same everywhere: the attraction is stronger
the nearer the particles and in equal distance it acts in different directions. By the
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Fig. 1.2 Straight Lines in
Curved Spacetime

tim
e

space

different gravitational attraction one can distinguish different positions and direc-
tions. If however, one restricts physical evolutions to such short times and small
regions that the inconstancy of gravity does not make itself felt at the given preci-
sion of measurement, then the effects of gravity become imperceptible in a freely
falling system of reference. In sufficiently small regions the curvature of spacetime
is insensible and spacetime has the geometric properties of a flat space.

We cannot shield gravity but want to avoid the related complications of a curved
spacetime. Therefore we restrict our considerations to short times and distances such
that gravitational effects are immeasurably small or we account mentally for the
known gravitational effects and subtract them from the observed behavior of the
physical systems.

If then, one has shielded all external influences and subtracted gravitational
effects, then one cannot measure the time and the position of an event without ref-
erence to other events—just as little as at sea one cannot measure latitude without
reference to the sun and time in Greenwich or without GPS. Physical evolutions
are the same everywhere and at any time: the spacetime is homogeneous. Similarly
physical evolutions are the same in all directions: the spacetime is isotropic.

Rotational Motion

Rotational motion, the temporal change of directions, can be measured—different
from uniform straight motion—without reference to other bodies such as the distant
stars. If one rotates and emits light into some direction, then the reflected light is
seen to return from a different direction [32]. In a rotating cinema one projects into
one direction and observes from a different one. Only for nonrotating observers does
reflected light return from the direction into which it had been emitted. In rotating
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reference systems, light to and fro does not follow the same path. This property is
used in interferometers, which measure rotation with a precision of 10−8 degrees per
second [8].

The situation where some object orbits around the observer is different from his
own rotation. In both situations the light rays from the object come from directions
which change in the course of time, but if one does not rotate one sees each single
light ray reflected from the object return from the direction into which it was sent.

Remarkably, these rotation-free reference frames defined by the local property of
reflected light to return from the direction of emission coincide within high experi-
mental precision with the systems in which the light from the distant stars comes
from directions that, apart from parallax, aberration and the motion of the star, do not
change in time. This is by no means self-evident and, measured with today’s highest
precision [13], does not hold if one orbits the rotating earth.

Lightcone

Long before Einstein’s theory of relativity the principle of relativity was known, that
one cannot distinguish by any effect of Newtonian mechanics whether an unaccel-
erated observer moves or rests.

However, one was convinced that this principle of relativity is valid only
approximately because it was known since 1676 from Olaf Rømer’s observation and
interpretation of the orbital periods of the four large moons of Jupiter, Jo, Europa,
Ganymed and Kallisto, that c, the speed of light in the vacuum, is finite. Therefore
light was assumed to single out an absolute rest system, in which light propagated
equally fast in all directions and in which its medium, the ether, rested. For an
observer, moving with a velocity v with respect to the ether, light should propagate
in different directions with different velocities ranging from c − v to c + v.

This conclusion is obvious and wrong: no experiment has ever measured that a
moving source of light emits light which in the vacuum propagates with different
velocities in different directions. Moreover, never has the motion of the observer made
him to register in the vacuum different velocities of light in different directions. This
is the result of the seminal experiment of Albert Michelson. 1 The most astonishing
property of the ether is that never one found a trace of it. Ether has all the properties
of the vacuum, it is the vacuum. Light propagates in the vacuum with a velocity
which does not allow to distinguish a stationary observer from a uniformly moving
observer.
Principle of Relativity: The speed of light in the vacuum does not depend on the
motion of the source. No physical observation allows to distinguish an observer at
rest from an uniformly moving observer.

In the vacuum there is no faster or slower light. Light does not outrun light [7].
For example, in 1987, one observed a supernova in the Large Magellanic Cloud,

SN 1987a, which exploded 160 000 years ago and where the luminous plasma was

1 Experimental findings are discussed in detail in [34].
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emitted in all directions with a velocity of 25 000 km/s. If this velocity v had added
to the velocity of light to c′ = c + v , then the light from the plasma which moved
towards us would have arrived 12 000 years earlier than the light from the plasma
which moved transversal to the line of sight.

Nobody had observed the star when the first light of the explosion arrived here,
but in the explosion also neutrinos were emitted whose time of arrival was recorded.
As one later found, they had triggered the counters one hour before one looked into
the direction of the star and saw the explosion. At that time it was completely visible.
Thus, there could have been runtime differences of at most one hour for the different
lightrays.

A year has roughly 365 · 24 hours. With a runtime of 160 000 years the velocities
of the light rays therefore were equal up to 1/(160 000 · 365 · 24) ≈ 0,7 · 10−9, i.e.
in the first nine decimals.

By the way, this observation implies also [31] that the neutrinos had moved with
the speed of light within this precision, and that their mass is less than 10 eV/c2.

That the speed of light in the vacuum is independent of the speed of the source
agrees with the conclusions which one can draw from Maxwell’s equations (5.3,
5.4) for the electromagnetic fields. From these equations we deduce (page 97) that a
charge which is at the position x ′ at the time t ′ influences the electric and magnetic
fields at the position x at the time t ,

c (t − t ′) = |x − x ′| , (1.1)

which is later than t ′ by the runtime of light |x − x ′|/c. The time t does not depend
on the velocity of the charge, which causes the field.

The events (t, x) constitute the forward lightcone of the event (t ′, x ′); electro-
magnetic causes produce effects with the speed of light in the vacuum.

The independence of the propagation of light from the velocity of the source does
not imply that other properties, such as the color of the light, the direction of the light
rays and the intensity of the radiation, do not depend thereon. The direction of the
incoming light rays, the color of the light and the number of photons per time and
unit area, the luminosity, do depend on the velocity of the source and the velocity of
the receiver. The intensity of electromagnetic radiation depends on the acceleration
of the charges that emit the radiation.

The independence of the propagation of light from the velocity of the source
is illustrated in the spacetime Fig. 1.3: A stationary observer traverses the straight
worldline O0, his position x remains unchanged at all times t ; a second observer
traverses the worldline Ov and moves uniformly into x-direction. If both observers
are at some time at the same position and emit a flash of light, then the light propagates
from this event E equally fast in all directions2 and independently of whether the
light source moves.

2 Our diagrams show only one spatial dimension. Therefore there is only the direction forwards or
backwards.

http://dx.doi.org/10.1007/978-3-642-28329-1_5
http://dx.doi.org/10.1007/978-3-642-28329-1_5
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Fig. 1.3 Observers with
Outgoing Light Rays
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We call the worldline of a flash of light “light ray”. Our diagrams are rotated such
that the light rays which are emitted from E in forward and backward direction are
traversed with increasing time from the bottom to the top of the diagram symmetri-
cally to the vertical axis. We choose the units such that light rays include an angle of
±45° with the axes. The light rays which pass through other events E ′ are parallel to
the light rays through E , because light does not outrun light. Light rays in the same
direction do not intersect.

Each event E determines the later events, which can be influenced from E by
light and conversely it determines the earlier events which could have influenced E .
These events constitute the forward and backward lightcone of E . The lightcone of
each event does not depend on the motion of the source nor, for instance, on the color
of light. The lightcones belong to spacetime itself, like the groove to a gramophone
record. They are a geometrical structure of spacetime.

Apart from the light rays there are no other distinguished straight lines in the
empty spacetime. There is no ether which traverses detectable worldlines and there
is no measurable universal time which would define layers of equal time. The time-
and space-axes are, different from lightcones, no geometric structure of spacetime
but depend on the observer. Therefore and in order to not overcrowd the diagrams
we leave the axes away—the geometry of spacetime is independent of coordinate
axes just as Euclidean geometry.

If light and electromagnetic waves were the oscillations of an ether which filled the
vacuum, such as sound is an oscillation of air and other matter, and if the worldlines
were detectable, which are traversed by the constituents of the ether, then one could
measure the motion relative to the ether and could distinguish it from rest.

Could one measure a universal time for each event with a result which is the same
for all observers and which therefore pertained to the event itself, then one could
distinguish an observer at rest from an observer in uniform motion by the physical
property, that flashes of light, which he emitted in one event into different directions
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and which are reflected at the same universal time would return to him, but not to
the moving observer, in the same instant.

The experimental results that in the vacuum one cannot distinguish rest from
uniform motion therefore states that no ether is detectable and that no universal time
is measurable. This disproves Newtonian ideas and seems to contradict common
sense, our everyday experience. But our experience is restricted to low velocities and
does not know the vacuum. How nature behaves beyond our routine environment is
clarified by physicists by observations and experiments.

1.2 Measuring Rods

Metersticks are subject to many influences which restrict their precision. The length
of metersticks varies with their temperature. On earth one has to see, i.e. to examine
with light, whether they are bent by their weight. It causes them to be shorter if they
stand and to be longer if they hang. Over larger distances there are no rigid length
standards at all though at the exit Echte3 of the highway Hannover Kassel a sign
proudly announces “Echte 1000 m”.

Distance, which exceeds a few meters, can be measured only with poor accuracy
by placing metersticks one after the other. One measures length optically with light.

Michelson’s measurements prove that, independent of the velocity of the observer,
measuring rods and rigid bodies measure distances which agree, within the precision
limited by the inaccurate rods, with the ones from devices which measure the runtime
of light.

Since c, the speed of light in the vacuum, is constant and because of the imper-
fections of rigid bodies as length standards, one measures spatial distance by half
the time which it takes light to run back and forth (1.5). This distance coincides
with the distances determined at the best with measuring rods. Since 1983 physicists
define 299 792 458 meter to be the distance, which light in the vacuum propagates
in one second.

We choose to specify distance simply by the time of flight of light. Then a light
year is just a year and a light second just a second and

1 second = 299 792 458 meter. (1.2)

By this choice of the unit of length velocities are pure numbers, namely their ratio
as compared to the velocity of light, and c has the natural value 1. Meter per second
is a numerical factor such as kilo or milli and denotes approximately 3.3 nano,

meter

second
= 1

299 792 458
≈ 3.3356 · 10−9, c = 299 792 458

meter

second
= 1. (1.3)

3 The German word “Echte” means genuine, real.
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In units with c = 1 the equations of relativistic physics are particularly simple and
reveal common features of position and time. Only in some results we insert the
factors c as they occur ordinarily if we do not convert seconds into meters.

That distances can be specified as times is child’s play. In Grimm’s Little Red
Ridinghood grandmother’s house is half an hour away from the village. To speak of
a second rather than a light second is no more a revolutionary alteration or unlawful
frivolity than to denote the distance of half an hour’s walk just by half an hour.

That length and time are different does not prevent to measure them in common
units. After all, in aviation height and distance are different and are measured in feet
and in nautical miles. Nevertheless, the slope of a flight path does not depend on
units because foot per nautical mile is nothing but the numerical factor 1.646 · 10−4

which only differs in size from meter per second which equals 3.3356 · 10−9.
Though distances are measured by definition by the time of flight of light and

though consequently its velocity has the constant value c = 1, one can nevertheless
check experimentally the consistency of this definition. First choose four points
O, X, Y and Z , which do not lie in a plane and determine their distances. The results
determine the scales and angles in a reference system and are not restricted to satisfy
any equation. If then one measures the distances of a fifth point A to the four reference
points, then the resulting distance to O restricts A to a sphere around O , the distance
to X restricts A to the intersection of two spheres, a circle, and the distance to Y to
the intersection of this circle with a third sphere. Therefore the measured distance to
Z has to coincide with one of two possible values if the definition is consistent, that
the velocity of light is constant everywhere and at all times. The measured n(n−1)/2
distances of n ≥ 5 particles have to satisfy n(n−1)/2−3n+6 relations if the velocity
of light is constant. This is not guaranteed by definition but abstracted without any
conflicting evidence from experience.

Equilocal and Equitemporal

In the course of time a traveller in a train traverses a set of events, his
worldline. Related to a point in the train, all events on his worldline occur at the
same place. For an observer at the railway embankment the traveller passes different
places. Equilocality, the property of two different events to occur at the same place,
depends on the observer.

Figure 1.4 shows the worldlines of a uniformly moving clock C and of an observer
O at rest with respect to the clock who also carries a clock. We denote the events
on the worldlines by the time on the clock, which is carried along. At time t− the
observer emits light which is reflected and received at time t+. With this light the
observer sees the clock C show the time t .

Because the clock C does not move relative to the observer O , i.e. because it
is comoving, the time t+ − t−, which it takes light to run back and forth, and the
direction of the light do not depend on t− and C passes a worldline parallel to the
observer’s. In particular, the ends of a measuring rod also pass parallel worldlines.
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Fig. 1.4 Equilocal
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If the worldline O is parallel to C and if C is parallel to the worldline of another
observer R, then R is parallel also to O . Therefore, if and only if two observers do
not move with respect to each other, they agree whether two different events occur
at the same place.

In the same way observers agree, if and only if they rest with respect to each other,
whether different events occur at the same time. To occur simultaneously or to be
equitemporal depends on the observer and is no intrinsic property of pairs of events,
because no measurable universal time exists.

Figure 1.5 clarifies which events are simultaneous or equitemporal for an
observer. It shows the worldlines of two observers O and C and a referee R in
their middle.
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The referee is equally far away from O and C because he sees flashes of light
which he emits in the event A and which are reflected by O and C return both together
in the event B.

In the event A the light from O and C shows the referee R the times t− and t ′− on
the clocks; he sees them show the times t and t ′ in event B. Both clocks are equal if
the time differences coincide, t − t− = t ′ − t ′−. For simplicity, we assume the clocks
set such, that they show him the same time, t = t ′.

That it takes light from O to C the same time as for the way back is not a mere
convention, as occasionally claimed, but an observation. In event A the referee sees
the light start at equal times t− = t ′− and in event B he sees the light arrive while
the clocks show t = t ′. That it takes light the same time to run back as to run forth
follows from the homogeneity and isotropy of spacetime.

The triangles t− At and t Bt+ are congruent, so t − t− = t+ − t . The reflection
of light, which is emitted by an observer at t− and received after the reflection at t+
occurs in the middle of these times at

t = t+ + t−
2

. (1.4)

The time between reception and emission of light to and from E is by definition (in
units with c = 1) twice the distance r between E and the observer,

r = t+ − t−
2

. (1.5)

If one solves these relations for t+ and t− one finds the denominations justified,

t+ = t + r , t− = t − r . (1.6)

In two-dimensional spacetime diagrams with given worldline of an observer O one
constructs the events which for him occur simultaneous to an event E as a diagonal
in a rectangle of light rays, which we call lightangle [19].

One draws the light rays through E to their intersection t+ and t− with the world-
line O . The light rays emanating from t− and the incoming light rays of t+ form the
lightangle t−Et+E ′. For the observer O the events E and E ′ occur at the same time
and the same distance in opposite direction, because both events correspond to the
emission time t− and reception time t+. If one enlarges or shrinks the lightan-
gle, holding the intersection of the diagonals fixed, one confirms that all events
on the straight line through E and E ′ are simultaneous for O .

The worldline of the observer and events which for him occur at the same moment
constitute the diagonals of a lightangle, one diagonal consists of equilocal events,
the other of equitemporal ones.

Equilocality and simultaneity is not a geometric property which pertains to pairs of
events. It also depends on the observer. The worldlines of mutually moving observers
are not parallel and the diagonals in their corresponding lightangles are not parallel.
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Fig. 1.6 Equilocal and
Equitemporal Diagonals
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Therefore mutually moving observers do not agree which events are equilocal nor
which are equitemporal.

1.3 Limit Speed

By the principle of relativity, that in the vacuum one cannot distinguish rest from
uniform motion, all causes, not only electromagnetic ones, produce effects at most
with the speed of light. Otherwise, if by some interaction an event E ′ in the vac-
uum could cause an effect with a limit speed faster than light and influenced the
event E as in Fig. 1.6, then there would be an observer O for whom E ′ and E occur
simultaneously. In this way the superluminal velocity and light would single out a
particular observer who one could distinguish by physical observation in the vacuum
from other observers.

In a medium, a fluid say, the velocity of sound could surpass the velocity of
light in the vacuum. Though one never observed such a miraculous medium, it’s
existence would not lead to logical contradictions, even if then one could construct
a sequence of events on a closed loop, where each event causes the next. In such a
situation one could–as is argued–shoot one’s own grandfather, a logical contradiction,
because the grandfather is necessary for the existence of his killer. The contradiction
rests on the assumption, that on closed causal loops one still has the freedom to
choose what to do. However, as the contradiction shows, this assumption is wrong.
If there are closed causal loops, then one can change the conditions only in such a
way, that along the closed causal loop one arrives at the initial situation. On causal
loops one is bound to the wheel of perpetual rebirth.
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Fig. 1.7 Future and Past of
the Event E Future
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That the speed of light is the limit velocity for all interactions can be confirmed or
disproved by observations. Neutrinos do not interact electromagnetically. As long as
one did not know one assumed that they propagated with the limit velocity of light.
Today, we know it. The limit velocity of neutrinos coincides with the speed of light
at least in the first nine decimals [31] because in the supernova SN 1987a in Feb-
ruary 1987 one has detected neutrinos and light which arrived simultaneously after
160 000 years of flight.

If we receive a message, then the information is caused by the sender. It cannot
be transmitted faster than light.

The events E ′, which can be influenced by E constitute the future of E and occur
later than E by at least the runtime of light.

The past of E consists of all events E ′ which could have influenced E . They have
occurred earlier than E by at least the runtime of light from E ′ to E .

We call events E ′ spacelike with respect to E if they occur so early, that they
cannot be influenced by E and which are not so long ago that one could know about
them at E . If E ′ is spacelike to E then, vice versa, E is spacelike to E ′. Mutually
spacelike events cannot influence one another.

Different from simultaneity, the property of pairs of events to be spacelike does
not depend on an observer. But this property is not transitive: if A is spacelike to B
and B spacelike to C , then this does not make A spacelike to C .

The future and the past of E are separated by the forward and backward lightcone
of E from the events which are spacelike to E .

Tachyon and Rigid Bodies

Since a particle is at a position because it was previously at a position nearby and
because effects propagate with the speed of light at most, therefore the worldline of
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each particle and of each observer always runs from the past to the future and lies
within the lightcone. There is nothing faster than light. Nothing outruns light.

Tachyon is the name of a hypothetical particle, which moves faster than light. It
would traverse a worldline such as E ′E in Fig. 1.6. If a tachyon could scatter light
it would be at first invisible to an observer O whose worldline it intersects, since its
worldline does not intersect the backward lightcone of early events on the worldline
of the observer O . At later times each backward lightcone of the worldline of O
intersects the worldline of the tachyon in two events. These two intersections depart
in opposite directions in the course of time when O traverses his worldline. Hence,
the tachyon would appear to the observer as a pair of particles which emerge out
of nowhere at some point and run away in opposite directions. There is not a single
serious observation which would suggest the existence of tachyons.

One can easily cause effects on a tachyonic worldline, for instance if one con-
nects lamps at a runway of an airport with separate cables of equal length and if
one simultaneously switches them on. An observer on the runway then sees at first
the nearest lamp light up, then the two neighboring lamps, as if a signal would prop-
agate from the nearest lamp to both sides with superluminal speed. However, no
lamp lights up because the neighboring lamp has turned on: walls which one puts
between the lamps do not interrupt a signal from lamp to lamp. The cause is the flight
controller who has switched on the light. This cause produces effects at most with
the speed of light.

Since causes act at most with the speed of light, there is no body, which is precisely
rigid. For instance, a blow on one end of a bar does not influence the other end at first.
The compression caused by the blow propagates in the bar as a wave with the speed
of sound, and only after it has traversed the body and vibrations have faded away
does the bar recover its original state. One cannot evade the conclusion that there is
no ideally rigid body by imagining a very hard body which resists its deformation
with strong internal forces. Hard bodies have high sonic speeds, but the speed of
sound is always less than c, the speed of light in the vacuum.

1.4 Quantum Teleportation and Bell’s Inequality

The revolutionary conclusion of quantum physics is that even if one prepares particles
as best as possible there are always measurements with results which no one can
predict in each single case but where one knows only the probability of the different
possible results. In the particular example, where one measures the polarization of
pairs of photons, one can disprove the assumption that the inability to predict the
individual results relies only on incomplete knowledge. One is forced to conclude
that measuring devices do not show results which were determined previously but
ascertain results which were uncertain before.

If light passes a polarization filter, it becomes polarized. It passes unchanged a
second filter, which polarizes in the same direction a and its intensity decreases by
a factor
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pa(b) = cos2 β , (1.7)

if one rotates the second filter in the plane which is orthogonal to the light by an
angle β into the direction b. No light passes through crossed filters, if b = a⊥ is
orthogonal to a. In the following we denote a filter which polarizes in direction a as
filter a for short.

Surprisingly, light with low intensity exhibits properties of particles. The photo-
electric effect does not become smaller with decreasing intensity of light but rarer.
One therefore has to interpret the intensity of light as proportional to the probability
to find a photon and the reduction factor pa(b) as probability for the photon, which
has been polarized in direction a , to pass the filter b.

With the remaining probability 1 − cos2 β = sin2 β the photon is absorbed. This
is the same as the probability to pass the crossed filter b⊥,

pa(b⊥) = 1 − pa(b) . (1.8)

In a suitably chosen transition of exited calcium atoms pairs of photons are created,
which are emitted in opposite directions with such a polarization that the first photon
passes a filter a and the second a filter b with probability [2]

p(a, b) = 1

2
cos2 β , (1.9)

where β is the angle between the directions a and b.
The probability for the result that the first photon passes the filter and the second

photon is absorbed is the same as the probability p(a, b⊥) that the first photon passes
the filter a and the second passes the crossed filter b⊥. In the same way p(a⊥, b)

and p(a⊥, b⊥) are the probabilities that the first photon is absorbed while the second
passes and for the case that both photons are absorbed,

p(a, b⊥) = 1

2
sin2 β , p(a⊥, b) = 1

2
sin2 β , p(a⊥, b⊥) = 1

2
cos2 β . (1.10)

These probabilities shatter, as we shall see, the physicists’ view of the world. They
exclude the interpretation that each photon is equipped with a property which deter-
mines in each case and for all filters whether the photon passes or is absorbed. This
result is really accidental, as the following considerations show.

Combining the two possibilities, that the second photon passes or not, we obtain
the probability

p1(a) = p(a, b) + p(a, b⊥) = 1

2
(1.11)

that the first photon passes the filter a, irrespective of what happens to the other
photon. This probability is the same as the probability p1(a⊥) for the first photon to
be absorbed. The probability is independent of the direction a. Also the second photon
becomes absorbed with the same probability p2(b⊥) = p2(b) = 1/2 with which it
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passes filter b. Both photons of the pair are unpolarized, as far as measurements of
one photon are concerned.

If one considers the subset of cases, in which the first photon passes the filter a,
then the second photon passes filter b with the conditional probability

p(a, b)

p1(a)
= cos2 β . (1.12)

This is the same probability as for photons which are polarized by a filter a (1.7). If
the first photon passes the filter a , then in this subset of events the second photons is
polarized in direction a. In particular, it passes a polarization filter a with certainty.

For this behavior there is the way of speaking that the polarization measurement
of one photon changed the state of the other photon of the pair instantaneously, no
matter how far away it may be, to the state of the same polarization and that the state
of the pair collapsed or became reduced. The result of the first measurement, so the
alleged interpretation, was transmitted to the second photon or, even more impressive,
was quantum teletransported. The reduction of state happened instantaneously faster
than light.

Untouched by these sensational claims one can conclude as a matter of fact that
a measurement of one photon does not cause anything at the second photon. No
measurement, performed at one photon, can detect whether the other photon had been
measured, is being measured or will be measured, leave alone in which direction and
with which result.

That the second photon is polarized in direction a in case that the first photon
passes the filter a, can be confirmed only after one knows at the second filter, whether
the first photon has passed and what the direction of the filter was. This information
can be transmitted with the speed of light at the fastest.

The correlation of the results of the polarization measurements is caused by the
joint preparation of the two photons as a pair in one atomic transition. This preparation
works only if both photons are created at the same place. They move with the speed
of light. Therefore, this preparation does not produce effects which propagate faster
than light.

If one throws a coin repeatedly and sends the picture of the upper side to one
recipient and the picture of the down side to a second recipient, then each of them
obtains pictures of head and tail with equal probability. Each of them knows in the
instant, when he opens his letter, the picture which the other receives. The knowledge
of the result collapses the probability to a conditional probability, in this example to
certainty.

In the same way the reduction of state by the result of a measurement replaces the
previous state by the conditional state which pertains to the conditional probability
in the case of the measured result.

Before opening the letter, the receiver is uncertain about its content, but the content
is not uncertain but only unknown. The content is certain, whether one opens the letter
or not. The probability (1.9) however, contradicts the assumption, that the results of
the polarization measurements are determined for all directions and in each case
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and that one does not know the result prior to the measurement only because the
individual causes are insufficiently known.

Such an assumption seems to be irrefutable, but it leads to a mathematical restric-
tion, an inequality, which may or may not be confirmed by experiment.

The measured results violate the inequality and disprove the assumption.
To evaluate the assumption, we consider repeated measurements and enumerate

them by i , i = 1, 2, . . . , N . We assume that in the measurement number i the result
of the polarization measurement of the first photon in direction a is determined by
some causes, even if we do not know them, and we attribute a1 i = 1 to the case that
the first photon passes, if not a1 i = −1. With b1 i we denote the results which in
experiment number i would be obtained if the polarization of the first photon was
measured in direction b. In the same way c2 i and d2 i denote the results if we measure
the polarization of the second photon in experiment number i with a filter c or d.

In all cases the results a1 i , b2 i , c2 i and d2 i can only take the values 1 or −1 and
if a1 i (c2 i + d2 i ) is ±2 then b1 i (c2 i − d2 i ) vanishes and vice versa. Therefore their
sum never exceeds 2 [9],

a1 i c2 i + a1 i d2 i + b1 i c2 i − b1 i c2 i ≤ 2 . (1.13)

The average 〈a1c2〉 of the products a1 i c2 i of the results in N experiments is the sum
over the individual products divided by N ,

〈a1c2〉 = 1

N

N∑

i=1

a1 i c2 i . (1.14)

Correspondingly we obtain the averages of 〈a1d2〉, 〈b1c2〉 and 〈b1d2〉. If we sum the
inequality (1.13) and divide by N , we obtain a Bell inequality [4] for the average of
products of results of polarizations measurements

〈a1c2〉 + 〈a1d2〉 + 〈b1c2〉 − 〈b1d2〉 ≤ 2 . (1.15)

We can evaluate the average of a1 i c2 i also by counting the frequency N+ and N−
with which each possible value+1 or−1 occurs. If we multiply the frequency with the
corresponding value, we get N+−N− = ∑N

i=1 a1 i c2 i and 〈a1c2〉 = (N+−N−)/N .
If N is sufficiently large, then the relative frequency N+/N is the probability for

the cases where a1 i c2 i has value +1 and N−/N is the probability for the value −1.
The probability for a1 i c2 i to have the value +1 is p(a, c) + p(a⊥, c⊥), with proba-
bility p(a, c⊥)+ p(a⊥, c) the product has the value −1. Therefore the experimental
probability (1.9), which is also predicted by quantum theory, yields the average

〈a1c2〉 = cos2 γ − sin2 γ = cos(2γ ) . (1.16)

It is given by the scalar product of unit vectors A and C which include double the
angle as a and c , cos(2γ ) = A · C.
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Fig. 1.8 Directions of Polar-
ization
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By the same reason 〈a1d2〉 = A · D, 〈b1c2〉 = B · C and 〈b1d2〉 = B · D are scalar
products of unit vectors with doubled angles.

If one varies the vectors A and B, then the sum

〈a1c2〉 + 〈a1d2〉 + 〈b1c2〉 − 〈b1d2〉 = A · C + A · D + B · C − B · D (1.17)

becomes maximal, if A has the direction of C + D and B the direction of C − D.
Then the sum has the value |C+D|+ |C−D| which takes its maximal value 2

√
2

if the unit vectors C and D are orthogonal. Therefore, if one takes c to include the
angle π/8 = 22.5◦ with b, a an angle of π/4 = 45◦ and d an angle of 3 π/8 = 67.5◦
then the sum of the averages becomes maximal and has the value 2

√
2. This value

is confirmed by the measurements and disproves Bell’s inequality (1.15).
To derive Bell’s inequality we only assumed that the results a1 i , b1 i , c2 i and d2 i

of each measurement i are certain and do not depend on the direction in which one
chooses to measure the other photon. In real life [2] one can measure in each single
case only in one direction, either in direction a or b and either in direction c or d.
One has to determine a1 i and b1 j or c2 i and d2 j in different measurements i �= j .
A random generator chooses the directions of the measurements after the photons
have left the source and so late, that the choice cannot be known by signals with the
speed of light at the time of measurement at the position of the other photon.

That the measured values of the product polarization do not satisfy Bell’s
inequality shatters the views which physicists have of the world. Measurements
do not read off properties, which determine the result, because then the results would
have to satisfy Bell’s inequality. Measurements ascertain results which previously
were not certain.

The measured violation of Bell’s inequality refutes the elusion from reality that
each result was certain in each case but only the cause of each result was insufficiently
known.

In quantum physics there is no cause for each single result but only causes for
probabilities of results of measurements.



Chapter 2
Time and Distance

Abstract An elementary geometric fact, stated as the intercept theorem, makes
an observed clock run visibly slower, if it moves away in the line of sight and to
run visibly faster by the inverse factor, if it approaches the observer with the same
velocity. This Doppler effect of light in the vacuum is particularly simple, because,
different from the Doppler effect of sound, it depends only on the relative velocity of
the light source and its observer. We employ a referee to determine whether moving
clocks are equal and how the times between pairs of events compare. This time
endows spacetime with a geometric structure, the distance, which is similar to but
also different from Euclidean distance. From the Doppler effect we determine the
addition of velocities, time dilation and length contraction and clarify the related
paradoxes.

2.1 Theorem of Minkowski

Consider as in Fig. 2.1 a clock C and an observer O with another clock. Both move
uniformly along straight worldlines and meet in the event O , the origin, where their
worldlines intersect. There both clocks are set to zero for simplicity, so that in the
following we can speak of times rather than of time differences. When the observer
O looks at the clock C , which moves away from him uniformly in the line of sight,
then he reads off the time tC which passed on C until the emission of the light. At
the moment of observation his own clock shows a time tO . This time of reception is
proportional to the time of emission1

tO = κ(O,C ) tC for tC > 0, (2.1)

1 κ and ν are the Greek letters kappa and nu.

N. Dragon, The Geometry of Special Relativity—a Concise Course, 21
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Fig. 2.1 Intercept theorem
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with a coefficient κ(O,C ) , which does not depend on tC [7]: if the observer later
reads off the time t ′C , then the triangle Ot ′C t ′O is similar to OtC tO and all distances
are enlarged by the same factor. Therefore the ratios tO/tC and t ′O/t ′C coincide.

If a quartz is carried along with the clock C and oscillates n times during the time
tC with a frequency νC = n/tC , then the observer O sees these oscillations while
on his own clock the time tO elapses. So he observes the frequency

νO = 1

κ(O,C )
νC . (2.2)

This visible change of frequency of the clock which moves in the line of sight is
the longitudinal Doppler effect. It is related to the Doppler effect of sound, which
one can hear as whining drop of the pitch of passing police cars or racing cars.

As one cannot distinguish rest from uniform motion, the Doppler factor κ(O,C )

only depends on the relative velocity of C and O and, contrary to the Doppler effect
of sound, not on the velocity with respect to a medium.

Moreover, κ depends on whether both clocks run equally fast. For two clocks at
rest this can be easily seen. For the moving clocks O and C this is more difficult.
One has to correct for the various and changing times which it takes light to run from
the clock to the observer who compares both clocks.

However, no correction is necessary for a referee R as in Fig. 2.2 who is always
in the middle of the clocks. Flashes of light which he emits at some time to O and
C are reflected and return in the same instant. Because the referee is always in the
middle, the runtimes of light to and from O and C are equal.
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Fig. 2.2 Comparison of
clocks
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O

Both clocks run the same if they show the referee equal times,

τ ′ = τ. (2.3)

This is the geometric definition of equal lengths on intersecting straight world-
lines of moving observers. Without exception the definition agrees with the physical
behavior of real equal clocks.

We continue the worldlines of the light rays, which are received and reflected by
C as it shows the time τ ′, to the worldline of the observer O and denote in Fig. 2.3
with t− and t+ the times shown by the clock of O as he emits the light ray to C and
receives it, respectively. Due to (2.1) the clock O shows the time

τ = κ(O,R)κ(R,O)t− (2.4)

when the light ray emitted at time t− and reflected by R arrives. This is because τ

is a multiple of the time at which the light ray was reflected by R, and this time is a
multiple of the time t− at which the light ray was emitted by O . By the same reason

t+ = κ(O,R)κ(R,O)τ. (2.5)

Thus, t+/τ = τ/t− and τ 2 = t+t− = t2 − r2 (1.6). Moreover, the equal clocks
show equal times, τ ′ = τ . This proves the

Theorem of Minkowski Let two observers O and C move linearly and uniformly
and meet in some event O , when they set their equal clocks to zero. Then the time τ ,

http://dx.doi.org/10.1007/978-3-642-28329-1_1
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Fig. 2.3 Theorem of
Minkowski
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which elapses on the clock C until an event E , is the geometric mean of the time t−
shown by the clock of the observer O when he emits light to E and the time t+ which
his clock shows when he receives light from E ,

τ 2 = t+t− = t2 − r2. (2.6)

This relation is as important for the geometry of spacetime as the Pythagorean
theorem c2 = a2+b2 for Euclidean geometry. According to the Pythagorean theorem
in Euclidean geometry all points on a circle are equally far away from the center. The
equation τ 2 = t2 − r2 implies that in spacetime points of equal temporal distance to
the origin O lie on hyperbolas.

Three Equal Clocks

The definition, that equal clocks show their referee equal times differences, is con-
sistent: the clock O3 equals the clock O1 if it equals the clock O2 and if the clock O2
equals the clock O1 (Fig. 2.4).

If the clocks move in the same direction and meet in a common event, then the
relation

t4 = t2+t2− = t++t+−t−+t−− (2.7)

holds. As in (2.4) one has
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Fig. 2.4 Three equal clocks
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Fig. 2.5 Geometric mean
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t−+ = κ(O1,O2)κ(O2,O1)t−− (2.8)

and
t++ = κ(O1,O2)κ(O2,O1)t+−. (2.9)

Therefore t4 = t2++t2−− and the clock of O3 equals the clock of O1. If two clocks
equal a third then they equal each other. This holds also, if the worldlines of the clocks
do not lie in a plane or do not intersect because the worldlines can be translated and
rotated without changing the clocks.

Construction of the Referee

To construct the worldline of the referee between two observers O and C one draws
the light rays through a point τ ′ on one worldline. They intersect the other worldline
in t+ and t− and determine the geometric mean τ of t+ and t−. The worldline of the
referee is the straight line through the intersection of the light rays through τ and τ ′.
This worldline also passes the origin O , because τ is the geometric mean of t+ and
t− (Fig. 2.5).

The geometric mean
√

t+t− is constructed in Euclidean geometry by help of a
circle with a diameter, which consists of the line segments t+ and t−. Its radius is the
arithmetic mean t = (t+ + t−)/2, the line segment t+ is longer by r = (t+ − t−)/2,
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Fig. 2.6 Towards and away
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t+ = t + r , the line segment t− is shorter t− = t − r . The orthogonal line through
the endpoint of t+ cuts the circle with a segment of length τ = √

t2 − r2 = √
t+t−.

2.2 Addition of Velocities

In Fig. 2.3 the Doppler factor τ ′/t− = κ(C ,O) is the ratio of the time of reception
to the time of emission (2.1) of light rays sent from the observer O to C , and
t+/τ ′ = κ(O,C ) is the ratio for the way back. Both clocks are equal, τ = τ ′.
Therefore (2.4) and (2.5) state that the Doppler factor κ(O,C ), by which O sees
frequencies of C shifted, equals the Doppler factor κ(C ,O), by which C perceives
shifted frequencies of O

κ(C ,O) = κ(O,C ). (2.10)

On motion in the line of sight the Doppler shift is reciprocal.
From this reciprocity alone, from t+ = κτ together with τ = κt−, one can

conclude Minkowski’s theorem and the dependence of the Doppler factor on the
relative velocity,

κ2 = t+
t−

, τ 2 = t+t−. (2.11)

The relations t+ = t + r and t− = t − r (1.6) imply

κ2 = t + r

t − r
= 1 + r/t

1 − r/t
, τ 2 = t2 − r2 =

(
1 − r2

t2

)
t2, (2.12)

http://dx.doi.org/10.1007/978-3-642-28329-1_6
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Fig. 2.7 Addition of veloci-
ties
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and, because v = r/t is the velocity with which the clock C moves away from the
observer O ,

κ(v) =
√

1 + v

1 − v
= 1 + v√

1 − v2
, (2.13)

v = κ2 − 1

κ2 + 1
, (2.14)

τ =
√

1 − v2t. (2.15)

If the observer O emits a pulse of light at a time tE < 0, while the clock
moves towards him (recedes with negative velocity) then, as Fig. 2.6 shows, the
ratio κ(−v) = tR/tE of the times of reception and emission is the inverse of the
ratios of the times which the clocks show later, when they move away from each
other

κ(−v) = tR
tE

= tC
tO

= 1

κ(v)
. (2.16)

A clock, which moves away from an observer, appears slower, because it shows
him the time tC = tO/κ , when his own and equal clock shows tO and κ(v) is larger
than 1 for positive velocity v > 0.

On motion in the line of sight an approaching clock appears faster, because during
the approach the Doppler factor is inverse to the Doppler factor during recession.

With (2.14) one can determine the velocity v (as is routinely done by traffic
authorities) by measuring the Doppler shift κ . It retains its value, if one exchanges
observer and observed object. Therefore, two observers who move in the line of sight
measure the same relative velocity. We use (2.13) to determine the relative velocities
of several observers (Fig. 2.7).

If three observers, O1, O2 and O3, move in the same direction and register the
times on their clocks at which a light pulse passes then these times are proportional,

t2 = κ21t1, t3 = κ32t2, t3 = κ31t1. (2.17)

From κ31t1 = κ32κ21t1 one immediately concludes
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κ31 = κ32κ21. (2.18)

The Doppler factor κ31, by which O3 sees his clock run faster than the clock of O1,
is the product of the Doppler factor κ32, by which O3 observes his clock run faster
than the clock of O2 with the Doppler factor κ21 for the observer O2 and the clock
of O1.

In terms of velocities (2.13) and squared this means (in our units with c = 1)

1 + v31

1 − v31
= 1 + v32

1 − v32

1 + v21

1 − v21
(2.19)

or, solved for v31,

v31 = v32 + v21

1 + v32v21
. (2.20)

The velocity v31, with which O3 sees the observer O1 recede, is not the sum
v32 + v21 of the velocity v32, with which O3 observes O2 recede, and the velocity
v21, with which O2 perceives the recession of O1. The naive addition of velocities is
only approximately correct as long as in ordinary life v32 and v21 are small compared
to the speed of light, c = 1.

Up to the sign in the denominator velocities add like inclinations. If the bed of a
tipper lorry is inclined by an angle α, then on even ground it has the slope m1 = tan α.
If the truck drives a street with slope m2 = tan β then its bed has an overall angle
α + β to the horizontal and the overall inclination

m3 = sin(α + β)

cos(α + β)
= cos α sin β + sin α cos β

cos α cos β − sin α sin β
= tan α + tan β

1 − tan α tan β
= m1 + m2

1 − m1m2
.

(2.21)
We define the rapidity σ as the logarithm of the Doppler factor κ ,

σ = ln κ = 1

2
ln

1 + v

1 − v
, v = eσ − e−σ

eσ + e−σ
= tanh σ. (2.22)

To the addition of rapidities there corresponds the multiplication of the Doppler fac-
tors, κ = eσ . These rapidities, not the velocities, add on motion of several observers
in the same direction.

2.3 Time Dilation

If the time t elapses on a clock between two events O and E , then on a second equal
clock, which moves relative to the first one with a velocity v, the shorter time (2.15)

τ =
√

1 − v2t (2.23)
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Fig. 2.8 Reciprocal dilation
of time
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goes by between the corresponding events which are simultaneous to O and E for
the first clock.

Time dilation is reciprocal. This can be deduced from Fig. 2.8 where we have
continued the light rays of Fig. 2.3 to the worldlines of the observers O and C .

The events are denoted by the times on the clocks which the observers carry along.
All the time the referee R is in the middle of O and C and sees both clocks show

equal times. Therefore the times t− and t ′− coincide as do τ and τ ′ and also t+ and t ′+,
because light from each pair of events in which the clocks show these times reaches
the referee in the same instant.

For the observer O the event E ′, in which the moving clock C shows the time
τ ′ = τ , is simultaneous to the event, in which his own clock shows the arithmetic
mean t = (t+ + t−)/2 of the time t−, which it shows, when light to E ′ starts and
the time t+, at which the reflected light returns. So for O the event E ′ occurs at time
t , but the moving clock shows less time, τ = √

t+t− = √
1 − v2t (2.15), which is

smaller than the arithmetic mean t (given that the velocity v does not vanish).
For C the event in which his clock shows the time t ′ = (t ′+ + t ′−)/2 = t is

simultaneous to the event E , when the clock of O , which moves with respect to C ,

shows the time τ =
√

t ′+t ′− = √
1 − v2t . So for C the clock of O runs slower just

as well.
Time dilation is reciprocal because the observers do not agree on which events

are simultaneous. In Euclidean geometry the corresponding fact is commonplace: if
you look in horizontal direction from a lighthouse at sea level to a second lighthouse
of identical construction also at sea level some miles away then the other lighthouse
does not reach the height of the first one because the surface of the earth is curved.
Height depends on which direction is horizontal and the horizontal directions of both
lighthouses do not coincide.
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Fig. 2.9 Twins
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Twin Paradox

Reciprocal time dilation appears to be contradictory, if for example one considers
twins. The first twin, the traveller T , departs in an event A with a velocity v for
Mars and turns back with velocity v′ after the arrival in event M . The other twin, the
stay-at-home S , waits calmly the time t + t ′ until the return of his brother. Which
twin, if any, is younger in the end E? For each twin, the other has moved. Does this
imply the contradiction, that each twin has aged less than the other?

It is often tacitly insinuated that the observations of both twins agree up to the
short acceleration at Mars and that from their observations one cannot distinguish
the traveller from the stay-at-home. This is wrong.

Each twin sees the other redshifted during the travel to Mars and blueshifted on
the way back. In the first period each twin sees the clock of his brother run slower,
in the second faster, than his own clock by a Doppler factor which agrees with the
Doppler factor of his brother. But the stay-at-home sees the traveller longer redshifted
(and age slower) and shorter blueshifted (and age faster) than the traveller sees the
stay-at-home. Both twins see the stay-at-home age more than the traveller.

On arrival at Mars M the traveller T sees his clock show the travel time τ and a
redshifted light ray from the stay-at-home S show the time t−, which has elapsed
on the clock of S since the start A. The travel time is larger by a Doppler factor κ

(2.1), τ = κ t−.
During the return trip the traveller observes on his clock the time τ ′ go by while

blueshifted light shows him that the time t + t ′ − t− passes on the clock of the stay-
at-home until the end E , τ ′ = κ ′(t + t ′ − t−). Altogether, he sees the stay-at-home
age by
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Fig. 2.10 Equal phases of
acceleration
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t + t ′ = τ

κ
+ τ ′

κ ′ (2.24)

while he has grown older by τ + τ ′.
The stay-at-home sees the traveller redshifted during the time t+ = κτ , which is

longer than τ , and blueshifted during the rest of the waiting time t + t ′ − t+ = κ ′τ ′,
which is shorter than τ ′. Altogether, S ages by

t + t ′ = κτ + κ ′τ ′ (2.25)

while he observes the traveller grow older by τ + τ ′. This agrees with (2.24) as one
confirms with (2.13, 2.15) and with the relation vt +v′t ′ = 0 that the traveller returns.
Both equations imply

t + t ′ = τ

2

(
1

κ
+ κ

)
+ τ ′

2

(
1

κ ′ + κ ′
)

= τ√
1 − v2

+ τ ′
√

1 − v′2 . (2.26)

The waiting time t + t ′ is longer than the travel time τ + τ ′.
“Who rests, rusts” and “Travelling keeps young” correctly states the relativistic

effect.
The worldline of the traveller differs from the one of the stay-at-home by the

acceleration on arrival at Mars M . Such an acceleration is necessary if the second
worldline through the two events A and E is to differ from the straight worldline of
the first twin because in flat spacetime there is only one straight line through two
points.
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But the traveller does not become younger during the acceleration. Even if both
twins undergo identical phases of acceleration they can age differently, as Fig. 2.10
shows. There both twins travel together until event A where the stay-at-home S
brakes. The traveller T brakes later to reach M , there he accelerates to return.

After a fitting waiting time the stay-at-home accelerates in exactly the same way
and joins the traveller in E from where both continue their joint flight. Between A
and E the twins age differently though their acceleration consisted of equal phases.
During these phases they age the same, but the remaining pieces of their worldlines
constitute the sides of the triangle AM E in Fig. 2.9 and there S ages more.

Time is what clocks show. The clocks of the twins show different times on return.
Therefore, time between two events does not only depend on these events but also
on the worldline which the clock passes in between; just as in Euclidean geometry
the path length between two points of a curve depends on the path which connects
both points. Clocks are like mileage counters.

In a spacetime diagram the different aging of the twins is as paradoxical as in
Euclidean geometry the statement that in a triangle each side is shorter than the sum
of the other two sides. In order to understand triangles one does not need differential
geometry of curved spaces, even if one deals with circles and corners, i.e. with curved
trajectories. Similarly, the general theory of relativity is not needed for the solution
of the twin paradox. It can be used, but gives the same explanation and the same
answer as the special theory of relativity: between every two sufficiently adjacent
events on the worldline of every free-falling observer there elapses more time than
on all other timelike worldlines connecting these two events.

If the two events are not sufficiently adjacent, then gravity can cause the compli-
cation that different world lines of free-falling observers connect these events and
that on these worldlines different times go by, even though none of the observers has
experienced a sensible acceleration. For instance, a space station may orbit the earth
in free fall and a second station launched vertically from the earth may fly past the
first in free fall during the motion upwards. If the apogee of the second space station
is suitably chosen, it can meet the first space station again on the way downwards
after the first station has orbited the earth. During the vertical fall more time has
elapsed between the two encounters than in the space station orbiting the earth.

The different aging of the twins can be measured with atomic clocks flying around
the earth [14] such that for one twin his velocity adds to the revolution of the earth
and subtracts for the other twin. In addition, the gravity on ground and during the
flight differs and influences the clocks, just as gravity and motion influence the clocks
of GPS satellites. There these relativistic effects are routinely accounted for.

Clocks at sea level, which are carried along with the rotating earth, run equally
fast. The rotation does not only lead to different velocities, which depend on the
longitude, but also to a flattening of the globe, such that the clocks which move
faster are further away from the center. Taken together, the different gravity and the
different velocity compensate their effects on the clocks at sea level exactly.
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Fig. 2.11 Contraction of moving rods

2.4 Length Contraction

Two moving measuring rods have the same length, if they are equally long for a
referee R, who, just as in the left Fig. 2.11 is always in their middle [23]. The
beginning of each rod traverses the worldline of the corresponding observer C and
O , the end traverses a parallel worldline. As the referee R confirms, the rods of C
and O have the same length, because in the events τ and τ ′, which are simultaneous
for him and equally far away, both ends of both rods coincide.

A moving rod is shorter than an equal rod at rest by the same factor
√

1 − v2 by
which a moving clock runs slower than an equal clock at rest. This can be deduced
from the middle of Fig. 2.11. There we have omitted all auxiliary lines and shown
the segment from t to τ ′ which consists of events which occur simultaneously for
the observer C . At this moment, his measuring rod extends from t to τ ′ and the right
ends of both rods coincide. The moving rod is shorter, its left end intersects the line
segment from t to τ ′ in the event q.

The triangles t O τ ′ and t τ q are similar, therefore the length lv of the segment
τ ′q relates to the length l of the segment τ ′t as the length of Oτ to the length of Ot .
But τ = √

1 − v2t is the length of Oτ and t the length of Ot . Therefore, a measuring
rod which moves uniformly with a velocity v has the shorter length

lv =
√

1 − v2l, (2.27)

if compared to an equal measuring rod of length l at rest.
As the right in Fig. 2.11 shows, length contraction is reciprocal. For the observer

O the events τ and t ′ occur simultaneous and the measuring rod of C is shorter.



34 2 Time and Distance

Fig. 2.12 Accelerated
Rockets
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Equally Accelerated Rockets

We consider two rockets which we idealize as points. Initially they rest in a distance
L , later they are accelerated in an equal way such that, as in Fig. 2.12, their worldlines
are related by a translation by L . For an observer at rest both rockets have a distance L
at all times. After the acceleration the rockets follow straight worldlines with velocity
v. If the crews of the rockets then measure the mutual distance with measuring rods
which they carry along, they obtain some value l. For the observer at rest, this rod is
moving and contracted and has length L = √

1 − v2l, because it reaches from one
rocket to the other. So l is larger than L .

A rope as considered in [5, Chap. 9], initially spanned between the rockets and
stretched to rupture, snaps immediately, if the rockets and the rope are accelerated
equally.

This is also what the crews of both rockets observe. For them the rocket in front
reaches the final velocity earlier and veers away from the rear rocket.

If one wants to accelerate the constituents of the rope, which rest initially until
a time t = 0, to a velocity v, such that their distances, as seen by the constituents,
remain unchanged, then one has to accelerate the pieces in the rear more but for a
shorter time than the pieces in front such that all points at r , 0 ≤ r ≤ L traverse
worldlines x(t) = √

(r + R)2 + t2 − R during the times 0 ≤ t ≤ v(r + R)/
√

1 − v2

and move straight and uniformly afterwards. Here 1/R is the acceleration of the last
point in the rear.

Length Paradox

Just as time dilation leads to the twin paradox, length contraction seemingly leads to
a contradiction, if one considers whether a car with high speed fits into a garage of
equal length. For the owner of the garage it is at rest and the moving car is shorter,
therefore the car fits into the garage. Seen from the driver, however, the garage is
shorter and does not fit the car.

http://dx.doi.org/10.1007/978-3-642-28329-1_9
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The situation is depicted in the spacetime Fig. 2.11, where C and the parallel
worldline represent the owner at the gate and the rear wall of the garage while O and
the parallel worldline correspond to the front and rear fender of the car.

Consider a red flash of light, emitted by a photo sensor in the event τ ′, when the
front fender hits the garage wall, and a green flash of light, which is emitted in the
event τ , when the rear fender passes the gate. The referee sees both flashes in the
same instant and, because he is in the middle of the gate and the wall and the runtimes
of light from τ and τ ′ to him are equal, confirms that the garage and the car have
equal length.

The owner of the garage C observes the red flash from τ ′ after the green one. If
he accounts for the runtime of light, he concludes that the front bumper had hit the
garage wall in the event τ ′ at the time t after the event τ , in which the rear fender
passed the gate. For him, the car had fitted into the garage at time t , the car war
shorter.

The driver O sees the green flash of light from the rear of his car τ later than the
red flash. If he account for the runtime of light he concludes that the green flash τ

had been emitted at the time t ′ after the red flash. For him, the front fender had hit
the wall before the rear fender had passed the gate. So he concludes that the garage
is shorter than the car.

This in not a contradiction and not a paradox. Observers, who move relative to
each other, do not have to agree on the order of events which are not cause and effect
as in the case under consideration. The passage of the rear fender through the gate
does not cause the crash of the front fender on the wall and vice versa.

Both observers agree that a fast, slim car can pass a slim garage of equal length
if the car in addition has some transverse velocity, just as one can thread long yarn
through the narrow eye of a needle.

With some transverse velocity of the car the worldlines of the front and rear fender
no longer lie in the plane of the Fig. 2.11. They can intersect the plane in the events q
and τ . For the garage owner these events are simultaneous, before them the car was
on one side and afterwards it is on the other: the car has passed the garage, which
is longer than the car. Also the driver observes his car pass the garage, though it is
shorter than his car. He first drives around the wall with his front fender and later
passes the gate with his rear.

Whether a fast car fits through a garage does not only depend on the length but
also on the temporal sequence of the events just as it depends on the direction of a
long ladder whether it fits through a low door.

2.5 Doppler Effect

If a clock C moves with a velocity v in direction e at an angle θ to the line of sight,
then its distance to an observer O changes by dr = v cos θdt during the short time
dt . The changed distance cause a changed runtime of light and light rays l and l from
two events on the clock which started with a time difference dt reach the observer
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Fig. 2.13 Doppler effect
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τ

(in units with c = 1) with a time difference

τO = dt + v cos θ dt. (2.28)

In this consideration we use times, velocities and angles as determined by the
observer O .

On the moving clock C the time τC = √
1 − v2dt elapses between the emission of

the two flashes of light. This follows from (2.13), because spacetime is homogeneous
and time flows between the origin (0, 0, 0, 0) and (t, x, y, z) the same as between
(t0, x0, y0, z0) and (t0 + dt, x0 + vx dt, y0 + vydt, z0 + vzdt)

Consequently the observer O sees the time

τC =
√

1 − v2

1 + v cos θ
τO (2.29)

pass by on the moving clock while on his own, equal clock the time τO passes.
Equation (2.13), τO = κτC , is the special case in which the clock recedes in the line
of sight with cos θ = 1.2

If an oscillator is carried along with the clock and oscillates n-times with a fre-
quency νC = n/τC , the the observer sees these n oscillations while the time τO
passes on his own clock. He observes the frequency νO = n/τO ,

νO =
√

1 − v2

1 + v cos θ
νC . (2.30)

2 Figure 2.13 depicts the worldlines of the observer O and the clock C in a plane. However, we
consider the general case in which the worldline of the observer is parallel to the plane and does
not intersect the worldline of the clock. Note that in spacetime diagrams the frequency of light is
not a property of a light ray but pertains to the distance of two events on parallel light rays.
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If v cos θ >
√

1 − v2 − 1, then the clock is seen slower and the frequency of light
from the clock is shifted to smaller values of red light, it is redshifted.

Otherwise, if v cos θ <
√

1 − v2 − 1 and the clock moves towards the observer,
then it appears faster and its light is blueshifted. This change of the perceived fre-
quency is the Doppler effect. It is commonly used to measure velocities.

On motion crosswise to the line of sight, cos θ = 0, the transversal Doppler
effect τC = √

1 − v2τO directly shows the slowdown of moving clocks, because the
distance between source and observer just does not change.

The Doppler shift is usually time dependent (because the direction changes) and
reciprocal only for motion in the line of sight. If the observer O sends two flashes of
light with a delay of dt = τ̂O to the clock then the second flash reaches the clock later
by dt ′ = dt + v cos θdt ′ that is dt ′ = τ̂O/(1 − v cos θ). During this interval the time
τ̂C = √

1 − v2dt ′ elapses on the moving clock. Seen from the clock, frequencies
from O are shifted to

ν̂C = 1 − v cos θ√
1 − v2

ν̂O . (2.31)

This agrees with ν̂C = √
1 − v2/(1 + v cos θ ′)ν̂O (2.30) because θ ′ is the angle to

the line of sight, changed by aberration (3.19), with which C sees O move.

Apparent Superluminal Velocity

A jet of gas streams out of the quasar 3c273 with a measurable angular velocity [17,
Chap. 11]. If one multiplies the observed angular velocity with the known distance
one obtains a velocity of seven times the speed of light for the crosswise motion. The
quasar seems to emit particles with superluminal velocity.

This conclusion is wrong, the product of the distance with the observed angular
velocity is not the velocity transverse to the line of sight.

The clock C in Fig. 2.13 moves by v sin θ dt = r dθ within the short time dt
transverse to the line of sight, where r denotes its present distance. The flashes of
light l and l reach the observer with a difference angle dθ and a time difference
τO = dt + v cos θ dt because l starts later by dt and has to pass a distance which
is larger by dr = v cos θ dt . So the observed angular velocity ωO = dθ/τO and the
apparent transverse velocity u = r ωO are

ωO = v sin θ

r(1 + v cos θ)
, u = v sin θ

1 + v cos θ
. (2.32)

This velocity u becomes maximal for the angle cos θ = −v between the direction
of motion and the line of sight and in this case has the value v/

√
1 − v2. This value

can be arbitrary large though |v| is smaller than c = 1, the speed of light.

http://dx.doi.org/10.1007/978-3-642-28329-1_3
http://dx.doi.org/10.1007/978-3-642-28329-1_11


38 2 Time and Distance

Fig. 2.14 Spherical Coordi-
nates
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2.6 Spacetime Coordinates

We can denote the events E in spacetime simply by the values3 (t+, t−, θ, ϕ), the
light coordinates of E , which an observer O determines as he sends light to E and
receives it from E . He reads the times of emission, t−, and reception, t+, from his
clock and determines the direction of the outgoing light ray by means of, say, two
angles θ and ϕ.

Primarily coordinates only have to denote the events uniquely, at least in some
range of their values. Other coordinates, which are invertible functions of the light
coordinates, are equally conceivable. In particular, light coordinates are related in
a simple way to inertial coordinates (t, x, y, z), in which particles, which move
uniformly on straight lines, traverse straight coordinate lines (Fig. 2.14).

The time t and the distance r = √
x2 + y2 + z2, at which the event E occurs, are

the arithmetic mean and half the difference of the light coordinates t+ and t− (1.4,
1.5),

t = t+ + t−
2

, r = t+ − t−
2

. (2.33)

The direction of the outgoing light ray from O to the event E is opposite to the
incident direction of the light ray from E because the observer does not rotate but
uses reference directions that do not change in time.

The angles θ and ϕ of the light ray to E and the distance r are the spherical
coordinates and define the cartesian spatial coordinates of the event by

x =
⎛
⎝ x

y
z

⎞
⎠ = reθ,ϕ = r

⎛
⎝ sin θ cos ϕ

sin θ sin ϕ

cos θ

⎞
⎠ . (2.34)

For events on the worldline of the observer O one has t+ = t−, hence x = 0. In
particular, the origin O has coordinates (0, 0, 0, 0).

If O emits a light ray at time t0 in the direction eθ,ϕ , then the light ray passes
events for which t−, θ and ϕ are constant

t = t+ + t0
2

, x(t) = t+ − t0
2

eθ,ϕ, (2.35)

3 θ and ϕ are the Greek letters theta and phi.
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or, if we express the variable t+ in terms of t , then the light ray is given by the map

Γ : t �→ (
t, x(t)

) = (
t, eθ,ϕ ·(t − t0)

)
. (2.36)

This is a worldline parameterized by t , which at the time t0 intersects the worldline
of the observer. In the coordinates (t, x, y, z) it is a straight worldline which is
traversed with the speed of light c = 1, since the speed v = dx

dt is a unit vector.
The equations also holds for t < t0 for a light pulse incident from the opposite
direction −eθ,ϕ . For such a light ray t+ = t0 is constant and t = (t0 + t−)/2 and
x = −eθ,ϕ(t0 − t). While light coordinates (t+, t−, θ, ϕ) of a passing light ray are
discontinuous in the event, in which it intersects the worldline of the observer, inertial
coordinates are continuous.

Displacing the light ray by x0 + eθ,ϕ t0 yields more generally the light ray which
passes x0 at the time t = 0,

Γ : t �→ (
t, x(t)

) = (
t, eθ,ϕ ·t + x0

)
. (2.37)

If the worldline of a linearly and uniformly moving particle passes the origin O
at time t = 0, the observer O sees afterwards all events on this worldline from the
same direction. The angles θ and ϕ are constant, except at t = 0. The particle departs
into the opposite of the direction from which it approached and the angles change
discontinuously from θ to = π − θ and from ϕ to ϕ + π at t = 0.

According to (2.11) one has t+ = κ2t− for events on the straight worldline of the
particle. For its coordinates this means

t = (κ2 + 1)
t−
2

, x = (κ2 − 1)
t−
2

eθ,ϕ , (2.38)

or, if we express t− in terms of t and use (2.14), the worldline is given by

Γ : t �→ (
t, x(t)

) = (
t, v t

)
with v = dx

dt
= κ2 − 1

κ2 + 1
eθ,ϕ. (2.39)

Translating the worldline by x0 one obtains more generally the worldline of an
uniformly moving particle which passes the point x0 at time t = 0 ,

Γ : t �→ (
t, x(t)

) = (
t, v·t + x0

)
. (2.40)

So the coordinates (t, x, y, z) which we have constructed from the light coordi-
nates t+, t−, θ and ϕ are inertial coordinates in which particles, which move straight
and uniformly, traverse straight coordinate lines.
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2.7 Scalar Product and Length Squared

Together, the time and the spatial coordinates of each event constitute an ordered set
(t, x, y, z) of four real numbers, and each such four-tuple corresponds to one and
only one event. In Special Relativity spacetime, the set of all events, is R

4. We denote
the components of the four-tuple which corresponds to a particular event E either by
tE , xE , yE and zE or we use a name like u for the four-tuple u = (u0, u1, u2, u3) and
enumerate the components with a superscript. It depends on the context whether the
superscript denotes an exponent (rarely) or enumerates a footnote or a component.

The homogeneity of spacetime makes it a vector space. If one shifts all events u =
(u0, u1, u2, u3), which participate in some physical process, by s = (s0, s1, s2, s3)

in space and time, then the events

u + s = (u0 + s0, u1 + s1, u2 + s2, u3 + s3) (2.41)

can participate in an equally possible process.
The scaled versions of spacetime diagrams consist of events

au = (au0, au1, au2, au3) (2.42)

scaled by a common factor a. However, elementary physical processes are not scale
invariant. While scaled diagrams of physical processes with free pointlike particles
correspond to equally possible physical processes, this is not true for interacting
particles, for example, one has never observed an enlarged hydrogen atom (electron
and proton bound by electromagnetic interactions).

The set R
4, equipped with the operations of addition and multiplication by a scale

factor, is a four-dimensional vector space. Its elements are called four-vectors.4

On an uniformly moving clock, which passes the two events (t0, x0, y0, z0) and
(t0 + t, x0 + x, y0 + y, z0 + z), there elapses the time

τ 2 = t2 − x2 − y2 − z2. (2.43)

This follows from (2.13), because spacetime is homogeneous and time flows
between the origin (0, 0, 0, 0) and the event (t, x, y, z) the same as between
(t0, x0, y0, z0) and (t0 + t, x0 + x, y0 + y, z0 + z).

The time between two events does not depend on the details of the clock used to
measure it. The time is a measure for distance, i.e. a geometric structure, in spacetime.

4 Without mentioning it explicitly we shall consider different copies of R
4, e.g. spacetime or the

set of four-velocities, four-momenta or four-accelerations. Vectors from different spaces cannot be
added, because they differ in units. e.g. a velocity v cannot be added to a position x. What can be
added is the image vt of a velocity v under the linear map t , which maps it to the space of positions.
Though vectors from different four-spaces cannot be added, their directions can be compared,
because, as we shall see, the Lorentz group acts on each of these spaces and the x-direction, for
example, is the set of vectors which is invariant under rotations around the x-axis and under boosts
in y- and z-directions (also compare page 89).
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Events with equal temporal distance one does not find in a plane t = const as in
nonrelativistic physics or on a sphere x2 + y2 + z2 = r2 = const as in Euclidean
geometry, but on an hyperboloid t2 − x2 − y2 − z2 = τ 2 = const. The square of the
temporal distance between two events is not subject to the Pythagorean theorem but
to the theorem of Minkowski.

The clock does not depend on which observer determines coordinates for the
events. If another observer measures light coordinates t ′+,t ′−, θ ′ and ϕ′ and converts
them into spacetime coordinates (t ′0, x ′

0, y′
0, z′

0) and (t ′0 + t ′, x ′
0 + x ′, y′

0 + y′, z′
0 + z′)

of the two events, then the sums of squares appearing in (2.43) have to agree

t2 − x2 − y2 − z2 = t ′2 − x ′2 − y′2 − z′2. (2.44)

The sum of squares plays a central role in relativistic physics. We introduce the related
scalar product of four-vectors like u = (u0, u1, u2, u3) and w = (w0, w1, w2, w3)

u·w := u0w0 − u1w1 − u2w2 − u3w3. (2.45)

As length squared of a four-vector w we define5

w2 = w·w = (w0)2 − (w1)2 − (w2)2 − (w3)2. (2.46)

In this notation, the time τ between events u and w is given by

τ 2 = (u − w)2. (2.47)

The scalar product (2.45) maps each pair of four-vectors to a real number and is
symmetric and linear in each argument, (a denotes an arbitrary real factor)

v·w = w·v, (2.48)

u·(v + w) = u·v + u·w, v·(a w) = a (v·w), (2.49)

but, different from Euclidean geometry, not definite. Lightlike vectors have length
squared zero though they do not vanish. The scalar product is nondegenerate, i.e.
the scalar product of a vector v vanishes with all other vector if and only if v = 0
vanishes.

The scalar product of two vectors u and v can be written as the difference of
lengths squared

u·v = 1

4
((u + v)2 − (u − v)2). (2.50)

Since different observers determine different coordinates but the same lengths
squared of differences of four-vectors (2.44), scalar products of difference vectors

5 The reader has to deduce from the context whether the length squared or the y-component of a
vector is meant.
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do not depend on the coordinate system of the respective observer either,

u·v = u′·v′. (2.51)

If the length squared w2 is positive we call w timelike, if it is negative we call w
spacelike, if w2 = 0, w �= 0, w is called lightlike. A timelike or lightlike vector w is
future directed, if its component w0 is positive, otherwise it is past directed.

Two events A and B are mutually spacelike if the corresponding difference vector
from B to A

wAB = (tA − tB, xA − xB, yA − yB, z A − zB) (2.52)

is spacelike. Correspondingly we define lightlike or timelike pairs of events.
An event B can cause an effect A only, if wAB is future directed timelike or

lightlike.
Events on a light ray are mutually lightlike.
Events on the worldline of an observer are mutually timelike since each observer is

slower than light. If his worldline is straight then the length squared of the difference
vector of two of his events is the square of the time which passes on his clock between
the two events.

Orthogonal

To construct the line O⊥, which orthogonally intersects the line O in the point t , one
chooses two points on O , t+ and t−, which are equally far away from t , and determines
a second point E which is equally far away from t+ and t−. The orthogonal line O⊥
is the line through t and E .

This is true in Euclidean geometry and in spacetime. In spacetime, however, the
distance is given by τ (2.43). If t− and t+ are two events on the worldline of the
observer O and if t is in their middle then the intersections E and E ′ of the light rays
through t− and t+ lie on the orthogonal line through t , because E and E ′ are equally
far away from t− and from t+, to wit the distance vanishes because the separations
are lightlike (Fig. 2.15).

The worldline O consists of events which are equilocal for the observer. The
events on O⊥ are equitemporal for him (Fig. 1.6). The lines of equilocal events are
orthogonal to the lines of equitemporal events.

Using the vector v from t− to t and from t to t+ and the vector w from t to E , the
light ray from t− to E is v + w. The vector v − w is the light ray back from E to t+.
The length squared of the lightlike vectors v + w and v − w vanishes,

0 =(v + w)2 = v2 + 2v·w + w2,

0 =(v − w)2 = v2 − 2v·w + w2. (2.53)

http://dx.doi.org/10.1007/978-3-642-28329-1_6
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Fig. 2.15 Orthogonal vectors
with hyperbola
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Therefore v2 = −w2 and the scalar product of the orthogonal vectors vanishes,

v·w = 0. (2.54)

The length squared v2 is the square of the time between the events t− and t
on the worldline of the observer O . This is the runtime of light and therefore the
distance from O to the event E . Because v2 = −w2 the square of the distance of two
simultaneous events, which are separated by the spacelike vector w, is −w2.

Orthogonal: The vector w from an event t on the worldline of a uniformly moving
observer to an event E , which occurs simultaneously for him, is orthogonal in terms
of the scalar product (2.45) to his worldline. The negative length squared −w2 is
the square of the distance between E and the observer.

The hyperbola H through t around t− is defined to consist of points which are
obtained from t− by equally long translations u(s)

u(s) =
√

1 + s2v + sw, u(s)2 = v2, (2.55)

where s varies in the real numbers. In particular, the point t on the hyperbola corre-
sponds to s = 0 . In terms of the length squared of spacetime, all points of H are
equally far away from t−.

Each vector from t− to a point A on the orthogonal line O⊥ is of the form x(s) =
v + sw, where s is some real number. Because of v·w = 0 it is as long as the vector
−v + sw from t+ to A.

Because
√

1 + s2 > 1 for s �= 0 , all points of H apart from t lie on the side
of O⊥ which is opposite to t−, one has u(s) = x(s) + a(s)v with a positive a(s).
In addition, t belongs to both O⊥ and H . Therefore both curve touch each other at
t and the straight line O⊥ is tangent to the hyperbola H in the point t . The tangent
at t is orthogonal to the vector from t− to t .



44 2 Time and Distance

Fig. 2.16 Rotated measuring
rods

O

0 α

B

E

The same conclusion is obtained by differentiating u(s)2 with respect to s . The
tangential vector t (s) = du

ds (s) is orthogonal to the position vector u(s),

u(s)·u(s) = constant ⇒ du

ds
·u = 0. (2.56)

2.8 Perspectives

If one takes bearing in horizontal direction from a lighthouse at sea level to a second
lighthouse of identical construction also at sea level some miles away then the other
lighthouse does not reach the same height because the surface of the earth is curved
(see Fig. 2.16). Height is a perspective quantity. It depends on which direction is
horizontal and the horizontal directions of both lighthouses do not coincide.

Perspective shortening is physically relevant, Because one can change the height
of a ladder by rotation, it may pass a low door though the ladder is longer than the
height of the door and though rotations leave the sizes of the door and the ladder
unchanged.

The Fig. 2.16 depicts the perspective height of two measuring rods M0 and Mα in
Euclidean geometry which are rotated with respect to each other. The circle consists
of points of equal distance to the center; each tangent vector is orthogonal to the
position vector.

The measuring rods intersect in the point O . For an observer, who measures height
with M0, all point on the straight line through B, which is orthogonal to M0, are
equally high. In particular the point E is as high as B and higher as the end point of
Mα . Rotated measuring rods reach less high.
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Fig. 2.17 Time dilation
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The perspective shortening of height is reciprocal. Judged from Mα the rotated
rod M0 is lower.

If one replaces in Fig. 2.16 the circle by a hyperbola, one obtains the geometric
relations in spacetime.

In Fig. 2.17 the hyperbola H consists of events with equal temporal distance τ

to the origin O (2.43). Equal uniformly moving clocks of observers O0 and Ov, who
pass the origin, show the same laps of time, τ , when their worldlines intersect the
hyperbola.

The tangents in B and B ′ are orthogonal to the worldlines of the observers O0 and
Ov respectively (2.56). Therefore they consist of events which occur simultaneously
for O0 or Ov. The tangents intersect the worldline of the other observer before the
time τ has elapsed on it.

If the time τ elapses on a clock between two events, then the shorter time τE O =
τE ′O = √

1 − v2τ (2.13) passes between the simultaneous events on a moving clock,
just as two points on a vertical ladder have a shorter distance than equally high points
on a tilted ladder. The perspective relations in spacetime are reciprocal as in Euclidean
geometry.

The abbreviated summary “moving clocks run slower” suppresses the specifica-
tions of the segments O E and O B or O E ′ and O B ′ the duration of which is to be
compared. The abbreviation is the reason for misunderstandings, because “running
slower” is an order relation and the clock of O0 cannot run slower and also faster
than the clock of Ov. In fact, both clocks are equal as confirmed by the referee in
Fig. 2.2.

Contraction of moving measuring rods can be read of Fig. 2.18 which is the mir-
rored version of Fig. 2.17. The beginning and the end of uniformly moving measuring
rods of observers O0 and Ov traverse pairs of parallel straight worldlines. Both rods
have the length l, because the left ends coincides in O and the right ends B and B ′ lie
on the auxiliary hyperbola, which consists of points P which satisfy −wP O

2 = l2.
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Fig. 2.18 Contraction of
moving rods
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Fig. 2.19 Twin paradox
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The segments O B and O B ′ are orthogonal to the worldlines of the observers and
Ov, because they are position vectors and parallel to tangent vectors of the hyperbola
(page 43).

Therefore the events O , E ′ and B are simultaneous for O0. At this moment, the
left ends coincide, but the right end of the moving rod only reaches to E ′, so the
moving rod is shorter than the own rod which reaches until B.

For Ov the events O , E and B ′ are simultaneous. Then the left ends coincide in O
and the rod, which moves relative to Ov only reaches to E and is shorter than the
own rod which reaches until B ′.
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In Fig. 2.19 the waiting time and the travel times of the twin paradox are not
determined from the Doppler factors as in Fig. 2.9 but compared by the auxiliary
hyperbola from M to τ ′ with origin at A and the hyperbola from M to τ ′′ with origin
at E .

The line segments from A to τ ′ and from τ ′′ to E on the worldline of the stay-
at-home S last as long as for the traveller T the travel to and from Mars. The
stay-at-home has aged in addition during the time which passed between τ ′ and
τ ′′. On the straight worldline of the stay-at-home more time has passed than on the
worldline of the traveller with a kink.

The tangents Mt ′ and Mt ′′ of the hyperbolas consist of events, which are simul-
taneous to the arrival at Mars for an uniformly moving observer Oto, who also flies
to Mars respectively for an uniformly moving observer Ofrom, who flies back. The
tangents intersect the worldline of S in t ′ and t ′′ confirming that for observers who
fly to or from Mars the clock of the stay-at-home shows less time than simultaneously
on their own clocks.

But the events t ′ and t ′′ do not coincide, they are simultaneous to the arrival at
Mars for different observers. Between t ′ and t ′′ the stay-at-home ages so much that
in the end he has grown older than the traveller.



Chapter 3
Transformations

Abstract Motion of an observer makes him measure Doppler shifted or Lorentz
transformed light coordinates. These Lorentz transformations relate the velocities of
particles which different observers measure, and change by aberration the directions,
from which incident light rays are perceived. Aberration is conformal: angles and
relative sizes of small, neighbouring objects agree in aberrated pictures. Lorentz
transformations determine how the energy and the momentum of a particle depend
on its velocity. The conservation of energy and momentum restricts the decay of a
particle and the scattering of two particles with observable consequences.

3.1 Lorentz Transformation of Coordinates

How do the coordinates (t, x, y, z) which an observer O attributes to an event E
correspond to the coordinates (t ′, x ′, y′, z′) which an observer O ′ measures for the
same event, if he moves with a velocity v relative to O?

To begin with we investigate the case that the worldlines of the two observers
intersect in the event O and that they set their clocks to t ′ = t = 0 on this occasion.
To keep the discussion simple, both observers choose their x-axis in the direction of
relative motion such that for O the observer O ′ moves in x-direction and vice versa
O moves in the −x ′-direction of O ′. Then the y- and z-coordinates of each event E
in the plane of the worldlines of the observers vanish, y = z = 0 = y′ = z′.

Each observer sees the clock of the other observer slowed down by the same
Doppler factor κ(O,O ′) = κ(O ′,O) (2.10). When flashes of light to and from an
event E as in Fig. 3.1 pass the observers, then the times on their clocks t ′− and t− and
also t+ and t ′+, are proportional to each other with the Doppler factor (2.13)

κ(v) =
√

1 + v

1 − v
= 1 + v√

1 − v2
(3.1)

N. Dragon, The Geometry of Special Relativity—a Concise Course, 49
SpringerBriefs in Physics, DOI: 10.1007/978-3-642-28329-1_3,
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Fig. 3.1 Lorentz transforma-
tion
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because they are pairs of times which equal clocks show at the emission and reception
of a flash of light. So the observer O ′ measures the light coordinates

t ′+ = κ−1 t+, t ′− = κ t−. (3.2)

The transformation of the two light coordinates decomposes into two transforma-
tions of coordinates, which scale separately—t ′+ depends only on t+ and t ′− only on
t−—and inversely, such that their product, the area t+t− = t ′+t ′− of the lightangle
with corners O and E , remains unchanged.

In spacetime coordinates t ′ = (t ′+ + t ′−)/2 and x ′ = (t ′+ − t ′−)/2 (1.4, 1.5) the
transformation is coupled

t ′ = 1

2
(κ + κ−1)t − 1

2
(κ − κ−1)x, x ′ = −1

2
(κ − κ−1)t + 1

2
(κ + κ−1)x . (3.3)

Inserting κ(v) and 1/κ(v) = κ(−v) = (1 − v)/
√

1 − v2 (2.16) one obtains

t ′ = t − vx√
1 − v2

, x ′ = −v t + x√
1 − v2

or

(
t ′
x ′

)
= 1√

1 − v2

(
1 −v

−v 1

) (
t
x

)
(3.4)

This is (in units with c = 1) the Lorentz transformation of the coordinates of
an event in the t–x-plane to the t ′–x ′-coordinaten which an observer, who moves in
x-direction with velocity v, attributes to the same event. Such a coordinate transfor-
mation is called passive. It does not change the events. A transformation is called
active, if it transforms events. If in (3.4) one changes the sign of v, then one obtains
the active Lorentz transformation which maps the worldline of a particle at rest to
the worldline of a particle, which moves with velocity v in x-direction.

From (3.2) one concludes that κ−1 and therefore the negative velocity −v
corresponds to the inverse transformation.

http://dx.doi.org/10.1007/978-3-642-28329-1_1
http://dx.doi.org/10.1007/978-3-642-28329-1_1
http://dx.doi.org/10.1007/978-3-642-28329-1_2
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Lorentz Transformation in Four Dimensions

Also if the event E does not lie in the t–x-plane, the Lorentz transformation Λ

of the (t, x, y, z)-coordinates to (t ′, x ′, y′, z′)-coordinates has to be linear because
the worldlines of free particles are straight lines for each observer. Consequently,
triangles formed by three intersecting straight lines, are mapped to triangles. The
sides of a triangle correspond to vectors u and v and, for the third side, w = u+v. They
are mapped to Λ(u), Λ(v) and Λ(u +v) = Λ(u)+Λ(v), because triangles transform
into triangles. From Λ(u + u) = Λ(u) + Λ(u) one concludes Λ(nu) = nΛ(u) for
integer n, and from Λ(u) = Λ(n(1/nu)) = nΛ(1/nu) one deduces Λ(au) = aΛ(u)

for rational a and because Λ is continuous for each real a. Therefore Λ is linear.
The coordinates y′ and z′ are linear combinations of t , x , y and z, which vanish

for arbitrary t and x if the event E lies in the plane y = z = 0. So y′ and z′ do not
depend on t and x (

y′
z′

)
=

(
a b
c d

) (
y
z

)
. (3.5)

Also t ′ = (t − vx)/
√

1 − v2 + ey + f z and x ′ = (−vt + x)/
√

1 − v2 + gy + hz
are the most general linear combinations which coincide with (3.4) for y = z = 0.

The Lorentz transformation has to leave scalar products invariant (2.51). Therefore
e, f , g and h vanish: the vectors (

√
1 − v2, 0, 0, 0), (0,

√
1 − v2, 0, 0), (0, 0, 1, 0)

and (0, 0, 0, 1) are mutually orthogonal. For the observer O ′ they have components
(1,−v, 0, 0), (−v, 1, 0, 0), (e, g, a, c) and ( f, h, b, d) and the first two vectors have
to be orthogonal to the last two.

So (3.4) and (3.5) are valid for arbitrary (t, x, y, z), where (a, c) and (b, d) are
the components of Lorentz transformed normalized, mutually orthogonal vectors
and consequently are normalized and mutually orthogonal. By a2 + c2 = 1 the
coefficients a and c can be written as cosine and sine of some angle α. Because of
ab + cd = 0 the coefficients (b, d) are a multiple of (−c, a), and due to b2 +d2 = 1
only (b, d) = ±(−c, a) can hold. The Lorentz transformation of the plane orthogonal
to the direction of motion is a rotation (or a rotary reflection)

(
y′
z′

)
=

(
cos α − sin α

sin α cos α

) (
y
z

)
. (3.6)

If the angle of rotation vanishes, α = 0, the Lorentz transformation is called a
boost or rotation-free,

t ′ = t − vx√
1 − v2

, x ′ = −vt + x√
1 − v2

, y′ = y, z′ = z. (3.7)

In matrix notation the transformation reads

http://dx.doi.org/10.1007/978-3-642-28329-1_2
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Fig. 3.2 Lorentz flow

⎛
⎜⎜⎝

t ′
x ′
y′
z′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1√
1−v2

(
1 −v

−v 1

)

1
1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

t
x
y
z

⎞
⎟⎟⎠ . (3.8)

If one continuously increases the angle α of a rotation Dα around some axis from
zero to some value α then as a function of α a point Dαx = x(α), the orbit of x(0)

under rotations, traverses a segment of a circle, because rotations leave Euclidean
distances invariant. By the same reason points in the Fig. 3.2 orbit parts of hyperbolas,
if one applies Lorentz transformations Λv and varies the velocities v. Lightangles
with the origin as one corner and a point on the hyperbola as opposite corner have
the same area, t+t− = t ′+t ′−. For Lorentz transformations leave the length squared
t2 − x2 − y2 − z2 invariant. Lightlike vectors get stretched or shrunken. The origin
is a hyperbolic fixed point. It is a stagnation point of the flow, not a vortex as in the
case of rotations.

If we denote in (3.8) the four-vector (t, x, y, z) just by x and the 4 × 4 Lorentz
matrix by Λ, then the transformation takes the form

x ′ = Λx . (3.9)

Vice versa one has x = Λ−1 x ′. The coordinates (t, x, y, z) are obtained from
(t ′, x ′, y′, z′) by multiplication with the inverse Lorentz matrix. For a rotation-free
Lorentz transformation this is the original matrix in which the velocity v is replaced
by −v, Λ−1

v = Λ−v.
More generally the observer O ′ can move with velocity v in an arbitrary direction

and his reference directions can be rotated with respect to O . The matrix of such
a Lorentz transformation is of the form Λ = D1Λv D2 (6.35), where D1 and D2
denote rotation matrices and Λv is the matrix in (3.8) which corresponds to motion
in x-direction.

More generally the worldlines of the two observers do not have to intersect but
can be shifted in space and time by a = (a0, a1, a2, a3) . Then the x ′-coordinates

http://dx.doi.org/10.1007/978-3-642-28329-1_6
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are related to the x-coordinates by a Poincaré, transformation TΛ,a

TΛ,a :
{

R
4 → R

4

x �→ x ′ = Λx + a
(3.10)

Two Poincaré, transformations TΛ1,a1 and TΛ2,a2 , carried out successively, yield a
further Poincaré, transformation, their product

TΛ2Λ1,Λ2a1+a2 = TΛ2,a2 ◦ TΛ1,a1 . (3.11)

The inverse transformation is
(
TΛ,a

)−1 = TΛ−1,−Λ−1a . Poincaré, transformations
constitute a group (page 77), i.e. a set of elements g with an associative product and
a unit element where each element has an inverse g−1.

Poincaré, transformations are not the most general transformations, which map
lightcones to lightcones and leave invariant the velocity of light. It is invariant under
the larger group of conformal transformations which contains in particular dilations
x �→ ea x by an invertible factor ea .

Addition of Velocities

Let the worldline Γ : λ �→ x(λ) of a particle be parameterized such that the time t
strictly increases with the parameter λ, d t/d λ > 0. The tangent vector, the derivative
d x/d λ, transforms under Poincaré,-transformations simply as a four vector and
for an observer, moving with a velocity u, |u| < 1, has components, which are
related by

d x ′

d λ
= Λ

d x

d λ
(3.12)

to the components for an observer at rest. The velocity v, the derivative of the spatial
components with respect to the time t

d x
d λ

= d x
d t

d t

d λ
= v

d t

d λ
(3.13)

is a rational function of the derivatives with respect to the parameter λ. Therefore,
the velocity v′, which the moving observer measures, is a rational function of the
components of v, (i, j, k ∈ {1, 2, 3})

v′i = Λi
m

d xm

d λ

Λ0
n

d xn

d λ

= Λi
j v

j + Λi
0

Λ0
0 + Λ0

kvk
. (3.14)

In particular, if we choose the x-axis in direction of the relative motion (3.8) and the
y-axis such that v lies in the x-y-plane and if we denote v by its modulus and its
angle θ
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(vx , vy, vz) = v(cos θ, sin θ, 0), and (v′
x , v′

y, v′
z) = v′(cos θ ′, sin θ ′, 0). (3.15)

then the transformation law of v, solved for cos θ ′ and v′ yields

cos θ ′ = v cos θ − u√
(u − v cos θ)2 + (1 − u2)v2 sin2 θ

, (3.16)

v′ =
√

(u − v cos θ)2 + (1 − u2)v2 sin2 θ

1 − u v cos θ
. (3.17)

3.2 Perception

If two mutually moving observers meet in some event, which we choose as origin
O , then their past lightcones coincide and each light ray seen by one observer is also
perceived by the other observer. Nevertheless they see something different. Color,
direction and luminosity of the light depend on the velocity of the observer relative
to the source.

The Doppler effect changes the frequency, i.e. the color, of the light and in addition
the number of photons received per second. Aberration changes the direction n, from
which the light ray is seen to come. The change of their directions changes also the
density of the light rays.

Hence, the moving observer sees a smoothly deformed version of the image of
the stationary observer with changed colors and brightness. Topologically, i.e. in
terms of the relative positions the two images coincide, since they are related by a
continuous invertible map. In particular, a moving observer cannot see things hidden
from an observer at rest in this instant at this position. However, at high speed the
moving observer’s field of vision in the direction of motion contains light rays which
for the stationary observer come from behind [12].

To be definite: let the observer O ′ move with velocity v relative to O in z-direction
and consider a light ray in the z–x-plane, which enters the eye of O at t = 0 with
an angle θ to the z-axis. In his coordinates the light traverses the worldline Γ :
t �→ l(t) = t (1,−e)e = (sin θ, 0, cos θ) (2.36).1 For O ′ the same light ray enters
with some angle θ ′ to the opposite of the direction into which he sees O move. O ′
attributes the worldline t ′ �→ t ′(1,−e′), e′ = (sin θ ′, 0, cos θ ′) = Λl(t) to the same
light ray.

The rotation-free Lorentz boost in z-direction leaves the x- and y-coordinates
invariant and stretches the difference t− = t − z by κ (2.10), t ′− = κt− (3.2).
Consequently for the observer O ′ the ratio ly/ l− = sin θ/(1 + cos θ) is diminished
by a factor κ .

1 The light pulse moves into the opposite of the direction e from which it is seen.

http://dx.doi.org/10.1007/978-3-642-28329-1_2
http://dx.doi.org/10.1007/978-3-642-28329-1_2
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Fig. 3.3 Circle with sin θ and
1 + cos θ

s
2 t /1 2

c1

Using the trigonometric identity (Fig. 3.3)

sin θ

1 + cos θ
= 2 cos θ

2 sin θ
2

2 cos2 θ
2

= tan
θ

2
(3.18)

the angle θ ′ of the incident light ray, seen by the observer O ′, is related by

tan
θ ′

2
=

√
1 − v

1 + v
tan

θ

2
. (3.19)

to the angle θ which O observes [29].
The change of the direction of the incident light ray is called aberration.
The tangent increases monotonously with the angle, therefore θ ′ is smaller than θ

for 0 < v < 1. Just as rain incident light comes more from the direction into which
an observer moves.

Yearly Aberration of the Light of Stars

The earth orbits the sun at a mean radius of r = 1.50·1011 m. The length 2πr , covered
within a year, as compared to a light year, 9.46·1015 m, is the velocity v = 1.00·10−4.
For such small velocities δθ = θ ′ − θ is small and (3.19) is approximately

tan
θ

2
+ δθ

1

2 cos2(θ/2)
≈ tan

θ ′

2
=

√
1 − v

1 + v
tan

θ

2
≈ (1 − v) tan

θ

2
, δθ ≈ −v sin θ.

(3.20)
A star which for a stationary observer lies in a direction θ = π

2 orthogonal to the

current direction of motion of the earth is seen from an observer on earth in a direction
shifted by |δθ | = 10−4, i.e. 20.5 arc seconds.2

During each year the direction of the velocity of the terrestrial observers changes.
Therefore, as discovered by James Bradley in 1728, we perceive distant stars in
directions which traverse in the course of the year ellipses with a major axis of 41

2 As meter per second (1.3), an arc second is just a number, 1′′ = 2π/(360 ·60 ·60) ≈ 4.848 ·10−6.

http://dx.doi.org/10.1007/978-3-642-28329-1_3
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arc seconds. Bradley’s observation of the aberration of stars was the first direct proof
of the Copernican System that the earth orbits the sun.

The Shape of Moving Spheres

Aberration, the change of directions eθ,ϕ of incident light rays to the directions eθ ′ϕ′
from which a moving observer sees the incoming light, is an invertible map of the
set of all directions, the two-dimensional sphere S2, to itself.

Moving observers do not see spheres length-contracted to pan cakes but again as
spheres [18, 29, 33, 36]. So aberration is a map of S2 to itself which maps circles,
the outline of spheres, to circles. This is concluded from the following arguments.
All directions e, e2 = 1 of incident light rays from the outline of a sphere constitute
a circular cone with some opening angle δ to the axis n, n2 = 1,

cos δ = e · n. (3.21)

The light ray which an observer at the origin sees from the direction e traverses the
worldline

Γ : t �→ l(t) = tk, k = (1,−e), k2 = 0. (3.22)

Its tangent vector, k, is lightlike and belongs to the circular cone (3.21) if and only if
k is orthogonal (in the sense of the scalar product (2.45)) to the spacelike four-vector

n = a(− cos δ, n), n2 < 0, (3.23)

k · n = a(− cos δ + e · n) = 0. (3.24)

Since Lorentz transformations preserve scalar products (2.51), the transformed vec-
tors n′ = Λn and the transformed tangent vectors k′ = Λk satisfy the equation
k′2 = 0, n′2 < 0 and k′ · n′ = 0. Because each spacelike vector is of the form (3.23),
the vector n′ = Λn defines an axis n′ and an opening angle δ′ of a circular cone
of light rays. For a moving observer the light rays transformed by aberration come
from directions which form a circular cone.

Infinitesimal cones with opening angle δ are scaled by a factor D which is obtained
by differentiation of θ ′(θ) (3.19)

D = d θ ′

d θ
= 1

κ

cos2(θ ′/2)

cos2(θ/2)
= 1

κ(1 + κ−2 tan2(θ/2)) cos2(θ/2)
=

√
1 − v2

1 + v cos θ
.

(3.25)
Because a small circle is magnified by a factor D, each of its diameters appear

enlarged by this factor irrespective of its direction. Moreover the scale factor D of
nearby objects is nearly the same.

Pictures, which are perceived by observers in relative motion at the same place
in the same instant, agree in the relative sizes of nearby, small objects. In particular,

http://dx.doi.org/10.1007/978-3-642-28329-1_2
http://dx.doi.org/10.1007/978-3-642-28329-1_2
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angles between intersecting lines are preserved by aberration because they are the
ratio of small circular arcs to small radii of circles: aberration is conformal.

That aberration is conformal also follows simply from the fact that by the argu-
ments before (3.18) it scales the stereographic projection

(x, y, z)|x2+y2+z2=1
�→ (u, v) =

(
x

1 − z
,

y

1 − z

)
(3.26)

of the sphere x2 + y2 + z2 = 1 of the directions e = (x, y, z) of incident light rays
by 1/κ (3.19). This dilation is a conformal map and also the projection (3.26) is
conformal, because on the unit sphere one has

1−z = 1

2

(
x2+y2+(z−1)2), u2+v2+1 = x2 + y2 + (z − 1)2

(1 − z)2 = 2

1 − z
. (3.27)

If therefore, (x, y, z) lie on a circle on S2 and satisfy nx x + ny y + nzz = cos δ, then
dividing this linear equation by (1 − z) one obtains

nx u + nyv + nz

1 − z
= nz + cos δ, (3.28)

and because of 2/(1 − z) = u2 + v2 + 1 this is a quadratic equation for u and v with
the same coefficient for u2 and v2, i.e. a circle in the u–v-plane.

Moving Ruler

Let us investigate, as illustrated in Fig. 3.4, the one-dimensional image of the edges
of a flat infinitesimal ruler in the x–y-plane with sides dx and dy parallel to the axes.
An observer at rest looking at the ruler under an angle θ = α + π/2 to the x-axis
from a distance a = A/ cos α perceives the radians dx cos α/a and dy sin α/a.

At the same time and at the same position an observer moving in x-direction with
velocity v sees the edges of a ruler flying past him where all pixels are shifted by
aberration as compared to the stationary observer and form an angle θ ′ = α′ + π/2
with the x-axis. Since aberration is conformal, the length ratio of the visible edges
of the ruler is the same for the moving observer and the stationary observer. Both
observers therefore see the projection of a ruler rotated by α perpendicular to the line
of sight. If one observes a moving ruler with an angle θ ′ to the x-axis and compares
it with a ruler at rest, it appears to be rotated by θ ′(v, θ) − θ .

Because aberration preserves the relative size of small, nearby objects, a moving
ruler does not appear contracted in any direction but is seen scaled by sin θ ′/ sin θ =
cos α′/ cos α (3.25). The moving observer therefore sees in the direction α′ the edges
of a ruler at the distance A/ cos α′. This is the distance a ruler at rest has on the x-axis
shifted by A, if it is seen under the angle α′. The visible size of the moving ruler
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Fig. 3.4 Moving ruler
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Fig. 3.5 Janus angle
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does not depend on its velocity but only on the retarded position which it had for the
observer when it emitted its light.

An object at rest is observed as it is and where it is, even if one perceives its light
later. A moving object is not seen where it is but where it was with the corresponding
size. Each aspect ratio of visible parts, however, is seen as it is perceived by a
co-moving observer at the same instant at the same place.

A concealed side of the ruler cannot be seen before the ruler has passed the
observer. For the stationary observer the right, short edge of the ruler is visible only
if it is behind him in x-direction. Then it is also behind the moving observer, for
if two mutually moving observers meet at some time and some position they agree
upon which events occur at this time behind or ahead of them in direction of the
relative motion. In particular, the events (t = 0, x = 0, y, z) which separate behind
and ahead are invariant under rotation-free Lorentz transformations in x-direction.

A light ray which is emitted with an angle θ with to the direction of motion v
of a particle reaches the observer in the same instant as the particle is on his side.
If seen under this angle a uniformly moving particle is next to the observer. At this
moment only the sides of the particle are visible; the co-moving observer, for whom
the particle is at rest, observes it under an angle of π

2 besides, above or below himself.
Because this angle separates what is behind and what is before the observer, we call it
Janus angle after the Roman god of doors and doorways, just as January lies between
the old year and the remainder of the new year.

cos θ = v (3.29)
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Luminosity

The images, which moving observers perceive, are not only deformed but also
changed in their luminosity and color. We denote with n(ω, θ, ϕ)dωdtdΩ the num-
ber of photons in the frequency interval dω which an observer perceives in the time
dt in the direction (θ, ϕ) in the solid angle segment dΩ = sin θdθdϕ. The observer
moving in direction θ = 0 perceives photons in the Doppler-shifted frequency inter-
val dω′ = D−1dω (2.30) in the solid angle segment dΩ ′ = D2dΩ modified by
aberration (3.25). The time interval dt ′ in which the moving observer at the same
position and the same moment in time sees the same number of photons is given
by dt ′ = Ddt . This one infers most easily from the fact that for a uniform photon
current the number of photons per time defines a frequency just as the number of
vibrations of the wave per time. Because both observers detect the same number of
photons,

n′ dω′ dt ′ dΩ ′ = n′ D2 dω dt dΩ = n dω dt dΩ (3.30)

and the moving observer sees the spectral photon current density

n′(ω′, θ ′, ϕ′) = (1 + v cos θ)2

1 − v2 n(ω, θ, ϕ). (3.31)

3.3 Energy and Momentum

A conserved quantity is a function φ(t, x, v) of the time t , the position x and the
velocity v which on the paths of physical particles retains its initial value,

φ(t, x(t),
dx
dt

(t)) = φ(0, x(0),
dx
dt

(0)). (3.32)

For example, in Newtonian physics the energy E and the momentum p of a free
particle with mass m

E = E0 + 1

2
mv 2, p = mv, (3.33)

are conserved due to the equation of motion

dp
dt

= 0,
dx
dt

= 1

m
p. (3.34)

The value of the energy for a particle at rest is irrelevant in Newtonian physics,
usually E0 is simply set to zero.

http://dx.doi.org/10.1007/978-3-642-28329-1_2
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The mass m is trivially conserved during the motion, because it is a constant
which depends neither on the position nor on the velocity. It is not conserved in
decays (3.53).

Transformation of Additive Conserved Quantities

Of course, for a free particle all functions of the velocity are conserved quantities
since the velocity is constant for free motion. The outstanding importance of energy
and momentum comes from the fact that they are additive conserved quantities, i.e.
the sums of the momenta and the energies of several particles are conserved quantities
even if the individual momenta and energies change through, say, elastic collisions.

If an observer detects conserved quantities φ, then there are conserved quantities
also for each other uniformly moving observer with coordinates x ′ = Λx +a (3.10),
and there is a transformation which allows to convert the conserved quantities of
both observers.

Additive conserved quantities have to transform linearly

(φ(1) + φ(2))
′ = φ′

(1) + φ′
(2), (cφ)′ = cφ′, (3.35)

because they are sums and multiples of parts for both observers. The transformation
therefore is similar to Lorentz transformations and of the form

φ′ = MΛ,aφ. (3.36)

The matrices MΛ,a are restricted by the fact that successive transformations can be
evaluated in steps or directly (3.11) also for the transformations of additive conserved
quantities,

φ′′ = MΛ2◦1, a2◦1φ = MΛ2, a2 MΛ1, a1φ, (3.37)

which has to hold for arbitrary values of φ. Therefore the product of matrices MΛ,a

has to give the matrix which corresponds to the successively applied transformations

MΛ2Λ1,a2+Λ2a1 = MΛ2, a2 MΛ1, a1 . (3.38)

Matrices Mg , which correspond to the elements g of a group G such that their
products Mg2 Mg1 = Mg2◦g1 correspond to the products g2◦g1 of the group elements,
constitute arepresentation of the group G. The question, which representations there
are for a given group, has been studied mathematically at length.
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Four-Momentum

In the simplest example four conserved quantities p = (p0, p1, p2, p3), which in
anticipation of the result of our investigation we shall call four-momentum, transform
according to

p′ = Λp. (3.39)

Under translations x ′ = x + a, i.e. Λ = 1, which shift time and position by
a = (a0, a1, a2, a3) the four-momentum is unchanged. Thus, it does not depend on
the position or the time but only on the velocity of the particle.

If a particle is slower than light, then there is a reference frame of a co-moving
observer for whom the particle is at rest. Since the velocity v = 0 is invariant under
rotations and since the four-momentum is a function of the velocity, rotations do not
change the four-momentum p of a particle at rest. Accordingly, in the rest frame of a
particle the spatial part p = (p1, p2, p3) of the four-momentum vanishes and it has
the form

prest = (m, 0, 0, 0). (3.40)

If we transform the four-momentum with (3.8) into the reference frame of an observer
for whom the particle moves with velocity v in x-direction

(
p0

p1

)
= 1√

1 − v2

(
1 v
v 1

)(
m
0

)
=

(
m√

1−v2
m v√
1−v2

)
, (3.41)

and if we rotate the motion into an arbitrary direction, we obtain

p0 = m√
1 − v 2

, p = m v√
1 − v 2

. (3.42)

We denote the components of the four-momentum with the same names as the quan-
tities in Newtonian physics with which they coincide in the limit of small velocities.
Up to higher powers of v one has

p0(v) = m + 1

2
mv 2 + . . ., p(v) = mv + . . . . (3.43)

Therefore (making factors c explicit for once) E = cp0 is the energy

E(v) = mc2√
1 − v2

c2

, (3.44)

p is the momentum and m is the mass of the particle. It is positive, and the energy is
bounded from below.
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For a particle moving with the speed of light, we choose (in units with c = 1)
a reference frame in which dx

ds points into x-direction. The tangential vector to the
world line of the particle then is of the form dx

ds = dt
ds (1, 1, 0, 0). It is invariant under

rotations about the x-axis and invariant under multiplication with

Λa = exp

⎛
⎜⎜⎝

0 0 −a 0
0 0 −a 0

−a a 0 0
0 0 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 + a2

2 − a2

2 −a
a2

2 1 − a2

2 −a
−a a 1

1

⎞
⎟⎟⎠ . (3.45)

These are Lorentz matrices because the column vectors have length squared ±1 and
are mutually orthogonal.3

The four-momentum of the particle, moving with the velocity of light, must also
be invariant under rotations around the x-axis and invariant under multiplication with
the matrix (3.45), since it is a function of dx

ds . Thus, the components p2 and p3 must
vanish and p0 = p1 has to hold. If the particle is moving in an arbitrary direction,
one has

p0 = |p|, E = |p|. (3.46)

Also for particles which move with the velocity of light the four-momentum is a
multiple of the tangent vector of the world line. For massive and for massless particles
the velocity v is the ratio

v = p
p0 = p√

m2 + p2
. (3.47)

The velocity is a function of the momentum and the momentum is conserved.
This is the statement that particles are inert. To change their velocity forces have to
transfer momentum.

The vacuum is the same for all observers and therefore has a four-momentum
which is invariant under all transformations p′ = Λp. Therefore its energy and its
momentum must vanish pvacuum = (0, 0, 0, 0). This also holds for the contribution
of the so-called quantum fluctuations to the energy which trouble some theoretical
physicists.

Mass

The mass is the length of the four-momentum of a free particle. No matter what its
velocity is, in units with c = 1 it satisfies

3 The matrices Λa arise from repeated infinitesimal transformation ω = dΛa/da)|a=0 where the
series Λa = exp aω = 1 + aω + a2ω2/2 consists of three terms only.
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p2 = (p0)2 − p 2 = m2, p0 =
√

m2 + p2 > 0. (3.48)

This is the equation for a sheet of a hyperboloid: the four-momenta of a free particle
lie on the mass-shell.

The relation (3.48) of energy and momentum also holds for particles which move
with the velocity of light, for instance for photons. They are massless. Their four-
momentum p is lightlike

p2 = (p0)2 − p2 = 0, p0 = |p| > 0. (3.49)

Photons with four-momentum p correspond to quanta of plane electromagnetic
waves (5.81) with four-wave-vector k = (ω = |k|, k). Here the momentum p = �k
is a multiple of the wave-vector, the factor � = 1.055 · 10−34 Js [28] is Planck’s
constant. The energy E = �ω = �|k| of the photons is a multiple of the frequency
ν = ω/(2π) of the electromagnetic wave. This relation is fundamental for Planck’s
derivation of the thermal radiation density and Einstein’s interpretation of the pho-
toelectric effect.

According to (3.44) particles at rest have the energy

Erest = mc2. (3.50)

This is probably the most famous equation in physics. It underlies the realization
that during the transmutation of atomic nuclei by fission or fusion energy can be
released, for the total mass of the nuclei is measurably different from the sum of the
individual masses. The mass difference is due to the binding energy which can be
used in war or peace, destructively or beneficially. Equation (3.44) also contains the
statement that it requires infinite energy to accelerate a massive particle to the speed
of light. Massive particles are always slower than light.

The mass m is independent of the velocity. In some presentations of the theory
of relativity the term “mass” is used for the product γ m with the velocity dependent
factor γ = 1/

√
1 − v2. This is a waste of a denomination, because for E = γ mc2 we

already have a name: energy. These days one denotes with mass the quantity which
in old and outdated presentations goes by the long-winded “rest mass”.

Moreover, if one denotes γ m “mass” it is tempting to insert this into formulas
of Newtonian physics, which emerge in the limit of low velocities from relativistic
physics, expecting to obtain equations, which are valid for all velocities. Even if this
is true in one case for the momentum p = γ mv one nearly always obtains nonsense:
the kinetic energy is neither γ mv2/2 nor p2/(2γ m).

A particle does not become heavier with increasing speed: weight depends on the
acceleration as compared to free fall. A fast moving particle does not generate the
gravity of a mass, magnified by a factor γ . It does not become a black hole by rapid
motion. If it required only a factor γ , then Einstein would have needed ten minutes
rather than ten years to include gravity into his relativistic formulation of mechanics
and electrodynamics.

http://dx.doi.org/10.1007/978-3-642-28329-1_5
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Force is not mass times acceleration. The equations of motion of a relativistic
charged particle state, as we will show in Sect. 5.2, that the total momentum of the
particle and the fields remains conserved,

F = dp
dt

. (3.51)

The force F is the momentum per time dp/dt transferred from the electromagnetic
fields to the particle.

The particle is generally not accelerated into the direction of the force

dv
dt

=
∑

i

∂v
∂pi

d pi

dt
3.47= F√

m2 + p2
− (p · F)p√

m2 + p23 = 1√
m2 + p2

(F − (v · F)v).

(3.52)

Inertia of fast particles depends on the direction of the velocity v. A transverse
force causes an acceleration dv⊥/dt = √

1 − v2F⊥/m; parallel to the velocity,
the particle is more inert by a factor 1/(1 − v2). Also massless particles are inert,
dv⊥/dt = F⊥/|p|, in their direction of motion even infinitely inert, dv‖/dt = 0.

If one defined force to denote mass times acceleration, it would not satisfy “actio
et reactio” because momentum, not mass times velocity, is conserved.

If macroscopic bodies move and interact with each other, then effects from the
finite speed of sound become large long before relativistic effects are measurable.
At high relative velocities the binding of the constituents of macroscopic bodies
becomes negligible, they do not behave as rigid bodies but nearly as a gas of free
particles which collide, restricted by energy and momentum conservation, and which
interact with fields like the electromagnetic or the gravitational field.

Decay into Two Particles

If a particle at rest with mass m decays into two particles with masses m1 and m2,
then the energies of the decay products are fixed by the masses involved. Due to
momentum conservation the momentum p of the first decay product is the opposite
of the momentum of the second particle. The energies of the two decay products are

E1 =
√

m2
1 + p2 and E2 =

√
m2

2 + p2, since energy and momentum lie on the mass
shell (3.48). Energy conservation implies that the sum of these energies coincides
with the energy m of the decaying particle at rest

m =
√

m2
1 + p2 +

√
m2

2 + p2 > m1 + m2. (3.53)

http://dx.doi.org/10.1007/978-3-642-28329-1_5
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In particular, the mass m of the decaying particle is not conserved. It is greater than
the sum of the masses of the decay products. This is the same geometric fact as with
the twin paradox that the sum p1 + p2 of two timelike four-vectors is longer than
the sum of the individual lengths of p1 and p2.

Repeatedly taking the square and reordering terms one solves for p and E1

p2 = 1

4m2 (m4 + m4
1 + m4

2 − 2m2m2
1 − 2m2m2

2 − 2m2
1m2

2), (3.54)

E1 = 1

2m
(m2 − m2

2 + m2
1). (3.55)

If tachyons existed with a spacelike four-momentum p, p2 = −m2, then the
modulus of its momentum, |p| = √

m2 + E2, not its energy E , would be bounded
from below. If they interacted electromagnetically they could emit photons with
arbitrary large energy, because the tachyon mass shell is a doubly-ruled surface [35]
and the four-momentum of the tachyon after the emission of the photon with four-
momentum k, k2 = 0, is again on-shell, (p − k)2 = −m2, if p · k = 0, i.e. (3.24) if
the photon is emitted with an angle cos θ = p0/|p| to the momentum of the tachyon.

Compton Scattering

On elastic scattering of two particles, i.e. for a scattering process where the number
of particles and their masses remain unchanged, the conservation of energy and
momentum fixes the energies after the collision as a function of the scattering angle
θ and the initial energies.

Let us consider, for example, an incident photon with energy E which is scattered
elastically from an electron initially at rest. This process is called Compton scattering.

Let p and q be the four-momenta of the photon and the electron before and p′
and q ′ after the scattering. Four-momentum conservation implies

p + q = p′ + q ′, (3.56)

or in more detail, if we choose the x-axis in the initial direction of motion of the
photon and the y-axis such that the photon, scattered by an angle θ , finally moves in
the x-y-plane,

⎛
⎜⎜⎝

E
E
0
0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

m
0
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

E ′
E ′ cos θ

E ′ sin θ

0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

m + E − E ′
E − E ′ cos θ

−E ′ sin θ

0

⎞
⎟⎟⎠ . (3.57)

Here we have already taken into account that the scattered photon with energy E ′ is
massless and satisfies p′2 = 0. That also the electron is on its mass shell after the
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collision, q ′2 = m2, relates the scattering angle and the energies

(m + E − E ′)2 − (E − E ′ cos θ)2 − (E ′ sin θ)2 = m2. (3.58)

The squares of E , E ′ and m cancel. With the conventional factors c one obtains

mc2

E ′ = mc2

E
+ 1 − cos θ. (3.59)

The energy of the outgoing photon therefore is fixed by the scattering angle.
The energy is smaller than the energy of the incoming photon. This contradicts the
notion of an incoming electromagnetic wave corresponding to the photon of energy
E = �ω which accelerates the charged electron, which then itself emits a wave with
the scattered photons. In such a process the frequency of the emitted wave would
coincide with the original frequency. Equation (3.59) on the other hand follows from
the assumption that electrons are particles and that electromagnetic waves consist of
particles, namely photons.

However, this is not a proof of the particle property of electromagnetic waves.
One may also obtain (3.59) if one—which we did not do—treats the electron as well
as the photon as a wave. That waves behave like particles and that particles have
properties of waves belongs to the basic facts of quantum physics.



Chapter 4
Relativistic Particles

Abstract The time evolution of particles and fields is characterized by a correspond-
ing functional, the action. It is stationary for the real evolution as compared to other
imaginable evolutions. This principle of the stationary action allows to understand
the conservation of energy, momentum and angular momentum as consequences of
symmetries, because to each infinitesimal symmetry of the action there corresponds
a conserved quantity and, vice versa, to each conserved quantity there corresponds
an infinitesimal symmetry of the action. Physical and geometrical properties, con-
servation laws and symmetries, are intimately related by this Noether theorem.

4.1 Clocks on Worldlines

In the course of time a clock traverses its worldline f , parameterized by some para-
meter s from some real interval I ,

f :
{

I ⊂ R → R
4

s �→ x = f (s)
(4.1)

and shows in each event f (s) = ( f 0(s), f 1(s), f 2(s), f 3(s)) the time τ(s) which
goes by on the clock. The coordinate time f 0 is assumed to increase monotonically.
Then the events on the worldline are traversed precisely once and causally ordered.

On a straight worldline the time on the clock increases by (2.43)

Δτ = ds

√(
d f 0

ds

)2

−
(

d f 1

ds

)2

−
(

d f 2

ds

)2

−
(

d f 3

ds

)2

= ds

√
d f

ds
· d f

ds
(4.2)

between adjacent events with difference vector ds( d f 0

ds ,
d f 1

ds ,
d f 2

ds ,
d f 3

ds ) . The root is
real, because events on worldlines of clocks are mutually timelike and the tangent
vector d f

ds has positive length squared.
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If the worldline f is not straight but accelerated, it is approximated by an increas-
ingly finer sequence of small straight segments. An ideal clock measures and adds
the times which pass on these segments.

Time: An ideal clock records the time

τ [ f ] =
∫
f

Δτ =
s∫

s

ds

√(
d f 0

ds

)2

−
(

d f 1

ds

)2

−
(

d f 2

ds

)2

−
(

d f 3

ds

)2

(4.3)

between the events A = f (s) and B = f (s) on its worldline f .
In contrast to Newtonian physics the time on the clock is not a function of the

events A and B, and Δτ is not the derivative dτ of a function τ , which is defined in
spacetime. The time on the clock does not pertain to the events A and B alone but is
the path length of the worldline f from A to B.

Time is additive. If C is an event on the worldline f in between A and B and if f1
and f2 denote the parts of the worldline to and from C , then in a suggestive notation
f = f1 + f2 and ∫

f1+ f2

Δτ =
∫
f1

Δτ +
∫
f2

Δτ. (4.4)

The time τ [ f ] is independent of the parameterization of the worldline.
This holds because each other parameterization f ′ : s′ �→ f ′(s′) of the worldline

with monotonically increasing coordinate time f ′0 is given by f ′(s′) = f (s(s′))
with monotonically increasing s(s′), therefore ds

ds′ =
√( ds

ds′
)2

. By the chain rule one

has d f
ds′ = ds

ds′
d f
ds , and with the integral substitution theorem the assertion follows,

s′∫
s′

ds′
√

d f ′
ds′ · d f ′

ds′ =
s′∫

s′
ds′ ds

ds′

√
d f

ds
· d f

ds
=

s∫
s

ds

√
d f

ds
· d f

ds
. (4.5)

If one parameterizes the worldline with the coordinate time, f 0(s) = s, then the
worldline is given by f : t → (t, f 1(t), f 2(t), f 3(t)) and the tangent vector has

the components d f
dt = (1,

d f 1

dt ,
d f 2

dt ,
d f 3

dt ) = (1, vx , vy, vz) and the length squared
1 − v2. So the clock registers the time

τ [ f ] =
t∫

t

dt
√

1 − v2(t). (4.6)

If one chooses the parameter s along the worldline such that the tangent vector
has unit length

( d f
ds

)2 = 1 everywhere, then s coincides up to a constant with τ , the
proper time which passes on the clock. Conversely, the tangent vector has unit length
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everywhere if the worldline is parameterized with its proper time,

(
d f

ds

)2

= 1 ⇔ τ [ f ] = s − s . (4.7)

On straight worldlines τ 2 coincides with the length squared (2.46) of the difference
vector wB A (2.52) from A to B.

The proper time τ [ f ] is independent of the acceleration in the sense that the
integrand Δτ (4.2) does not depend on the second derivatives d2 f /d s2. Yet, the
time τ [ f ] depends on the worldline f and has different values for straight and for
curved worldlines from A to B, even though the clock is independent of acceleration.

By definition an ideal clock records the path length of the worldline irrespective
of its acceleration. Whether a real clock is ideal has to be checked by measurement.

Many real clocks deviate considerably from ideal clocks. Sun dials display the
angle of an earthbound axis to the sun. Pendulum clocks and hour glasses measure the
acceleration. Paradoxically, an hour glass runs if one keeps hold of it and stops if one
let it loose and drops it, even before it hits the ground. Each pendulum circulates with
constant angular velocity if one drops the pendulum clock. Quartz clocks change their
frequency if the accelerating forces deform the quartz crystal. In quantum mechanical
systems the modification of the Hamiltonian, which causes the acceleration, normally
also changes the energy levels with which the clock operates. If, for example, atoms
are stored in a magnetic field it detunes the transition frequencies.

Clocks can be realized by completely different physical processes, for instance by
comparison with the rotation of the earth or by electromagnetic transitions in atoms.
After the exclusion of obviously unsuitable clocks, e.g. moving sun dials, and after
correction of the known imperfections of real clocks, in particular after gravitational
corrections, (4.3) agrees without exception with all observations. Among others, it
underlies the everyday operation of the global positioning system [27, 30].

To check our understanding of elementary particles physicists [3] keep muons in
a cyclotron on a circular path and compare the observed rotation of the muon spin
in the magnetic field to the theoretical predictions with a precision of nine decimals.
All observations are compatible with the simple assumption that the inner clock of
the muons, which controls their decay, records the time (4.3) independently of the
acceleration. There was no deviation from (4.3) within the measurement precision of
1 %, even though for high energy muons the acceleration in the cyclotron, a, amounts
to roughly 4 · 1016 times the acceleration by the gravity of earth. However, in terms
of the muon mass mμc2 = 105 MeV [28], Planck’s constant � = 1,05 · 10−34 Js and
the speed of light c, the acceleration is still small, a �/(mμc3) ≈ 10−13. This number
is the change of the velocity of the muon in the cyclotron relative to the speed of
light during one oscillation of its wave function.

http://dx.doi.org/10.1007/978-3-642-28329-1_2
http://dx.doi.org/10.1007/978-3-642-28329-1_2
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4.2 Free Particles

On straight worldlines, the worldlines of free particles, more times passes between
each pair of events A and B than on each other worldline from A to B.

To show this one considers a worldline s �→ f (s) and evaluates the time τ for
neighboring curves s �→ f (s) + δ f (s) which also pass through A and B, δ f (s) = 0
and δ f (s) = 0. Then τ changes to first order in δ f by

δτ =
s∫

s

ds

(√
d( f + δ f )

ds
· d( f + δ f )

ds
−

√
d f

ds
· d f

ds

)

=
s∫

s

ds
d δ f

ds
· d f

ds

(√
d f

ds
· d f

ds

)−1

(4.8)

and after integration by parts one obtains

δτ = −
s∫

s

ds δ f · d

ds

⎛
⎝d f

ds

(√
d f

ds
· d f

ds

)−1
⎞
⎠ . (4.9)

No boundary terms occur on integrating by parts, since δ f (s) = 0 and δ f (s) = 0.
For a worldline f of extremal length of time, δτ vanishes for all variations δ f

which vanish at the boundary. So the map f satisfies the differential equation

d

ds

d f
ds√

d f
ds · d f

ds

= 0, (4.10)

which states that the direction of the tangent is constant. The length of the tangent
vector d f

ds cannot be fixed by the condition of stationary time, since the time τ , as
shown in (4.5), does not depend on the parameterization of the worldline.

That (4.10) is not only sufficient but also necessary for the time to be stationary
shows the following consideration. If in the integral (4.9) one component, say the
zero component, of the vector which multiplies δ f is greater than zero at some value
of the parameter, then it is positive in a whole neighborhood, because by assumption
it is continuous. If then one chooses the corresponding δ f 0 such that it is positive
inside this neighborhood and vanishes outside, then δτ is negative and the time τ is
not stationary.

If one chooses the parameterization such that the tangent vector has unit length
(4.7), then the parameter s coincides up to a constant with the time τ on the worldline
and (4.10) states that the tangent vector does not change along the path
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d2 f

ds2 = 0. (4.11)

If moreover, we choose the constant by f 0(0) = 0, then the worldline f of extremal
time is the straight worldline (2.40) of a free particle

ffree : s �→ s√
1 − v2

(
1
v

)
+

(
0
x(0)

)
. (4.12)

The initial position x(0) and the initial velocity v are chosen by the initial conditions.
On the straight worldline from A to B the time τ is not only extremal but longer

than on each curved worldline, as our discussion of the twin paradox has shown.
Time between two events is maximal on the straight worldline which connects them.

4.3 Action Principle

Lift, Jet Functions and Their Change

Each smooth, parameterized curve f (a map of some parameter interval I ⊂ R to
R

d , where the dimension d is called the number of degrees of freedom) naturally
defines its lift of order k

f̂ : t �→ f̂ (t) =
(

t, f (t),
d f

dt
(t),

d2 f

dt2 (t) . . .
dk f

dtk
(t)

)
(4.13)

to a curve in the jet space Jk = I × R
d × R

d × R
d · · · × R

d = I × R
d(k+1).

Traditionally the coordinates of points of J1 carry names like (t, x, v) for the time t ,
the position x and the velocity v. Correspondingly and in a more systematic notation,
which indicates the order of differentiation, a point in Jk is given by coordinates
(t, x, x(1), x(2) . . . x(k)).

Jet space (or a subdomain of it) is the domain of definition of conserved quantities,
for example the energy E(t, x, v) = m/

√
1 − v2 (3.44) of a free particle with mass

m is a function of the domain |v| < 1 of J1. Composed with the lift of a curve f
one obtains the energy on the curve in the course of time, t �→ (E ◦ f̂ )(t). On the
straight worldline of a free particle E ◦ f̂free is constant. Nevertheless, the energy E is
not a constant, but a jet function which varies with the velocity. The same applies to
each other conserved quantity (3.32). Conserved quantities are jet functions φ, which
become constant if composed with the lift of a physical path, d/dt (φ ◦ f̂physical) = 0.

Though constant jet functions are trivial conserved quantities, one should not
exclude them by definition from the conserved quantities because one wants them to
constitute a vector space.

http://dx.doi.org/10.1007/978-3-642-28329-1_2
http://dx.doi.org/10.1007/978-3-642-28329-1_3
http://dx.doi.org/10.1007/978-3-642-28329-1_3
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The derivative dt of jet functions φ with respect to the parameter time t is defined as
the usual partial derivative with respect to t and “formally” on the other jet variables,
i.e. dt differentiates each variable x(k) and replaces it by the variable x(k+1). Explicitly,
at (t, x, x(1), . . . x(k+1)) ∈ Jk+1 the derivative dt of a function φ of Jk is given by

dtφ =
(
∂t + xm

(1)∂xm + xm
(2)∂xm

(1)
· · · + xm

(k+1)∂xm
(k)

+ . . .
)
φ. (4.14)

The index m enumerates the components and runs from 1 to d, the number of the
degrees of freedom. We employ Einstein’s summation convention. An index pair,
such as m in the above equation, designates a sum over the range of its possible
values, i.e. the summation sign

∑d
m=1 is not written but self understood.

The derivative dt of jet functions is defined such that upon composition with the
lift it yields the time derivative of the composed function

(dtφ) ◦ f̂ = d

dt
(φ ◦ f̂ ), (4.15)

which, more explicitly, is the chain rule of differentiation,

(
∂t + d f m

dt

∂

∂xm
+ d2 f m

dt2

∂

∂xm
(1)

+ · · · + dk+1 f m

dtk+1

∂

∂xm
(k)

)
φ|(

t, f (t), d f
dt (t),... dk f

dtk
(t)

)

= d

dt
φ

(
t, f (t),

d f

dt
(t), . . .

dk f

dtk
(t)

)
. (4.16)

A curve in the space of functions is a map λ �→ fλ of a parameter λ, which ranges
in some interval, to functions fλ. Jet functions φ become functions of the parameter
λ when they are evaluated on this curve, i.e. when they are composed with the lift
f̂λ. According to the chain rule and because partial derivatives can be exchanged, jet
functions change on the curve by

∂

∂λ

(
(φ ◦ f̂λ

)
(t) = ∂

∂λ

(
φ(t, f (t, λ),

∂ f

∂t
(t, λ), . . .

(
∂

∂t

)k

f (t, λ))

)

=
[(

∂

∂λ
f m

)
∂φ

∂xm
+ ∂

∂t

(
∂

∂λ
f m

)
∂φ

∂vm
+ · · ·

(
∂

∂t

)k (
∂

∂λ
f m

)
∂φ

∂xm
(k)

]
◦ f̂λ (t).

(4.17)

With the notation δx = ∂
∂λ

fλ we can express the change of φ as the differential
operator

δ = (
δxm) ∂

∂xm
+ (

dtδxm) ∂

∂vm
+ · · · + (

(dt )
kδxm) ∂

∂xm
(k)

+ · · · (4.18)
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which acts on the jet function φ and which subsequently is evaluated on the curve f̂ ,

(δφ) ◦ f̂λ = ∂

∂λ
(φ ◦ f̂λ). (4.19)

We call δφ the variation or change of φ. The operator δ commutes with dt and
therefore is determined by δx , its action on the jet variable x . It depends on the curve
fλ. If there is a curve through each point f in the space of functions such that for all
f the corresponding change is a function δx of some jet space Jk , then we call δx
and δ local (not to be confused with gauged).

Local Functionals and Euler Derivative

Functionals are maps of functions into the real numbers. For example, the proper time
τ [ f ] (4.6) shown by an ideal clock in an event B is a functional of the parameterized
curve f : t �→ ( f 1(t), f 2(t), f 3(t)) which the clocks traverses in the course of the
parameter time until it reaches B.

A local functional S employs its Lagrangian L , a smooth real function of some
domain D ⊂ Jk of a jet space (we restrict our considerations mainly to k = 1)

L :
{

D ⊂ J1 → R

(t, x, v) �→ L (t, x, v)
, (4.20)

to map curves f (with f̂ taking values in D) to real numbers S[ f ] via

S[ f ] =
∫

dt
(
L ◦ f̂

)
(t) =

∫
dt L

(
t, f (t),

d f

dt
(t)

)
. (4.21)

The functional S is called local because it is an integral over the range of parameters
t where the integrand at parameter time t depends only on t , the value of f at this
time and the value of a finite number if its derivatives, but not on the value of f at
some other parameter time t ′ nor on a Taylor series of f which in J∞ represents
analytic f at neighboring times t ′ �= t .

For example, the proper time τ (4.6) is a local functional with Lagrangian
L (t, x, v) = √

1 − v2. The ideal clock is insensitive to acceleration in the sense
that its Lagrangian is a function of the domain |v| < 1 of the jet space J1 and does
not depend on second or higher derivatives x(k) with k > 1 .

To investigate a functional S in the neighborhood of some f , we consider it on
curves through f , i.e. on one parameter families of curves with fλ with f0 = f .
We denote by δ f = ∂ fλ/∂λ|λ=0 the tangent of the curve. The functional S is dif-
ferentiable at f , if for all smooth δ f , which vanish on the boundary, the derivative
dS[ fλ]/dλ|λ=0 =: δS[ f, δ f ] exists and is of the form
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δS[ f, δ f ] =
∫

dt δ f m(t)
δS

δ f m(t)
(4.22)

where δS
δ f , the functional derivative of S at f , is continuous.

The functional derivative δS
δ f is unique: if for continuous h and g and all

smooth δ f ∫
dt δ f m(t) hm(t) =

∫
dt δ f m(t) gm(t) (4.23)

then h = g. Otherwise, if the difference h1(t) − g1(t) were positive at some time t
it would be positive in a whole neighborhood of this time. Then one could choose a
δ f 1 which is positive within the neighborhood and vanishes outside and δ f m = 0 for
m �= 1. Then

∫
dt δ f m(t) (hm(t) − gm(t)) would be positive and contradict (4.23).

To determine the functional derivative of a local functional (4.21), we differentiate
S[ fλ] with respect to λ at λ = 0

d

dλ
S[ fλ]|λ=0 =

∫
dt

∂

∂λ |λ=0

(
L ◦ f̂λ

)
(t)

4.19=
∫

dt
(
δL ◦ f̂

)
(t) (4.24)

where the change of the Lagrangian, assuming it is a function of J1, is

δL = δ f m ∂L

∂xm
+ (

dtδ f m) ∂L

∂vm
. (4.25)

In the last term we shift the derivative away from δ f at the cost of a complete time
derivative (

dtδ f m) ∂L

∂vm
= −δ f m

(
dt

∂L

∂vm

)
+ dt

(
δ f m ∂L

∂vm

)
(4.26)

and obtain

δL = δ f m
(

∂L

∂xm
− dt

∂L

∂vm

)
+ dt

(
δ f m ∂L

∂vm

)
. (4.27)

The integral over the complete time derivative contributes only boundary terms
to the change of the action

∫
dt dt

(
δ f m ∂L

∂vm

)
◦ f̂

4.15=
∫

dt
d

dt

(
δ f m ∂L

∂vm
◦ f̂

)
=

∣∣∣∣t

t
δ f m ∂L

∂vm
◦ f̂ (4.28)

and vanishes if all functions fλ have the same initial and final values as f , since then
the variation δ f vanishes at the boundary.

The jet function
∂̂L

∂̂xm
:= ∂L

∂xm
− dt

∂L

∂vm
(4.29)
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is the Euler derivative of L in the case that L is a function of D ⊂ J1. The
Euler derivative of Lagrangians which depend on higher derivatives x(r) are derived
analogously from δL by shifting all derivatives away from δx(r) = (dt )

rδx ,

∂̂L

∂̂xm
:= ∂L

∂xm
+

∑
r

(−1)r (dt )
r ∂L

∂xm
(r)

. (4.30)

So the functional derivative at f of a local action (4.21) with Lagrangian L with
respect to variations which vanish on the boundary is the Euler derivative of the
Lagrangian, composed with the lift of f ,

δS

δ f m
= ∂̂L

∂̂xm
◦ f̂ . (4.31)

The Principle of Stationary Action

The equations, which determine the time evolution of elementary physical systems,1

state that a corresponding local functional, the action of the system, is stationary at
the physical paths. From its initial position the system traverses in the course of time
that curve to the final position which makes the action stationary in comparison to
all other conceivable curves from the same initial position to the same final position.

For example, a free particle with mass m traverses straight worldlines and therefore
worldlines which extremize the action (4.21) with Lagrangian2

Lfree(t, x, v) = −m
√

1 − v2. (4.32)

The action S is stationary at f , if its variational derivative vanishes at f . So the
Euler derivative (4.29) of the Lagrangian vanishes on the physical path fphysical

∂̂L

∂̂xm
◦ f̂physical = 0. (4.33)

These are the Euler-Lagrange equations which single out the physical paths fphysical
from all other conceivable paths from the same initial to the same final position.

The Euler-Lagrange equations of the free relativistic particle state, that its
momentum (3.42) is constant,

1 These are systems with no friction and with only such constraints on the jet variables x(r), which
follow as time derivatives of constraints on the positions.
2 We choose the sign and the normalization of the Lagrangian of the free relativistic particle such
that to first order in v2 it agrees with the Newtonian Lagrangian LNewton = Ekin = 1

2 m v2 up to an
irrelevant constant. Then the conserved quantities of the relativistic and the nonrelativistic particles
coincide in leading order.

http://dx.doi.org/10.1007/978-3-642-28329-1_3
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− d

dt

m v√
1 − v2

= 0 , v = dfphysical

dt
. (4.34)

Consequently its worldline is straight.
In Newtonian mechanics, the Lagrangian is the difference

L (t, x, v) = Ekin − Epot (4.35)

of kinetic and potential energy. In particular, the Lagrangian of the harmonic oscil-
lator, a particle with mass m on a spring with constant κ , is

L oscillator(t, x, v) = 1

2
m v2 − 1

2
κx2. (4.36)

Its Euler derivative is − m x(2) − κ x . The Euler-Lagrange equation −m f̈ − κ f = 0
has the solution f : t �→ a cos(ωt +ϕ), where ω = √

κ/m is 2π times the frequency.
The amplitude a and the phase ϕ are chosen by the initial conditions.

The Euler-Lagrange equations (4.33) hold in all coordinate systems, for the princi-
ple of stationary action does not make use of the choice of coordinates which describe
the path. If we view the coordinates x as functions x(t, y) of other coordinates y and
if we convert the Lagrangian

L̃ (t, y, w) = L

(
t, x(t, y),

∂x

∂t
+ ∂x

∂y
w

)
, (4.37)

the Euler-Lagrange equations hold in y-coordinates if and only if they are satisfied
in x-coordinates

∂̂L̃

∂̂ ym
= ∂xn

∂ym

∂̂L

∂̂xn
. (4.38)

This follows from (4.22), δx = ∂x
∂y δy and (4.31).

A function L of the jet variables is a time derivative if and only if its Euler
derivative vanishes as a function of the jet variables. It is simple to verify that the
Euler derivative vanishes if L = dt K = ∂t K + vm ∂

∂xm K is a time derivative. To
show the converse, we write the Lagrangian as an integral over its derivative

L (t, x, v) = L (t, 0, 0) +
1∫

0

dλ
∂

∂λ
L (t, λx, λv). (4.39)

The derivative of the Lagrangian with respect to λ is (4.27)

∂L

∂λ
(t, λx, λv) = xm ∂̂L

∂̂xm

∣∣∣∣∣
(t,λx,λv)

+ dt

(
xm ∂L

∂vm

∣∣∣∣
(t,λx,λv)

)
. (4.40)
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Therefore the Lagrangian can be written as

L (t, x, v) = xm

1∫
0

dλ
∂̂L

∂̂xm

∣∣∣∣∣
(t,λx,λv)

+ dt

⎛
⎝xm

1∫
0

dλ
∂L

∂vm
+

t∫
dt ′L (t ′, 0, 0)

⎞
⎠ .

(4.41)
This is a total time derivative if the Euler derivative of the Lagrangian vanishes
identically in the jet variables for all (t, λx, λv).

4.4 Symmetries and Conserved Quantities

Transformation of Functions

A group is a set G with an associative product

G × G → G
a b �→ a b

, a (b c) = (a b)c, (4.42)

a unit element e, which leaves all group elements a unchanged,

e a = a e = a, (4.43)

where each element has an inverse,

a−1 a = a a−1 = e. (4.44)

For instance, the nth roots of 1 constitute a group, the cyclic group with n elements,

Zn = {1, z, z2 . . . zn−1}, z = e
2 π i

n . (4.45)

Also the invertible maps of each set M to itself, the transformations T : M → M ,
constitute a group with successive application as group product.

If a subset H of a group G contains each product and each inverse of its elements,
then H is a group itself, a subgroup of G. For example, the linear transformations L
of a d-dimensional complex vector space V form the general linear group GL(d, C).
The determinants of volume preserving transformations L have the special value
det L = 1. Volume preserving linear transformations are called unimodular and
constitute the subgroup SL(d, C) of special linear transformations. If the vector
spaces are real, the corresponding transformation groups are called GL(d, R) and
SL(d, R).

Some of the transformations of M may leave some subset or some property
invariant. Then they are called symmetries of the subset or symmetries of the property,
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e.g. the linear transformations of a vector space are the symmetries of the set of
straight lines. The set of symmetries (of some considered mathematical structure)
is a subgroup of the group of transformations, e.g. rotations form the subgroup of
linear transformations of a Euclidean space, which leave length invariant.

The same transformation may act on different objects, e.g. a rotation may rotate a
point, a rigid body or a force. Then one has to distinguish between the transformations
of the different objects and one has also to identify them in some sense. This is
achieved by the concept of a realization of a group. A realisation of a group G is a
map N which maps the group elements g ∈ G to the transformations Ng of some
manifold N , such that the unit element corresponds to the identity and successive
transformations yield the transformation corresponding to the group product,

Ng2 ◦ Ng1 = Ng2 g1 . (4.46)

If Mg is another realization of G, then Ng and Mg are in a loose sense the same
transformations but strictly speaking they are different realizations of the same group.

The realization of a group by linear transformations is called a representation.
If a group is realized on M by Mg and on N by Ng , then it is also realized

on the cartesian product M × N , the set of pairs (x, y), x ∈ M , y ∈ N , by
Mg × Ng : (x, y) �→ (Mgx, Ng y).

Each map f : M → N is a subset3 of the cartesian product, f ⊂ M × N ,
with the property that for each x ∈ M it contains precisely one pair (x, y). This pair
defines f (x) by y = f (x). In other words, f is a section of the product which cuts
each fiber {x} × N once.

The same function is also the set of pairs (M−1
g x, f (M−1

g x)), as Mg is invertible.
These pairs are mapped by Mg × Ng to the pairs (x, Ng f (M−1

g x). So the realization
of a group G as transformation group on a manifold M and a manifold N maps
the space F of functions f from M to N to itself by the transformation, which is
adjoint to Ng and Mg

adg( f ) = Ng ◦ f ◦ M−1
g . (4.47)

If Ng is the identity for all g, then the functions f are called scalar fields.
The adjoint transformations adg are a realization of the group G on the space F

of functions from M to N . They consist of a left multiplication by a realization
Ng , which satisfies (4.46), together with a right multiplication with the inverse of a
realization Mg . This is also a realization, M−1

g1
◦ M−1

g2
= (Mg2 ◦ Mg1)

−1 = M−1
g2 g1

.
There are also other realizations of G on function spaces F . If G acts on M and

a subgroup H ⊂ G leaves a point x ∈ M invariant, then M consists at least of the
points x ∈ G/H which are obtained by some transformation π(x) ∈ G applied to x .
(Locally there exist bijective maps π : U ⊂ G/H → π(U ) ⊂ G.) If H is realized
by transformations Nh of N , then this induces indg , the induced realization of G
on the maps f from M = G/H to N , by (indg f )(gx) = Nh(g,x) ◦ f (x) where

3 To call this set the graph of the function f spoils the opportunity to define what the function f is.
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h(g, x) ∈ H is defined by h(g, x) = π(gx)−1 gπ(x) and satisfies h(g2 g1, x) =
h(g2, g1x)h(g1, x).

Infinitesimal Symmetries

In mechanics we deal with curves f : t �→ x = f (t) and continuous transformations
such as translations by a multiple of a vector c

Tα f = f + αc (4.48)

or a temporal translation by (minus) some time α

(Tα f )(t) = f (t + α) (4.49)

or a rotation by an angle α

Tα

(
f 1

f 2

)
=

(
cos α − sin α

sin α cos α

)(
f 1

f 2

)
. (4.50)

In these examples of continuous transformations the transformation parameter α

parameterizes a curve in a group. It is chosen such that for α = 0 the curve passes
the unit element, T0 f = f . The tangent vector to the curve Tα f at the unit element
is called δ f , the infinitesimal transformation of f ,

δ f = ∂α |α=0 Tα f. (4.51)

We have δ f = c for spatial translations, δ f = d f
dt for temporal translations and

δ( f 1, f 2) = (− f 2, f 1) for rotations. In these examples the change of all curves f
under an infinitesimal transformation is local (compare page 62), i.e. a jet function
δx evaluated on the lift of the curve, δ f = δx ◦ f̂ .

The corresponding change of the Lagrangian of a local action is (assuming it is a
function of J1 because otherwise the energy cannot be bounded from below)

δL = δxm ∂L

∂xm
+ (dtδxm)

∂L

∂vm
4.27= δxm ∂̂L

∂̂xm
+ dt

(
δxm ∂L

∂vm

)
. (4.52)

If the corresponding action (4.21) changes by boundary terms only, i.e. if δL is the
derivative of some jet function K ,

δL + dt K = 0, (4.53)

then we call δ or δx an infinitesimal symmetry of the action.
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From the definition of an infinitesimal symmetry of the action (4.53), and from
(4.52) one concludes

δxm ∂̂L

∂̂xm
+ dtQ = 0 , (4.54)

Q = K + δxm ∂L

∂vm
. (4.55)

Equation (4.54) subsumes the

Noether Theorem: To each infinitesimal symmetry of the action there corresponds
a conserved quantity. Vice versa, to each conserved quantity there corresponds an
infinitesimal symmetry of the action [24].

The theorem holds, because the physical paths satisfy the equations of motion
∂̂L
∂̂xm ◦ f̂physical = 0 (4.33). Consequently the Noether chargeQ is a conserved quantity,

d/dt (Q ◦ f̂physical) = 0.
Conversely, to each conserved quantity there corresponds an infinitesimal sym-

metry of the action. This is true because by definition a jet function Q is a conserved
quantity if the time derivative of Q◦ f̂physical vanishes due to the equations of motion,
i.e. if dtQ can be written as a multiple of the Euler derivative of the Lagrangian and
of the derivatives of the Euler derivative with some jet functions r0 and r1,

dtQ + rm
0

∂̂L

∂̂xm
+ rm

1 dt
∂̂L

∂̂xm
= 0. (4.56)

If we combine the terms with the product rule and redefine the conserved quantity

by terms rm
1

∂̂L
∂̂xm which vanish on physical paths then it is related to an infinitesimal

symmetry δx = r0 − dtr1 in standard form (4.54),

dt

(
Q + rm

1
∂̂L

∂̂xm

)
+ (

rm
0 − dtr

m
1

) ∂̂L

∂̂xm
= 0. (4.57)

One cannot require infinitesimal symmetries δx to vanish on the boundary. This
restriction would exclude translations and rotations. We also do not require that infin-
itesimal symmetries can be integrated to finite transformations. Such requirements
would spoil the correspondence of conserved quantities (5.150).

The Noether theorem is important because often symmetries of the action are
evident and can be seen as a geometric property of the Lagrangian, e.g. that it is
invariant under translations or rotations or independent of the parameter time t .

Conserved quantities are crucial for the integrability of the equations of motion,
i.e. whether the solutions can be obtained by integration of given functions or by
solving for implicitly given functions. If the equations of motion apply to d degrees of
freedom, the equations are integrable if and only if there are d independent conserved

http://dx.doi.org/10.1007/978-3-642-28329-1_5
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quantities Q1 . . . Qd , whose corresponding infinitesimal transformations δ1, . . . δd ,
when applied successively, can be interchanged just like translations δiδ j = δ jδi . If
one modifies integrable equations of motion by additional terms, such perturbations,
even if they are small, lead to chaotic paths which, though they have small measure,
are dense in the space of all paths. The derivation and discussion of these important
results fill books [1, 6, 21], to which we refer for a thorough presentation.

Symmetries of the action are not only important because they are related to con-
served quantities but also because the transformed solutions to the equations of
motion are solutions which in some cases may turn out to be unknown previously.
In general relativity one obtains the gravitational field of a uniformly moving mass
from the gravitational field of a mass at rest by a Lorentz transformation. Thereby
one proves that rapid motion does not turn a mass into a black hole.

Transformations which map solutions of the equations of motion to solutions are
not necessarily symmetries of the action, e.g. f : t �→ − 1

2 g t2 + v0 t + x0, the
solutions of the equations of motion − f̈ − g = 0 of a vertically falling particle, are
transformed into each other by Tα f : t → e2 α f (e−αt). Nevertheless the infinitesi-
mal transformation δx = 2 x−t v does not leave the Lagrangian L = 1

2 m v2−m g x
invariant up to a derivative, as the Euler derivative of δL = dt (−t L ) + 5 L +
2 m g x does not vanish.

Energy and Momentum

The Lagrangian L (t, x, v) = −m
√

1 − v2 (4.32) of a free relativistic particle is
invariant under Poincaré transformations, i.e. under spatial and temporal translations,
rotations and boosts.

The conserved quantity (4.55) which corresponds to the infinitesimal translation
δx = c by a constant vector c,

ci ∂L

∂vi
= c · p , p = m v√

1 − v2
, (4.58)

is by definition (and in agreement with (3.42)) the momentum p in direction of the
vector c. Translation invariance of the action corresponds to the conservation of
momentum.

If the Lagrangian depends only on the velocity, not on the coordinate of a degree
of freedom, then the variable is called cyclic. Then the Lagrangian is invariant under
translation in this direction, e.g. under (x1, x2, . . . xd) �→ (x1 + α, x2, . . . xd) and
under the infinitesimal transformation δx = (1, 0, . . . 0). The Noether charge (4.55)
is the canonically conjugate momentum ∂L

∂v1 of the cyclic variable. The Euler-
Lagrange equations just state that it is conserved,

∂L

∂x1 = 0 ∧
(

∂L

∂x1 − dt
∂L

∂v1

)
◦ fphysical = 0 ⇒ d

dt

(
∂L

∂v1 ◦ fphysical

)
= 0. (4.59)

http://dx.doi.org/10.1007/978-3-642-28329-1_3
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Temporal translation (4.49) yields the infinitesimal transformation

δx = v. (4.60)

This is an infinitesimal symmetry of the action whenever the Lagrangian L (t, x, v)
does not depend on t , since ∂tL = 0 implies

δL = vm ∂xm L + (dt v
m) ∂vm L

4.14= dtL − ∂tL = dtL , (4.61)

i.e. (4.53) with K = −L . The Noether charge (4.55) corresponding to the invariance
under time translation is by definition the energy E ,

E = vm ∂

∂vm
L − L . (4.62)

The energy is conserved if the Lagrangian does not depend explicitly on the time.
In agreement with (3.44) the energy of a free particle with Lagrangian (4.32) is

E(t, x, v) = m√
1 − v2

. (4.63)

The definition (4.62) of the energy contains the recipe (4.35) for the New-
tonian Lagrangian. The operator v∂v counts the degree of homogeneity in veloci-
ties, v∂v (v)n = n (v)n , where the superscript denotes an exponent for once. If one
decomposes the Lagrangian and the energy into pieces Ln and En , which are homo-
geneous of degree n in the velocities, then by (4.62) E = ∑

En = ∑
n(n − 1)Ln

and L = ∑
n �=1 En/(n − 1) + L1. A part of the Lagrangian, which is linear in

the velocities L1(x, v) = qvi Ai (x) does not contribute to the energy but adds a
magnetic force qv j (∂xi A j − ∂x j Ai ) to the Euler derivative and to the equations of
motion. In Newtonian mechanics the energy is the sum of kinetic energy Ekin, which
is quadratic in the velocity, n = 2, and potential energy Epot, which is independent
of the velocity, n = 0, so the Lagrangian is L = Ekin − Epot + L1.

In Hamiltonian mechanics the energy (4.62) defines the Hamiltonian

H (x, p) = vm pm − L , pm = ∂vm L , (4.64)

as a function of the phasespace variables, the position x and the canonically conjugate
momentum p = ∂vL , rather than the jet variables x and v.

The motion of particles in phasespace is an area preserving map with respect
to the measure d pm dxm − dH dt [1]. This important geometric property is basic
for the Kolmogorov-Arnold-Moser theorem [21] and the conclusion that even small
perturbations of integrable motions lead to chaotic curves [6] which are dense in the
space of all curves though they can have small measure.

http://dx.doi.org/10.1007/978-3-642-28329-1_3
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If in a one-dimensional motion the energy, a function of J1, is conserved, i.e.
if d

dt E ◦ fphysical = 0, then the parameter time t (x) at which the particle passes the
point x can be calculated as an integral and the path x = f (t) can be obtained as the
inverse function of t (x). For example, if the energy is of the form

E(x, v) = 1

2
m v2 + V (x) (4.65)

with some potential V , then we solve for the velocity v and, choosing the sign of v,
obtain

v(x, E) =
√

2

m
(E − V (x)) (4.66)

while x increases. By the implicit function theorem, an analogous solution v(x, E)

exists for general E(x, v) in the neighborhood of each possible value of the energy
where the energy varies with the velocity. On the physical path v ◦ f̂ = d f/dt and
E ◦ f̂ is a constant number. The derivative of the inverse function t (x) at x is the
reciprocal dt

dx |x= f (t)
= (

d f
dt )−1

|t

dt

dx
(x) =

(√
2

m
(E − V (x))

)−1

, (4.67)

so the wanted function t (x) is an integral over a known integrand

t (x) − t (x) =
x∫

x

dx ′ 1√
2
m (E − V (x ′))

. (4.68)

All solvable equations of motion are solvable because they possess sufficiently many
conserved quantities and because the conserved quantities determine the solutions
as inverse functions of integrals over known functions just as in the example of
one-dimensional motion.

Angular Momentum and Energy Weighted Position

If the action is invariant under rotations around an axis (4.50), the corresponding
Noether charge is by definition the angular momentum in the direction of this axis.

A rotation D is a linear transformation x �→ Dx, where D is orthogonal (6.6),
DT D = 1. Differentiating this relation for a one parameter set of rotations Dλ with
D0 = 1 at λ = 0 one concludes that each infinitesimal rotation r = ∂λ Dλ|λ=0 is an
antisymmetric matrix, r T = −r . In three dimensions the linear map r maps each
vector x to the vector product with a vector r = (r1, r2, r3),

http://dx.doi.org/10.1007/978-3-642-28329-1_6
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r =
⎛
⎝ −r3 r2

r3 −r1

−r2 r1

⎞
⎠ , rx = r × x. (4.69)

The Langrangian (4.32) is invariant under each infinitesimal rotation δx = r ×x and
the corresponding change of the velocities δv = dtδx = r ×v. So the corresponding
Noether charge (4.55) is

r · L = (r × x) · m v√
1 − v2

= r · (x × p) . (4.70)

Here we have used (a × b) · c = a · (b × c). The Noether charge defines the angular
momentum L of a relativistic particle. As in Newtonian mechanics it is the vector
product of the position x with the momentum p

L = x × p. (4.71)

Each Lorentz transformation Λ of spacetime can be decomposed into a rotation
and a symmetric matrix L P = (L P )T (6.35), the Lorentz boost. The conserved
quantities which are related to rotations have already been considered. It remains to
investigate boosts and their Noether charges. To lowest order in the transformation
parameter v, the boost (3.7) in x-direction changes t by −vx and x by −vt and leaves
y and z invariant. More generally a boost in an arbitrary direction changes t and x
by an infinitesimal transformation δt = c · x and δx = c t .

The corresponding change of curves f : R → R
3, which particles follow in

the course of time, is more complicated than (4.47) because Lorentz boosts do not
act on the product space R × R

3 by a product of representations. They map the
set of pairs (t, x) = (t, f(t)) (which define the map f) to lowest order to the set
(t + δt , x + δx) = (t + δt , f(t) + δx) which in this order is the same as the set
(t, f(t) − df

dt δt + δx), i.e. the function f changes under a boost by the jet function

δx(t, x, v) = −vδt + δx = −v(c · x) + c t (4.72)

evaluated on the lift, δf = δx ◦ f̂ . Correspondingly the velocities change by

δv(t, x, v, x(2)) = dtδx = c − x(2)(c · x) − v(c · v). (4.73)

This is an infinitesimal symmetry of the Lagrangian L = −m
√

1 − v2 (4.32),

− δ
√

1 − v2 = v · δv√
1 − v2

=
(

c · v
√

1 − v2 − c · x
x(2) · v√
1 − v2

)

= −dt
(
c · x

√
1 − v2

)
. (4.74)

http://dx.doi.org/10.1007/978-3-642-28329-1_6
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The Noether charge (4.55) is the product of c with the energy weighted initial position,
(K ◦ f̂free = E ffree(0)),

K = m
x − v t√
1 − v2

= x E − t p. (4.75)

Its components and the components of the angular momentum L are the antisym-
metrized products of the components of the four-vectors x = (t, x) and p = (E, p)

Mmn = xm pn − xn pm , Mmn = −Mnm , m, n ∈ {0, 1, 2, 3}. (4.76)

Under Poincaré transformations x ′ = Λx + a the four-momentum p transforms as
a difference vector p′ = Λp (3.39), so M and p transform linearly and reducibly as

M ′ mn = Λm
k Λn

l Mkl + (am Λn
l − an Λm

l ) pl , p′ k = Λk
l pl . (4.77)

In particular, the transformation of the angular momentum under translations is the
Huygens-Steiner theorem L′ = L + a × p.

The Lagrangian for N free particles is simply the sum −∑
i mi

√
1 − v2[i] of the

Lagrangians (4.32) of the individual particles which traverse paths f[i] : t �→ f[i](t).
Trivially, the total four-momentum (or momentum for short)

p =
N∑

i=1

p[i] (4.78)

remains conserved, as each individual momentum is a conserved quantity. However,
by the Noether theorem the total momentum remains a conserved quantity of inter-
acting particles if the interaction is invariant under translations of space and time.
If one can neglect the contribution of the interaction to the momentum when the
particles are far apart, then this conserved momentum is given by the sum (4.78) of
the momenta of the individual, sufficiently distant particles.

That the energy and spatial momentum of the real particles are conserved has
been verified in all relevant experiments and observations. By the Noether theorem
this means that the action is invariant under translations in spacetime.

However, it required a “desperate hypothesis” by Pauli who introduced a neutrino
as an additional bookkeeping entry to account for the energy-momentum balance
in the beta decay of nuclei. Decades later the neutrinos, more precisely three kinds
of neutrinos by now, were detected and their postulated properties were verified
experimentally.

Energy conservation does not hold in general relativity, if the metric varies in the
course of time. For instance, in the expanding universe the background radiation cools
down while the draining energy is not transformed into other measurable energy. The
loss of energy corresponds to a lack of invariance under time translations: the big
bang distinguishes a particular time some 13 × 109 years ago.

http://dx.doi.org/10.1007/978-3-642-28329-1_3
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The invariance of the action under boosts implies that the sum of K = x E − t p
over the individual particles is time-independent on the physical path, i.e. composed
with f̂physical. Therefore the center of energy X = ∑

x E/
∑

E moves linearly and
uniformly with the velocity V = ∑

p/
∑

E

∑
(x E − t p)∑

E
=

∑
x(0) E∑

E
⇔ X(t) = V t + X(0). (4.79)

4.5 Interlude in Linear Algebra

Each linear map M of a (real) vector space V to a vector space W is determined by
its action on a basis e1, e2 . . . ed , because each vector v ∈ V is a linear combination
v = emvm with real components v1, v2 . . . vd and by linearity M(em vm) =
M(em) vm . The image M(em) = e′

n Mn
m , where e′

1, e′
2 . . . are the basis vectors of

W , is a vector with components Mn
m , the element of the matrix M (in the basis e and

e′) in the row n (first index) and the column m (second index). The mth column of a
matrix contains the components of the image of the basis vector em . The image Mv
has components (Mv)n = Mn

mvm . The set of linear maps M from V to W is a vector
space, because one can naturally add and scale linear maps.

In particular each linear map l of V to R is given by its components ln = l(en),
l(v) = l(envn) = l(en)vn = lnvn . The bilinear map (l, v) �→ l(v) = l1v1+l2v2 +· · ·
is sometimes called the scalar product of l with v. However, l is a vector not of V
but of the dual vector space V ∗ which makes a difference because vectors v ∈ V and
their linear maps l ∈ V ∗ transform differently, e.g. under Lorentz boosts with the
opposite sign of the velocity.

Each l is a linear combination lm f m of the dual basis f 1, f 2 . . . f d , which map
vectors v to their components, f m(v) = vm , in particular f m(en) = δm

n , where δm
n

are the components of the Kronecker δ,

δm
n =

{
1 if m = n
0 if m �= n

. (4.80)

Each linear map M of a vector space V to a vector space W defines the transposed
map MT from W ∗ to V ∗ by composition, also called pullback or right multiplication,

l �→ MT l = l ◦ M . (4.81)

The matrix MT is M reflected along the diagonal: the rows of MT contain the columns
of M , MT

n
m = Mm

n , (MT l)m = l(Mem) = l(en Mn
m) = ln Mn

m = MT
m

nln .
If linear transformations D act on the vector space V , then, assuming D does

not transform the target space R, the linear maps l from V to R transform by right
multiplication with D−1 (4.47)
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l �→ l ◦ D−1 = DT −1l. (4.82)

This transformation is contragredient to the transformation of vectors in the sense,
that l ′, the transformed l, applied to v′, the transformed vector v, gives the same result
as before the transformation, l ′(v′) = (l ◦ D−1)(Dv) = l(D−1 Dv) = l(v).

The contragredient transformation DT −1 is a representation of a group G if D is:
Dg2 Dg1 = Dg2 g1 implies DT −1

g2
DT −1

g1
= (D−1

g1
D−1

g2
)T = DT −1

g2 g1
.

We indicate the transformation property of vectors with the index position of
their components. Vector components have upper indices and transform with D,
components of dual vectors have lower indices and transform with the contragredient
representation DT −1,

v′ m = D m
n vn , l ′m = DT −1

m
n ln . (4.83)

The sum of a lower with an upper index is invariant, l ′(v′) = l ′m v′ m = lm vm = l(v).
Tensor is the collective name for maps T which are linear in several vector

arguments. A tensor which depends on no vector argument is called scalar, a tensor
l with one vector argument is called a dual vector and also a vector v is a tensor,
because it defines a linear map of dual vectors l to the numbers l(v). Examples of
tensors with two arguments are the the scalar product (2.45) η : V × V → R,

(u, v) �→ η(u, v) = u · v = um ηmn vn , which in an orthonormal basis has compo-
nents

ηmn =
⎧⎨
⎩

1 if m = n = 0 ,

−1 if m = n ∈ {1, 2, 3} ,

0 if m �= n .

(4.84)

or the current density j , which maps vectors a and b to the flow j (a, b) through the
small parallelogram with edges a and b.

The Kronecker δ is the tensor over V ∗ and V which maps (l, v) to δ(l, v) = l(v).
Because tensors are linear, they are completely determined by their values on

basis vectors, η(u, v) = η(em, en)umvn or j (a, b) = j (ei , e j ) ai b j or δ(l, v) =
δ( f m, en)lmvn . These values define the components of the tensor, ηmn = η(em, en)

or ji j = j (ei , e j ) and δ( f m, en) = f m(en) = δm
n (4.80). If the tensor T depends

on a dual vector l = lm f m , then to this argument there corresponds an upper index
of its components, e.g. if T is a tensor over the vector spaces V and V ∗ and if
(u, l) ∈ V × V ∗, then

T (u, l) = T (en, f m) un lm , T (en, f m) = T m
n , T (u, l) = T m

n un lm . (4.85)

Each lower index, which enumerates tensor components, relates to a vector argument,
each upper index to a dual vector argument.

Tensors can be scaled by a factor and they can be added if they are of the same
type i.e. have the same arguments, e.g. the tensors T over the vector spaces V and
W map V × W bilinearly to R and constitute a vector space. Its dual space is the
tensor product V ⊗ W . Each pair (u, w) ∈ V × W defines the linear map

http://dx.doi.org/10.1007/978-3-642-28329-1_2
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u ⊗ w : T �→ T (u, w) (4.86)

of tensors to numbers. Because of linearity in the left argument T (a u + v, w) =
aT (u, w) + T (v, w), the tensor product is linear in the left factor and by the same
argument in the right factor, i.e. for all numbers a and vectors u, v and w, z the tensor
product is distributive

(au + v) ⊗ w = a(u ⊗ w) + v ⊗ w, u ⊗ (aw + z) = a(u ⊗ w) + u ⊗ z. (4.87)

Because u = emum and w = e′
nwn are linear combinations of a basis e1, e2 . . . ed

and e′
1, e′

2 . . . e′
d ′ , the tensor products are linear combinations of the tensor products

of the basis vectors

u ⊗ w = ei ⊗ e′
j ui w j , ei ⊗ e′

j : T �→ Ti j . (4.88)

The tensor product V ⊗ W is the space of linear combinations v = ei ⊗ e′
j v

i j . They

map tensors T over V and W linearly to v(T ) = vi j ei ⊗ e′
j (T ) = vi j T (ei , e′

j ) =
vi j Ti j . A generic element of the tensor product does not factorize into the product of
two factors but is a linear combination of products.

Under a linear transformation D of the vector space V or DT −1 of V ∗ tensors
transform by right multiplication with the inverse (4.47) into e.g.

T ′ : (u, w) �→ T ′(u, w) = T (D−1u, DT w) . (4.89)

By T ′(em, f n) = T (D−1(em), DT ( f n)) = T (ek D−1 k
m , Dn

l f l) the transformed
tensor has components

T ′
m

n = DT −1
m

k Dn
l Tk

l , (4.90)

i.e. the components of tensors transform like the products of the components of
vectors and dual vectors with the same index position (4.83) with one transformation
matrix for each index. As tensors transform linearly, T = 0 is a fixed point.

The Kronecker δ is a tensor which is invariant under all tensor transformations,
δ′ = δ.

The scalar product is invariant under Lorentz transformations by their definition,
η′(u, v) = η(Λ−1u,Λ−1v) = η(u, v).

By the orthogonality relation DT = D−1 (6.6) the contragredient rotation
coincides with D. This is why one can identify a Euclidean space with its dual
and need not distinguish between upper and lower indices in an orthonormal basis.
However, by (6.22) the contragredient Lorentz transformation ΛT −1 is equivalent,
but not equal, to Λ,

ΛT −1 = ηΛη−1 , ΛT −1
m

n = ηmkΛ
k

lη
−1 lm . (4.91)

http://dx.doi.org/10.1007/978-3-642-28329-1_6
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Therefore one has to distinguish between four-vectors and their dual vectors.
In (4.91) η is the linear map from the vector space of four-vectors, V , to its

dual V ∗ which maps each vector u to the dual vector ηu : v �→ η(u, v). The dual
vector ηu has components (ηu)n = um ηmn as (ηu)(v) = (ηu)nvn = η(u, v) shows.
Because the scalar product is not degenerate, the map η is invertible and defines a
unique correspondence of vectors and dual vectors.

The unique correspondence allows the shorthand notation, to call ηu just u again.
From the position of the index one deduces whether one deals with the components
of the vector or its corresponding dual vector. The components are related by “raising
and lowering the index with η”

um = ηmnun or un = ηnkuk , (u0, u1, u2, u3) = (u0,−u1,−u2,−u3). (4.92)

We also use the convention to write ηmn rather than η−1 mn and deduce from its upper
index pair that we deal with the components of the matrix inverse of η .

Because η is symmetric, a sum of a lower with an upper index is like a seesaw: one
may raise the lower index and lower the upper index, un vn = um ηmn vn = um vm .

Lowering and raising indices commutes with differentiation, ∂kwm = ηmn∂kwn .
η intertwines the Lorentz transformations of the vector space space and its dual,

ΛT −1(ηu) = ηΛη−1ηu = η(Λu). Whether one maps a vector to its dual and
transforms later or transforms first and maps to the dual afterwards is the same, the
unique correspondence between vector and dual vector is preserved by their Lorentz
transformations.

The flow through degenerate parallelograms with equal edge vectors vanishes,

0 = J (a + b, a + b) = J (a, a) + J (a, b) + J (b, a) + J (b, b)

= 0 + J (a, b) + J (b, a) + 0, (4.93)

so J is antisymmetric, J (a, b) = −J (b, a). Therefore in three dimensions only
the three components J12 = e j3, J31 = e j2 and J23 = e j1 (e = vol(e1, e2, e3)

is the volume of the basic parallelepiped) are independent and the current through
the parallelogram J (a, b) = Ji j ai b j = ∑

i< j Ji j (ai b j − a j bi ) turns out to be the
volume

vol(j, a, b) = e
(

j1(a2b3−b3a2)+ j2(a3b1−b1a3)+ j3(a1b2−b2a1)
) = j·(a×b)

(4.94)
of the parallelepiped with edges j = ei j i , a = e j a j and b = ek bk . The volume
of the basic parallelepiped e has to appear in this expression in order to make the
volume a function of the three vector arguments which does not depend on the basis
in which one chooses to represent them. The volume has the form of a triple sum,
vol(a, b, c) = e εi jk ai b j ck , where the ε-symbol has components with three indices
and is antisymmetric under exchange of each pair of indices,

εi jk = −ε j ik = −εk ji = −εik j , (4.95)
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εi jk =
⎧⎨
⎩

1 if i, j, k are an even permutation of 1, 2, 3 ,

−1 if i, j, k are an odd permutation of 1, 2, 3 ,

0 else .

(4.96)

With the ε-symbol we can write the vector product (a × b) = ei e gimεmjk a j bk ,
the determinant of 3 × 3-matrices det D = εi jk Di

1 D j
2 Dk

3 and the volume of a
parallelepiped with edges a, b and c as vol(a, b, c) = e εi jk ai b j ck = a · (b × c).

The transformation of the vector product under rotations of its factors is
deduced from the definition of the determinant of a linear map D. It is the fac-
tor by which volume changes, vol(Dc, Da, Db) = (det D) vol(c, a, b). Moreover
vol(Dc, Da, Db) = (Dc)·(Da× Db) = (det D) c ·(a×b) = (det D) Dc · D(a×b)

because scalar products are invariant under rotations. This holds for all c′ = D c, so
Da × Db = (det D)D(a × b).

Because a × b transforms under rotation of its factors as an axial vector by
multiplication with (det D)D the space of axial vectors is different from the space
of polar vectors which transform by multiplication with D. This is often indicated
by their different units of measurement, which forbid to add them. Nevertheless one
can identify directions: e.g. the x-axes are left invariant in both spaces by the same
rotations. The irreducible representations of the rotation group single out invertible
maps between the vector spaces, which by Schur’s lemma are unique up to a factor.



Chapter 5
Electrodynamics

Abstract The electromagnetic fields and charge and current densities constitute a
relativistic physical system. Changes in the charge distribution cause changes of
the fields with the speed of light. Though the effects are retarded, they nevertheless
approximately obey actio et reactio because the electric field of a charge in straight
uniform motion points to its instantaneous, not its retarded position. Only acceleration
leads to a loss of energy and momentum by radiation. The electrodynamic interactions
are invariant under dilations, which is why they cannot explain the particular values
of particle masses or the particular sizes of atoms.

5.1 Covariant Maxwell Equations

Electric and magnetic fields E(x) and B(x) change by the Lorentz force

FLorentz(x, v) = q (E(x)+ v × B(x)) (5.1)

the momentum pparticle = mv/
√

1 − v2 (3.42) and thereby the velocity v of a particle
with mass m and charge q, which passes at time t the position x = (x1, x2, x3)

dpparticle

dt
= FLorentz. (5.2)

In (5.1) x = (t, x1, x2, x3) combines the cartesian coordinates of spacetime.
The electromagnetic fields are related to the charge density ρ and the current

density j by the Maxwell equations. To stress the essential, we discuss the equations
in length units with c = 1 and charge units with ε0 = 1,

div B = 0, rot E + ∂

∂t
B = 0, (5.3)
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div E = ρ, rot B − ∂

∂t
E = j. (5.4)

The divergence and the rotation of a vectorfield C = (C1,C2,C3) denote the fol-
lowing linear combinations of partial derivatives

div C = ∂1C1 + ∂2C2 + ∂3C3, rot C =
⎛
⎝
∂2C3 − ∂3C2

∂3C1 − ∂1C3

∂1C2 − ∂2C1

⎞
⎠ (5.5)

where we employed the paper saving notation which we will use from now on,

∂0 = ∂

∂t
, ∂1 = ∂

∂x1 , ∂2 = ∂

∂x2 , ∂3 = ∂

∂x3 . (5.6)

Explicitly the homogeneous Maxwell equations (5.3) read

∂1 B1 + ∂2 B2 + ∂3 B3 = 0,

∂2 E3 − ∂3 E2 + ∂0 B1 = 0,

∂3 E1 − ∂1 E3 + ∂0 B2 = 0,

∂1 E2 − ∂2 E1 + ∂0 B3 = 0.

(5.7)

We interpret the field strengths as the six components of an antisymmetric tensor,
the field strength tensor F , which maps pairs of four-vectors v and w to the flux
F(v,w) of field strength, which flows through the parallelogram with edges v and w,

Fmn = −Fnm,m, n ∈ {0, 1, 2, 3}, F0i = Ei , Fi j = −εi jk Bk, i, j, k ∈ {1, 2, 3},
(5.8)⎛

⎜⎜⎝
F00 F01 F02 F03
F10 F11 F12 F13
F20 F21 F22 F23
F30 F31 F32 F33

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

⎞
⎟⎟⎠ . (5.9)

Then the homogeneous Maxwell equations have the intriguing symmetric pattern

∂1 F23 + ∂2 F31 + ∂3 F12 = 0,

∂2 F30 + ∂3 F02 + ∂0 F23 = 0,

∂3 F01 + ∂0 F13 + ∂1 F30 = 0,

∂0 F12 + ∂1 F20 + ∂2 F01 = 0.

(5.10)

They relate the cyclic permutations of the derivatives of the components of F ,

∂l Fmn + ∂m Fnl + ∂n Flm = 0. (5.11)
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If a quantity Xlmn = −Xlnm is antisymmetric in the last index pair, such as ∂l Fmn ,
then its cyclic sum Zlmn = Xlmn + Xmnl + Xnlm is antisymmetric under each
permutation of two indices, e.g. Zmln = Xmln + Xlnm + Xnml = −Xmnl − Xlmn −
Xnlm = −Zlmn . So (5.11) does not consist of 4 · 4 · 4 independent equations, as one
might deduce from three indices l, m and n which range over four values. Rather
l, m and n must be pairwise different in a nontrivial equation and their permutation
does not lead to a new equation. Thus, (5.11) are the 4 · 3 · 2 / 3! = 4 independent
equations (5.10).

The inhomogeneous Maxwell equations (5.4) read explicitly

∂1 E1 + ∂2 E2 + ∂3 E3 = ρ

−∂0 E1 + ∂2 B3 − ∂3 B2 = j1,

−∂0 E2 + ∂3 B1 − ∂1 B3 = j2,

−∂0 E3 + ∂1 B2 − ∂2 B1 = j3

(5.12)

or, in terms of the components of the field strength tensor if we insert vanishing terms
like ∂0 F00 to emphasize the structure and denote ρ by j0,

∂0 F00 − ∂1 F10 − ∂2 F20 − ∂3 F30 = j0,

−∂0 F01 + ∂1 F11 + ∂2 F21 + ∂3 F31 = j1,

−∂0 F02 + ∂3 F32 + ∂1 F12 + ∂2 F22 = j2,

−∂0 F03 + ∂1 F13 + ∂2 F23 + ∂3 F33 = j3.

(5.13)

The minus signs pertain to the definition of F with raised indices (4.92)

Fmn = ηmk ηnl Fkl , F00 = F00, F0i = −F0i , Fi j = Fi j , i, j ∈ {1, 2, 3}, (5.14)

⎛
⎜⎜⎝

F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

⎞
⎟⎟⎠ . (5.15)

Then the inhomogeneous Maxwell equations have the form

∂0 F00 + ∂1 F10 + ∂2 F20 + ∂3 F30 = j0,

∂0 F01 + ∂1 F11 + ∂2 F21 + ∂3 F31 = j1,

∂0 F02 + ∂1 F12 + ∂2 F22 + ∂3 F32 = j2,

∂0 F03 + ∂1 F13 + ∂2 F23 + ∂3 F33 = j3,

(5.16)

or in index notation
∂m Fmn = jn . (5.17)

http://dx.doi.org/10.1007/978-3-642-28329-1_4
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Local Charge Conservation

A double sum over a symmetric and an antisymmetric pair of indices vanishes,

Trs
mn = −Trs

nm = Tsr
mn ⇒ Tkl

kl = 0, (5.18)

since, after permuting and relabeling the summation indices, it equals its negative,

Tkl
kl = Tlk

kl = −Tlk
lk = −Tlm

lm = −Tkm
km = −Tkl

kl . (5.19)

The field strength is antisymmetric, Fmn = −Fnm . Partial derivatives, if they
are continuous, can be interchanged ∂n∂m = ∂m∂n , so the double sum ∂n∂m Fmn

vanishes.
So, applying ∂n to (5.17), we obtain the continuity equation 0 = ∂n jn . The four-

divergence ∂0 j0 +∂1 j1 +∂2 j2 +∂3 j3 of the four-current vanishes or, in other words,
the charge density decreases by the divergence of the current density,

∂n jn = 0, ∂0ρ + div j = 0. (5.20)

The continuity equation restricts conceivable sources ρ and j of the electromagnetic
fields. Only such charge and current densities can occur in the Maxwell equations
which satisfy the continuity equation and therefore local charge conservation.

Local charge conservation implies more than just charge conservation. Charge
would already be conserved if it vanished in the laboratory and reappeared at the same
instant on the other side of the moon. Local charge conservation, however, implies
that the charge QV in each time independent volume V changes in the course of
time only because unbalanced currents flow in and out through the boundary surface
∂V (read “boundary of V ”). This follows by Gauß’ theorem if one integrates the
continuity equation over the volume V ,

QV (t) =
∫

V

d3x ρ(t, x), (5.21)

d

dt
QV (t) =

∫

V

d3x ∂0ρ = −
∫

V

d3x div j = −
∮

∂V

d2f · j. (5.22)

In particular, a single charge cannot be produced from the vacuum.

5.2 Energy and Momentum

The electromagnetic field generates an energy density, energy currents, momentum
densities and momentum currents. These quantities are the components T kl of the
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energy-momentum tensor of the electromagnetic field

T kl = −
(

Fk
n Fln − 1

4
ηkl Fmn Fmn

)
. (5.23)

The energy-momentum tensor is symmetric and traceless

T kl = T lk, ηkl T
kl = 0. (5.24)

For each value of the index k, the T kl are four components of a four-current which,
in absence of electric charge and currents, is conserved,

∂l T
lk = −Fk

n jn . (5.25)

To verify this we calculate −∂l Tk
l ,

∂l

(
Fkn Fln − 1

4
δl

k Fmn Fmn
)

= (∂l Fkn)F
ln + Fkn∂l Fln − 1

2
(∂k Fmn)F

mn

= 1

2
(∂l Fkn − ∂n Fkl − ∂k Fln) Fln + Fkn∂l Fln = Fkn jn .

(5.26)

Here we have used the Maxwell equations (5.11, 5.17) and that the double sum with
Fln = −Fnl antisymmetrizes in the indices l and n, because a double sum of a
symmetric and antisymmetric index pair vanishes (5.18),

2Fln∂l Fkn = Fln (∂l Fkn − ∂n Fkl)+ Fln (∂l Fkn + ∂n Fkl) = Fln (∂l Fkn − ∂n Fkl) .

(5.27)
If the charge and current densities vanish then the energy-momentum tensor con-

sists of components of four conserved currents (5.25). For each k the component T k0

is a density whose spatial integral

pk =
∫

d3x T k0(x) (5.28)

is time-independent (5.21) if the integral over the current (T k1, T k2, T k3) through
the boundary vanishes, i.e. if no energy or momentum is radiated away.

The conserved quantities correspond, as we shall show on page 117, to the
invariance of the action under temporal and spatial translations and are therefore
the energy and momentum (p0, p1, p2, p3) = (E,p). So T 00 is the energy density
and (T 10, T 20, T 30) is the the momentum density. Using (5.9, 5.15) we write the den-
sities as quadratic expressions in the electric and magnetic field, (i, j, k ∈ {1, 2, 3}),

T 00 = 1

2

(
E2 + B2

)
, E = 1

2

∫
d3x

(
E2 + B2

)
, (5.29)



96 5 Electrodynamics

T i0 = εi jk E j Bk, p =
∫

d3xE × B. (5.30)

The energy density u = 1
2

(
E2 + B2

)
is nonnegative and vanishes if and only if

the field vanishes. The Poynting vector

S = E × B (5.31)

is the momentum density of the electromagnetic field. Because the energy-momentum
tensor is symmetric, T 0 i = T i 0, the Poynting vector is also the current density of
the energy.

In presence of electric charge and current density, energy and momentum of the
electromagnetic field vary in time due to (5.25)

∂0
1

2

(
E2 + B2

)
+ div S = −j · E, (5.32)

∂0 Si + ∂ j T
i j = −

(
ρ Ei + εi jk j j Bk

)
(5.33)

where T i j = −
(

Ei E j + Bi B j − 1

2
δi j

(
E2 + B2

))
, (5.34)

since energy and momentum can be exchanged with charged particles. If the overall
momentum of particles and electromagnetic field is conserved, ρ E + j × B must
be the increase of the momentum density of the carriers of charge, and j · E is the
change of their energy density.

The momentum pparticle and the energy Eparticle of a point particle with charge q,
which traverses the curve x(t) and has the charge density ρ(t, z) = q δ3(z − x(t))
and the current density j (t, z) = q ẋ δ3(z − x(t)), therefore change in time by

dpparticle

dt
= FLorentz = q (E + v × B) ,

dEparticle

dt
= q

dx
dt

· E. (5.35)

So the Lorentz force (5.1) in the relativistic equation of motion of charged point
particles states the overall conservation of energy and momentum. The energy of the
particle changes by the work done by the electric field, the magnetic field does not
change the particle energy.

The spatial components of the energy-momentum tensor are current densities of
momentum. Through a small parallelogram with edges a and b passes the flow of
momentum Fi (a,b) = T i j (a × b) j . If the flow is absorbed by the parallelogram,
then Fi (a,b) is the force which acts on it. The isotropic part of T i j , i.e. the part which
is proportional to δi j , is the pressure. By (5.34) the pressure of the electromagnetic
field is a third of its energy density, the energy-momentum tensor is traceless. If the
radiation is not isotropic, e.g. light from the sun, then T i j n j are the components of
the radiation pressure exerted on an absorber with normal vector (n1, n2, n3).
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Uniqueness and Domain of Dependence

The electrodynamic fields depend at time t > 0 in position x only on the charges
and currents and initial values at time t = 0 in the domain G, which is bounded by
the backward light cone of (t, x) and the spacelike initial surface I , which is cut by
the backward light cone from the surface t = 0 [10, Chap. VI, Sect. 4],

G = {(t ′, y) : 0 ≤ t ′ ≤ t, |x − y| ≤ t − t ′}, I = {(0, y) : |x − y| ≤ t}. (5.36)

For if two solutions with the same charges and currents in G coincide in their initial
values of the fields E and B on the initial surface I , then the difference of both
solutions satisfy the Maxwell equations with charges and currents, which vanish in
G and with initial values, which vanish on I . Such a solution, however, has to vanish
in G, as we are going to prove now.

The energy density u is nowhere smaller than the modulus of the energy current
density S,

u = 1

2

(
E2 + B2

)
≥ |E × B| = |S|, (5.37)

for (|E| − |B|)2 ≥ 0 implies (|E|2 + |B|2) ≥ 2|E| |B| and |E| |B| ≥ |E × B|.
Consequently for all future directed, timelike four-vectors w = (w0,w),

w0 − |w| > 0, (5.38)

the density wm T m0 is nonnegative, wm T m0 ≥ 0,

wm T m0 = w0 u − w · S ≥ w0 u − |w||S| ≥ (w0 − |w|) u ≥ 0 (5.39)

and vanishes if and only if the energy density u = (E2 + B2)/2 and therefore all
field strengths vanish, wm T m0 = 0 ⇔ E = 0 = B.

Each inner point (t ′, y) of the domain G lies on a spacelike surface

S = {(t (y), y) : t (y) ≥ 0, y ∈ I }, (5.40)

which together with I borders a domain V ⊂ G. Within V the current jm and
therefore the four-divergence ∂m T m0 vanish (5.25), so

∫

V

d4 y ∂m T m0 = 0. (5.41)

By Gauß’ theorem the integral over dω = dt d3 y ∂m T m0 over the volume V
equals the integral over ω = d3 y T 00 − 1

2 dtdyi dy j εi jk T k0 over the boundary I
and S. But I does not contribute, because the initial values vanish, therefore
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Fig. 5.1 Domain of depen-
dence G

I

V

S

t x

∫

S

d3 y
(

T 00 − ∂i t T i0
)

= 0. (5.42)

The dual four-vector w = (1,−∂1t,−∂2t,−∂3t) is future directed and spacelike
everywhere because S is spacelike. Therefore the integrand wm T m0 is nonnegative
and the integral vanishes only if E and B vanish everywhere on S. So both fields
vanish in each point (t ′, y) of the interior of G. Because the fields are continuous,
they vanish in all of G.

Each solution of the Maxwell equations is uniquely determined by the charge and
current densities and the initial values of E and B on a spacelike surface I . The fields
at (t, x) with t > 0 depend only on the initial values of that part of the surface I ,
which lies in the backward light cone of (t, x) and on the charge and current densities
in the domain G, which is bounded by the backward light cone and the initial surface.

For t < 0 the corresponding results hold for the forward light cone.
Localized changes in the initial data and in the charges and currents cause changes

in the fields at most with the velocity of light. Nothing outruns light.

5.3 The Electrodynamic Potentials

The electric field E of a spherically symmetric, static charge distribution follows
from the obvious ansatz that E is time-independent and radial1

E(x) = x
|x| E(|x|). (5.43)

The modulus of the E-field is determined by integrating the Maxwell equation
div E = ρ (5.4) over a ball Br with radius r . On the right-hand side one obtains the
charge Q(r) in the ball. By Gauß’ theorem the left-hand side equals the integral over
the boundary of the ball, the sphere ∂Br ,

1 Unfortunately, “energy” and “electric field” begin with the same letter. We denote the absolute
value of the electric field and the energy by E and let the context resolve the ambiguity.
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Q(r) =
∫

Br

d3x div E(x) =
∮

∂Br

d f · E(x). (5.44)

On the sphere the outward normal df is parallel to the electric field E, so the scalar
product d f · E equals the product of the absolute values. The modulus of the electric
field is constant on the sphere and can be extracted from the integral, which gives
the size 4πr2 of the sphere. We obtain Q(r) = 4πr2 E(r),

E(r) = 1

4π

Q(r)

r2 . (5.45)

For a spherically symmetric charge distribution only those charges influence a test
charge at the point x which are within the sphere of radius |x|.

The electrostatic force F = qE repels charges q with the same sign as Q(r).
Inside a homogeneously charged sphere with radius R the ratio of Q(r) to the

total charge Q equals the ratio of the volume 4
3πr3 to the total volume 4

3πR3, so one
has Q(r) = Qr3/R3 and the electric field of a homogeneously charged sphere is

E(r) = Q

4π
·

⎧⎪⎨
⎪⎩

r

R3 if r < R

1

r2 if r ≥ R
(5.46)

A test particle in a homogeneously charged ball with opposite charge is subject to
the same force, increasing linearly with the distance, as a spherically symmetric
harmonic oscillator. It orbits ellipses around the center different from Kepler ellipses
around a focal point.

The electrostatic field can be written as the gradient of a potential φ(x) and
therefore also satisfies the remaining Maxwell equations with B = 0 and j = 0,

E = − grad φ, φ(x) = Q

4π
·

⎧⎪⎪⎨
⎪⎪⎩

− x 2

2 R3 + 3

2 R
if |x| < R

1

|x| if |x| ≥ R
(5.47)

Poisson Equation

The static potential outside of a point particle at the origin with charge q is the
Coulomb potential φ : y 
→ q/(4π |y|). If the particle is at x, the corresponding
potential φ(y) = q/(4π |y − x|) is the shifted potential, i.e. the Maxwell equations
are translation-invariant. The potential of several point charges is the sum of the
potentials of the individual charges, because the Maxwell equations are linear,
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φ(y) = 1

4π

∑
i

qi

|y − xi | . (5.48)

For a continuous, static charge distribution ρ the potential becomes the integral

φ(y) = 1

4π

∫
d3x

ρ(x)
|x − y| . (5.49)

It satisfies the the Poisson equation, − div grad φ = ρ, i.e. Δφ = −ρ, where

Δ = div grad = ∂1
2 + ∂2

2 + ∂3
2 (5.50)

is the Laplace operator.
To show that (5.49) solves the Poisson equation, we cut out of the integration

volume V a ball Bε,y around y with radius ε

Bε,y = {x : |x − y| ≤ |ε|} (5.51)

and consider the integral over the remaining volume Vε = V − Bε,y for ε → 0.
Within Vε the function 1/|x − y| is differentiable and satisfiesΔ 1

|x−y| = 0. So in Vε
one has

Iε(y) =
∫

Vε

d3x
1

|x − y| Δφ(x) =
∫

Vε

d3x

(
1

|x − y| Δφ(x)−
(
Δ

1

|x − y|
)
φ(x)

)
.

(5.52)
The integrand is a sum of derivative terms

1

|x − y| Δφ(x)−
(
Δ

1

|x − y|
)
φ(x) = ∂i

(
1

|x − y| ∂iφ(x)−
(
∂i

1

|x − y|
)
φ(x)

)
.

Therefore, according to Gauß’ theorem

Iε(y) =
∫

∂Vε

d2f ·
(

1

|x − y| grad φ(x)−
(

grad
1

|x − y|
)
φ(x)

)

=
∫

∂Vε

d2f ·
(

1

|x − y| grad φ(x)+ x − y
|x − y|3 φ(x)

)
. (5.53)

The boundary of Vε consists of the boundary of V and the sphere ∂Bε,y. Observe,
that in the surface integral (5.53) the normal vector d2f = d2 f n points out of Vε
into the ball Bε,y. On the sphere ∂Bε,y one has
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1

|x − y| = 1

ε
,

x − y
|x − y|3 = − 1

ε2 n. (5.54)

The integral over the first term vanishes in the limit ε → 0,

∫

∂Bε,y

d2f · 1

|x − y| grad φ(x) = 1

ε

∫

∂Bε,y

d2f · grad φ(x) −→ 0, (5.55)

because by the mean value theorem for integration it equals a value of (n · grad φ)
at some point of the sphere times its size 4πε2 divided by ε.

The scalar product in the second term of the integrand is minus the product of the
absolute values. By the mean value theorem on some point z of the sphere ∂Bε,y

∫

∂Bε,y

d2f
x − y
|x − y|3 φ(x) = − 1

ε2

∫

∂Bε,y

d2 f φ(x) = −4πε2

ε2 φ(z). (5.56)

As z tends to the center y of Bε,y in the limit of vanishing ε the integral over ∂Bε,y
tends to −4πφ(y).

Altogether we obtain

∫

V

d3x
1

|x − y| Δφ(x) =
∫

∂V

d2f ·
(

1

|x − y| grad φ(x)+ x − y
|x − y|3 φ(x)

)
− 4πφ(y)

(5.57)
or, solved for φ(y),

φ(y) = − 1

4π

∫

V

d3x
Δφ(x)
|x − y| + 1

4π

∫

∂V

d2f ·
(

1

|x − y| grad φ(x)+ x − y
|x − y|3 φ(x)

)
.

(5.58)
Each function φ with continuous second derivatives in V ⊂ R

3, which is contin-
uous on the closure of V , is determined by Δφ and its boundary values on ∂V .

The boundary values of the electrostatic potential of spatially bounded charge
distributions can be chosen to vanish for V = R

3, i.e. (5.49) solves the Poisson
equation for insular charge distributions with vanishing boundary values.

Harmonic Functions

Functions φ, which in a domain V solve the Laplace equation,

Δφ = 0, (5.59)

e.g. the electrostatic potential in a charge free region, are called harmonic in V .
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The surface integral over the normal derivative of harmonic functions over the
boundary surface of V yields the charge within V and therefore vanishes

∫

∂V

d2f · grad φ =
∫

V

d3x ∂i∂iφ = 0. (5.60)

The representation (5.58) of functions with continuous second derivatives in V also
holds for each ball BR,y ⊂ V (5.51) around some inner point y of V . Because φ
is harmonic in V , the volume integral over BR,y and the surface integral over the
normal derivative vanish, because the factor 1/R is constant on the boundary. So φ
equals at y its mean value MR,y[φ] on the sphere ∂BR,y, φ(y) = MR,y[φ],

MR,y[φ] = 1

4π

cos θ=+1∫

cos θ=−1

d cos θ

2π∫

0

dϕ φ (y + Rn(θ, ϕ)) , (5.61)

where n denotes the unit vector with angles θ, ϕ (2.34),

n(θ, ϕ) = (sin θ cosϕ, sin θ sin ϕ, cos θ). (5.62)

As each harmonic function equals its mean value on surrounding spheres, it
becomes minimal or maximal on the boundary of the domain V , in which it is
harmonic. In particular, as an electrostatic potential does not have a local minimum
in a charge free region, there is no electrostatic trap for charged particles.

Each solution φ of the Poisson equation Δφ = −ρ is uniquely determined by its
boundary values and the source ρ, because the difference of two solutions with the
same ρ and the same boundary values is a solution of the Laplace equation, which
vanishes on the boundary ∂V and therefore in the enclosed volume V .

The potential on a conducting surface ∂V becomes constant after all currents have
faded away. If the surface encloses a charge free region V , then the potential is also
constant in V because its values are between the minimal and maximal values at ∂V .
Therefore the electric field strength vanishes in each Faraday cage.

If the normal derivative ni∂iϕ of a harmonic function vanishes on ∂V

0 = −
∫

V

d3x φ Δϕ =
∫

V

d3x ∂iϕ ∂iφ −
∫

∂V

d2 f ni φ ∂iϕ =
∫

V

d3x
∑

(∂iφ)
2,

(5.63)
then the gradient ∂iφ vanishes in V and φ is constant.

The normal derivative on the boundary determines the solution up to a constant,
because the difference of two solutions with the same normal derivative is a harmonic
function with vanishing normal derivative and therefore constant.

As φ2 and (∂iφ)
2 are nonnegative, (5.63) shows, that in regions without boundary

the Laplace operator Δ does not have positive eigenvalues, Δφ = λφ ⇒ λ ≤ 0.

http://dx.doi.org/10.1007/978-3-642-28329-1_2
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Gauge Transformation of the Four-Potential

The homogeneous Maxwell equations (5.11) imply that the field strengths Fkl(x) are
the antisymmetrized derivatives of four potential functions A = (A0, A1, A2, A3),

Fkl(x) = ∂k Al(x)− ∂l Ak(x), k, l ∈ {0, 1, 2, 3}. (5.64)

Field strengths of this form solve the homogeneous Maxwell equations, for (5.11)
is totally antisymmetric under permutations and the order of partial derivatives can
be interchanged ∂k∂l Am − ∂l∂k Am = 0.

Conversely, one verifies by differentiation that the antisymmetrized derivatives of
the following four-potential (which is defined in star-shaped regions, which contain
with each point x also the connecting line to the origin)

Al(x) =
1∫

0

dλ λxm Fml(λx) (5.65)

yield the field strengths, if they satisfy the homogeneous Maxwell equations (5.11),

∂k Al − ∂l Ak =
1∫

0

dλ
(
λδm

k Fml(λx)+ λxm · λ(∂k Fml)|(λx)

) − k ↔ l

=
1∫

0

dλ 2λFkl(λx)+ λ2xm(∂k Fml − ∂l Fmk)|(λx)

5.11=
1∫

0

dλ
(

2λFkl(λx)+ λ2xm∂m Fkl(λx)
)

=
1∫

0

dλ
∂

∂λ

(
λ2 Fkl(λx)

)
= λ2 Fkl(λx)

∣∣∣λ=1

λ=0
= Fkl(x). (5.66)

The component A0 is called scalar potential φ. The spatial components are combined
to the vector potential A = (−A1,−A2,−A3). Then (5.64) states for the magnetic
and the electric field (5.9)

B = rotA, E = − grad φ − ∂0 A. (5.67)

Because of ∂k∂lχ = ∂l∂kχ and (5.64) the field strengths do not change if one
adds to the four-potential Al the derivative of a function χ
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A′
l = Al + ∂lχ. (5.68)

This change (5.68) of the four-potential is called a gauge transformation. It
changes the scalar potential φ and the vector potential A into

φ′ = φ + ∂0 χ, A ′ = A − grad χ. (5.69)

Four-potentials related by gauge transformations cannot be distinguished from
each other by any physical effect.

Relativistic quantum field theory provides a deep reason for gauge invariance [11].
A quantized four-potential A creates among others states of negative norm which
participate in physical processes and lead to logical contradictions of the theory
unless all physical processes are gauge invariant.

5.4 Wave Equation

If one raises the indices (4.92, 5.14) of Fkl = ∂k Al − ∂l Ak

∂m = ηmk∂k, An = ηnl Al , (5.70)

and inserts Fmn = ηmkηnl Fkl into the inhomogeneous Maxwell equations (5.17),
one obtains

∂m∂
m An − ∂m∂

n Am = jn . (5.71)

In the second term the derivatives can be interchanged ∂m∂
n Am = ∂n∂m Am and by

a choice of the gauge one can satisfy the Lorenz condition,2

∂m Am = 0, (5.72)

which makes the second term vanish. Then each component of the four-potential
satisfies separately an inhomogeneous wave equation

�An = jn . (5.73)

The differential operator in the wave equation (pronounced “box”)

� = ∂m∂
m = ηmk∂m∂k = ∂2

0 − ∂2
1 − ∂2

2 − ∂2
3 (5.74)

is called the wave operator or d’Alembert operator.
If ∂m A′ m = f does not vanish, then the Lorenz condition (5.72) holds for the

gauge transformed four-potential A = A′ − ∂χ if χ satisfies �χ = f .

2 This gauge condition is due to Ludvig Valentin Lorenz, not Hendrik Antoon Lorentz [16, 20].

http://dx.doi.org/10.1007/978-3-642-28329-1_4
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Uniqueness and Domain of Dependence

The solutions u of the inhomogeneous wave equation

�u = g (5.75)

is uniquely determined by the source g and by the initial values of u and ∂0u at t = 0
and depends at (t, x) only on the source in the domain G and the initial values in I
(5.36). This is deduced just as the corresponding result for the electromagnetic fields
with the arguments of page 97 from the energy-momentum tensor, which corresponds
to the wave equation,

Tmn = ∂mu ∂nu − 1

2
ηmn∂r u ∂r u. (5.76)

It is conserved ∂m T mn = 0, if u satisfies the homogeneous wave equation �u = 0,
and is positive definite for each future directed timelike vector w = (1,w1,w2,w3),

2wm T m0 = (∂0 u)2 + ∂i u ∂i u − 2wi ∂i u ∂0 u

= (∂0 u − wi ∂i u)
2 + (∂i u ∂i u)− (wi∂i u)

2

≥ (∂0 u − wi ∂i u)
2 + (∂i u ∂i u)(1 − w j w j ) ≥ 0. (5.77)

The sum wm T m0 vanishes only, if all derivatives ∂mu vanish. By the arguments
of page 97 the difference of two solutions with the same source and with the same
initial values is constant on each spacelike surface S within the domain G. It vanishes,
because S and I have common points. So it vanishes in G.

Plane Waves

All terms in the homogeneous wave equation are derivative terms of the same order,
two, and the quadratic form k2 = k · k = ηmn km kn = k0

2 − k1
2 − k2

2 − k3
2 which

corresponds to the wave operator � = ηmn ∂m ∂n allows for real, lightlike vectors
k = 0, k2 = 0. Therefore the wave equation �u = 0 has the remarkable property to
allow plane waves u(x) = f (k · x) of arbitrary form f (as long as f has continuous
second derivatives)

� f (k · x) = ηmnkm kn f ′′(k · x) = k2 f ′′(k · x) = 0. (5.78)

Plane waves of the form u(t, x) = f (t −n x)with arbitrary, smooth f move with
the speed of light in direction n, n2 = 1, and solve the homogeneous wave equation
of the four-dimensional spacetime.

The plane wave deserves its name: it is constant on planes orthogonal to n,

u(t, x + x0) = f (t − n (x + x0)) = f (t − n x) = u(t, x) if n x0 = 0. (5.79)
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It is also constant along the worldlines of photons, which move with the speed of
light in the direction n,

u(t, x(0)+ t n) = f (t − n (x(0)+ t n)) = f (−n x(0)) = u(0, x(0)). (5.80)

A real, plane monochromatic wave u is more particularly of the form

u(t, x) = � a e−i k·x = � a ei (k x−ω t) = A cos(k x − ω t + α), (5.81)

where a = Aeiα is constant. The circular frequency ω = k0 is determined up to its
sign by 0 = k2 = ω2 − k2 as the absolute value of the wave vector k. We choose ω
to be positive,

ω = k0 =
√

k2, (5.82)

and write an exponential factor with negative k0 as ei k·x .
A superposition of monochromatic plane waves with different wave vectors is

called a wave packet

u(t, x) =
∫

d̃k
(

ei(k x−k0 t) a∗(k)+ e−i (k x−k0 t) a(k)
)
, k0 =

√
k2, (5.83)

d̃k = d3k

(2π)3 2 k0 . (5.84)

It solves the wave equation, �u = 0, with initial values u|t=0 = ψ and (∂0u)|t=0 = φ,

ψ(x) =
∫

d̃k ei k x (
a∗(k)+ a(−k)

) =
∫

d3k

(2π)3
ei k x ψ̃(k),

φ(x) =
∫

d̃k ei k x (−ik0)
(
a∗(k)− a(−k)

) =
∫

d3k

(2π)3
ei k x φ̃(k), (5.85)

which determine by their Fourier amplitudes ψ̃ and φ̃ the amplitudes a and a∗

a∗(k) = k0 ψ̃(k)+ i φ̃(k), a(k) = k0 ψ̃(−k)− i φ̃(−k). (5.86)

Huygens’ Principle

It seems physically plausible that the wave φ at the position x at time t > 0 should
be a superposition of the earlier wave at t = 0 from all the places x + tn, n2 = 1,
from which one can reach x with the speed of light in the run time t . To clarify this
assumption we consider the mean value (5.61) Mt,x[φ] of a function φ on spheres
∂Bt,x around the point x with radius t . The mean value (5.61) is also defined for
negative t , because the mean value over all directions coincides with the mean value
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over all opposite directions, i.e. Mt,x[φ] is an even function of t with a continuation
to t = 0,

Mt,x[φ] = M−t,x[φ], M0,x[φ] = φ(x). (5.87)

It has continuous second derivatives if φ has.
The derivative with respect to t yields a surface integral over the normal derivative

∂0 Mt,x[φ] = 1

4π

∫
d cos θ dϕ ni ∂iφ(x + t n) = 1

4π t2

∫

∂Bt,x

d2 f ni ∂iφ(y). (5.88)

For t > 0 the vector n is the outward directed normal vector. By Gauß’ theorem the
surface integral equals the volume integral over the divergence

∂0 Mt,x[φ] = 1

4π t2

t∫

0

dr r2
∫

d cos θ dϕΔφ. (5.89)

This holds also for negative t , because then n is the inward directed normal vector
at y = x + t n.

If we differentiate again with respect to t and if the derivative acts by the product
rule on 1/t2, then we obtain a contribution which coincides with ∂0 M up to a factor
−2/t . The derivative with respect to the upper boundary t of the integral yields
the integrand, which is the mean value of the derivative Δφ and which equals the
derivative ΔMt,x[φ] of the mean value,

∂0
2 Mt,x[φ] = −2

t
∂0 Mt,x[φ] +ΔMt,x[φ]. (5.90)

So the mean value satisfies Darboux’s differential equation,

(
∂0

2 + 2

t
∂0 −Δ

)
Mt,x[φ] = 0, (5.91)

consequently u : (t, x) 
→ t Mt,x[φ] solves the homogeneous wave equation
�u = 0. This holds also for t = 0, as the second derivatives of t Mt,x[φ] are
continuous.

The solution t Mt,x[φ] vanishes initially at t = 0, its time derivative at t = 0 in
position x has the value φ(x).

The coefficients ηnm of the wave equation ηmn∂m∂nu = 0 are constant (5.74).
Therefore the derivative ∂0(t Mt,x[ψ]) of a solution of the wave equation is also a
solution. ∂0(t Mt,x[ψ]) has vanishing time derivative at t = 0, because it is an even
function of t , and assumes at t = 0 in position x the value ψ(x). Therefore

u(t, x) = t Mt,x[φ] + ∂0
(
t Mt,x[ψ]) (5.92)
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solves in 1 + 3-dimensions the wave equation �u = 0 with the initial values

u(0, x) = ψ(x), ∂0u(0, x) = φ(x). (5.93)

Each solution of the wave equation is uniquely determined by its initial values
(page 104). Accordingly (5.92) is the solution with the initial values ψ and φ. As it
depends on the mean of the initial values it changes little if the initial values change
little. The initial value problem of the wave equation is well-posed.

The solution (5.92) satisfies Huygens’ principle: at time t in position x it is com-
posed additively from the initial values at time t = 0 from all points y, from which
one can reach x in time t with the speed of light. This principle does not hold in
even space dimensions and in d = 1 dimensional space. There also the initial values
from nearer places contribute to the solution. In d = 1, 2, 4, . . . space dimensions
the initial values reverberate.

Retarded Potential

To get an idea of the solution of the inhomogeneous wave equation, we integrate

∂0
2 u −Δu = ĝ (5.94)

over the short time interval τ < t < τ + ε. The initial values of u at time τ are taken
to vanish, u(τ, x) = 0, ∂t u(τ, x) = 0. On the left hand side we obtain ∂0 u(τ + ε) up
to terms which, because of the initial conditions, are of second order in ε, the result
of the right hand side is simply given a name,

∂0 u(τ + ε) =
τ+ε∫

τ

dt
(
∂0

2 u −Δu
)

=
τ+ε∫

τ

dt ĝ(t, x) = g(τ + ε, x). (5.95)

If the inhomogeneity ĝ differs from zero only for this short interval, then sub-
sequently for t > τ the corresponding solution ϕτ solves �ϕτ = 0 with initial
values

ϕτ (τ, x) = 0, ∂0 ϕτ (t, x)|t=τ = gτ (x), gτ (x) = g(τ, x), (5.96)

up to terms which vanish with ε. ϕτ is given by (5.92) translated in time by τ

ϕτ (t, x) = (t − τ)M(t−τ),x[gτ ]. (5.97)

If the inhomogeneity g acts longer, then we compose the solution from solutions,
which are generated by short sources: if u1 is a solution of a linear inhomogeneous
equation L u1 = g1 with source g1 and if u2 is a solution with source g2, then the
sum u = u1 + u2 is a solution with the sum of the sources, L(u1 + u2) = (g1 + g2).

To make these considerations precise, we consider the integral
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u(t, x) =
t∫

0

dτ ϕτ (t, x). (5.98)

It vanishes initially at t = 0, as the domain of integration vanishes then.
Its time derivative differentiates with respect to the upper boundary of the integral,

where it yields the integrand, and with respect to the first argument of ϕτ ,

∂0 u(t, x) = ϕt (t, x)+
t∫

0

dτ ∂0 ϕτ (t, x) =
t∫

0

dτ ∂0 ϕτ (t, x). (5.99)

The time derivative vanishes at t = 0 together with the domain of integration.
The second time derivative is

∂0
2 u(t, x) = ∂0 ϕτ (t, x)|τ=t +

t∫

0

dτ ∂0
2 ϕτ (t, x) = g(t, x)+

t∫

0

dτ ∂0
2ϕτ (t, x).

(5.100)
If we add −Δu = ∫ t

0 dτ (−Δϕτ (t, x)) and take into account that ϕτ solves the wave
equation we are left with

� u(t, x) = g(t, x). (5.101)

So as a function of t and x the integral

u(t, x) =
t∫

0

dτ (t − τ)M(t−τ),x[gτ ] (5.102)

solves �u = g with vanishing initial values u(0, x) = 0 and ∂t u(0, x) = 0.
To evaluate the integral for t > 0 we substitute τ(r) = t − r and integrate over r ,

u(t, x) =
t∫

0

dr r Mr,x[gt−r ] = 1

4π

t∫

0

dr r2

1∫

−1

d cos θ

2π∫

0

dϕ
1

r
g(t − r, x + r n).

(5.103)
The three integrals extend over the points y = x + r n of the ball Bt,x around x with
radius t and r = |x − y| is the distance of y to the center. So the solution of the
inhomogeneous wave equation �u = g with vanishing initial values is

t ≥ 0 : u(t, x) = 1

4π

∫

Bt,x

d3 y
g(t − |x − y|, y)

|x − y| . (5.104)
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For t < 0 we substitute τ(r) = t + r in (5.102), then after the interchange of the
lower and upper boundary the r -integral extends from 0 to |t | = −t and the three
integrals are again a volume integral over the ball Bt,x around x with radius |t |,

t ≤ 0 : u(t, x) = 1

4π

∫

Bt,x

d3 y
g(t + |x − y|, y)

|x − y| . (5.105)

If more generally the initial values at t = 0 do not vanish, then the solution of the
initial value problem of the inhomogeneous wave equation consists of this particular
solution and a wave packet (5.92) with the initial values

u(t, x) = t Mt,x[φ] + ∂0
(
t Mt,x[ψ]) + 1

4π

∫

Bt,x

d3 y
g(t − sign(t) |x − y|, y)

|x − y| .

(5.106)
The solution exists, is unique and depends continuously on the initial data, so the
initial value problem of the inhomogeneous wave equation is well-posed.

The retarded potential

uret(t, x) = 1

4π

∫
d3 y

g(t − |x − y|, y)
|x − y| (5.107)

is a particular solution of �u = g which corresponds to initial time t = −∞. It
vanishes at early times if g does. It may suffer infrared divergencies (i.e. the limit of
increasing integration volume may not exist) if the sources g do not vanish sufficiently
rapidly with increasing distance.

Poincaré, Covariance of the Fields

The linear map of the source g to its retarded potential uret (5.107) is Poincaré, invari-
ant: if x 
→ x ′ = Λx + a is a time orientation preserving Poincaré, transformation
(3.10), then the transformed source ĝ : x 
→ g(Λ−1(x − a)) (4.47) generates the
transformed retarded potential ûret : x 
→ uret(Λ

−1(x − a)).
To see this we shift in (5.107) the integration variable and integrate over z = x−y

4π uret(t, x) =
∫

d3z
g(t − |z|, x − z)

|z| . (5.108)

If we denote (t, x) by x and (|z|, z) by z, then f = 4π uret is written as the special
case m2 = 0 of an integral

f (x) =
∫

d3z

z0 g(x − z), z0 =
√

m2 + z 2. (5.109)

http://dx.doi.org/10.1007/978-3-642-28329-1_3
http://dx.doi.org/10.1007/978-3-642-28329-1_4


5.4 Wave Equation 111

The integral extends over all points x − z of the backward light cone of x , as seen
from z2 = (z0)2 − z 2 = 0 and z0 > 0. For m2 > 0 the domain of integration, the
points z with z2 = m2 ≥ 0, z0 > 0 constitute a mass shell.

The linear map of the source g to the potential f is Poincaré, invariant. We will
check that f̂ (x) = f (Λ−1(x − a)) corresponds to ĝ(x) = g(Λ−1(x − a)).

For translations, x ′ = x + a, Λ = 1, the translated potential

f̂ (x) = f (x − a) =
∫

d3z

z0 g(x − a − z) =
∫

d3z

z0 ĝ(x − z) (5.110)

is the potential of the translated source.
Because Lorentz transformations are linear, Λ−1x − z = Λ−1(x − z′) with

z′ = Λz, one has

f̂ (x) = f (Λ−1x) =
∫

d3z

z0 g(Λ−1x − z)

=
∫

d3z

z0 g(Λ−1(x − z′)) =
∫

d3z

z0 ĝ(x − z′). (5.111)

If in particular Λ is a rotation or rotary reflection, z′ 0 = z0, z ′ = Dz, then we can
easily use rotated integration variables (z′ 1, z′ 2, z′ 3). The modulus of the determinant
of the Jacobi matrix J = ∂z′/∂z = D is | det D| = 1 (6.6), and z′ 0 = √

m2 + z ′ 2

is unchanged by a rotation and coincides with z0 = √
m2 + z 2. So for rotations one

concludes

f̂ (x) =
∫

d3z

z0 ĝ(x − z′) =
∫

d3z′

z′ 0 ĝ(x − z′) =
∫

d3z

z0 ĝ(x − z). (5.112)

In the last step we have named the integration variable z again. So the rotated potential
ûret is the potential of the rotated source ĝ.

The measure d3z/z0 is invariant under arbitrary time orientation preserving
Lorentz transformations. We have to show this only for boosts in x-direction
because each Lorentz transformation can be written as such a boost which is preceded
and followed by a rotation (6.35).

The boost in x-direction (3.8), applied to the four-vector (
√

m2 + z 2, z), gives

√
m2 + z ′ 2 =

√
m2 + z 2 − v zx√

1 − v2
= 1√

1 − v2

(
1 − v zx√

m2 + z 2

) √
m2 + z 2,

z′
x = zx − v

√
m2 + z 2

√
1 − v2

, z′
y = zy, z′

z = zz, (5.113)

the determinant of the 3 × 3 Jacobi matrix J , J i
j = ∂z′ i/∂z j , is

http://dx.doi.org/10.1007/978-3-642-28329-1_6
http://dx.doi.org/10.1007/978-3-642-28329-1_6
http://dx.doi.org/10.1007/978-3-642-28329-1_3
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det J = ∂z′
x

∂zx
= 1√

1 − v2

(
1 − v zx√

m2 + z 2

)
. (5.114)

Altogether one has for each m2 ≥ 0

d3z′
√

m2 + z ′ 2
= d3z√

m2 + z ′ 2
|det J | = d3z√

m2 + z 2
. (5.115)

After changing and renaming the integration variable in (5.111) we can conclude

f̂ (x) =
∫

d3z

z0 ĝ(x − z′) =
∫

d3z′

z′ 0 ĝ(x − z′) =
∫

d3z

z0 ĝ(x − z). (5.116)

So the Lorentz transformed potential corresponds to the Lorentz transformed source.
By the same reason the map of the current to the retarded four-potential

Am
ret(x) =

∫
d3z

|z0| jm(x − z)|
z0=

√
z 2
, (5.117)

is invariant under Poincaré, transformations

Âm(x) = Λm
n An(Λ−1x − a), ĵ n(x) = Λn

m jm(Λ−1(x − a)). (5.118)

The transformed current ĵ is conserved conserved if j is,

∂xn ĵ n(x) = Λn
m ∂xn (Λ−1(x − a))r ∂zr jm(z)|z=Λ−1(x−a)

= Λn
m Λ

−1 r
n ∂zr jm(z) = δr

m ∂zr jm(z) = ∂zm jm(z) = 0. (5.119)

Also the map of the amplitudes to the wave packet (5.83) is Poincaré, invariant
under suitable transformations of the amplitudes,

An
hom(x) =

∫
d̃k

(
an∗

(k) ei k·x + an(k) e−i k·x)
|
k0=

√
k 2

, (5.120)

because the integration measure d̃k (5.84) and the domain of integration are both
Poincaré invariant (5.115).

Under a translation x 
→ x + b the amplitudes a = (a0, a1, a2, a3) change by
multiplication with the function fb : k 
→ eik·b, â = fb a, (a transformation which is
not adjoint to the transformations Ng and Mg of the target and base manifold (4.47))

Ân(x) = An(x − b) =
∫

d̃k
(
(an∗

(k) e−i k·b) ei k·x + (an(k) ei k·b) e−i k·x) .
(5.121)

http://dx.doi.org/10.1007/978-3-642-28329-1_4
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Under Lorentz transformations, the amplitudes transform as a vector field, which
is defined on the mass shell of momentum space.

To be specific, if we evaluate the transformed field Ân(x) = Λn
m Am(Λ−1x), then

the scalar product k · (Λ−1x) in (5.120) equals k′ · x with k′ = Λk, because scalar
products are Lorentz invariant. If we integrate over the three spatial components
of k′ = Λk rather than of k, use am(k) = am(Λ−1k′) and the fact that d̃k = d̃k′ is a
Lorentz invariant measure (5.115), then the transformed wave packet satisfies

Ân(x) = Λn
m Am(Λ−1x) = Λn

m

∫
d̃k′ (

am∗
(Λ−1k′) ei k′·x + am(Λ−1k′) e−i k′·x) .

(5.122)
The denomination of the integration variables, k or k′, is irrelevant. So the Lorentz
transformed wave packet corresponds to the Lorentz transformed amplitudes

ân(k) = Λn
mam(Λ−1k). (5.123)

The components of the wave packet are related by the Lorenz condition ∂m Am = 0
(5.72), which is already satisfied by the retarded potential,

∂m

∫
d3z

|z| jm(x − z) =
∫

d3z

|z| ∂m jm(x − z) = 0. (5.124)

Therefore the amplitudes an∗(k) of the wave packet are restricted

knan∗
(k) = 0. (5.125)

Moreover, one can change them by a gauge transformation by the gradient of a
function χ (5.68), which satisfies the homogeneous wave equation. Thereby the
amplitudes change by

a′ n∗
(k) = an∗

(k)+ i knc∗(k), k2 = 0, (5.126)

where c∗(k) is the amplitude of the gauge function χ .
By (5.125) only three of the four complex amplitudes of the four-potential are

independent. The amplitude in the direction of k can be gauged away. So the wave
packet contains for given wave vector k two degrees of freedom. They correspond
to two independent transverse directions of polarization.

5.5 Action Principle and Noether’s Theorems

Each field f , e.g. the field strength E or B, is a differentiable map
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f :
{

M → N
x 
→ f (x)

(5.127)

of a n-dimensional base space M to a d-dimensional target space N . It defines a
corresponding map, its lift f̂ to the jet space Jk ,

f̂ :
{

M → Jk

x 
→ f̂ (x) = (x, f (x), ∂ f (x), . . ., ∂k f (x))
(5.128)

which maps each x ∈ M to x and the values of f and all its partial derivatives up to
order k at this point.

We denote a typical point of Jk by its coordinates (x, y, y(1), y(2), . . .y(k)). Here
x denotes a point in the base space, y is a d-tupel with components yr , y(1) a point
in the tangent space denoted by components yr

m , where m ranges over n values. y(l)
has components yr

m1m2...ml
where each mi ranges over n values. Because the order

of partial derivatives can be exchanged, the components of the variables y(l) are
completely symmetric under each permutation π of the derivative indices,

yr
m1m2...ml

= yr
mπ(1)mπ(2)...mπ(l)

. (5.129)

So there are d (n + l)!/(n! l!) independent components of y(l). To be definite, one can
order them lexicographically and restrict the independent ones by m1 ≤ m2. . . ≤ ml .

We define the derivatives dm of jet functions in analogy with (4.14)

dmφ =
(
∂xm +

∑
l≥0

∑
r

∑
m1≤m2...≤ml

yr
m m1m2...ml

∂yr
m1m2 ...ml

)
φ (5.130)

such that their composition with the lift gives the derivatives of the composed function
(4.15)

(dmφ) ◦ f̂ = ∂xm (φ ◦ f̂ ). (5.131)

A curve in the space of fields F is a one parameter family of fields λ 
→ fλ,
where λ ranges in some interval. Jet functions φ, evaluated on the lift of fλ, define
by their change as a function of λ and by the chain rule the differential operator δ,

∂

∂λ
(φ ◦ f̂λ) = (δφ) ◦ fλ, (5.132)

which acts on jet functions by

δ = δyr∂yr + (dmδyr )∂yr
m

+ . . .
∑

r

∑
m1≤m2...≤mk

(dm1 . . .dml δyr )∂yr
m1 m2 ...ml

+ . . .,

(5.133)
where δy ◦ f̂λ = ∂

∂λ
fλ is the change of fλ and the derivatives of fλ change by

the derivatives of the change, δyr
m1m2...mk

◦ f̂λ = (dm1 dm2 . . .dmk δyr ) ◦ f̂λ, because

http://dx.doi.org/10.1007/978-3-642-28329-1_4
http://dx.doi.org/10.1007/978-3-642-28329-1_4
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derivatives with respect to coordinates and the parameter may be interchanged (4.18),
i.e. dm commutes with δ.

If there are curves through each point of F such that for all f ∈ F the change
δ f = δy ◦ f̂ is given by an d-tupel of jet functions δy, evaluated on the lift f̂ , we
call δy and δ local (not to be confused with gauged).

The Lagrangian L is a function of some jet space, e.g. J1,

L :
{

D ⊂ R
n+d+d n → R

(x, y, y(1)) 
→ L (x, y, y(1))
(5.134)

It defines a local functional on the space F of fields f , the action S,

S :
{

F → R

f 
→ S[ f ] = ∫
dn x (L ◦ f̂ )(x) = ∫

dn x L (x, f (x), ∂ f (x))
(5.135)

The equations of motion state for the physical fields, that the action is stationary
up to boundary terms, i.e. for all paths fλ through f0 = fphys the derivative of S[ fλ]
vanishes for λ = 0 up to boundary terms

0 = ∂

∂λ
S[ fλ]|λ=0 =

∫
dn x (δL ◦ f̂phys)(x). (5.136)

Because in δL the derivatives of δy can be shifted away

δL = δyr∂yr L + dm(δyr ) ∂yr
m
L = δyr (

∂yr L − dm ∂yr
m
L

) + dm(δyr ∂yr
m
L )

(5.137)
at the cost of complete derivatives, which however only contribute boundary terms,
and because the change of the action has to vanish for all δ f = δy ◦ f̂ the Euler
derivative of the Lagrangian

∂̂L

∂̂ yr
= ∂yr L − dm∂yr

m
L (5.138)

vanishes for physical fields, i.e. they satisfy the Euler-Lagrange equations

∂̂L

∂̂ y
◦ f̂phys = 0. (5.139)

In particular the Maxwell equations (5.71) for the potential A = (A0, A1, A2, A3)

are the Euler-Lagrange equations of the action S = SMaxwell + Smatter with

SMaxwell[A] = −1

4

∫
d4x Fmn(x)F

mn(x), Fmn = ∂m An − ∂n Am . (5.140)

The action of the charged matter provides by definition the current

http://dx.doi.org/10.1007/978-3-642-28329-1_4
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δSmatter

δAm(x)
= − jm(x), (5.141)

which in the Maxwell equations is considered as given source, only restricted by the
continuity equation ∂m jm = 0 (5.20).

Infinitesimal local transformations δy are maps of some jet space, e.g. J1, to
the target space N . They are called infinitesimal symmetries of the action S if the
Lagrangian is invariant in first order up to derivative terms, i.e. if there exist jet
functions K m , such that

δyr ∂yr L + (dmδyr ) ∂yr
m
L + dm K m = 0 (5.142)

which is equivalent to

δyr ∂̂L

∂̂ yr
+ dm jm = 0 (5.143)

where the current jm (and K m to start with), given by

jm = δyr ∂yr
m
L + K m + dn Bmn, (5.144)

is unique only up to so called improvement terms, i.e. jet functions dn Bmn with
Bmn = −Bnm [11, 26]. (5.143) is the

Noether Theorem of Field Theory: To each infinitesimal symmetry δy of the action
there corresponds a conserved current j . Vice versa to each conserved current there
corresponds an infinitesimal symmetry of the action.

By (5.143) the divergence of jm ◦ f̂phys vanishes on account of the equations
of motion (5.139). Conversely to each conserved current j̄ there corresponds an
infinitesimal symmetry δy of the action, because by definition jet functions j̄m are
the components of a conserved current if its divergence is proportional to (derivatives
of) the equations of motion, i.e. if there are jet functions sr and sr m such that

dm j̄m + sr ∂̂L

∂̂ yr
+ sr m dm

∂̂L

∂̂ yr
= 0, (5.145)

dm

(
j̄m + sr m ∂̂L

∂̂ yr

)
+ (sr − dmsr m)

∂̂L

∂̂ yr
= 0. (5.146)

This shows (5.143) with jm = j̄m + sr m ∂̂L
∂̂ yr and δyr = (sr − dmsr m).

In particular, the infinitesimal translation of the potential A by a constant four-
vector −c accompanied by an infinitesimal gauge transformation (5.68) by the gra-
dient of −cl Al

δAn = cl(dl An − dn Al) = cl Fln (5.147)
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is a symmetry of the action SMaxwell with the Lagrangian L = −1/4 Fmn Fmn . The
Lagrangian changes by δL = −dm(cl Fln)Fmn = −1/2((dmcl Fln −dncl Flm) Fmn ,
because the double sum with Fmn antisymmetrizes in m and n (5.27). Moreover, by
construction of F as antisymmetrized derivatives of the potential A, the sum over
the cyclic permutations of dm Fln vanishes, therefore δL = −1/2(dlcl Fmn) Fmn =
dlclL , i.e. δ is a symmetry (5.142) with K m = −cmL .

The conserved current (5.144) turns out to be the energy-momentum tensor (5.23)
in direction of c, jm = cl T lm . This justifies to call pk = ∫

d3xT k0(x) (5.28) the
energy and the momentum. They are the conserved quantities which correspond to
the invariance of the action under translations in spacetime.

Because the energy-momentum tensor of the electromagnetic field is symmetric
and traceless (5.24), the current jm = cl T lm is conserved not only for constant c but
more generally if c satisfies the conformal Killing equation [25]

∂mcn + ∂ncm − 1

2
ηmn∂kck = 0, (5.148)

which has the general 15-parameter solution

cm(x) = am + ωmn xn + d xm + bm x · x − 2(b·x)xm, (5.149)

where am parameterizes an infinitesimal translation, ωmn = −ωnm a Lorentz trans-
formation, d a scale transformation and bm a proper conformal transformation.

The action SMaxwell of the potential A is invariant under infinitesimal conformal
transformations δAn = cm Fmn but the physical properties of matter are not invari-
ant under dilations and proper conformal transformations: atoms exist only in their
invariable size, not in each scaled version. That matter breaks the symmetry group of
the electrodynamic interactions to the Poincaré, group and not to a larger or smaller
subgroup, e.g. that it does not define a rest frame, cannot be deduced logically from
the Maxwell equations, but is the result of observations and experiments.

Exponentiated an infinitesimal proper conformal transformation yields the map

Tb : x 
→ x ′ = x + b x2

1 + 2b · x + b2 x2 . (5.150)

This is not an invertible transformation of R
4, no matter how small b = 0 is, because

the denominator vanishes on the lightcone (x + b/b2)2 = 0 or, if b2 = 0, on the
plane 1 + 2b · x = 0. An infinitesimal symmetry, which corresponds to a conserved
current, needs not be the derivative of a one parameter family of transformations.

If an infinitesimal symmetry δy contains an arbitrary function ξ of R
n and it’s

derivatives, i.e. if δy is a jet function also of a field coordinate ξ and it derivatives
ξ(1), ξ(2). . ., on which the Lagrangian does not depend, and is of the form

δyr = ξ Rr + (dmξ)R
r m, (5.151)
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where Rr and Rr m are some ξ -independent jet functions, then the transformation is
called an infinitesimal gauge symmetry. For example, the change of the potential by
the gradient of an arbitrary function ξ , δAm = dmξ (5.68), is a gauge symmetry of
the action SMaxwell, because already Fmn is invariant.

To each infinitesimal gauge symmetry there corresponds the Noether identity

∂̂

∂̂ξ

(
δyr ∂̂L

∂̂ yr

)
= Rr ∂̂L

∂̂ yr
− dm

(
Rr m ∂̂L

∂̂ yr

)
= 0, (5.152)

because in the Euler derivative of (5.143) with respect to ξ the Euler derivative of
the derivatives dm jm vanishes. Vice versa, to each identity

rr ∂̂L

∂̂ yr
+ rr m dm

∂̂L

∂̂ yr
= 0, (5.153)

there corresponds the infinitesimal gauge symmetry δyr = ξ(rr −dmrr m)−rr mdmξ .
Just multiply the identity with ξ and rearrange the terms to obtain (5.143).

Second Noether Theorem: To each infinitesimal gauge symmetry of the action
corresponds an identity among the Euler derivatives of the Lagrangian. Vice versa,
to each identity among the Euler derivatives of the Lagrangian there corresponds an
infinitesimal gauge symmetry of the action.

In electrodynamics the gauge transformation δAr = dmξδ
m

r is of the form (5.151)
with Rr = 0 and Rr

m = δm
r and the Noether identity (5.152) states, that the

divergence of the Euler derivative with respect to the potential vanishes, dm
∂̂L
∂̂Am

= 0,

in particular for LMaxwell the identity is dmdn Fnm = 0.
If one inserts (5.151) into (5.143) and uses (5.152) one obtains for infinitesimal

gauge symmetries of the Lagrangian L

dm( jm + ξ Rr m ∂̂L

∂̂ yr
) = 0 (5.154)

as identity in jet space. The divergence vanishes if and only if the terms in the braces
are the divergence of antisymmetric jet functions [11, 26]

jm = −ξ Rr m ∂̂L

∂̂ yr
+ dn Bnm, Bnm = −Bmn . (5.155)

Therefore, in gauge theories by the equations of motion the charge in each volume
is determined by a surface integral over its boundary, as dm B0m does not contain a
time derivative, but is the divergence of some three-vector field E
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QV =
∫

V

d3x j0 =
∫

V

d3x div E =
∫

∂V

d2f · E. (5.156)

Consider a gauge invariant matter Lagrangian Lmatter with a fixed gauge field.
Such a field is called a background field. It defines a subset of infinitesimal gauge
transformations, called rigid transformations, which leave the background field
invariant, δA = 0. For example, a vanishing potential A = 0 in electrodynamics
is invariant under constant gauge transformations ξ , δA = ∂ξ = 0. As another
example, the metric of Minkowski space is invariant under infinitesimal Poincaré,
transformations, which satisfy Killing’s equation ∂mξn + ∂nξm = 0.

To these symmetries of the background there correspond conserved Noether cur-
rents which by (5.155) and by the equations of motion of the matter fields are given,
up to improvement terms, by the Euler derivatives with respect to the gauge field,
evaluated at the background field

jm
rigid = δφi

∂Lmatter

∂∂mφi
+ K m + dn Bmn = −ξ Rm

Ak

∂̂Lmatter

∂̂Ak
. (5.157)

In general relativity, this explains why the Euler derivative of the matter Lagrangian
with respect to the metric is the energy-momentum tensor T mn , the collection of
Noether currents, which are conserved because Minkowski space is invariant under
translations of space and time,

jm ◦ φ̂phys =|gmn=ηmn
T mnξn, T mn = −1

2

∂̂Lmatter

∂̂gmn
. (5.158)

5.6 Charged Point Particle

A particle with charge q, which is forced to traverse the worldline t 
→ (t, z(t)),
generates by its charge and current densities

ρ(t, y) = q δ3(y − z(t)), j (t, y) = q
dz
dt
δ3(y − z(t)). (5.159)

the scalar potential (5.117)

φ(t, x) = 1

4π

∫
d3 y

ρ(tret, y)
|x − y| = q

4π

∫
d3 y

δ3(y − z(tret))

|x − y| , tret = t − |x − y|.
(5.160)

The argument of the δ-function y′ = y − z(tret) is a composite function of the
integration variable y, as the retarded time tret = t − |x − y| depends on y.
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By the substitution theorem for integrals such a composite δ-function, applied to
a test function f , yields

∫
d3 y δ3(y′(y)) f (y) =

∫
d3 y′

∣∣∣∣det
∂y

∂y′

∣∣∣∣ δ3(y′) f (y(y′))

= 1∣∣∣det ∂y′
∂y

∣∣∣ |ŷ

f (ŷ), y′(ŷ) = 0. (5.161)

In the case at hand, y′ vanishes at y = z(tret). The test function f is the Coulomb
potential 1/|x − z(tret)|. The Jacobi matrix of the substitution and its determinant is

∂y′ i

∂y j
= δi

j + N i
j , N i

j = −dzi

dt

x j − z j

|x − z| , det
∂y′

∂y
= 1 − dz

dt

x − z
|x − z| , (5.162)

where we exploited that N has rank 1 which implies det(1 + N ) = 1 + tr N .
We obtain the scalar potential and analogously the vector potential

4πφ(t, x) = q

|x − z(tret)| − dz
dt

x−z
|x−z|

, 4πA(t, x) = q

|x − z(tret)| − dz
dt

x−z
|x−z|

dz
dt
.

(5.163)
This four potential is named after Alfred-Marie Liénard and Emil Wiechert who
derived it first. In the form

Am(x) = q

4π

um

y · u
, (5.164)

one can calculate the corresponding field strength with tolerable algebraic effort.
u = dz

ds is the normalized tangent vector to the worldline of the particle at its inter-
section z(s(x)) with the backward light cone of x . We parameterize the worldline
with its proper time s, which is shown by a watch which is carried along.

u = dz

ds
= 1√

1 − v2

(
1
v

)
, v = dz

dt
, u2 = 1. (5.165)

The lightlike vector y = x − z(s(x)) points from the cause to the effect: from the
event z(s(x)), in which the particle crosses the backward light cone of x to the
observer at x in direction n and in distance r

y =
( |x − z(s(x))|

x − z(s(x))

)
= r

(
1
n

)
, y2 = 0, y ·u = r√

1 − v 2
(1−v n). (5.166)

The proper time s on the worldline defines the time s(x), which an observer at x
reads from the clock. It has the constant value s on the forward light cone of z(s).

The gradient km of s(x) is calculated be differentiation of y2 = 0,
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0 = (δm
n − un ∂ms) yn, km := ∂ms = ym

y · u
. (5.167)

It is lightlike k2 = 0 and given by

k =
√

1 − v 2

1 − vn

(
1
n

)
(5.168)

With its help we can express the derivatives of y and y · u by the four-acceleration

u̇ = du

ds
= dt

ds

d

dt

(
1√

1 − v 2

(
1
v

))

= 1

(1 − v 2)2

(
v a

a (1 − v 2)+ v (v a)

)
, a = d2z

dt2 (5.169)

and the quantities which we have introduced,

∂m yn = δm
n − unkm,

∂m(y · u) = (∂m yn) un + y · u̇ km = um + (y · u̇ − 1) km . (5.170)

We obtain the field strengths

Fmn = ∂m An − ∂n Am = − q

4π (y · u)2
∂m(y · u) un + ∂mun

q

4π (y · u)
− m ↔ n

= kmwn − knwm, wm = q

4π (y · u)2
um + q

4π (y · u)
(u̇m − um k · u̇).

(5.171)

and in particular the electric field, Ei = F0i = k0wi − ki w0,

E(t, x) = q (1 − v 2)

4π r2 (1 − v n)3
(n − v)+ q

4π r (1 − v n)3
n× ((n − v)× a) . (5.172)

The part which does not depend on the acceleration, decreases with distance as 1/r2

and does not show in the direction n from the cause, the event z, to the effect at x , but
into the direction x − (z + rv), away from the destination z + rv, which the particle
would reach with constant velocity v in the moment when it effects the field at x.

The acceleration dependent part, the radiation field, decreases with 1/r and is
orthogonal to the direction n from the cause to its effect at x.

The magnetic field of the particle is orthogonal to n and E

Bk = −εi jkki w j = εi jkki w j = εi jk ki/k0 E j , B = n × E. (5.173)
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The energy current density S = E × B of the radiation points into the direction n
away from the cause: an accelerated charge looses energy by radiation.

Mathematically and physically the description of matter by point particles is
untenable. If no interaction contributes with a negative energy density, then the charge
of the electron cannot be concentrated in a sphere with a smaller radius than half the
electron radius

relectron = e2

4π ε0 melectronc2 = 2,818 · 10−15m. (5.174)

Otherwise the electric field outside of an electron at rest would contain already more
energy than the rest energy of the electron. Extended charge distributions require
interactions which prevent the charge distributions of the particles to fly apart. The
charge distribution cannot be rigid, because in relativistic physics there cannot exist
truly rigid bodies. Therefore, matter has to be described by a field theory. According
to our present understanding, only quantum field theory yields an acceptable theory
for matter.



Chapter 6
The Lorentz Group

Abstract Rotations in higher dimensional spaces define one- and two dimensional
subspaces in which they act just as in the Euclidean plane. Similarly Lorentz trans-
formations in higher dimensional spaces act, up to rotations, in two dimensional
subspaces as boosts. Each Lorentz transformation Λ of the four-dimensional space-
time corresponds uniquely to a pair ±M of linear transformations of a complex
two-dimensional space, the space of spinors. Their inspection reveals that aberra-
tion, the Lorentz transformation of the directions of light rays, acts as a Möbius
transformation of the Riemann sphere.

6.1 Rotations

Rotations and rotary reflections of a d-dimensional Euclidean space V 1

D :
{

V → V
(v1, v2, . . . vd) �→ (D1

j v j , D2
j v j , . . . Dd

j v j )
(6.1)

constitute the subgroup O(d) of linear transformations, which leave the scalar product
(here given in an orthonormal basis)

u · v = u j δ jk vk = u1 v1 + u2 v2 + · · · + ud vd (6.2)

δ jk :
{

1 if j = k
0 if j �= k

(6.3)

of all vectors v = (v1, v2, . . . vd) and u = (u1, u2, . . . ud) and thereby all angles and
lengths invariant,

1 We use Einstein’s summation convention. Unless stated otherwise, each pair of indices denotes
the sum over the range of its values, Di

j v j = Di
1v1 + Di

2v2 + · · · + Di
d vd .

N. Dragon, The Geometry of Special Relativity—a Concise Course, 123
SpringerBriefs in Physics, DOI: 10.1007/978-3-642-28329-1_6,
© The Author(s) 2012
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Di
j u

j Di
kvk = u jδ jkvk . (6.4)

This holds if and only if the orthogonality relations hold,

Di
j Di

k = δ jk . (6.5)

The columns of the matrix D contain the components of orthonormal vectors, or
phrased as a matrix property, the transposed matrix DT , DT

j
i = Di

j , equals the
inverse matrix,

DT D = 1. (6.6)

In particular (det D)2 = 1, because of 1 = det 1 = det(DT D) = det DT det D =
(det D)2. The determinant of D therefore is 1 or −1.

Rotary reflections and rotations form the group O(d) of the orthogonal transfor-
mations in d dimensions. We reserve the name rotations for the orientation preserving
transformations with determinant det D = 1. They constitute the group of special
orthogonal transformations, SO(d).

The determinant is a continuous function of the matrix elements. Therefore there
does not exist a one parameter set of rotary reflections Dλ, which varies continuously
with λ and connects a rotation with det Dλ=0 = 1 and a reflection with det Dλ=1 =
−1: rotations are not connected to reflections.

Each rotation can be generated by repeated application of infinitesimal rotations,
it is continuously connected to the identity 1. In other words, the group SO(d) is
connected. This is seen by inspecting the eigenvalue equation of rotary reflections,

D w = λ w w �= 0. (6.7)

The eigenvalues λ satisfy the characteristic equation

det(D − λ1) = 0. (6.8)

For real d × d-matrices this is a polynomial equation of order d with real coef-
ficients and has d not necessarily distinct complex solutions, where we count each
real solution as complex, though special, solution.

To each complex eigenvalue λ = σ + iτ of the real rotary reflection D = D∗ there
belongs an eigenvector with complex components, wi = ui + i vi . The conjugate
λ∗ = σ − iτ is eigenvalue of the eigenvector w∗ i = ui − i vi . For D = D∗ is real
and conjugation yields 0 = ((D − λ1)i

j w j )∗ = (D − λ∗1)i
j w∗ j .

By the orthogonality relations (6.5) and the eigenvalue equation

(D w∗)i (D w)i − w∗ i wi = 0 = (λ∗λ − 1)w∗ i wi = (|λ|2 − 1)(u 2 + v 2)

(D w)i (D w)i − wi wi = 0 = (λ2 − 1)w∗ i wi = (λ2 − 1)(u 2 − v 2 + 2 i u · v)
(6.9)
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and because u 2 + v 2 does not vanish, each eigenvalue of an orthogonal transforma-
tion has modulus |λ|2 = 1. Each real eigenvalue λ is 1 or −1. The corresponding
eigenvector is invariant Dn = n, or is reflected, Da = −a.

If the eigenvalue λ = cos α + i sin α is not real, then (λ2 − 1) does not vanish
and u and v are orthogonal and have equal length. We choose the normalized vectors
e1 = v/|v| and e2 = u/|u| as basis and spell out the eigenvalue equation

D(e2 + ie1) = (cos α + i sin α)(e2 + i e1) (6.10)

or, decomposed into real- and imaginary part,

De1 = (cos α) e1 + (sin α) e2

De2 = −(sin α) e1 + (cos α) e2
(6.11)

i.e. on this orthonormal basis of the plane which is spanned by e1 and e2 the rotary
reflection acts by the matrix (3.6)

Dα =
(

cos α − sin α

sin α cos α

)
. (6.12)

We can restrict α to the range 0 < α < π , i.e. sin α > 0, because a negative sign of
sin α can be absorbed by choosing the basis e′

1 = e1, e′
2 = −e2.

The real subspace U⊥ of vectors y, which are orthogonal to a real or complex
eigenvector w, y · w = 0, is mapped to itself, D(U⊥) ⊂ U⊥ ,

y · w = 0 = (D y) · (D w) = λ(D y) · w D U⊥ ⊂ U⊥. (6.13)

The space U⊥ together with e1 and e2 or n or a spans the Euclidean space V because,
due to the positive definiteness of the scalar product, the vectors in U⊥ are linearly
independent from e1 and e2 or n or a.

Restricted to U⊥ the rotation D has an eigenvalue which is either real, then D
leaves the eigenvector invariant or reflects it, or the eigenvalue is not real, in which
case D acts by a rotation Dβ of the two dimensional eigenplane. Altogether, there is
a orthonormal basis of V in which the matrix D takes the form

D =

⎛
⎜⎜⎜⎜⎜⎝

Dα

. . .

Dβ

1
−1

⎞
⎟⎟⎟⎟⎟⎠

(6.14)

where 1 denotes a block of eigenvalues 1 and −1 another block of eigenvalues −1.
If the dimension of V is odd, there has to exist a real eigenvalue 1 or −1, there is an
axis of rotation or of a reflection.

http://dx.doi.org/10.1007/978-3-642-28329-1_3
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In particular, in d = 3 dimensions we can use the axis n to decompose each
vector into its parallel and orthogonal parts, k = k‖ + k⊥, k‖ = n (n · k) . They are
completed by n × k⊥ to a right handed basis (if k⊥ does not vanish). In these terms
the rotation by an angle α is given by

Dα n(k‖ + k⊥) = k‖ + (cos α) k⊥ + (sin α) n × k⊥. (6.15)

In case of a proper reflection the number of eigenvalues −1 is odd, in case of a
rotation even. Each pair of eigenvalues −1 can be considered to belong to a rotation
Dπ by α = π .

Each rotation D, det D = 1 , is an iterated infinitesimal rotation D = eδ . For
eigenvectors n to the eigenvalue 1 we define δn = 0 and get eδn = δ0n = n. For the
orthonormal basis e1 and e2 which corresponds to Dα we define

δe1 = α e2 δe2 = −α e1 (6.16)

consequently δ2e1 = −α2e1 and δ2e2 = −α2e2. Inserted into the exponential
series eδ and separated into even and odd powers

eδ =
∑

k

1

(2k)!δ
2k +

∑
k

1

(2k + 1)!δ
2k+1 =

∑
k

(−1)k

(2k)! α2k +
∑

k

(−1)k

(2k + 1)!α
2kδ

(6.17)
and applied to e1 and e2 one obtains (6.11)

eδe1 = (cos α) e1 + (sin α) e2 eδe2 = −(sin α) e1 + (cos α) e2. (6.18)

Therefore D = eδ for the vectors e1,i and e2,i , which are rotated by an angle αi .
Vectors ak which are reflected, Dak = −ak occur in pairs, because det D = 1 .
Their transformation is a rotation by α = π and is also of the form D = eδ . So this
equation holds on a basis and therefore in all the Euclidean space.

Because each angle of rotation can be continuously increased from zero to α,
all rotations are continuously connected to 1 and to one another. Consequently the
orthogonal group O(d) consists of two disconnected components, the group of rota-
tions SO(d) and the set P SO(d), where the parity transformation P reflects an odd
dimensional subspace, Pa = −a, and leaves the orthogonal subspace pointwise
invariant, Pn = n.

6.2 Lorentz Transformations

The Lorentz group O(p, q), p > 0 , q > 0 , consists of the real, linear transforma-
tions Λ of the points x of the p + q-dimensional Minkowski space R

p,q ,

x ′ = Λ x (6.19)
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which leave invariant the scalar product of R
p,q (here given in an orthonormal basis)

x · y =
p∑

i=1

xi yi −
p+q∑

i=p+1

xi yi . (6.20)

In matrix notation it is given by x · y = xT η y with a matrix

η =
(

1
−1

)
(6.21)

which has a p × p unit block and a q × q block −1 . So Lorentz matrices have to
satisfy (Λx)T η Λy = xT η y for all x and y and therefore

ΛT ηΛ = η. (6.22)

The determinant of this matrix equation leads to

(det Λ)2 = 1 (6.23)

because det(ΛT η Λ) = (det ΛT )(det η)(det Λ) and because det ΛT = det Λ. So
the determinant of a Lorentz transformation can only have the values +1 or −1. The
special transformations Λ with det Λ = 1 constitute the special orthogonal group
SO(p, q).

The group O(p, q) is the manifold O(p) × O(q) × R
pq and consists of four

disconnected components.
To show this, we decompose the (p+q)×(p+q)-matrix Λ into a p× p -matrix A,

a q × q -matrix D, a q × p -matrix C and a p × q -matrix B

Λ =
(

A B
C D

)
(6.24)

and write (6.22) in terms of these matrices,

AT A = 1 + CT C, DT D = 1 + BT B, AT B = CT D. (6.25)

The symmetric matrix CT C is diagonalizable by a rotation and has nonnegative
diagonal elements λ j = ∑

i Ci j Ci j . Therefore the eigenvalues of 1 + CT C are not
smaller than 1 and A is invertible, (det A)2 = det(1 + CT C) ≥ 1. The same applies
to D, (det D)2 ≥ 1.

An invertible real matrix A can be uniquely decomposed into the product of an
orthogonal transformation O , OT = O−1, and a symmetric matrix S, ST = S, with
positive eigenvalues,

A = O S. (6.26)
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For AT A defines a symmetric matrix S2 with positive eigenvalues λi > 0, i =
1, . . . p, and also the positive symmetric matrix

S =
√

AT A, S = ST (6.27)

with the same eigenvectors as S2 and the positive eigenvalues
√

λi . The matrix

O = AS−1, OT = O−1 (6.28)

is orthogonal as ST −1 AT AS−1 = S−1S2S−1 = 1 shows.
As A and D are invertible, Λ (6.24) can be decomposed uniquely (6.26)

Λ =
(

O
Ô

)(
S Q
P Ŝ

)
(6.29)

with P = Ô−1C and Q = O−1 B . S and Ŝ are invertible and symmetric, O and Ô
are orthogonal matrices. Equation (6.22) reads

S2 = 1 + PT P SQ = PT Ŝ Ŝ2 = 1 + QT Q. (6.30)

Using Q = S−1 PT Ŝ and S−2 = (1 + PT P)−1 in the last equation, one obtains

Ŝ2 = 1 + Ŝ P S−1S−1 PT Ŝ or 1 = Ŝ−2 + P(1 + PT P)−1 PT . (6.31)

Its consequences for Ŝ−2 are exhibited by applying the matrices to eigenvectors
w of P PT , P PT w = λw. If PT w is not zero, then it is eigenvector of PT P ,
(PT P)PT w = λPT w, with the same eigenvalue. This is why

P(1 + PT P)−1 PT w = P
1

1 + λ
PT w = λ

1 + λ
w. (6.32)

The equation applies also if PT w vanishes as then P PT w = 0 which is λ = 0.
Inserted into (6.31) one obtains 1

1+λ
w = Ŝ−2w or Ŝ2w = (1+λ)w. The eigenvectors

w constitute a basis of R
q . Therefore the equation holds for each vector, i.e. as matrix

equation,
Ŝ2 = 1 + P PT . (6.33)

By the same reasons one concludes

Q = S−1 PT Ŝ =
√

1 + PT P
−1

PT
√

1 + P PT = PT . (6.34)

for eigenvectors of P PT and therefore as matrix equation.
So each Lorentz matrix is uniquely given by a pair of orthogonal transformations

O ∈ O(p), Ô ∈ O(q) and a rotation-free Lorentz transformation L P , L P = (L P )T ,
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which is determined by a matrix P with q rows and p columns

Λ =
(

O
Ô

)
L P L P =

(√
1 + PT P PT

P
√

1 + P PT

)
, (L P )−1 = L−P . (6.35)

Such q × p matrices P constitute the vector space R
qp. Each Lorentz transformation

corresponds one to one to a point in the manifold O(p) × O(q) × R
qp.

The vector space R
qp is connected, the orthogonal groups consist of two discon-

nected components, therefore O(p, q) has four disconnected components.
Lorentz transformations Λ with det O = det Ô = 1 preserve the orientation of the

timelike and spacelike directions and constitute the proper Lorentz group SO(p, q)↑.
It is connected. The other components of O(p, q) are obtained by multiplication with
the inversion of time T and by the parity transformation P , which reflect an odd
dimensional timelike or spacelike subspace, and by T P ,

T =

⎛
⎜⎜⎜⎝

−1
1

. . .

1

⎞
⎟⎟⎟⎠ , P =

⎛
⎜⎜⎜⎝

1
. . .

1
−1

⎞
⎟⎟⎟⎠ . (6.36)

The Lorentz transformation L P acts in 1 + 1-dimensional subspaces Ui , which
are mutually orthogonal, of the Minkowski space R

p,q as the transformation (3.4).
The subspace which is orthogonal to all of the Ui is pointwise invariant.

This follows from the inspection of eigenvectors wi of P PT , which acts on the
subspace R

q with a definite scalar product. They are orthogonal to each other if they
correspond to different eigenvalues λi and can be chosen to be mutually orthogonal, if
the eigenvalue is degenerate. We choose them to be normalized, w j ·wi = −wT

j wi =
−δi j .

The eigenvectors u of P PT with vanishing eigenvalue, P PT u = 0, are annihi-
lated already by PT , PT u = 0, as P PT u = 0 implies uT P PT u = 0. This is a sum
of squares of the components of PT u and vanishes only if PT u = 0. Therefore L P

leaves each u invariant, L P u = u.
Similarly one has Pv = 0 and L P v = v for each eigenvector v ∈ R

p of PT P
with vanishing eigenvalue.

Each normalized eigenvector e1 of P PT with nonvanishing eigenvalue λ defines
an orthogonal, normalized eigenvector e0 = PT e1/

√
λ of PT P with the same

eigenvalue. On these vectors L P acts by

L P (e0) = √
1 + λ e0 + √

λ e1, L P (e1) = √
λ e0 + √

1 + λ e1 (6.37)

and is given in this basis by the matrix

(√
1 + λ

√
λ√

λ
√

1 + λ

)
. (6.38)

http://dx.doi.org/10.1007/978-3-642-28329-1_3
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This is the two-dimensional Lorentz boost (3.4) with velocity v = −√
λ/(1 + λ) .

Though each L P decomposes in an appropriate basis into a sum of two-dimen-
sional boosts, it is not true that each Lorentz transformation Λ can be decomposed
into the transformations of two-dimensional subspaces if (p − 1)(q − 1) ≥ 1 . As a
counter example consider the indecomposable Jordan blocks

Jλ =
(

λ 1
λ

)
. (6.39)

The Lorentz transformation, which consists of such 2 × 2-blocks,

Λ =
(

Jλ

Jλ−1

)
(6.40)

leaves invariant the scalar product

η =
(

A
AT

)
, A =

(
λ

−λ−1

)
(6.41)

which in a different basis is diagonal with two timelike and two spacelike directions,
η ∼ (1, 1,−1,−1) .

In the four-dimensional spacetime R
1,3 the rotation-free Lorentz transformation

(6.35) has the form

L p = 1

m

(
p0 p j

pi mδi j + pi p j

p0+m

)
, p0 =

√
m2 + p 2. (6.42)

Here we denote the components of the 3 × 1 column matrix P by pi/m, i = 1, 2, 3,
the spatial columns are enumerated by j , j = 1, 2, 3. The coefficients of δi j and
pi p j are determined by the requirement that the 3 × 3-matrix, in which they appear,
has to act on eigenvectors of P PT as the matrix

√
1 + P PT . As P is just a column

vector p, all vectors orthogonal to it are eigenvectors of P PT with eigenvalue 0 and
P itself is eigenvector with eigenvalue λ = p 2/m2.

The rotation-free Lorentz transformation L p transforms the four-momentum p
of a particle with mass m at rest, p = (m, 0, 0, 0), into the four-momentum p =
(p0, p1, p2, p3) of a particle which moves with a velocity vi = pi/p0 (3.47),

L p p = p. (6.43)

http://dx.doi.org/10.1007/978-3-642-28329-1_3
http://dx.doi.org/10.1007/978-3-642-28329-1_3
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6.3 The Rotation Group SU(2)/Z2

The unitary, unimodular transformations of a two-dimensional complex vector space
constitute the group SU(2). As manifold it is the three sphere S3.

The unitarity condition U †U = 1 states that the columns of each unitary 2×2-
matrix U contain the components of an orthonormal basis. If U has the form

U =
(

a c
b d

)
(6.44)

then |a|2 +|b|2 = 1. The second column is orthogonal to the first, a∗c + b∗d = 0, if
and only if (c, d) is a multiple of (−b∗, a∗) and the condition det U = 1 determines
this multiple

U =
(

a −b∗
b a∗

)
(�a)2 + (�a)2 + (�b)2 + (�b)2 = 1. (6.45)

To each U corresponds a point on S3 = {(v, x, y, z) ∈ R
4 : v2+x2+y2+z2 = 1} and

to each point on S3 there corresponds a U ∈ SU(2) with a = v + iz and b = x + iy .
Points on S3 can be designated by an angle 0 ≤ α ≤ 2π and a three-dimensional

unit vector (nx , ny, nz) as (v, x, y, z) = cos α/2 (1, 0, 0, 0)−sin α/2 (0, nx , ny, nz) .
Correspondingly one can write each SU(2)-matrix as the following linear combina-
tion of the 1-matrix σ 0 and the three Pauli matrices σ i , i = 1, 2, 3,

σ 0 =
(

1
1

)
σ 1 =

(
1

1

)
σ 2 =

( −i
i

)
σ 3 =

(
1

−1

)
(6.46)

U =
(

cos
α

2

)
1−i

(
sin

α

2

)
n·σ =

(
cos α

2 − i (sin α
2 ) nz −i (sin α

2 ) (nx − iny)

−i (sin α
2 ) (nx + iny) cos α

2 + i (sin α
2 ) nz

)
.

(6.47)
Elementary calculation confirms the nine products of the Pauli matrices,

σ iσ j = δi j 1 + i εi jkσ
k i, j, k ∈ {1, 2, 3}. (6.48)

If multiplied and summed with mi and n j this can also be written as

(m · σ)(n · σ) = (m · n)1 + i(m × n) · σ. (6.49)

In particular for each unit vector n the square simplifies (n · σ)2 = 1 and with
(n · σ)2k = 1 and (n · σ)2k+1 = n · σ power series of n · σ simplify
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exp
(
−i

α

2
n · σ

)
=

∑
k

(−iα/2)2k

(2k)! 1 +
∑

k

(−iα/2)2k+1

(2k + 1)! n · σ

=
∑

k

(−1)k(α
2 )2k

(2k)! 1 − i
∑

k

(−1)k(α
2 )2k+1

(2k + 1)! n · σ

=
(

cos
α

2

)
1 − i

(
sin

α

2

)
n · σ. (6.50)

So each U ∈ SU(2) is generated by an infinitesimal transformation −i α
2 n · σ ,

U = exp
(
−i

α

2
n · σ

)
= cos

α

2
1 − i sin

α

2
n · σ. (6.51)

Each subgroup H of a group G defines an equivalence relation among its
elements by

g
H∼ g′ ⇔ g−1g′ ∈ H. (6.52)

The set of equivalence classes is denoted by G/H . If moreover ghg−1 ∈ H for all
g ∈ G and all h ∈ H , then the subgroup H is called normal and the equivalence
classes form a group G/H , because the product g2g1 is equivalent to the product of
equivalent elements g2h2g1h1 = g2g1(g

−1
1 h2g1)h1 = g2g1h′.

For instance, Z2, the cyclic group with two elements ±1, is a normal subgroup of
SU(2). Matrices U ∈ SU(2) are Z2-equivalent, if they differ at most by their sign.
The group SU(2)/Z2 consists out of SU(2)-transformations up to the sign.

The group SO(3) of rotations in three dimensions is isomorphic to the group
SU(2)/Z2. This is to say, there exists a bijective, i.e. invertible and exhaustive, map
D from SU(2)/Z2 to SO(3), which maps each pair ±U of unitary 2×2-matrices with
det U = 1 to a 3×3-rotation DU = D−U and which is compatible with the group
multiplication, DU1 U2 = DU1 DU2 . The map is exhaustive, each rotation R ∈ SO(3)

is a representation DU of some unitary 2×2-matrix U . The inverse image of DU in
SU(2)/Z2 is unique. If DU = DV then U = V or U = −V .

The rotation DU ∈ SO(3) which corresponds to U ∈ SU(2) is the linear map

DU : K �→ K ′ = U KU † (6.53)

of hermitean, traceless 2×2-matrices K to hermitean traceless matrices K ′. A 2×2-
matric K is hermitean, K = K †,

(
k11 k12

k21 k22

)
=

(
k11 k12

k21 k22

)†

=
(

k11 ∗ k21 ∗
k12 ∗ k22 ∗

)
(6.54)

if the matrix elements k11 and k22 are real and if k12 is the complex conjugate of k21.
The matrix is traceless if k11 = −k22. Such matrices span a three-dimensional
real vector space and can be written as real linear combinations of the Pauli
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matrices (6.46)

K = k · σ = kiσ i =
(

k3 k1 − ik2

k1 + ik2 −k3

)
. (6.55)

The linear transformation k · σ �→ U (k · σ)U † = k′ · σ is a rotation k �→
k′ = DU k. To check this by explicit calculation, we write (6.51) with c = cos α

2
and s = sin α

2 just as U = c − isn · σ and decompose k = k‖n + k⊥ into a part
which is parallel to n and a transverse part. K = K‖ + K⊥ with K‖ = k‖n · σ and
K⊥ = k⊥ · σ .

The part K‖ commutes with each power series in n · σ , in particular with U , and
therefore is invariant

U K‖U † = K‖UU † = K‖. (6.56)

In the calculation of the transformation of k⊥ ·σ we observe that k⊥σ anticommutes
with n · σ (6.49)

(k⊥ · σ)(n · σ) = −(n · σ)(k⊥ · σ) (6.57)

because k⊥ and n are orthogonal to each other. Together with (n ·σ)2 = 1 and (6.49)
we obtain

U (k⊥ · σ)U † = (c − isn · σ)(k⊥ · σ)(c + isn · σ)

= (c − isn · σ)(c − isn · σ)(k⊥ · σ)

= U 2(k⊥ · σ) = (cos α − i sin α n · σ)(k⊥ · σ)

= (cos α k⊥ + sin α n × k⊥) · σ. (6.58)

So U = e−i α
2 n·σ causes by k · σ �→ Uk · σU † = (DU k) · σ the rotation DU of

vectors k around the axis n by the angle α (6.15)

DU : k‖ + k⊥ �→ k‖ + cos α k⊥ + sin α n × k⊥. (6.59)

Vice versa, there corresponds to each rotation Dα n around the axis n by the angle α

the pair of unitary matrices U = e−i α
2 n·σ and −U = e−i α+2π

2 n·σ .

6.4 The Group SL(2, C)

Each invertible, complex matrix M can be uniquely decomposed into a product
of a unitary matrix U , U † = U−1, and the exponential eH (which has positive
eigenvalues) of a hermitean matrix, H = H† ,

M = U eH . (6.60)
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This equation generalizes the well known decomposition z = eiϕ r of a nonvan-
ishing complex number z into its phase and its modulus r > 0 .

The polar decomposition exists because

e2H = M† M (6.61)

defines uniquely a hermitean matrix H = H† because M† M is hermitean, and there-
fore diagonalizable and has positive eigenvalues λ = e2h . Therefore the hermitean
matrix H = 1

2 ln M† M exists which has the same eigenvectors as M† M and the real
eigenvalues h. The matrix

U = Me−H (6.62)

is unitary, (Me−H )†(Me−H ) = e−H M† Me−H = e−H e2H e−H = 1 , and M =
U eH .

As each invertible complex matrix M corresponds one to one to a pair (U, H) of a
unitary and a hermitean matrix and because the hermitean N × N -matrices constitute
a real N 2-dimensional vector space, therefore the group GL(N , C) of the general
linear transformations in N complex dimensions is the manifold U(N ) × R

N 2
.

If the matrix M belongs to the subgroup SL(N , C) of the special linear trans-
formations with det M = 1, then the trace of H , the sum of its diagonal elements,
vanishes, tr H = 0 , because det(e2H ) = det(M† M) = 1 and det(e2H ) is the product
of its eigenvalues e2h . Moreover U is unimodular, det U = det(Me−H ) = 1. The
group SL(N , C) therefore is the manifold SU(N ) × R

(N 2−1). In particular, SU(2) is
the manifold S3 (6.45) and SL(2, C) is the manifold S3 × R

3.
The unique decomposition of each Lorentz transformation into an orthogonal

transformation and a rotation-free Lorentz transformation (6.35) shows that the group
SO(1, 3)↑ of the transformations which preserve the time orientation and the space
orientation is the manifold SO(3)×R

3. The rotation group SO(3) is S3/Z2. Therefore
SL(2, C) is the covering manifold of SO(1, 3)↑.

Also as group SL(2, C) is a covering of SO(1, 3)↑. This means: there is a
four-dimensional, real representation of SL(2, C), which maps each complex 2×2-
matrix M with det M = 1 to a Lorentz transformation ΛM with Λ0

0 ≥ 1 and
det Λ = 1 and which is compatible with the group product, ΛM1 M2 = ΛM1ΛM2 .
The representation is exhaustive, each Lorentz transformation Λ with Λ0

0 ≥ 1
and det Λ = 1 can be written as representation ΛM of a complex matrix M with
det M = 1 . The preimage of Λ is unique up to the sign. One has ΛM = ΛN exactly
if M = N or M = −N .

The transformation ΛM is the linear map

ΛM : k̂ �→ k̂′ = M k̂ M† (6.63)

of hermitean 2 × 2-matrices k̂ = k̂† to hermitean matrices k̂′. They are real linear
combinations



6.4 The Group SL(2, C) 135

k̂ = k0 σ 0 − k1 σ 1 − k2 σ 2 − k3 σ 3 =
(

k0 − k3 −k1 + ik2

−k1 − ik2 k0 + k3

)
(6.64)

of the matrix σ 0 = 1 and the three Pauli matrices (6.46), so they span a four-
dimensional real vector space. Also M k̂ M† is hermitean and defines a real four-
vector k′ = (k′ 0, k′ 1, k′ 2, k′ 3). Its components

k′ m = Λm
n kn (6.65)

are linear in k with real matrix elements Λm
n .

The matricesΛ are a representation of the group SL(2, C), asΛM1 M2 = ΛM1 ΛM2

holds for successive transformations

k̂′′ = M1 M2 k̂ M†
2 M†

1

k′′ m = (ΛM1)
m

r k′ r = (ΛM1)
m

r (ΛM2)
r

n kn = (ΛM1 M2)
m

n kn .
(6.66)

The transformation ΛM is a Lorentz transformation, because the determinant of
the 2 × 2-matrix k̂ is a quadratic polynomial, namely the length squared (2.46) of
the four-vector k,

det k̂ = (k0)2 − (k1)2 − (k2)2 − (k3)2 (6.67)

and coincides because of det M = 1 with the determinant of k̂′ = M k̂ M†. Therefore
k′ 2 = k2 and k′ = Λ k is a Lorentz transformation.

We have already shown, that each U ∈ SU(2) can be written as e−i α
2 n·σ (6.51)

and causes, just as −U , a rotation of k around the axis n by the angle α (6.59).
We calculate the Lorentz transformation which corresponds to the hermitean factor

eH in M = UeH . The traceless, hermitean matrix H is a linear combination H =
−β

2 n ·σ of the three Pauli matrices (6.46) (n denotes a unit vector). The exponential
series eH simplifies due to (n · σ)2 = 1 as in (6.50)

eH = exp

(
−β

2
n · σ

)
=

(
cosh

β

2

)
−

(
sinh

β

2

)
n · σ (6.68)

(we do not write the 1-matrix explicitly).
The matrix k̂, which is mapped to k̂′ = eH k̂ (eH )† = eH k̂ eH , is decomposed

into k̂ = k̂‖+k̂⊥, where k̂‖ = k0−k‖n·σ and k̂⊥ = −k⊥·σ and where k = k‖n+k⊥
decomposes the vector into its parts which are parallel and orthogonal to n .

For the calculation of the transformation of k̂⊥ we only need the fact that k̂⊥ anti-
commutes with H ∝ n · σ (6.57), k̂⊥H = −Hk̂⊥, because k⊥ and n are orthogonal
to each other,

eH k̂⊥eH = eH e−H k̂⊥ = k̂⊥. (6.69)

The perpendicular part k⊥ is unchanged.

http://dx.doi.org/10.1007/978-3-642-28329-1_2
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The matrix k̂‖ commutes with eH . Moreover (n · σ)2 = 1 implies

eH k̂‖ eH = k̂‖ e2H = (k0 − k‖n · σ)(cosh β − (sinh β)n · σ)

= (
(cosh β) k0 + (sinh β) k‖

) − (
(sinh β) k0 + (cosh β) k‖

)
n · σ

= k′ 0 − k′‖n · σ.

(6.70)

We conclude (
k′ 0

k′‖

)
=

(
cosh β sinh β

sinh β cosh β

)(
k0

k‖

)
. (6.71)

This is the rotation-free Lorentz transformation, the boost, in direction of n with
velocity v = tanhβ. Up to the sign of v the transformation coincides with (3.4).

In contrast to rotations and rotation-free Lorentz transformations, not all matrices
M ∈ SL(2, C) can be written as exponential of an infinitesimal transformation

N = exp((k + il ) · σ) = cosh z + sinh z

z
(k + il ) · σ (k + il )2 = z2. (6.72)

There are exceptions of the form

M =
(−1 b

0 −1

)
b �= 0. (6.73)

sinh z
z must not vanish, otherwise N would be diagonal could not be M . For the

main diagonal elements to coincide, one has to have k3 = l3 = 0. N12 = 0 states
k1 + il1 + i(k2 + il2) = 0. Consequently z = 0 and N11 = cosh z = 1 �= M11.

The matrix M is not an exponential but a product M = U eH (6.60) of exponen-
tials. This shows that the Hausdorff-series for C(A, B) in eA eB = eC has only a
restricted domain of convergence.

6.5 Möbius Transformations of Light Rays

The determinant of k̂ (6.64) vanishes if k is the the wave-vector of a light ray, because
k is lightlike and det k̂ = k2 = 0 (6.67). As the matrix k̂ only has rank 1, its elements
are products of the components of a two-dimensional, complex vector χ , which is
unique up to a phase eiγ , with the components of the conjugate vector,

(
k0 − k3 −k1 + ik2

−k1 − ik2 k0 + k3

)
=

(
χ1
χ2

) (
χ∗

1 , χ∗
2

) (
χ1
χ2

)
= eiγ

(√
k0 − k3

− k1+ik2√
k0−k3

)
. (6.74)

http://dx.doi.org/10.1007/978-3-642-28329-1_3
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Lorentz transformations change k̂ = χ χ† into k′ = M k̂ M† = (Mχ) (Mχ)†,
i.e. χ transforms as a two-dimensional complex vector into χ ′ = M χ . A vector
with this SL(2, C) transformation is called spinor,

(
χ ′

1
χ ′

2

)
=

(
aχ1 + bχ2
cχ1 + dχ2

)
M =

(
a b
c d

)
a, b, c, d ∈ C ad − bc = 1. (6.75)

The ratio z = χ1/χ2 corresponds one to one to the incident direction e, from which
the light ray is seen. The wave vector has the form (|k|, k) = |k|(1,−e) . In spherical
coordinates e = (sin θ cos ϕ, sin θ sin ϕ, cos θ) (2.34) and using the identity (3.18)
one has

z = χ1

χ2
= − k0 − k3

k1 + ik2 = 1 + cos θ

sin θ eiϕ = cot
θ

2
e−iϕ. (6.76)

The set of directions is the Riemann sphere C ∪ {∞}.
As the direction z of a light ray is the ratio of spinor components, it is changed by

Lorentz transformations Λ, which correspond to the pair ±M(Λ) ∈ SL(2, C)/Z2,
by the corresponding Möbius transformation

TM : z �→ az + b

cz + d
. (6.77)

Aberration and rotation are Möbius transformations of z = cot θ
2 e−iϕ .

Two Möbius transformations TM and TN coincide if M = N or M = −N , i.e.
the Möbius group is isomorphic to SL(2, C)/Z2 and therefore to the proper Lorentz
group SO(1, 3)↑.

If z1, z2, z3 are three different points on the Riemann sphere C ∪ {∞} and if also
w1, w2, w3 are different, then there is exactly one Möbius transformation [22]

z �→ T z : (T z − w1)(w2 − w3)

(T z − w2)(w1 − w3)
= (z − z1)(z2 − z3)

(z − z2)(z1 − z3)
(6.78)

which maps z1 to w1 = T z1, z2 to w2 = T z2 and z3 to w3 = T z3.
Therefore, at a given place there is exactly one observer, who perceives three

given stars in three given directions. The positions of the other stars are then fixed.

http://dx.doi.org/10.1007/978-3-642-28329-1_2
http://dx.doi.org/10.1007/978-3-642-28329-1_3
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