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Introduction

Our understanding of nature underwent a revolution in the early twen-
tieth century – from the classical physics of Galileo, Newton, and
Maxwell to the modern physics of relativity and quantum mechanics.
The dominant figure in this revolutionary change was Albert Einstein.

In 1905, Einstein produced breakthrough work in three distinct areas
of physics: on the size and the effects of atoms; on the quantization
of the electromagnetic field; and on the special theory of relativity. In
1916, he produced a fourth breakthrough work, the general theory of
relativity. Einstein’s scientific work is the main focus of this book. The
book sets many of his major works into their historical context, with an
emphasis on the pathbreaking works of 1905 and 1916. It also develops
the detail of his papers, taking the reader through the mathematics to
help the reader discover the simplicity and insightfulness of his ideas and
to grasp what was so “revolutionary” about his work.

As with any revolution, the story told after the fact is not always an
accurate portrayal of the events and their relation to one another at the
time of the revolution. Following Einstein’s work in 1905, more efficient
and more convenient ways were found to reach the same results but, in
such revisions, many of the original insights were lost. Today, many
people hold historically incorrect views of Einstein’s papers, mainly
regarding the insights and reasoning that led to the results. For example:

� The quantum paper was not written to explain the photoelectric
effect, rather, it was written to explain the Wien region of blackbody
radiation;

� The Brownian motion paper was not written to explain Brownian
motion, Einstein was not even certain his work would pertain to
Brownian motion;

� The relativity paper was not written to explain the Michelson–
Morley experiment, etc.

By working through Einstein’s original papers, the reader will gain
a better appreciation for Einstein’s revolutionary insights as well as a
historically more accurate picture of them.

Just as a person cannot hope to appreciate the significance of the
American Revolution without some knowledge of the American colonies
before 1776, one cannot hope to appreciate the significance of the scien-
tific revolution of the early 1900s without some knowledge of the state
of science at that time. In order to help the reader appreciate the deep



xvi Introduction

impact of Einstein’s work, chapter one briefly lists some key concepts
and issues in the history and philosophy of science, together with some
recommendations for further reading for the interested student. To
complete setting the context for 1905, chapter one concludes with a
discussion of several of the factors in Einstein’s life that contributed to
his worldview, ranging from his early childhood, through the German
and Swiss school systems, his marriage to Mileva Marić, and to his
position at the patent office.

Chapters two through five discuss the four major works of Einstein,
one per chapter. As the general theory of relativity became the base
for the development of cosmology and unified field theories, an overview
of Einstein’s contribution to these fields is included at the end of the
chapter on the general theory of relativity. Despite the perception that
Einstein was constantly fighting the advances of quantum mechanics,
from 1905 to 1924 he stood virtually alone in defense of the idea that
the quantum is a real constituent of the electromagnetic field. This was
in opposition to Planck’s idea that it was merely the exchange of elec-
tromagnetic energy between radiation and matter that was quantized.1

It was not until the mid 1920s that Einstein became the strong dissenter
from the conventional interpretation of quantum mechanics, the role he
played famously in the Bohr–Einstein debates.2 Einstein’s contributions
to the development of quantum mechanics are discussed in chapter six.

To remove one hindrance to reading the original papers, the notation
and phrasing have been updated: the electric and magnetic fields of
today were previously referred to as electric and magnetic forces; the
speed of light is denoted c, not V as in Einstein’s original papers; the
mathematical cross product �A × �B was written as �A · �B; etc.

Obviously not everything Einstein did can be put into one book with
any detail. For example, The Collected Papers of Albert Einstein3 was,
as of 2011, a 12-volume set of Einstein’s papers and correspondence –
and this included his papers only through the early 1920s!

It is assumed that the reader has a copy of Einstein’s original papers
for reference. They are available from a number of sources. The most
complete source is The Collected Papers of Albert Einstein. With each
volume is a companion English translation volume, containing trans-
lations of papers that were not in English in the original volume. The
volumes of the original writings contain a number of essays and editorial
comments that are quite informative, but they are not included in the
companion translation volumes. These essays and editorial comments
provide a very good introduction to the various topics and Einstein’s
contribution. The serious reader is encouraged to access these editor-
ial comments to gain a fuller, and a more complete, picture of Einstein’s
contributions. Nearly all of the references to the writings of Einstein
are to this source, listed as (for example) CPAE1, p. 123 (The Col-
lected Papers of Albert Einstein, Volume 1, page 123), listing also the
companion English translation volume immediately following as CPAE2
ET, p. 456 (The Collected Papers of Albert Einstein, Volume 2, English
translation, page 456). All five of Einstein’s 1905 papers, with a good
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introduction to each of them by John Stachel, can be found in Einstein’s
Miraculous Year.4 A collection of all of Einstein’s papers in the volumes
of Annalen der Physik can be found in the Wiley publication, Einstein’s
Annalen Papers, by Jürgen Renn (the papers are in the original, not
in translation).5 Renn’s book has a nice introductory essay for each of
the four major areas of Einstein’s work. The Dover publication, Albert
Einstein: Investigations on the Theory of Brownian Motion, contains
the two 1905 papers on the atom: “A New Determination of Molecular
Dimensions” and “On the Movement of Small Particles Suspended in
Stationary Liquids Required by the Molecular-Kinetic Theory of Heat.”6

Another Dover publication, Principle of Relativity,7 contains the two
special theory of relativity papers of 1905 and the general theory of
relativity paper of 1915, as well as the cosmology paper of 1917.

The selection and presentation of the material included in the book,
unavoidably, will reflect the bias of the author. To minimize the impact
of that bias, and to avoid misrepresentations of the source material,
extensive use of quotations has been made. The extensive citation of
sources, also, is intended to aid the reader interested in pursuing further
a particular item. At the end of each chapter, the sources are referenced
in detail and a summary of the literature used in the preparation of the
chapter is included in the bibliography for that chapter.

A Synopsis of the Purpose
of Each Chapter

1 Setting the Stage for 1905

This chapter attempts to give the reader some awareness of the evo-
lution of scientific thought from the early Greek natural philosophers
(Pythagoras, Plato, Aristotle, etc.) through the work of Galileo, Newton,
and Maxwell to the ideas of Einstein. Its purpose is to provide a brief
overview, not to provide a detailed picture of the history and philosophy
of physical science.

The first portion of the chapter is a brief history of physical science,
highlighting selected events in our evolving understanding of the universe
we inhabit, from the motion of the heavens to an understanding of
its basic constituents. The focus is on the ideas leading to the works
of Einstein: the universe is orderly and understandable; mathematics
describes this underlying order; new and better data lead to the revision
of previous ideas; and our advancing understanding of nature generally
leads to a more unified framework for understanding nature. At the
beginning of each of the science chapters, additional material on the
history of the topic is presented. The second portion of chapter one
looks at the events in Einstein’s life prior to 1905, from his childhood
years through the German school system, through college, his marriage
to Mileva Marić, and to his position in the patent office. These are the
years and the events leading to the annus mirabilis of 1905.
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2 Radiation and the Quanta

Chapter two details the paper, “On a Heuristic Point of View Concerning
the Production and Transmission of Light,”8 one of the 1905 annus
mirabilis papers. This is often referred to as the “photoelectric effect”
paper. However, Einstein used the photoelectric effect as but one of three
possible examples at the end of the paper. His focus in the paper is not
on the photoelectric effect but, rather, on a thermodynamic treatment of
the Wien region of the blackbody radiation, showing that the expression
for the entropy of the radiation can be made identical to the expression
for the entropy of an ideal gas of non-interacting particles.

3 The Atom and Brownian Motion

Chapter three details the two papers, “A New Determination of Mole-
cular Dimensions”9 and “On the Movement of Small Particles Sus-
pended in Stationary Liquids Required by the Molecular-Kinetic The-
ory of Heat.”10 The first of these is the work of Einstein’s doctoral
dissertation. The second is often referred to as the “Brownian motion”
paper, although Einstein himself was not certain his results pertained to
Brownian motion. His goal was to find further evidence for the atomic
hypothesis. Einstein’s “proof” of the reality of atoms is the subject of
chapter three.

4 The Special Theory of Relativity

Chapter four details the papers, “On the Electrodynamics of Moving
Bodies”11 and “Does the Inertia of a Body Depend on its Energy
Content?”12 the fourth and fifth of the 1905 annus mirabilis papers.
The first of these is the special theory of relativity. Beginning with a
discussion of clocks running synchronously, Einstein derives the Lorentz
transformations for position and time and, subsequently, using the
Lorentz transformations he derives the transformations for the electric
and magnetic fields. The second of these papers is very short, essentially
an addendum to the first paper, in which the famous relation E = mc2

is obtained.

5 The General Theory of Relativity

Chapter five details the paper, “The Foundation of the General Theory
of Relativity,”13 published in 1916. This paper builds on concerns left to
be answered from the special theory of relativity of 1905: Why should
the theory of relativity be restricted to uniform velocities? Why do
inertial mass and gravitational mass have the same value? Why do all
objects, regardless of their composition, fall with the same acceleration
in a given gravitational field? From considerations such as these came
the realization that the effects of gravity and those of an accelerating
reference frame are equivalent and, eventually, that gravity is expressible
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as a property of space itself, but of a four-dimensional space that has
curvature and is non-Euclidean. This chapter concludes with a discussion
of the tests of the general theory of relativity and its application in
cosmology and the unified field theory.

6 Einstein and Quantum Mechanics

Beyond the “photoelectric effect” paper of 1905, Einstein made a number
of major contributions to quantum mechanics: the anomalous low spe-
cific heat of certain materials at low temperature; defense of the quantum
as a constituent of the electromagnetic field; the wave–particle dual
nature of radiation; Bose–Einstein statistics; the meaning of quantum
mechanics. Each of these developments is introduced, plus Einstein’s
work with de Broglie and Schrödinger, and the “debates” with Bohr.

7 Epilogue

The Epilogue is a summary of Einstein’s insistent focus on “the inflexible
boundary condition of agreeing with physical reality,”14 and how this
was the source of his insights, the guide for the development of his
theories, and the verification of the correctness of his ideas. For his ideas
on the quantum, he looked to the photoelectric effect; for the atom to
Brownian motion; for the special theory of relativity to the constancy of
the speed of light; for the general theory of relativity to the precession
of the perihelion of Mercury; and for cosmology to the known structure
of the universe. For the unified field theory he had no such physical
phenomena to guide him.

This book looks not only to detail the major works of Albert Einstein,
it also attempts to set Einstein’s work into a historical and philosophical
context. Perhaps a disclaimer, a “truth in advertising” is appropriate.
My training is as a physicist and as a teacher of physics, not as a
philosopher or historian of science. I am interested in broadening the
view of our science students to realize and appreciate the historical devel-
opment of science and its philosophical underpinnings. In the history and
philosophy of physics there is much folklore and even some revisionist
history. Trying as I might to avoid these, there are surely some places
where I have succumbed. Trained historians and philosophers of science
undoubtedly might have some uneasiness about some of what I have
said. For these I apologize, but trust the reader to whom this book is
aimed will appreciate the historical and philosophical context that is
included.

Notes

1. Pais, Abraham, Subtle is the Lord, Oxford University Press, New York,
1982, p. 357.

2. Pais, Abraham, Subtle is the Lord, p. 358.
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3. The Collected Papers of Albert Einstein, [CPAE], Princeton University
Press, Princeton, NJ, 1989, Volume 1. Subsequent volumes in succeeding
years.
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1.1 Overview

In the early 1900s, our understanding of the world underwent a rev-
olution from the classical physics of Galileo, Newton, and Maxwell to
the modern physics of relativity and quantum mechanics. For his role in
this revolution, Albert Einstein is justifiably placed with the giants of
science – with Galileo, Newton, and Maxwell.

Just as a person cannot hope to appreciate the significance of the
American Revolution without some knowledge of the American colonies
before 1776, and of the people playing major roles in it, one cannot
hope to appreciate the significance of the scientific revolution of the
early 1900s without some knowledge of the state of science before 1905,
and of the people playing major roles in it. In his 1905 papers, Albert
Einstein built not only on the state of science as it had evolved over the
centuries but also on events in his personal life that shaped his world-
view. This chapter presents a context into which Einstein’s work can be
placed, leading to a fuller appreciation of his contribution to scientific
thought and to a better understanding of the events that influenced his
remarkable achievements.

One of the characteristics that sets physical science apart from mathe-
matics is the demand of agreement with the physical world. As stated by
James T. Cushing, “One major difference between the ‘games’ played
by theoretical physicists and those played by pure mathematicians is
that, aside from meeting the demands of internal consistency and math-
ematical rigor, a physical model must also meet the inflexible boundary
condition of agreeing with physical reality.”1 It is, as we shall see, this
inflexible boundary condition of agreement with physical reality that led
to many of Einstein’s insights and provided verification of, or corrective
guidance for, his theories.

The science of today is built upon the ideas of those who went
before, starting with the ancient Greek thought that nature was orderly,
and that this order could be expressed mathematically. This “order”
is referred to as the “Laws of Nature.” Major advances in describing
these “Laws of Nature” were contributed by Galileo and Newton in
the seventeenth century, and by Einstein in the twentieth century.
(See Appendix 1.5.1 for a discussion of “The Logic of Science” and
“Falsification in Science.”)
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1.2 Historical Background

1.2.1 600 BC to AD 200: The Contribution
of the Early Greeks

Our present concept of science dates from about 600 BC, associated with
the Greek philosopher Thales of Miletus (c. 600 BC). Thales was aware of
Egyptian discoveries of regularities in the heavens and began to question
the meaning of such regularity, searching for an underlying order or some
organizing principle. He began to ask “why” there were regularities in
the heavens, going beyond simply describing the regularities.

The early Greeks saw nature as a “well-ordered whole, as a structure
whose parts are related to each other in some definite pattern.”2 To
Pythagoras (c. 500 BC) this well-ordered structure was expressed in
numbers, and in ratios of small whole numbers. Pythagoras saw the uni-
verse as an orderly, beautiful structure described in harmony and num-
ber. Numbers were the essence of physical reality. To the Pythagoreans
the goal of science was to “reproduce nature by a system of mathematical
entities and their inter-relations.”3 This legacy of the Pythagoreans is
still seen today in the close connection between mathematics and the
physical sciences.

Mathematics as the foundation of our universe was further devel-
oped by Plato (429 BC–348 BC). Plato viewed our physical world
as imperfect representations of ideal mathematical forms (in geom-
etry a mathematical line has no width, while a physical line has
width, etc.). To Plato the things “perceived by us are only imper-
fect copies, imitations or reflections of ideal forms . . . that can only
be approached by pure thought.”4 In Plato’s view, if the soul before
being united to the body had acquired direct knowledge of the ideal
forms, this knowledge may still be present. This knowledge might be
“recalled” more so if the mind is properly stimulated by mathemat-
ical reasoning than by “empirical examination by the senses of the
imperfect image of this ideal reality . . . Empiricism may be useful as
a stimulus or support for mathematico-physical thought . . . but if the
truth is to be found, empiricism has to be abandoned at a certain
moment . . . ”5

In astronomy, Plato’s aim was “to save the phenomena.”6 In Simpli-
cius’ Commentary

. . . Plato lays down the principle that the heavenly bodies’ motion is circular,
uniform, and regular. Thereupon he sets the mathematicians the following
problem: What circular motions, uniform and perfectly regular, are to be
admitted as hypotheses so that it might be possible to save the appearances
presented by the planets?7

Duhem writes, “The object of astronomy is here defined with utmost
clarity: astronomy is the science that so combines circular and uniform
motions as to yield a resultant motion like that of the stars. When
its geometric constructions have assigned each planet a path which
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conforms to its visible path, astronomy has attained its goal, because
its hypotheses have then saved the appearances.”8

Eudoxus (c. 408 BC–c. 355 BC), a student of Plato and consid-
ered the greatest mathematician of his day, developed a geocentric
(earth-centered) model of the universe that “saved the appearances.”
In Eudoxus’ model, the earth was at the center of the universe with the
stars circling around it, the moon in a small circle with the sun, the
planets, and the fixed stars further out. See Figure 1.1.

To Aristotle all knowledge originates in sense perceptions, leading to a
“fundamentally empirical attitude towards the phenomena of nature.”10

Aristotle’s physics is based on the concept that all motion needs a mover
to maintain the motion. The fundamental law of Aristotelian dynamics
is, “[A] constant force imparts to the body on which it acts a uniform
motion, the velocity of which is directly proportional to the force and
inversely proportional to the weight of the body.”11

Motion is distinguished between natural and enforced. Natural
motion, such as the spontaneous falling of a stone, or the spontaneous
rising of smoke, is associated with the qualities of heavy (gravia) and
light (levia). Natural motion is in a straight line to its goal. Heavy objects
move toward the center of the universe (earth being the heaviest, water

Mars

Fixed Stars

Sun
Venus

Mercury

Earth

Moon

Fig. 1.1 The geocentric universe of
Eudoxus.

Source: (Adapted from Zeilik, Michael,
Astronomy, The Evolving Universe.9)



4 Setting the Stage for 1905

less so) with light objects moving to the periphery of the universe (fire
being the lightest, air less so).12

Each of the four elements (earth, water, fire, air) performs straight-
line motion. (See Section 3.1.1 for a discussion of thought regarding
the atom.) But the motion of the heavenly bodies is circular, indicating
the heavens cannot be composed of the four terrestrial elements. The
heavens were composed of a fifth element, called quintessence or the
aether, that had neither gravity nor levity, could not transform into
any of the terrestrial elements, and in which the natural motion was
continuous and circular.13

In Aristotle’s worldview, all bodies with “gravity” would move toward
their proper place at the center of the universe. Earth being the heaviest
would occupy the region closest to the center. With the earth situated
at the center, other objects with “gravity” striving to reach the center
of the universe would be seen as falling toward the earth. In Aristotle’s
worldview the earth, because it was the heaviest element, must be at
the center of the universe.14

Aristotle was aware of other worldviews, such as the earth rotating
on its axis, but rejected them as not fitting into his total worldview. To
Plato, whose guiding principle is “to save the phenomena,” a stationary
earth with circular motion in the heavens or a rotating earth with the
heavens stationary would be equally acceptable if they each predicted
the motions of the stars with equal accuracy and precision. To Aristotle,
the central location of the earth is necessary because of its heaviness,
and it cannot be rotating since circular motion is not natural motion for
“sublunar” elements. These views of Plato and of Aristotle exemplify
what Duhem labels the formalistic and the realistic approaches. The
formalistic approach [Plato] “considered the various geometrical models
of planetary motions and of the construction of the cosmos as math-
ematical expedients. . . . [while] the realistic interpretation [Aristotle]
of astronomical theory assigned physical reality to these geometrical
patterns. Consistency then demanded that only those aspects of the
patterns be retained which did not conflict with the physical, which
meant commonsense reasoning.”15 The formalistic approach had two
qualifications: (1) save the phenomena (good numerical results), and (2)
the rule of greatest possible simplicity.16

Although starting from different bases, Aristotle’s astronomy agreed
with that of Plato and Eudoxus. “The axiom of the uniformity and
circularity of the motions of the heavenly bodies, which Plato had
formed on mathematical and religious grounds, had been supported
by Aristotle with physical arguments and made an essential part of
his world-system; enunciated unanimously by two such authoritative
thinkers, it was bound to appear beyond all doubt. Nor did astronomers
venture to deviate from this view before the beginning of the seventeenth
century . . . ”17

Plato’s principle that the heavenly bodies motion is circular, and
to “save the phenomena” was the guiding principle in astronomy for
the next several centuries. But the growing accuracy of the empirical
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data caused refinements to the theories, all in accord with saving the
phenomena and with combinations of uniform circular motion:

1. To explain why the summer half-year is longer than the winter
half-year, the earth was moved a distance from the center of the
motion of the sun, to a point called the eccentric.18 See Figure 1.2.

2. To explain retrograde motion the epicycle was introduced. See
Figures 1.3 and 1.4.

Earth

Center

Sun

Fig. 1.2 The eccentric.

This, though, introduced a center for the natural circular motion of
heavenly bodies that was other than the center of the universe. In Plato’s
formalistic approach this was readily accepted. In Aristotle’s realistic
approach “a natural circular motion cannot take place otherwise than
round the immovable centre of the universe . . . in this case the earth. . . .
The resulting conflict between Aristotelian physics and the astronomy
that was to bear the name of Ptolemy . . . continued well into the Middle
Ages . . . ”20

3. The motion of a planet was to be uniform. To explain the non-
uniform motion of a planet as seen from earth a second point,
called the equant, was proposed, around which the motion of the
planet would be uniform.21 See Figure 1.5.

In the middle of the second century AD, Ptolemy of Alexandria
(c. AD 90–168), a Greek astronomer, published The Mathematical Syn-
taxis, known also as the Almagest, a comprehensive summary of his
work in astronomy, and of his predecessors. This compilation of all of
the known work in astronomy into a single complete system to predict
planetary motions became known as the Ptolemaic system. Sambursky
comments, “In spite of the important results achieved by Ptolemy’s
theory, he was not really satisfied with this system and the complicated
details which could not be reduced to the simplicity and unity of [the
system of Eudoxus].”22 As better information became known, the system
became even more complicated, but it continued to save the phenomena.

TAURUS

ARIES

Apr. 1

Aug. 1

Sept. 1

July 1

May 1

June 1

Oct. 1

Oct. 15

Fig. 1.3 Retrograde motion.

Source: (From McGrew, Timothy, et al.,
Philosophy of Science.19 Reproduced
with permission.)
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1.2.2 The 1600s: The Contribution of Galileo and
Newton

Earth

Center

Planet

Epicycle

Deferent

Fig. 1.4 The deferent and the epicy-
cle.

Earth

Center

Equant

Fig. 1.5 The equant.

1.2.2.1 Copernicus, Brahe, and Kepler
After the time of Ptolemy, interest in astronomy and science began to
decline (coinciding with the decline of the Roman Empire and Greek
civilization), to the point that knowledge from ancient Greece almost
disappeared during the Dark Ages in Europe (roughly AD 400–900).

In the fourteenth century, to explain enforced motion, a concept called
impetus was introduced by a group called the Paris Terminists. When
a rock is thrown horizontally, what keeps it from falling vertically once
it has left the hand of the thrower was troublesome for Aristotelian
physics. The Paris Terminists said when the rock is thrown horizontally
an “impetus is imparted to it, which causes the motion to continue
after the body has been released.”23 The impetus was dependent on the
quantity of matter in the body and on its velocity. Although expressed
in vague terms by the Paris Terminists, the impetus can be considered
the forerunner of the momentum we speak of today.24

In the spirit of Plato’s formalistic approach, Nicolaus Copernicus made
two fundamental changes to the Ptolemaic system: (1) he allowed the
earth to be in motion, and (2) the motion must be uniform circular
motion (no equants). Copernicus explained simply that the phenomena
can be saved equally well by his new hypothesis or by the Ptolemaic
system. Looking at the Copernican system, at first glance it appears
as complicated as the Ptolemaic system, complete with epicycles and
eccentrics (but no equants).25 See Figures 1.6 and 1.7.

Somewhat surprisingly, reflecting on his theory in his later years,
Copernicus “considered the greatest gain it had brought astronomy
was not the changed position of the sun . . . but the elimination of the
[equant] . . . ”28 It was not until after his death in May, 1543, that this
work, On the Revolutions of the Celestial Spheres, was printed.

Better and more accurate astronomical data were needed to distin-
guish between the theories of Ptolemy and Copernicus. Tycho Brahe
(1546–1601), a Danish astronomer, was able to measure the locations
of the planets to two minutes of arc, down from the previously best-
attainable ten minutes of arc. He collected these data over a twenty-year
period, carefully recording all of his observations.29 Brahe observed the
Nova of 1572 and the comets of 1577, which he later showed to be “in
the sphere of the fixed stars, and thus shattered the Aristotelian dogma
of the immutability of the heavens.”30

On the death of Brahe in 1601, Johannes Kepler (1571–1630), Brahe’s
assistant, was appointed his successor and took custody of Brahe’s data.
Kepler was a dedicated Copernican, one reason being Kepler’s belief
that “the sun should be at the center of the universe by virtue of its
dignity and power, being a place where God would reside as prime
mover.”31 Using Brahe’s data to fit the orbit of Mars with combinations
of circular motion, he “obtained agreement with Tycho’s data to within
eight minutes of arc . . . ”32 But Tycho Brahe’s data was accurate to
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EarthMoon

Mars Venus
Mercury Sun

Saturn

Jupiter

Fig. 1.6 The Ptolemaic system.

Source: (From Layzer, David, Construct-
ing the Universe.26 Reproduced with per-
mission.)

within two minutes of arc. Because of the substantially more accurate
data of Brahe, Kepler was led, eventually, to reject the necessity of
circular motions and, after six years of labor on the orbit of Mars, Kepler
came to the realization that an ellipse exactly fitted the data.33 And the
sun, befitting its “dignity and power,” was located at one of the foci of
the ellipse.34

Over a twenty-year period, Kepler found in Brahe’s data what have
come to be known as his three laws of planetary motion:35

1. Kepler’s first law : the planets move on ellipses about the sun, with
the sun at one focus. See Figure 1.8.

2. Kepler’s second law : A radius vector drawn from the sun to the
planet sweeps out equal areas in equal time. See Figure 1.9.

3. Kepler’s third law : The ratio of the cube of the mean radius R of
a planet’s orbit to the square of its period τ is a fixed constant for
all planets in the solar system.38

R3

τ2
= constant

See Figures 1.10 and 1.11.
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Jupiter
Earth

Moon

Venus

Mars

Mercury

Saturn

Sun

Fig. 1.7 The Copernican system.

Source: (From Layzer, David, Construct-
ing the Universe.27 Reproduced with per-
mission.)

Sun

Focus

Minor axis

Major axis

Focus

Planet

Fig. 1.8 Kepler’s first law: Elliptical
planetary orbits.

Source: (Adapted from Zeilik, Michael,
Astronomy, The Evolving Universe.36)
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Fig. 1.9 Kepler’s second law: The
equal area rule for planetary orbits.

Source: (Adapted from Zeilik, Michael,
Astronomy, The Evolving Universe.37)

Kepler’s Third Law (p2=a3) for the Solar System
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Fig. 1.10 Kepler’s third law: R3
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constant for planets around the sun.

Source: (From Zeilik, Michael, Astron-
omy, The Evolving Universe.39 Repro-
duced with permission.)

Period
(p, in years)

Distance
(a, in AU)Planet P2 a3 p2/a3

Mercury 0.24 0.058 0.39 0.059 0.97
Venus 0.62 0.38 0.72 0.37 1.0
Earth 1.0 1.0 1.0 1.0 1.0
Mars 1.9 3.6 1.5 3.4 1.1
Jupiter 12.0 140.0 5.2 140.0 1.0
Saturn 29.0 840.0 9.5 860.0 0.98

Fig. 1.11 Table of Kepler’s third law.

Source: (From Zeilik, Michael, Astron-
omy, The Evolving Universe.40 Repro-
duced with permission.)

Following Brahe’s discovery of the mutability of the heavenly sphere,
Kepler’s elliptical orbits were another dent in the perfection of the
heavens (circular orbits).

1.2.2.2 Galileo Galilei
More than anyone, Galileo Galilei (1564–1642) is the central figure in
the transition from Aristotelian physics to classical physics. In explaining
projectile motion, his theories included the impetus theory of the Paris
Terminists, rather than the ideas of Aristotle. On the structure of the
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universe, Galileo was a disciple of Copernicus rather than of Ptolemy.
Having a strong mathematical perspective, Galileo was a Platonist, yet
he believed the Copernican system was the physical truth about the
universe.41

To understand the motion of falling bodies and projectile motion
Galileo consciously restricted his investigation to a study of the motion
itself, not the causes of the motion.42 For Aristotle qualitative relations
were predominant. Galileo changed the emphasis to quantitative rela-
tions. The causes of the motion would be left to others, after Galileo had
more precisely determined the description of the motion. Experiments
for Galileo were to verify relations he had obtained by mathematical
reasoning, not to discover new phenomena.43

For free-fall, Galileo discovered a body is accelerated downward at
a constant rate.44 In explaining projectile motion, he showed that
the vertical and horizontal components could be treated separately of
one another, with the resultant combined motion being what we see.
(Although this was a major advance, in reality the addition of velocity
components had been used by the Greeks to explain the heavenly
motions were composed of the motion of the deferent and epicycles.)
Reflecting on projectile motion as seen by different observers, Galileo
advanced the idea of the relative character of motion. From these
reflections came a basic theory of relativity of motion that “the motion
of a system of bodies relative to each other does not change if the whole
system is subjected to a common motion.”45

The law of inertia was at the foundation of Galileo’s description of
motion.46 A smooth ball rolling down an inclined plane would accelerate,
continually increasing its speed, while one projected up an incline would
decelerate, continually slowing down. A ball rolling on a horizontal plane,
therefore, would neither accelerate nor decelerate; it would continue
at a constant speed in a straight line.47 Galileo arrived at the con-
clusion that if no force acts on the body it continues at a constant
velocity. This is Galileo’s law of inertia. To Aristotle a constant force
was required to maintain the constant velocity of a body. To Galileo a
constant force provided a constant acceleration for a body. Galileo was
dealing with motion absent all external influences in his treatment of
impetus and inertia, closer to the world of Plato’s ideal forms than to
Aristotle’s everyday world. But Galileo’s ideas needed the refinement
and clarification of the concept of force and the distinction between
mass and weight. And gravity needed to be seen not as something
intrinsic to the body but, rather, “as an external action exerted upon the
body.”48

Although Galileo did not invent the telescope, he was the first to
recognize its value as a scientific instrument. “Turning it to the heavens”
Galileo saw the surface of the moon was not smooth as Aristotelian
physics claimed. He saw the moons of Jupiter, indicating a second
center for motion (Jupiter).49 To the dents in the Aristotelian worldview
from Tycho Brahe (the heavens are mutable) and Kepler (motion in
the heavens is not circular) Galileo adds two more – an example of
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imperfection in the heavens (the moon) and a second center of revolution
(Jupiter). Later he would detect sunspots moving across the face of the
sun, indicating also the mutability of the sun.

1.2.2.3 Isaac Newton
1666 is Isaac Newton’s (1642–1727) annus mirabilis (actually a two-
year span from 1665–1667). In 1665, the year Newton received his
degree from Cambridge, the Great Plague of London (the outbreak of
the Black Death in London in 1665–1666) had spread to Cambridge
and the university was closed. He returned to the family home in the
country, there inventing the branch of mathematics known as calculus,
discovering many new ideas of light and optics, and laying the foundation
for his work in mechanics and gravity. Although in the main discovered
in 1666, his ideas on motion and gravity were not published until 1687
in the Principia,50 his results of experiments and studies on light until
1704 in Optics,51 and his results on calculus in 1736 in On the Method
of Series and Flucxions (nine years after his death).52

Newton’s major contribution to mechanics was to pull together what
had been separate and fragmentary knowledge, and to assemble it into a
systematic and consistent mathematical system.53 Newton incorporated
the impetus of Galileo and the Paris Terminists. He broke with the
concept that one body affected the motion of another only through
direct contact, introducing into his mechanics “action-at-a-distance”
forces. Gravity became an external constant force that causes a constant
acceleration; no longer is gravity an innate property of the body seeking
to move the body to its natural place in the universe. The distinction
between mass and weight is brought out of the background.54 These are
formalized as the axioms for mechanics, now known as Newton’s three
laws of motion:

I. Newton’s first law of motion: Every body perseveres in its state
of being at rest or of moving uniformly straight forward except
as it is compelled to change its state by forces impressed.

II. Newton’s second law of motion: A change in motion is propor-
tional to the motive force impressed and takes place along the
straight line in which that force is impressed.

III. Newton’s third law of motion: To any action there is always an
opposite and equal reaction; in other words, the actions of two
bodies upon each other are always equal and always opposite in
direction.55

Newton’s laws of motion were valid in absolute space. But if valid in
absolute space, it was determined they also were valid in any reference
frame moving in uniform translational motion relative to absolute space.
Although Newton believed in absolute space, he was unable to determine
a way to distinguish the absolute space reference frame from the moving
reference frame.56 Newton raised this “inability” to a principle, today
referred to as Newton’s principle of relativity, “When bodies are enclosed
in a given space, their motions in relation to one another are the same
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whether the space is at rest or whether it is moving uniformly straight
forward without circular motion.”57

In the Principia, Newton shows that [for circular motion] “if the
periodic times are as the 3/2 powers of the radii . . . the centripetal forces
will be inversely as the squares of the radii.”58 Generalizing this to an
elliptical orbit, Newton shows the centripetal force of an object in an
elliptical orbit “tending toward a focus of the ellipse . . . [is] inversely as
the square of the distance . . . ”59 For the inverse square law, he then
shows “that the squares of the periodic times in ellipses are as the cubes
of the major axes [Kepler’s third law].”60 These are summarized as,
“The forces by which the primary planets are continually drawn away
from rectilinear motions and are maintained in their respective orbits are
directed to the sun and are inversely as the squares of their distances
from its center.”61 (See Appendix 1.5.2 for a present-day derivation of
the inverse square force law for gravitation.)

If the sun attracts the planet with this force, by Newton’s third law the
planet must attract the sun with an equal force. The gravitational force is
proportional to the masses of the two objects and inversely proportional
to their separation.62

Fgravity =
GM1M2

r2

where G is a constant (called the gravitational constant). The masses
of the two objects, M1 and M2 in the equation, ensure consistency with
Newton’s three laws of motion and Galileo’s finding that all objects fall
with the same acceleration at the surface of the earth (assuming no air
resistance).63

Having obtained the law of gravity for the earth about the sun,
Newton checked the law of gravity for the moon in orbit around the
earth. At the surface of the earth, the acceleration due to gravity is
9.8 m/s2. The distance to the moon is about 60 times larger than
the radius of the earth. Calculating the centripetal acceleration of the
moon in orbit about the earth, a = 2.74 × 10−3m/s2. If this is due to
the gravitational attraction of the earth, the accelerations of gravity at
the surface of the earth and at the orbit of the moon should differ by a
factor of (rmoon′sorbit/rearth)2 = (60)2 = 3600. The ratio of accelerations
is (9.80/2.74 × 10−3) = 3560. Newton concluded the force of gravity that
kept the earth in orbit around the sun was the same force that kept the
moon in orbit around the earth. The motions of planets around the sun,
the motion of the moon about the earth, and the falling of objects near
the surface of the earth could all be explained by a single force of gravity.
It was a short jump to extend the law of gravity to every pair of material
bodies in the universe.64

In comparison to the Aristotelian universe of separate laws for the
heavens and for the earth, through his three laws of motion and the
law of gravitation, Newton unified the description of the heavens and
the earth: The same laws govern the motions in the heavens as govern
motion on earth. From Newton’s one law of gravitation come all three
of Kepler’s laws of planetary motion.
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When two planets pass sufficiently close enough to one another
the gravitational force between the planets, while small compared to
that from the sun, is enough to slightly disturb their elliptical orbits.
These predictions were in good agreement with observation. However,
the planet Uranus, discovered in 1781, showed significant discrepan-
cies between its observed motion and its predicted motion (even after
accounting for the effects of other planets). Assuming the discrepancies
were due to an unknown planet, scientists determined the necessary
orbit of such an unknown planet and, in 1846, looking where directed,
the planet Neptune was first seen. Similar discrepancies arose in the
orbit of Neptune, leading to the prediction and eventual discovery, in
1930, of the planet Pluto.65 As noted in Appendix 1.5.1.1 (The Logic of
Science), locating these planets as predicted “verifies” Newton’s law of
gravity, but does not “prove” it. (We will see in Chapter 5 where it fell
short in describing the orbit of the planet Mercury.)

In the case of Kepler, more accurate data by Brahe forced him to
develop a new description of planetary orbits (elliptical orbits). For
Galileo, his own more accurate data on falling bodies allowed him to
determine that motion under only the influence of gravity was one of
constant acceleration. Newton then used these more precise descriptions
of motion by Kepler and Galileo, building on them to develop his laws
of mechanics, including the law of universal gravitation.66

1.2.3 The 1800s: The Contribution of Maxwell
and Lorentz

In the 1800s, a number of discoveries and advances were made that led
to the modern physics of relativity and of quantum mechanics in the
early 1900s. The introduction of quanta into our world picture is the
material of Chapter 2 and the introduction of relativity is the material
of Chapter 4. Just as Newton drew together information from those who
preceded him as the foundation for his mechanics, so also did Einstein
for his work in the early 1900s. The following is a summary of some of
those items from the 1800s upon which Einstein was to draw. Others
will be presented as needed in specific chapters.

1.2.3.1 The Aether and Electromagnetism
In the early 1800s (roughly 1800 to 1825), work by Thomas Young and
Augustin Fresnel led to acceptance of the idea that light was a wave
phenomenon. But there remained the question of what medium the
waves were propagating in. Over the centuries, the aether of Aristotle
(see Section 1.2.1) had been joined with an aether for gravity, an aether
for electrostatics, and an aether for magnetism.67 Since no medium was
known for the propagation of light, the scientists postulated another
aether – the luminiferous aether (sometimes spelled ether, sometimes
spelled aether).68

Until the early 1800s, Electricity and Magnetism remained as separate
and distinct areas of study. Then, in the period from 1820 to 1865,
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a number of discoveries and advances were made, linking electrical
effects with magnetism and magnetic effects with electricity. In 1820,
the Danish physicist Hans Christian Ørsted discovered that an electric
current in a wire can deflect a compass needle. But the effect was present
only for charges in motion, i.e., for an electric current. In 1831, the
reverse effect of electromagnetic induction, i.e., magnetism giving rise
to electric currents, was discovered by the English experimenter Michael
Faraday, and shortly thereafter by the American Joseph Henry and the
Russian H. F. E. Lenz.69

The discoveries of Ørsted, Faraday et al., linking electrical effects
with magnetism and magnetic effects with electricity, culminated in
James Clerk Maxwell’s paper of 1865, “A Dynamical Theory of the
Electromagnetic Field.”70 In this paper, Maxwell presented the equa-
tions that have come to be known as Maxwell’s equations. In today’s
notation, his mathematical equations describing the electromagnetic
field are summarized as:71

∇.E = 4πρ

∇.B = 0

∇×E = −1
c

∂B

∂t

∇×B =
1
c

∂E

∂t
+

4π

c
j

Not only were electricity and magnetism united as electromagnetism
but, as Maxwell discovered, his equations showed that light also was
included in his theory of electromagnetic waves. The aether of electricity
and the aether of magnetism had been brought together as one electro-
magnetic aether and, in the electromagnetic aether, included also was
the luminiferous aether of light.72

By 1900, the electromagnetic aether was an established part of sci-
entific belief. In The Theory of Electrons,73 Lorentz states his belief in
the aether, “however different it may be from all ordinary matter.”74

Lorentz stated, further, that the aether always remains at rest [relative
to absolute space].75

By 1875, Hendrik Lorentz had become convinced that Maxwell’s
theory needed to be “complemented by an electrical theory of matter
which would show how the electromagnetic field of Maxwell interacts
with matter.”76 To this end, Lorentz postulated the existence of an
extremely small charged particle – the electron – a hypothetical unit of
electrical charge.77 This interaction between matter and the electromag-
netic field is the Lorentz force. In today’s notation, the Lorentz force is
written as,78

F = q
(
E +

ν

c
×B

)
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1.2.4 The Worldview in 1900

The Mechanical Worldview : By the late 1800’s, the mechanics of Newton
was well entrenched, and scientists were attempting to reduce their
understanding of nature to a mechanical foundation.

The Electromagnetic Worldview : By 1900, because of the success of
the electromagnetic theory, scientists were contemplating an electromag-
netic foundation for mechanics.

The Energetics Worldview : Based on the success of thermodynamics
in describing the world in terms of energy, scientists were contemplat-
ing the underlying structure of the world to be forms of energy and
energy transformations.79 (See Section 3.1.3 for further discussion of the
Worldview around 1900.)

1.3 Albert Einstein

1.3.1 The Pre-College Years

Hermann Einstein (1847–1902), Albert’s father, had shown an early
ability in mathematics but, since his parents did not have the funds for
him to pursue his studies at a university, Hermann became a merchant
and, eventually, a partner in his cousin’s featherbed company in Ulm,
Wurttemberg. His mother, Pauline (Koch) (1858–1920), was a warm and
caring person, and a talented pianist. She was from a family of means,
bringing a breadth of culture and a love of literature and music to the
marriage. Hermann and Pauline were married on August 8, 1876. Jewish
traditions, such as a deep respect for learning, ran deep in the family
but, as Clark says, Hermann and Pauline “were not merely Jews, but
Jews who had fallen away. . . . [T]he essential root of the matter was
lacking: the family did not attend the local synagogue. It did not deny
itself bacon or ham . . . ” These were considered “ancient superstitions”
by Hermann, as were most other Jewish traditions. Thus, Albert Ein-
stein was nourished on a tradition that had broken with authority and
sought independence. But the family tradition also included the Jewish
tradition of self-help.80

On March 14, 1879, a son, Albert, was born to Hermann and Pauline
Einstein in Ulm, Wurttemberg. Two years later, on November 18, 1881,
their second child, a daughter, Marie (Maja), was born in Munich.

In 1880, Hermann and his brother Jakob, an electrical engineer,
formed a company to manufacture electrical generating and transmission
equipment and moved to Munich to set up the business. The business
prospered and the family enjoyed a comfortable life there. As their home
was on the grounds of the factory, Albert grew up in daily contact with
electromechanical equipment.81

Normal childhood development proceeded slowly for the young Albert.
As recalled by Einstein in his later years:

I sometimes ask myself how did it come that I was the one to develop the
theory of relativity. The reason, I think, is that a normal adult never stops to
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think about problems of space and time. These are things he has thought of
as a child. But my intellectual development was retarded, as a result of which
I began to wonder about space and time only when I had already grown
up. Naturally, I could go deeper into the problem than a child with normal
abilities.82

When eight years old, Einstein entered the Luitpold Gymnasium. He
did well in mathematics and the logically structured Latin, but not so
well in Greek and modern foreign languages. When he was thirteen and
scheduled to begin algebra and geometry he spent his summer vacation
working through the proofs of the theorems by himself to see what he
could understand on his own, often finding proofs that differed from
those in his books.83

As an adult, looking back on his youth, Einstein comments that when
he was about eleven years old, his religious feelings became so strong that
he went through a period when he followed all of the religious precepts
in detail, but which

. . . found an abrupt ending at the age of 12. Through the reading of popular
scientific books I soon reached the conviction that much of the stories in the
bible could not be true. The consequence was a positively fanatic [orgy of]
freethinking coupled with the impression that youth is intentionally being
deceived by the state through lies; it was a crushing impression. Suspicion
against every kind of authority grew out of this experience, a skeptical attitude
toward the convictions which were alive in any specific social environment –
an attitude which has never again left me, even though later on, because of
better insight into causal connections, it lost some of its original poignancy.84

If one could not trust religion, surely order and logic could be discovered
in the world which

. . . exists independently of us human beings and which stands before us like
a great, eternal riddle, at least partially accessible to our inspection and
thinking. The contemplation of this world beckoned like a liberation, and
I soon noticed that many a man whom I had learned to esteem and to admire
had found inner freedom and security in devoted occupation with it.85

Commenting on another occasion, Einstein recalled,

At the age of 12 I experienced a second wonder of a totally different nature:
in a little book dealing with Euclidian plane geometry, which came into my
hands at the beginning of a school year. Here were assertions, as for example
the intersection of the three altitudes of a triangle in one point, which – though
by no means evident – could nevertheless be proved with such certainty that
any doubt appeared to be out of the question. This lucidity and certainty
made an indescribable impression on me. That the axiom had to be accepted
unproved did not disturb me.86

When sixteen, Einstein began to wonder what a beam of light would
be like if he could travel at the same speed as the beam of light:

If I pursue a beam of light with the velocity c (velocity of light in a vacuum),
I should observe such a beam of light as a spatially oscillatory electromagnetic
field at rest. However, there seems to be no such thing, whether on the basis
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of experience or according to Maxwell’s equations. From the very beginning it
appeared to me intuitively clear that, judged from the standpoint of such an
observer, everything would have to happen according to the same laws as for
an observer who, relative to the earth, was at rest. For how, otherwise, should
the first observer know, i.e. be able to determine, that he is in a state of fast
uniform motion? 87

It would be another ten years, not until 1905, before he had the insights
that would allow him to resolve this.

By 1894, the Einstein business had difficulty competing with the larger
German companies. Hermann and Jakob closed the factory in Munich
and transferred the business to Italy where the circumstances appeared
more favorable. In 1895, when Albert’s parents and sister, Maja, moved
to Italy after the transfer of the business, Albert was left in Munich
to finish his final year at the Gymnasium. In spring, 1895, without
consulting his parents, Einstein left the gymnasium without acquiring
his diploma. He refused to return to Munich and informed his parents
he intended to give up his German citizenship.88

1.3.2 The College Years

With the encouragement of his father, Albert looked to continue his
education, pursuing a program in engineering. But, without a certificate
of graduation from the gymnasium, entry into the major universities
of Europe was not possible, one exception being the Swiss Federal
Polytechnic School (ETH)89 in Zurich, Switzerland. The ETH, located
in the German-speaking part of Switzerland, allowed success on an
entrance examination in place of a certificate of graduation. In October
1895, Albert took the entrance examination, obtaining high marks in
mathematics and science, but scoring low marks in languages and history
and, overall, did not receive a passing mark. H. F. Weber, a professor in
the physics section at the ETH, was so strongly impressed with Albert’s
performance on the scientific part of the examination that he gave
Einstein permission to attend his lectures. However, the ETH advised
Einstein to attend the cantonal secondary school in Aarau (20 miles
west of Zurich), complete the work necessary for his diploma, and then
he would be admitted.90

After one year in Aarau, in September 1896, Einstein took the
“Matura,” the graduation examination consisting of seven written exam-
inations, and an oral examination. Of the nine candidates taking the
examination, Einstein had the highest average over the written examina-
tions. But, more importantly, passing the Matura allowed him to enroll
in the ETH.91 During his time at Aarau, he had decided his future would
be as a physicist, not as an electrical engineer his family had envisioned.

In October 1896, Einstein enrolled at the ETH. During his years at
the ETH he was supported on an allowance of 100 francs per month
from his mother’s family, the Kochs, of which he put away 20 francs
each month to pay for his eventual application for Swiss citizenship.92
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At the ETH, Einstein settled into the track for high-school physics
and mathematics teachers, with an interest in theoretical physics. His
program consisted primarily of physics, mathematics, and mathematical
physics courses. He found most of the mathematics and mathematical
physics courses irrelevant, believing not much more than calculus would
be needed to pursue his interests in physics. (It was not until after 1907,
as he was pursuing the general theory of relativity, that he realized the
importance of advanced mathematics for physics.) The majority of his
physics courses were taken from Professor Heinrich Friedrich Weber,
fifteen in all.93

In his undergraduate days, Einstein was in the classes of Hermann
Minkowski, an excellent mathematics teacher who later was to cast
Einstein’s special theory of relativity into a four-dimensional space.
Marcel Grossman, a fellow student, was later to help Einstein secure
a position at the patent office and collaborate with him for several years
on the general theory of relativity. Mileva Marić, another fellow student,
was to become Einstein’s wife in 1903.

Although following some courses with intense interest, Einstein relied
more on self-study than regular class attendance, studying the writ-
ings of the “masters of contemporary theoretical physics – above all,
Hermann von Helmholtz, Gustav Robert Kirchoff, Heinrich Hertz,
Ludwig Boltzmann, Ernst Mach, and . . . James Clerk Maxwell.”94 He
recalled Mach’s book on mechanics as “a book which, with its criti-
cal attitude toward basic concepts and basic laws, made a deep and
lasting impression on me.” He had time for these, since, “In all there
were only two examinations; for the rest one could do what one
wanted . . . up to a few months before the examination.” For exami-
nations, Einstein would borrow the meticulously organized notes of
Marcel Grossman.95

Heinrich Weber was a well-respected experimentalist, renown in
precision instrumentation and precision measurements.96 He joined
Hermann von Helmholtz in 1871 at the University of Berlin. Working
in Helmholtz’s laboratory, Weber produced two major papers on the
specific heats of carbon, boron, and silicon, showing them to be notice-
ably smaller at low temperatures than predicted by the law of Dulong
and Petit. (For nearly thirty years Weber’s empirical findings would
remain an anomaly – until Einstein, his former student, presented a new
explanation. See Section 6.2.1.) In 1875, Weber accepted the position
of professor of mathematical and technical physics at the Swiss Federal
Polytechnic School (ETH) in Zurich. In 1887 and 1888, he published two
additional major papers, both on light emission in incandescent solid
bodies. The 1888 paper is of particular significance as it led to Wien’s
displacement law for the energy distribution in blackbody radiation
(which, in turn, was used by Max Planck when he obtained the energy
quantization relation, E = hν. See Section 2.1.3).97

Weber was considered by all an excellent teacher. Even Einstein
acknowledged this, but was disappointed he did not teach the new and
fascinating electromagnetic theory of Maxwell. Further, “He did not
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teach the foundations of physics, and he did not teach theoretical or
mathematical physics.”98

After two years of study, Einstein passed his qualifying examination
and began concentrating on his physics. Of the fifteen courses Einstein
took with Weber, five of them were laboratory courses. Weber’s labora-
tory courses stressed the importance of measurement. Einstein talks of
his enjoyment of the laboratory experience, that he was “. . . fascinated
by the direct contact with experience. . . ”99

From Weber’s courses, Einstein received a solid introduction to
physics, especially thermodynamics, electricity, and magnetism; a strong
concern with precision measurement; and, likely, an introduction to
blackbody radiation. From Weber’s research came the work on specific
heats, particularly the anomalous behavior of some materials at low
temperatures. Moreover, Weber served as a mentor, from seeing Ein-
stein’s scientific potential even in the failed entrance examination, to
encouraging and helping develop his scientific talents, to guiding his
thesis for graduation.100

In July 1900, Einstein passed the final examination to complete the
requirements for graduation. Upon graduation his allowance from the
Koch family ended.

1.3.3 From College to 1905

At graduation, Einstein anticipated being offered an assistantship at the
ETH to work with Weber. However, one was not forthcoming. As John
Stachel writes, “An attitude of independence, considered excessive by
his professors, may have played a role.” Weber selected two mechanical
engineers to work with him. When Einstein failed to secure a position
at the ETH he began applying for assistantships at other institutions,
but with no success.101 After a succession of part-time jobs, through
the intercession of his college friend, Marcel Grossman, in June 1902
he secured a permanent job at the Swiss patent office in Bern. Albert
Einstein and Mileva Marić, were married on January 6, 1903. Their first
son, Hans Albert, was born on May 14, 1904.102

Through an agreement between the ETH and the University of Zurich,
students could complete their doctoral work at the ETH, but receive
their degree from the University of Zurich (the ETH did not offer a
doctoral degree). Einstein began his doctoral work at the ETH with
Weber in the fall, 1900, working on it over the winter. He began work
on thermoelectricity, but switched to molecular forces. By spring, 1901,
Einstein and Weber had a falling-out and parted company. Einstein then
turned to Alfred Kleiner at the University of Zurich to supervise his
doctoral thesis. With Kleiner, Einstein again dealt with molecular forces,
covering a wide range of topics related to kinetic theory. He officially
submitted his dissertation to the University of Zurich on 23 November,
1901, and on 2 February, 1902, officially retracted it. Kleiner likely had
suggested the dissertation be withdrawn because, at least in Einstein’s
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view, Kleiner felt it contained “sharp criticism of Ludwig Boltzmann.”
Again, under the supervision of Kleiner, and on a topic different from
the first two submissions of 1902, Einstein submitted his dissertation,
“A new Determination of Molecular Dimensions,” to the University of
Zurich on July 20, 1905. It was accepted on July 24, 1905. As Abraham
Pais describes it, “Einstein was now Herr Doktor.”103

1.4 Discussion and Comments

During Einstein’s days at the ETH, physicists were trying to unify all
of physics under one “world-view,” i.e., on a common foundation. Three
such programs were in vogue: the mechanical worldview (Boltzmann,
Hertz), the electromagnetic worldview (Lorentz, Abraham), and the
energetic worldview (Ostwald, Duhem). (See Section 3.1.3 for further
details of the three worldviews.) The general acceptance was a dualistic
worldview, a mixture of the mechanical and electromagnetic world-
views.104

Albert Einstein undoubtedly entered the ETH with a bias toward
atomism, and confirmed it through his study of Boltzmann’s work while
a student.105 His formal introduction to thermodynamics was in Weber’s
course during his fourth year at the ETH, but with no mention of the
current developments in the kinetic theory of Maxwell and Boltzmann.

From graduation in 1900 to 1905, Einstein published five papers, each
of them indicating a belief in the kinetic theory of Boltzmann.106

1901 “Conclusions Drawn from the Phenomena of Capillarity”107

1902 “On the Thermodynamic Theory of the Difference in Poten-
tials between Metals and Fully Dissociated Solutions of Their
Salts and on an Electrical Method for Investigating Molecular
Forces”108

1902 “Kinetic Theory of Thermal Equilibrium and of the Second Law
of Thermodynamics”109

1903 “A Theory of the Foundations of Thermodynamics”110

1904 “On the General Molecular Theory of Heat”111

John Stachel describes the first two papers as “an investigation of
the nature of molecular forces by means of the effect of such forces
on various observable phenomena in liquids.”112 The third, fourth, and
fifth papers are “devoted exclusively to the foundations of statistical
physics . . . ”113 In these three papers Einstein reinterpreted the work of
Ludwig Boltzmann on statistical mechanics, clarifying, adding, and/or
putting on a firm foundation the distinction between microcanonical
and canonical ensembles, the equipartition of energy, the equivalence
of ensemble and time averages (the ergodic theorem), the concept of
entropy, and the calculation of probabilities.114

Einstein was firmly committed to the atomic theory and to Boltz-
mann’s approach to statistical physics.115 This was the mechanical
worldview, including also Newton’s mechanical principle of relativity,
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and experiments were beginning to show the principle of relativity
should be extended beyond mechanics to optical and electromagnetic
phenomena.

However, the principle of relativity was in conflict with Maxwell’s
electromagnetic theory, which selected out a “rest frame,” that of the
aether. It was the success of Maxwell’s theory, coupled with the inability
to provide a mechanical underpinning for it, that left physicists with a
dualistic mixture of mechanical and electromagnetic concepts. Albert
Einstein’s “striving for simplicity and unification led him to anticipate
the ultimate elimination of this dualism.” This led him to regard neither
the mechanical worldview nor the electromagnetic worldview as unalter-
able.116

In his personal and scientific life, Einstein was neither a rebel nor a
revolutionary seeking to overthrow authority. Rather, he had become
free of any authority except the authority of reason.117

By 1905:

1. The mechanics of Newton was well established, including the prin-
ciple of relativity, describing the motion of objects.

2. The electromagnetism of Maxwell was well established, describing
the propagation of electromagnetic waves.

3. The aether was an established part of scientific belief. In The
Theory of Electrons,118 Lorentz states his belief in the aether,
“however different it may be from all ordinary matter.”119 Lorentz
stated, further, that the aether always remains at rest [relative to
absolute space].120

4. The Lorentz transformations had already been obtained by Lorentz
in 1904.

5. Atoms were accepted as a convenient means of visualizing systems,
but their reality remained a point of controversy.

1.5 Appendices

1.5.1 Science Today

Science is sometimes viewed as marching inevitably and inexorably
toward the ultimate truth, all scientists following the same “scientific
method.” But the ways of science are not monolithic. Hendrik Lorentz,
from his own experience, cautions us that “one of the lessons which
the history of science teaches us is ... that we must not too soon be
satisfied with what we have achieved. The way of scientific progress is
not a straight one which we can steadfastly pursue. We are continually
seeking our course, now trying one path and then another, many times
groping in the dark, and sometimes even retracing our steps.”121

1.5.1.1 The Logic of Science
In the hypothetico-deductive model of science, one goes from observation
to hypothesis to prediction to confirmation (or to refutation). However,
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confirmation does not verify the correctness of the hypothesis; it only
tells us the hypothesis has not been refuted. This “logic of science” can
be viewed in the following manner. If the proposition p always must have
the consequence q, we write:122

p ⇒ q

For example, p could be the statement, “The earth is stationary in the
center of the universe, with the sun revolving about the earth every 24
hours.” The consequence q would be the sun appearing over the horizon
each morning and setting each evening. This consequence q would verify
(but not prove) the proposition p. On the other hand, if the sun does
not appear over the horizon each morning and set each evening, this
does “prove” that the proposition p was false, i.e., the absence of the
consequence q proves that the proposition p was false.

But the converse is not true, i.e., the presence of q does not prove the
truth of p:

q �=> p

For example, if q = “the sun rises each morning and sets each evening,”
it could be due to p = “the rotation of the earth on its axis.” These can
be written symbolically as:

p ⇒ q If q appears it verifies (but does not prove)
the truth of p.

q �=> p The presence of q does not prove the truth of p.
not(q) ⇒ not(p) If q does not appear, the statement p must be false.
not(p) �=> not(q) If p is not present, it says nothing about q.

If q is present, it does not “prove” the validity of the statement p.
However, if q is not present, it does “prove” that p is false.

No matter how many times, nor in how many circumstances, q verifies
the proposition p, it takes but one falsification (q is absent) to falsify the
proposition p. This is the way of science: we observe the world around
us (the consequence q) and try to determine the “Laws of Nature” that
govern it (the proposition p). For an example, see Section 1.2.2.3 (Isaac
Newton) on Newton’s law of gravity and Section 5.3.1.1 on the precession
of the perihelion of the planet Mercury.

1.5.1.2 Experimental Falsification
Falsification is not a methodology peculiar to science; it is part of how we
learn in the everyday world. The application of falsification to scientific
knowledge is in the confirmation, or repudiation, of a scientific model in
as much as an experiment agrees, or does not agree, with the model. In
physics, Cushing writes,

One major difference between the ‘games’ played by theoretical physicists
and those played by pure mathematicians is that, aside from meeting the
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demands of internal consistency and mathematical rigor, a physical model
must ultimately also meet the inflexible boundary condition of agreeing with
physical reality.123

In his 1968 book, Conjectures and Refutations, Karl Popper writes,

‘When should a theory be ranked as scientific?’ or ‘Is there a criterion for the
scientific character or status of a theory?’

The problem which troubled me at the time was neither, ‘When is a theory
true?’ nor, ‘When is a theory acceptable?’ My problem was different. I wished
to distinguish between science and pseudo-science; knowing very well that
science often errs, and that pseudo-science may happen to stumble on the
truth.

I knew, of course, the most widely accepted answer to my problem: that
science is distinguished from pseudo-science – or from ‘metaphysics’ – by its
empirical method, which is essentially inductive, proceeding from observation
or experiment. But this did not satisfy me. On the contrary, I often formulated
my problem as one of distinguishing between a genuinely empirical method and
a non-empirical or even pseudo-empirical method – that is to say, a method
which, although it appeals to observation and experiment does not come up
to scientific standards. The latter method may be exemplified by astrology,
with its stupendous mass of empirical evidence based on observation – on
horoscopes and on biographies.

But as it was not the example of astrology which led me to my problem I
should perhaps briefly describe the atmosphere in which my problem arose and
the examples by which it was stimulated. After the collapse of the Austrian
Empire there had been a revolution in Austria: the air was full of revolutionary
slogans and ideas, and new and often wild theories. Among the theories which
interested me Einstein’s theory of relativity was no doubt by far the most
important. Three others were Marx’s theory of history, Freud’s psychoanalysis,
and Alfred Adler’s so-called ‘individual psychology.’124

I found that those of my friends who were admirers of Marx, Freud, and
Adler were impressed by a number of points common to those theories, and
by their apparent explanatory power. These theories appeared to be able
to explain practically everything that happened within the fields to which
they referred. The study of them seemed to have the effect of an intellectual
conversion or revelation, opening your eyes to a new truth hidden from
those not yet initiated. Once your eyes were thus opened you saw confirm-
ing instances everywhere: the world was full of verifications of the theory.
Whatever happened always confirmed it. Thus its truth appeared manifest;
and unbelievers were clearly people who did not want to see the manifest
truth; who refused to see it, either because it was against their class interest,
or because of their repressions which were still ‘unanalyzed’ and crying out
for treatment.125

With Einstein’s theory the situation was strikingly different. Take one
typical instance – Einstein’s prediction, just then confirmed by the findings of
Eddington’s expedition. Einstein’s gravitational theory had led to the result
that light must be attracted by heavy bodies (such as the sun), precisely as
material bodies were attracted. As a consequence it could be calculated that
light from a distant star whose apparent position was close to the sun would
reach the earth from such a direction that the star would seem to be slightly
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shifted away from the sun; or, in other words, that the stars close to the
sun would look as if they had moved a little away from the sun, and from
one another. This is a thing which cannot normally be observed since such
stars are rendered invisible in daytime by the sun’s overwhelming brightness;
but during an eclipse it is possible to take photographs of them. If the same
constellation is photographed at night one can measure the distances on the
two photographs and check the predicted effect.

Now the impressive thing about this case is the risk involved in a prediction
of this kind. If observation shows that the predicted effect is definitely absent,
then the theory is simply refuted. The theory is incompatible with certain
possible results of observation – in fact with results which everybody before
Einstein would have expected. This is quite different from the situation I have
previously described, when it turned out that the theories in question were
compatible with the most divergent human behavior, so that it was practically
impossible to describe any human behavior that might not be claimed to be
a verification of these theories.126

One can sum up all this by saying that the criterion of the scientific status
of a theory is its falsifiability, or refutability, or testability.127

Cushing notes:

A good scientific theory prohibits certain outcomes from occurring in nature
and a stringent test of such a theory is an attempt to falsify or refute it by
actually observing those prohibited results. Hence, for Popper, the hallmark
of scientific theories is that they are (in principle) refutable or falsifiable.
(This is not the same thing as saying that they are in fact constantly
refuted. A successful scientific theory survives many serious attempts to
refute it.)128

1.5.1.3 Scientific Revolution vs. Scientific Evolution
In the 1970s, the view that science proceeds through periods of rel-
atively non-controversial “normal” science punctuated by episodes of
“revolutionary” science was put forth by Thomas Kuhn in The Structure
of Scientific Revolutions.129 The periods of scientific revolution were
described by Kuhn as, “non-cumulative developmental episodes in which
an older paradigm is replaced in whole or in part by an incompatible
new one.”130 The example put forth most frequently is the change
in paradigm (view of the world) from the late 1800s of a universe
everywhere filled by the luminiferous aether, in which light travels, to
the special theory of relativity of Einstein in 1905, in which the concept
of the aether would be considered “superfluous.”131A second example
would be Newton’s unification of the heavens with the earth, in that
the heavens no longer had a separate description (quintessence) from
phenomena on the earth, but that the same laws apply in the heavens
as apply on the earth. Between these episodes of revolutionary science
were the periods of normal science where the accepted paradigm was
applied with greater precision, with wider application, and with new
predictions.
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In contrast to the view of scientific revolutions in terms of paradigm
shifts was the view of science proceeding in a more evolutionary manner.
In the introduction to Pierre Duhem’s To Save the Phenomena,132 Stan-
ley Jaki notes Duhem “knew that in intellectual history the beginnings
are rarely abrupt. . . . Duhem’s historical investigations on the origins of
statics opened up for him the fascinating world of ancient Greek science,
and with it the first phase in that great continuity which Duhem saw in
the evolution of physical science.”133

To the scientist, it matters little if the change is labeled evolutionary
or if the change is labeled revolutionary. What matters is that the under-
standing of nature becomes deeper and more extensive. As noted above,
Einstein’s 1905 special theory of relativity was considered revolutionary
by the scientific community, yet Einstein himself considered it more of
an evolutionary step to modify Newton’s work, making it correct near
the speed of light. Abraham Pais reports that, in a lecture Einstein gave
on relativity at King’s College in 1921, Einstein himself “deprecated the
idea that the new principle [relativity] was revolutionary. It was, he told
his audience, the direct outcome and, in a sense, the natural completion
of the work of Faraday, Maxwell, and Lorentz.”134

1.5.2 Newton’s Law of Gravitation
from Kepler’s Laws

Applying Newton’s laws of motion to Kepler’s three laws of planetary
motion, from Kepler’s law of equal areas it is determined the force
between the sun and the planet is a central force. For a planet in an
elliptical orbit due to a central force, Newton’s mechanics derives the
force to be an inverse square law, i.e., F ∝ 1/r2

1.5.2.1 Equal Area Rule => Conservation of Angular
momentum => Central force

For planetary orbits Kepler’s equal area rule is

dA
dt

=
1
2
(R)(Rθ̇) =

1
2
R2θ̇ = constant

The angular momentum of a planet in orbit is

�L =
⇀

R ×�p =
⇀

R ×m�v = (R)(mvperpendicular) = (R)(mRθ̇) = mR2θ̇

The angular momentum of a planet around the sun is constant since,
by Kepler’s equal area law, R2θ̇ = constant. Thus, any force from the
sun on the planet must be a radial force, otherwise it would produce
a torque on the planet and the angular momentum would not remain
constant.
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1.5.2.2 Elliptical Orbits+Central Force
=> 1/R2 Force

The equation of the elliptical orbit is R = A
1+ε cos θ .

Changing the variable from R to u = 1/R, the equation of the orbit is
u(R) = 1

R = 1
A (1 + ε cos θ)

Let P be the radial force (central force) of the discussion in Appendix
1.5.2.1:

−P = maR = m
(
R̈ − Rθ̇2

)
From angular momentum conservation and using the variable u = 1/R,
the first term in the parentheses becomes

Ṙ =
dR
dt

=
d

dt

(
1

u (θ)

)
=

d

dθ

(
1
u

)
dθ

dt
= − 1

u2

du
dθ

θ̇

= −R2θ̇
du
dθ

= −
(

L

m

)
du
dθ

R̈ =
dṘ

dt
= −

(
L

m

)
d

dt

(
du
dθ

)
= −

(
L

m

)
d

dθ

(
du
dθ

)
dθ

dt

= −
(

L

m

)(
d2u

dθ2

)
θ̇ = −

(
L

m

)(
d2u

dθ2

)(
L

mR2

)

⇒ R̈ =
−L2u2

m2

d2u

dθ2

From the conservation of angular momentum the second term in the
parentheses can be written as,

L = mR2θ̇

⇒ −Rθ̇2 =
−L2

m2R3
=

−L2

m2
u3

Substituting into the expression for P ,

⇒ P =
L2

m
u2

(
d2u

dθ2
+ u

)

But

d2u

dθ2
=

d

dθ

[
d

dθ

(
1
A

(1 + ε cos θ)
)]

=
−1
A

ε cos θ

Thus

P =
L2

m
u2

[
− 1

A
ε cos θ +

1
A

(1 + ε cos θ)
]

=
L2

m

u2

A
∝ 1

R2

Thus we see that using Newton’s laws of mechanics, from Kepler’s
laws of planetary motion it can be deduced that the force between the
sun and the planet is a central force proportional to 1

R2 .
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Technische Hochschule).

90. Stachel, John, ed., [CPAE1, pp. xxxvi, 11; CPAE1 ET, p. xxii]; Howard,
Don, and Stachel, John, The Formative Years, p. 73; Pais, Abraham,
Subtle is the Lord, p. 40; Clark, Ronald W., Life and Times, pp. 21, 22,
24, 25.

91. Stachel, John, ed., [CPAE1, pp. 11, 23–25].
92. Pais, Abraham, Subtle is the Lord, p. 41.
93. For further information on Einstein’s time at the ETH, including his tran-

scripts, the reader is referred to Stachel, John, ed., [CPAE1, pp. 43–50,
60–62] and to Howard, Don, and Stachel, John, The Formative Years,
pp. 43–82.

94. Howard, Don, and Stachel, John, The Formative Years, pp. 43, 44, 64.
95. Pais, Abraham, Subtle is the Lord, p. 44.
96. Howard, Don, and Stachel, John, The Formative Years, pp. 45–46.



30 Setting the Stage for 1905

97. Howard, Don, and Stachel, John, The Formative Years, pp. 45–50.
98. Howard, Don, and Stachel, John, The Formative Years, pp. 63, 66, 67.
99. Howard, Don, and Stachel, John, The Formative Years, pp. 63, 64, 66.

100. Howard, Don, and Stachel, John, The Formative Years, pp. 72, 73.
101. Stachel, John, ed., [CPAE1, pp. xxxvi, xxxvii, 44]; Howard, Don, and

Stachel, John, The Formative Years, pp. 73, 74; Clark, Ronald W., Life
and Times, p. 40.

102. Pais, Abraham, Subtle is the Lord, p. 47.
103. Pais, Abraham, Subtle is the Lord, pp. 88, 89; Howard, Don, and Stachel,

John, The Formative Years, pp. 74, 116, 120, 121; Stachel, John, CPAE2,
p. 170.

104. Howard, Don, and Stachel, John, The Formative Years, pp. 2–4; Stachel,
John, ed., [CPAE2, p. xxvii].

105. Howard, Don, and Stachel, John, The Formative Years, p. 126.
106. Stachel, John, editor, The Collected Papers of Albert Einstein, Volume 2

[CPAE2], Princeton University Press, Princeton, NJ, 1989, p. 41.
107. Einstein, Albert, Conclusions Drawn from the Phenomena of Capillarity,

Annalen der Physik 4 (1901), pp. 513–523; Stachel, John, ed., [CPAE2,
doc. 1, pp. 9–21; CPAE2 ET, pp. 1–11].

108. Einstein, Albert, On the Thermodynamic Theory of the Difference in
Potentials Between Metals and Fully Dissociated Solutions of Their Salts
and On an Electrical Method for Investigating Molecular Forces, Annalen
der Physik 8 (1902), pp. 798–814; Stachel, John, ed., [CPAE2, doc. 2,
pp. 22–40; CPAE2 ET, pp. 12–29].

109. Einstein, Albert, Kinetic Theory of Thermal Equilibrium and of the
Second Law of Thermodynamics, Annalen der Physik 4 (1902), pp.
417–433; Stachel, John, ed., [CPAE2, doc. 3, pp. 56–75; CPAE2 ET,
pp. 30–47].

110. Einstein, Albert, A Theory of the Foundations of Thermodynamics,
Annalen der Physik 11 (1903), pp. 170–187; Stachel, John, ed., [CPAE2,
doc. 4, pp. 76–97; CPAE2 ET, pp. 48–67].

111. Einstein, Albert, On the General Molecular Theory of Heat, Annalen der
Physik 14 (1901), pp. 354–362; Stachel, John, ed., [CPAE2, doc. 5, pp.
98–108; CPAE2 ET, pp. 68–77].

112. Stachel, John, ed., [CPAE2, p. 3].
113. Stachel, John, ed., [CPAE2, p. 41].
114. Howard, Don, and Stachel, John, The Formative Years, p. 109.
115. Stachel, John, ed., [CPAE2, p. 46].
116. Howard, Don, and Stachel, John, The Formative Years, pp. 4, 5, 9.
117. Pais, Abraham, Subtle is the Lord, p. 39.
118. Lorentz, H. A., The Theory of Electrons, 1952.
119. Lorentz, H. A., The Theory of Electrons, p. 230.
120. Lorentz, H. A., The Theory of Electrons, p. 11.
121. Lorentz, Hendrik, The Radiation of Light, Nature, 113 (26 April, 1924),

608–611.
122. Cushing, James T., Philosophical Concepts, pp. 30, 32.
123. Cushing, James T., Philosophical Concepts, p. 360.
124. Popper, Karl, Conjectures and Refutations, Routledge Classics, New

York, 2002, pp. 43–44.
125. Popper, Karl, Conjectures and Refutations, p. 45.
126. Popper, Karl, Conjectures and Refutations, p. 47.
127. Popper, Karl, Conjectures and Refutations, p. 48.
128. Cushing, James T., Philosophical Concepts, p. 33.



1.7 Bibliography 31

129. Kuhn, Thomas, The Structure of Scientific Revolutions, The University
of Chicago Press, Chicago, Il, 1970.

130. Kuhn, Thomas, Scientific Revolutions, p. 92.
131. Stachel, John, ed. [CPAE2, p. 277; CPAE2 ET, p. 141].
132. Duhem, Pierre, To Save the Phenomena.
133. Duhem, Pierre, To Save the Phenomena, p. xvii. In the Introduction by

Stanley L. Jaki.
134. Einstein, Albert, Prof. Einstein’s Lectures at King’s College, London,

and the University of Manchester, Nature 107 (16 June, 1921), p. 504;
citation from Pais, Abraham, Subtle is the Lord, p. 30.

1.7 Bibliography

Boorse, Henry A., and Motz, Lloyd, editors, The World of the Atom, Volume
1, Basic Books, Inc., New York, 1966.

Casper, Barry M., and Noer, Richard J., Revolutions in Physics, W.W. Norton
and Company, New York, 1972.

Clark, Ronald W., Einstein: The Life and Times, The World Publishing
Company, New York, 1971.

Cushing, James T., Philosophical Concepts in Physics, Cambridge University
Press, Cambridge, 1998.

Dijksterhuis, E. J., The Mechanization of the World Picture, Princeton Uni-
versity Press, Princeton, NJ, 1986.

Duhem, Pierre, To Save the Phenomena, The University of Chicago Press,
Chicago, IL, 1969.

Einstein, Albert, Conclusions Drawn from the Phenomena of Capillarity,
Annalen der Physik 4 (1901), pp. 513–523 [CPAE2, doc. 1, pp. 9–21; CPAE2
ET, pp. 1–11].

Einstein, Albert, On the Thermodynamic Theory of the Difference in Poten-
tials Between Metals and Fully Dissociated Solutions of Their Salts and
On an Electrical Method for Investigating Molecular Forces, Annalen der
Physik 8 (1902), pp. 798–814 [CPAE2, pp. 22–40; CPAE2 ET, pp. 12–29].

Einstein, Albert, Kinetic Theory of Thermal Equilibrium and of the Sec-
ond Law of Thermodynamics, Annalen der Physik 4 (1902), pp. 417–433
[CPAE2, pp. 56–75; CPAE2 ET, pp. 30–47].

Einstein, Albert, A Theory of the Foundations of Thermodynamics, Annalen
der Physik 11 (1903), pp. 170–187 [CPAE2, pp. 76–97; CPAE2 ET,
pp. 48–67].

Einstein, Albert, On the General Molecular Theory of Heat, Annalen der
Physik 14 (1901), pp. 354–362 [CPAE2, pp. 98–108; CPAE2 ET, pp. 68–77].

Einstein, Albert, Prof. Einstein’s Lectures at King’s College, London, and the
University of Manchester, Nature 107, (1921), p. 504. (Citation in Pais,
Abraham, Subtle is the Lord.)

Fölsing, Albrecht, Albert Einstein: A Biography, Viking, New York, 1997.
Hoffmann, Banesh, Relativity and Its Roots, Scientific American Books,

W. H. Freeman and Company, New York, 1983.
Howard, Don, Albert Einstein: Physicist, Philosopher, Humanitarian, The

Teaching Company, Chantilly, VA, 2008.
Howard, Don, and Stachel, John, editors, Einstein: The Formative years,
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“On a Heuristic Point of View Concerning the Production and
Transformation of Light”1

Received on 18 March, 1905, by Annalen der Physik

2.1 Historical Background

Albert Einstein’s paper, “On a Heuristic Point of View Concerning the
Production and Transformation of Light,” sometimes is referred to as the
photoelectric effect paper, giving the impression its primary goal was to
explain the photoelectric effect. To the contrary, the primary focus was to
explain blackbody radiation and, at the end of the paper, the explanation
of blackbody radiation was used to give a possible explanation of three
experiments, one of them being the photoelectric effect. In this paper,
he draws on currently accepted scientific ideas of electromagnetism and
the electromagnetic aether (see Section 1.2.3.1); on thermodynamics and
the newer ideas of statistical mechanics; on entropy; and on blackbody
radiation, including the work of Max Planck of 1900.

2.1.1 Thermodynamics and Entropy

In nature, it was of interest why some processes are “irreversible.” For
example, why does heat transfer from a warmer object to a cooler object,
but not from a cooler object to a warmer object? From the laws of
classical mechanics there is nothing that prohibits this reverse process.
To explain why a process such as this is not reversible, a new quantity
called the entropy, S, was introduced, and a new law was formulated that
“In any naturally occurring process the total entropy of the universe will
increase or, at best, stay the same.”2 This law is an addition to the laws
of mechanics, laws such as conservation of energy and conservation of
momentum, and is not contained in mechanics. (See Appendix 2.4.1 for
further discussion.)

In the mid 1800s, Ludwig Boltzmann, an ardent atomist, viewed the
thermodynamic gas as composed of a very large number of independent
molecules in random, chaotic motion. The motion of an individual
molecule was determined by Newton’s equations of mechanics through
interactions (collisions) with the other molecules and with the walls of
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the container. To each degree of freedom of the system there corre-
sponded an equal portion of the energy of the system (each molecule
has three degrees of freedom associated with its translational motion,
one degree of freedom each for the x-, y-, and z-components of velocity,
plus possibly additional degrees of freedom if there is internal energy
associated with vibrational or rotational energy). This equal sharing of
the energy is known as the equipartition of energy.

Looking at the distribution of the molecules of the gas, not only in
terms of location within the container, but also in terms of distribution of
the velocities of the molecules, Boltzmann showed that for an arbitrary
initial distribution, the gas would tend to the equilibrium distribution,
i.e., to the Maxwell distribution function.3 At any moment, the molecules
of the gas can be in any of a (nearly infinite) number of states, each
state with a calculable probability, W . For equilibrium states, Boltzmann
obtained the following relation between the entropy S of the system in
a given state and the probability W of that state4

S = klogW

where k is a constant of proportionality, subsequently named the
Boltzmann constant. The relation S = klogW indicates that an increase
in the entropy of a system corresponds to the system moving from
a less probable state to a more probable state. Boltzmann calculated
the probability of a state occurring in terms of “complexions,” the
number of ways a given state could occur.5 In modern terminology,
Boltzmann developed the theory of the microcanonical ensemble, where
each possible configuration of the system corresponds to the same total
energy.

2.1.2 Blackbody Radiation

All matter emits electromagnetic radiation when it has a temperature
above absolute zero. The radiation a body emits because it is at some
temperature T is called thermal radiation. Eνdν is the amount of
radiation energy emitted by the body per unit time per unit area in the
frequency interval dν. Aν is the absorption coefficient at frequency ν. In
1860, Gustav Kirchoff showed that the ratio Eν/Aν depended only on
the frequency ν and the temperature T of the body, and did not depend
on any other of its characteristics. The relation, Eν/Aν = J(ν, T ), is
known as Kirchoff’s theorem. If the absorption coefficient is equal to
one, Aν = 1, the body absorbs all of the radiant energy incident on it
and is defined as a blackbody. For a blackbody, Eν = J(ν, T ). Kirchoff
stated, “It is a highly important task to find this function [J ] . . . .
[T]here appear grounds for the hope that it has a simple form, as
do all functions which do not depend on the properties of individual
bodies . . . ”6 Because of the experimental difficulty it was nearly forty
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years before sufficient experimental data were available to determine the
function J(ν, T ).7

Consider a cavity, completely enclosed except for one very small
opening. Radiation from the outside incident on the small opening will
pass through the opening into the interior of the cavity, where it will be
reflected internally and eventually be absorbed by the walls. Since the
cross-sectional area of the opening is taken to be negligible in comparison
to the area of the interior walls of the cavity, only a negligible amount
of the incident radiation will be reflected back through the opening.
Thus, the small opening, since virtually all of the incident radiation is
“absorbed” and none is “reflected,” acts like the surface of a blackbody.
The small opening can therefore be treated the same as the surface of a
blackbody.

Now consider the reverse process. If the cavity is heated, instead
of absorbing radiation through the small opening, the cavity emits
radiation through it. Because of the heating, the interior of the cavity
will be filled with thermal radiation corresponding to some established
equilibrium between the radiation in the cavity and the walls at the
temperature T . The small opening in the wall of the container allows
some of the radiation to escape the cavity and be measured. The opening
is so small that the tiny bit of radiation escaping will have a negligible
effect on the radiation within the cavity. Since (in absorption) the small
opening was shown to behave as the surface of a blackbody, the spectrum
of the escaping radiation must have the spectrum of a blackbody and,
since the escaping radiation is but a sample of the radiation inside
the cavity, the radiation inside the cavity must have the spectrum
of a blackbody. The energy density, ρ(ν, T ), is the amount of energy
per unit volume per unit frequency of the radiation in the cavity. It
was shown that ρ(ν, T ) is related to J(ν, T ) as J(ν, T ) = ( c

8π )ρ(ν, T ).8

Determining the function ρ(ν, T ) would determine the function J(ν, T ).
Thus, to study blackbody radiation, scientists focused their attention on
the radiation inside the cavity, called cavity radiation. See Figure 2.1.

The radiation in the container will consist of standing waves of certain
wavelengths λn, where λn = (2L)/n, and n is an integer (n = 1, 2, 3, . . . ,
but n �= 0). See Figure 2.2.

Each wavelength corresponds to a degree of freedom of the radiation
and, by the equipartition of energy theorem, shares equally in the energy
and, “since there are infinitely many allowed waves of shorter and shorter
wavelength, nearly all of the light should be at the short wavelength end
of the spectrum.”9 It should be noted that the short wavelength region
is the same as the high frequency region.10

In the years from 1890 to 1900, a number of experimentalists measured
the cavity radiation density as a function of the frequency ν with
increasing precision.11 See Figure 2.3.

In 1893, Wilhelm Wien proved that ρ(ν, T ) must be of the form
ρ(ν, T ) = ν3f(ν/T ) and, in 1896, proposed that ρ(ν, T ) = αν3e−βν/T .14

In 1897, this was verified to fit the known data. But, in 1900, new
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LFig. 2.1 Schematic of the cavity radi-
ation experimental apparatus.
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Fig. 2.2 Standing waves in a cavity of
width L.
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experimental data at lower frequencies showed discrepancies of 40% –
50% between the data and Wien’s expression for the radiation energy
density.15

In 1900, using the equipartition of energy, Lord Rayleigh obtained
for ρ(ν, T ) the expression, ρ(ν, T ) = cν2T . In 1905, Lord Rayleigh and
James Jeans determined the value of the constant c. This became known
as the Rayleigh–Jeans formula (see Section 2.1.1 for a derivation),16

ρ(ν, T ) =
8πkTν2

c3

It should be noted that all constants in the Rayleigh–Jeans formula
are determined – there are no parameters available to adjust in order
to fit the experimental data. At low frequencies (long wavelengths) this
formula agreed well with the experimental curves, but at high frequencies
(short wavelengths) the formula became infinite and diverged dramat-
ically from the experimental curves. This divergence became known as
the ultraviolet catastrophe.17 See Figure 2.4.
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2.1.3 Max Planck’s Derivation of the Radiation
Density

Knowing of the success of the Wien law in the high frequency region and
that ρ(ν, T ) was proportional to T in the low frequency regime (although
this was the same as the Rayleigh–Jeans result, Planck was responding
to the work of Heinrich Rubens18), in 1900 Max Planck proposed that

ρ(ν, T ) =
8πhν3

c3

1
ehν/kT − 1

This result was obtained by interpolating between the two expressions
and requiring that the resulting expression reduce to the Wien law in
the limit of large hν/kT , and be proportional to T in the limit of small
hν/kT . As Cushing notes, “At this stage Planck had a formula that fit
the data perfectly, but that had no theoretical justification.”19 Planck
then set about to find a theoretical justification.20 (See Appendix 2.4.2
for the details of this derivation.)

In 1900, the following was known about cavity radiation:21

1. The energy distribution of cavity radiation was independent of the
material of which the walls were constructed.

2. Using general thermodynamic arguments, Wien had shown that
any solution for the energy distribution for cavity radiation must
be of the form ρ(ν, T ) = ν3f(ν/T ), where f is an arbitrary func-
tion to be determined. This relation became known as the Wien
displacement law.

In his calculation for the energy density ρ(ν, T ) of the cavity radiation,
by the first statement Max Planck was free to choose the simplest model
for the walls of the container that would allow the exchange of energy
between the radiation and the walls. The walls of the container were
an aggregate of simple resonators (oscillators), each with “one proper
frequency” and capable of absorbing and/or emitting radiant energy near
this frequency in discrete amounts, ε.22 For the resonators in the walls
in equilibrium with the radiation field, Planck calculated the average
energy density of the radiation in the interval dν to be

ρ(ν, T )dν =
8πν2

c3
Udν

where U is the average energy of the resonator. It needs to be emphasized
that ρ(ν, T ) is the average energy density of the radiation field, while
U is the average energy density of the resonators in the walls. Denoting
the energy of an oscillator as ε, Planck obtained

U =
ε

eε/kT − 1
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To satisfy the Wien displacement law,

ρ(ν, T ) = ν3f(ν/T ) =
8πν2

c3
Udν =

8πν2

c3

(
ε

eε/kT − 1

)
dν

⇒ ε
kT = C ν

T , or ε = Ckν = hν, i.e., to satisfy the Wien displacement
law the average energy of the resonator must be an integral multiple of
hν. The resulting expression for the cavity radiation density is

ρ =
Aν3

e
hν
kT − 1

Planck had imposed the condition that the resonators absorbed and
emitted energy in discrete amounts ε, not that ε = hν. It was the
constraint from the Wien displacement law that required the energy
of an oscillator be a multiple of hν. The condition of ε = hν is imposed
on the resonators in the walls of the container, not on the radiation field.
At high frequencies, this expression for ρ reduces to the Wien expression,
while for low frequencies it reduces to the Rayleigh–Jeans expression.

Although the resulting expression for the energy density of the radi-
ation matched well with experiment, questions about the derivation
were raised by Wien.23 In the derivation, the resonators needed to be
independent of one another, yet (by the equipartition of energy) their
total energy was to be distributed equally among them, indicating some
dependence.

2.2 Albert Einstein’s Paper, “On a
Heuristic Point of View Concerning
the Production and Transformation
of Light”24

Einstein had come to the conclusion that “[light] energy is not distrib-
uted continuously over ever-increasing spaces, but consists of a finite
number of energy quanta that are localized in points in space, move
without dividing, and can be absorbed or generated only as a whole.”25

In this paper, he wished “to communicate my train of thought and
present the facts that led me to this course.”26 His suggestion was that
the failure of “Maxwell’s theory to give an adequate account of radiation
might be remedied by a theory in which radiant energy is distributed
discontinuously in space.”27 Through an analysis of blackbody radia-
tion, he shows how one can be led naturally to view the radiation as
composed of a number of quanta of energy hν. The phrase “heuristic
point of view” in the title indicates he does not consider the paper a
“proof” of his assertion (of light quanta), but considers it as presenting
a helpful procedure to enable a person to see the reasonableness of such
a perspective.

Albert Einstein was concerned with the “profound formal differences”
existing between the molecular theory of gases and Maxwell’s theory of
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electromagnetic radiation.28 Gases were described in terms of discrete
particles (atoms and molecules), with the energy of the system a sum
over the energies of the finite number of individual particles. Maxwell’s
theory described electromagnetism in terms of a continuous function,
the electromagnetic wave, and “a finite number of quantities cannot
be considered as sufficient for the complete determination of the electro-
magnetic state of a space.”29 The energy of an electromagnetic wave was
distributed continuously over the entire wave, and could not be reduced
to the sum of discrete parts, as was the case of the gas composed of
discrete particles. “The energy of a ponderable body cannot be broken
up into arbitrarily many, arbitrarily small parts, while according to
Maxwell’s theory. . . the energy of a light ray emitted from a point source
of light spreads continuously over a steadily increasing volume.”30

Einstein noted the wave theory of light worked “splendidly,” but
pointed out “optical observations apply to time averages and not to
momentary values; and it is conceivable . . . [that the wave theory of
light]. . . may lead to contradictions with experience when it is applied
to the phenomena of production and transformation of light.”31

Work on the blackbody radiation problem was well known to Einstein
in 1905, not only because it was a topic of much interest in the
physics community, but also because H. F. Weber, Einstein’s profes-
sor at the ETH, was working in measuring emission radiation (from
carbon filament lamps). As Kuhn notes, “When Wien . . . published the
displacement law, his only reference to experiment was through Weber’s
law.”32 In addition, in 1905, Einstein was aware of Planck’s 1900 work
on blackbody radiation and his treatment of the entropy of the radiation
field through probability and the complexions. From his soon to be
published work on the special theory of relativity, Einstein knew the
concept of the aether to be superfluous, leaving no medium to trans-
port the electromagnetic waves. But his work on relativity also showed
electromagnetic radiation transfers inertial mass.33 At heart, Einstein
was an atomist and, thus, predisposed to accepting the possibility of
elementary quanta.34 Being an atomist, he was very well acquainted
with the work of Boltzmann in Statistical Mechanics and, in fact, had
clarified and expanded the field.35

As Einstein noted, in the low frequency regime (the Rayleigh–Jeans
region) the results were consistent with the classical treatment of Statis-
tical Mechanics and Maxwell’s theory. However in the high frequency
regime (Wien’s distribution law regime) “these principles fail com-
pletely.”36 He then focused his efforts on the Wien region, avoiding use
of the potentially problematical Statistical Mechanics.

2.2.1 On a Difficulty Encountered in the Theory
of “Blackbody Radiation”

Section 1 of Einstein’s paper points out the limitations of our present
theoretical foundations for understanding radiation. Einstein showed
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how the traditional treatment of radiation using Maxwell’s theory leads
to the Rayleigh–Jeans formula for the radiation energy density, ρν .37 He
first considers a gas enclosed in a container that is in equilibrium with
the walls of the container. After establishing certain conclusions for a gas
in the container, he applies similar reasoning to radiation in a container.

Consider a gas composed of molecules interacting with electrons.
There are two types of electrons: free electrons and bound (resonator)
electrons. The bound electrons “are bound to points in space which are
very far from each other by forces that are directed to these points and
are proportional to the elongations from the points. These electrons,
too, shall enter into conservative interactions with the free molecules
and electrons when the latter come very close to them.”38 In equi-
librium, the average kinetic energy of a molecule of the gas is equal
to the average kinetic energy of a bound electron. For a linear (one-
dimensional) electron, from kinetic theory/statistical mechanics, the
average kinetic energy is 1

2kT (k = Boltzmann’s constant = R/N used
by Einstein). Boltzmann had shown that “the average kinetic energy
equals the average potential energy for a system of particles each one
of which oscillates under the influence of external harmonic forces”39,
giving a total average energy per electron of kT,

〈Eelectron〉 = kT

Einstein then applies similar reasoning to the interaction between
radiation in a cavity and the resonators in the walls of the cavity.
Using the relation established by Max Planck between the energy density
of the radiation and the energy density of the resonators in the walls of
the cavity, ρ(ν, T ) = 8πν2

c3 U = 8πν2

c3 〈Eelectron〉 = 8πν2

c3 kT ,

ρ(ν, T ) =
8πkTν2

c3

where k is the Boltzmann constant, ν is the frequency of the radiation,
c is the speed of light, and T is the temperature of the system. He
then pointed out that that this expression not only “fails to agree with
experience,” but also leads to an infinite amount of energy in a given
volume when all frequencies of radiation are included:40

E =

∞∫
0

ρνdν = k
8π

c3
T

∞∫
0

ν2dν = ∞

2.2.2 On Planck’s Determination
of the Elementary Quanta

By 1900 there existed several formulae that had been derived to explain
the experimentally obtained curve for the radiation density of blackbody
radiation. One of these formulae, the Rayleigh–Jeans law, matched well
the experimental curve at low frequencies, while another formula, Wien’s
law, matched well the experimental curve for high frequencies. However,
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neither matched well the experimental curve over the entire frequency
range.41 (See Section 2.1.2.)

In 1900, Planck published a formula that fit the experimental curve
over the entire frequency range.42 To obtain his formula, Planck consid-
ered the radiation in the cavity interacting with resonators in the walls
of the cavity (see Section 2.1.3). The resonators were bound electrons43

that “emit and absorb electromagnetic waves of definite [frequencies].”44

The radiation in the cavity, although composed of radiation of all fre-
quencies, interacted with resonators only at the resonant frequencies of
the resonators. Through this approach, Planck obtained for the radiation
density in the cavity of a blackbody

ρν =
αν3

e
βν
T − 1

For small values of ( ν
T ), Planck’s expression for ρν becomes (expanding

the exponential term in the denominator and keeping only the lowest
order term)

ρν =
α

β
ν2T

in agreement with the expression obtained in Section 1, the Rayleigh–
Jeans law. This was taken as justification that the lower the frequency,
“the more useful the theoretical principles we have been using prove
to be; however these principles fail completely in the case of [high
frequencies].”45

2.2.3 On the Entropy of Radiation

In Section 3, Einstein reproduces some pertinent work from Wien,
obtaining the expression for the entropy of radiation of frequency ν
contained in a volume V .

The entropy of the radiation can be expressed as

S = V

∞∫
0

φ(ρν , ν)dν

where V is the volume, φ(ρν , ν) is the entropy per unit volume per unit
frequency range, and is a function of both the radiation energy density
ρν and the frequency ν.

Assume the system is in a state of dynamic equilibrium, that is, the
system is in a state of maximum entropy. Maximizing the entropy of
the system for a fixed energy, and using Lagrange’s Method of Unde-
termined Multipliers, Wien showed the expression for φ satisfies (see
Appendix 2.4.3 for the details of this derivation),46

∂φ

∂ρν
=

1
T

This relation is known as Wien’s principle.47
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2.2.4 Limiting Law for the Entropy
of Monochromatic Radiation
at Low Radiation Density

In the limit of high frequencies, Wien had obtained for the radiation
density ρν the ad hoc expression48

ρν = αν3e−β ν
T

which is in agreement with experiment for large ν. Inverting this
expression,

1
T

= − 1
βν

ln
( ρν

αν3

)
Using the relation for (∂φ/∂ρ) obtained in Section 2.2.3, and integrating,

1
T

=
∂φ

∂ρν
= − 1

βν
ln
( ρν

αν3

)

φ(ρν , ν) = − ρν

βν

{
ln
( ρν

αν3

)
− 1

}
The energy in a volume V and frequency range Δν is equal to ρνV Δν.

The entropy S in the volume V and frequency range Δν is equal to
φ(ρν , ν)V Δν:

S = φ(ρν , ν)V Δν

= − ρν

βν

{
ln
( ρν

αν3

)
− 1

}
V Δν

= − 1
βν

(ρνV Δν)
{

ln
(

ρνV Δν

αν3V Δν

)
− 1

}

= − 1
βν

(E)
{

ln
(

E

αν3V Δν

)
− 1

}

Consider now only the dependence of the entropy on the volume V . For
some V0 designate the corresponding entropy as S0, with S representing
the entropy when the radiation occupies the volume V :49

S − S0 =
E

βν
ln
(

V

V0

)

2.2.5 Molecular-Theoretical Investigation
of the Dependence of the Entropy of Gases
and Dilute Solutions on the Volume

In Section 5, Einstein obtains the entropy of an ideal gas. (In Section 6
the expression for the entropy of radiation obtained in Section 4 will be
compared with that of the ideal gas obtained in this section.)
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A system moving to a state of higher entropy, S, corresponds to a
transition to a state of higher probability, W . Ludwig Boltzmann showed
the entropy of the system is related to the probability as

S = klogW

where S is the entropy of the system, k is Boltzmann’s constant, and W
is the probability of the system being in the particular state.

Consider a container of volume V0 containing a gas of N atoms.
Consider also a subvolume V of the volume V0. The probability W1

that a specified atom is in the subvolume V at a given time is the ratio
of the subvolume V to the total volume V0:

W1 =
(

V

V0

)

The probability W2 that a specified set of two atoms is in the subvolume
V at a given time is the probability that the first atom is in the
subvolume multiplied by the probability that the second atom is in the
subvolume V :

W2 =
(

V

V0

)
x

(
V

V0

)
=
(

V

V0

)2

Generalizing, the probability all N atoms are in the subvolume V at a
given time is

WN =
(

V

V0

)N

The entropy S corresponding to all N atoms being in the subvolume
V , relative to the entropy S0 of the atoms occupying the volume V0 is50

S − S0 = klogWN = klog
(

V

V0

)N

2.2.6 Interpretation of the Expression for the
Dependence of the Entropy of
Monochromatic Radiation on Volume
According to Boltzmann’s Principle

Section 6 is the key section, showing the entropy for radiation in the
high frequency limit is of exactly the same form as the expression
for the entropy of an ideal gas (if one makes certain straightforward
identifications). Thus one can draw the conclusion, at least in the high
frequency limit, that blackbody radiation behaves as if it were composed
of a number of independent quanta, the same as an ideal gas is composed
of a number of independent molecules.
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For an ideal gas the expression for the entropy is (see Section 2.2.5),

S − S0 = klogWN = klog
(

V

V0

)N

For monochromatic radiation, the entropy S is (see Section 2.2.4; replac-
ing ln with log simply changes the value of β)

S − S0 =
E

βν
log

(
V

V0

)

S − S0 = k

(
E

kβν

)
log

(
V

V0

)
= k log

(
V

V0

) E
kβν

Identifying this with Boltzmann’s expression for the entropy, S =
klogW , the probability that the total radiation energy will be found
in the subvolume V of the volume V0 is51

W =
(

V

V0

) E
kβν

Thus, at sufficiently high frequencies, the entropy of the radiation
behaves as if it were an ideal gas composed of n = (E/kβν) particles.
Since E is the total energy of the system, the energy of each “particle”
will be kβν (kβ subsequently was shown to be Planck’s constant h:
E = hν). In the Wien (high frequency) region, the expression for the
entropy of the radiation is what it would be if the radiation were
composed of n = (E/kβν) = (E/hν) independent particles (quanta),
each with the energy E = hν.

2.2.7 On Stokes’ Rule

In Sections 7, 8, and 9, Einstein shows how the concept of light quanta
gives simple explanations of Stokes’ rule for photoluminescence, of the
photoelectric effect, and of the generation of cathode rays by photo-
ionization.

In Section 7, Einstein discusses photoluminescence. In photolumi-
nescence, i.e., phosphorescence and fluorescence, the frequency of the
emitted light is equal to, or less than, the frequency of the absorbed
light. This is known as Stokes’ rule.

Einstein’s light quanta could explain Stokes’ rule through the conser-
vation of energy. A light quantum of energy hν1 is absorbed, transmitting
an amount of energy E1 = hν1 to the absorbing body. Absorption of the
incoming light quantum triggers the emission of another light quantum
of frequency ν2, possibly giving rise also to other emitted light quanta of
frequencies ν3, ν4, etc., as well as heat. From the conservation of energy,
the energy of the initial emitted light quantum cannot be greater than
the initial incoming light quantum that produced it. As Einstein noted,
“If the photoluminescent substance is not to be regarded as a permanent
source of energy, then, according to the energy principle, the energy of
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a produced energy quantum cannot be greater than that of a producing
light quantum; hence we must have. . . ”52

Eemitted ≤ Eincident

hνemitted ≤ hνincident

νemitted ≤ νincident

Thus is Stokes’ rule obtained in a direct and straightforward manner
using the light quanta of energy hν introduced by Albert Einstein.

2.2.8 On the Generation of Cathode Rays
by Illumination of Solid Bodies

Section 8 applies the concept of light quanta to what is known as the
photoelectric effect, providing not only a straightforward explanation of
the effect, but also answering some questions that were problematical
with the wave theory of light.

When certain metals are illuminated by light they emit electrons. This
emission of electrons is known as the photoelectric effect. To escape from
a metal, the electrons must possess an extra amount of energy to pass
through the surface of the metal, a quantity known as the work function.

In 1905, known features of the photoelectric effect included:53

a. When light is shone on a metal, electrons sometimes are emitted,
sometimes not.

b. Bright light shining on a metal ejects a greater number of electrons
than dim light.

c. The brightness of the light does not affect the kinetic energy of the
ejected electrons.

d. For a given metal illuminated by a particular light source, the
kinetic energy of the ejected electrons never exceeded a particular
maximum.

These aspects of the photoelectric effect were contrary to the pre-
dictions of the wave theory of light. From the wave theory, no matter
the frequency, if the intensity were strong enough the electrons would
receive the energy needed to be emitted from the metal. As the electron
intercepted the light waves, each wave front passing the electron would
contribute a certain amount of energy to the electron. After a sufficient
number of wave fronts had each given some small amount of energy to
the electron, the electron would have acquired sufficient energy to escape
through the surface of the metal. The energy of the illuminating light
would be proportional to the intensity of the light, with more intense
light providing more energy to the electrons. Yet experiment showed
that more intense light of the same frequency resulted in more emitted
electrons, but each electron had the same maximum energy.

Einstein’s light quanta picture addressed these concerns with a simple
explanation. For the electron to be emitted from the metal it needed to
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acquire a certain amount of energy. If it received an amount equal to the
work function, or more, the electron would be emitted. For a quantum
to have a certain amount of energy, or more, it would correspond to a
certain frequency, or higher, because for the quantum, E = hν. Once
light hit the metal, if one quantum of light hit an electron, the electron
would have enough energy to be emitted through the surface. And, lastly,
no matter how intense the light, if it is of the same frequency, each
quantum will have the same energy to give to an electron, E = hν, and
all electrons will have the same maximum energy as long as the frequency
of the absorbed light remains the same.

For a single light quantum transferring its entire energy to a single
electron, the said electron loses a portion of its energy in its travel to
the surface of the metal and another portion to escape through the
surface of the metal (P = Work Function). The maximum energy of an
electron leaving the metal is54

Emax = hν − P

The physics community did not immediately accept this explanation,
partly because there was scant experimental evidence to support it (or
to refute it). Lenard’s data of 1902 did, though, “provide qualitative
evidence for an increase of Emax with frequency.”55

2.2.9 On the Ionization of Gases
by Ultraviolet Light

As a third application of the light quantum hypothesis, Einstein con-
sidered the ionization of gases by light. Assuming “. . . one quantum
of light energy is used for the ionization of one molecule of gas . . . it
follows that the work of ionization (i.e., the work theoretically required
for ionization) of one molecule cannot be greater than the energy of one
effective quantum of light absorbed.”56 He then shows the energy of the
smallest frequency (largest wavelength) for ionization of air corresponds
to the smallest measured ionization potentials for air.57

2.3 Discussion and Comments

In this paper, Einstein focused on the entropy of blackbody radia-
tion, calculating an expression for the entropy of the radiation in the
Wien limit. From the expression for the entropy of the radiation, he
obtained the expression for the probability W , and showed it is of the
same form as the probability for an ideal gas of independent particles.
This suggested the quanta of the radiation were independent of one
another, just as were the atoms of the ideal gas.

In June 1906, Max Laue wrote to Einstein, denying Einstein’s asser-
tion that the radiation field was composed of quanta. Laue claimed the
radiation was a continuous wave, and the quantum was a characteristic
of the emission or absorption of radiation by matter, not a characteristic
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of the wave itself.58 This was similar to Planck’s 1900 application of the
quantum effect only to the “resonators,” i.e., to the electrons in the walls
of the cavity.59 In 1907, Planck wrote to Einstein,

For I do not seek the meaning of the quantum of action (light quantum) in
the vacuum, but at the sites of absorption and emission, and assume that the
processes in the vacuum are described exactly by Maxwell’s equations.60

In 1913, in his nomination of Einstein for membership in the Prussian
Academy of Sciences, Planck reiterates his view regarding Einstein’s
quanta for the radiation field:

In sum, one can say that there is hardly one among the great problems in
which modern physics is so rich to which Einstein has not made a remarkable
contribution. That he may sometimes have missed the target in his specula-
tions, as, for instance, in his hypothesis of light-quanta, cannot really be held
too much against him, for it is not possible to introduce really new ideas even
in the most exact sciences without sometimes taking a risk.61

The explanation given by Einstein described not only what was known
of the photoelectric effect in 1905, but anticipated what was to come.62

a. Using the wave model, a straightforward calculation shows it would
require at least five minutes for the electron to acquire sufficient
energy to escape the metal. With the light energy concentrated in
the light quanta, that energy can be given up in a single collision
with an electron, with the electron being emitted immediately.
Experimentation later showed the electrons were ejected immedi-
ately from the metal.63

b. Since the energy of the light quantum is E = hν, the energy
available to transfer to the electron is proportional to ν, so the
kinetic energy of the emitted electrons would be proportional to the
frequency of the incoming light. This was verified experimentally.64

c. If the frequency of the incoming light is too low, there will not be
enough energy to allow the electrons to escape from the metal. The
frequency at which this occurs is called the “cutoff frequency,” and
was verified by experiment.65

Since 1905, Robert Millikan at the University of Chicago had been
working on the photoelectric effect, unaware of Einstein’s photoelectric
equation. When, in 1912, he became aware of the equation, and its basis,
he set about to disprove it. But, by 1915, Millikan had ended up verifying
the predictions of the equation: a cutoff frequency and the kinetic energy
of the emitted electrons proportional to the frequency of the incident
light. Millikan asserted “. . . its unambiguous experimental verification in
spite of its unreasonableness since it seemed to violate everything that we
knew about the interference of light.”66 In a 1916 publication, Millikan
writes similarly, “. . . the Einstein equation accurately represents the
energy of electron emission under irradiation with light,” but continues,
saying he considers “. . . the physical theory upon which the equation is
based to be totally untenable.”67
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Even with this evidence, as John Stachel notes, “for almost two
decades [after 1905] the argument failed to persuade most physicists
of the validity of the light quantum hypothesis.”68 The concept of the
quantum was accepted, but as due to the interaction of the radiation
field with matter, not as a property of the radiation itself.

Planck’s derivation of the expression for ρν rested upon “all the
complexions corresponding to a given energy being equally probable.”69

However, as was later shown by Einstein, the validity of Planck’s law
implies that all complexions cannot be equally probable.70

The independence of the quanta was valid only in the Wien (high ν)
region. Einstein wanted to extend his results to the full range of frequen-
cies, but the quanta were not independent in the low ν region.71 Einstein
pursued this concern of the non-independence in the low ν region for the
next (nearly) 20 years. In 1924, he received a paper from Bose that solved
the problem of the counting of complexions, and led to a new method
of counting, now called Bose–Einstein statistics (see Section 6.2.6).72

It was not until 1923 that the Compton effect gave undeniable evidence
of the quanta of radiation (see Section 6.2.5). In 1926, Gilbert Lewis
introduced the term “photon” for the light quantum, the term used
today.73

2.4 Appendices

2.4.1 Entropy and Irreversibility

Consider two bodies identical in every respect, with the exception that
one is at a temperature of 60◦C and the other is at a temperature of
80◦C. See Figure 2.5. 60°C 80 °C

Fig. 2.5 Two identical bodies with
one at 60◦C, the other at 80◦C.

Our everyday experience tells us that when the two bodies are brought
into thermal contact, heat will flow from the warmer body at 80◦C to
the cooler body at 60◦C. Heat will continue flowing between the two
bodies until they have reached a common temperature of 70◦C.

For a process in which heat flows into a body, the entropy change
is defined as ΔS = ΔQ/T , where ΔS is the change in entropy, ΔQ is
the heat added to the body, and T is the temperature of the body on
the absolute temperature scale (degrees C plus 273). To analyze the
above process in terms of entropy, we consider the case in which all of
the heat that leaves the body at 80◦C is taken up by the body at 60◦C.
In the first instant of time a small amount of heat, ΔQ, leaves the 80◦C
body and enters the 60◦C body. For this “short duration of time,” the
temperature of each body will be assumed to change so little that it
can be considered constant. During this short duration the change in
entropy of the 80◦C body is negative since heat left the body, ΔS80 =
−ΔQ/(80 + 273), while the 60◦C body has a positive change in entropy
since heat entered the body, ΔS60 = +ΔQ/60 + 273). In magnitude,
ΔQ/(80 + 273) is less than ΔQ/(60 + 273), i.e., the decrease in entropy
of the warmer body is less than the increase in entropy of the cooler body.
Thus the entropy of the system increases. After the first short duration
of time, the temperatures of the systems will have changed slightly, and
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over the next short duration of time the entropy change will be calculated
using these slightly changed temperatures, continuing the process until
the temperatures of the two systems have become equal. In each short
duration of time, the entropy of the system increases. The total change
in entropy is the sum of these short duration processes. Thus the change
in entropy for the entire process is an increase in entropy.

For the reverse process of both bodies starting at 70◦C and exchanging
heat until one has risen to 80◦C and the other has fallen to 60◦C, heat
will be going into the warmer body and leaving the cooler body. Each
step in the calculation of the change in entropy of the system will be the
reverse of the previously completed calculation. In this case, the change
in the entropy would be negative, and would violate the Second Law of
Thermodynamics.

2.4.2 Planck’s derivation of ρ(ν, T )

For the resonators in the walls in equilibrium with the radiation field,
Planck calculated the average energy density of the radiation in the
interval dν to be

ρ(ν.T ) =
8πν2

c3
Udν

where U is the average energy of the resonator.
Planck considered a system consisting of N1 resonators of frequency

ν1, N2 resonators of frequency ν2, etc. A portion E1 of the total energy
of the system is in the N1 resonators of frequency ν1, a portion E2

in the N2 resonators of frequency ν2, etc. Assuming E1 is a sum of
P1 equal discrete energy elements ε1 (not necessarily one element ε1

to each resonator; some resonators could have none while others had
more than one), E2 is a sum of P2 equal discrete energy elements ε2,
. . . , Planck calculated the number of complexions, i.e., the number
of ways of distributing the P1 indistinguishable equal discrete energy
elements ε1 into the distinguishable N1 resonators of frequency ν1.
Equating the probability of the state of the N1 resonators to the number
of complexions corresponding to that state, and using the Boltzmann
relation S = klogW , Planck arrived at the formula,

U =
ε

eε/kT − 1

To satisfy the Wien relation, ε
kT = C ν

T , or ε = Ckν = hν, i.e., to satisfy
the Wien displacement law, the average energy of the resonator must be
an integral multiple of hν. The resulting expression for the blackbody
radiation density is

ρ =
Aν3

e
hν
kT − 1
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2.4.3 Wien’s Expression for Entropy

The entropy of the radiation in a volume V can be expressed as

S = V

∞∫
0

ϕ(ρ, ν)dν

where ϕ(ρ, ν) is the entropy per unit volume per unit frequency range
dν, and ρ is the radiation density (the radiation energy per unit volume
per unit frequency range dν). The total energy of the radiation is

E = V

∞∫
0

ρdν

“In the case of ‘blackbody radiation’ ρ is such a function of ν that the
entropy is a maximum for a given energy, i.e.,”74

S = Max ⇒ δS = 0

δ

∫ ∞

0

ϕ(ρ, ν)dν = 0 (2.1)

Since the system has a “given energy,” i.e., the energy is constant,
δE = 0.

δ

∞∫
0

ρdν = 0 (2.2)

Using Lagrange’s method of undetermined multipliers to solve Eq. (2.1)
subject to the constraint Eq. (2.2), varying the distribution ρ,

(Eq. 2.1) – λ(Eq. 2.2)=0
The Lagrange multiplier λ can be moved inside the integral as long as
it is independent of ν: ∫ (

∂ϕ

∂ρ
− λ

)
δρdν = 0

This can be equal to zero only if the expression in the parenthesis is
equal to zero:

∂ϕ

∂ρ
= λ

Since λ is independent of ν, the expression ∂ϕ/∂ρ also is independent
of ν:

dS = d

[
S = V

∫ ∞

0

ϕ(ρ, ν)dν

]
= V

∫ ∞

0

(
∂ϕ

∂ρ
dρ)dν = V

∂ϕ

∂ρ

∫ ∞

o

dρdν

But from E = V
∫∞
0

ρdν, we have that dE = V
∫∞
0

dρdν, and

dS =
∂ϕ

∂ρ
dE
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But from Maxwell’s relations in thermodynamics, ∂E/∂S = T ⇒ dS =
dE/T . Equating the two expressions for dS,

∂ϕ

∂ρ
=

1
T
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“A New Determination of Molecular Dimensions”1

30 April, 1905, dissertation submitted to the University
of Zurich

“On the Movement of Small Particles Suspended in Stationary
Liquids Required by the Molecular-Kinetic Theory of Heat”2

Received on 11 May, 1905, by Annalen der Physik

3.1 Historical Background

By 1905 a number of experiments were producing results for the dimen-
sion of an atom or molecule that were “in more or less satisfactory
agreement with each other.”3 Many of the experiments giving good
results were based on the kinetic theory of gases. Others, based on
the theory of fluids, did not give as consistent results. In his thesis,
Albert Einstein devised a method based on fluids that gave results
consistent with, and as precise as, the results based on the kinetic theory
of gases.4 Beyond the obvious goal of determining the size of molecules,
he was looking for evidence for the atomic hypothesis beyond that of the
kinetic theory of gases.5 Of the three worldviews of 1905, the mechanical,
the electromagnetic, and the energetics, the energetics worldview was
adamantly anti-atomistic. Evidence for the reality of atoms not only
would verify the mechanical worldview, it also would refute (falsify) the
energetics worldview.

The second of these papers, “On the Movement of Small Particles Sus-
pended in Stationary Liquids Required by the Molecular-Kinetic Theory
of Heat,” sometimes is referred to as the Brownian motion paper, giving
the impression the primary goal was to explain this motion. Speaking
specifically of Brownian motion, in the second paper Einstein writes,
“It is possible that the motions to be discussed here are identical with
the so-called ‘Brownian molecular motion’; however, the data available
to me on the latter are so imprecise that I could not form a definite
opinion on this matter.”6

In these papers, Albert Einstein addresses the scientific idea of the
atom, including the work of Boltzmann and the philosophy of Ernst
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Mach; Robert Brown’s work that became known as Brownian motion;
and the three worldviews known as the mechanical, the electromagnetic,
and the energetic worldviews.

3.1.1 The Atom

“There was one question of eminently epistemological (or rather meta-
physical) character that occupied the minds of [the] early philosophers.
‘What is the immutable principle that underlies changing phenomena –
what is the single root of the multiplicity of things in the physical
world?”’7 Heraclitus (c. 480 BC) believed that “to be was to change.”
Parmenides, a contemporary of Heraclitus, held the opposite view, that
“permanency is real and change is only an illusion.”8

Democritus, some 70 years after the time of Heraclitus and Par-
menides, was strongly inclined to the view of Parmenides, yet saw that
the science of nature was a process of change. Democritus asserted that
“being is not one, but is divided into many ‘beings,’ each permanent
and indivisible. These ‘beings’ he called atoms. Democritus also asserted
that nothing does exist – nothing implying what we would call a void.
Thus, to be, for him, meant to be atom or to be void. According to
this view, change consists only in the rearrangement of eternal and
unchanging atoms. This part of his argument agreed with Parmenides –
the permanence of atoms is real and the change we see is an illusion –
for the permanent atoms always [sic] remain.”9 Democritus believed the
atoms to be “so small as to be imperceptible to us, and to take all
kinds of shapes and all kinds of forms and differences in size. Out of
them, like out of elements, he now lets combine and originate the visible
and perceptible bodies.”10 Epicurus described the atoms as “indivisible
and unchangeable, . . . [they] vary indefinitely in their shapes; . . . [they]
are in continual motion through all eternity . . . . Of all this there is no
beginning, since both atoms and void exist from everlasting.”11

To Aristotle, the concept of the void was inconceivable: nonexistence
cannot be a part of existence.12 To Aristotle all of space was permeated
by the qualities of hot, cold, wet, and dry. These qualities were grouped
into the basic elements of matter: air (hot and wet), earth (cold and
dry), fire (hot and dry), and water (cold and wet). See Figure 3.1.

Earth is dry and cold
Water is cold and moist
Air is moist and hot
Fire is hot and dry

To Aristotle, “the elements are not permanent but can change into one
another. This is especially simple if the two share a quality: Water cannot
easily change to Fire but it can easily, by evaporation, become Air.”13

The heavens were composed of a fifth element, the quintessence.
For the next 2000 years, the ideas of Aristotle predominated, with a

revival of an atomic theory in the seventeenth century. The resurgence of
atomic theory owed much of its revival to the work of Pierre Gassendi, a
French priest “thoroughly orthodox in his religious beliefs.”14 There had
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Fig. 3.1 The four elements of
Aristotle.

been theological objections to the atom being uncreated and eternal,
attributing to it properties belonging only to God. In Observations
on the Tenth Book of Diogenes Laertius (1649), Gassendi “removed
the . . . philosophy that affronted theologians and explained, clearly and
with no use of scholastic vocabulary, the physical theory of Democritus,
Epicurus, and Lucretius. He explained that there is no reason to insist
that atoms are uncreated, eternal, or infinitely numerous . . . [In England]
in the tolerant atmosphere of the Stuart Monarchy, atoms took root and
flourished.”15

In 1662, Robert Boyle published the results of his experiments on the
compression and expansion of a given quantity of air as the pressure is
changed.16 From these experiments came Boyle’s law, which states that,
at a constant temperature, the product of the volume of the enclosed air
and the (absolute) pressure of the air remains constant (pV = constant).
Though an atomist, Boyle did not explain this law in terms of atoms. In
1687, Newton explained Boyle’s law in terms of “gas atoms [that] were
static but mutually repulsive with a force that varied as the distance.”17

In 1738, Daniel Bernoulli explained Boyle’s law in terms of the kinetic
theory of atoms.18

By the mid 1700s the atomic nature of matter was still highly specu-
lative. As Boorse and Motz comment in The World of the Atom:

It is a sobering thought that two thousand years of atomic speculation
produced no mind able to formulate atomic theory in questions simple
enough for direct experimental answers. Even Newton’s derivation of Boyle’s
law on the assumption of . . . [static particles] . . . and, some half century later,
Daniel Bernoulli’s brilliant deduction of the same law on a kinetic particle
hypothesis opened no doors to the world of the atom. It would be logical
to expect that if the greatest minds of two millennia had found no way to
question nature in atomic terms, only a demigod might be expected to see
where mortals were blind.19

John Dalton showed Newton’s particle concept led naturally to the
law of partial pressures, and explained the law of definite proportions
as “the combination of an atom of one substance with that of another.
Thus was the atomic theory at last placed on an experimental basis.”20

Dalton’s papers on the atomic hypothesis were published in 1805.
“Gay-Lussac’s experiments, published in 1809, demonstrated that gases
combined in equal volumes, or in small volume ratios. These experi-
ments were explained in 1811 in terms of Dalton’s theory by . . . Amedeo
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Avogadro.”21 Avogadro added to Dalton’s hypothesis the distinction
between what today we call atoms and molecules. From these ideas
Avogadro also deduced that equal volumes of different gases at the
same temperature and pressure contain the same number of molecules.
“Even though many chemists . . . did not accept the reality of atoms,
nevertheless the atomic theory became widely accepted as a potent tool
in understanding chemical reactions.”22

In 1860, James Clerk Maxwell published the paper “Illustrations of
the Dynamical Theory of Gases”23 on the kinetic theory of gases (the
mechanical model that a gas is composed of small hard particles in
constant chaotic motion), obtaining an expression for the number of
particles in the gas with velocities that lie between the values vx and vx +
dvx. Today, this expression is known as the Maxwell velocity distribution
function.24

Ludwig Boltzmann showed that the Maxwell velocity distribution
is the only possible equilibrium distribution function.25 In the 1860s,
Boltzmann introduced an area of physics known as statistical mechan-
ics, forging “a link between the properties of matter in bulk . . . and
the behavior of matter’s individual particles, its atoms. . . . Boltzmann
perceived that identifying the cooperation between atoms which showed
itself to the observer as the properties of bulk matter would take him to
the innermost workings of Nature. . . . [H]e saw further into the workings
of the world than most of his contemporaries, and he began to discover
the deep structure of change; furthermore he did all this before the
existence of atoms was generally accepted.”26

Boltzmann developed a statistical theory of entropy.27 He saw the Sec-
ond Law of Thermodynamics as macroscopic, and agreed with Maxwell’s
statement that, “The truth of the second law is therefore a statistical,
not a mathematical, truth, for it depends upon the fact that the bodies
we deal with consist of millions of molecules.”28

In the late 1800s, Ernst Mach represented a widely held view that
science is based on observation, and that it was necessary to reject
anything that transcended observation or sense experience.29 And atoms
had never been observed. For all of the explanatory success that the
atomic theory provided, it remained a topic of much controversy. Rea-
sons for the continuing controversy included the following:

1. Beginning with the atomic assumption, the specific heat of a
system can be calculated. Experiment had shown this value to
be true in general. However, measurements were beginning to
show anomalous behavior at low temperatures (See Section 6.2.1),
casting some doubt about the underlying assumption of an atomic
structure.

2. The prevailing view was that, philosophically, science was grounded
in the “directly observable.” Atoms were not directly observable
and must, on philosophical grounds, be excluded.

3. With the success of Newton’s mechanics providing a determinis-
tic understanding of nature, scientists were not inclined to leave
determinism for probability and statistics.
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4. The Second Law of Thermodynamics states that the entropy of
an isolated system will increase or remain constant. The entropy
will not decrease. The statistical interpretation of entropy says a
system will move to a state of higher, or equal, probability, but
the statistical interpretation also allows the possibility of moving
to a state of lower probability. This would be a violation of the
Second Law and, therefore, cannot occur. It needs to be noted that
statistical arguments were a new approach and were not familiar
to most physicists at this time.

5. The atomic theory assumed the deterministic Newton’s laws
were operational at the atomic level. Since Newton’s laws are
time-reversible, all interactions at the atomic level will be time-
reversible. In the words of Wilhelm Ostwald, a strong opponent of
the reality of atoms, from his address at the 1895 meeting of the
Deutsche Gesellschaft für Naturforscher und Ärzte:

The proposition that all natural phenomena can ultimately be reduced to
mechanical ones cannot even be taken as a useful working hypothesis: it is
simply a mistake. This mistake is most clearly revealed by the following fact.
All the equations of mechanics have the property that they admit of sign
inversion in the temporal quantities. That is to say, theoretically perfectly
mechanical processes can develop equally well forward and backward [in time].
Thus, in a purely mechanical world there would not be a before and an
after as we have in our world; the tree would become a shoot and a seed
again, . . . The actual irreversibility of natural phenomena thus proves the
existence of processes that cannot be described by mechanical equations; and
with this the verdict on scientific materialism [atoms] is settled.30

3.1.2 Brownian Motion

In 1827, Robert Brown, a botanist, discovered what he termed “active
molecules” while examining the behavior of pollen grains suspended in
water. Some of the pollen grains were in “active, chaotic motion.” Ini-
tially Brown attributed the motion to “the vitality of the pollen . . . [but]
soon found that all small particles under the same conditions behaved
the same way.”31 Brown extended his observations to other plants with
the same result. Eventually, he “inferred that [this motion] was not
limited to organic bodies . . . .”32 Brown repeated the observations with
“minute fragments of window-glass, . . . [with] rocks of all ages, . . . [even
with] a fragment of the Sphinx being one of the specimens examined.”33

After repeated experiments, Brown was unable to determine the cause
of the active, chaotic motion of small particles suspended in water. This
active, chaotic motion of the small suspended particles became known
as Brownian motion.

3.1.3 The Worldview in 1900

By the late 1800s, the mechanics of Newton was well entrenched, and
scientists were attempting to reduce their understanding of nature to
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a mechanical foundation. In particular were the attempts to provide
a mechanical basis for electromagnetic phenomena, i.e., to provide a
mechanical underpinning for Maxwell’s equations. By 1900, the electro-
magnetism of Maxwell was gaining strength, and Lorentz was developing
his theory of electrons. Because of the stunning success of the elec-
tromagnetic theory (i.e., Maxwell’s equations), things were beginning
to be reversed – scientists were now contemplating an electromagnetic
foundation for mechanics, in particular, an electromagnetic explanation
of the mass of the electron.34 Based on the success of thermodynamics in
describing the world in terms of energy, a third worldview, the energetics
worldview, looked at the underlying structure of the world to be forms
of energy and energy transformations.

3.1.3.1 The Mechanical Worldview
From the late 1600s through the late 1800s, the mechanics of Newton
had shown itself ever more powerful and ever more inclusive for under-
standing the physical world in which we live, from unifying the heavens
and earth under the one system (Newton’s three laws and the law of
gravitation), to predicting the existence of new planets, to providing
an understanding of thermodynamics in terms of atoms that follow
Newton’s laws of motion. Regarding this mechanical worldview, Cushing
writes:

Boyle certainly applied this line of argument to support an atomistic and
mechanical natural philosophy . . . . [H]is influence . . . became evident in the
natural philosophy of Newton that dominated science for nearly two hundred
years. A key element of reality that emerged from this Newtonian tradition
was a mechanistic view with atoms possessing simple quantitative properties
(mass, location, etc.) and interacting causally in accord with definite mathe-
matical laws and equations of motion. This mechanistic philosophy . . . replaced
the organismic philosophy of the Middle Ages . . . Newtonian physics was so
successful in the practical sphere that it engendered a philosophical outlook
that claimed that the laws of classical physics were necessarily or a priori true,
as in some sense held by the philosopher Immanuel Kant (1724–1804).35

Regarding the electrons of Lorentz, Boorse and Motz note that even
though electrons were an entirely new microscopic entity to explain
matter and its interaction with electromagnetic fields, the electrons were
assumed to follow the same laws of mechanics as ordinary macroscopic
matter:

Aside from their being charged spheres, the electrons of Lorentz were to be
treated like any other particles, and the same mechanical laws were to apply to
them as apply to ordinary bits of matter. In particular, they were supposed to
move, when acted upon by a force, according to Newton’s laws of motion: if a
force were applied to an electron, it was supposed to experience an acceleration
proportional to the force and inversely proportional to its mass.36
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3.1.3.2 The Electromagnetic Worldview
By 1900, because of the success of the electromagnetic theory, scientists
were contemplating an electromagnetic foundation for mechanics.

Commenting on the success of Lorentz’s theory, Miller says:

By 1900 attempts to deduce the laws of electromagnetism from increasingly
complex mechanical models of the ether (i.e. a mechanical world-picture)
paled before the successes of Lorentz’s electromagnetic theory which took the
equations of electromagnetism as axiomatic.37

In the same vein, Cushing writes:

Abraham’s basic idea was to provide an electromagnetic foundation for all
mechanics. This was essentially a complete reversal from an earlier tendency
on the part of theorists, such as Maxwell, to provide a mechanical basis for
electromagnetic phenomena via mechanical models of the aether.38

And later, again in Philosophical Concepts in Physics, Cushing writes:

By the end of the nineteenth century, classical physics was encountering
difficulties of its own (for example, the aether . . .), so that some began to
question the absolute necessity of the attendant mechanist philosophy.39

3.1.3.3 The Energetics Worldview
One of the foremost critics of the mechanical worldview was Wilhelm
Ostwald (the winner of the 1909 Nobel Prize for chemistry). His outlook,
typical of others, was that what was needed were general laws, similar to
those of thermodynamics in which detailed knowledge of substances is
unnecessary (for example, heat engines and the Second Law of Ther-
modynamics). It should not be necessary to introduce hypothetical
quantities such as atoms and molecules.40

Based on the success of thermodynamics in describing the world
in terms of energy, the energetics worldview looked at the underlying
structure of the world to be forms of energy and energy transformations.
Thus assumptions on the constitution of matter were unnecessary. Like
the positivists, the energeticists were adamant in their demand that
physical theories contain no metaphysical quantities, and so both groups
were anti-atomistic.41

3.2 Albert Einstein’s Paper, “A New
Determination of Molecular
Dimensions”42

Likening the molecules of a substance dissolved in a dilute solution to a
“solid body suspended in a solvent,”43 Einstein showed the size of the
molecules could be determined from the viscosity of the solution and the
diffusion rate of the solute in the solvent. Assuming the solute molecule is
large compared to the solvent molecules, Einstein proceeded to treat the
solvent as a continuous, homogeneous fluid, subject to the equations of
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hydrodynamics, while treating the solute molecule as a discrete particle.
The “solid body” representing the solute molecule is taken to be a sphere.

To estimate the size of a molecule, Einstein derived two equations,
one for the viscosity of a fluid with molecules distributed randomly in
it (see Sections 3.2.1 and 3.2.2), the other for the coefficient of diffusion
(see Section 3.2.4). Each of these equations contained the molecular
radius P and Avogadro’s number N(Einstein denoted Avogadro’s num-
ber as N , not as NA. We will use Einstein’s notation.). Using data from
standard tables for the viscosity and for the coefficient of diffusion,
Einstein solved these two equations for the molecular radius P and
Avogadro’s number N (see Section 3.2.5).

To obtain the expression for the viscosity of a fluid, Einstein calculated
first the influence of a single sphere suspended in a fluid (Section 3.2.1),
then used this result to obtain an expression for the viscosity of a liquid
containing many such spheres (Section 3.2.2). To obtain the expression
for the coefficient of diffusion, he introduced a force K that will give the
molecule a velocity ω when in balance with the viscous force, then set
K equal to the pressure gradient in the fluid. Eliminating the force K
from his equations Einstein obtained the expression for the coefficient of
diffusion. The force K was introduced as a mathematical ploy, as it was
introduced only for the purposes of calculation and could be eliminated
before the final result was obtained (Section 3.2.4).

3.2.1 On the Influence on the Motion of a Liquid
Exercised by a Very Small Sphere
Suspended in It

Consider a large container of volume V , filled with an incompressible
homogeneous liquid with coefficient of viscosity k. The velocity compo-
nents of the fluid (u, v, w) are a given function of the location in the
container, (x, y, z), and of the time t. Consider an arbitrary point x0,
y0, z0 within the container. Around this point, the velocity components
(u, v, w) can be expanded in a Taylor series in terms of x – x0, y – y0,
and z – z0. Further, consider a region G around the point x0, y0, z0, so
small that only the linear terms in the Taylor series expansion need be
considered within G. See Figure 3.2. (x0, y0, z0)

G

Fig. 3.2 The region G in the volume
V . The region G is centered on the
point x0, y0, z0.

Einstein describes the motion of the fluid within G as a superposition
of three components:

1. Translation of all of the particles in the liquid without a change in
their relative positions.

2. Rotation of all of the particles in the liquid without a change in
their relative positions.

3. A dilatational motion in three mutually perpendicular directions.

Within G insert a rigid sphere centered on the point (x0, y0, z0). The
dimension of the sphere is much less than the dimension of G which is, in
turn, much less than the dimension of the volume V . It is assumed “the
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velocity components of a surface element of the sphere coincide with the
corresponding velocity components of the adjacent liquid particles.”44

Since, in components 1 and 2 of the velocity, the “liquid moves like
a rigid body,” the presence of the sphere will not alter the motion of
the neighboring liquid particles. However, the presence of the sphere
does alter the third component, the dilatational motion. It is on the
dilatational motion that Einstein sets his focus.

Introduce the coordinates (ξ, η, ζ) (the Greek letters xi, eta, zeta) as

ξ = x − x0

η = y − y0

ζ = z − z0

When the sphere is not present, within the region G the velocity com-
ponents are:

u0 = Aξ

v0 = Bη (3.1)

w0 = Cζ

with, from hydrodynamics, because the liquid is incompressible,45

A + B + C = 0 (3.2)

Introduce now a rigid sphere, centered on the point (x0, y0, z0).
Denote the radius of the sphere as P (the Greek letter rho). “Due to
the symmetry of the motion of the liquid, it is clear that the sphere
can perform neither a translation nor a rotation during the motion
considered, and we obtain the boundary conditions.”46

u = v = w = 0 when ρ = P (u = v = w = 0 relative to the surface of
the sphere) where

ρ =
√

ξ2 + η2 + ζ2

This is boundary condition 1 that any solution for the velocity compo-
nents u, v, and w must satisfy.

With the sphere present, the velocity components of the liquid can be
written as:

u = Aξ + u1

v = Bη + v1 (3.3)

w = Cζ + w1

where u1, v1, and w1 are the “alterations” to the liquid velocity due to
the presence of the sphere. At “infinity,” these alterations must vanish
as Eq. (3.3) must reduce to Eq. (3.1). This is boundary condition 2 that
any solution for the velocity components u, v, and w must satisfy.
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The velocity components must satisfy the hydrodynamic equations:

∂p

∂ξ
= k

[
∂2u

∂ξ2
+

∂2u

∂η2
+

∂2u

∂ζ2

]

∂p

∂η
= k

[
∂2v

∂ξ2
+

∂2v

∂η2
+

∂2v

∂ζ2

]

∂p

∂ζ
= k

[
∂2w

∂ξ2
+

∂2w

∂η2
+

∂2w

∂ζ2

]
∂u

∂ξ
+

∂v

∂η
+

∂w

∂ζ
= 0 (3.4)

where k is the viscosity of the liquid and p is the hydrostatic pressure
within the liquid. The first three equations are the components of the
Navier–Stokes equation that describe the conservation of momentum for
a viscous incompressible fluid, with no external forces, and a low velocity.
The fourth equation is the equation of continuity for the liquid.47

Since u0 = Aξ, v0 = Bη,w0 = Cζ are solutions to Eqs.(3.4), since Eqs.
(3.4) are linear in u, v, w, and since u = u0 + u1, v = v0 + v1, w = w0 +
w1, it necessarily follows that u1, v1, w1 also must satisfy Eqs. (3.4). Solv-
ing the hydrodynamic equations for the velocity components, Einstein
obtained for u the expression (see Appendix 3.5.1 for the derivation)48

u = Aξ − 5
2

P 3

ρ5
ξ
(
Aξ2 + Bη2 + Cζ2

)
+

5
2

P 5

ρ7
ξ
(
Aξ2+ Bη2+ Cζ2

)− P 5

ρ5
Aξ

(3.5)

By symmetry, similar solutions exist for v and w.
For ρ = P it can be seen this equation reduces to zero, satisfying

boundary condition 1. For infinitely large values of ρ, it can be seen that
Eq. (3.5) reduces to Eq. (3.1), satisfying boundary condition 2. This
demonstrates that at least one solution exists that satisfies the hydrody-
namical equations and satisfies the boundary conditions. Einstein then
showed that the solution to the hydrodynamical equations satisfying the
boundary conditions was unique, i.e. this is the only solution.49

Construct a sphere of radius R around the point (x0, y0, z0), where
R >> P (P is the radius of the spherical body). Denote by W the energy
per unit time converted into heat within the sphere. W is equal to the
work done on the liquid in the sphere per unit time. “If Xn, Yn, Zn

denote the components of the pressure exerted on the surface of the
sphere of radius R, we have”50 (ds is the element of surface area)

W =
∫

(Xnu + Ynv + Znw)ds

After a series of approximations neglecting higher order terms in (P/R),
Einstein obtains for W . (See Appendix 3.5.2 for details of this calcula-
tion. N.B. there were some numerical mistakes in Einstein’s paper. Ein-
stein’s original expressions will be given, with the corrected expression
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noted in the Endnotes. Calculations of these corrected expressions are
given in Appendices 3.5.2, 3.5.3, and 3.5.4. The corrected expression for
W is W = 2δ2k

(
V + Φ

2

)
.51)52

W = 2δ2k (V − Φ) (3.6)

where V is the volume of the constructed sphere of radius R (V = 4
3πR3),

Φ is the volume of the spherical body (Φ = 4
3πP 3), and δ2 = A2 + B2 +

C2. If the spherical body were not present (Φ = 0) the energy dissipated
would be53

W = 2δ2kV (3.7)

The presence of the sphere of volume Φ results in a change of heat
production by −2δ2kΦ per unit time.54

3.2.2 Calculation of the Coefficient of Viscosity
of a Liquid in Which Very Many Irregularly
Distributed Small Spheres are Suspended

Einstein calculates the viscosity k in an indirect manner. He considers a
volume V filled with a fluid in which there are suspended very many
irregularly distributed small spheres. He first derives an expression
for the heat production in the volume V with no spheres present,
then an expression for the heat production with the spheres present.
The two expressions for the heat production are then solved for the
viscosity.

In Section 3.2.1, we considered a region G with a sphere suspended in
it that was very small compared to the dimension of G. Consider again
the same region G, but this time containing “infinitely many randomly
distributed spheres of equal radius, and that this radius is so small that
the combined volume of all the spheres is very small compared with
the region G.”55 The number of spheres per unit volume is denoted as
n, with n being a constant. The distance between the spheres is taken
to be large compared to their radius. At a given point in the liquid,
the “alteration” of the velocity components of the liquid compared to
the case with no spheres present will be small but non-negligible. These
alterations are the sum of the contributions noted in Eq. (3.5) for a single
sphere. The net result of these alterations is situated in a modification
of the constants A, B and C, with (see Appendix 3.5.3 for details of
these calculations)

A → A∗ = A(1 − ϕ)

B → B∗ = B(1 − ϕ)

C → C∗ = C(1 − ϕ)
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where ϕ is the fraction of the total volume occupied by all of the
spheres.56

ϕ =
(

number of spheres

volume

)
× (volume of one sphere) = n

(
4
3
πP 3

)

In the previous section it was shown that “the presence of each sphere
results in a decrease of heat production by 2δ2kΦ per unit time.”57 From
Eq. (3.6), the energy converted to heat per unit volume (dividing by V )
per unit time by all of the spheres is58

W = 2δ2k(1 − ϕ) (3.8)

Analogous to δ2 = A2 + B2 + C2 we define δ∗2 = A∗2 + B∗2 + C∗2.
Neglecting higher order terms in ϕ,

δ∗2 = δ2(1 − 2ϕ)

With no spheres present, the heat generated per unit time and per unit
volume is, from Eq. (3.7), W = 2δ2k. With “very many spheres present,”
the heat generated per unit time and per unit volume can be written
in the same form, W ∗ = 2δ∗2k∗, with k∗ the viscosity when the spheres
are present. But, from Eq. (3.8), we know the form of W ∗ is W ∗ =
2δ2k(1 − ϕ).59 Equating these two expressions for W ∗, and neglecting
higher order terms in ϕ,60

k∗ = k(1 + ϕ) (3.9)

3.2.3 On the Volume of a Dissolved Substance
Whose Molecular Volume is Large
Compared to that of the Solvent

As John Stachel notes, “An outstanding current problem of the theory
of solutions was whether molecules of the solvent are attached to the
molecules or ions of the solute.”61 Einstein addresses this question in
section 3 of his paper. From Section 3.2.2 (see Appendix 3.5.4 for details
of this calculation),

k∗

k
= (1 + ϕ)

Using data for a 1% aqueous solution of sugar (1 gm of sugar in 100 cm3

of water), and using Einstein’s relation, k∗
k = 1 + ϕ, Einstein found

k∗/k = 1.0245, giving ϕ = 0.0245. “Thus, one gram of sugar dissolved
in water has the same effect on the coefficient of viscosity as do small
suspended rigid spheres of a total volume 2.45 cm3.”62

For comparison, Einstein notes one gram of solid sugar has a volume
of 0.61 cm3. Also, from the density of a 1% aqueous sugar solution, he
calculates the specific volume s of the sugar in solution to be s = 0.61.
He concludes, “Thus, while the sugar solution behaves as a mixture
of water and solid sugar with respect to its density [0.61 cm3/gm], the
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effect on internal friction [viscosity] is four times larger [2.45/0.61 = 4.02]
than that which would result from the suspension of the same amount of
sugar. It seems to me that from the point of view of the molecular theory,
this result can hardly be interpreted otherwise than by assuming that the
sugar molecule in the solution impedes the mobility of the water in its
immediate vicinity, so that an amount of water whose volume is about
three times larger than the volume of the sugar molecule is attached
to the sugar molecule.”63 [The corrected calculations show the volume
effect on viscosity to be 0.98 cm3, and a volume of water attached to
each sugar molecule of about 60% the volume of each water molecule.
Details in Appendix 3.5.4.]

3.2.4 On the Diffusion of an Undissociated
Substance in a Liquid Solution

In Section 3.2.5, the expression k∗ = k(1 + ϕ) will be solved to obtain an
expression for NP3. In this section (3.2.4), Einstein obtains an expression
for the coefficient of diffusion which, in turn, is solved to obtain an
expression for NP . Using data from standard tables for the viscosity
and for the coefficient of diffusion, Einstein solves these two equations
for the molecular radius P and Avogadro’s Number N (see Section 3.2.5).

The coefficient of diffusion D is defined by the equation ωρ = −D ∂p
∂x ,

with ω = the migration velocity, ρ = the mass density, D = the coeffi-
cient of diffusion, p = the pressure, and x = the distance. If there is a
pressure gradient ∂p

∂x , the velocity of the diffusing particles reaches its
terminal value when the pressure gradient is balanced by a retarding
viscous force, given by Stokes’ law F = 6πkPω, with P the radius of
the spherical particles. Einstein begins this section of his paper with
an expression for ω, the migration velocity, for a molecule acted on by
a constant force K. He than identifies this force as due to a pressure
gradient. Substituting in an expression for the pressure gradient, he then
obtains the expression for the coefficient of diffusion.

Consider a solution similar to the sugar solution of Section 3.2.3. “If
a force K acts upon the molecule, which we consider as a sphere of
radius P , the molecule will move with a velocity ω which is determined
by P and the coefficient of viscosity k of the solvent, since we have the
equation”64

ω =
K

6πkP
(3.10)

The viscosity does not produce motion, it only retards it. The only force
capable of producing motion is a pressure gradient due to the dissolved
substance. This is the osmotic pressure, the pressure exerted by the
solute above the pressure exerted by the solvent alone.65 Aligning the
x-axis with the direction of the pressure gradient, the motion-producing
force acting on the dissolved substance is 66
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Unit Area 
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z
Fig. 3.3 Unit cross-sectional area per-
pendicular to the x-axis.

K = − m

ρN

∂p

∂x
(3.11)

Van’t Hoff’s law says that the osmotic pressure of a dissolved sub-
stance is equal to the gas pressure it would exert if it were an ideal gas
that occupied the same volume.67 Assuming the validity of van’t Hoff’s
law, Einstein wrote for the osmotic pressure68

p =
R

m
ρT ⇒ ∂p

∂x
=

RT
m

∂ρ

∂x
(3.12)

with R the universal gas constant and T the absolute temperature. Sub-
stituting Eqs. (3.11) and (3.12) into Eq. (3.10), the force K introduced
can be eliminated from the expression for ω, the migration velocity:

ω = −RT
6πk

1
NP

1
ρ

∂ρ

∂x
(3.13)

The amount of material passing through a unit cross section per unit
time is (see Figure 3.3)

ωρ = −RT
6πk

1
NP

∂p

∂x
= −D

∂p

∂x

where D is the coefficient of diffusion. Thus the coefficient of diffusion is

D =
RT
6πk

1
NP

(3.14)

In Section 3.2.5, this expression for the coefficient of diffusion and the
expression for the viscosity from Section 3.2.2 will be used together to
determine both the size of the molecules, P , and the number of molecules
in one gram molecule, N .

3.2.5 Determination of the Molecular Dimensions
with the Help of the Relations Obtained

From Section 3.2.2, Eq. (3.9), the coefficients of viscosity with the
spheres present, and the spheres not present, are related as

k∗

k
= (1 + ϕ) = 1 +

(
N 4

3πP3
)

V
= 1 + n

(
4
3
πP3

)
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Using the relation (n/N) = (ρ/m) to substitute for n:

NP3 =
3
4π

m

ρ

(
k∗

k
− 1

)
(3.15)

From section 3.2.4, Eq. (3.14), the coefficient of diffusion is

D =
RT
6πk

1
NP

Solving this for NP,

NP =
RT
6πk

1
D

(3.16)

The two equations, Eq. (3.15) for NP3 and Eq. (3.16) for NP, are
solved to obtain the values of N and of P .

Returning to the aqueous solution of sugar, NP3 = 200 for the 1%
solution.69 The coefficient of diffusion is 0.384 cm2

day = 0.384 cm2

24×3600s =
4.44 × 10−6 in cgs units. The expression for NP is calculated to be

NP =
RT

6πkD
=

(8.31 × 107)(9.5 + 273)
6π(0.0135)(4.44 × 10−6)

= 2.08 × 1016

Einstein noted this value was from a 10% solution, and the “strict
validity of our formula cannot be expected at such high concentra-
tions.”70

Solving these equations for NP3 and for NP, N , and P are calculated
to be71

P = 9.9 × 10−8 cm

N = 2.1 × 1023

3.3 Albert Einstein’s Paper, “On the
Movement of Small Particles
Suspended in Stationary Liquids
Required by the Molecular-Kinetic
Theory of Heat”72

Albert Einstein continued his quest for verification of the atomic theory
of matter, from “an exact determination of the real size of atoms . . . [to
verification of] . . . the molecular-kinetic conception of heat.”73 He noted
that if his predictions proved to be wrong it would be an argument
against the molecular conception of heat. “It is possible that the motions
to be discussed here are identical with the so-called ‘Brownian molecular
motion’; however, the data available to me on the latter are so imprecise
that I could not form a judgment on this matter.”74
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3.3.1 On the Osmotic Pressure Attributable to
Suspended Particles

A container of volume V is divided into two parts separated by a semi-
permeable membrane. The volume of one part is V ∗, while the volume
of the second part is V – V ∗. See Figure 3.4.

The membrane allows passage of the solvent from one part to the
other, but not the solute. Solvent is put into both parts of the container,
while solute is put into only the volume V ∗. The wall is subject to an
osmotic pressure p. Using van’t Hoff’s law, for low densities (= z/V ∗,
where z is one gram weight of the solute, i.e., one mole) the osmotic
pressure is given by the ideal gas equation of state:75

pV ∗ = RTz

Einstein points out that the osmotic pressure is due to the solute
molecules in the solvent in V ∗. However, according to thermodynamics,
if the solute is replaced by small suspended bodies that also cannot pass
through the semi-permeable membranes separating the two portions
of the volume V , “we should not expect . . . that a force [pressure] be
exerted on the wall . . . .”76 But, he continues, “from the standpoint of
the molecular-kinetic theory of heat we are led to a different conception.
According to this theory, a dissolved molecule differs from a suspended
body in size alone, and it is difficult to see why suspended bodies
should not produce the same osmotic pressure as an equal number of
dissolved molecules . . . they will exert forces [pressure] upon the wall
exactly as dissolved molecules do . . . there will correspond to them an
osmotic pressure p of magnitude”77

p =
RT
V ∗

n

N
=

RT
N

ν (3.17)

where n is the number of suspended bodies in V ∗, n/V ∗ = ν is the
number of suspended bodies per unit volume, and N is Avogadro’s
number. In the next section, Einstein shows how one can obtain this
expression from the molecular- kinetic theory of heat, i.e., van’t Hoff’s
law can be obtained from the molecular-kinetic theory of heat.

Total Volume V

Semi-permeable membrane 

V – V * V*
Fig. 3.4 The container of volume V
divided into two sections, one of volume
V ∗, the other of volume V –V ∗, sepa-
rated by a semi-permeable membrane.
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3.3.2 Osmotic Pressure from the Standpoint
of the Molecular-Kinetic Theory of Heat

In Einstein’s paper, section 2 will show “that the existence of osmotic
pressure is a consequence of the molecular-kinetic theory of heat, and
that, according to this theory, at great dilutions numerically equal quan-
tities of dissolved molecules and suspended particles behave completely
identically with regard to osmotic pressure.”78 Section 2 also provides
some thermodynamic background and relations for use in later sections
of the paper.79

Let p1, p2, . . .p3n, q1, q2, . . .q3n be the variables that completely
determine the state of a system at any given time.80 Typically, these
would be the three position and three momentum coordinates of each
of the n atoms in the volume V ∗. The changes in each of the p and q
variables are determined by Hamilton’s equations. The entropy of the
system is given by (see Appendix 3.5.5 for the details of this derivation)81

S =
Ē

T
+ k ln

{∫
e−

E
kT dp1dp2 . . . dp3ndq1dq2 . . . dq3n

}

where Ē denotes the energy of the system, E denotes the energy as a
function of the variables of the system p1, p2, . . . p3n, q1, q2, . . . q3n,, and
k is Boltzmann’s constant. The Helmholtz Free Energy, F , is defined as
F = E–TS :

F = −kT ln
{∫

e−
E
kT dp1dp2 . . .dp3ndq1dq2 . . . dq3n

}
= −kT lnB

Einstein points out “the calculation of the integral B would be so
difficult as to make an exact calculation of F all but inconceivable.
However, here we only have to know how F depends on the size of the
volume V ∗ . . . ”82 B is then shown to be of the form B = JV ∗n, where
J does not depend on the volume V ∗ (see Appendix 3.5.6 for the details
of this derivation):83

F = −kT lnB = −kT{lnJ + n ln V ∗}

p = − ∂F

∂V ∗ =
kT

V ∗ n

Replacing k = R/N ,

p =
R

N

T

V ∗n =
RT
V ∗

n

N
=

RT
N

ν (3.18)

This agrees with the expression for the osmotic pressure in Section 3.3.1,
Eq. (3.17). This “demonstrates that osmotic pressure is a consequence
of the molecular-kinetic theory of heat, and that . . . numerically equal
quantities of dissolved molecules and suspended particles behave com-
pletely identically with regard to osmotic pressure.”84 This completes the
demonstration that van’t Hoff’s law is a consequence of the molecular-
kinetic theory of heat.
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3.3.3 Theory of Diffusion of Small Suspended
Spheres

Consider the volume V ∗ filled with a liquid. In the liquid are suspended
randomly distributed spheres. Einstein introduces a force K strictly for
the convenience of calculation (it will subsequently drop out). The force
K acts on the individual particles, is a function of position but not of
time, and is parallel to the x-axis.

The variation of the free energy, F , is zero since the system is in
thermodynamic equilibrium:

δF = δ(E − TS ) = δE − TδS = 0

Einstein assumes the liquid has a unit cross section perpendicular to
the x-axis, and that it is bounded by the planes x = 0 and x = l.85 See
Figure 3.5.

We then have86

δEparticle = −Kδx

δEsystem = −
∑

all particles

δEparticle

(
# particles

volume
= ν

)
(dV ∗ = unit area • dx)

= −
l∫

0

Kνδxdx

Writing

δS =
δE

T

and considering a narrow cross section of the volume V ∗ of width dx,
a virtual displacement of δx would produce a virtual energy change of
pLδx • unit area = pLδx due to the forces on the face at x = 0, and a
virtual energy change of −pRδx • unit area = −pRδx due to the forces
on the face at dx. See Figure 3.6.

For this slice, the virtual energy change is −(pR − pL)δx = − ∂p
∂xdxδx.

Summing (integrating) over all slices of width dx from x = 0 to x = l:

x = l

Unit cross-sectional area 

y

x

z

Fig. 3.5 Volume of liquid showing the
unit cross-sectional areas, bounded by
planes at x = 0 and at x = l.
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dxFig. 3.6 The narrow cross section of
the volume V ∗.

δE = −
x=l∑
x=0

∂p

∂x
dxδx → −

x=l∫
x=0

∂p

∂x
dxδx

δS =
δE

T
= −

x=l∫
x=0

∂

∂x

(
p

T
= ν

R

N

)
dxδx = −R

N

x=l∫
x=0

∂

∂x
(ν) dxδx

Substituting these expressions, the condition of equilibrium is

0 = δE − TδS = −
l∫

0

Kνδxdx +
RT
N

x=l∫
x=0

∂

∂x
(ν) dxδx

0 =

l∫
0

(
−Kν +

RT

N

∂v

∂x

)
δxdx ⇒ −Kν +

RT
N

∂ν

∂x
= 0 (3.19)

From Section 3.3.2, Eq. (3.18), p = RT
N ν ⇒ ∂p

∂x = RT
N

∂ν
∂x

Kν − ∂p

∂x
= 0

This equation “states that the force K is balanced by the forces of
osmotic pressure.”87

Equation (3.19) is used to determine the diffusion coefficient of the
suspended substance. Consider a unit cross-sectional area perpendicular
to the x-axis (see Figure 3.3). Since dynamic equilibrium exists, the
number of particles passing through this unit area because of the force
K will be balanced by an equal number passing through the unit area
in the opposite direction because of diffusion.

“If the suspended particles are of spherical shape (where P is the
radius of the sphere) and the coefficient of friction [viscosity] of the liquid
is k, then the force K imparts to an individual particle the velocity . . . ”88

ω =
K

6πkP
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The number of particles of velocity ω that pass through the unit area
per unit time is

νω =
νK

6πkP
Balancing this is the number of particles passing through the unit area

per unit time because of diffusion. From the definition of the coefficient
of diffusion, this expression is −D ∂ν

∂x . From the condition of dynamic
equilibrium:

νK

6πkP
− D

∂ν

∂x
= 0 (3.20)

Eliminating ∂ν/∂x from Eqs. (3.19) and (3.20), the diffusion coefficient is

D =
RT
N

1
6πkP

(3.21)

At this stage, the force K has been eliminated from the expression for
the diffusion constant D.

3.3.4 On the Random Motion of Particles
Suspended in a Liquid and Their Relation
to Diffusion

Section 4 of Einstein’s paper examines more closely the thermal molec-
ular motion that gives rise to diffusion. In this calculation, it is assumed
that

1. the motion of each particle is independent of the motions of the
other particles, and

2. the motions of the same particle in different time periods are
independent of each other, provided the time intervals are not too
small.

A time interval τ is introduced, where

1. τ is much less than observable time intervals, and
2. τ is so large that “the motions performed by a particle during

two consecutive time intervals τ can be considered as mutually
independent events.”89

Consider a system with n suspended particles in a liquid. Focus on
the x-coordinate of an individual particle. In a time interval τ the x-
coordinate will change by some amount Δ where Δ could be positive
or negative. This is true for each of the n particles, with Δ (in general)
having a different value for each of the n particles. “A certain frequency
law [probability distribution law] will hold for Δ: the number dn of
particles experiencing a displacement lying between Δ and Δ + dΔ in
the time interval τ will be expressed by an equation of the form . . . ”90

dn = nϕ (Δ) dΔ
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Since n =
∫

dn =
∫

nϕ(Δ)dΔ ⇒ ∫
ϕ(Δ)dΔ = 1

ϕ differs from zero only for very small values of Δ and is symmetric in
Δ, i.e., ϕ(Δ) = ϕ(−Δ).

The number of particles per unit volume, ν, is a function of position
x and time t. Setting ν = f(x, t), Einstein determined f(x, t) to be of
the form (see Appendix 3.5.7 for the details of this derivation),

f(x, t) =
n√
4πD

e−
x2
4Dt√
t

“With the help of this equation we now calculate the displacement λx in
the direction of the x-axis that a particle experiences on the average, or,
to be more precise, the square root of the arithmetic mean of the squares
of displacements [the root-mean-square displacement] in the direction of
the x-axis; we get . . . ”91 (see Appendix 3.5.8)

λx =
√

〈x2〉 =
√

2Dt (3.22)

3.3.5 Formula for the Mean Displacement
of Suspended Particles. A New Method
of Determining the True Size of Atoms

From Eq. (3.21), D = RT
N

1
6πkP

From Eq. (3.22) , λx =
√

2Dt

Eliminating D, λx =
√

t
√

RT
N

1
3πkP

This equation for the root-mean-square displacement is the main
result of this paper.

Using water at 17◦ C as the liquid with suspended parti-
cles of diameter 0.001 mm, for a one-second time interval Ein-
stein calculates λx ≈ 8 × 10−5 cm = 0.8microns. Using cgs units, λx =√

1
√

(8.31×107)(17+273)
6×1023

1
3π(1.35×10−2)(5×19−5)

=
√

6.15 × 10−9 = 7.8 × 10−5cm ≈ 0.8micron

The equation can be “inverted” to determine Avogadro’s number by
experimentally measuring λx:

N =
t

λ2
x

RT
3πkP

Einstein concludes the paper with the words, “Let us hope that a
researcher will soon succeed in solving the problem posed here, which is
of such importance in the theory of heat!”92

3.4 Discussion and Comments

The goal of the second paper was to find some evidence showing the
effects of the atoms. Einstein believed that Brownian motion might be
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the evidence needed to establish the reality of atoms but, he noted,
“It is possible that the motions to be discussed here are identical with
so-called ‘Brownian molecular motion’; however, the data available to
me on the latter are so imprecise that I could not form a judgment on
this matter.”93 Einstein’s hope that “a researcher will soon succeed in
solving the problem posed here”94 was answered by Jean Perrin and
his co-workers. In 1908, Jean Perrin verified Einstein’s Brownian motion
formula and, for this work, was awarded the 1926 Nobel Prize in physics.
In his Nobel Prize address Jean Perrin commented,95

These theories (of Einstein) can be judged by experiment if we know how
to prepare spherules of a measurable radius. I was, therefore, in a position to
attempt this check as soon as I knew . . . of the work of Einstein.
. . .

Having such grains, I was able to check Einstein’s formulae by seeing
whether they always led to the same value for Avogadro’s Number and whether
it was appreciably equal to the value already found [the accepted value for
Avogadro’s Number was 60.2 × 1022].
. . .

In several series of measurements I varied, with the aid of several collabo-
rators, the size of the grains (in the ratio of 1 to 70,000) as well as the nature
of the liquid (water, solutions of sugar or urea, glycerol) and its viscosity (in
the ratio of 1 to 125). They gave values between 55 × 1022 and 72 × 1022, with
differences which could be explained by experimental errors. The agreement
is such that it is impossible to doubt the correctness of the kinetic theory of
the translational Brownian movement.

The experimental work of Perrin was the final piece of evidence for
belief in the reality of atoms. Although most of the physics community
now accepted the reality of atoms, Mach remained unconvinced.96

Albert Einstein was an atomist. The kinetic theory of gases was
enjoying great success. Boltzmann had developed the area of statistical
mechanics to forge a link between the properties of matter in bulk and
the behavior of individual atoms.97 Einstein expanded and developed
the ideas of statistical mechanics. However, partly in response to the
philosophical position espoused by Mach and others, the reality of atoms
and molecules remained speculative. Einstein’s dissertation “marked
the first major success in Einstein’s effort to find further evidence for
the atomic hypothesis, an effort that culminated in his explanation of
Brownian motion.”98 That these papers tipped the scales solidly in favor
of the reality of atoms is seen in the comments of Henri Poincaré and
Wilhelm Ostwald (the words of Ostwald are the more compelling as he
had been an outspoken opponent of the reality of atoms):

[Around 1908, Henri Poincaré wrote] the atomic hypothesis has recently
acquired enough credence to cease being a mere hypothesis. Atoms are no
longer just useful fiction; we can rightfully claim to see them, since we can
actually count them.99

[In 1909, Ostwald wrote] I have convinced myself that we have recently come
into possession of experimental proof of the discrete or grainy nature of
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matter, for which the atomic hypothesis had vainly sought for centuries, even
millennia.100

Einstein recalled that “ the agreement of these considerations [theory
of Brownian motion] with experience . . . convinced the skeptics, who
were quite numerous at that time (Ostwald, Mach) of the reality of
atoms. The antipathy of these scholars towards atomic theory can
indubitably be traced back to their positivistic philosophical attitude.
This is an interesting example of the fact that even scholars of audacious
spirit and fine instinct can be obstructed in the interpretation of facts
by philosophical prejudices.”101 Einstein’s satisfaction is apparent in
attaining his goal of having refuted the energetics worldview.

3.5 Appendices

3.5.1 Derivation of the Expressions for u, v, and w

From Section 3.2.1, Eqs. (3.1) to (3.4), we have the following:
The Navier–Stokes equations for an incompressible fluid are

∂p

∂ξ
= k∇2u;

∂p

∂η
= k∇2v;

∂p

∂ζ
= k∇2w (3.4)

with ∇2 = ∂2

∂ξ2 + ∂2

∂η2 + ∂2

∂ζ2

The equation of continuity is

∂u

∂ξ
+

∂v

∂η
+

∂w

∂ζ
= 0 (3.4)

With no spheres present, u = Aξ; v = Bη;w = Cζ ⇒ A + B + C = 0.
(3.1); (3.2)

With spheres present, u = Aξ + u1; v = Bη + v1;w = Cζ + w1. (3.3)
Taking the derivative of the Navier–Stokes equations, Eqs. (3.4),

∂

∂ξ

(
∂p

∂ξ
= k∇2u

)
⇒ ∂2p

∂ξ2
= k∇2

(
∂u

∂ξ

)

∂

∂η

(
∂p

∂η
= k∇2v

)
⇒ ∂2p

∂η2
= k∇2

(
∂v

∂η

)

∂

∂ζ

(
∂p

∂ζ
= k∇2w

)
⇒ ∂2p

∂ζ2
= k∇2

(
∂w

∂ζ

)

Adding, and using the equation of continuity

∂2p

∂ξ2
+

∂2p

∂η2
+

∂2p

∂ζ2
= k∇2

(
∂u

∂ξ
+

∂v

∂η
+

∂w

∂ζ

)
= k∇2 (0)

∇2p = 0

The following adopts a method developed by Gustav Kirchoff102 to
determine the function p that satisfies the equation ∇2p = 0. Einstein
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defines a function V (ξ, η, ζ) such that p = k∇2V . Taking the derivative
of p and using the Navier–Stokes equations,

∂p

∂ξ
=

∂

∂ξ

(∇2V
)

= k∇2

(
∂V

∂ξ

)
= k∇2u ⇒ u =

∂V

∂ξ
+ u′

with ∇2u′ = 0. In general, u′ �= u1.

Similarly, one obtains v = ∂V
∂η + v′ with ∇2v′ = 0 and w = ∂V

∂ζ + w′ with
∇2w′ = 0.

Using the equation of continuity and the definition of V ,

∂u

∂ξ
+

∂v

∂η
+

∂w

∂ζ
= 0 ⇒ ∂

∂ξ

(
∂V

∂ξ
+ u′

)
+

∂

∂η

(
∂V

∂η
+ v′

)
+

∂

∂ζ

(
∂V

∂ζ
+ w′

)
= 0

∇2V +
(

∂u′

∂ξ
+

∂v′

∂η
+

∂w′

∂ζ

)
= 0 ⇒ p

k
+
(

∂u′

∂ξ
+

∂v′

∂η
+

∂w′

∂ζ

)
= 0

(
∂u′

∂ξ
+

∂v′

∂η
+

∂w′

∂ζ

)
= −p

k

Combining the previous results one obtains

p

k
= ∇2V =

∂2V

∂ξ2
+

∂2V

∂η2
+

∂2V

∂ζ2
= −

(
∂u′

∂ξ
+

∂v′

∂η
+

∂w′

∂ζ

)

This implies u′ = −∂V
∂ξ + f , where ∂f

∂ξ = 0. Einstein sets f = 0. Similar
results obtain for v′ and for w′.

From Kirchoff, the radially symmetric solution to ∇2( p
k ) = 0 is p0

k =
a + 2c

ρ .

It is to be noted that, if p0(ρ)
k is a valid solution to ∇2( p

k ) = 0, so also
are the derivatives of p0(ρ)

k . Consider the function f(ρ) = ∂
∂ξ (p0(ρ)

k ).

∇2f(ρ) = ∇2 ∂

∂ξ

(
p0(ρ)

k

)
=

∂

∂ξ

(
∇2 p0(ρ)

k

)
=

∂

∂ξ
(0) = 0

Similar results are obtained for higher order derivatives of p0(ρ)
k .

Using the identities ∇2ρ = 2
ρ and ∇2( 1

ρ ) = 0, the expression for
the potential V0(ξ, η, ζ) is obtained as p0

k = a + 2c
ρ = a + c∇2ρ =

∇2(a ξ2

2 + cρ + b
ρ ) = ∇2V0:

V0 = a
ξ2

2
+ cρ + b

(
1
ρ

)

Einstein selects the second derivative of the solution for p0(r)
k which,

as was pointed out, also is a valid solution to the equation, ∇2( p
k ) = 0.

pE

k
=

∂2

∂ξ2

(p0

k

)
=

∂2

∂ξ2

(
a +

2c

ρ

)
= 2c

∂2

∂ξ2

(
1
ρ

)

Einstein looks first for a solution of the velocity components such
that u′ �= 0, v′ = 0, w′ = 0, and then for similar solutions for v′ �= 0 and
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w′ �= 0. These three separate solutions for u = ∂V
∂x + u′, v = ∂V

∂y + v′, w =
∂V
∂z + w′ then will be superimposed to obtain the sought-for solution.

For u′ �= 0, v′ = 0, w′ = 0, v′ = 0 ⇒ ∂v′
∂x = 0 ⇒ ∂2V

∂x2 = 0. Similarly
w′ = 0 ⇒ ∂2V

∂y2 = 0. But, since the solution for pE

k is pE

k = 2c ∂2

∂ξ2 ( 1
ρ ), and

pE

k = −∂u′
∂ξ , Einstein sets u′ = − ∂

∂ξ ( 2c
ρ ).

Since the solution to ∇2( p
k ) = 0 is p0

k = a + 2c
ρ , with V0 = a ξ2

2 + cρ +
b( 1

ρ ), taking the second derivative of the equation,

∂2

∂ξ2

[
∇2

(p0

k

)]
= ∇2

[
∂2

∂ξ2

(p0

k

)]
= ∇2

(p
E

k

)
=

∂2

∂ξ2

[∇2V0

]

= ∇2

[
∂2V0

∂ξ2

]
= ∇2VE

VEinstein = VE =
∂2V0

∂ξ2
= c

∂2ρ

∂ξ2
+ b

∂2

∂ξ2

(
1
ρ

)
+

a

2

[
ξ2 − η2

2
− ζ2

2

]

The first two terms are from those of Kirchoff. The term
a
2 [ξ2 − η2

2 − ζ2

2 ] gives, for u = ∂VE

∂ξ + u′, the contribution Aξ to u, and
for ∇2VE a contribution of zero.

Following the method of Kirchoff, Einstein solves first the equations
for the case of

u′ = − ∂

∂ξ

(
2c

ρ

)
, v′ = 0, w′ = 0

For VE = c∂2ρ
∂ξ2 + b ∂2

∂ξ2

(
1
ρ

)
+ a

2

[
ξ2 − η2

2 − ζ2

2

]

u =
∂VE

∂ξ
+ u′ =

∂VE

∂ξ
− ∂

∂ξ

(
2c

ρ

)

=
∂

∂ξ

{
c
∂2ρ

∂ξ2
+ b

∂2

∂ρ2

(
1
ρ

)
+

a

2

[
ξ2 − η2

2
− ζ2

2

]}
− 2c

∂

∂ξ

(
1
ρ

)

u = Aξ + 2c
ξ

ρ3
+

∂

∂ξ

{
c
∂2ρ

∂ξ2
+ b

∂2

∂ξ2

(
1
ρ

)}

= A

[
ξ + 2c′

ξ

ρ3
+

∂

∂ξ

{
c′

∂2ρ

∂ξ2
+ b′

∂2

∂ξ2

(
1
ρ

)}]

where the constant a has been replaced by A, and where c = Ac′, b = Ab′.
In a similar manner, for vand w, one obtains

v = B

[
η + 2c′

η

ρ3
+

∂

∂η

{
c′

∂2ρ

∂η2
+ b′

∂2

∂η2

(
1
ρ

)}]

w = C

[
ζ + 2c′

ζ

ρ3
+

∂

∂ζ

{
c′

∂2ρ

∂ζ2
+ b′

∂2

∂ζ2

(
1
ρ

)}]
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It is important to note that, because of the cyclic nature of the variables,
each expression has the same constants b and c, but the coefficient of
the first term is distinct for each expression. The sum, A + B + C = 0.

The expressions for the velocity components u, v, w were calculated
for the particular situation of the other two components being zero.
But we need to find one expression for the general case. The term
a
2 [ξ2 + η2

2 + ζ2

2 ] has been accounted for in the expression for u (the
term aξ), with analogous reasoning for the expressions for v and w.
The remaining terms are summed together as

F = A

{
c′

∂2ρ

∂ξ2
+ b′

∂2

∂ξ2

(
1
ρ

)}
+ B

{
c′

∂2ρ

∂η2
+ b′

∂2

∂η2

(
1
ρ

)}

+ C

{
c′

∂2ρ

∂ζ2
+ b′

∂2

∂ζ2

(
1
ρ

)}

With the general solution for u now given as

u = Aξ + 2c
ξ

ρ3
+

∂F

∂ξ

And similar expressions for v and w.
The constants b and c are determined by writing out explicitly the

expression for u and requiring it to be zero on the surface of the sphere,
ρ = P. Looking first at the expression ∂F

∂ξ , we have

∂F

∂ξ
= A

{
c′

∂

∂ξ

(
∂2ρ

∂ξ2

)
+ b′

∂

∂ξ

(
∂2

∂ξ2

(
1
ρ

))}

+ B

{
c′

∂

∂ξ

(
∂2ρ

∂η2

)
+ b′

∂

∂ξ

(
∂2

∂η2

(
1
ρ

))}

+ C

{
c′

∂

∂ξ

(
∂2ρ

∂ζ2

)}
+ b′

∂

∂ξ

(
∂2

∂ζ2

(
1
ρ

))

= Ac′
(
− ξ

ρ3
− 2ξ

ρ3
+

3ξ3

ρ5

)
+ Ab′

(
3ξ

ρ5
+

6ξ

ρ5
− 15ξ3

ρ7

)

+ Bc′
(
− ξ

ρ3
+

3η2ξ

ρ5

)
+ Bb′

(
3ξ

ρ5
− 15η2ξ

ρ7

)

+ Cc′
(
− ξ

ρ3
+

3ζ2ξ

ρ5

)
+ Cb′

(
3ξ

ρ5
− 15ζ2ξ

ρ7

)

= −c′ξ
ρ3

(A + B + C) +
3c′ξ
ρ5

(
Aξ2 + Bη2 + Cζ2

)− 2Ac′ξ
ρ3

+
3b′ξ
ρ5

(A + B + C) − 15b′ξ
ρ7

(
Aξ2 + Bη2 + Cζ2

)
+

6Ab′ξ
ρ5
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Using A + B + C = 0, the expressions for ∂F
∂ξ and for u become

∂F

∂ξ
=

3c′ξ
ρ5

(
Aξ2 + Bη2 + Cζ2

)− 2Ac′ξ
ρ3

− 15b′ξ
ρ7

(
Aξ2 + Bη2 + Cζ2

)

+
6Ab′ξ

ρ5

u = Aξ + 2c
ξ

ρ3
+
(
Aξ2 + Bη2 + Cζ2

)(3ξ

ρ5

)(
c′ − 5b′

ρ2

)
− 2c′Aξ

ρ3
+

6b′Aξ

ρ5

= Aξ

(
1 +

2c′

ρ3
− 2c′

ρ3
+

6b′

ρ5

)
+
(
Aξ2 + Bη2 + Cζ2

)(3ξ

ρ5

)(
c′ − 5b′

ρ2

)

+
6Ab′ξ

ρ5

On the surface of the sphere u = 0. Setting ρ = P , the expression for u
becomes (with A = a)

u = 0 = Aξ

(
1 +

6b′

P5

)
+
(
Aξ2 + Bη2 + Cζ2

)( 3ξ

P5

)(
c′ − 5b′

P2

)

For this to be valid for all values of ξ, 1 + 6b′
P5 = 0 and c′ − 5b′

P2 =
0. Solving, b′ = −P5

6 , c′ = − 5P3

6 , and b = Ab′ = −AP5

6 , c = Ac′ = − 5AP3

6 .
(It needs to be noted these values differ by a factor of two from those in
Einstein’s paper: b = − 1

12P5a and c = − 5
12P3a.)103

With these values for b and c, the expression for u becomes

u = Aξ + 2
(
−5AP3

6

)
ξ

ρ3
+
(
Aξ2 + Bη2 + Cζ2

)(3ξ

ρ5

)(−5P3

6

)

− 5
(
Aξ2 + Bη2 + Cζ2

)(3ξ

ρ7

)(−P5

6

)
− 2Aξ

ρ3

(
−5P3

6

)
+

6Aξ

ρ5

(
−P5

6

)

u = Aξ − 5
2

P3

ρ5
ξ
(
Aξ2 + Bη2 + Cζ2

)
+

5
2

P5

ρ7
ξ
(
Aξ2 + Bη2 + Cζ2

)− P5

ρ5
Aξ

Analogous expressions are obtained for v and w.

u = Aξ + 2c
ξ

ρ3
+

∂F

∂ξ

With

F = A

{
c′

∂2ρ

∂ξ2
+ b′

∂2

∂ξ2

(
1
ρ

)}
+ B

{
c′

∂2ρ

∂η2
+ b′

∂2

∂η2

(
1
ρ

)}

+ C

{
c′

∂2ρ

∂ζ2
+ b′

∂2

∂ζ2

(
1
ρ

)}
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F = A

{(
−5P3

6

)
∂2ρ

∂ξ2
+
(
−P5

6

)
∂2

∂ξ2

(
1
ρ

)}

+ B

{(
−5P3

6

)
∂2ρ

∂η2
+
(
−P5

6

)
∂2

∂η2

(
1
ρ

)}

+ C

{(
−5P3

6

)
∂2ρ

∂ζ2
+
(
−P5

6

)
∂2

∂ζ2

(
1
ρ

)}

To be rid of the negative signs in the definition of F , define a quantity
D as the negative of F , i.e., D = −F .

u = Aξ − 5P3A

3
ξ

ρ3
− ∂D

∂ξ
(3.23)

The expression for the pressure p is obtained by substituting the
expressions for b and for c, and remembering a = A,

p = 2ck
∂2

∂ξ2

(
1
ρ

)
= 2

(
−5

6
P3A

)
k

∂2

∂ξ2

(
1
ρ

)
= −5

3
kP3A

∂2

∂ξ2

(
1
ρ

)

Using symmetry, one obtains similar results for the situations of u′ =
0, v′ = − ∂

∂η ( 2c
ρ ), w′ = 0, and of u′ = 0, v′ = 0, w′ = − ∂

∂ζ ( 2c
ρ ). The super-

position of these three solutions gives for the pressure

p = −5
3
kP3

[
A

∂2

∂ξ2

(
1
ρ

)
+ B

∂2

∂η2

(
1
ρ

)
+ C

∂2

∂ζ2

(
1
ρ

)]
(3.24)

To verify these solutions satisfy Eq. (3.4), we look first at ∂p
∂ξ = k∇2u.

From Eq. (3.23),

k∇2u = k∇2

[
Aξ − 5

3
P3A

ξ

ρ3
− ∂D

∂ξ

]
= k∇2

[
0 + 0 − ∂D

∂ξ

]
= −k

∂

∂ξ

(∇2D
)

= −k
∂

∂ξ

[
∇2

{
A

(
5
6
P3 ∂2ρ

∂ξ2
+

1
6
P5 ∂2

∂ξ2

(
1
ρ

))
+ B (. . .) + C ( . . .)

}]

= −k
∂

∂ξ

{
A

[
5
6
P3 ∂2

∂ξ2

(∇2ρ
)

+
1
6
P5 ∂2

∂ξ2

(
∇2

(
1
ρ

))]
+ ∇2B ( . . .)

+ ∇2C ( . . .)
}

= −k
∂

∂ξ

{
A

[
5
6
P3 ∂2

∂ξ2

(
2
ρ

)
+ 0

]
+ ∇2B ( . . .) + ∇2C ( . . .)

}

= −k
∂

∂ξ

{
5
3
P3A

∂2

∂ξ2

(
1
ρ

)
+

5
3
P3B

∂2

∂η2

(
1
ρ

)
+

5
3
P3C

∂2

∂ζ2

(
1
ρ

)}
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From Eq. (3.24),

∂p

∂ξ
=

∂

∂ξ

{
−5

3
kP3

[
A

∂2

∂ξ2

(
1
ρ

)
+ B

∂2

∂η2

(
1
ρ

)
+ C

∂2

∂ζ2

(
1
ρ

)]}

= −k
∂

∂ξ

{
5
3
P3A

∂2

∂ξ2

(
1
ρ

)
+

5
3
P3B

∂2

∂η2

(
1
ρ

)
+

5
3
P3C

∂2

∂ζ2

(
1
ρ

)}

It is seen this is the same as the expression for ∇2u. In a similar manner,
one verifies that ∂p

∂η = k∇2v and that ∂p
∂ζ = k∇2w.

The remaining equation of Eq. (3.4) is ∂u
∂ξ + ∂v

∂η + ∂w
∂ζ = 0. From Eq.

(3.23),

∂u

∂ξ
=

∂

∂ξ

{
Aξ − 5

3
P3A

(
ξ

ρ3

)
− ∂D

∂ξ

}
= A − 5

3
P3A

∂

∂ξ

(
ξ

ρ3

)
− ∂2D

∂ξ2

= A − 5
3
P3A

(
1
ρ3

− 3ξ2

ρ5

)
− ∂D

∂ξ2
= A − 5

3
P3 A

ρ3
+ 5P3A

ξ2

ρ5
− ∂2D

∂ξ2

In a similar manner,

∂v

∂η
= B − 5

3
P3B

1
ρ3

+ 5P3B
η2

ρ5
− ∂2D

∂η2

∂w

∂ζ
= C − 5

3
P3C

1
ρ3

+ 5P3C
ζ2

ρ5
− ∂2D

∂ζ2

Adding these expressions,

∂u

∂ξ
+

∂v

∂η
+

∂w

∂ζ
= (A + B + C+) − 5

3
P3

ρ3
(A + B + C)

+ 5
P3

ρ5

(
Aξ2 + Bη2 + Cζ2

)−∇2D

But,

∇2D = ∇2A

[
5
6
P3 ∂2ρ

∂ξ2
+

1
6
P5 ∂2

∂ξ2

(
1
ρ

)]
+ ∇2B [ . . .] + ∇2C [ . . .]

= A

[
5
6
P3 ∂2

∂ξ2

(∇2ρ
)

+
1
6
P5 ∂2

∂ξ2

(
∇2 1

ρ

)]
+ ∇2B [ . . .] + ∇2C [ . . .]

= A

[
5
6
P3 ∂2

∂ξ2

(
2
ρ

)
+ 0

]
+ ∇2B [ . . .] + ∇2C [ . . .]

=
5
3
P3

[
A

∂2

∂ξ2

(
1
ρ

)
+ B

∂2

∂η2

(
1
ρ

)
+ C

∂2

∂ζ2

(
1
ρ

)]

=
5
3
P3

[
A

(
− 1

ρ3
+

3ξ2

ρ5

)
+ B

(
− 1

ρ3
+

3η2

ρ5

)
+ C

(
− 1

ρ3
+

3ζ2

ρ5

)]

= −5
3

P3

ρ3
(A + B + C) + 5

P3

ρ5

(
Aξ2 + Bη2 + Cζ2

)
Thus, ∂u

∂ξ + ∂v
∂η + ∂w

∂ζ = A + B + C = 0.
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This shows the solution, Eq. (3.23), satisfies Eq. (3.4).
The expression for u is

u = Aξ − 5
2

P3

ρ5
ξ
(
Aξ2 + Bη2+ Cζ2

)
+

5
2

P5

ρ7
ξ
(
Aξ2+ Bη2 + Cζ2

)− P5

ρ5
Aξ

(3.25)

For infinitely large values of ρ the expression for u reduces to Eq. (3.1),
u = Aξ and, for ρ = P , the expression for u reduces to u = 0. Similar
results hold for v and w. This proves that the solution, Eq. (3.5), satisfies
Eq. (3.4) as well as the boundary conditions.

3.5.2 Derivation of the Expression for W =
Energy per Unit Time Converted into Heat

Construct a sphere of radius R around the point (x0, y0, z0). Let X,
Y , and Z be the components of the pressure at some point (ξ, η, ζ)
on the surface of the sphere in the liquid, and let (êξ, êη, êζ) be the
unit vectors corresponding to the variables (ξ, η, ζ). The energy supplied

mechanically to the liquid is
2∫
1

�F · d�r =
∫

pdV along a path from point

1 to point 2. For the sphere, the dV is a contraction/expansion of the
sphere. This energy is converted into heat at the rate

W =
d

dt

⎛
⎝ 2∫

1

�F · d�r
⎞
⎠ =

2∫
1

�F · d�r

dt

=
∫ ∫
surface

(Xds êξ + Yds êη + Zds êζ) · (uêξ + vêη + wêζ)

For contraction/expansion, the path is normal to the surface element
ds. The unit vector normal to the surface of the sphere is ên = enξ êξ +
enη êη + enζ êNζ = ξ

ρ êξ + η
ρ êη + ζ

ρ êζ .

W =
∫ ∫
surface

(Xu cos α + Y v cos β + Zw cos β)ds

where cos α, cos β, cos γ are the direction cosines between the velocity
components and the unit normal vector ên. However, Xn = X cos α is
the component of X along the normal. Similarly for Yn and for Zn. Thus
W can be written as

W =
∫ ∫
surface

(Xnu + Ynv + Znw) ds

The x-component of the pressure can be written, X = Xξ êξ + Xη êη +
Xζ êζ ,104 with corresponding expressions for Y and for Z.
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Xn = �X · ên = (Xξ êξ + Xη êη + Xζ êζ) ·
(

ξ

ρ
êξ +

η

ρ
êη +

ζ

ρ
êζ

)

Xn = Xξ
ξ

ρ
+ Xη

η

ρ
+ Xζ

ζ

ρ

Yn = Yξ
ξ

ρ
+ Yη

η

ρ
+ Yζ

ζ

ρ

Zn = Zξ
ξ

ρ
+ Zη

μ

ρ
+ Zζ

ζ

ρ

For a viscous liquid, the expressions for Xξ, Xη, . . . are105

Xξ = p − 2k
∂u

∂ξ
Yζ = Zη = −k

[
∂v

∂ζ
+

∂w

∂η

]

Yη = p − 2k
∂v

∂η
Zξ = Xζ = −k

[
∂w

∂ξ
+

∂u

∂ζ

]

Zζ = p − 2k
∂w

∂ζ
Xη = Yξ = −k

[
∂u

∂η
+

∂v

∂ξ

]

Recalling that R >> P , where P is the radius of the spherical body,
and that on the surface of the sphere of radius R, ρ = R, Einstein
approximated the expressions for u, v, and w (Eq. 3.5), by dropping
terms proportional to powers of P/ρ higher than three.

u ≈ Aξ − 5
2

P3

ρ5
ξ
(
Aξ2 + Bη2 + Cζ2

)

v ≈ Bη − 5
2

P3

ρ5
η
(
Aξ2 + Bη2 + Cζ2

)
(3.26)

w ≈ Cζ − 5
2

P3

ρ5
ζ
(
Aξ2 + Bη2 + Cζ2

)

Remembering ρ =
√

ξ2 + η2 + ζ2, the expression for the pressure,
Eq. (3.24), becomes

p = −5
3
kP3

{
A

∂2

∂ξ2

(
1
ρ

)
+ B

∂2

∂η2

(
1
ρ

)
+ C

∂2

∂ζ2

(
1
ρ

)}

∂2

∂ξ2

(
1
ρ

)
=

∂

∂ξ

[
∂

∂ξ

(
1
ρ

)]
=

∂

∂ξ

[
− 1

ρ2

∂ρ

∂ξ

]
=

∂

∂ξ

[
− 1

ρ2

ξ

ρ

]
=

∂

∂ξ

[
− ξ

ρ3

]

= − 1
ρ3

−
(
−3ξ

ρ4

)(
ξ

ρ

)
= − 1

ρ3
+

3ξ2

ρ5
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p = −5
3
kP3

{
A

(
− 1

ρ3
+

3ξ2

ρ5

)
+ B

(
− 1

ρ3
+

3η2

ρ5

)

+C

(
− 1

ρ3
+

3ζ2

ρ5

)}
+ constant

= −5k
P3

ρ5

(
Aξ2 + Bη2 + Cζ2

)
+

5
3
k

P3

ρ3
(A + B + C)+ constant

But, from Eq. (3.2), A + B + C = 0, giving

p = −5k
P3

ρ5

(
Aξ2 + Bη2 + Cζ2

)
+ constant

The expressions for Xξ, Xη, Xζ are calculated to be106

Xξ = p − 2k
∂u

∂ξ

=
[
−5k

P3

ρ5

(
Aξ2 + Bη2 + Cζ2

)]

− 2k

[
A − 5

2
P3

(−5
ρ6

ξ

ρ

)
ξ
(
Aξ2 + Bη2 + Cζ2

)

−5
2

P3

ρ5

(
Aξ2 + Bη2 + Cζ2

)− 5
2

P3

ρ5
ξ (2Aξ)

]

= −2kA + 10k
P3

ρ5
Aξ2 − 25k

P3

ρ7
ξ2
(
Aξ2 + Bη2 + Cζ2

)

Xη = −k

[
∂u

∂η
+

∂v

∂ξ

]

= −k

[
−5

2
P3

{(
− 5

ρ6

η

ρ

)
ξ
(
Aξ2 + Bη2 + Cζ2

)
+

ξ

ρ5
2Bη

}]

− k

[
−5

2
P3

{(
− 5

ρ6

ξ

ρ

)
η
(
Aξ2 + Bη2 + Cζ2

)}
+

η

ρ5
2Aξ

]

= 5k
P3

ρ5
ξη (A + B) − 25k

P3

ρ7
ηξ

(
Aξ2 + Bη2 + Cζ2

)

Similarly,

Xζ = 5k
P3

ρ5
ξζ (A + C) − 25k

P3

ρ7
ξζ
(
Aξ2 + Bη2 + Cζ2

)
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The expression for Xn is calculated to be107

Xn = −
[
Xξ

ξ

ρ
+ Xη

η

ρ
+ Xζ

ζ

ρ

]

= −
[
−2kA + 10k

P3

ρ5
Aξ2 − 25k

P3

ρ7
ξ2
(
Aξ2 + Bη2 + Cζ2

)]× ξ

ρ

−
[
−5k

P3

ρ5
ξη (A + B) − 25k

P3

ρ7
ηξ

(
aξ2 + Bη2 + Cζ2

)]× η

ρ

−
[
−5k

P3

ρ5
ξζ (A + C) − 25k

P3

ρ7
ξζ
(
aξ2 + Bη2 + Cζ2

)]× ζ

ρ

= 2Ak
ξ

ρ
− kξ

P3

ρ6

[
10Aξ2 + 5η2 (A + B) + 5ζ2 (A + C)

]

+ 25
P3

ρ8

(
Aξ2 + Bη2 + Cζ2

) (
ξ2 + η2 + ζ2

)

= 2Ak
ξ

ρ
− kξ

P3

ρ6

[
5A

(
ξ2 + η2 + ζ2

)
+ 5

(
Aξ2 + Bη2 + Cζ2

)]

+ 25
P3

ρ8

(
Aξ2 + Bη2 + Cζ2

) (
ξ2 + η2 + ζ2

)

Since ξ2 + η2 + ζ2 = ρ2,

Xn = 2Ak
ξ

ρ
− 5Ak

P3

ρ4
ξ + 20k

P3

ρ6
ξ
(
Aξ2 + Bη2 + Cζ2

)

In a similar manner,

Yn = 2Bk
η

ρ
− 5Bk

P3

ρ4
η + 20k

P3

ρ6
η
(
Aξ2 + Bη2 + Cζ2

)

Zn = 2Ck
ζ

ρ
− 5Ck

P3

ρ4
ζ + 20k

P3

ρ6
ζ
(
Aξ2 + Bη2 + Cζ2

)

Putting together these pieces for the function in the integral for W , and
neglecting all terms of higher order than three in Pρ,108
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Xnu + Ynv + Znw

=
(

2Ak
ξ

ρ
− 5Ak

P3

ρ4
ξ + 20k

P3

ρ6
ξ
(
Aξ2 + Bη2 + Cζ2

))

×
(

Aξ − 5
2

P3

ρ5
ξ
(
Aξ2 + Bη2 + Cζ2

))

+
(

2Bk
η

ρ
− 4Bk

P3

ρ4
η + 20k

P3

ρ6
η
(
Aξ2 + Bη2 + Cζ2

))

×
(

Bη − 5
2

P3

ρ5
η
(
Aξ2 + Bη2 + Cζ2

))

+
(

2Ck
ζ

ρ
− 5Ck

P3

ρ4
ζ + 20k

P3

ρ6
ζ
(
Aξ2 + Bη2 + Cζ2

))

×
(

Cζ − 5
2

P3

ρ5
ζ
(
Aξ2 + Bη2 + Cζ2

))

=
2k

ρ

(
A2ξ2 + B2η2 + C2ζ2

)− 5k
P3

ρ4

(
A2ξ2 + B2η2 + C2ζ2

)

− 15k
P3

ρ6

(
Aξ2 + Bη2 + Cζ2

)2
+ . . .

Using the following integrals over the surface of the sphere
(with R2 = ξ2 + η2 + ζ2, ds = R2 sin θdθdφ, ξ = R sin θ cos φ, η = R sin θ
sin φ, ζ = R cos θ, with 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π),109∫

ds = 4πR2

∫
ξ2ds =

∫
η2ds =

∫
ζ2ds =

4
3
πR4

∫
ξ4ds =

∫
η4ds =

∫
ζ4ds =

4
5
πR6

∫
η2ζ2ds =

∫
η2ξ2ds =

∫
ξ2η2ds =

4
15

πR6

∫ (
Aξ2 + Bη2 + Cζ2

)2
ds

=
∫ (

A2ξ4 + B2η4 + Cζ4 + 2ABξ2η2 + 2AC ξ2ζ2 + 2BCη2ζ2
)
ds

=
(
A2 + B2 + C2

) 4
5
πR6 + 2 (AB + AC + BC )

4
15

πR6
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Using A + B + C = 0 ⇒ (A + B + C)2 = A2 + B2 + C2 + 2(AB+
AC + BC ) = 0,

⇒ 2 (AB + AC + BC ) = − (
A2 + B2 + C2

)
∫ (

Aξ2 + Bη2 + Cζ2
)2

ds =
(
A2 + B2 + C2

) 4
5
πR6 − (

A2 + B2 + C2
)

× 4
15

πR6 =
8
15

πR6
(
A2 + B2 + C2

)
On the surface of the sphere, ρ = R. The expression for W , is calculated
to be110

W =
∫

(Xnu + Ynv + Znw) ds =
∫ [

2k

ρ

(
A2ξ2 + B2η2 + C2ζ2

)

−5k
P3

ρ4

(
A2ξ2 + B2η2 + C2ζ2

)
+ 15k

P3

ρ6

(
A2ξ2 + B2η2 + C2ζ2

)]
ds

= 2kδ2

(
4
3
πR3

)
+ kδ2

(
4
3
πP3

)

= 2δ2k

(
V +

Φ
2

)
(3.27)

with δ2 = A2 + B2 + C2, V = 4
3πR3, and Φ = 4

3πP3, where V is the
volume of the space enclosed and Φ is the volume of the suspended
sphere. This is the corrected version of Eq. (3.6).

3.5.3 Derivation of the Coefficient of Viscosity
of a Liquid in Which Very Many Irregularly
Distributed Spheres are Suspended

Consider a spherical region G containing a large number of randomly
distributed spheres. See Figure 3.7.

For one sphere present, the expressions for the components of the
velocity were given by Eq. (3.3) and Eq. (3.6). A sphere at location

Fig. 3.7 The region G containing a
large number of randomly distributed
spheres.
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xν , yν , zν will affect the velocity according to these equations. For several
spheres, assuming the average distance between spheres to be large com-
pared with their radius, the expression for the components of velocity at
location x, y, z from all of the spheres is just the sum of the individual
contributions:

u = Ax +
∑

ν

uν

=
∑

ν

[
5
2

P3

ρ2
ν

ξν

(
Aξ2

ν + Bη2
ν + Cζ2

ν

)
ρ3

v

− 5
2

P5

ρ4
ν

ξν

(
Aξ2

ν + Bη2
ν + Cζ2

ν

)
ρ3

v

+
P5

ρ4
ν

Aξν

ρν

]

v = By +
∑

ν

vν

=
∑

ν

[
5
2

P3

ρ2
ν

ην

(
Aξ2

ν + Bη2
ν + Cζ2

ν

)
ρ3

v

− 5
2

P5

ρ4
ν

ην

(
Aξ2

ν + Bη2
ν + Cζ2

ν

)
ρ3

v

+
P5

ρ4
ν

Bην

ρν

]

w = Cz +
∑

ν

wν

=
∑[

5
2

P3

ρ2
ν

ζν

(
Aξ2

ν + Bη2
ν + Cζ2

ν

)
ρ3

v

− 5
2

P5

ρ4
ν

ζν

(
Aξ2

ν + Bη2
ν + Cζ2

ν

)
ρ3

v

+
P5

ρ4
ν

Cζν

ρν

]

(3.8)

with ξν = x − xν , ην = y − yν , ζ = z − zν , ρν =
√

ξ2
ν + η2

ν + ζ2
ν . From

Eq. (3.27), for one sphere present, the heat production per unit time
is W = 2δ2k(V + Φ

2 ). For N spheres present, the heat production per
unit time becomes W = 2δ2k(V + NΦ

2 ) for the volume V . Dividing by
V , the heat production per unit time per unit volume is

W ∗ = 2δ2k

(
1 +

1
2

NΦ
V

)
= 2δ2k

(
1 +

ϕ

2

)
(3.28)

where ϕ = NΦ
V is the fraction of the volume that is occupied by the

spheres. This is the corrected version of Eq. (3.8).
The principal dilatations of the liquid motion with no spheres present

were A, B, and C. These could be defined as A = (∂u0
∂x ), etc., with u0 =

Ax , etc. With the spheres present, the principal dilatations at the origin
are defined as

A∗ =
(

∂u

∂x

)
0

= A +
∑

ν

(
∂uν

∂x

)
x=0

= A −
∑

ν

(
∂uν

∂xν

)
x=0

with analogous expressions for B∗ and C∗. Since the spheres are spaced
far apart and their radius P is small compared to this distance, the
alterations to the velocity components far from the spheres can be
approximated from Eqs. (3.1), (3.3), and (3.26), keeping only terms to
the third power in P/ρν .
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uν = −5
2

P3

ρ3
ν

1
ρ2

ν

ξν

(
Aξ2

ν + Bη2
ν + Cζ2

ν

)

vν = −5
2

P3

ρ3
ν

1
ρ2

ν

ην

(
Aξ2

ν + Bη2
ν + Cζ2

ν

)

wν = −5
2

P3

ρ3
ν

1
ρ2

ν

ζν

(
Aξ2

ν + Bη2
ν + Cζ2

ν

)
At the origin, ξν = x − xν → ξν = −xν and ρν =

√
ξ2
ν + η2

ν + ζ2
ν → rν =√

x2
ν + y2

ν + z2
ν .

uν = +
5
2

P3

r3
ν

1
r2
ν

xν

(
Ax 2

ν + By2
ν + Cz 2

ν

)

vν = +
5
2

P3

r3
ν

1
r2
ν

yν

(
Ax 2

ν + By2
ν + Cz 2

ν

)

wν = +
5
2

P3

r3
ν

1
r2
ν

zν

(
Ax 2

ν + By2
ν + Cz 2

ν

)
The expression for A∗ becomes

A∗ = A −
∑

ν

(
∂uν

∂xν

)
x=0

→ A −
∫

ndV

(
∂uν

∂xν

)

with n = # spheres/volume = constant,

A∗ = A − n

∫ (
∂uν

∂xν

)
x=0

dV

Writing dV = drνdS and
(

∂uν

∂xν

)
x=0

=
(

∂uν

∂rν

∂rν

∂xν

)
x=0

=
(

∂uν

∂rν

xν

rν

)
x=0

and canceling the drν terms,

A∗ = A − n

∫
duν

xν

rν
ds = A − n

∫
uν

xν

rν
ds

= A − n
5
2
P3

∫
dS

[
x2

ν

r6
ν

(
Ax 2

ν + By2
ν + Cz 2

ν

)]

But rν = R on the surface, so

A∗ = A − n
5
2

P3

R6

∫
dS

{
Ax 4

ν + By2
νx2

ν + Cz 2
νx2

ν

}
Using the integrals from the paper,111

A∗ = A − n
5
2

P3

R6

[
A

4
5
πR6 + B

4
15

πR6 + C
4
15

πR6

]

= A − n
5
2

P3

R6

4
15

πR6 {3A + B + C}
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But 3A + B + C = 2A + (A + B + C) = 2A,

A∗ = A − n

(
4
3
πP3

)
A = A (1 − nΦ) = A (1 − ϕ)

Analogously, B∗ = B(1 − ϕ) and C∗ = C(1 − ϕ). Similar to δ2 =
A2 + B2 + C2, (δ∗)2 is defined as

(δ∗)2 = (A∗)2 + (B∗)2 + (C∗)2

= A2 (1 − ϕ)2 + B2 (1 − ϕ)2 + C2 (1 − ϕ)2

= δ2 (1 − ϕ)2 = δ2 (1 − 2ϕ)

to first order in ϕ. With no spheres present, the heat generated per
unit time per unit volume is W = 2δ2k. If k∗ denotes the coefficient
of viscosity of the mixture, the heat generated per unit time per unit
volume can be written as W ∗ = 2(δ∗)2k∗. Equating this expression
for W ∗ to the expression in Eq. (3.7b), Einstein obtains the desired
expression for k∗:

2δ2k
(
1 +

ϕ

2

)
= 2δ2 (1 − 2ϕ) k∗

k∗ = k

(
1 + ϕ/2
1 − 2ϕ

)
= k

(
1 +

ϕ

2

)
(1 + 2ϕ + . . .) = k (1 + 2.5ϕ) (3.29)

This is the corrected version of Eq. (3.9).

3.5.4 Determination of the Volume of a Dissolved
Substance

From Section 3.2.2, using the corrected expressions,

k∗

k
= 1 + 2.5ϕ

Using data for a 1% aqueous solution of sugar (1 gm of sugar in
100 cm3 of water), the value of k∗/k was 1.0245. Thus 2.5ϕ = 0.0245
and ϕ = 0.0098 = volume spheres

total volume = volume spheres
100 cm3 . The total volume of

the spheres in 100ml of water is 0.98 cm3.
One gram of sugar has a volume of 0.61 cm3. However, regarding

viscosity, one gram of sugar has the effect of a volume of 0.98 cm3. The
ratio of 0.98

0.61 ≈ 1.6 indicates the quantity of water bound to the sugar
molecule has a volume about 60% of that of the sugar molecule.112

The molecular weight of sugar is 342 gm. If N is the number of mole-
cules in 342 gm of sugar, there are N

342 molecules in one gm of sugar. The
total volume of one molecule of dissolved sugar is 0.98 cm3

N/342 = 0.98 cm3 342
N .

3.5.5 Derivation of the Expression for Entropy

This follows nearly identically the presentation in Albert Einstein’s 1903
paper “A Theory of the Foundations of Thermodynamics,”113 where
Einstein addresses first the First Law of Thermodynamics,
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dE = dW − dQ

Consider a system whose state is described completely by the state
variables (p1, p2, . . .p3n,q1, q2, . . .q3n). The system is now allowed to
undergo a small, very slow change. In addition to the state variables
specifying the state of the system, there may be a set of parameters (λ1,
λ2, . . .) describing the state of the system. The change in energy of the
system in time dt is given by

dE =
∑ ∂E

∂λ
dλ +

∑(
∂E

∂pν
dpν +

∂E

∂qν
dqν

)

The first term is identified with the work done on the system, and the
second term is identified with the heat dQ supplied to the system:

dE =
∑ ∂E

∂λ
dλ + dQ

Consider a system undergoing this change adiabatically (dQ = 0).
Before the change, the system was in a stationary state, with the
probability of being in a given configuration given by114

dW = (constant = ec) e−
E
kT dp1dp2 . . . dp3ndq1dq2 . . . dq3n

= ec− E
kT dp1dp2 . . . dp3ndq1dq2 . . . dq3n

The constant c is determined from∫
dW = 1 =

∫
ec−2 E

kT dp1dp2 . . . dp3ndq1dq2 . . . dq3n

= ec

∫
e−

E
kT dp1dp2 . . . dp3ndq1dq2 . . . dq3n

c = − ln
{∫

e−
E
kT dp1dp2 . . . dp3ndq1dq2 . . . dq3n

}

After the process, the system is again in a stationary state, with similar
expressions for the probability dW for a given configuration, but with
the possibility the energy and the constants c and h(2h = 1

kT ) will have
changed slightly: c → c + dc, h → h + dh.

E → E + dE = E +
∑ ∂E

∂λ
dλ∫

dW = 1 =
∫

e(c+dc)−2(h+dh)(E+
∑

∂E
∂λ dλ)dp1dp2dp3ndq1dq2 . . . dq3n

1 =
∫

edc−2(Edh+h
∑

∂E
∂λ dλ+dh

∑
∂E
∂λ dλ)ec− E

kT dp1dp2 . . . dp3ndq1dq2 . . . dq3n
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Expanding the first exponential in a Taylor series, and neglecting terms
of higher than first order:

1 =
∫ [

1 +
(

dc − 2
(

Edh + h
∑ ∂E

∂λ
dλ + dh

∑ ∂E

∂λ
dλ

))

+
1
2

(dc − 2 ( . . .))2 + . . .

]
ec− E

kT dp1dp2 . . . dp3ndq1dq2 . . . dq3n

1 =
∫ [

1 +
(

dc − 2
(

Edh + h
∑ ∂E

∂λ
dλ + dh

∑ ∂E

∂λ
dλ

))]

× ec− E
kT dp1dp2 . . . dp3ndq1dq2 . . . dq3n

0 =
∫ [(

dc − 2
(

Edh + h
∑ ∂E

∂λ
dλ

))]
ec− E

kT dp1dp2 . . . dp3ndq1dq2 . . . dq3n

Since the term ec− E
kT is always positive (actually, non-negative), for the

integral to equal zero the expression in [ . . . ] must be equal to zero:

dc − 2Edh − 2h
∑ ∂E

∂λ
dλ = 0

But, from dE =
∑

∂E
∂λ dλ + dQ , we have

−2hdE + 2h
∑ ∂E

∂λ
dλ + 2hdQ = 0

Adding these two equations

2hdQ = d(2hE − c)

Substituting 2h = 1/(kT )

dQ
T

= d

[
E

T
− kc

]
= dS

“This equation states that dQ/T is a total differential of a quantity
that we will call the entropy S of the system. Taking into account [the
definition of c], one obtains,”115

S =
E

T
+ k ln

{∫
e−

E
kT dp1dp2 . . . dp3ndq1dq2 . . . dq3n

}

3.5.6 Derivation of B = JV ∗n

The total volume of the n dissolved molecules or suspended particles in
V ∗ is assumed to be small relative to the total volume V ∗:

B =
∫

dB =
∫

e−2 E
kT dpx1

dpy1
. . . dyndzn

x1, y1, z1 are the rectangular (Cartesian) coordinates of the cen-
ter of mass of the first particle, and . . . ,xn, yn, zn the rectan-
gular coordinates of the center of mass of the nth particle.
Around each particle is an infinitesimally small parallelepiped region,
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dx 1dy1dz 1, dx 2dy2dz 2, . . . , dxndyndzn, each of which lies in the volume
V ∗. It is claimed that the integral can be put into the form

dB = dx 1dy1 . . . dznJ

where J is independent of dx 1dy1, etc., as well as of x1, y1, . . . , zn,and
V ∗. To show this, consider the same n particles, but with different
locations x1

′, y1
′, . . . , zn

′ and with the small parallelepiped regions des-
ignated as dx 1

′dy1
′dz 1

′, dx 2
′dy2

′dz 2
′, . . . , dzn

′dyn
′dzn

′, but with the
volume of the parallelepiped region around each particle the same as
in the original configuration., i.e. dx 1dx 2 . . . dzn = dx 1

′dx 2
′ . . . dzn

′. In
this second configuration, we have dB ′ = dx 1

′dy ′ . . . dzn
′J ′. Dividing the

two expressions for dB,

dB
dB ′

′ J

J ′

But the probability the particles are in the first configuration is dB/B,
while the probability the particles are in the second configuration is
dB ′/B, since the integral over all configurations is the same, i.e., B = B′.
However, the two probabilities must be the same if the motions of the
particles are independent and the size of the regions dx 1dy1dz 1, etc., are
the same:

dB
B

=
dB ′

B

But dB = dB ′, from the prior equation, ⇒ J = J ′. This shows that J
does not depend on the location of the particles x1y1z1 . . . zn, nor on
V ∗. Integrating the expression for B

B′
∫

dB =
∫

V ∗

Jdx 1dy1dz 1dx 2 . . . dyndzn

= J

∫
V ∗

dx 1dy1dz 1dx 2 . . . dyndzn = JV ∗n

3.5.7 Derivation of ν = f(x, t)

From section 3 of Einstein’s paper, ϕ(Δ) satisfies

dn = nϕ (Δ) dΔ
+∞∫

−∞
ϕ (Δ) dΔ = 1

ϕ (Δ) = ϕ (−Δ)

where dn is the number of particles experiencing a displacement between
Δ and Δ + dΔ in the time interval τ . The total number of particles in the
liquid is n, while νis the number of particles per unit volume, ν = n/V .

Designate by ν = f(x, t) the number of particles per unit volume at
location x at time t. The number of particles per unit volume at location
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x + Δ at time t is f(x + Δ, t). The number of these that will move a
distance Δ to the location x in time τ is

df (x, t + τ) = f (x + Δ, t) ϕ (Δ) dΔ

The total number of particles per unit volume at location x at time
t + τ is the sum (integral) of the df contributions. Since ϕ differs from
zero only for very small values of Δ, for convenience of calculation, the
limits of integration are extended to Δ = ±∞. (In Section 3.5.8 this
allows the use of Gaussian integrals.)

f (x, t + τ) =

Δ=+∞∫
Δ=−∞

f (x + Δ, t) ϕ (Δ) dΔ

Since τ is small, f(x, t + τ) can be expanded in a Taylor series
in τ ,

f (x, t + τ) = f (x, t) + τ
∂f

∂t
+

1
2
τ2 ∂2f

∂t2
+ . . . ≈ f (x, t) + τ

∂f

∂t

Since ϕ(Δ) differs from zero only for very small values of Δ, f(x + Δ, t)
can be expanded in a Taylor series in Δ,

f (x + Δ, t) = f (x, t) + Δ
∂f

∂x
+

1
2
Δ2 ∂2f

∂x2
+ . . . ≈ f (x, t) + Δ

∂f

∂x
+

1
2
Δ2 ∂2f

∂x2

Substituting into the above equation for f(x, t)

f (x, t) + τ
∂f

∂t
=

Δ=+∞∫
Δ=−∞

[
f (x, t) + Δ

∂f

∂t
+

1
2
Δ2 ∂2f

∂t2

]
ϕ (Δ) dΔ

= f (x, t)

Δ=+∞∫
Δ=−∞

ϕ (Δ) dΔ +
∂f

∂t

Δ=+∞∫
Δ=−∞

Δϕ (Δ) dΔ

+
1
2

∂2f

∂t2

Δ=+∞∫
Δ=−∞

Δ2ϕ (Δ) dΔ

On the right-hand side of the equation, the first integral is equal to
unity by the definition of ϕ(Δ), and the second integral is zero since the
integral of an odd function between symmetric limits is zero (Δ is an odd
function of Δ, while ϕ(Δ) is an even function of Δ since ϕ(Δ) = ϕ(−Δ)).
Rewriting,

∂f

∂t
=

1
2τ

∂2f

∂t2

Δ=+∞∫
Δ=−∞

Δ2ϕ(Δ)dΔ = D
∂2f

∂t2
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This is the diffusion equation, with D the coefficient of diffusion,
defined as

D =
1
2τ

Δ=+∞∫
Δ=−∞

Δ2ϕ(Δ)dΔ

“The problem, which coincides with the problem of diffusion from
one point . . . is now completely determined mathematically; its solution
is . . . ”116

f(x.t) =
n√
4πD

e−
x2
4Dt√
t

3.5.8 Derivation of 〈x2〉
f(x, t) is the expression for the number of particles with a displacement
between x and x + dx in time t. Dividing this expression by n, the
number of particles in the volume, will give the probability that a
single particle will experience a displacement between x and x + dx

in time t. Using the Gaussian integral
+∞∫
−∞

e−ax2
dx =

√
π
a one obtains

1
n

+∞∫
−∞

f(x, t)dx = 1. The average of the square of the displacements is,

noting
+∞∫
−∞

x2e−ax2
dx = 1

2

√
π
a3 ,

〈
x2
〉

=

+∞∫
−∞

x2 1
n

f(x, t)dx =
1√
4πD

1√
t

+∞∫
−∞

x2e−
x2
4Dt dx = 2Dt

The square root of this expression is the rms value, λx, for the average
displacement

λx =
√

〈x2〉 =
√

2Dt
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4.1 Historical Background

In Einstein’s Miraculous Year,3 John Stachel writes, “. . . [Albert]
Einstein described the theory of relativity as arising from a specific
problem: the apparent conflict between the principle of relativity and the
Maxwell–Lorentz theory of electrodynamics. While the relativity prin-
ciple asserts the physical equivalence of all inertial frames of reference,
the Maxwell–Lorentz theory implies the existence of a privileged inertial
frame.”4

In these papers, Einstein sets down the foundation for the special
theory of relativity and develops a number of consequences that follow
from them, including the relation E = mc2. He opens his paper “On
the Electrodynamics of Moving Bodies”5 with comments on “asymme-
tries [in electrodynamic induction] that do not seem to attach to the
phenomena.”6 But he does not, as is often believed, base his work
on the Michelson–Morley experiment, nor even directly mention it.
Undoubtedly, the remark in the opening section of the paper about
“. . . the failure of attempts to detect a motion of the earth relative to
the ‘light medium’. . . ”7 included, among others, the Michelson–Morley
experiment.8

In these papers, Albert Einstein addresses the relativity theories of
Galileo and Newton, the Maxwell–Lorentz theory of electrodynamics,
and the electromagnetic induction experiment.

4.1.1 The Relativity of Galileo Galilei and
of Isaac Newton

Galileo set for himself the goal to better describe the motion of falling
bodies and projectiles. Considering the description of motion by different
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observers in different reference frames, Galileo arrived at the principle
that “the motion of a system of bodies relative to each other does not
change if the whole system is subjected to a common motion.”9 Although
we know today this statement does not hold for a common motion that
is accelerated or rotational, it does hold for uniform rectilinear motion.
The point is not the absolute correctness, or incorrectness, of Galileo’s
statement but, rather, it is the initial formal statement of a principle of
relativity.

Just as Galileo developed the kinematics of motion (i.e., its descrip-
tion, not its causes), Newton developed the dynamics of motion. Isaac
Newton systematized the ideas of motion, many of which were yet of
a “fragmentary and confused character.”10 These were summarized in
Newton’s three laws of motion:

Newton’s First Law of Motion: Every body perseveres in its state of being
at rest or of moving uniformly straight forward except as it is compelled to
change its state by forces impressed.

Newton’s Second Law of Motion: A change in motion is proportional to the
motive force impressed and takes place along the straight line in which that
force is impressed.

Newton’s Third Law of Motion: To any action there is always an opposite and
equal reaction; in other words, the actions of two bodies upon each other are
always equal and always opposite in direction.11

Although the first law appears to be contained in the second law, it
was necessary to counter the possibility that the momentum of a body
might, as Dijksterhuis notes, “decrease spontaneously . . . This possibility
is ruled out by the first [law]; the momentum, therefore, does not change
of its own accord; for every change a force is required; the second [law]
says something about the effect of this force. Or, in other words: the
second [law] only asserts that for a change in momentum it is sufficient
that a force be exerted; the first has already established that it is
necessary.”12

Newton’s laws of motion are valid in an “inertial” frame of reference
and, in fact, an inertial reference frame is defined as one in which
Newton’s laws of motion are valid. Once one inertial reference frame is
established, any other reference frame in uniform rectilinear translational
motion in relation to the first is also an inertial reference frame.13 See
Figure 4.1.

y
K

x

P

y ′
K′

x ′

v

Fig. 4.1 Two reference frames.
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Consider an object located at point P. If the point P is stationary
in reference frame K′, it will be seen as moving with a velocity v in
reference frame K, and vice versa (if stationary in K, it will be seen
as moving with velocity –v in K′). Of course, in many circumstances
the point P will be observed moving both in reference frame K and in
reference frame K′.

The location of point P as measured from reference frame K is (x,
y, z), and the location of point P as measured from reference frame K′

is (x′, y′, z′). The coordinates (x, y, z) are related to the coordinates
(x′, y′, z′) by the Galilean transformations. Starting the clocks at t = 0
when the origins of K and K′ are coincident, i.e., as K′ “passes” K, the
Galilean transformations are:

x′ = x − vt

y′ = y

z′ = z

t′ = t

Taking the time derivative of each of these equations, and writing dx/dt
as ẋ, etc.,

ẋ′ = ẋ − v

ẏ′ = ẏ

ż′ = ż

If the point P has a velocity ẋ as measured in K, the velocity of
point P as measured in K′ would be ẋ′ = ẋ − v, i.e., it differs from the
measurement in K by v, the relative velocity between the two reference
frames.

Taking the time derivative of these velocity transformations, since v =
constant, the x-, y-, and z-components of the acceleration are the same
in both the K and K′ reference frames. Thus, from Newton’s Second
Law, F = ma, no distinction can be made between the two reference
frames.

Although Newton believed in absolute space, he was unable to deter-
mine a way to distinguish the inertial reference frame of absolute space
from the inertial reference frame moving with uniform rectilinear transla-
tional motion relative to absolute space.14 Newton raised this “inability”
to a principle, today referred to as Newton’s principle of relativity:

When bodies are enclosed in a given space, their motions in relation to one
another are the same whether the space is at rest or whether it is moving
uniformly straight forward without circular motion.15

Newton’s principle of relativity stated it is impossible to determine our
motion relative to absolute space using the equations of mechanics. Over
the succeeding 200 years, it came to be accepted that Newton’s principle
of relativity applied to all areas of physics, not just to mechanics.



108 The Special Theory of Relativity

4.1.2 The Lorentz Transformations (from Lorentz)

Maxwell’s equations of electromagnetism are

∇×E = −1
c

∂B

∂t

∇×B =
1
c

∂E

∂t
+

4π

c
j

∇ ·E = 4πρ

∇ ·B = 0

In empty space (no sources/sinks, i.e., j = 0 and ρ = 0), and written in
component form, Maxwell’s equations are (the components of ∇× E =

−1
c

∂B
∂t

are Eqs. (a), (b), and (c) below, . . .∇ · B = 0 is Eq. (h))

(a)
∂Ez

∂y
− ∂Ey

∂z
= −1

c

∂Bx

∂t
(d)

∂Bz

∂y
− ∂By

∂z
=

1
c

∂Ex

∂t

(b)
∂Ex

∂z
− ∂Ez

∂x
= −1

c

∂By

∂t
(e)

∂Bx

∂z
− ∂Bz
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=

1
c

∂Ey
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(c)
∂Ey

∂x
− ∂Ex

∂y
= −1

c

∂Bz

∂t
(f)

∂By

∂x
− ∂Bx

∂y
=

1
c

∂Ez

∂t

(g) ∇ • �E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
= 0

(h) ∇ • �B =
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0

Manipulating the empty space version of Maxwell’s equations yields
the wave equation for the electric and magnetic fields:16

∇2 �E =
1
c2

∂2 �E

∂t2
∇2 �B =

1
c2

∂2 �B

∂t2

These electric and magnetic fields, based on the wave equation, travel
at the speed of light, c, assumed relative to the luminiferous aether.
Since the luminiferous aether was at rest relative to absolute space, one’s
speed relative to the aether would be the same as one’s speed relative
to absolute space. All one needed to do was measure the speed relative
to the aether and the search begun by Newton would be completed.

By definition, Maxwell’s equations are valid in absolute space (the
aether rest frame). Transforming Maxwell’s equations to a moving ref-
erence frame leaves them in almost the same form, differing only by an
additional term proportional to v/c, where v is the speed of the moving
reference frame through the aether (and, consequently, through absolute
space) and c is the speed of light. Applying the Galilean transformation
equations to Maxwell’s equations, in the K′ reference frame they become
(see Appendix 4.5.1.1 for the details of this derivation)17,
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(A)
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It is clear that Eqs. (G) and (H) in reference frame K′ are of the
same form as their counterparts, Eqs. (g) and (h), in reference frame K.
Also, it is easily seen that Eqs. (A) through (F) are the same as their
counterparts, Eqs. (a) through (f), in reference frame K, except there
is an additional term proportional to v/c added to each equation. Since
these terms are proportional to v/c, a measurement of these terms would
allow one to determine the speed of the reference frame K′ relative to
the stationary aether and, ultimately, to the absolute space of Newton.
Experiments by Fizeau, and others, were unable to detect this first-order
effect.18

Accepting the validity of the experimental results, Hendrik Lorentz
set about to manipulate the form of Maxwell’s equations in reference
frame K′ to eliminate the “additional terms” that could not be found
experimentally. In Eqs. (B) and (C), the “extra term” on the right-hand
side could be moved to the left-hand side, and combined with the already
existing derivative with respect to x′. For Eq. (A), it is necessary first
to replace (∂Bx/∂x′) by (∂Bx/∂x′) = −(∂By/∂y′) − (∂Bz/∂z′) from
Eq. (H). In like manner, Eqs. (D), (E), and (F) are manipulated using
Eq. (G).
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The subsequent development follows on the Eqs. (A′) through (F′).
The expressions for Eqs. (G′) and (H′) are suppressed from this point
forward. In K′, defining the electric and magnetic fields E′ and B′ in
terms of the electric and magnetic fields E and B in K, as

E′
x = Ex B′
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E′
y = Ey − v

c
Bz B′

y = By +
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c
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c
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Ey

the equations become,
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At first glance, each of these equations appears to be in the proper
form. However, the terms on the left-hand side of each equation contain
only quantities referred to in the K′ system, while on the right-hand
side of the equations, the electric and magnetic fields, E and B, are
still those measured in reference frame K. Lorentz then made another
change of variables, defining a new time variable t′ = t − vx ′

c2 , yielding
(see Appendix 4.5.1.1 for the details of this derivation),19
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In this last transformation only the time variable has been changed, to
what was called “local time” because it was dependent on the location x′,
where the time measurement was being made. This transformation was
made expressly to rid the equations of the terms in first order in (v/c).
Introducing the local time achieved this purpose, leaving the Maxwell
equations in the same form in the moving reference frame K′ as they
were in the rest frame – at least to first order in (v/c).
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Galilean Transformations Modified Transformations
x′ = x − vt x′ = x − vt
y′ = y ⇒ y′ = y
z′ = z z′ = z
t′ = t t′ = t − vx

c2

At this time, the general belief was these transformations were simply
a mathematical ploy to save the form of Maxwell’s equations in the
moving reference frame. As Robert Rynasiewicz writes, “Nowhere (prior
to 1906) does Lorentz indicate he intends E′ and [B′] to represent the
fields relative to a moving frame. . . . The pre-relativistic understanding
took the electromagnetic field to constitute an intrinsic, objective, non-
relational state of the aether. To ask about the electric or magnetic field
relative to a moving frame would have made as much sense as asking
about the atomic number of an element relative to a moving frame.”20

The introduction of a local time to remove difficulties associated
specifically with the Galilean transformations was successful in that it
removed the difficulties – at least to order v/c. The introduction of a
specific hypothesis to address a specific issue was the method employed
by Lorentz as he constructed his theory of electrons. This led to his great
success with the theory of electrons – as well as to his failure to recognize
the significance of Einstein’s special theory of relativity, let alone be the
primary author of the theory of relativity. In Lorentz’s words:

The chief cause of my failure was my clinging to the idea that the variable
t only can be considered as the true time and that my local time t′ must be
regarded as no more than an auxiliary mathematical quantity. In Einstein’s
theory, on the contrary, t′ plays the same part as t; if we want to describe
phenomena in terms of x′, y′, z′, and t′, we must work with these variables
exactly as we could do with x, y, z, t.21

The introduction of the local time removed the first order terms as
intended, but it also introduced second order terms which, at the time,
were too small to be measured. Subsequent experiments, notably the
Michelson Morley experiment,22 were unable to detect the second order
effects. The result consistently was v = 0. Another adjustment of the
transformation equations became necessary.

The Michelson–Morley experiment, performed by Albert Michelson
and Edward Morley in 1887, was ingeniously designed to measure these
second order effects. James Cushing describes the experiment in these
words:

The basic idea of the experiment is to send light down to a mirror and back
(a distance L), once along the line of motion of the earth and once at right
angles to that motion and to measure the time difference for these two round
trip journeys. . . .

This time difference is not measured directly in the experiment, but an
interference effect is looked for. Since the wave trains are both in phase when
they begin their trips along these different paths and since the times of flight
of the light signals along these two paths are different, the two beams will
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be slightly out of phase when they are recombined. This phase difference can
produce an interference fringe pattern. . . .23

In the Michelson–Morley experiment, the time to travel down and
back the arm parallel to the motion of the earth is calculated to be (see
Appendix 4.5.1.2 for the details of these calculations)

tparallel =
2l

c

(
1

1 − v2

c2

)

whereas, in the direction perpendicular to the motion of the earth, the
time is calculated to be

tperpendicular =
2l

c

1√
1 − v2

c2

It is the difference between these two times, tparallel and tperpendicular,
that would give rise to interference fringes. When the apparatus was
rotated by π/2, the roles played by the arms parallel to, and perpendic-
ular to, the motion of the earth through the aether would be exchanged,
producing a shift in the fringe pattern. However, no fringe shift was
detected. In 1892, the physicists George Fitzgerald in Ireland and
Hendrik Lorentz independently arrived at the same explanation: if the
arm of the apparatus traveling parallel to the earth’s motion contracts
by exactly the right amount (while the arm perpendicular to the motion
does not contract), the tparallel and tperpendicular would be exactly equal
to one another. The amount of contraction would be

√
1 − (v/c)2. This,

today, is known as the Lorentz–Fitzgerald contraction.
As he had done with local time, Lorentz introduced the contraction

hypothesis to address a specific issue – this time the null result of the
Michelson–Morley experiment. Lorentz considered the contraction to be
a real physical contraction of the apparatus as it moved through the
aether, not a result simply of relative motion of the two reference frames.

In 1904, Lorentz published a set of modified Galilean transformations,
including the local time and the contraction adjustments.24 These trans-
formations were labeled the Lorentz transformations by Poincaré:

t′ = γ
(
t − v

c2
x
)

x′ = γ(x − vt)

y′ = y

z′ = z

with γ = 1√
1−( v

c )2

Modern convention uses the symbol γ to represent this relativistic
factor, whereas Einstein used the symbol β (modern convention uses the
symbol β for the factor v/c).

Lorentz arrived at the Lorentz transformations from hypotheses pos-
tulated to address specific issues, a result that was to be arrived at from
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a more general point of view by Einstein’s special theory of relativity.25

It needs to be noted that the use of the Lorentz transformations rather
than the Galilean transformations leaves Maxwell’s equations in exactly
the same form in the moving reference frame as they were in the frame
stationary in the aether. Consequently, no electromagnetic experiments
(such as the Michelson–Morley experiment) could be expected to detect
motion through the aether.26

In response to this continuing trend of modifications Lorentz says:

Poincaré has objected to the existing theory of electric and optic phenomena
in moving bodies that, in order to explain Michelson’s negative result, the
introduction of a new hypothesis has been required, and that the same
necessity may occur each time new facts may be brought to light. Surely
this course of inventing special hypotheses for each new experimental result is
somewhat artificial.27

By 1904, prior to Einstein’s paper on the special theory of relativity,
Cushing points out that Lorentz’s “theory was, in its predictions, indis-
tinguishable from Einstein’s special theory of relativity.”28 Thus we see,
at this stage, that Lorentz has all the same results that Albert Einstein
is to present in 1905. Yet Lorentz was unable to change from a dynamical
foundation for these results to the kinematical foundation that Einstein
would provide one year later.

4.2 Albert Einstein’s Paper, “On the
Electrodynamics of Moving Bodies”29

Albert Einstein described his theory of relativity as arising from an
apparent conflict between the principle of relativity of Newton and the
theory of electrodynamics of Maxwell, as modified by Lorentz, i.e., the
Lorentz transformations. Newton’s principle of relativity showed it is
impossible to determine the motion of an inertial system relative to
absolute space by mechanical experiments. Maxwell’s theory of electro-
dynamics, in principle, should allow one to determine the motion of an
inertial system relative to the aether by optical experiments, but it failed
to do so – leading to a number of additional assumptions, such as length
contraction and local time.

Einstein took this failure of optical experiments to detect the motion
of the earth through the aether as verification of the principle of rela-
tivity and set about the task of making the Maxwell–Lorentz theory of
electrodynamics consistent with the principle of relativity. He took what
had been a problem in the Maxwell–Lorentz theory – the constancy of
the speed of light – accepted it as empirical fact, and added it to the
principle of relativity as his second postulate. The problem Einstein
was addressing in this paper was the description of the electrodynamics
of bodies in a reference frame K′ moving through the aether, i.e.,
the electrodynamics of moving bodies.30 Rather than focusing on the
theory of electrodynamics as others were, Einstein showed how a deeper
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understanding of space and time would lead naturally to the Lorentz
transformations. Such a deeper understanding would have an impact on
all of physics, not just electrodynamics. Pursuing this line of thought
led Einstein to reexamine the concept of time and, in particular, the
concept of simultaneity (Section 4.2.1).

In the electromagnetic induction experiment, a moving magnet
induces an emf in a stationary coil of wire, producing a current. However,
if the situation is reversed, with the magnet stationary and the coil
of wire moving, a current again is established in the coil because the
charges in the wire experience a magnetic force as they move through
the magnetic field. See figure 4.2.

Einstein’s observation was that, if the relative motion between the
magnet and coil of wire was the same in the two cases, the resulting
current was the same. But, as he further noted, depending on which is
at rest, in the two cases the explanation is different (see Section 4.4 for
how the theory of relativity resolved this). This, along with “the failure
of attempts to detect a motion of the earth relative to the ‘light medium
[the aether],’ lead to the conjecture that not only in mechanics, but
in electrodynamics as well, the phenomena do not have any properties
corresponding to the concept of absolute rest. . . . We shall raise this
conjecture (whose content will be called ‘the principle of relativity’
hereafter) to the status of a postulate and shall introduce, in addition,
the postulate, only seemingly incompatible with the former one, that
in empty space light is always propagated with a definite velocity [c]31

that is independent of the state of motion of the emitting body.”32 It is
here that Einstein comments that “[t]he introduction of a ‘light ether’
will prove superfluous. . . ”33 The now common use of the symbol c for
the speed of light is said to be from the Latin word “celeritas,” meaning
“swiftness.”34

(a) Motion by the magnet produces a current in the
stationary loop of wire.

(b) Motion by the loop of wire in the vicinity of a stationary
magnet produces a current in the loop of wire. 

V

V

NS

NS

Fig. 4.2 Electromagnetic induction.
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4.2.1 Definition of Simultaneity

In Section 1, it may appear an inordinate amount of time was expended
on the idea of simultaneity. But, it should be remembered, this concern
was a new focus in 1905. For this reason, and since it was to be the
foundation on which Einstein’s entire paper was built, first to obtain the
Lorentz transformations, and then to obtain a variety of results following
from the Lorentz transformations, it is crucial to establish with certainty,
and with clarity, just what is meant by the concept of simultaneity.

As noted by John Stachel, once Einstein began to pursue the line
of thought that the apparent contradiction of the two postulates was
based on the Newtonian addition of velocities, he began to focus on
the concept of velocity, noting the “concept of the velocity of an object
with respect to an inertial frame depends on time readings made at two
different places in that inertial frame. . . . How do we know that time
readings at two such distant places are properly correlated? Ultimately
this boils down to the question: how do we decide when events at two
different places in the same frame of reference occur at the same time,
i.e., simultaneously? . . . [This] led to the radically novel idea that, once
one physically defines simultaneity of two distant events relative to one
inertial frame of reference, it by no means follows that these two events
will be simultaneous when the same definition is used relative to another
inertial frame moving with respect to the first.”35

Thus, at the heart of things, one needed to determine very clearly the
concept of simultaneity. This clarification is Section 1 of the paper.

Simultaneity is defined for clocks in the same reference frame, i.e., at
this stage there is no “relativity” of measurements made in one reference
frame relative to measurements made in another reference frame. In the
coordinate system considered, Newton’s laws of mechanics are assumed
to be valid.36

Time is defined in terms of a collection of clocks at different locations,
each clock remaining stationary at its given location. For a clock at
location A, an observer can record the time, tA, of events occurring in
the “immediate vicinity of A.” Likewise, an observer at location B can
record the time, tB , of events occurring in the “immediate vicinity of
B.” But, as Einstein noted, “it is not possible to compare the time of an
event at A with one at B without a further stipulation,”37 i.e., some way
to correlate the time of clock A with the time of clock B. See Figure 4.3.

Einstein states, by definition, the time for light to travel from point
A to point B is the same as the time for light to travel from point B to
point A (isotropy of space), and uses this to synchronize the two clocks.
Consider a ray of light that leaves point A at time tA, arrives at point B
at time tB, is reflected back to point A, arriving back at point A at time
t∗A, where tA is the time measured on the clock at point A and tB is the
time measured on the clock at point B. “The two clocks are synchronous
by definition if”38

tB − tA = t∗A − tB (4.1)
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Clock B 

Two stationary clocks, one located at XA, the other at XB.

tA tB

XA XB

Clock Ay

x

Fig. 4.3 Simultaneity and two sta-
tionary clocks.

Note that all times are defined in terms of clocks at rest in the
reference frame. The concern of synchronization is because the clocks
are in locations separate from one another.

The “time” of an event, as defined by Einstein, “. . . is the reading
obtained simultaneously with the event from a clock at rest that is
located at the place of the event and that for all time determinations is
in synchrony with a specified clock at rest.”39 He then continues, postu-
lating that, based on experience, 2(XB−XA)

t∗A−tA
= c, a universal constant.

4.2.2 On the Relativity of Lengths and Times

In Section 2 of his paper, Einstein states the two principles from which
all else will flow:40

1. The laws governing the changes of the state of any physical system do not
depend on which of the two coordinate systems in uniform translational
motion relative to each other these changes of the state are referred to.

2. Each ray of light moves in the coordinate system “at rest” with the
definite velocity [c]41, independent of whether this ray of light is emitted
by a body at rest or a body in motion. Here,

velocity =
light path

time interval

where “time interval” should be understood in the sense of the definition
given in [Section 1 of Einstein’s paper, Section 4.2.1 of this chapter].

John Stachel notes, “When combined with the relativity principle, this
[c = constant] leads to an apparently paradoxical conclusion: the velocity
of light must be the same in all inertial frames. This result conflicts with
the Newtonian law of addition of velocities, forcing a revision of the
kinematical foundations underlying all of physics.”42

All time measurements are to be made in terms of the clocks men-
tioned in Section 4.2.1 and all length measurements are to be made in
terms of rigid rods of fixed length (meter sticks, etc.). Two coordinate
systems are considered, one called the rest system K, with x-, y-, and
z-axes, and a second one called the moving system K′, with x′-. y′- , and
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z′-axes. [N.B. This notation differs from that used by Einstein. Instead
of designating the rest reference frame by Latin letter coordinates, and
the moving reference frame by Greek letter coordinates (as done by
Einstein), the rest system is designated as system K with coordinates
x, y, z, and time t (the same notation as Einstein), while the moving
system is designated as system K′ with coordinates x′, y′, z′ and time t′

(Einstein’s designated the moving system as system k with coordinates
ξ, η, ζ, and time τ).] The K′ system is moving at a constant velocity v
relative to the K system, with the relative velocity along the x − x′ axes.
The y′- and z′-axes are parallel to the y- and z- axes.43 The clocks in
each reference frame are set at time t = 0, t′ = 0, when the origins of
the two coordinate systems are coincident. See Figure 4.1.

When the rod is at rest in the rest frame it has some length �, when
measured by a person at rest in the rest frame. The axis of the rod is
now set along the x-axis and the rod is set into uniform translational
motion along the x-axis with speed v. See Figure 4.4.

As measured by a person moving with the rod, the length of the rod
will be �. But, Einstein noted, “We will determine . . . ‘the length of the
(moving) rod in the system at rest,’ on the basis of our two principles,
and will find it to be different from �.”44

On the moving rod, consider two clocks, one at each end, i.e., one at
end A and one at end B, of the rod. These two clocks run synchronously
with the clocks in the rest frame, i.e., each time clock A is adjacent to a
clock in the rest frame, the reading on clock A and the reading on the
rest clock are the same. The same is true for clock B. Thus these two
moving clocks are “synchronous in the system at rest.”45

A light signal is sent from one end of the moving rod to the other,
i.e., from point A to point B. In the rest frame, the signal is seen
approaching point B at the speed c– v. The length of the moving rod
as measured from the rest frame K is designated rAB , where (as will
be shown later) rAB is not equal to �. The time to reach point B, as
measured in the rest reference frame, will be tB − tA = rAB/(c − v).
At point B, the signal is reflected back to point A. The time to reach
point A from point B, as measured in the rest reference frame, will be
t∗A − tB = rAB/(c + v). Since the time from A to B is different than
the time from B to A, the observers “co-moving with the moving rod
would thus find that the two clocks do not run synchronously while
the observers in the system at rest would declare them synchronous. . . .
Thus we see that we must not ascribe absolute meaning to the concept of
simultaneity. . . ”46

y
K

A B
x

y¢ K¢

x¢

v l

Fig. 4.4 Rod of length � at rest in
reference frame K′.
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4.2.3 Theory of Transformation of Coordinates
and Time from a System at Rest to a
System in Uniform Translational Motion
Relative to It

In Section 3 of his paper, Einstein uses the condition of clock synchro-
nization to obtain the Lorentz transformations. Again we consider the
two reference frames K and K′ introduced in Section 4.2.2. For the sake
of convenience, we consider the reference frame K to be at rest, with the
reference frame K′ moving with velocity v parallel to the x-axis of K. All
of the clocks at rest in K are synchronized using the method outlined
in Section 4.2.1. In a similar manner, all of the clocks at rest in K′ (the
moving system) are synchronized within K′. The time in K is denoted
as t, while the time in K′ is denoted as t′. An event in K occurring at
location (x, y, z) and time t, occurs at a corresponding location (x′, y′,
z′) and time t′ in reference frame K′.

The transformations between the quantities x, y, z, and t and the
quantities x′, y′, z′ and t′ are the focus of this section of the paper.
Einstein begins by stating, “First of all, it is clear that these equa-
tions must be linear because of the properties of homogeneity that we
attribute to space and time.”47

The derivation of the Lorentz transformations flows from the definition
of synchronicity, Eq. (4-1) in Section 1 of the paper (Section 4.2.1 of this
chapter),

tB − tA = t∗A − tB

Consider a point at location (x′, y′, z′) at time t′ in reference frame
K′. The coordinates of this point in reference frame K at time t are (x,
y, z). As time t′ continues to change, there will be some corresponding
change in the time t. If the point is at a fixed value of x′, in K the
value of x will be changing or, vice versa, if at rest in K at location
x, the variable x′ will be changing or, even possibly, both x and x′

could be changing. And this is for motion parallel to the x − x′ axes (no
change in the y and y′ or z and z′ directions). Thus there will be at
least three variables changing in any transformation equations (x or x′,
t and t′).

Einstein introduced a new variable X to describe a point at rest in
reference frame K′ (but moving in reference frame K). As observed from
reference frame K the point is at a fixed location X from the origin of
K′. See Figure 4.1.

In reference frame K, the location of the point fixed in K′ is given
by the equation x = X + vt , where v is the velocity of the origin of K′

relative to K. The fixed point has a “definite time-independent system of
values [X], y, and z assigned to it.” Subsequently, in the calculation, X
will be taken to be infinitesimally small.48 Einstein then described the
location of the point in reference frame K by the coordinate X rather
than x, where X = x − vt . Since X is constant this removes one of the



4.2 Albert Einstein’s Paper, “On the Electrodynamics of Moving Bodies” 119

variables in the potential transformation equations, i.e., we can write
t′ = t′(X, t) = t′(t).

The first set of transformation equations found are between the coor-
dinates (X, y, z, t) and (x′, y′, z′, t′). Once these have been obtained,
X is replaced by X = x − vt in the equations, resulting in the Lorentz
transformation equations.

In reference frame K, consider a point P moving parallel to the x-
axis with a velocity v. The “x-position” of the point P is denoted as
X = x − vt, with all of the quantities measured in reference frame K.
The coordinates of point P can be written (X, y, z), with X = constant.
In reference frame K′ the point P is stationary, remaining at a fixed value
of x′. In K′, the coordinates of point P can be written (x′, y′, z′).

Consider the criterion of synchronization in K′. Changing our notation
slightly so that the light ray leaves the origin of K′ at time t′0, is reflected
from the point P at time t′1, and arrives back at the origin at time t′2,
the condition of synchronicity, Eq. (4.1), becomes

t′1 − t′0 = t′2 − t′1
1
2
(t′0 + t′2) = t′1

The transformation of t′, expressing t′ in terms of the coordinates of
reference frame K, is written as a function of (X, y, z), rather than as
a function of (x, y, z), i.e., t′ = t′(X, y, z, t). Once the transformation is
obtained in terms of X, X is replaced by x–vt . Einstein arrived at the
following three differential equations for t′ (see Appendix 4.5.2.1 for the
details of this derivation):

∂t′

∂X
+

v

c2 − v2

∂t′

∂t
= 0

∂t′

∂y
= 0

∂t′

∂z
= 0

Using the linearity condition, Einstein shows the solutions to these
equation are of the form (see Appendices 4.5.2.2, 4.5.2.3, and 4.5.2.4 for
the details of this derivation):

t′ = ϕ(v)γ
(
t − v

c2
x
)

x′ = ϕ(v)γ(x − vt)

y′ = ϕ(v)y

z′ = ϕ(v)z

with γ = 1/
√

1 − v2/c2. ϕ(v) is an unspecified function of the relative
velocity v, but is independent of the spatial and time coordinates. The
reverse transformations, from K′ to K, are obtained by exchanging
(x, y, z, t) ↔ (x′, y′, z′, t′) and substituting –v for v.
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To verify these results are consistent with the two postulates, using
these transformations Einstein showed a spherical wave emitted from
the origin has the same form in both the rest frame K and the moving
frame K′. Consider the two reference frames K and K′, and consider their
origins to coincide at t = 0, t′ = 0. At this instant, a spherical wave is
emitted from the origin of K, propagating outward with the velocity c.
In K, the equation of the wave front is

x2 + y2 + z2 = c2t2

Using the above transformations, Einstein transformed this equation
into the moving coordinate system, K′,

x2 + y2 + z2 = c2t2

[φ(−v)γ(x′ + vt ′)]2 + [φ(−v)y′]2 + [φ(−v)z′]2 = c2
[
φ(−v)γ

(
t′ +

vx
c2

)]2
Cancelling the common factor, φ2(−v),

γ2(x′ + vt ′)2 + (y′)2 + (z′)2 = c2γ2
(
t′ +

vx
c2

)2

γ2x′2
(

1 − v2

c2

)
+ y′2 + z′2 = γ2t′2(c2 − v2) = γ2t′2c2

(
1 − v2

c2

)

x′2 + y′2 + z′2 = c2t′2

Thus, a wave front that is spherical in K, also is a spherical wave front
in K′. As Einstein then notes, “This proves that our two fundamental
principles are compatible.”49

He then proceeds to show ϕ(v) = 1, resulting in what today are called
the Lorentz transformations (see Appendices 4.5.2.5 and 4.5.2.6 for the
details of this derivation):

t′ = γ
(
t − v

c2
x
)

x′ = γ(x − vt)

y′ = y

z′ = z

with γ = 1√
1−( v

c )2

4.2.4 The Physical Meaning of the Equations
Obtained Concerning Moving Rigid Bodies
and Moving Clocks

In his Section 4, Einstein applies the transformation equations to some
examples.
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Example 4.1 – The Sphere:
Consider a rigid sphere of radius R that is at rest in reference frame K′

(the moving frame) and centered on the origin of K′. The equation of its
surface is

x′2 + y′2 + z′2 = R2

Transforming to reference frame K, this equation of this surface at time
t = 0 is

x2(√
1 − (

v
c

)2)2 + y2 + z2 = R2

A spherical body at rest is an ellipsoid when viewed in motion, with axes

R

√
1 −

(v

c

)2

, R,R

“The x-dimension appears to be contracted in the ratio 1 :√
1 − (v/c)2 . . . . At v = [c], all moving objects – observed from the

system ‘at rest’ – shrink into plane structures.”50

Example 4.2 – Time:
Consider the two reference frames K and K′. At t = 0, t′ = 0, their
origins coincide. A clock is at rest at the origin of K′. K′ is moving
in the positive x-direction with velocity v. In the K frame, after time t
the origin of K′ will be at x = vt. Using the time transformation equation

t′ =
1√

1 − (
v
c

)2
(
t − v

c2
x
)

=
1√

1 − (
v
c

)2
(
t − v

c2
vt
)

t′ = t

√
1 −

(v

c

)2

= t −
(

1 −
√

1 −
(v

c

)2
)

t

“which shows that the clock (observed in the system at rest) is retarded
each second by (1 −√

1 − (v/c)2). . . ”51

4.2.5 The Addition Theorem of Velocities

Consider a particle moving with constant velocity motion in the K′

reference frame. In Section 5 of his paper, Einstein determines the
velocity of the particle as seen from the rest frame K. In the reference
frame K′, the particle starts from the origin at t′ = 0, moving with
constant velocity w in the x′ − y′ plane. After a time t′, the particle
will have the coordinates
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x′ = wxt′

y′ = wyt′

z′ = 0

Using the transformation equations for the first equation

x′ = wxt′

γ(x − vt) = wxγ
(
t − v

c2
x
)

x =
(

wx + v

1 + vwx

c2

)
t

since, in K, x = uxt ⇒ ux =
wx + v

1 + vwx

c2

where ux is the x component of the velocity in K. In a similar manner,
the second equation gives

y′ = wyt′

y = wyγ
(
t − v

c2
x
)

and substituting the previously obtained equation for x into this
equation

y = wyγ

(
t − v

c2

(
wx + v

1 + vwx

c2

)
t

)

y =
wy

√
1 − (

v
c

)2
1 + vwx

c2

t

since, in K, y = uyt ⇒ uy =
wy

√
1 − (v

c )2

1 + vwx

c2

4.2.6 Transformation of the Maxwell–Hertz
Equations for Empty Space. On the Nature
of the Electromotive Forces that Arise upon
Motion in a Magnetic Field

It should be pointed out that, in Maxwell’s equations, the terms we
today call the electric and magnetic fields, Einstein referred to as the
electric and magnetic force vectors.52

One of the major concerns that led Einstein to develop his special
theory of relativity was that Maxwell’s equations appeared to select out
a preferred frame of reference, that of the stationary aether, in which the
speed of light was c = 3 × 108 m/s. In other inertial reference frames,
the speed of light should be greater/smaller by the relative speed of
the two reference frames. In Section 4.1.2 we showed, using the Galilean
transformations to transform Maxwell’s equations to a “moving reference
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frame,” Maxwell’s equations take almost the same form, with small
additional terms proportional to the relative speed of the two reference
frames. By measuring these “additional” terms to Maxwell’s equations
in the moving reference frame, one could thereby determine the speed
of the moving reference frame relative to the stationary aether which, in
turn, was assumed to be at rest relative to the absolute space of Newton.
But these terms were very small, on the order of (v/c) (taking v to be
the orbital speed of the earth in orbit, (v/c) was on the order of 10−4).
Experiments by Fizeau, and others, were unable to detect the presence
of these first order effects.53 In response to this, Lorentz showed that the
introduction of local time, and defining the electric and magnetic fields in
the moving reference frame in terms of appropriate linear combinations
of the electric and magnetic fields from the rest frame, one could make
the first order terms vanish (but, at the same time, introducing second
order terms in (v/c), i.e., (v/c)2, which were too small to be measured).
The relation between the electric and magnetic fields in the rest frame
and in the moving frame were obtained for the specific purpose of making
the first order terms in the transformed Maxwell equations vanish, so
that Maxwell’s equations would have the same form (to first order in
(v/c)) in the rest frame and in the moving frame, i.e., that Maxwell’s
equations would be consistent with Newton’s principle of relativity.

Einstein reversed this process. Starting with the principle of relativity,
he obtained the Lorentz transformations. In Section 6 of his paper, he
applies the Lorentz transformation equations to Maxwell’s equations.
Requiring Maxwell’s equations to have the same form in the moving
reference frame as in the rest frame, Einstein obtains the same transfor-
mations of the electric and magnetic fields as were obtained by Lorentz,
not in response to a particular experimental result and correct to first
order, but as a natural and exact result of the principle of relativity.

In empty space, since there are no sources/sinks for the fields,
Maxwell’s equations are:

(a)
1
c

∂Ex

∂t
=

∂Bz

∂y
− ∂By

∂z
(d)

1
c

∂Bx

∂t
=

∂Ey

∂z
− ∂Ez

∂y

(b)
1
c

∂Ey

∂t
=

∂Bx

∂z
− ∂Bz

∂x
(e)

1
c

∂By

∂t
=

∂Ez

∂x
− ∂Ex

∂z

(c)
1
c

∂Ez

∂t
=

∂By

∂x
− ∂Bx

∂y
(f)

1
c

∂Bz

∂t
=

∂Ex

∂y
− ∂Ey

∂x

(g) ∇ • �E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
= 0

(h) ∇ • �B =
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0

These equations are valid in the rest system K. Applying the Lorentz
transformation equations obtained in Section 4.2.3, these equation in the
K′ reference frame become54 (see Appendices 4.5.3.1 and 4.5.3.2 for the
details of this derivation):
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(A)
1
c

∂Ex

∂t′
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∂
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γ
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c Ey

)]
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γ
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c Ez

)]
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(B)
1
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∂
[
γ
(
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)]
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1
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=
∂
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γ
(
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(D)
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(F)
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∂Ex

∂y′ − ∂
[
γ
(
Ey − v

c Bz

)]
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But, Einstein notes, if Maxwell’s equations are valid in reference frame
K, the principle of relativity requires that they also be valid in K′.55

Thus, by inspection of the above equations, and the form Maxwell’s
equations would have in K′, Einstein obtains56:

E′
x = Ex B′

x = Bx

E′
y = γ

(
Ey − v

c
Bz

)
B′

y = γ
(
By +

v

c
Ez

)
E′

z = γ
(
Ez +

v

c
By

)
B′

z = γ
(
Bz − v

c
Ey

)
Einstein noted that, on the right-hand side of each relation, there

could be a multiplicative factor that depended on velocity v, Ψ(v). He
then showed such a factor would be equal to unity. (See Appendix 5.5.3.3
for the details of this derivation.)57 Einstein’s approach gave the same
Lorentz transformations and the same transformations for the electric
and magnetic fields as Lorentz had obtained, but from a simple, coherent
principle, the principle of relativity.

4.2.7 Theory of Doppler’s Principle
and of Aberration

“Imagine in the system K, very far from the coordinate origin, a source of
electrodynamic waves, which in a part of space containing the coordinate
origin is represented with sufficient accuracy by. . . ” plane waves.58

See Figure 4.5.
In reference frame K, the plane waves are represented as

Ex = Ex0 sin Φ Bx = Bx0 sin Φ

Ey = Ey0 sin Φ By = Bx0 sin Φ with Φ = ω

(
t − axx + ayy + azz

c

)
Ez = Ez0 sin Φ Bz = Bx0 sin Φ
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x

y

f

Plane Waves 

Distant Source

Fig. 4.5 Plane waves from a distant
source.

where ax, ay, az, are the direction cosines of the normal to the wave
front. From Figure 4.5, ax = cos φ, etc. (The notation has been altered
from that used by Einstein. Einstein used the symbols a, b, and c as the
direction cosines, and the symbol V for the velocity of light. To avoid
any confusion with c representing the speed of light, the direction cosines
are written as ax, ay, and az.)

Consider now the reference frame K′, moving at a constant speed
v along the X-axis of reference frame K. Using the transformation
equations just obtained for the electric and magnetic fields, and applying
the Lorentz transformations to the coordinate and time variables, the
above equations become (see Appendix 4.5.4)

E′
x = Ex0 sin Φ′ B′

x = Bx0 sin Φ′

E′
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(
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c Bz0

)
sin Φ′ B′
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c Ez0

)
sin Φ′

E′
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)
sin Φ′ B′
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(
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c Ey0

)
sin Φ′

with Φ′ = ω′
(
t′
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xx′+a′

yy′+a′
zz′

c

)
and with

ω′ = ωγ
(
1 − ax

v

c

)

a′
x =

ax − v
c

1 − ax
v
c

a′
y =

ay

γ
(
1 − ax

v
c

)
a′

z =
az

γ
(
1 − ax

v
c

)
From the above relation between ω and ω′, with the direction cosine ax

expressed as cos φ, the frequencies of the wave as observed in the two
reference frames are related as

ν′ = ν
1 − v

c cos φ√
1 − v2

c2
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For φ = 0, this equation reduces to the simple Doppler shift formula:

ν′ = ν

√
1 − v

c

1 + v
c

“If A and A′ denote the electric or magnetic [field] in the system at
rest and in motion, respectively, we get. . . ” (See Appendix 4.5.4.)59

A′2 = A2

(
1 − v

c cos φ
)2

1 − (
v
c

)2 (4.2)

where φ is the angle between the observer’s velocity and a line from
the observer to the light source, i.e. between the x-axis and the wave
normal.

4.2.8 Transformation of the Energy of Light Rays.
Theory of the Radiation Pressure Exerted
on Perfect Mirrors

Einstein considers the same physical situation as in Section 4.2.7, a
source of electromagnetic waves so distant from the origin of K that
the waves can be approximated as plane waves in the vicinity of the
origin of K.

Consider a spherical surface moving parallel to the motion of the plane
waves, and at speed c in reference frame K. See Figure 4.6.

“If [ax, ay, az] are the direction cosines of the wave normal of the
light in the system at rest [K], then the surface elements of the spherical
surface

(x − ctax)2 + (y − ctay)2 + (z − ctaz)2 = R2

which moves with the velocity of light, are not traversed by any energy;
we may therefore say that this surface permanently encloses the same
light complex.”60 The sphere is traveling with the wave front at the
speed of light so that radiation energy neither enters nor leaves the
sphere, i.e., the amount of radiation energy within the surface remains
constant. Einstein transforms this spherical surface seen in K into the
surface as seen from K′ (an ellipsoid). Using the Lorentz transformations,

x

y

f

Plane Waves 
c

Fig. 4.6 Spherical surface moving
parallel to the plane waves.
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the equation of this ellipsoidal surface as seen in the K′ reference
frame is

[
γ (x′ + vt ′) − caxγ

(
t′ +

v

c2
x′
)]2

+
[
y′ − cayγ

(
t′ +
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c2
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+
[
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(
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v

c2
x′
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= R2

At time t′ = 0, this equation becomes
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c
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)2
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c
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)2

+
(
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v

c
azx

′
)2

= R2

At t′ = 0, this is the equation of an ellipsoid centered at x′ = 0, y′ =
γ v

c ayx′, z′ = γ v
c azx

′, with semi-axes of length X ′ = R
γ(1− v

c ax) ;Y
′ =

R;Z ′ = R.

The volume of an ellipsoid is
4
3
πXYZ . The ratio of the volume of the

ellipsoid in K′ to the volume of the sphere in K is

V ol′ellipsoid

V olSphere
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3πX ′Y ′Z ′

4
3πR3
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√
1 − v2

c2

1 − v
c ax
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√
1 − v2

c2

1 − v
c cos φ

The energy of light per unit volume is equal to A2/8π. Using the
relation between A and A′ obtained in Section 4.2.7, Eq. (4.2), “If the
energy of the light enclosed by the surface under consideration is denoted
by E when measured in the system at rest and by E′ when measured in
the moving system, we obtain”61
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)
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V ol′ellipsoid

V olsphere

)
=

A′2

A2

√
1 − v2

c2

1 − v
c cos φ

=

(
1 − v

c cos φ
)2

1 − (
v
c

)2
√

1 − v2

c2

1 − v
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This relation between E and E′ is the same as the relation between the
frequencies of a wave, ν and ν′, in Section 4.2.7. Einstein commented
that he found it noteworthy that “the energy and the frequency of a
light complex vary with the observer’s state of motion according to the
same law.”62 Three months earlier (April, 2005), in his paper “On a
Heuristic Point of View Concerning the Production and Transformation
of Light,” Einstein had presented the idea that the energy of a light wave
is proportional to its frequency, E = hν, yet he did not point out that
relation in this context.63

This relation between E and E′ will be used in the subsequent paper,
“Does the Inertia of a Body Depend on Its Energy Content?”64



128 The Special Theory of Relativity

4.2.9 Transformation of the Maxwell–Hertz
Equations when Convection Currents Are
Taken into Consideration

Einstein shows that Maxwell’s equations transform properly under
the Lorentz transformation when convection currents are present, i.e.,
“. . . with our kinematic principles taken as a basis, the electrodynamic
foundation of Lorentz’s theory of the electrodynamics of moving bodies
agree with the principle of relativity.”65

Einstein states that it “can easily be deduced”66 that the electrical
charge will have the same value whether it is viewed at rest or moving.

4.2.10 Dynamics of the (Slowly Accelerated)
Electron

Again consider the same two reference frames, K and K′, with K “at
rest” and K′ moving with constant velocity v in the positive x-direction.
Let an electron be at rest at the origin of K′ (the moving reference
frame). In K′, the electromagnetic force on the electron will be purely
electric. In K′, Newton’s second law is

m
d2x′

dt ′2
= qE ′

x

m
d2y′

dt ′2
= qE ′

y

m
d2z′

dt ′2
= qE ′

z

In K, the electron is moving at speed v. Transforming the above
equations to the reference frame K (see Appendix 4.5.5 for the details
of this derivation),67

(mγ3)
d2x

dt2 = qEx

(mγ)
d2y

dt2 = q
(
Ey − v

c
Bz

)

(mγ)
d2z

dt2 = q
(
Ez − v

c
By

)
It should be noted that the right-hand side of these equations gives the

Lorentz force on a charged particle moving in an electromagnetic field as
a consequence of the principle of relativity, obtained in a straightforward
and natural way, not as a separate postulate as was done by Lorentz. The
left-hand side of these equations indicates the mass will be a function
of the speed v. Consistent with the terminology of the day, mγ3 was
termed the longitudinal mass and mγ was termed the transverse mass.
In the terminology of today, m is the rest mass.
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When an electron starting from rest is accelerated by an electric
field along the x-axis, the kinetic energy of the electron is equal to
the work done on it by the electric field, W =

∫ v

0
Fdx with F = qEx.

As the electron is accelerated, Newton’s second law for the electron is
(mγ3)d2x

dt2
= qEx. Inverting this, Ex = mγ3

q
d2x
dt2

,

KE = W =
∫ v

0

Fdx =
∫ v

0

qExdx

=
∫

q

(
mγ3

q

dv
dt

)
dx

= m

∫ v
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(γ3)dv
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∫ v
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)3/2

⎞
⎠ vdv

= mc2

⎛
⎝ 1√

1 − v2

c2

− 1

⎞
⎠

= γmc2 − mc2

From the second to last expression for the kinetic energy of the
electron, it can be seen the work supplied to the electron becomes
infinitely large when v = c. This shows the impossibility of reaching
superluminal speeds.

4.3 Albert Einstein’s Paper, “Does the
Inertia of a Body Depend Upon Its
Energy Content?”68

This is the paper in which the famous relation E = mc2 is obtained.
However, in the paper, this relation does not appear in this form. In
the paper, Einstein considers a body at rest that emits two light rays
(in opposite directions to conserve momentum), each with energy L/2.
Viewing the process from a moving reference frame, it appears the kinetic
energy of the body is reduced by an amount L

c2
v2

2 . Equating this to 1
2mv2,

and designating the energy L as E, one obtains the relation E = mc2.
Consider a system of plane light waves having the energy E in system

K. The normal to the wave front makes an angle φ with the X-axis. See
Figure 4.7.

In system K′ (in uniform translational motion along the x-axis of K),
this system of plane light waves has energy E′. From Section 8 of “On
the Electrodynamics of Moving Bodies,”69 it was shown that E and E′

are related as 70
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Fig. 4.7 Body at rest at the origin
emits plane light waves.

E′ = E
1 − v

c cos φ√
1 − v2

c

In K, a body at rest has the energy E0. Relative to the reference frame
K′, the body has energy H0. As measured in the reference frame K, the
body emits plane light waves of energy L/2 at an angle φ relative to
the x-axis. Simultaneously it emits “an equal amount of light in the
opposite direction.”71 After the emission of the plane light waves the
body has energy E1. From conservation of energy,

E0 = E1 +
[
L

2
+

L

2

]
= E1 + L

In K′, the energy after the emission of the plane light waves is H1.
The principle of relativity requires that energy conservation also hold in
K′. Using the energy relation above,

H0 = H1 +

⎡
⎣L

2
1 − v

c cos φ√
1 − v2

c2

+
L

2
1 + v

c cos φ√
1 − v2

c2

⎤
⎦

H0 = H1 +
L√

1 − v2

c2

H and E are the energies of the same body as measured from two
different reference frames, K′ and K. The body is at rest in reference
frame K, and is moving relative to reference frame K′. E is the energy of
the body at rest (in K), while H is the energy of the body as seen moving
(in K′). The difference H–E will then be the kinetic energy of the body,
H0–E0 being the kinetic energy before the emission of the plane light
waves, and H1–E1 being the kinetic energy of the body after the emission
of the plane light waves. Subtracting the above equations for H and
for E,
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(H0 − E0) − (H1 − E1) = L
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⎫⎬
⎭

The kinetic energy of the body, as viewed from reference frame K′,
“decreases as a result of the emission of light by an amount that is
independent of the body’s characteristics.”72

Expanding the right-hand side of the equation, and keeping only the
lowest order non-vanishing term,
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1
2
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+ . . . − 1
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2
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1
2
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c2

)
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1
2

(Δm) v2

Einstein concludes:

1. If a body emits the energy L in the form of radiation, its mass decreases
by L/c2.

2. The mass of a body is a measure of its energy content; if the
energy changes by L, the mass changes in the same sense by
L/9 · 1020[i.e.L/c2].73

In more current terms, Δmass = ΔE
c2 or, rearranging, E = mc2.

4.4 Discussion and Comments

By 1900, Newton’s principle of relativity, in practice, was believed by
many scientists to extend beyond mechanics to all of physics – that
no experiment would enable one to determine one’s speed relative to
absolute space. But Maxwell’s theory of electromagnetism predicted a
definite speed for light, presumably in the “at rest” reference frame of the
luminiferous aether. If true, the speed of light relative to the earth would
be greater (or lesser) than the speed of light in the aether by an amount
equal to the speed of the earth through the aether, thus enabling one to
determine the speed of the earth relative to the aether which was at rest
relative to absolute space. However, experiment was unable to detect any
such adjustment to the speed of light. To address this incompatibility
with experiment, Lorentz devised modifications to Maxwell’s equations
to remove the offending terms, once to be rid of first order terms in (v/c)
and then, later, to be rid of second order terms in (v/c). But Newton’s
principle of relativity and the predictions of Maxwell’s theory that the
speed of light has a fixed value remained at odds.

In the words of John Stachel, “When combined with the relativ-
ity principle, this [c = constant] leads to an apparently paradoxical



132 The Special Theory of Relativity

conclusion: the velocity of light must be the same in all inertial frames.
This result conflicts with the Newtonian law of addition of velocities,
forcing a revision of the kinematical foundations underlying all of
physics. Einstein showed that the simultaneity of distant events is only
defined physically relative to a particular inertial frame, leading to kine-
matical transformations between the spatial and temporal coordinates
of two inertial frames that agree formally with the transformations that
Lorentz had introduced in 1904.”74

The concern with the electromagnetic induction is resolved in the
joining of the electric and magnetic fields into one electromagnetic field.
The difference in the explanations whether the magnet is moving or the
coil is moving is one of perspective, i.e., there is but one electromagnetic
phenomenon, but the description of it is dependent upon which reference
frame one is viewing it from.

Because both Newton’s principle of relativity and Maxwell’s electro-
magnetic theory had so many other successes, Einstein accepted both of
them and, from them, proposed the two apparently conflicting postulates
from which he developed the special theory of relativity. Once Einstein
had narrowed the area of incompatibility to the Galilean–Newtonian
addition of velocities, he hit upon the concept of time being at the root
of the problem. From this all else followed.

Lorentz’s modification of Maxwell’s equations was a careful, methodi-
cal, systematic development of a theory based on experimental results –
a “theory of construction.”

Lorentz was looking to discover the basic constituents of the physical
world, i.e., of what the world is “constructed.” He was tied to experiment
to obtain greater and deeper insights. Lorentz had “constructed” the
Lorentz transformations and the transformations of the electric and
magnetic fields in response to experiments showing the first order terms
were zero, and then in response to experiments showing the second order
terms to be zero. On the other hand, Einstein was focused on a theory of
principle, a principle based on a minimum of postulates that had applica-
tion to a wide range of phenomena and possessed inner consistency, inner
perfection, and simplicity. From Einstein’s “theory of principle,” the
principle of relativity, he obtained directly the Lorentz transformations
and the same transformations for the electric and magnetic fields.

From 1900 to 1905, Walter Kaufmann had conducted a number of
experiments on high-speed electrons, showing the mass of electrons
increased with increasing speed.75 In 1905, after a series of such exper-
iments, Kaufmann wrote that, “The prevalent results decidedly speak
against the correctness of Lorentz’s assumptions as well as Einstein’s.”76

Einstein did not reply immediately to this assertion of Kaufmann.
In Einstein’s 1907 paper, “On the Relativity Principle and the Con-
clusions Drawn from It,” he writes, “It should also be mentioned
that . . . [other] . . . theories of the motion of the electron yield curves that
are significantly closer to the observed curve than the curve obtained
from the theory of relativity. However, the probability that their the-
ories are correct is rather small, in my opinion, because their basic
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assumptions concerning the dimensions of the moving electron are not
suggested by theoretical systems that encompass larger complexes of
phenomena.”77 Planck, after two years of investigation of the Kaufmann
results, found an inconsistency in Kaufmann’s data that shifted the
conclusions to slightly in favor of Einstein’s theory.78

4.5 Appendices

4.5.1 Lorentz and the Transformed Maxwell
Equations

4.5.1.1 Transforming Maxwell’s Equations
The Galilean transformations are

x′ = x − vt

y′ = y

z′ = z

t′ = t

In empty space Maxwell’s equations are

(a)
∂Ez

∂y
− ∂Ey

∂z
= −1

c

∂Bx

∂t
(d)

∂Bz

∂y
− ∂By

∂z
=

1
c

∂Ex

∂t

(b)
∂Ex

∂z
− ∂Ez

∂x
= −1

c

∂By

∂t
(e)

∂Bx

∂z
− ∂Bz

∂x
=

1
c

∂Ey

∂t

(c)
∂Ey

∂x
− ∂Ex

∂y
= −1

c

∂Bz

∂t
(f)

∂By

∂x
− ∂Bx

∂y
=

1
c

∂Ez

∂t

(g) ∇ • �E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
= 0

(h) ∇ • �B =
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0

By definition, Maxwell’s equations are valid in the rest system K. The
Galilean transformation equations are applied to the Maxwell equations
to determine the form they will assume in the K′ reference frame (for
convenience, we keep the designation of time in reference frame K′ as t,
not as t′).

Working first with Eq. (g),

∂Ex

∂x
=

∂Ex

∂t

(
∂t

∂x

)
+

∂Ex

∂x′

(
∂x′

∂x

)
+

∂Ex

∂y′

(
∂y′

∂x

)
+

∂Ex

∂z′

(
∂z′

∂x

)

=
∂Ex

∂t
(0) +

∂Ex

∂x′ (1) +
∂Ex

∂y′ (0) +
∂Ex

∂z′
(0)

=
∂Ex

∂x′
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Similarly,
∂Ey

∂y
=

∂Ey

∂y′ and
∂Ez

∂z
=

∂Ez

∂z′
. In K′, Eq. (g) is

⇒ ∂Ex

∂x′ +
∂Ey

∂y′ +
∂Ez

∂z′
= 0 Eq. G

and, in a similar manner, in K′, Eq. (h) is

∂Bx

∂x′ +
∂By

∂y′ +
∂Bz

∂z′
= 0 Eq. H

Working with Eq. (a),

∂Ez

∂y
=

∂Ez

∂t

(
∂t

∂y

)
+

∂Ez

∂x′

(
∂x′

∂y

)
+

∂Ez

∂y′

(
∂y′

∂y

)
+

∂Ez

∂z′

(
∂z′

∂y

)

=
∂Ez

∂t
(0) +

∂Ez

∂x′ (0) +
∂Ez

∂y′ (1) +
∂Ez

∂z′
(0)

=
∂Ez

∂y′

And, in like manner,

∂Ey

∂z
=

∂Ey

∂z′

∂Ex

∂z
=

∂Ex

∂z′

∂Ez

∂x
=

∂Ez

∂x′

∂Ey

∂x
=

∂Ey

∂x′

∂Ex

∂y
=

∂Ex

∂y′

The right-hand side of Eq. (a) becomes

−1
c

∂Bx

∂t
=

−1
c

{
∂Bx

∂t

(
∂t

∂t

)
+

∂Bx

∂x′

(
∂x′

∂t

)
+

∂Bx

∂y′

(
∂y′

∂t

)
+

∂Bx

∂z′

(
∂z′

∂t

)}

=
−1
c

{
∂Bx

∂t
(1) +

∂Bx

∂x′ (−v) +
∂Bx

∂y′ (0) +
∂Bx

∂z′
(0)

}

=
−1
c

{
∂Bx

∂t
− v

∂Bx

∂x′

}

In like manner,

−1
c

∂By

∂t
=

−1
c

{
∂By

∂t
− v

∂By

∂x′

}

−1
c

∂Bz

∂t
=

−1
c

{
∂Bz

∂t
− v

∂Bz

∂x′

}
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In reference frame K′, Eqs. (a), (b) and (c) are

(A)
∂Ez

∂y′ − ∂Ey

∂z′
= −1

c

∂Bx

∂t
+

v

c

∂Bx

∂x′

(B)
∂Ex

∂z′
− ∂Ez

∂x′ = −1
c

∂By

∂t
+

v

c

∂By

∂x′

(C)
∂Ey

∂x′ − ∂Ex

∂y′ = −1
c

∂Bz

∂t
+

v

c

∂Bz

∂x′

In a similar manner, in reference frame K′, Eqs. (d), (e) and (f) are

(D)
∂Bz

∂y′ − ∂By

∂z′
=

1
c

∂Ex

∂t
− v

c

∂Ex

∂x′

(E)
∂Bx

∂z′
− ∂Bz

∂x′ =
1
c

∂Ey

∂t
− v

c

∂Ey

∂x′

(F)
∂By

∂x′ − ∂Bx

∂y′ =
1
c

∂Ez

∂′t
− v

c

∂Ez

∂x′

From equations G and H,

(G)
∂Ex

∂x′ +
∂Ey

∂y′ +
∂Ez

∂z′
= 0

(H)
∂Bx

∂x′ +
∂By

∂y′ +
∂Bz

∂z′
= 0

It is easily seen that Eqs. (A) through (F) are the same as their
counterparts, Eqs. (a) through (f), in reference frame K, except there
is an additional term proportional to v/c added to each equation.
Hendrik Lorentz set about to eliminate the “additional terms” that
could not be found experimentally.79 In Eqs. (B) and (C), the “extra
term” on the right-hand side can be moved to the left-hand side, and
combined with the already existing derivative with respect to x′. For
Eq. (A), it is necessary first to replace (∂Bx/∂x′) by (∂Bx/∂x′) =
−(∂By/∂y′) − (∂By/∂y′) from Eq. (H).

Equation (A) becomes

∂Ez

∂y′ − ∂Ey

∂z′
= −1

c

∂Bx

∂t
+

v

c

(−∂By

∂y′
−∂Bz

∂z′

)

(A′)
∂

∂y′
(
Ez +

v

c
By

)
− ∂

∂z′
(
Ey − v

c
Bz

)
= −1

c

∂Bx

∂t

Equations (B) and (C) become

(B′)
∂Ex

∂z′
− ∂

∂x′
(
Ez +

v

c
By

)
= −1

c

∂By

∂t

(C′)
∂

∂x′
(
Ey − v

c
Bz

)
− ∂Ex

∂y′ = −1
c

∂Bz

∂t
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Defining the electric field in K′ as

E′
x = Ex

E′
y = Ey − v

c
Bz

E′
z = Ez +

v

c
By

(A′′)
∂ (E′

z)
∂y′ − ∂

(
E′

y

)
∂z′

= −1
c

∂Bx

∂t

(B′′)
∂(E′

x)
∂z′

− ∂ (E′
z)

∂x′ = −1
c

∂By

∂t

(C′′)
∂(E′

y)
∂x′ − ∂(E′

x)
∂y′ = −1

c

∂Bz

∂t

In like manner, Eqs. (D), (E), and (F) are transformed, using Eq. (G),
to obtain

(D′′)
∂(B′

z)
∂y′ − ∂

(
B′

y

)
∂z′

=
1
c

∂Ex

∂t

(E′′)
∂(B′

x)
∂z′

− ∂ (B′
z)

∂x′ =
1
c

∂Ey

∂t

(F′′)
∂(B′

y)
∂x′ − ∂(B′

x)
∂y′ =

1
c

∂Ez

∂′t

With the components of the magnetic field in K′ given by

B′
x = Bx

B′
y = By +

v

c
Ez

B′
z = Bz − v

c
Ey

Each of these equations is in the desired form. However, each of the
terms on the left-hand side of the equations (properly) contains only
quantities referred to the K′ system, whereas on the right-hand side of
the equations, the electric and magnetic fields, E and B, are still those
measured in reference frame K. Working first with Eq. (B′′):

∂(E′
x)

∂z′
− ∂(E′

z)
∂x′ = −1

c

∂

∂t

(
B′

y − v

c
Ez

)
∂(E′

x)
∂z′

−
{

∂

∂x′
(
Ez +

v

c
By

)
+

1
c

(v

c

) ∂Ez

∂t

}
= −1

c

∂B′
y

∂t

∂(E′
x)

∂z′
−
{

∂Ez

∂x′ +
1
c

(v

c

) ∂Ez

∂t
+

v

c

∂By

∂x′

}
= −1

c

∂B′
y

∂t
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Lorentz introduced a new time variable, t′ = t − vx ′

c2
, yielding:

∂Ez

∂x′ =
∂Ez

∂t′
∂t′

∂x′ +
∂Ez

∂x′
∂x′

∂x′ +
∂Ez

∂y′
∂y′

∂x′ +
∂Ez

∂z′
∂z′

∂x′

=
∂Ez

∂t′

(−v

c2

)
+

∂Ez

∂x′ (1) +
∂Ez

∂y′ (0) +
∂Ez

∂z′
(0)

=
−v

c2

∂Ez

∂t′
+

∂Ez

∂x′

∂Ez

∂t
=

∂Ez

∂t′
∂t′′

∂t′
+

∂Ez

∂x′
∂x′

∂t
+

∂Ez

∂y′
∂y′

∂t
+

∂Ez

∂z′
∂z′

∂t

=
∂Ez

∂t′
(1) +

∂Ez

∂x
(0) +

∂Ez

∂y
(0) +

∂Ez

∂z
(0)

=
∂Ez

∂t′

(similarly
∂B′

y

∂t
=

∂B′
y

∂t′
)

∂By

∂x′ =
∂By

∂t′
∂t′

∂x′ +
∂By

∂x′
∂x′

∂x′ +
∂By

∂y′
∂y′

∂x′ +
∂By

∂z′
∂z′

∂x′

=
∂By

∂t′

(−v

c2

)
+

∂By

∂x′ (1) +
∂By

∂y′ (0) +
∂By

∂z′
(0)

=
−v

c2

∂By

∂t′
+

∂By

∂x′

Putting these together Eq. (B′′) becomes

∂(E′
x)

∂z′
−
{−v

c2

∂Ez

∂t”
+

∂Ez

∂x′ +
1
c

(v

c

)∂Ez

∂t′
− v

c2

(v

c

)∂By

∂t′
+

v

c

∂By

∂x′

}
=−1

c

∂B′
y

∂t′′

∂(E′
x)

∂z′
−
{

∂Ez

∂x′ − v

c2

(v

c

) ∂By

∂t′
+

v

c

∂By

∂x′

}
= −1

c

∂B′
y

∂t′

∂(E′
x)

∂z′
−
{

∂

∂x′
(
Ez +

v

c
By

)}
= −1

c

∂B′
y

∂t′
− 1

c

(v

c

)2 ∂By

∂t′′′

∂ (E′
x)

∂z′
− ∂ (E′

z)
∂x′ = −1

c

∂B′
y

∂t′
− 1

c

(v

c

)2 ∂By

∂t′

Equations (C′′), (E′′), and (F′′) are obtained in similar fashion. Consider
Eq. (A′′):

∂(E′
z)

∂y′ − ∂
(
E′

y

)
∂z′

= −1
c

∂Bx

∂t
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Similar to the above calculations,
∂E′

z

∂y′ =
∂E′

z

∂y′ ,
∂E′

y

∂z′
=

∂E′
y

∂z′
, and

∂B′
x

∂t
=

∂B′
x

∂t′
,

∂(E′
z)

∂y′ − ∂(E′
y)

∂z′
= −1

c

∂Bx

∂t′

and ∂(B′
z)

∂y′ − ∂(B′
y)

∂z′ = − 1
c

∂Ex

∂t′

With this series of transformations, in reference frame K′, Maxwell’s
equations are

(A′′′)
∂(E′

z)
∂y′ − ∂E′

y)
∂z′

= −1
c

∂B′
x

∂t′

(B′′′)
∂(E′

x)
∂z′

− ∂(E′
z)

∂x′ = −1
c

∂B′
y

∂t′
− 1

c

(v

c

)2 ∂By

∂t′

(C′′′)
∂(E′

y)
∂x′ − ∂(E′

x)
∂y′ = −1

c

∂B′
z

∂t′
− 1

c

(v

c

)2 ∂Bz

∂t′

(D′′′)
∂(B′

x)
∂z′

− ∂(B′
z)

∂x′ =
1
c

∂E′
y

∂t′

(E′′′)
∂(B′

x)
∂z′

− ∂ (B′
z)

∂x′ =
1
c

∂E′
y

∂t′
+

1
c

(v

c

)2 ∂Ey

∂t′

(F′′′)
∂
(
B′

y

)
∂x′ − ∂ (B′

x)
∂y′ =

1
c

∂E′
z

∂t′
+

1
c

(v

c

)2 ∂Ez

∂t′

In this last transformation only the time variable has been changed, to
what was called “local time,” because it was dependent on the location x′

where the time measurement was being made. This transformation was
made expressly to rid the equations of the terms in first order in (v/c).
Introducing the local time achieved this purpose, leaving the Maxwell
equations in the same form in the moving reference frame K′ as they
were in the rest frame – at least to first order in (v/c). Although these
manipulations rid the transformed Maxwell equations of the terms to
first order in (v/c), at the same time they introduced terms of second
order in (v/c), i.e., terms of the order (v/c)2. At this time, the general
belief was these transformations were simply a mathematical ploy to
save the form of Maxwell’s equations in the moving reference frame.80

Subsequent experiments, notably the Michelson–Morley experiment,81

were unable to detect these second order effects, and another adjustment
of the transformation equations became necessary.

4.5.1.2 The Michelson–Morley Experiment
Consider the universe filled completely by an aether that is at rest. This
aether is the medium through which light waves travel at the speed of
light c. Now consider a person traveling through this aether at a speed v.
We designate the direction of motion to be the x-axis, and the y-axis
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to be perpendicular to the x-axis. See Figure 4.1. The aether is at rest
in reference frame K. K′ is the reference frame of the person traveling
through the aether at a speed v.

In the Michelson–Morley experiment, a beam of light is sent along
the negative x-axis toward the origin. At the origin, the beam of light
is split into two beams, one beam continuing along the positive x-axis
a distance L, where it is reflected from a mirror back toward the origin;
the total round trip from the origin and back again is length 2L. The
second beam of light travels along the y-axis a distance L, where it is
reflected from a mirror back toward the origin; the total round trip from
the origin and back again is length 2L. At the origin when the two beams
of light recombine, if the travel time for the two beams is not exactly
the same, interference fringes will result. See Figure 4.8.

For the beam of light traveling along the x-axis from the origin to x
= L, the speed of the beam in the aether is c. As seen by the person
traveling with the apparatus, the light will be measured to travel at the
speed c – v relative to the apparatus. The time to travel the distance L
is tx1 = L/(c − v). In a like manner, the time to return from the mirror
at distance L to the origin is tx2 = L/(c + v). The time for the round
trip along the x-axis from the origin to x = L and back to the origin is

tparallel = tx1 + tx2 =
L

c − v
+

L

c + v
=

2Lc
c2 − v2

=
2L

c

(
1

1 − v2

c2

)

For the beam of light traveling along the y-axis from the origin to
y = L, the speed of the beam in the aether is c. As seen by the person
traveling with the apparatus, the light will be measured to travel at a
speed u where, as viewed from the aether reference frame, u, v, and c
are related as c2 = u2 + v2, or u =

√
c2 − v2. See Figure 4.9.

The time to travel the distance L from the origin to y = L is ty1 =
L/u = L/

√
c2 − v2. The time for the return trip is the same. The time

for the round trip along the y-axis from the origin to y = L and back to
the origin is

Incoming Light x-axis

y-axis

Mirror at y = L

Mirror at x = L
Fig. 4.8 Configuration for the
Michelson–Morley experiment.

v

c

c2 – v2

u

u = Fig. 4.9 Speed through the aether as
viewed from a moving earth.
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tperpendicular = ty1 + ty2 =
L√

c2 − v2
+

L√
c2 − v2

=
2L√

c2 − v2

=
2L

c

⎛
⎝ 1√

1 − v2

c2

⎞
⎠

As can be seen, the time parallel to the motion through the aether
differs from the time perpendicular to the motion through the aether by

a factor of
√

1 − (v/c)2. This time difference would give rise to a phase
shift between the two beams of light and, subsequently, to fringes when
the two beams came together. Since a phase shift could be due to other
effects, such as the two arms not being exactly the same value of L,
Michelson and Morley rotated the experiment so the arm of the appa-
ratus parallel to the motion of the earth through the aether became the
arm perpendicular to the motion (and the previously perpendicular arm
became the parallel arm) and looked for a shift in the fringes. But none
was found.

In 1892, the physicists George Fitzgerald in Ireland and Hendrik
Lorentz independently arrived at the same explanation: if the arm of the
apparatus traveling parallel to the earth’s motion contracts by exactly
the right amount (while the arm perpendicular to the motion does not
contract) the tparallel and tperpendicular would be exactly equal to one
another. The amount of contraction would be

√
1 − (v/c)2. In 1904,

Lorentz summarized his modifications of the Galilean transformations,
including the local time and the contraction adjustments.82 These
transformations were labeled the Lorentz transformations by
Poincaré:

t′ = γ
(
t − v

c2
x
)

x′ = γ (x − vt)

y′ = y

z′ = z

with γ = 1√
1−( v

c )2

4.5.2 Derivation of the Lorentz Transformation
Equations

4.5.2.1 The Differential Equations for t′

In Section 4.2.3 (Section 3 of the paper “On the Electrodynamics of
Moving Bodies”), Einstein obtained three differential equations for the
time t′ in the moving reference frame, beginning with the condition for
synchronicity,
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1
2
(t′0 + t′2) = t′1

Remembering the transformation equations are linear (Section 4.2.3),
we can rewrite this equation with the variables explicitly shown, noting
t′ is expressed in terms of the coordinates (X, y, z) rather than the
coordinates (x, y, z) (once the transformation is obtained in terms of
X, X is replaced by x–vt):

1
2

[
t′(0, 0, 0, t) + t′

(
0, 0, 0, t +

X

c − v
+

X

c + v

)]
= t′

(
X, 0, 0, t +

X

c − v

)

If X is chosen to be infinitesimally small, this can be expressed as a
differential equation:83

1
2

[
t′(0, 0, 0, t) + t′(0, 0, 0, t) +

∂t′

∂t
Δt

]
= t′ (0, 0, 0, t) +

∂t′

∂t
Δt +

∂t′

∂X
ΔX

1
2

[
t′(0, 0, 0, t) + t′ (0, 0, 0, t) +

∂t′

∂t

(
X

c − v
+

X

c + v

)]

= t′(0, 0, 0, t) +
∂t′

∂t

(
X

c − v

)
+

∂t′

∂X
(X)

1
2

[
∂t′

∂t

(
X

c − v
+

X

c + v

)]
=

∂t′

∂t

(
X

c − v

)
+

∂t′

∂X
X

∂t′

∂X
+

v

c2 − v2

∂t′

∂t
= 0

In an analogous manner, in K′ a light signal is sent along the y′-axis to
a point distance Y fixed in K′. As seen from the K reference frame, the
light travels at some angle to the y-axis with speed c along the diagonal,
with speed v along the x-axis, and with speed

√
c2 − v2 along the y′-axis.

See Figure 4.10.

y K

x

y ′
K′

x ′

v cv

c

c2 – v2

Fig. 4.10 Light beam along the
y′-axis, as seen from reference frame K
and from reference frame K′.
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Again, using the condition of synchronicity,

1
2

[
t′(0, 0, 0, t) + t′

(
0, 0, 0, t +

Y√
c2 − v2

+
Y√

c2 − v2

)]

= t′
(

0, Y, 0, t +
Y√

c2 − v2

)

1
2

[
t′(0, 0, 0, t) + t′(0, 0, 0, t) +

∂t′

∂t
Δt

]
= t′(0, 0, 0, t) +

∂t′

∂t
Δt +

∂t′

∂y
ΔY

1
2

[
∂t′

∂t

(
2Y√

c2 − v2

)]
=

∂t′

∂t

(
Y√

c2 − v2

)
+

∂t′

∂y
Y

∂t′

∂y
= 0

Similarly, ∂t′
∂z = 0

4.5.2.2 The Solution for t′

As noted previously, the transformations must be linear. Thus, the
solution for t′ will be of the form

t′ = at + bX + cy + dz

The above conditions on the derivatives of t′ with respect to y and z
being zero gives

∂t′

∂y
= c = 0

∂t′

∂z
= d = 0

The first equation for t′, relating the derivatives with respect to X and
to t, gives

b +
v

c2 − v2
a = 0 ⇒ b =

−v

c2 − v2
a

and the transformation for the time t′ becomes

t′ = a

[
t − v

c2 − v2
X

]

where a is a quantity not dependent on X, y, z, or t, but could be
dependent on the velocity v.

4.5.2.3 The Solution for the Spatial Coordinates
With the transformation for t′ known, Einstein proceeded to determine
the transformation equations for the spatial coordinates.

In the moving system K′, a ray of light is emitted in the direction of
increasing x′. The light ray, as measured in K′, travels at the speed c.
After a time t′, it will have traveled some distance x′, with
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x′ = ct ′ = c

[
a

(
t − v

c2 − v2
X

)]

It should be noted all of the quantities on the left-hand side of the
equation are measured in reference frame K′, while all of the quantities
on the right-hand side are measured in reference frame K. But, Einstein
continues, “as measured in the system at rest [K], the light ray propa-
gates with velocity c–v relative to the origin of K′, so that”84

X

c − v
= t

Substituting into the above equation for t,

x′ = c

[
a

(
X

c − v
− v

c2 − v2
X

)]
= a

c2

c2 − v2
X = a

c2

c2 − v2
(x − vt)

Similarly, along the y′-axis, noting X is zero along the y′-axis,

y′ = ct ′ = c

[
a

(
t − v

c2 − v2
X

)]
= cat

In the rest frame K,

y =
√

c2 − v2t ⇒ t =
y√

c2 − v2

Substituting,

y′ = ca
y√

c2 − v2
= a

⎛
⎝ 1√

1 − v2

c2

⎞
⎠ y

In the same manner,

z′ = ca
z√

c2 − v2
= a

⎛
⎝ 1√

1 − v2

c2

⎞
⎠ z

4.5.2.4 Simplifying the Transformations
Noting there is common factor of a( 1√

1− v2
c2

) in these equations, and that

the quantity a may depend on the velocity, these are combined into one
factor ϕ(v). Rewriting the equations,
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t′ = a

[
t − v

c2 − v2
X

]
= a

[
t − v

c2 − v2
(x − vt)

]
=

a

1 − v2

c2

(
t − v

c2
x
)

= ϕ (v) γ
(
t − v

c2
x
)

x′ = a
c2

c2 − v2
(x − vt) = a

1
1 − v2

c2

(x − vt) = ϕ (v) γ (x − vt)

y′ = a

⎛
⎝ 1√

1 − v2

c2

⎞
⎠ y = ϕ (v) y

z′ = a

⎛
⎝ 1√

1 − v2

c2

⎞
⎠ z = ϕ (v) z

with γ =
1√

1 − v2

c2

4.5.2.5 The Form of ϕ(v)
It is left now only to determine the unknown function ϕ(v). A third
coordinate system, K′′, is introduced. The axes of K′′ are parallel to
the axes of K′. K′′ is moving along the x′-axis with velocity –v, i.e., in
the negative direction relative to K′. The origins of K, K′, and K′′ are
coincident at t = 0, t′ = 0, and t′′ = 0 (it will be noted subsequently that
K′′ is coincident with K).Transforming first from K′ to K′′, then from K
to K′, we have

t′′ = ϕ(−v)γ(−v)
{

t′ +
v

c2
x′
}

= ϕ(−v)γ (−v)
{[

ϕ(v)γ(v)
(
t − v

c2
x
)]

+
v

c2
[ϕ(v)γ(v)(x − vt)]

}
t′′ = ϕ(−v)ϕ(v)γ(−v)γ(v)

{[(
t − v

c2
x
)]

+
v

c2
[(x − vt)]

}
= ϕ (−v) ϕ (v) t

t′′ = ϕ(−v)ϕ(v)t

Similarly, for the coordinate x′′, we obtain

x′′ = ϕ(−v)γ(−v) {x′ + vt ′}

= ϕ(−v)γ(−v)
{

ϕ (v) γ(v) (x − vt) + vϕ(v)γ(v)
(
t − v

c2
x
)}

x′′ = ϕ(−v)ϕ(v)γ(−v)γ(v)
{

(x − vt) +
(

vt − v2

c2
x

)}

x′′ = ϕ(−v)ϕ(v)γ(−v)γ(v)
{

1 − v2

c2

}
x = ϕ(−v)ϕ(v)x

x′′ = ϕ(−v)ϕ(v)x
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In a similar manner, for the coordinates y′′ and z′′, we obtain

y′′ = ϕ(−v)y′ = ϕ(−v)ϕ(v)y

z′′ = ϕ(−v)z′ = ϕ(−v)ϕ(v)z

Einstein then notes, “Since the relations between [x′′, y′′, z′′] and x, y,
z do not contain the time t, the systems K and [K′′] are at rest relative
to each other, and it is clear that the transformation from K to [K′′]
must be the identity transformation. Hence, ϕ(v)ϕ(−v) = 1.”85

It remains now only to determine the precise form of ϕ(v). Consider
a rod of length � at rest in the K′ reference frame (the moving reference
frame). The rod is aligned with the y′-axis, with one end (designated
as A) at the origin of K′ (x′ = 0, y′ = 0, z′ = 0) and the other end
(designated as B) located at x′ = 0, y′ = �, z′ = 0. Using the above
transformations, in K the ends of the rod are located at

xA = vt yA = 0 zA = 0

xB = vt � = ϕ(v)y ⇒ y = �
ϕ(v) zB = 0

Einstein continues, “The length of the rod, measured in K, is thus
�/ϕ(v);. . . For reasons of symmetry it is obvious that the length of a
rod measured in the system at rest and moving perpendicular to its own
axis can depend only on its velocity and not on the direction and sense of
its motion. Thus, the length of the moving rod measured in the system
at rest does not change when v is replaced by –v. From this we arrive at:

l

ϕ(v)
=

l

ϕ(−v)

or

ϕ(v) = ϕ(−v)

It follows from this relation and the one found before [ϕ(v)ϕ(−v) = 1]
that ϕ(v) must equal 1.”86

4.5.2.6 The Lorentz Transformation Equations
Since ϕ(v) = 1, the transformation equations become

t′ = γ
(
t − v

c2
x
)

x′ = γ (x − vt)

y′ = y

z′ = z

with γ =
1√

1 − (v
c )2

These are the Lorentz transformations.



146 The Special Theory of Relativity

4.5.3 The Electromagnetic Field Transformations

In empty space (no sources/sinks) the Maxwell equations are:

(a)
1
c

∂Ex

∂t
=

∂Bz

∂y
− ∂By

∂z
(d)

1
c

∂Bx

∂t
=

∂Ey

∂z
− ∂Ez

∂y

(b)
1
c

∂Ey

∂t
=

∂Bx

∂z
− ∂Bz

∂x
(e)

1
c

∂By

∂t
=

∂Ez

∂x
− ∂Ex

∂z

(c)
1
c

∂Ez

∂t
=

∂By

∂x
− ∂Bx

∂y
(f)

1
c

∂Bz

∂t
=

∂Ex

∂y
− ∂Ey

∂x

In empty space, since there are no sources/sinks for the fields,

(g) ∇ • �E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
= 0

(h) ∇ • �B =
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0

4.5.3.1 The Transformed Equations for ∇ • �E and
∇ • �B

First, we express Eq. (g) and Eq. (h) in reference frame K′. Transforming
each term of Eq. (g), using the Lorentz transformation equations,

∂Ex

∂x
=

∂Ex

∂t′
∂t′

∂x
+

∂Ex

∂x′
∂x′

∂x
+

∂Ex

∂y′
∂y′

∂x
+

∂Ex

∂z′
∂z′

∂x

=
∂Ex

∂t′
(
−γ

v

c2

)
+

∂Ex

∂x′ (γ) +
∂Ex

∂y′ (0) +
∂Ex

∂z′
(0)

= −γ
v

c2

∂Ex

∂t′
+ γ

∂Ex

∂x′

∂Ey

∂y
=

∂Ey

∂t′
∂t′

∂y
+

∂Ey

∂x′
∂x′

∂y
+

∂Ey

∂y′
∂y′

∂y
+

∂Ey

∂z′
∂z′

∂y

=
∂Ey

∂t′
(0) +

∂Ey

∂x′ (0) +
∂Ey

∂y′ (1) +
∂Ey

∂z′
(0)

=
∂Ey

∂y′

∂Ez

∂z
=

∂Ez

∂t′
∂t′

∂z
+

∂Ez

∂x′
∂x′

∂z
+

∂Ez

∂y′
∂y′

∂z
+

∂Ez

∂z′
∂z′

∂z

=
∂Ez

∂t′
(0) +

∂Ez

∂x′ (0) +
∂Ez

∂y′ (0) +
∂Ez

∂z′
(1)

=
∂Ez

∂z′

Thus ∇′ • �E = −γ
v

c2

∂Ex

∂t′
+ γ

∂Ex

∂x′ +
∂Ey

∂y′ +
∂Ez

∂z′
= 0
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In a similar manner, Eq. (h) becomes

∇′ • �B = −γ
v

c2

∂Bx

∂t′
+ γ

∂Bx

∂x′ +
∂By

∂y′ +
∂Bz

∂z′
= 0

4.5.3.2 The Transformed Maxwell Equations
Working first with Eq. (a),

(a)
1
c

∂Ex

∂t
=

∂Bz

∂y
− ∂By

∂z

Transforming each term, using the Lorentz transformation equations,

1
c

∂Ex

∂t
=

1
c

{
∂Ex

∂t′
∂t′

∂t
+

∂Ex

∂x′
∂x′

∂t
+

∂Ex

∂y′
∂y′

∂t
+

∂Ex

∂z′
∂z′

∂t

}

=
1
c

{
∂Ex

∂t′
(γ) +

∂Ex

∂x′ (−γv) +
∂Ex

∂y′ (0) +
∂Ex

∂z′
(0)

}

=
1
c

{
γ

∂Ex

∂t′
− γv

∂Ex

∂x′

}

∂Bz

∂y
=
{

∂Bz

∂t′
∂t′

∂y
+

∂Bz

∂x′
∂x′

∂y
+

∂Bz

∂y′
∂y′

∂y
+

∂Bz

∂z′
∂z′

∂y

}

=
{

∂Bz

∂t′
(0) +

∂Bz

∂x′ (0) +
∂Bz

∂y′ (1) +
∂Bz

∂z′
(0)

}

=
∂Bz

∂y′

∂By

∂z
=
{

∂By

∂t′
∂t′

∂z
+

∂By

∂x′
∂x′

∂z
+

∂By

∂y′
∂y′

∂z
+

∂By

∂z′
∂z′

∂z

}

=
{

∂By

∂t′
(0) +

∂By

∂x′ (0) +
∂By

∂y′ (0) +
∂By

∂z′
(1)

}

=
∂By

∂z′

In reference frame K′, Eq. (a) is

1
c

{
γ

∂Ex

∂t′
− γv

∂Ex

∂x′

}
=

∂Bz

∂y′ − ∂By

∂z′

But from Eq. (g), above,

−γ
v

c2

∂Ex

∂t′
+ γ

∂Ex

∂x′ +
∂Ey

∂y′ +
∂Ez

∂z′
= 0
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Substituting γ
∂Ex

∂x′ = γ
v

c2

∂Ex

∂t′
− ∂Ey

∂y′ − ∂Ez

∂z′
into the previous

equation,

1
c

{
γ

∂Ex

∂t′
− v

(
γ

v

c2

∂Ex

∂τ ′ − ∂Ey

∂y′ − ∂Ez

∂z′

)}
=

∂Bz

∂y′ − ∂By

∂z′

1
c

{
γ

(
1 − v2

c2

)
∂Ex

∂t′
+ v

∂Ey

∂y′ + v
∂Ez

∂z′

}
=

∂Bz

∂y′ − ∂By

∂z′

1
c

∂Ex

∂t′
=

∂
[
γ
(
Bz − v

c Ey

)]
∂y′ − ∂

[
γ
(
By + v

c Ez

)]
∂z′

This is Eq. (A).
In a similar manner, Eq. (D) is obtained:

1
c

∂Bx

∂t′
=

∂
[
γ
(
Ey − v

c Bz

)]
∂z′

− ∂
[
γ
(
Ez + v

c By

)]
∂y′

For Eq. (b),

(b)
1
c

∂Ey

∂t
=

∂Bx

∂z
− ∂Bz

∂x

Transforming each term, using the Lorentz transformation equations,

1
c

∂Ey

∂t
=

1
c

{
∂Ey

∂t′
∂t′

∂t
+

∂Ey

∂x′
∂x′

∂t
+

∂Ey

∂y′
∂y′

∂t
+

∂Ey

∂z′
∂z′

∂t

}

=
1
c

{
∂Ey

∂t′
(γ) +

∂Ey

∂x′ (−γv) +
∂Ey

∂y′ (0) +
∂Ey

∂z′
(0)

}

=
1
c

{
γ

∂Ey

∂t′
− γv

∂Ey

∂x′

}

∂Bx

∂z
=
{

∂Bx

∂t′
∂t′

∂z
+

∂Bx

∂x′
∂x′

∂z
+

∂Bx

∂y′
∂y′

∂z
+

∂Bx

∂z′
∂z′

∂z

}

=
{

∂Bx

∂t′
(0) +

∂Bx

∂x′ (0) +
∂Bx

∂y′ (0) +
∂Bx

∂z′
(1)

}

=
∂Bx

∂z′

∂Bz

∂x
=
{

∂Bz

∂t′
∂t′

∂x
+

∂Bz

∂x′
∂x′

∂x
+

∂Bz

∂y′
∂y′

∂x
+

∂Bz

∂z′
∂z′

∂x

}

=
{

∂Bz

∂t′
(
−γ

v

c2

)
+

∂Bz

∂x′ (γ) +
∂Bz

∂y′ (0) +
∂Bz

∂z′
(0)

}

=
{
−γ

v

c2

∂Bz

∂t′
+ γ

∂Bz

∂x′

}
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In reference frame K′, Eq. (b) is

1
c

{
γ

∂Ey

∂t′
− γv

∂Ey

∂x′

}
=

∂Bx

∂z′
−
{
−γ

v

c2

∂Bz

∂t′
+ γ

∂Bz

∂x′

}

1
c

∂
[
γ
(
Ey − v

c Bz

)]
∂t′

=
∂Bx

∂z′
− ∂

[
γ
(
Bz − v

c Ey

)]
∂x′

This is Eq. (B). Eqs. (C), (E), and (F) are obtained in a manner similar
to that for obtaining Eq. (B).

4.5.3.3 The Electromagnetic Field Transformations
In empty space, in reference frame K, Maxwell’s equations are:

(a)
1
c

∂Ex

∂t
=

∂Bz

∂y
− ∂By

∂z
(d)

1
c

∂Bx

∂t
=

∂Ey

∂z
− ∂Ez

∂y

(b)
1
c

∂Ey

∂t
=

∂Bx

∂z
− ∂Bz

∂x
(e)

1
c

∂By

∂t
=

∂Ez

∂x
− ∂Ex

∂z

(c)
1
c

∂Ez

∂t
=

∂By

∂x
− ∂Bx

∂y
(f)

1
c

∂Bz

∂t
=

∂Ex

∂y
− ∂Ey

∂x

These equations, transformed to the moving reference frame K′ are:

(A)
1
c

∂Ex

∂t′
=

∂
[
γ
(
Bz − v

c Ey

)]
∂y′ − ∂

[
γ
(
By + v

c Ez

)]
∂z′

(B)
1
c

∂
[
γ
(
Ey − v

c Bz

)]
∂t′

=
∂Bx

∂z′
− ∂

[
γ
(
Bz − v

c Ey

)]
∂x′

(C)
1
c

∂
[
γ
(
Ez + v

c By

)]
∂t′

=
∂
[
γ
(
By + v

c Ez

)]
∂x′ − ∂Bx

∂y′

(D)
1
c

∂Bx

∂t′
=

∂
[
γ
(
Ey − v

c Bz

)]
∂z′

− ∂
[
γ
(
Ez + v

c By

)]
∂z′

(E)
1
c

∂
[
γ
(
By + v

c Ez

)]
∂t′

=
∂
[
γ
(
Ez + v

c By

)]
∂x′ − ∂Ex

∂y′

(F)
1
c

∂
[
γ
(
Bz − v

c Ey

)]
∂t′

=
∂Ex

∂y′ − ∂
[
γ
(
Ey − v

c Bz

)]
∂x′

But, Einstein notes, if Maxwell’s equations are valid in reference
frame K, the principle of relativity requires that they also be valid in
K′.87 In reference frame K′, Maxwell’s equations are, with (E′

x, E′
y, E′

z)
and (B′

x, B′
y, B′

z), the components of the electric and magnetic fields
measured in reference frame K′,
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(a′)
1
c

∂E′
x′

∂t′
=

∂B′
x′

∂y′ − ∂B′
y′

∂z′
(d′)

1
c

∂B′
x′

∂t′
=

∂E′
y′

∂z′
− ∂E′

z′

∂y′

(b′)
1
c

∂E′
y′

∂t′
=

∂B′
x′

∂z′
− ∂B′

z′

∂x′ (e′)
1
c

∂B′
y′

∂t′
=

∂E′
z′

∂x′ − ∂E′
x′

∂z′

(c′)
1
c

∂E′
z′

∂t′
=

∂B′
y′

∂x′ − ∂B′
x′

∂y′y
(f ′)

1
c

∂B′
z′

∂t′
=

∂E′
x′

∂y′ − ∂E′
y′

∂x′

Thus, by inspection of the above Maxwell equations in K′, and the
form of Maxwell’s equations after being transformed from reference
frame K to reference frame K′, Einstein obtained88

E′
x = ψ(v)Ex B′

x = ψ(v)Bx

E′
y = ψ(v)γ

(
Ey − v

c Bz

)
B′

y = ψ(v)γ
(
By + v

c Ez

)
E′

z = ψ(v)γ
(
Ez + v

c By

)
B′

z = ψ(v)γ
(
Bz − v

c Ey

)
where the factor ψ(v) is an arbitrary function of the velocity v, but not
a function of the spatial or time coordinates. To determine the form of
ψ(v), each of the above equations is inverted, going first from K to K′ and
then from K′ to K using ψ(−v). Consider, for example the y-component
of the electric field:

Ey = ψ(−v)γ
{

E′
y +

v

c
B′

z

}
= ψ(−v)γ

{[
ψ(v)γ

(
Ey − v

c
Bz

)]
+

v

c

[
ψ(v)γ

(
Bz − v

c
Ey

)]}

= ψ(−v)ψ(v)γ2

{
Ey

(
1 − v2

c2

)
− v

c
Bz(1 − 1)

}
= ψ(−v)ψ(v)Ey

⇒ ψ(−v)ψ(v) = 1

A similar result is obtained for each of the other components of the
electric and magnetic fields. From symmetry ψ(v) = ψ(−v) and, thus,
ψ(v) = 1. The electromagnetic field transformations are:

E′
x = Ex B′

x = Bx

E′
y = γ

(
Ey − v

c Bz

)
B′

y = γ
(
By + v

c Ez

)
E′

z = γ
(
Ez + v

c By

)
B′

z = γ
(
Bz − v

c Ey

)

4.5.4 The Doppler Principle

In transforming from the reference frame K to the reference frame K′,
with K′ moving at a constant velocity v along the x-axis of K, the electric
and magnetic fields transform as given in the Section 4.5.3.3:
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E′
x = E′

x0 sin Φ′ = Ex0 sin Φ′

B′
x = B′

x0 sin Φ′ = Bx0 sin Φ′

E′
y = E′

y0 sin Φ′ = γ
(
Ey0 − v

c Bz0

)
sin Φ′

B′
y = B′

y0 sin Φ′ = γ
(
By0 + v

c Ez0

)
sin Φ′

E′
z = E′

z0 sin Φ′ = γ
(
Ez0 + v

c By0

)
sin Φ′

B′
z = B′

z0 sin Φ′ = γ
(
Bz0 − v

c Ey0

)
sin Φ′

with Φ′ the phase angle measured in the K′ reference frame,

Φ′ = ω

(
t − axx + ayy + azz

c

)
= ωt − ω

c
axx − ω

c
ayy − ω

c
azz

= ωγ

(
t′ +

vx′

c2

)
− ω

c
axγ (x′ + vt′) − ω

c
ayy − ω

c
azz

= ωγ

(
1 − 1

c
axv

)
t′ − ωγ

(
1
c
ax − v

c2

)
x′ − ω

c
ayy − ω

c
azz

Identifying the first term as ω′t′ determines ω′ to be

ω′ = ωγ
(
1 − ax

v

c

)
Using the reciprocal relation ω = ω′

γ(1−ax
v
c ) , the second term becomes

−ωγ

(
1
c
ax − v

c2

)
x′ = −

[
ω′

γ
(
1 − ax

v
c

)
]

γ

(
1
c
ax − v

c2

)
x′ = −ω′

c
a′

xx′

This defines the direction cosine a′
x as

a′
x =

ax − v
c

1 − ax
v
c

Using again the reciprocal relation, the third term becomes

−ω

c
ayy = − ω′

γ
(
1 − ax

v
c

)ayy′ = −ω′

c
a′

yy′

This defines the direction cosine a′
y as

a′
y =

ay

γ
(
1 − ax

v
c

)
In a similar manner, the direction cosine a′

z is determined to be

a′
z =

az

γ
(
1 − ax

v
c

)
Einstein notes that the normal to the wave front, the electric field, and

the magnetic field are mutually perpendicular in both reference frame
K and reference frame K′, and that, to satisfy Maxwell’s equations, the
electric field and magnetic field are equal in magnitude (in empty space,
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i.e., a vacuum,ρ = 0, and from Eqs. (a′) through (f ′) of Section 4.5.3.3,
with the exception of a minus sign, the relation between the electric field
E and the magnetic field B is the same). He then proceeds to develop the
relation between the magnitude of the electromagnetic wave in reference
frame K and in reference frame K′.89

Consider the same situation as in Section 4.2.7. See Figure 4.5.

(a) The unit normal to the wave front will be designated n̂ and points
along the line from the distant source of the waves toward the origin
of K.

(b) The x-axis is the direction of motion of K′ relative to K.
(c) The y-axis is perpendicular to the x-axis, and is selected such that

the x–y plane contains the wave normal n̂.
(d) The z-axis is perpendicular to both the x- and y-axes, with the

direction determined by the right-hand rule.

Consider first the situation of the electric field parallel to the z-axis. The
components of the electric field in reference frame K will be

Ex0 = 0

Ey0 = 0

Ez0 = A

Since the magnetic field is perpendicular to the electric field,Bz0 = 0.
Thus, the magnetic field will lie in the x–y plane in a direction perpen-
dicular to n̂, with magnitude A. Just as the angle between the x-axis
and n̂ is the angle ϕ, the angle between �B and the y-axis is ϕ. The
components of the magnetic field will be

Bx0 = A sin ϕ

By0 = −A cos ϕ

Bz0 = 0

Using the results of Section 4.5.3, and remembering Ex = Ex0 sin Φ,
etc., in reference frame K′ the electric and magnetic fields are

E′
x = Ex = 0

E′
y = γ

(
Ey − v

c
Bz

)
= 0

E′
z = γ

(
Ez +

v

c
By

)
= γ

(
1 − v

c
cos ϕ

)
A sin Φ′

B′
x = Bx = A sin ϕ sin Φ′

B′
y = γ

(
By +

v

c
Ez

)
= γ

(
− cos ϕ +

v

c

)
A

B′
z = γ

(
Bz − v

c
Ey

)
= 0
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Denoting the amplitude of the electric field in K′ as A′ , we obtain

A′ = γ
(
1 − v

c
cos ϕ

)
A = A

1 − v
c cos ϕ√

1 − v2

c2

Starting with the magnetic field perpendicular to the direction of the
wave motion and the relative motion, the same results are obtained.
Since any general case can be viewed as a superposition of these two
cases ( �E⊥z-axis and �B⊥z-axis) the relation is valid in general.

4.5.5 The Electrodynamic Lorentz Force

Consider two reference frames, K and K′, with K “at rest” and K′ moving
with constant velocity v in the positive x-direction. Let an electron be
at rest at the origin of K′ (the moving reference frame). In K′, the
electromagnetic force on the electron will be purely electric. In K′,
Newton’s second law is

m
d2x′

dt ′2
= qE ′

x

m
d2y′

dt ′2
= qE ′

y

m
d2z′

dt ′2
= qE ′

z

In K, the electron is moving at speed v. The Lorentz transformation
and the electromagnetic field transformations are used to transform
the above equations to the reference frame K.90 This derivation follows
closely that given by Einstein in his 1907 review paper on the relativity
principle.91

The Lorentz The Electromagnetic Field Transformations
Transformations

t′ = γ
(
t − v

c2 x
)

x′ = γ (x − vt) E′
x = Ex B′

x = Bx

y′ = y E′
y = γ

(
Ey − v

c Bz

)
B′

y = γ
(
By + v

c Ez

)
z′ = z E′

z = γ
(
Ez + v

c By

)
γ′

z = β
(
Bz − v

c Ey

)
with γ = 1√

1−( v
c )2

Setting dx/dt = ẋ, etc., and working first with the x-component of
Newton’s second law, we have
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d2x′

dt ′2
=

d

dt ′

(
dx ′

dt ′

)

dx ′

dt ′
=
(

dx ′

dt

)(
dt
dt ′

)
=

dx ′/dt
dt ′/dt

=
d [γ(x − vt)]/dt
d
[
γ
(
t − v

c2 x
)]

dt

=
γ (ẋ − v)

γ
(
1 − v

c2 ẋ
) =

(ẋ − v)(
1 − v

c2 ẋ
)

d

dt ′

(
dx ′

dt ′

)
=

d

dt ′

(
(ẋ − v)(
1 − v

c2 ẋ
)
)

=
d

(
(ẋ−v)

(1− v
c2

ẋ)

)
/dt

dt ′dt

=
1
γ

1(
1 − v

c2 ẋ
)
{

ẍ(
1 − v

c2 ẋ
) − (ẋ − v)

(− v
c2 ẍ

)
(
1 − v

c2 ẋ
)2

}

=
1
γ

1(
1 − v

c2 ẋ
)3 {ẍ

(
1 − v

c2
ẋ
)

+ (ẋ − v)
v

c2
ẍ
}

Noting that ẋ = v, this becomes

d2x′

dt ′2
=

1
γ

1(
1 − v2

c2

)3
{

ẍ

(
1 − v2

c2

)}
= γ3ẍ

Substituting into the x-component of Newton’s second law,

m
d2x′

dt ′2
= qE ′

x → mγ3 d2x

dt2 = qEx

Working now with the y-component of Newton’s second law, we have

d2y′

dt ′2
=

d

dt ′

(
dy ′

dt ′

)

dy ′

dt ′
=
(

dy ′

dt ′

)(
dt
dt

)
=

dy ′/dt
dt ′/dt

=
d [y]/dt

d
[
γ
(
t − v

c2 x
)]

/dt
=

ẏ

γ
(
1 − v

c2 ẋ
)

d

dt ′

(
dy ′

dt ′

)
=

d

dt ′

(
ẏ

γ
(
1 − v

c2 ẋ
)
)

=
d

(
ẏ

γ(1− v
c2

ẋ)

)
/dt

dt ′/dt

=
1
γ

1(
1 − v

c2 ẋ
)
{

ÿ

γ
(
1 − v

c2 ẋ
) − ẏ

(− v
c2 ẍ

)
γ
(
1 − v

c2 ẋ
)2
}

Noting ẍ = 0, and that ẋ = v, this becomes

d2y′

dt ′2
=

1
γ2

1(
1 − v2

c2

)2 ÿ = γ2ÿ

Substituting into the y-component of Newton’s second law,

m
d2y′

dt ′2
= qE ′

y → mγ2 d2y

dt2 = qγ
(
Ey − v

c
Bz

)
→ mγ

d2y

dt2 = q
(
Ey − v

c
Bz

)
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and, in a manner similar to the y-component, the z-component of
Newton’s second law becomes

mγ
d2z

dt2
= q

(
Ez +

v

c
By

)
In summary,

m
d2x′

dt ′2
= qE ′

x → mγ3 d2x

dt2
= qEx

m
d2y′

dt ′2
= qE ′

y → mγ
d2y

dt2 = q
(
Ey − v

c
Bz

)

m
d2z′

dt′2
= qE′

z → mγ
d2z

dt2 = q
(
Ez +

v

c
By

)
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5.1 Historical Background

Once Albert Einstein had published the paper, “On the Electrodynamics
of Moving Bodies,” he began to address why the theory of relativity
needed to be restricted to uniform motion. His aesthetic sense told him
that if the theory of relativity is valid it should be valid for all motion,
not be restricted to uniform motion. Two years later, he published his
first remarks on generalizing the theory of relativity to the case of non-
uniform motion. Subsequent to this the theory of relativity restricted to
uniform motion (the 1905 version) became known as the special theory
of relativity, and the case generalized to non-uniform motion became
known as the general theory of relativity.

5.1.1 Lingering Questions

Beyond the issues addressed by Einstein in his 1905 papers there
remained a number of perplexing questions. Those of pertinence to this
chapter include:

1. At the surface of the earth, why do all objects, regardless of their
composition, experience the same acceleration due to gravity? Why
does g not depend on the substance of a body?

2. Why do all objects, regardless of their mass, have the same acceler-
ation due to gravity? Why do more-massive objects have the same
gravitational acceleration as less-massive objects? More-massive
objects need a larger force to give them the same acceleration as
less-massive objects. How is gravity able to “compensate” to give
objects of different mass the same acceleration?

3. Inertial mass and gravitational mass. A lingering problem in
physics was the apparent equality of inertial mass and gravitational
mass, an equality empirically verified.
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The equality of inertial mass and gravitational mass had been
accepted by scientists for centuries. In the Principia, Newton had
clarified the distinction between mass and weight. Although New-
ton did not distinguish between inertial mass and gravitational
mass, he recognized that mass not only is a measure of a body’s
resistance to a change in motion (inertial mass), it also determines
a body’s reaction to a gravitational field (gravitational mass).2 In
the late 1800s, many, if not most, physicists (including Einstein)
were aware of the equality of inertial and gravitational mass. (In
1889, this equality was experimentally verified to one part in 109

by Baron Roland von Eötvös.3 However, because of his limited
acquaintance with the literature, in 1907 Einstein was unaware of
the Eötvös experiments. It was not until the “Entwurf” paper of
1913 that Einstein first discussed the Eötvös experiments.)4

From Newton’s Second Law of Motion, F = ma, the acceleration
of an object is proportional to the force causing the acceleration;
doubling the force doubles the acceleration, etc. If two objects with
different mass are to have equal accelerations, a larger force needs
to be applied to the more-massive object. More-massive objects
have more resistance to a change in their motion. It is in this sense
that mass (this is called the inertial mass) enters into Newton’s
Second Law, F = ma.

In Newton’s law of gravitation, Fgravity = Gm1m2
R2 , the mass (m1

or m2) of an object is a measure of the strength of the gravitational
attraction (force) between the two objects. It is in this sense that
mass (this is the called gravitational mass) enters into Newton’s
law of gravitation.

Consider an analogous situation of two charged particles. The
force between the two particles is given by Coulomb’s law, F =
k (q1q2/r2), with q1 and q2 the charges on the two particles. The
acceleration of one of the particles is given by Newton’s Second
Law, F1 = m1a1. The force on the particle is dependent on one
property of the particle, the charge, while the acceleration is depen-
dent on another property of the particle, the mass.

In the gravitational case, the gravitational force is F =
G (m1m2/r2), and the acceleration is given by Newton’s Second
Law, F1 = m1a1. In the gravitational case, the force on the particle
and the acceleration of the particle are dependent on the same
property of the particle, the mass. Why, in the electrical case, are
the force and the acceleration dependent on different properties of
the particle (charge and mass), while, in the gravitational case, the
force and the acceleration are dependent on the same property of
the particle (mass)?5

Inertial mass and gravitational mass come from two completely
different concepts. Why should the gravitational force depend on
the same mass that is a resistance to change in motion? Why should
inertial mass and gravitational mass be the same? On the other
hand, if they are the same, when one sets the gravitational force
on an object equal to its mass times acceleration, the inertial mass
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and the gravitational mass terms cancel out of the equation, leaving
one with the same gravitational acceleration for all objects near the
surface of the earth.
Gmobjectmearth

R2
earth

= mobjectagravity = mobjectg ⇒ g =
Gmearth

R2
earth

Or, reversing the argument, the equality of gravitational accelera-
tion for objects of different mass leads to the conclusion that the
inertial mass and the gravitational mass are equal to one another.

4. Relative Motion: In 1905, with the special theory of relativity,
Einstein did away with the idea of absolute velocity, or velocity
relative to absolute space, because it was not observable. However,
in Einstein’s view, why should the relativity of motion be restricted
to uniform motion? Why should accelerated (non-uniform motion)
reference frames be distinguished from uniform motion reference
frames? His aesthetic sense told him this distinction should not be.
But Einstein knew we can sense an acceleration (when a car acceler-
ates, the passenger feels the seat pushing her forward; a roller coaster
is ridden specifically to feel these accelerations), whereas we cannot
sense absolute velocity. We can feel when we are accelerated. We
cannot sense uniform motion but we can sense changes in uniform
motion. Uniform velocity is relative. Accelerations are absolute.

5.1.2 Generalizing the Special Theory of Relativity

In 1907, Einstein came to the realization that, “all the natural phe-
nomena could be discussed in terms of special relativity except for the
law of gravitation. I felt a deep desire to understand the reason behind
this. . . . It was most unsatisfactory to me that, although the relation
between inertia and energy is so beautifully derived [in special relativity],
there is no relation between inertia and weight. I suspected that this
relationship was inexplicable by means of special relativity.”6

In 1907, he published a review of the special theory of relativity,
entitled “On the Relativity Principle and the Conclusions Drawn from
It,” in Jahrbuch der Radioaktivität und Elektronik.7 In the last section of
the paper, entitled “Principle of Relativity and Gravitation,” he writes:

So far we have applied the principle of relativity, i.e., the assumption that
the physical laws are independent of the state of the motion of the reference
system, only to nonaccelerated reference systems. Is it conceivable that the
principle of relativity also applies to systems that are accelerated relative to
each other?
. . .

We consider two systems Σ1 and Σ2 in motion. Let Σ1 be accelerated in the
direction of its X-axis, and let γ be the (temporally constant) magnitude of
that acceleration. Σ2 shall be at rest, but it shall be located in a homogeneous
gravitational field that imparts to all objects an acceleration –γ in the direction
of the X-axis.

As far as we know, the physical laws with respect to Σ1 do not differ
from those with respect to Σ2: this is based on the fact that all bodies are
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equally accelerated in the gravitational field. . . . [W]e shall therefore assume
the complete physical equivalence of a gravitational field and a corresponding
acceleration of the reference system.

This assumption extends the principle of relativity to the uniformly accel-
erated translational motion of the reference system.8

The equivalence of a gravitational field and an accelerating reference
frame became known as the strong equivalence principle. This one
assumption (strong equivalence principle) started Einstein on his way
to answering the aforementioned “lingering questions.” But it took ten
years, from 1905 to 1915, for Einstein to arrive at the completed form
of the general theory of relativity. This ten-year span reflected both the
difficulty of developing the general theory of relativity and that much
of his attention at this time was focused on the quanta of the radiation
field (see Chapter 6).

5.1.3 The Equivalence of a Gravitational Field and
an Accelerated Reference Frame

In the 1907 review article, Einstein considered the equivalence of gravita-
tional fields and constant linear acceleration. In subsequent treatments
he extended his investigations into the effects of accelerations due to
rotating systems.

5.1.3.1 The Equivalence of Gravity and Constant
Linear Acceleration

On earth, all objects fall toward the earth with same acceleration due
to the effects of gravity (neglecting air resistance). Consider, first ,a
person enclosed within a windowless laboratory at rest on the surface
of the earth performing a number of experiments that are contained
entirely within the laboratory room. For example, the person notes that
a rubber ball, a lead brick, and a textbook have the same gravitational
acceleration; that light sent through a prism separates into a spectrum
of colors; and that the force between two charged objects is given by
Coulomb’s law.

Consider now the windowless room (with the person still in it) trans-
ported to a location in space far from the earth where the gravitational
forces are zero. With no gravitational fields, objects such as the rubber
ball, lead brick, and textbook will not fall to the floor of the room as they
did when the room was in the gravitational field of the earth – they will
remain wherever they are placed, “floating” in mid-air. See Figure 5.1.

Lead Brick

Feather

Ball
Book

Fig. 5.1 Acceleration is equivalent to
gravity.

The windowless room is now given an upward acceleration equal to
g, the gravitational acceleration on earth. The person in the room will
feel the room pushing upward on her feet, giving a feeling of weight, the
same as the floor of the room pushing upward on her feet when the room
was on earth in the gravitational field. As the person accelerates upward,
the objects maintain their position relative to space, while the person
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moves upward past them. To the person accelerating upward, it appears
the objects are all accelerating toward the floor of the room with the
same acceleration equal to g. This was just what Galileo had found for
gravity! All objects experience the same acceleration when falling freely.

The equivalence of gravitational mass and inertial mass is a conse-
quence of the equivalence of gravity and acceleration. As Einstein said,
“This law . . . of the equality of inertial and gravitational masses was now
brought home to me in all its significance. I was in the highest degree
amazed at its existence.”9

However, as Banesh Hoffmann observes, Einstein’s aesthetic sense
immediately told him this also should be true for all of physics.10

But Einstein could not stop here. It would be most inartistic to have so
fundamental an equivalence apply only to mechanics and not to all of physics.
God would not have made the universe in that way.

So, by a stroke of genius, Einstein broadened the partial equivalence into
a total equivalence, saying that every experiment in the [accelerated room],
whether mechanical or not, will yield the same results as the corresponding
experiment in the earth laboratory. He called this the principle of equivalence.

Einstein returned (in thought) to the space traveler in her labora-
tory/room in a region of space where there is no gravity. A second lab-
oratory/room is at rest next to the first room, with neither accelerating
nor moving. In the first room a beam of light enters from outside and
travels across the room in a straight line, creating a spot of light on the
wall where it hits. Observer 2, in the second room and looking at the
first room, would see the same thing.

As in the previous scenario, the first room is now accelerated upward,
the second room remaining stationary, i.e., the second room is not accel-
erated. Observer 2 again sees the light traveling in a straight line, but
sees the first room accelerating upward while the light beam traverses
the room. Consequently, the light beam will illuminate a spot on the
wall of the first room lower than in the non-accelerated instance. See
Figure 5.2.

To the person on the first ship, as the ship accelerates upward the
beam of light will appear to bend downward as it traverses the ship.
If Einstein’s principle of equivalence is correct, the same thing should
occur in a gravitational field as occurred in the accelerating room. This
bending of light in a gravitational field was anticipated by Einstein in
his 1907 review paper.11

5.1.3.2 The Rigidly Rotating Disc
From the special theory of relativity, lengths in the direction of relative
motion are contracted by a factor of

√
1 − (v

c )2, while lengths perpen-
dicular to the direction of motion remain unaltered (see Section 4.2.4).

Consider a large stationary disc resting on the x–y plane, with its
axis of symmetry aligned with the z-axis. A person is sitting on the axis
of the disc. The ratio of the circumference of the disc to its diameter
is π. If the person measures the diameter of the disc to be 100 m, the
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Figure 5.2a. Neither spaceship is accelerating

Spaceship TwoSpaceship One

Light Beam

Figure 5.2c. Spaceship One is accelerating. View from Spaceship One

Spaceship One

Light Beam

Acceleration

Figure 5.2b. Spaceship One is accelerating. View from Spaceship Two

Spaceship TwoSpaceship One

Light Beam

Fig. 5.2 A Beam of light traversing
Spaceship One.

circumference of the disc will be measured to be 100π, approximately 314
m. For conceptual convenience, think of 100 “unit rods” fitting along the
diameter, and 314 unit rods fitting around the circumference of the disc.

The disc is now set rotating with a large angular velocity, such that
points on the circumference are moving at relativistic speeds. The person
again is sitting at the axis of the disc, but not rotating with the disc.
According to the special theory of relativity, the length of each of the
unit rods used to measure the circumference will be contracted, leading
to more than 314 “unit rods” fitting around the circumference of the
disk. But the length of the unit rods used to measure the diameter will
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not be contracted since they are perpendicular to the measured motion,
leaving the diameter length at 100 unit rods.

In the case of the rotating disc, the ratio of the circumference to the
diameter is greater than π (> π). Since the ratio of the circumference
of a circle to its diameter is > π only in curved space, this leads to the
thought that an accelerating system corresponds to a curved space and,
by the equivalence principle, that gravity is a property of space itself.

5.1.4 The Timeline from 1905 to 1916

The path from 1905 to 1916, from the special theory of relativity to
the general theory of relativity, exemplifies the comment of Lorentz
that “The way of scientific progress is not a straight one which we can
steadfastly pursue. We are continually seeking our course, now trying one
path and then another, many times groping in the dark, and sometimes
even retracing our steps.”12 We now highlight some of the key points
along this path to the completed general theory of relativity of 1916.

1907: In the 1907 paper, Einstein already commented on the
possibility of a gravitational redshift (see Section 5.3.1.3 for details)
and the bending of light in a gravitational field. However, on his
calculation for the bending of light in a gravitational field, he reports,
“Unfortunately, the effect of the terrestrial gravitational field is so small
according to our theory . . . that there is no prospect of a comparison of
the results of the theory with experience.”13

1908: Hermann Minkowski showed the equations of the special theory
of relativity were simplified when expressed in a four-dimensional space
consisting of the three spatial dimensions and one time dimension.
Initially, Einstein was unimpressed by Minkowski’s elegant treatment
but, in 1912, he adopted Minkowski’s tensor method (see below) and,
in 1916, acknowledged that it facilitated the transition from the special
theory of relativity to the general theory of relativity.14

1911: The previous several years had been spent establishing his acad-
emic career, and directing most of his free time to the perplexing question
of the quanta. By 1911, as Einstein was focusing more of his attention
on the general theory of relativity, he realized the gravitational field of
the sun would be strong enough to allow measurement of the bending
of light in its gravitational field (see Section 5.3.1.2 and Appendix 5.4.9
for details). Publishing this insight in a 1911 article, he writes,

. . . In particular, it turns out that, according to the theory I am going to
set forth, rays of light passing near the sun experience a deflection by its
gravitational field, so that a fixed star appearing near the sun displays an
apparent increase of its angular distance from the latter, which amounts to
almost one second of arc. . . .

. . .Accordingly, a ray of light traveling past the sun would undergo a deflec-
tion amounting to 4 × 10−6 = 0.83 seconds of arc. This is the amount by which
the angular distance of the star from the center of the sun seems to be increased
owing to the bending of the ray. Since the fixed stars in the portions of the
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sky that are adjacent to the sun become visible during the total solar eclipses,
it is possible to compare this consequence of the theory with experience.15

It also was noted in the same paper that the velocity of light would be
affected by the gravitational potential, Φ, where c = c0(1 + Φ

c2 ), with c0

the velocity of light at the coordinate origin and c the velocity of light
in the gravitational potential Φ. Inversion of this relation allows the
description of the strength of the gravitational potential by the variable
speed of light.16 But this means the postulate of the constant speed of
light of the special theory of relativity no longer applies in the same
way in the general theory of relativity. The variation in the speed of
light flows “from the fact that clocks run at different rates when located
at different gravitational field points, even though with respect to local
proper time c still remains a universal constant. . . . [L]ocally the speed
of light remains the same universal value, but the curved path brings
about different elapsed times.”17 Also in this paper, Einstein obtained
by a second method the expression for the gravitational redshift.18

1912: An expedition to check the deflection of starlight passing near
to the edge of the sun was unsuccessful in Brazil (because of rain).19

Einstein adapted Minkowski’s four-dimensional space-time, treating
it as a curved space-time rather than flat. Since the geometry of
the Minkowski space represents the gravitational potentials, which are
determined by the distribution of mass and which, in turn, determine
the distribution of mass, the geometry of the space changes with the
changing gravitational potentials. In the fall, Einstein returned to the
ETH in Zurich to work with Marcel Grossmann on the general theory of
relativity, Grossmann introducing Einstein to Riemannian geometry and
tensor calculus, and to the work of Christoffel, Ricci, and Levi-Civita.20

Gravity now would be represented not by one function, the gravitational
potential Φ of Newton, but by the ten elements of the metric tensor of
the four-dimensional Minkowski space.21

In the special theory of relativity, in all inertial reference frames the
system of equations describing the physical world was the same. In
the general theory of relativity, Einstein was searching for a system of
equations whose form was the same in all reference frames, what is called
“generally covariant.”22

1913: In the article, “Outline of a Generalized Theory of Relativity
and of a Theory of Gravitation,” Einstein and Grossmann published the
results of their collaboration.23 (This paper is sometimes referred to as
the “Entwurf” paper from the first word of its title in German, Entwurf
einer verallgemeinerten Relativitätstheorie und einer Theorie der Grav-
itation.) In “Einstein’s Odyssey,” Stachel describes these developments:

. . . there remained the question of the correct field equations to describe just
how the sources generated the gravitational field. There was a tensor, formed
from the metric tensor, which described certain aspects of the curvature of
space-time. Called the Ricci tensor, it seemed to be just about (but not quite
– as later proved to be important) the only possible candidate to be used for
generally covariant gravitational field equations. But Einstein and Grossmann
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convinced themselves that these equations could not be correct since they did
not seem to give Newton’s theory of gravity as a limiting case. . . . Einstein
then reluctantly abandoned the search for generally covariant equations, and
set up non-generally covariant equations for the gravitational field. . . . Trying
to make a virtue of necessity, Einstein constructed a more general argument
purporting to show that the gravitational field equations could not be generally
covariant.24

1914: An expedition of German scientists traveled to Russia to test
the bending of starlight. When Germany declared war on Russia at the
start of World War One, the German scientists were taken prisoner. They
subsequently were released, but returned home without any photographs
or other data.25

1915: Looking again at the general theory of relativity, Einstein real-
ized, among other things, the proof against general covariance contained
an error. With the removal of this restriction, the pieces fell quickly into
place. The simplicity and beauty of the theory convinced Einstein of
its correctness. During November, 1915, the full, complete, and correct,
theory was assembled.26 He was now nearing the end of the journey along
the path described by Lorentz as “ . . . now trying one path and then
another, many times groping in the dark, and sometimes even retracing
our steps.”27 In four reports to the Prussian Academy of Sciences,
delivered over four weeks in the month of November he completed his
journey to the general theory of relativity.

November 4, 1915: Einstein returned to the general covariance of
the field equations.

In this pursuit I arrived at the demand of general covariance, a demand from
which I parted, though with a heavy heart, three years ago when I worked
with my friend Grossmann. . . .

Just as the special theory of relativity is based upon the postulate that all
equations have to be covariant relative to linear orthogonal transformations,
so the theory developed here rests upon the postulate of the covariance
of all systems of equations relative to transformations with the substitution
determinant 1.

Nobody who really grasped it can escape from its charm, because it signifies
a real triumph of the differential calculus as founded by Gauss, Riemann,
Christoffel, Ricci, and Levi-Civita.

. . .

It can now also be easily shown that the principle of the conservation of
energy and momentum is satisfied.28

November 11, 1915: Einstein introduces the hypothesis that∑
Tμ

μ = 0, where Tλ
μ is the energy tensor for matter. With this assump-

tion, he is able to write the gravitational field equations in generally
covariant form.29

November 18, 1915: Einstein reports on a new value for the bending
of starlight passing near to the sun and on his calculation for the value of
the precession of the perihelion of the planet Mercury (see Section 5.3.1.1
for details). α is a constant determined by the mass of the sun (the
expression for α is obtained in Section 5.2.22, Eq. (5.70a)).
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In the present work I find an important confirmation of this most fundamental
theory of relativity, showing that it explains qualitatively and quantitatively
the secular rotation of the orbit of Mercury (in the sense of the orbital motion
itself), which was discovered by Leverrier and which amounts to 45 sec of
arc per century. Furthermore, I show that the theory has as a consequence
a curvature of light rays due to gravitational fields twice as strong as was
indicated in my earlier investigation.

· · ·
Upon the application of Huygen’s principle, we find . . . after a simple calcu-

lation, that a light ray passing at a distance Δ suffers an angular deflection
of magnitude 2α/Δ, while the earlier calculation, which was not based upon
the hypothesis

∑
T μ

μ = 0, had produced the value α/Δ. A light ray grazing
the surface of the sun should experience a deflection of 1.7 sec of arc instead
of 0.85 sec of arc. In contrast to this difference, the result concerning the shift
of the spectral lines by the gravitational potential, which was confirmed by
Mr. Freundlich on the fixed stars (in order of magnitude), remains unaffected,
because this result depends only on g44.

· · ·
. . . The calculation yields, for the planet Mercury, a perihelion advance of

43′′ per century, while the astronomers assign 45′′ ± 5′′ per century as the
unexplained difference between observations and the Newtonian theory. This
theory therefore agrees completely with the observations.30

November 25, 1915: Einstein added the “finishing touches to the
field equations and presented the theory in full tensorial beauty: The
crystallization was complete.”31

In two recently published papers I have shown how to obtain field equations of
gravitation that comply with the postulate of general relativity, i.e., which in
their general formulation are covariant under arbitrary substitutions of space-
time variables.

Historically they evolved in the following sequence. First, I found equa-
tions that contain the Newtonian theory as an approximation and are also
covariant under arbitrary substitutions of determinant 1. Then I found that
these equations are equivalent to generally-covariant ones if the scalar of the
energy tensor of “matter” vanishes. . . . [T]his requires the introduction of the
hypothesis that the scalar of the energy tensor of matter vanishes.

I now quite recently found that one can get away without this hypothesis
about the energy tensor of matter . . . The field equations for vacuum, onto
which I based the explanation of the Mercury perihelion, remain unaffected
by this modification. . . .

· · ·
With this, we have finally completed the general theory of relativity as a

logical structure. The postulate of relativity in its most general formulation
(which makes space-time coordinates into physically meaningless parameters)
leads with compelling necessity to a very specific theory of gravitation that
also explains the movement of the perihelion of Mercury.32

In December, Einstein wrote to Ehrenfest of the false starts and wrong
turns, “Einstein [referring to himself] has it easy. Every year he retracts
what he wrote in the preceding year; now the sorry business falls to me of
justifying my latest retraction.”33 And to Lorentz he wrote, “My series
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of gravitation papers are a chain of wrong tracks, which nevertheless did
gradually lead closer to the objective.”34

In March, 1916, a comprehensive review of the completed general
theory of relativity was published in the Annalen der Physik.

5.2 Albert Einstein’s Paper, “The
Foundation of the General Theory of
Relativity”35

This paper is the formal presentation of Einstein’s general theory
of relativity, built mainly upon his 1914 review of the general theory of
relativity, “The Formal Foundation of the General Theory of Relativ-
ity,”36 and the four November reports to the Prussian Academy of
Sciences. Included in the paper are necessary background and supporting
arguments, and the development of the necessary mathematical tools.
Much of the mathematical analysis is similar to the work of Grossmann
in the 1913 paper,37 but with notation corresponding to that of Ricci
and Levi-Civita.38 The paper is divided into four parts:

A. “Fundamental Considerations on the Postulate of Relativity”: sec-
tions one through four of the paper (pp. 147–156).39 In these sec-
tions, Einstein gives an overview of the special theory of relativity,
some problems inherent in it, and the need to express the general
laws of nature “by equations which hold good for all systems of co-
ordinates, that is, are co-variant with respect to any substitutions
whatever (generally co-variant).”40

B. “Mathematical Aids to the Formulation of Generally Covariant
Equations”: sections five through twelve of the paper (pp. 156–
178).41 In these sections, Einstein develops the mathematical tools
necessary to develop the field equations for gravitation.

C. “Theory of the Gravitational Field”: sections 13 through 18
(pp. 178–187).42 This is the heart of the paper. In these sections,
Einstein develops the field equations for gravitation.

D. “Material Phenomena”: sections 19 through 22 (pp. 187–200).43 In
these sections, Einstein applies the field equations to a number
of examples, showing how one can obtain Maxwell’s equations,
Newton’s law of gravity, the bending of light rays in a gravitational
field, and the precession of the perihelion of Mercury.

Part A: “Fundamental Considerations on the Postulate of
Relativity”

5.2.1 Observations on the Special Theory of
Relativity

The paper opens with a very quick overview of the special theory of
relativity.
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Consider a reference frame K, chosen so that the physical laws hold in
their simplest form in K. Consider a second reference frame K′ moving
at uniform velocity relative to reference frame K.

The special theory of relativity says that the same laws that are true
in reference frame K also are true in reference frame K′. But the theory
is restricted to K and K′ moving at constant velocity relative to one
another – it does not hold true if the relative motion between K and K′

is non-uniform, i.e., it does not hold true for accelerated motion.
This is consistent with the relativity of Newton. However, the special

theory of relativity differs from Newton in a second postulate, that the
value of the speed of light in a vacuum will be measured to be the
same by an observer at rest in reference frame K and by an observer at
rest in reference frame K′. This second postulate leads to the Lorentz
transformations, time dilation and length contraction.

In spite of its far-reaching modifications of space and time (length
contraction and time dilation), the laws of geometry are “interpreted
directly as laws relating to the possible relative positions of solid bodies
at rest.”44 Consider a solid body, and two points, A and B, located in (or
on) the body. The distance from A to B is a fixed value no matter how
the body is oriented, nor where it is located. Similar comments are made
regarding an interval of time as measured on a clock being of definite
duration, independent of position and time. However, as we shall see, in
the general theory of relativity we do not have the same simple physical
interpretation of space and time.

5.2.2 The Need for an Extension of the Postulate
of Relativity

Einstein, in this section of the paper, gives two justifications for extend-
ing the special theory of relativity, the first from an epistemological
perspective, the second from a mechanical perspective. Great care is
exercised in pointing out the distinction between an observable fact of
experience and the postulated causes of the observable facts of experi-
ence.

Epistemological perspective: Consider two large masses, call them
S1 and S2, hovering far out in space. The two masses are so far

from each other that they do not interact gravitationally with one
another, although each has gravitational interactions within itself. The
two masses are so far out in space that there are no gravitational fields
from other masses.

Envision a line between the two masses, with the line extending
through the center of each mass. The two masses are rotating relative
to one another about this line as an axis of rotation. To an observer at
rest on S1, the mass S2 is seen to be rotating at a constant angular
velocity about the line adjoining them. To an observer at rest on S2,
the mass S1 is seen to be rotating at a constant angular velocity about
the line adjoining them. See Figure 5.3.
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MASS 1, at rest in space R1 MASS 2, at rest in space R2
Fig. 5.3 The two masses S1 and S2,
with the adjoining line, as seen from S1.

A person at rest on each of the masses measures the surface of the
mass, the person on S1 determining the surface of S1 is a sphere,
while the person on S2 determines the surface of S2 is an ellipsoid
of revolution. The question arises as to the reason for this difference.
Einstein writes,45

. . . No answer can be admitted as epistemologically satisfactory, unless the
reason given is an observable fact of experience. The law of causality has not
the significance of a statement as to the world of experience, except when
observable facts ultimately appear as causes and effects.

Newtonian mechanics does not give a satisfactory answer to this question.
It pronounces as follows:– The laws of mechanics apply to the space R1,
in respect to which the body S1 is at rest, but not to the space R2, in
respect to which the body S2 is at rest. But the privileged space R1 of
Galileo, thus introduced, is a merely factitious cause, and not a thing that
can be observed. It is therefore clear that Newton’s mechanics does not really
satisfy the requirements of causality in the case under consideration, but only
apparently does so, since it makes the factitious cause R1 responsible for the
observable difference in the bodies S1 and S2.

A factitious cause is defined as a contrived, or artificial, cause as
opposed to a genuine, or real, cause: a cause produced by humans rather
than by natural forces. Einstein concludes that there are no privileged
reference frames, or privileged spaces, R1 or R2, apparently taking an
anti-absolute space, or Machian, position. This is stated as,

The laws of physics must be of such a nature that they apply to systems of
reference in any kind of motion.46

Physical perspective: Consider a reference system K in which Newton’s
laws of mechanics are valid, and in which a mass M sufficiently far from
other masses moves with uniform motion in a straight line, i.e., with
constant velocity. Consider a second reference frame, K′, moving with
constant linear acceleration relative to the reference system K. Relative
to K′, the mass M would have an accelerated motion, “independent of
the material composition and physical state of the mass.”47

Does the above accelerated motion of the mass M let an observer in K′

conclude that the reference system K′ is accelerated? The answer is no,
because the observed motion may be interpreted equally well as K′ being
at rest, but in a gravitational field which causes the observed motion of
the mass M. The mechanical behavior of the mass M as described from
the reference system K′ “is the same as presents itself to experience
in the case of systems which we are wont to regard as ‘stationary’ or
as ‘privileged.’ Therefore, from the physical standpoint, the assumption
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readily suggests itself that the systems K and K′ may both with equal
right be looked upon as ‘stationary,’ that is to say, they have an equal
title as systems of reference for the physical description of phenomena.”48

Einstein concludes this section with two thoughts:

1. In pursuing the general theory of relativity, one is led naturally to
a theory of gravitation.

2. The “principle of the constancy of light in vacuo must be modified,
since we easily recognize that the path of a ray of light with respect
to K′ must in general be curvilinear, if with respect to K light is
propagated in a straight line with a definite constant velocity.”49

5.2.3 The Space-Time Continuum. Requirement of
General Covariance for the Equations
Expressing General Laws of Nature

In classical mechanics, the coordinates of space and time have direct
physical meaning. To say an object has a position x = 4 means the
position is measured to be four unit rigid rods away from the origin. To
say a clock has a time t = 7 means that a clock stationary relative to the
system of coordinates and (nearly) coincident with the event will have
measured 7 unit time periods at the occurrence of the event. The same
physical interpretation of the coordinates holds true in the special theory
of relativity. Einstein then proceeds to show such physical meaning can
no longer apply to the coordinates in the general theory of relativity.

The first example is the relativistically rotating rigid disk. Consider
a Galilean system of reference K, and a second system K′ in uniform
rotation relative to K. The origins of both systems coincide, as well as
their z-axes. In Section 5.1.3.2 we showed the ratio of the circumference
to the diameter of the relativistically rotating rigid disk was greater than
π and, thus, Euclidean geometry broke down in K′. In a similar manner,
again using the special theory of relativity, Einstein shows that a clock
on the circumference of the rotating disk, as judged from K, goes more
slowly than a clock at rest at the origin. An observer at the origin of the
coordinates “will interpret his observations as showing the clock at the
circumference ‘really’ goes more slowly than the clock at the origin. So
he will be obliged to define time in such a way that the rate of a clock
depends upon where the clock may be.”50

This result is summed up as:

In the general theory of relativity, space and time cannot be defined in such
a way that differences of the spatial co-ordinates can be directly measured by
the unit measuring-rod, or differences in the time co-ordinate by a standard
clock.51

Since the old understanding of coordinates and measurement have
broken down, and there appears to be no simple way of defining coor-
dinates that would lead to a particularly simple formulation of the laws
of nature, Einstein concludes there is nothing left to do “but to regard
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all imaginable systems of co-ordinates, on principle, as equally suitable
for the description of nature.”52 This conclusion is stated as:

The general laws of nature are to be expressed by equations which hold good
for all systems of co-ordinates, that is, they are co-variant with respect to any
substitutions whatever (generally co-variant).53

1. Any physical theory that satisfies this postulate will satisfy the
postulate of the general theory of relativity.

2. Covariance for all substitutions is overkill, but it would include
all those substitutions that correspond to the relative motion of
three-dimensional systems of coordinates.

3. The requirement of general covariance removes from space and time
the last remnant of physical objectivity.

4. All space-time verifications are but the determination of space-time
coincidences.

5. A system of reference only facilitates the description of the totality
of such coincidences.

6. To a space-time point event is a corresponding set of values of the
four space-time variables x1, x2, x3, x4. A second event coincident
with the first event will have the same set of four space-time
variables x1, x2, x3, x4, i.e., coincidence means the two events occur
at the same location at the same time.

7. If we introduce a new system of coordinates x′
1, x′

2, x′
3, x′

4, where
the new coordinates are functions of the old coordinates x1, x2, x3,
x4, the equality of all four coordinates in the new system expresses
the space-time coincidence of the two point-events.

8. We see there is no obvious reason for preferring one system of
coordinates over another, i.e., we arrive at the requirement of
general covariance.

5.2.4 The Relation of the Four Coordinates to
Measurement in Space and Time

At the outset, Einstein states the general theory of relativity is not as
simple as the special theory of relativity, and that his aim is to develop
the general theory of relativity in a manner that is natural and based
on well-founded assumptions.

In general, the gravitational field is not uniform. Consider the grav-
itational field from the sun – it extends out radially from the sun. See
Figure 5.4.

Sun

Fig. 5.4 The gravitational field in the
vicinity of the sun, extending radially
outward.

For an infinitesimally small four-dimensional region, the gravitational
field can be considered uniform, both in magnitude and in direction. In
this infinitely small region we can select a reference system of coordinates
that is accelerating so that no gravitational field occurs. Within this
carefully selected system of coordinates the special theory of relativity
is valid. See Figure 5.5.
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Sun
Fig. 5.5 Infinitesimally small four-
dimensional volume in a gravitational
field.

Within this carefully selected system of coordinates X1, X2, X3 are
the space coordinates and X4 is the time coordinate (the unit of time
is chosen so that c = 1 in the local system of coordinates). From the
special theory of relativity, the space-time interval

ds2 = −dX 2
1 − dX 2

2 − dX 2
3 + dX 2

4 (5.1)

has a value that is independent of the system of coordinates, and whose
value is determined by measurements of space and time. If the interval
ds2 is positive, it is called time-like; if it is negative, it is called space-
like. The magnitude of the linear element between two infinitesimally
close points in the four-dimensional space is designated ds.

For an arbitrary system of coordinates x1, x2, x3, x4 (not our care-
fully selected system), for two infinitely close points A and B in four-
dimensional space we can form the differentials dx 1 = xB1 – xA1, dx 2 =
xB2 – xA2, dx 3 = xB3 – xA3, dx 4 = xB4 – xA4. If the “linear elements”
dx 1, dx 2, dx 3, dx 4, as well as the local system dX 1, dX 2, dX 3, dX 4, are
given for the region under consideration the dX ν can be represented by
linear homogeneous expressions of the dxσ.

dX ν =
4∑

σ=1

aνσdxσ (5.2)

Inserting these expressions into Eq. (5.1),

ds2 = −dX 2
1 − dX 2

2 − dX 2
3 + dX 2

4

= −

j=3
σ=4
τ=4∑
j=1
σ=1
τ=1

ajσdxσajτdxτ +

σ=4
τ=4∑
σ=1
τ=1

a4σdxσa4τdxτ

ds2 =

σ=4
τ=4∑
σ=1
τ=1

gστdxσdxτ (5.3)

with gστ = −∑j=3
j=1 ajσajτ + a4σa4τ

By definition gστ= −∑j=3
j=1 ajσajτ+a4σa4τ= −∑j−3

j=1 ajτajσ+a4τa4σ=
gτσ ⇒ gστ is symmetric. The gστ are functions of the xσ, and are
symmetric, i.e., gστ = gτσ.

If it is possible to choose the local set of coordinates so that the gστ

take on the values to transform Eq. (5.3) into Eq. (5.1), then this is the
set of coordinates in which the special theory of relativity is valid.
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gστ =

⎢⎢⎢⎢⎢⎣
−1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 +1

⎥⎥⎥⎥⎥⎦ (5.4)

The set of values for the gστ forms the base for much of the subsequent
development of the general theory of relativity, in particular referring
back to the particular set of values contained in Eq. (5.4), the values of
the gστ for the special theory of relativity. Einstein makes a number of
observations regarding the gστ .54

1. From the discussion in the two preceding sections of the paper,
sections 2 and 3, from the physical standpoint we would expect the
gστ to describe the gravitational field relative to the chosen set of
coordinates.

2. If the special theory of relativity applies to the coordinates chosen
for the infinitesimal four-volume (four-dimensional volume) we
are investigating, then the gστ are given by the values shown
in Eq. (5.4). This is the coordinate system we denoted by the
coordinates X1, X2, X3, X4.

3. If the region of space has the gστ given by Eq. (5.4), the motion of
a particle in this space will be uniform and in a straight line.

4. Transforming to another set of space-time variables x1, x2, x3, x4,
the gστ no longer will be constants but will be functions of the
space and time variables x1, x2, x3, x4.

5. In the new set of coordinates x1, x2, x3, x4, the motion of the
free particle will be a curvilinear path of non-uniform motion,
rather than the straight-line uniform motion in the special theory
of relativity coordinate system X1, X2, X3, X4.

6. The law(s) of motion of the particle in coordinate system x1, x2,
x3, x4 will be independent of the properties of the moving particle
(since it was independent of the properties in the coordinate system
X1, X2, X3, X4).

7. Given the above, it is natural to interpret the motion of a particle
in the new coordinate system x1, x2, x3, x4 as the motion of a
particle under the influence of a gravitational field.

8. This leads to the conclusion that the description of a gravitational
field is connected with the space-time variability of the gστ .

9. These conclusions are based on the existence of a coordinate system
X1, X2, X3, X4 in which the special theory of relativity is valid,
and then a transformation from that system to a second one which
is accelerating relative to the initial system. These conclusions are
based on the description of the motion in the second coordinate sys-
tem x1, x2, x3, x4. Einstein then extends his conclusion to the claim
that the gστ describe the gravitational field, even in those cases
where we are unable to find a coordinate system X1, X2, X3, X4

in which the special theory of relativity is valid. In other words,
starting with the special theory of relativity coordinate system, we
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arrived at the conclusion that the gστ describe the gravitational
field, and then Einstein claims the conclusion is correct even in
those cases where we are unable to start with the special theory of
relativity coordinate system.

10. This leads to the conclusion that gravitation is different in a funda-
mental way from the other forces, in particular, the electromagnetic
force. For the gravitational force, the ten independent quantities
representing the gravitational field, gστ , at the same time define
the metrical properties of the space-time of the four-dimensional
space. (Subsequent to the general theory of relativity were attempts
to include the electromagnetic field in a manner similar to the
gravitational field, what was known as the unified field theory. See
Section 5.3.2.2 for a discussion of the unified field theory.)

Part B: “Mathematical Aids to the Formulation of Generally
Covariant Equations”

Part B of this paper is a further development of the work by Marcel
Grossman in the 1913 “Entwurf” paper.55 This was a necessary portion
of the paper as most physicists of the day were not familiar with the
mathematics of tensors. The reader familiar with tensors could scan
quickly over this section (or omit it entirely) and move directly to Part
C: “The Theory of the Gravitational Field” (see Section 5.2.13 and
subsequent sections). For the reader unfamiliar with tensors, a modern
text on tensors would be a better source to learn the material, except
the development by Einstein has everything in the notation he will be
using in the subsequent portions of the paper.

The mathematics needed to develop the general theory of relativity
is called the theory of covariants. A fundamental role will be played by
the invariant ds where, from Eq. (5.3),

ds2 =
4∑

σ=1
τ=1

gστdxσdxτ .

The theory deals with quantities called tensors. Tensors have a number
of quantities, called the components, which are functions of the coordi-
nates of the systems. For concreteness, traditional vectors and matrices
are tensors, vectors being tensors of rank one and matrices being tensors
of rank two.

1. If the components of a tensor are known for an original system of
coordinates, the components can be calculated in a new system
of coordinates if the transformations connecting the two systems
of coordinates are known.

2. The equations of transformation relating the components of a
tensor in the original and new coordinate systems are homogeneous.

3. By property 2, above, if all of the components are zero in the
original system, all of the components also will be zero in the new
system.
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4. The components of a tensor are denoted by indices.
a. A single index, such as μ, is used to represent the components

of a vector. Latin indices, such as i, j, or k, are used for three-
dimensional space, i.e., they take on the values 1, 2, and 3.
Greek indices, such as λ, μ, or ν, are used for four-dimensional
space, i.e., they take on the values 1, 2, 3, and 4.

b. Double indices, such as μν, are used to represent the compo-
nents of a matrix. The typical tensor used in the development
of the general theory of relativity can be represented as a four-
by-four matrix.

c. The “Einstein convention” is introduced in section 5 of the
paper: If an index is repeated in an expression, that index is
to be summed over, but the summation sign is omitted, i.e.,

AiBi =
3∑

i=1

AiBi and CμDμ =
4∑

μ=1
CμDμ.

There are two main results from Part B, “Mathematical Aids to the
Formulation of Generally Covariant Equations”:

1. The equation of the geodetic line, Eq. (5.22). This is the equation
of the path of a particle in the given reference frame.

2. The Riemann–Christoffel tensor, Eqs. (5.43) and (5.44). From the
Riemann–Christoffel tensor will be obtained the equations for the
gravitational field (Eqs. (5.47) and (5.53) of Part C).

5.2.5 Contravariant and Covariant Four-Vectors

Tensors are classified as contravariant or covariant, depending on their
transformation properties. The initial discussion is of four-vectors.

Contravariant four-vectors: Consider a linear element in four-
dimensional space, with components dxν , with dxν = dx 1, dx 2, dx 3, and
dx 4, since the subscript ν = 1, 2, 3, and 4. Transforming to a new system
of coordinates, the new components of the linear element are

dx ′
σ =

4∑
ν=1

∂x′
σ

∂xν
dx ν =

∂x′
σ

∂xν
dxν (5.5)

The middle and final expressions of Eq. (5.5) are the same, the final
expression using the Einstein convention indicating summation over the
repeated index ν. The dx ′

σ are linear and homogeneous functions of
the dx ν and, thus, these coordinate differentials can be considered the
components of a tensor. At this point the notation changes. The compo-
nents of a contravariant four-vector A are denoted by superscripts (not
subscripts), Aν (for consistency, the elements dx ν in Eq. (5.5) should
have been written as dxν . In the 1913 “Entwurf” paper, contravariant
tensors were represented by Greek symbols). Using the superscript
notation, Eq. (5.5) is rewritten as
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dx′σ =
4∑

ν=1

∂x′σ

∂xν
dx ν =

∂x′σ

∂xν
dxν (5.5a)

Any quantity that transforms in this manner is called a contravariant
four-vector, or a contravariant tensor. The components of the contravari-
ant four-vector Aν transform as:

A′σ =
4∑

ν=1

∂x′σ

∂xν
Aν =

∂x′σ

∂xν
Aν

The converse transformation is obtained by exchanging the roles of the
primed and unprimed coordinates,

Bν =
∂xν

∂x′σ B′σ (5.5b)

If Aν and Bν are components of contravariant four-vectors, the sums
Cν = Aν ± Bν are also the components of a contravariant four-vector.

Covariant four-vectors: Let Bν be the components of any arbitrary
contravariant four-vector. The components Aν are called the components
of a covariant four-vector if

4∑
ν=1

AνBν = AνBν = Invariant (5.6)

(i.e., it has the same value after the mathematical operation as before.)
To determine the transformation properties of the covariant four-

vector A, Einstein begins with Eq. (5.6). Equation (5.6) is valid for
the original system of coordinates. Transforming to a new system of
coordinates, Eq. (5.6) must again be valid for the transformed four-
vectors,

AνBν = A′
σB′σ

Working with the LHS of the equation, and using Eq. (5.5b),

AνBν = Aν

4∑
σ=1

∂xν

∂x′σ B′σ = Aν
∂xν

∂x′σ B′σ

=
(

∂xν

∂x′σ Aν

)
B′σ

But since, from above, this must be equal to A′
σB′σ, A′

σ is the expression
in the parentheses,

⇒ A′
σ =

∂xν

∂x′σ Aν (5.7)

Each form of a tensor, contravariant and covariant, is fully a tensor as
each satisfies the definition of a tensor. The difference is only in the
law of transformation, Eqs. (5.5a) and (5.7). The contravariant tensor
is denoted by placing the index above (superscript), the covariant by
placing the subscript below (subscript).
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5.2.6 Tensors of the Second and Higher Ranks

Contravariant tensors of rank two: Consider two contravariant four-
vectors, Aμ and Bν . Multiplying the components together gives sixteen
possible products (4 × 4 = 16). These form a contravariant tensor of rank
two (two indices, μ and ν):

Aμν = AμBν (5.8)

The components Aμν can be viewed as a 4 × 4 matrix⎛
⎜⎜⎝

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎞
⎟⎟⎠.

Aμν transforms as

A′στ = A′σB′τ =
(

∂x′σ

∂xμ
Aμ

)(
∂x′τ

∂xν
Bν

)

=
∂x′σ

∂xμ

∂x′τ

∂xν
AμBν =

∂x′σ

∂xμ

∂x′τ

∂xν
Aμν (5.9)

Not every contravariant tensor of rank two can be formed as the
product of two contravariant vectors (tensors of rank one). However,
it is always possible to form a contravariant tensor of rank two as the
sum of four appropriately selected pairs of four-vectors.

In a similar manner contravariant tensors of rank three, four, or higher
can be formed.

Covariant tensors of rank two: In a similar manner, covariant tensors
of rank two are defined by

Aμν = AμBν (5.10)

with the law of transformation,

A′
στ =

∂xμ

∂x′σ
∂xν

∂x′τ Aμν (5.11)

In a similar manner, covariant tensors of rank three, four, or higher
can be formed.

Mixed tensors of rank two: In a similar manner, mixed tensors of rank
two are defined by

Aν
μ = AμBν (5.12)

with

A′τ
σ =

∂x′τ

∂xν

∂xμ

∂x′σ Aν
μ (5.13)

In a similar manner, mixed tensors of rank three, four, or higher can
be formed.

Symmetric and antisymmetric tensors: Contravariant or covariant
tensors of rank two, Aμν or Aμν (or higher), are symmetric if the two
components obtained one from the other by the interchange of two
indices are equal,
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Aμν = Aνμ (5.14)

Aμν = Aνμ (5.14a)

Of the sixteen components of a symmetric tensor of rank two, six are
determined by the symmetry condition, Aμν = Aνμ, μ �= ν, leaving ten
independent components.

Contravariant or covariant tensors of rank two, Aμν or Aμν (or higher),
are antisymmetric if the two components obtained one from the other
by the interchange of two indices are the negative of one another,

Aμν = −Aνμ (5.15)

Aμν = −Aνμ (5.15a)

Of the sixteen components of an antisymmetric tensor of rank two,
six are determined by the antisymmetry condition and the four with
equal indices are equal to zero (A11 = −A11 ⇒ A11 = 0, etc.), leaving six
independent components. An antisymmetric tensor with six independent
components is referred to as a six-vector. (N.B. Typically a vector
is thought of as a single row or a single column matrix. These six
independent components of the antisymmetric matrix, although not a
row or column matrix, are referred to as a six-vector.)

A tensor of rank one, Aμ, has four components (41), a tensor of rank
two, Aμν , has sixteen components (4 × 4 = 42), a tensor of rank three
has 43 components, etc. A vector is a tensor of rank one, while a scalar
is a tensor of rank zero.

5.2.7 Multiplication of Tensors

Outer multiplication: Straightforward multiplication of the components
of a tensor of rank m and a tensor of rank n gives a tensor of rank m + n.
(See Appendix 5.4.1.1 for an example of the outer multiplication of two
vectors.)

Tμνσ = AμνBσ

Tμνστ = AμνBστ

T στ
μν = AμνBστ

Contraction of a mixed tensor : In a mixed tensor, by equating an index
of contravariant character (upper index) with one of covariant character
(lower index) and summing over the repeated index (contraction), the
result is a tensor of rank less by two,

Aτ
ν = Aμτ

μν

Inner product of tensors: From the outer multiplication of a covariant
tensor and a contravariant tensor, a mixed tensor is formed. For example,
consider the covariant tensor Aμν and the contravariant tensor Bσ,
Dσ

μν = AμνBσ. Contraction of Dσ
μν with respect to one covariant and
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one contravariant index, for example, the indices ν and σ, is called the
inner product of the tensors Aμν and Bσ.

It is pointed out that if Aμν and Bμν are tensors, the product AμνBμν

is a scalar. But the converse is also true. “If AμνBμν is a scalar for
any choice of the tensor Bμν , then Aμν has tensor character.”56 (See
Appendix 5.4.1.2 for the details of this statement.)

The following is a summary of the properties of Aμν :

1. If Aμν is a covariant tensor and Bμν is a contravariant tensor, the
product AμνBμν is a scalar.

2. If Bμν is a contravariant tensor and AμνBμν is a scalar, then Aμν

is a covariant tensor.
3. If Bμ and Cν are contravariant four-vectors and AμνBμCν is a

scalar, then Aμν is a covariant tensor.
4. Let Bμ be a contravariant four-vector. If AμνBμBν is a scalar, and

if Aμν is symmetric, then Aμν is a covariant tensor.
5. Let Bμ be a contravariant four-vector. If AμνBν is a tensor of first

rank, then Aμν is a tensor of second rank.

Similar results are true for a contravariant tensor Aμν .

5.2.8 Some Aspects of the Fundamental
Tensor gμν

5.2.8.1 The Covariant Fundamental Tensor
The invariant expression for the square of the linear element is

ds2 = gμνdxμdx ν

The dxμ are the components of a contravariant tensor (since the dxμ

transform as Eq. (5.5). To be correct, the dxμ should be written with
a superscript, dxμ, i.e., ds2 = gμνdxμdxν), and the gμν is a covariant
tensor of rank two (by statement 4 of the summary in the preceding
section). The tensor gμν has the following properties:

1. gμν is symmetric.
2. gμν is a covariant tensor.
3. gμν is a tensor of rank two.
4. gμν is called the “fundamental tensor.”
5. gμν plays a special role in the theory of gravitation.

5.2.8.2 The Contravariant Fundamental Tensor
Section 8 is devoted to developing the properties of the fundamental
tensor, gμν . Related to the covariant fundamental tensor gμν is the
inverse of the fundamental tensor, gμν , defined such that

gμσgνσ = δν
μ (5.16)

δν
μ is the Kronecker delta function, with δν

μ = 1 when μ = ν, and δν
μ = 0

when μ �= ν. Einstein proceeds to show that gμν is a contravariant tensor,
beginning with the expression for ds2:
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ds2 = gμνdxμdx ν

= gμσδσ
ν dxμdxν

= gμσ (gντgστ ) dxμdxν

= (gμσdxμ) gστ (gντdx ν)

= (dξσ) gστ (dξτ )

ds2 = gστdξσdξτ

The dξσ = gμσdxμ, being the contraction (summation) over μ of the
covariant tensor gμσ and the contravariant tensor dxμ, is a covariant
tensor. Since ds2 is a scalar, and since gστ is symmetric, by result four
of the preceding section, gστ is a contravariant tensor.

5.2.8.3 The Determinant of the Fundamental Tensor
The determinant of g = |gμν | .–g is always finite and positive and, by the
appropriate choice of coordinates, can be made equal to one, i.e., if g
is calculated in a system with no gravitational fields (special theory of
relativity, see Eq. (5.4)), −g = +1. In the general case,

|gμν | × |gμν | = +1 (5.17)

See Appendix 5.4.2.1 for details.

5.2.8.4 The Volume Scalar
Einstein also shows that the four-dimensional volume elements in the
two reference frames, dτ and dτ ′, are related as:√

−g′dτ ′ =
√−gdτ (5.18)

See Appendix 5.4.2.2 for details.

5.2.8.5 Note on the Character of the Space-Time
Continuum

It is assumed that within an infinitely small volume dτ , the special
theory of relativity can be applied, meaning that ds2 can be expressed
as ds2 = −dX 2

1 − dX 2
2 − dX 2

3 + dX 2
4. The volume element expressed in

these coordinates is denoted dτ0 and is called the “natural” volume
element. In these coordinates, −g = +1. Thus,

√−g0dτ0 =
√−gdτ ⇒

dτ0 =
√−gdτ (5.18a)

Einstein proceeds to make a number of observations:

1. If
√−g were to vanish at some point in the four-dimensional contin-

uum, “it would mean that at this point an infinitely small ‘natural’
volume would correspond to a finite volume in the coordinates.”57

In dτ0 =
√−gdτ , even if dτ0 is infinitely small, if g = 0 then dτ

would not necessarily need to be infinitely small.
2. It will be assumed that never does g = 0.
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3. If g is never equal to zero, then g can never change sign from
negative to positive, or vice versa.

4. Since in the special theory of relativity g has a finite negative value,
it will be assumed that g always has a finite negative value (but
not necessarily equal to negative one).

5. The value of g always being finite and negative is, in consequence,
a hypothesis about the four- dimensional continuum.

6. The value of g always being finite and negative is a convention as
to the choice of coordinates.
a. If g is always finite and negative, it is convenient to select a

choice of coordinates such that −g always is equal to positive
unity, i.e., −g = +1. Such a choice would simplify many of the
laws of nature, i.e., simplify the equations describing the laws
of nature.

b. For the case of g = −1, Eq. (5.18a) becomes dτ ′ = dτ .
c. For dτ ′ = dτ , i.e., for g = −1, the Jacobian of the transforma-

tion is equal to one. See Appendix 5.4.2.2.∣∣∣∣∂x′σ

∂xμ

∣∣∣∣ = +1 (5.19)

d. The condition −g = +1 restricts the choice of possible coordi-
nate systems to those for which the Jacobian of transformation
is equal to unity, i.e.,

∣∣∣∂x′σ
∂xμ

∣∣∣ = +1.

7. Einstein then addresses the question of how this restriction of
−g = +1 might restrict the search for the generally covariant laws
of nature. The order is first to search for the generally covariant
laws of nature. After the generally covariant laws of nature have
been found, the second task is to “simplify their expression by a
particular choice of the system of reference.”58

5.2.8.6 The Formation of New Tensors by Means of
the Fundamental Tensor

To expedite the development of the theory in later sections, examples of
multiplication of various tensors by the fundamental tensor, gμν or gμσ,
are given:

Aμ = gμσAσ

A = gμνAμν

The “complements” of the covariant and contravariant tensors, Aαβ and
Aαβ , are defined as

Aμν = gμαgνβAαβ

Aμν = gμαgνβAαβ

By definition, the complement of gαβ is

gμαgνβgαβ = gμα
(
gνβgαβ

)
= gμαδν

α = gμν
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From the covariant tensor Aαβ , a reduced tensor associated with Aαβ ,
Bμν is defined as

Bμν = gμνgαβAαβ

Similarly, for the contravariant tensor Aαβ a reduced tensor Bμν is
defined as

Bμν = gμνgαβAαβ

5.2.9 The Equation of the Geodetic Line. The
Motion of a Particle

Equation (5.22) of this section is at the center of the description of
motion under the influence of the gravitational field in the remainder of
the paper. Because of its importance its derivation is given in detail in
Appendix 5.4.3.

ds2 = invariant, meaning the linear element ds is defined indepen-
dently of the system of coordinates. A geodetic line is the shortest line
that can be drawn between two points in that space. For example, in
three dimensions, the geodetic line on the surface of a sphere drawn
between any two points is the arc of a great circle. The line drawn
between two points P and P′ in four dimensional space is a geodetic
line if

δ

P ′∫
P

ds = 0 (5.20)

The geodetic line is the physical path followed. Einstein derives
the equation of the geodetic line by “[c]arrying out the variation in the
usual way.”59 (See Appendices 5.4.3.1 and 5.4.3.2 for details of the
calculation.)

0 = gμσ
d2xμ

ds2 +
∂gμσ

∂xν

dx ν

ds
dxμ

ds
− 1

2
∂gμν

∂xσ

dxμ

ds
dxν

ds
(5.20e)

This equation is modified by using the notation of Christoffel, where
Christoffel defines

[μν, σ] =
1
2

(
∂gμσ

∂xν
+

∂gνσ

∂xμ
− ∂gμν

∂xσ

)
(5.21)

Using Christoffel’s notation, the equation of the geodetic line becomes

0 = gμσ
d2xμ

ds2 + [μν, σ]
dxμ

ds

dx ν

ds
(5.20d)

Since, in the second term, the summation over the μ and ν indices for
the first two terms give the same sum, they have been combined into
one common term:
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[μν, σ]
dxμ

ds
dxν

ds
=
[
1
2

∂gμσ

∂xν
+

1
2

∂gνσ

∂xμ
− 1

2
∂gμν

∂xσ

]
dxμ

ds
dx ν

ds

[μν, σ]
dxμ

ds
dxν

ds
=
[
∂gμσ

∂xν
− 1

2
∂gμν

∂xσ

]
dxμ

ds
dx ν

ds

Einstein then introduces a second change of notation “where, following
Christoffel,”60 he sets

{μν, τ} = gτα [μν, α] (5.23)

Multiplying Eq. (5.20d) by gστ , one obtains

0 =
d2xτ

ds2 + {μν, τ} dxμ

ds
dxν

ds
(5.22)

Equation (5.22) is the form of the geodetic equation Einstein uses in
the remainder of the paper, and is the foundation on which much of the
subsequent material is based.

5.2.10 The Formation of Tensors by Differentiation

From a tensor, by appropriate definitions of differentiation, other ten-
sors can be obtained. Using these appropriate definitions of differenti-
ation is the first step to obtaining the generally covariant differential
equations.

The derivative of a function is defined first along an arbitrary curve,
but soon becomes restricted to the curve being the geodetic. Let φ be
an invariant function of space. (The following distinction between an
invariant and a constant should be noted: An invariant has the same
value no matter which reference frame is used to measure it, while a
constant has the same value at all points in a given space.) ds is the
distance along some arbitrary curve (soon to become the geodetic),
where s = s(x1, x2, x3, x4) = s(xμ). The derivative of φ with respect
to s is

dφ

ds
=

∂φ

∂xμ

dxμ

ds
= ψ

Since both φ and s are invariants, the derivative (the differential quo-
tient) is also an invariant, i.e., ψ is an invariant and, Einstein shows,
Aμ = ∂φ

∂xμ is a covariant four-vector, the gradient of φ (see Appen-
dix 5.4.4).

Since ψ is an invariant on the curve, we can repeat the derivative
operation,

χ =
dψ

ds
=

d

ds

(
dφ

ds

)
=

d

ds

(
∂φ

∂xμ

dxμ

ds

)
=
(

∂2φ

∂xμ∂xν

dx ν

ds

)
dxμ

ds
+

∂φ

∂xμ

d2xμ

ds2
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Restricting the curve to the geodetic, and substituting the expression
for d2xμ

ds2 from Eq. (5.22) (see Appendix 5.4.4 for the derivation),

χ =
(

∂2φ

∂xμ∂xν
− {μν, τ} ∂φ

∂xτ

)
dxμ

ds
dx ν

ds
= Aμν

dxμ

ds
dx ν

ds

Since χ is a scalar, and since dxμ

ds and dxν

ds are four-vectors with arbi-
trary components, Einstein shows that the quantity in the parentheses
is a covariant vector of rank two. Denoting it as Aμν ,

Aμν =
∂2φ

∂xμ∂xν
− {μν, τ} ∂φ

∂xτ
(5.25)

From the invariant function φ, one can form the invariant tensor of
rank one (a four-vector),

Aμ =
∂φ

∂xμ

From this, one can form by differentiation a covariant tensor of rank
two,

Aμν =
∂2φ

∂xμ∂xν
− {μν, τ} ∂φ

∂xτ

Aμν =
∂Aμ

∂xν
− {μν, τ}Aτ (5.26)

Formed in this manner, Aμν is not simply the derivative of Aμ but is
modified to be a covariant tensor. The modified derivative of Aμis called
the “extension” of Aμ, or the covariant derivative of Aμ. These results
remain true even if Aμ is not the gradient of φ.

Similarly, one can form the extension of a rank-two tensor to give a
rank-three tensor:

Aμνσ =
∂

∂xσ
(Aμν) − {σμ, τ}Aτν − {σν, τ}Aμτ (5.27)

In summary, the covariant derivatives, or extensions, are

Aμ =
∂φ

∂xμ
(5.24)

Aμν =
∂Aμ

∂xν
− {μν, τ}Aτ (5.26)

Aμνσ =
∂ (Aμν)

∂xσ
− {σμ, τ}Aτν − {σν, τ}Aμτ (5.27)

5.2.11 Some Cases of Special Importance

In section 11 of the paper, Einstein obtains a number of relations that
will be of use later.

The fundamental tensor gμν :
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From Eq. (5.16), gμσgνσ = δν
μ which, for the case μ = ν becomes

gμσgμσ = δμ
μ = δ1

1 + δ2
2 + δ3

3 + δ4
4 = 4

⇒ d (gμνgμν) = (dgμν) gμν + gμν (dgμν) = d (4) = 0

⇒ gμν (dgμν) = −gμν (dgμν)

From the definition of the differentiation of a determinant (see Appen-
dix 5.4.5.1),

dg = gμνgdgμν = −gμνgdgμν (5.28)

Consider the quantity 1√−g
∂
√−g
∂xσ . For future convenience, a number of

forms of this expression are obtained (see Appendix 5.4.5.1):

1√−g

∂
√−g

∂xσ
=

1
2

∂ log (−g)
∂xσ

=
1
2
gμν ∂gμν

∂xσ
= −1

2
gμν

∂gμν

∂xσ
(5.29)

From gμσgνσ = δν
μ, upon differentiation one obtains

gμσgνσ = δν
μ ⇒ gμσdgνσ = −gνσdgμσ (5.30a)

⇒ gμσ
∂gνσ

∂xλ
= −gνσ ∂gμσ

∂xλ
(5.30b)

Multiplying (5.30a) by gμτ , and relabeling the indices, ν → μ, τ →
ν, σ → α, μ → β,

dgμν = −gμαgνβdgαβ (5.31a)

∂gμν

∂xσ
= −gβνgμα ∂gβα

∂xσ
(5.31b)

In a similar manner, multiplying Eq. (5.30b) by gντ , and relabeling the
indices as {μ → ν, τ → μ, ν → α, σ → β, λ → σ}, one obtains

dgνμ = −gνβgαμdgαβ (5.32a)

∂gνμ

∂xσ
= −gνβgαμ

∂gαβ

∂xσ
(5.32b)

Einstein proceeds to put Eqs. (5.31) and (5.32) into an alternate form
that will prove more useful later in the paper. From Eq. (5.21), the
definition of the Christoffel symbol,

[μν, σ] =
1
2

(
∂gμσ

∂xν
+

∂gνσ

∂xμ
− ∂gμν

∂xσ

)

Adding together the following two terms,

[ασ, β] + [βσ, α] =
1
2

(
∂gαβ

∂xσ
+

∂gσβ

∂xα
− ∂gασ

∂xβ

)
+

1
2

(
∂gβα

∂xσ
+

∂gσα

∂xβ
− ∂gβσ

∂xα

)

=
∂gαβ

∂xσ
(5.33)
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Substituting the expression ∂gαβ

∂xσ = [ασ, β] + [βσ, α] into Eq. (5.31b),

∂gμν

∂xσ
= −gμαgνβ ([ασ, β] + [βσ, α]) = −gμα

(
gνβ [ασ, β]

)− gνβ (gμα [βσ, α])

∂gμν

∂xσ
= −gμα {ασ, ν} − gνβ {βσ, μ}

Since the indices α and β are dummy variables over which one sums,
they can each be replaced by another dummy variable, τ , giving

∂gμν

∂xσ
= −gμτ {τσ, ν} − gντ {τσ, μ} (5.34)

Substituting Eq. (5.34) into Eq. (5.29), one obtains

1√−g

∂
√−g

∂xσ
= {μσ, μ} (5.29a)

The “Divergence” of a contravariant vector :
As the divergence of a contravariant vector is included for complete-

ness and is not used in the subsequent development of the material,
the result is simply stated (see Appendix 5.4.5.2). The scalar Φ is the
divergence of the contravariant vector Aν :

Φ = gμνAμν =
1√−g

∂

∂xν

(√−gAν
)

(5.35)

The “Curl” of a covariant vector :
From Eq. (5.26), Aμν = ∂Aμ

∂xν − {μν, τ}Aτ . Since {μν, τ} is symmet-
rical in the indices μ and ν, the difference of Aμν and Aνμ is an
antisymmetric tensor (see Appendix 5.4.5.3):

Bμν = Aμν − Aνμ =
∂Aμ

∂xν
− ∂Aν

∂xμ
(5.36)

Antisymmetrical extension of a six-vector :
An antisymmetrical tensor of rank two has six independent com-

ponents and is referred to as a six-vector. Applying Eq. (5.27) to an
antisymmetrical tensor of rank two, Aμν , yields a tensor of rank three,
Aμνσ (see Appendix 5.4.5.4). Adding to Aμνσ its cyclic permutations
gives

Bμνσ = Aμνσ + Aνσμ + Aσμν =
∂Aμν

∂xσ
+

∂Aνσ

∂xμ
+

∂Aσμ

∂xν
(5.37)

The divergence of a six-vector :
Multiplying Eq. (5.27) by gμαgνβ , and after substantial manipulation

of the equations, the divergence of a contravariant six-vector is obtained
(see Appendix 5.4.5.5.):

Aα =
∂Aαβ

∂xβ
+ Aαβ 1√−g

∂
√−g

∂xβ
=

1√−g

∂

∂xβ

(
Aαβ√−g

)
(5.40)

The divergence of a mixed tensor of second rank :
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The divergence of a mixed tensor of rank two, Aσ
τ , is shown to be (see

Appendix 5.4.5.6):

√−gAμ =
∂

∂xσ

(√−gAσ
μ

)− {σμ, τ}√−gAσ
τ (5.41)

The second term on the right-hand side can be rewritten as

−{σμ, τ}√−gAσ
τ = − [σμ, ρ] gρτ√−gAσ

τ = − [σμ, ρ]
√−gAρσ

If Aσρ is symmetrical, Eq. (5.41) reduces to

√−gAμ =
∂

∂xσ

(√−gAσ
μ

)− 1
2
√−g

∂gσρ

∂xμ
Aσρ (5.41a)

In a similar manner, using Eq. (5.32) to replace the term ∂gρσ

∂xμ , Eq.
(5.41) becomes

√−gAμ =
∂

∂xσ

(√−gAσ
μ

)
+

1
2

∂gρσ

∂xμ

√−gAρσ (5.41b)

5.2.12 The Riemann–Christoffel Tensor

In this section of the paper, Einstein completes his search for a “tensor
that can be obtained from the fundamental tensor alone, by differentia-
tion.”61 He first tries placing the fundamental tensor gμν into Eq. (5.27)
to obtain the extension of gμν . However, because of the symmetry of
gμν , the extension vanishes identically (see Appendix 5.4.6).

As a second approach, into Eq. (5.27) place the extension of the
four-vector Aμ. From Eq. (5.26), the extension of Aμ is Aμν = ∂Aμ

∂xν −
{μν, ρ}Aρ. Placing this into Eq. (5.27), after considerable manipulation
one obtains (see appendix 5.4.6 for details of this derivation):

Aμστ =
∂2Aμ

∂xσ∂xτ
− {μσ, ρ} ∂Aρ

∂xτ
− {μτ, ρ} ∂Aρ

∂xσ
− {τσ, α} ∂Aρ

∂xα

+
[
−∂ {μσ, ρ}

∂xτ
+ {μτ, α} {ασ, ρ} + {στ, α} {αμ, ρ}

]
Aρ

Because of the symmetry in a number of the terms, it is convenient to
form the difference of this expression with the same expression, but with
the σ and τ indices reversed:

Aμστ − Aμτσ = Rρ
μστAρ (5.42)

where Rρ
μστ is identified as the Riemann–Christoffel tensor:

Rρ
μστ = −∂ {μσ, ρ}

∂xτ
+

∂ {μτ, ρ}
∂xσ

− {μσ, α} {ατ, ρ} + {μτ, α} {ασ, ρ}
(5.43)

The tensor Rρ
μστ is composed of a number of terms that are derivatives

of the gμν .

1. If there is a coordinate system in which all of the gμν are constant,
all of the components of the Riemann–Christoffel tensor vanish,
Rρ

μστ= 0.
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2. In a new coordinate system, the gμν may not be constants.
3. But, since Rρ

μστ is a tensor, the transformed components in the
new coordinate system must still be zero.

4. Conversely, the vanishing of the Riemann tensor is a necessary
condition that, by an appropriate choice of the coordinate system,
the gμν may be constants.

5. This corresponds physically to the case in which, for a suitable
choice of coordinate system, the special theory of relativity holds
good for a finite region of the space.

Rρ
μστ is a tensor of rank four. Contracting with respect to the indices

ρ and τ (set ρ = τ and sum over the repeated index), one obtains a
covariant tensor of rank two:

Gμν = Rρ
μvρ = Rμν + Sμν

Rμν = −∂ {μν, α}
∂xα

+ {μα, β} {νβ, α}
with

Sμν =
∂2 (log

√−g)
∂xμ∂xν

− {μν, α} ∂ (log
√−g)

∂xα
(5.44)

It was noted earlier certain conveniences arise if one sets
√−g = 1.

That convenience continues. For
√−g = 1, Sμν = 0. For the rest of

the paper the equations obtained will be for the particular choice of
coordinates for which

√−g = 1.

Part C: “Theory of the Gravitational Field”

After devoting roughly ten pages to background material and twice as
many to developing the mathematics he would be needing, in Part C
it takes Einstein only about ten pages to obtain the theory of (and
equations representing) the gravitational field. The remainder of the
paper is then devoted to applications of the results, showing they contain
Maxwell’s equations and Newton’s theory of gravitation, and that they
predict the bending of starlight and the precession of the perihelion of
the planet Mercury.

Einstein introduces the notation Γτ
μν = −{μν, τ} and identifies the

Γτ
μν as the components of the gravitational field. Obtaining first the

equation of the fields in matter-free space, Einstein then generalizes this
result to obtain the general field equations of gravitation.

5.2.13 Equations of Motion of a Material Point in
the Gravitational Field. Expression for the
Field-Components of Gravitation

Consider a material point not subject to any external forces. This is
described by the special theory of relativity, the object moving in a
straight line with constant speed. Designate this reference frame as
K0. In K0, the gμν have the constant values 0, +1,−1 as given

in Eq. (5.4).
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Consider a second reference frame K1. Reference frame K1 is accel-
erating relative to reference frame K0. From K1, the particle will be
seen as moving in a gravitational field. In K0, the motion is a four-
dimensional straight line, i.e., a geodetic line. From Eq. (5.22), the
equation of the geodetic line is

d2xτ

ds2 = −{μν, τ} dxμ

ds
dx ν

ds

Since the geodetic line is defined independently of the reference sys-
tem, the equation of motion of the material point in K1 will be the
same. Defining

Γτ
μν = −{μν, τ} (5.45)

d2xτ

ds2 = Γτ
μν

dxμ

ds
dx ν

ds
(5.46)

This result is true, based on the existence of the geodetic in a reference
frame K0 where the special theory of relativity holds in a finite region.
Einstein then assumes the above system of equations holds also in the
case in which there is no K0.

If the Γτ
μν vanish (= 0) the motion is uniform in a straight line, i.e.,

there are no effects of gravity. The Γτ
μν thus give the deviations from

uniform motion in a straight line. As such, the Γτ
μν are identified as the

components of the gravitational field.

5.2.14 The Field Equations of Gravitation in the
Absence of Matter

The concept of matter in this section is very generalized. Einstein turns
his attention to the equations for the gravitational field, and then defines
all things not gravitational field to be “matter,” i.e., “matter” is not
only things we normally consider to be matter but also things such as
the electromagnetic field. In this section, the field equations are derived
for the simpler case of no matter present. (The equations are derived for
a region where there is no matter present, although gravitational fields
may be present because of matter outside the region. In Section 5.2.16
the results obtained in this section are generalized to the case with
matter present.)

Consider first the reference frame K0, in which the special theory is
satisfied. In K0, all of the gμν have constant values (0,+1,−1). Since
all of the gμν have constant values, in K0 the Riemann tensor, being
defined in terms of the derivatives of the gμν (see Eq. (5.43)), Rρ

μσν ≡
Bρ

μσν = 0. Since the components of the Riemann tensor vanish for the
finite space under the reference frame K0, they vanish also under any
other system of coordinates (see introduction to Part B: “the equations
of transformation of [the components of tensors] are . . . homogeneous.
Accordingly, all the components in the new system vanish, if they all
vanish in the original system.”62).63 Thus, if there exists a reference
frame K0, the equations for the matter-free gravitational field must be
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satisfied if the components of the Riemann tensor vanish (K0 ⇒ Rρ
μσν =

0). However, Einstein notes, a gravitational field generated by a material
point has a spherical symmetry that cannot be “transformed away” by
moving to a single accelerating reference frame K1 (Rρ

μσν = 0 does not
⇒ K0 exists).

Einstein concludes the condition that the Riemann tensor vanish is too
strong. He then requires only that the symmetrical tensor, Gμν = Rρ

μνρ,
Gμν = 0. By inspection of Eq. (5.44), it is seen that Gμν is symmetric in
the exchange of the indices μ ↔ ν. Thus Gμν is a symmetric 4 × 4 tensor.
Being symmetric, only ten of the sixteen components are independent.
From Eq. (5.44), Gμν = Rμν + Sμν . Setting

√−g = +1, Sμν = 0, and
Gμν becomes

Gμν = Rμν = 0 = − ∂

∂xα
{μν, α} + {μα, β} {νβ, α}

0 = +
∂

∂xα
Γα

μν + Γα
μβΓβ

να (5.47)

with
√−g = +1

In the second equation of Eq. (5.47), the Γα
μν follows immediately from

its definition in Eq. (5.45). In the second term of the second equation,
Γα

μβΓβ
να, the subscripts α and β appear to be reversed from the first

equation. This appearance of a reversal is correct, but immaterial, as
the α and β indices are summed over in the term and, as such, are
“dummy” variables.

Einstein at this point comments, “These equations, which proceed, by
the method of pure mathematics, from the requirement of the general
theory of relativity, give us, in combination with the equations of motion
[Eq. (5.46)] to a first approximation Newton’s law of attraction, and to
a second approximation the explanation of the motion of the perihelion
of the planet Mercury . . . These facts must, in my opinion, be taken as
convincing proof of the correctness of the theory.”64

5.2.15 The Hamiltonian Function for the
Gravitational Field. Laws of Momentum
and Energy

In this section, Einstein obtains three alternate expressions of Eq. (5.47).
The first of the three alternate expressions is written in the

Hamiltonian form, Eq. (5.47a):

δ

∫
Hdτ = 0

H = gμνΓα
μβΓβ

να (5.47a)
√−g = 1
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Einstein stipulates that “on the boundary of the finite four-
dimensional region of integration which we have in view, the variations
vanish.”65 H is a function of the gμν and their derivatives, gμν

α = ∂gμν

∂xα ,
H = H(gμν , gμν

α , xα). The variation of the integral
∫

Hdτ gives the four-
dimensional version of Lagrange’s equations for the function H. (See
Appendix 5.4.7.1 for the details showing the equivalence of Eqs. (5.47)
and (5.47a), and for the derivation of Eqs. (5.48) and (5.47b).)

The variation of the second of the Eqs. (5.47a), H = gμνΓα
μβΓβ

να, gives

δH = δ
(
gμνΓα

μβΓβ
να

)
= . . . = −Γα

μβΓβ
ναδgμν + Γα

μβδ
(
gμβ

α

)
⇒

∂H
∂gμν = −Γα

μβΓβ
να

∂H
∂gμν

σ
= +Γσ

μν

(5.48)

Carrying out the variation of Eq. (5.47a), one obtains

∂

∂xα

(
∂H

∂gμν
α

)
− ∂H

∂gμν
= 0 (5.47b)

An alternate form of Eq. (5.47b) is then obtained

∂

∂xα

(
gμν

σ

∂H

∂gμν
α

− δα
σ H

)
=

∂

∂xα
(tασ) = 0 (5.49)

Equation (5.49) is the second alternate form of Eq. (5.47). For future
convenience, the definition of tασ includes a constant multiplicative con-
stant, −2κ :

−2κtασ = gμν
σ

∂H

∂gμν
α

− δα
σ H (5.49)

And the expression for tασ is manipulated to yield (see Appendix 5.4.7.2
for details)

κtασ =
1
2
δα
σ gμνΓλ

μβΓβ
νλ − gμνΓα

μβΓβ
νσ (5.50)

tασ is identified as the energy tensor, with Eq. (5.49) expressing the
law of conservation of momentum and of energy for the gravitational
field. Einstein notes that tασ “has tensorial character only under linear
transformations.” These results are contained in Einstein’s November 4,
1915, report to the Prussian Academy of Sciences, “On the General
Theory of Relativity.”66 In Eq. (5.20) of this reference, Tλ

σ = 0 since
there is no matter present.

To arrive at the third alternate form of Eq. (5.47), Einstein multiplies
Eq. (5.47) by gνσ and manipulates the resulting equations to obtain (see
Appendix 5.4.7.3 for details)

∂

∂xα

(
gνσΓα

μν

)
= −κ

(
tσμ − 1

2
δσ
μt

)
(5.51a)

√−g = 1 (5.51b)

with t = tαα
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5.2.16 The General Form of the Field Equations of
Gravitation

The primary field equations for the gravitational field in the absence of
matter are Eq. (5.47):

0 = +
∂

∂xα
Γα

μν + Γα
μβΓβ

να (5.47)

with
√−g = +1

Three alternate expressions of Eq. (5.47) are obtained as Eqs. (5.47a),
(5.49), and (5.51): ⎧⎨

⎩
δ
∫

Hdτ = 0
H = gμνΓα

μβΓβ
να√−g = 1

⎫⎬
⎭ (5.47a)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

∂xα
(tασ) = 0

−2κtασ = gμν
σ

∂H
∂gμν

α
− δα

σ H

κtασ =
1
2
δα
σ gμνΓλ

μβΓβ
νλ − gμνΓα

μβΓβ
νσ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.49)

{
∂

∂xα

(
gνσΓα

μν

)
= −κ

(
tσμ − 1

2δσ
μt
)

√−g = 1

}
(5.51)

Newton’s gravitational equation for matter-free space is Laplace’s
equation:

∇2φ = 0

while Newton’s gravitational equation with matter present is Poisson’s
equation:

∇2φ = 4πκρ

where ρ denotes the density of matter.
Einstein’s field equations of gravitation in matter-free space corre-

spond to the case of Newton’s gravitational equation in matter-free
space. In this section of the paper, Einstein generalizes the matter-
free equations of gravitation (the form given in Eq. (5.51)) to include
contributions from matter. The development of the general form pro-
ceeds in a “logical discussion” of the factors involved, rather than in a
mathematical derivation.

In the special theory of relativity it had been shown that “inert mass is
nothing more or less than energy, which finds its complete mathematical
expression in a symmetrical tensor of second rank, the energy-tensor.”67

Discussion of this and development of the energy tensor are contained
in Einstein’s “Manuscript on Special Relativity,” sections 20 and 21.68

In the general theory of relativity, he introduces a corresponding energy
tensor of matter, designated T σ

μ . This energy tensor corresponds to the
density of matter ρ in Poisson’s equation above.
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Equation (5.51) indicates how this energy tensor is to be introduced.
In Eq. (5.51), the effect of the gravitational energy is represented by the
term tσμ. Einstein then considered a system composed of gravitational
fields plus mass, e.g., the solar system. The total gravitating action will
depend on the total energy of the system: the ponderable energy, i.e.,
the mass, along with the gravitational energy. In Eq. (5.51), the term tσμ
will be replaced by the total energy-tensor, the sum of the matter and
gravitational terms, T σ

μ plus tσμ. Changing the index ν → β, with matter
present Eq. (5.51) becomes (replacing tσμ with tσμ + T σ

μ ){
∂

∂xα

(
gβσΓα

μβ

)
= −κ

[(
tσμ + T σ

μ

)− 1
2δσ

μ (t + T )
]

√−g = 1

}
(5.52)

T , in analogy to t = tαα, is defined as T = Tα
α . This is termed the

“Laue scalar” and is discussed in the 1913 “Entwurf” paper.69 Just
as Eq. (5.51) was obtained from Eq. (5.47), Eq. (5.52) will need to be
obtained from a modified Eq. (5.47). Working backward from Eq. (5.52)
to find the modified Eq. (5.47):

Previously, from Eq. (5.47) (matter-free field) we obtained Eq. (5.51),{
∂

∂xα Γα
μν + Γα

μβΓβ
να = 0

√−g = 1

}
⇒ ∂

∂xα

(
gσβΓα

μβ

)
= −κ

(
tσμ − 1

2
δσ
μt

)
(5.51)

To obtain Eq. (5.52), Eq. (5.47) must be modified to add the terms
−κ

(
T σ

μ − 1
2δσ

μT
)

to Eq. (5.51). Noting Eq. (5.51) is a tensor equation of
the form Aμν , two terms of this form are added to Eq. (5.47), Aμν + Bμν ,
with the anticipation the term Aμν will yield the term T σ

μ and the term
Bμν will yield the term − 1

2δσ
μT .

From Eq. (5.47),

∂

∂xα
Γα

μν + Γα
μβΓβ

να = 0 → ∂

∂xα
Γα

μν + Γα
μβΓβ

να = Aμν + Bμν

Equation (5.47) was multiplied by gνσ and manipulated to arrive at Eq.
(5.51). Multiplying the above equation by gνσ, the LHS gives the same
result (Eq. (5.51)):

gνσ

(
∂Γα

μν

∂xα
+ Γα

μβΓβ
να

)
= gνσAμν + gνσBμν

⇒ ∂

∂xα

(
gνσΓα

μν

)
+ κ

(
tσμ − 1

2
δσ
μ

)
= gνσAμν + gνσBμν

To arrive at the desired result, Eq. (5.52), gνσAμν = −κT σ
μ and

gνσBμν = +κ 1
2δσ

μT . We identify Aμν = −κTμν , with gνσTμν ≡ T σ
μ , and

Bμν = κgμν
1
2T . Thus, to arrive at Eq. (5.52), Eq. (5.47) is modified to

{
∂Γα

μν

∂xα + Γα
μβΓβ

να = −κ
(
Tμν − 1

2gμνT
)

√−g = 1

}
(5.53)
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Einstein comments that this result is justified by:70

1. The “energy of the gravitational field shall act gravitatively in the
same way as any other kind of energy.”

2. The “strongest reason for the choice of these equations lies in their
consequence, that the equations of conservation of momentum and
energy, corresponding exactly to equations (49) and (49a), hold
good for the components of the total energy.” This is shown in the
following Section 5.2.17.

5.2.17 The Laws of Conservation in the General
Case

From Eq. (5.52), Einstein manipulates the equations, obtaining
Eq. (5.56):

∂
(
tσμ + T σ

μ

)
∂xσ

= 0 (5.56)

Analogous to Eqs. (5.49) and (5.49a), Eq. (5.56) shows that the laws of
conservation of momentum and energy are satisfied, except in Eq. (5.56)
the energy components are those of the total energy, not just the energy
components of the gravitational energy (for details of the derivation of
Eq. (5.56), see Appendix 5.4.7.4):

1. From the field equations of gravitation the laws of conservation of
momentum and energy are satisfied.

2. Instead of the energy components tσμ of the gravitational field in the
absence of matter (Eq. (5.49a)), Eq. (5.56) shows the conservation
laws are satisfied for the totality of the energy components of
matter plus the gravitational field.

(Today these same results can be obtained more easily using the Bianchi
identity.71)

5.2.18 The Laws of Momentum and Energy for
Matter, as a Consequence of the Field
Equations

Starting with Eq. (5.53), the general field equations of gravitation,
Einstein manipulates the equations to obtain Eq. (5.57) (see Appen-
dix 5.4.7.5 for details of the derivation):

∂Tα
σ

∂xα
+

1
2

∂gμν

∂xσ
Tμν = 0 (5.57)

With our choice of
√−g = 1, in accord with Eq. (5.41b), Eq. (5.57)

is the divergence of Tα
σ . Einstein comments that Eq. (5.57) “predicates

nothing more or less than the vanishing of divergence of the mater-
ial energy-tensor.”72 Examining Eq. (5.57) further, the second term,
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1
2

∂gμν

∂xσ Tμν , indicates the laws of conservation of momentum and energy
do not apply strictly for matter energy alone. The second term represents
the momentum and energy transferred from the gravitational field to
matter. The transfer of momentum and energy from the gravitational
field is more apparent if Eq. (5.57) is rewritten as (see Appendix 5.4.7.5
for details of the derivation):

∂Tα
σ

∂xα
= −Γβ

ασTα
β (5.57a)

Part D: “Material Phenomena”

The mathematical structure of the general theory of relativity is a
complete and coherent structure. The theory is now applied to the
description of some physical phenomena. In Part D, it is shown how
hydrodynamics and Maxwell’s electromagnetic theory are fitted exactly
into the general theory of relativity, while in Part E, Einstein uses
approximations to the equations of the general theory of relativity to
obtain expressions for Newton’s law of gravitation, the gravitational
redshift, the bending of a light beam in a gravitational field, and the
precession of the perihelion of the orbit of Mercury.

5.2.19 Euler’s Equations for a Frictionless
Adiabatic Fluid

The contravariant energy-tensor of the fluid is postulated to be

Tαβ = −gαβp + ρ
dxα

ds
dxβ

ds
(5.58)

where p is the pressure of the fluid and ρ is the density of the fluid. From
this is obtained the covariant energy tensor:

Tμν = gμαgνβTαβ = gμαgνβ

(
−gαβp + ρ

dxα

ds
dxβ

ds

)

= −gμαδα
ν p + gμαgνβ

dxα

ds
dxβ

ds
ρ

Tμν = −gμνp + gμαgνβ
dxα

ds
dxβ

ds
ρ (5.58a)

The mixed energy tensor is

Tα
σ = gβσTαβ = gβσ

(
−gαβp + ρ

dxα

ds
dxβ

ds

)
= −δα

σ p + gβσρ
dxα

ds
dxβ

ds
(5.58b)

The mixed energy tensor, Eq. (5.58b), was developed in a previous
paper, “The Formal Foundation of the General Theory of Relativity,”73

(Eq. (5.31)), with ρ = ρ0
√−g(1 + p

ρ0
+ P ) and with

√−g = 1).
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Substituting Eq. (5.58b) into Eq. (5.57a),

∂Tα
σ

∂xα
= −Γβ

ασTα
β (5.57a)

∂

∂xα

(
−δα

σ p + gβσρ
dxα

ds
dxβ

ds

)
= −Γβ

ασ

(
−δα

β p + gβμρ
dxα

ds
dxμ

ds

)

These are identified as the Eulerian hydrodynamic equations of the
general theory of relativity.74 This is a set of four equations (one
each for σ = 1, 2, 3, and 4). With the relation Eq. (5.58) between
p and ρ, and the equation gαβ

dxα

ds
dxβ

ds = 1(w2 = gαβ
dxα

ds
dxβ

ds = 1, see
Appendices 5.4.3.1 and 5.4.3.2), this gives six constraints on the six
variables p, ρ, dx1

ds , dx2

ds , dx3

ds , dx4

ds , assuming all of the gμν are known.

1. If the gμν are not known, they are determined from Eq. (5.53).
Equation (5.53) provides ten independent equations for the gμν .

2. The condition
√−g = 1 raises to 11 the number of equations for

defining the ten independent gμν .
3. But Eq. (5.57a) was obtained from Eq. (5.53). These four equations

reduce to seven the number of independent equations for determin-
ing the gμν .

4. These three “missing” equations reflect the freedom in the choice
of coordinates.

5. If the condition
√−g = 1 is removed, there remain four functions

to be chosen, corresponding to the choice of the four coordinates.

5.2.20 Maxwell’s Electromagnetic Field Equations
for Free Space

“In this section Einstein shows that Maxwell’s equations can be cast
into the Minkowski four-tensor formalism. The calculation is basically a
special relativity calculation. Einstein then shows Maxwell’s equations
can easily fit into the general theory framework when we need to
consider electromagnetism in the presence of a gravitational field, i.e.
electromagnetism in a curved spacetime.”75

5.2.20.1 Maxwell’s Equations
As in the previous section, Einstein begins by defining an appropriate
quantity, this time the covariant vector φν composed of the components
of the electromagnetic potential, the first three components being the
components of the vector potential and the fourth component being
the scalar potential. In accordance with Eq. (5.36), one can form the
antisymmetric covariant tensor, Fρσ,

Fρσ =
∂φρ

∂xσ
− ∂φσ

∂xρ
(5.59)

Fρσ being antisymmetric, the diagonal terms Fρρ = 0. Being antisym-
metric there will be only six independent Fρσ. Although these are not in
the usual vector format of a row or column matrix, these six components
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are spoken of as a six-vector. Taking the derivatives of the various Fρσ

in a cyclic manner we arrive at

∂Fρσ

∂xτ
+

∂Fστ

∂xρ
+

∂Fτρ

∂xσ
=
(

∂2φρ

∂xτ∂xσ
− ∂2φσ

∂xτ∂xρ

)

+
(

∂2φσ

∂xρ∂xτ
− ∂2φτ

∂xρ∂xσ

)
+
(

∂2φτ

∂xσ∂xρ
− ∂2φρ

∂xσ∂xτ

)
∂Fρσ

∂xτ
+

∂Fστ

∂xρ
+

∂Fτρ

∂xσ
= 0 (5.60)

This is an antisymmetric tensor of rank 3, easily verified by the
exchange of any two indices, say ρ and τ , and comparing the resulting
expression with the original form of Eq. (5.60). If any two of the indices
ρ, σ and τ of Eq. (5.60) are equal to one another, the left-hand side of the
equation vanishes. Writing out Eq. (5.60) for the four distinct cases of

{ρ, σ, τ} = {2, 3, 4} , {3, 4, 1} , {4, 1, 2} , {1, 2, 3}

{2, 3, 4} ⇒ ∂F23

∂x4
+

∂F34

∂x2
+

∂F42

∂x3
= 0

{3, 4, 1} ⇒ ∂F34

∂x1
+

∂F41

∂x3
+

∂F13

∂x4
= 0 (5.60a)

{4, 1, 2} ⇒ ∂F41

∂x2
+

∂F12

∂x4
+

∂F24

∂x1
= 0

{1, 2, 3} ⇒ ∂F12

∂x3
+

∂F23

∂x1
+

∂F31

∂x2
= 0

Relabeling the coordinates x1, x2, x3, x4 as x, y, z, t, and the six
independent functions Fρσ in the following manner:

F23 = Hx

F31 = Hy

F12 = Hz

F14 = Ex

F24 = Ey

F34 = Ez

(5.61)

Remembering Fρσ is antisymmetric, Eq. (5.60a) becomes

∂Hx

∂t
+

∂Ez

∂y
− ∂Ey

∂z
= 0 ⇒ ∂Ez

∂y
− ∂Ey

∂z
= −∂Hx

∂t
⇒

(
∇× �E

)
x

= −
(

∂H

∂t

)
x

∂Ez

∂x
− ∂Ex

∂z
− ∂Hy

∂t
= 0 ⇒ ∂Ex

∂z
− ∂Ez

∂x
= −∂Hy

∂t
⇒

(
∇× �E

)
y=

= −
(

∂H

∂t

)
y

−∂Ex

∂y
+

∂Hz

∂t
+

∂Ey

∂x
= 0 ⇒ ∂Ey

∂x
− ∂Ex

∂y
= −∂Hz

∂t
⇒

(
∇× �E

)
z

= −
(

∂H

∂t

)
z

∂Hz

∂z
+

∂Hx

∂x
− ∂Hy

∂z
= 0 ⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⇒

(
∇ · �H

)
= 0

Equation (5.60a) is identified as two of Maxwell’s equations:

∂Fρσ

∂xτ
+

∂Fστ

∂xρ
+

∂Fτρ

∂xσ
= 0 ⇒ ∇× �E = −∂ �H

∂t

⇒ ∇ · �H = 0 (5.60b)
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To obtain the other two Maxwell equations, Einstein uses the con-
travariant form of the six-vector (antisymmetric tensor of rank 2) associ-
ated with Fαβ , and a contravariant four-vector Jμ composed of the three
components of the current density (jx, jy, jz) and the charge density ρ:

Fμν = gμαgνβFαβ (5.62)

Setting the derivative of Fμν equal to Jμ,

∂

∂xν
Fμν = Jμ

Jμ =
{
J1, J2, J3, J4

}
= {jx, jy, jz, ρ} (5.63)

In like manner to the identification of components of �H and �E to
components of Fαβ in the covariant treatment above, the components of
Fμν are equated to the components of �H ′ and �E′. In the reference frame
where the special theory of relativity is valid, �H ′ = H̄ and �E′ = �E,

F 23 = H ′
X

F 31 = H ′
Y

F 12 = H ′
Z

F 14 = −E′
x

F 24 = −E′
y

F 34 = −E′
z

μ = 1 ⇒ ∂F 11

∂x1
+

∂F 12

∂x2
+

∂F 13

∂x3
+

∂F 14

∂x4
= J1 ⇒ 0 +

∂H ′
z

∂y
− ∂H ′

y

∂z
− ∂E′

x

∂t

= jx ⇒
(
∇× �H ′ = �j + ∂ �E

∂t

)
x

μ = 2 ⇒ ∂F 21

∂x1
+

∂F 22

∂x2
+

∂F 23

∂x3
+

∂F 24

∂x4
= J2 ⇒ −∂H ′

z

∂x
+ 0 +

∂H ′
x

∂z
− ∂E′

y

∂t
= jy ⇒

(
∇× �H ′ = �j + ∂ �E

∂t

)
y

μ = 3 ⇒ ∂F 31

∂x1
+

∂F 32

∂x2
+

∂F 33

∂x3
+

∂F 34

∂x4
= J3 ⇒ ∂H ′

y

∂x
− ∂H ′

x

∂y
+ 0 − ∂E′

z

∂t

= jz ⇒
(
∇× �H ′ = �j + ∂ �E

∂t

)
z

μ = 4 ⇒ ∂F 41

∂x1
+

∂F 42

∂x2
+

∂F 43

∂x3
+

∂F 44

∂x4
= J4 ⇒ ∂E′

x

∂x
+

∂E′
y

∂y
+

∂E′
z

∂z
+ 0

= ρ ⇒
(
∇ · �E′ = ρ

)
Equation (5.63) is identified as the two additional Maxwell’s

equations:
∂Fμν

∂xν
= Jμ ⇒

∂ �E′
∂t +�j = ∇× �H ′

∇ · E′ = ρ
(5.63a)

Equations (5.60), (5.62) and (5.63) thus form the generalization of
Maxwell’s equations in the general theory of relativity.

5.2.20.2 The Energy Components of the
Electromagnetic Field

In this section, Einstein searches for an expression for T ν
μ of the elec-

tromagnetic field that satisfies the law of conservation of energy and
momentum, Eq. (5.57). T ν

μ would then correspond to the energy com-
ponents of the electromagnetic field:
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∂Tα
σ

∂xα
+

1
2

∂gμν

∂xσ
Tμν = 0 (5.57)

Start by forming the covariant tensor

κσ = FσμJμ (5.65)

Using Eq. (5.61) and the definition of Jμ given immediately after
Eq. (5.63),

κ1 = F11J
1 + F12J

2 + F13J
3 + F14J

4 = 0 + Hzjy − Hyjz + Exρ =
(
ρ �E +�j × �H

)
x

κ2 = F21J
1 + F22J

2 + F23J
3 + F24J

4 = −Hzjx + 0 + Hxjz + Eyρ =
(
ρ �E +�j × �H

)
y

κ3 = F31J
1 + F32J

2 + F33J
3 + F34J

4 = Hyjx − Hxjy + 0 + Ezρ =
(
ρ �E +�j × �H

)
z

κ4 = F41J
1 + F42J

2 + F43J
3 + F44J

4 = −Exjx − Eyjy − Ezjz + 0 = −�j · �E

κσ is identified as the covariant vector with components equal to the
negative momentum or, respectively, energy transferred from the electric
masses to the electromagnetic field per unit time per unit volume.
Einstein states that, “If the electric masses are free, that is, under the
sole influence of the electromagnetic field, the covariant vector κσ will
vanish.”76 Setting κσ = 0 the expression for κσ is manipulated to arrive
at an expression of the form of Eq. (5.57), from which the appropriate
terms are identified as being T ν

μ :

κσ = FσμJμ = Fσμ
∂Fμν

∂xν
=

∂

∂xν
(FσμFμν) − Fμν ∂Fσμ

∂xν
by Eq. (5.63)

(5.65a)
Working first with the second term on the right-hand side,

Fμν ∂Fσμ

∂xν
=

1
2

(
Fμν ∂Fσμ

∂xν
+ Fμν ∂Fσμ

∂xν

)
=

1
2

(
F νμ ∂Fσv

∂xμ
+ Fμν ∂Fσμ

∂xν

)

where the first term in the last parentheses is obtained by exchanging the
summation indices μ and ν from the corresponding term in the previous
parentheses. Since Fμν and Fσν are each antisymmetric, exchanging the
order of indices on both of them leaves their product unchanged in sign:

Fμν ∂Fσμ

∂xν
=

1
2

(
F νμ ∂Fσv

∂xμ
+ Fμν ∂Fσμ

∂xν

)
=

1
2

(
Fμν ∂Fνσ

∂xμ
+ Fμν ∂Fσμ

∂xν

)

=
1
2
Fμν

(
∂Fνσ

∂xμ
+

∂Fσμ

∂xν

)

But, by Eq. (5.60), ∂Fνσ

∂xμ + ∂Fσμ

∂xν = −∂Fμν

∂xσ , and using Eq. (5.62),

Fμν ∂Fσμ

∂xν
= −1

2
Fμν ∂Fμν

∂xσ
= −1

2
gμαgνβFαβ

∂Fμν

∂xσ

This last term is manipulated in a manner similar to that above.
The expression is written as one half of it plus itself, and the sum-
mation indices are changed on the second term in the square brackets
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(μ ↔ α, ν ↔ β):

−1
2
gμαgνβFαβ

∂Fμν

∂xσ
= −1

4

[
gμαgνβFαβ

∂Fμν

∂xσ
+ gμαgνβFαβ

∂Fμν

∂xσ

]

= −1
4

[
gμαgνβFαβ

∂Fμν

∂xσ
+ gαμgβνFμν

∂Fαβ

∂xσ

]

= −1
4

[(
gμαgνβFαβ

∂Fμν

∂xσ

)
+ Fμν

(
gαμgβν ∂Fαβ

∂xσ

)]

= −1
4

[(
∂

∂xσ

(
gμαgνβFαβFμν

)− Fμν
∂

∂xσ

(
gμαgνβFαβ

))

+Fμν

(
∂

∂xσ

(
gμαgνβFαβ

)− Fαβ
∂

∂xσ

(
gμαgνβ

))]
Noting the second and third terms are the same, their difference is

zero,

Fμν ∂Fσμ

∂xν
= −1

4
∂

∂xσ

(
gμαgνβFαβFμν

)
+

1
4
FμνFαβ

∂

∂xσ

(
gμαgνβ

)
= −1

4
∂

∂xσ
(FμνFμν) +

1
4
FμνFαβ

(
gμα ∂gνβ

∂xσ
+ gνβ ∂gμα

∂xσ

)
by Eq. (5.62)

= −1
4

∂

∂xσ
(FμνFμν) +

1
4
FμνFαβgμα ∂gνβ

∂xσ
+

1
4
FμνFαβgνβ ∂gμα

∂xσ

Exchanging the summation indices μ ↔ β and ν ↔ α in the final
expression on the right-hand side,

F μν ∂Fσμ

∂xν
= −1

4

∂

∂xσ
(F μνFμν) +

1

4
FμνFαβgμα ∂gνβ

∂xσ
+

1

4
FβαFνμgαμ ∂gβν

∂xσ

= −1

4

∂

∂xσ
(F μνFμν) +

1

4
FμνFαβgμα ∂gνβ

∂xσ
+

1

4
FαβFμνgμα ∂gνβ

∂xσ

= −1

4

∂

∂xσ
(F μνFαν) +

1

2
FμνFαβgμα ∂gνβ

∂xσ

= −1

4

∂

∂xσ
(F μνFμν) +

1

2
FμνFαβgμα

(
−gνρgβτ ∂gρτ

∂xσ

)
by Eq. (5.31)

= −1

4

∂

∂xσ
(F μνFμν) − 1

2
Fμν

(
gμαgβτFαβ

)
gνρ ∂gρτ

∂xσ

= −1

4

∂

∂xσ
(F μνFμν) − 1

2
FμνF μτgνρ ∂gρτ

∂xσ
by Eq. (5.62)

Substituting this expression into the expression for κσ, Eq. (5.65a),

κσ =
∂

∂xν
(FσμF μν) − F μν ∂Fσμ

∂xν

κσ =
∂

∂xν
(FσμF μν) +

1

4

∂

∂xσ
(F μνFμν) +

1

2
F μτFμνgνρ ∂gρτ

∂xσ

κσ =
∂

∂xν

(
−FσμF νμ +

1

4
δν

σF αβFαβ

)
+

1

2
F μτFμνgνρ ∂gρτ

∂xσ
by F μν = −F νμ
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Define T ν
σ as the term in the first parentheses (with μ → α in the

first term), T ν
σ = −FσαF να + 1

4δν
σFαβFαβ . The expression FμτFμν in

the last term can be expressed as FμτFμν = −T τ
ν + 1

4δτ
νFαβFαβ :

κσ =
∂T ν

σ

∂xν
+

1
2
gνρ ∂gρτ

∂xσ

(
−T τ

ν +
1
4
δτ
νFαβFαβ

)

=
∂T ν

σ

∂xν
− 1

2
gνρ ∂gρτ

∂xσ
T τ

ν +
1
8
gνρ ∂gρτ

∂xσ
δτ
νFαβFαβ

The third term vanishes since, by Eq. (5.29), gνρ ∂gρτ

∂xσ δν
τ = gτρ ∂gρτ

∂xσ

vanishes (see Appendix 5.4.7.5). Thus, with the change of indices ρ → μ,
ν ↔ τ in the second term,

κσ =
∂T ν

σ

∂xν
− 1

2
gτμ ∂gμν

∂xσ
T ν

τ

T ν
σ = −FσαF να +

1
4
δν
σFαβFαβ (5.66)

For κσ = 0, Eq. (5.66) is the same as Eq. (5.57). To see this, Eq. (5.66)
becomes

0 =
∂T ν

σ

∂xν
− 1

2
gτμ ∂gμν

∂xσ
T ν

τ =
∂T ν

σ

∂xν
− 1

2
gτμ

(
−gμαgνβ

∂gαβ

∂xσ

)
T ν

τ by Eq.(5.32)

=
∂T ν

σ

∂xν
+

1
2

(gτμgμα) gνβ
∂gαβ

∂xσ
T ν

τ =
∂T ν

σ

∂xν
+

1
2

(δτ
α) gνβ

∂gαβ

∂xσ
T ν

τ

=
∂T ν

σ

∂xν
+

1
2

∂gαβ

∂xσ
gνβT ν

α =
∂T ν

σ

∂xν
+

1
2

∂gαβ

∂xσ
Tαβ

For comparison, Eq. (5.57) is ∂T α
σ

∂xα + 1
2

∂gμν

∂xσ Tμν = 0. Since the T ν
σ satisfy

the energy conservation equation, Eq. (5.57), the T ν
σ are the energy

components of the electromagnetic field.

Part E

5.2.21 Newton’s Theory as a First Approximation

Einstein considers two different perspectives in arriving at his first order
approximations to the general theory of relativity.

Perspective 1 : In the zeroth order, the general theory of relativity
is expected to reduce to the special theory of relativity, with the gμν

having the constant values

gμν =

⎡
⎢⎢⎣

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

⎤
⎥⎥⎦ (5.4)

It is assumed,

a. in the first approximation, the gμν differ from the above constant
values (Eq. (5.4)) by an amount that is small in comparison to 1,

b. that all terms of second order and higher in these small amounts
can be neglected,
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c. that, with a suitable choice of coordinates, at spatial infinity,
far from the matter generating the gravitational fields, the gμν

approach the constant values given in Eq. (5.4), i.e., the gravita-
tional fields are generated exclusively by the matter in the finite
region.

Einstein then focuses his attention on the equations describing the
motion of a material point in the gravitational field, Eq. (5.46). Consider
the quantities dx 1, dx 2, dx 3, dx 4, with dx 4 = dt .

d. Dividing by ds, the expressions dx1

ds , dx2

ds , dx3

ds , in the case of the
special theory of relativity, can take on any values.

e. The velocity of an object is given as

v =

√(
dx 1

dx 4

)2

+
(

dx 2

dx 4

)2

+
(

dx 3

dx 4

)2

Perspective 2 :

f. v < speed of light in a vacuum.
g. Our experience is almost exclusively that v is very small compared

to the speed of light.
h. The components dx1

ds , dx2

ds , dx3

ds are small compared to dx4

ds , which is
equal to one, at least to second order in the small terms.

From Perspective 1, the components of the gravitational field, Γτ
μν ,

will be small. From Perspective 2, the equation of the motion of a point,
d2xτ

ds2 = Γτ
μν

dxμ

ds
dxν

ds , Eq. (5.46), will have significant contributions only
for μ = 4 and ν = 4 (dxμ

ds � 1, μ = 1, 2, 3).

d2xτ

ds2 = Γτ
μν

dxμ

ds
dxν

ds
≈ Γτ

44

dx 4

ds
dx 4

ds
⇒ d2xτ

dt2 = Γτ
44 with ds = dx 4 = dt

d2xτ

dt2 = Γτ
44 = −{44, τ} = −gτα[44, α]

From Perspective 1, gτα ≈ 0 for τ �= α; gτα ≈ −1 for τ = α = 1, 2, or
3; and gτα ≈ +1 for τ = α = 4.

For τ and α = 1, 2, or 3, gτα = 0 unless α = τ . For α = τ, gττ =
−1(g11 = g22 = g33 = −1).

d2xτ

dt2 = +[44, τ ], τ = 1, 2, 3

For τ and α = 4, gτβ = g4β = 0 unless β = 4. For β = 4, g44 = +1,

d2x4

dt2 = −[44, 4], τ = 4

If the field is quasi-static, the time derivatives on the right-hand side
of these equations may be neglected in relation to the space derivatives.

For τ = 1, 2, or 3,
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d2xτ

dt2 = + [44, τ ] =
1
2

(
∂gτ4

∂x4
+

∂gτ4

∂x4
− ∂g44

∂xτ

)

=
1
2

(
∂gτ4

∂t
+

∂gτ4

∂t
− ∂g44

∂xτ

)
≈ −1

2
∂g44

∂xτ

This is the form of Newton’s second law, F = ma, for a unit mass
moving in a gravitational potential, φ = 1

2g44.
Comment 1 : Of the 16 components of gμν, 10 are independent, yet,

to first order, only one of these, g44, is needed to determine the motion
of a material point.

Comment 2 : Since g44 = −c2, this shows the connection Einstein
was pursuing for a while of considering a variable speed of light, c, to
represent the gravitational potential.

Working now with the field equations, Eqs. (5.53),

∂

∂xα
Γα

μν + Γα
μβΓβ

να = −κ

(
Tμν − 1

2
gμνT

)
√−g = 1

(5.53)

Modification a: From Perspective 1, the components of the gravita-
tional field, Γτ

μν , will be small and terms of the form (Γτ
μν)2 will be of

second order and can be neglected. Thus the second term on the left-
hand side of the above equation can be neglected.

Modification b: The expression for Tμν , Eq. (5.58a), is

Tμν = −gμνp + gμαgνβ
dxα

ds
dxβ

ds
ρ

Since the energy tensor is expected to be dominated by the matter
present, the mass density term, ρ, will be much greater than than the
pressure, p, term. From Perspective 2, the terms dxα

ds for α = 1, 2, or 3
are small compared to the term for α = 4, dx4

ds . The expression for Tμν

becomes

Tμν = gμ4gν4
dx 4

ds
dx 4

ds
ρ

But gμν ≈ 0 except for μ = ν Thus both μ and ν must each be equal
to 4 and, since g44 = 1, Tμν becomes T44 = ρ, and all other Tμν = 0.
T =

∑4
μ,ν=1 Tμν = ρ.

Modification c: Turning now to the left-hand side of the field equations,
Eqs. (5.53) above,

∂

∂xα
Γα

μν =
−∂

∂xα
{μν, α} =

−∂

∂xα
(gτα [μν, τ ])

But gτα = 0 for τ �= α; = −1 for τ = α = 1, 2, or 3; and = +1 for
τ = α = 4. The above equation becomes
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∂

∂xα
Γα

μν =
−∂

∂xα
(gαα [μν, α])

= −
( −∂

∂x1
[μν, 1] − ∂

∂x2
[μν, 2] − ∂

∂x3
[μν, 3] +

∂

∂x4
[μν, 4]

)

Looking at the term μ = 4 and ν = 4, and using again the quasi-static
approximation that time variations are so slow that time derivatives can
be neglected:

∂

∂xα
Γα

44 = −
( −∂

∂x1
[44, 1] − ∂

∂x2
[44, 2] − ∂

∂x3
[44, 3] +

∂

∂x4
[44, 4]

)

On the right-hand side, the first term becomes

+∂

∂x1
[44, 1] =

1
2

∂

∂x1

(
∂g14

∂x4
+

∂g14

∂x4
− ∂g44

∂x1

)
≈ −1

2
∂2g44

∂ (x1)2

In a similar manner, the second and third terms become − 1
2

∂2g44
∂(x2)2 and

− 1
2

∂2g44
∂(x3)2 . The fourth term vanishes as each term is a time derivative.

∂

∂xα
Γα

44 = −1
2

∂2g44

(∂x1)2
− 1

2
∂2g44

(∂x2)2
− 1

2
∂2g44

(∂x3)2
= −1

2
∇2g44

Remembering we are now reduced to the μ, ν = 4, 4 term. From
Comment 2, Modification a, Eq. (5.53) is

∂

∂xα
Γα

μν = −κ

(
Tμν − 1

2
gμνT

)
− 1

2
∇2g44 = −κ

(
T44 − 1

2
g44T

)

= −κ

(
ρ − 1

2
ρ

)
= −κ

ρ

2
⇒ ∇2g44 = κρ (5.68)

The solution to this equation is Newton’s gravitational potential, φ,
where φ = 1

2g44 and is given by

φ(r) =
1
2
g44 = − κ

8π

∫
ρdτ

r
(5.68a)

From Newton’s theory, φ(r) = −G
c2

∫
ρdτ
r . By comparison to Newton’s

expression for the gravitational potential,

κ =
8πG

c2
=

8π(6.7 × 10−8)
(3 × 1010)

= 1.87 × 10−27in cgs units. (5.69)

5.2.22 The Behaviour of Rods and Clocks in the
Static Gravitational Field. Bending of
Light Rays. Motion of the Perihelion of a
Planetary Orbit

In the previous Section 5.2.21, only one component, g44, of the gμν was
needed to arrive at Newton’s theory of gravity as a first approximation.
But if the determinant of the gμν is to remain equal to –1, when g44
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differs slightly from −1 there must be corresponding modifications to
the other gμν .

For a point mass at the origin, the potential given by Eq. (5.68a)
is φ(r) = − κ

8π

∫
ρdτ
r = − κ

8π
M
r , where r = the distance from the origin

(location of the point mass) to the location of the measurement. Since g44

is equal to 2φ plus a constant, and since g44 is equal to +1 in the absence
of a gravitational field, φ = 0, we obtain g44 = 2φ(r) + 1 = 1 − κ

4π
M
r =

1 − α
r , with

α =
κM

4π
. (5.70a)

For a field-producing point mass at the origin, to a first approximation,
the radially symmetrical solution is, with r =

√
(x1)2 + (x2)2 + (x3)2,

g44 = 1 − α

r

gρ4 = g4ρ = 0 . . . . . . . . . . . . . . . .ρ = 1, 2, 3 (5.70)

gρσ = −δσ
ρ − α

xρxσ

r3
. . . .ρ, σ = 1, 2, 3

These Eqs. (5.70) are taken from the November 18, 1915, report to
the Prussian Academy of Sciences. In the report, Einstein states this is
an “assumed solution.”77

To see the effect of the gravitational field from the mass M on the
metrical properties of space, consider the quantity ds2 = gμνdxμdx ν .

1. Measurement Parallel to the Gravitational Field : At some distance
r from the origin a measuring rod of unit length is laid parallel to
the x1 axis: dx 1 = 1; dx 2 = dx 3 = dx 4 = 0. In K0, ds2 = −(dx 1)2 −
(dx 2)2 − (dx 3)2 + (dx 4)2 = −(1)2 − 0 − 0 + 0 = −1. Thus ds2 =
−1 = g11(dx 1)2. See Figure 5.6.

If the point lies on the x1 axis (a distance r away from the origin),
from Eq. (5.70) g11 = −1 − αr2

r3 = −1 − α
r . Putting these together,

−1 = g11(dx 1)2 = −
(
1 +

α

r

)
(dx 1)2 ⇒ dx 1 =

1√
1 + α

r

≈ 1 − 1
2

α

r

(5.71)

x1

x 2

r

Unit Length 
Parallel to x1

Fig. 5.6 Measurement parallel to the
gravitational field.
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x1

x2

r

Unit Length 
Perpendicular to x1

Fig. 5.7 Measurement perpendicular
to the gravitational field.

The unit-length measuring rod laid along a radius, i.e., parallel to the
field, appears to be shortened by an amount = α/2r.

2. Measurement Perpendicular to the Gravitational Field : Again move
out the x1 axis some distance r, but this time position the unit
measuring rod perpendicular to the field, i.e., parallel to the x2

axis. See Figure 5.7.

On the x1 axis, x1 = r, x2 = 0, x3 = 0. dx 2 = 1, while dx 1 = dx 3 =
dx 4 = 0, i.e., only dx 2 �= 0. ds2 = −1 = g22dx 2

2. In this case, again using
Eq. (5.70), g22 = −1 − α(x2=0)2

r3 = −1, and we have

−1 = g22(dx 2)2 = −(dx 2)2 ⇒ dx 2 = 1

Thus, the unit-length measuring rod laid perpendicular to a radius, i.e.,
perpendicular to the field, is not shortened. The gravitational field of
the mass at the origin has no effect on the length of a rod perpendicular
to the field.

3. Non-Euclidean Space: The previous two sections show the length
of a measuring rod will depend on its orientation (parallel to or
perpendicular to the gravitational field) and its location r. In this
first approximation it is seen Euclidean geometry is no longer valid.

4. Gravitational Redshift : Consider a clock at rest in a static grav-
itational field. dx 1 = dx 2 = dx 3 = 0. ds2 = +1 = g44(dx 4)2. Using
Eq. (5.70) and Eq. (5.68a),

dx 4 =
1√
g44

=
1√

1+(g44−1)
≈ 1− 1

2
(g44−1) = 1+

κ

8π

∫
ρdτ

r
= 1+

α

2r

(5.72)

This indicates a clock runs more slowly when in the vicinity of
mass, i.e., in a gravitational field. A consequence of this is that
the spectral lines coming to us from the vicinity of a more massive
object (stars) will appear to be shifted to lower frequencies, what
is known as the redshift.

5. The Bending of Starlight: Consider a light ray traveling in a direc-
tion given by the quantities dx 1, dx 2, dx 3. In the special theory of
relativity the speed of light is given by
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−(dx 1)2 − (dx 2)2 − (dx 3)2 + (dx 4)2 = 0

⇒ −(dx 1)2 − (dx 2)2 − (dx 3)2 + (cdt)2 = 0

⇒ c2 =
(

dx 1

dt

)2

+
(

dx 2

dt

)2

+
(

dx 3

dt

)2

And, therefore, in the general theory of relativity by

ds2 = gμνdxμdxν = 0 (5.73)

Given the quantities dx 1, dx 2, dx 3, one can form the quantities
dx1

dx4 , dx2

dx4 , dx3

dx4 and, from these, the speed γ of the light ray:

γ =

√(
dx 1

dx 4

)2

+
(

dx 2

dx 4

)2

+
(

dx 3

dx 4

)2

If the gμν are not constant, the direction of the light ray will be bent.

Consider again a gravitational field produced by a point mass M at the
origin. The gravitational field is a distance Δ from the origin, measured
along the x1 axis. As one moves out the x1 axis the potential φ will
change. Consider a ray of light traveling in the x2 direction, with a
small portion of the wave front in the x1x3 plane. See Figure 5.8 (the
x3 axis is not shown).

The wave front extends some length dx 1. Since the potential varies
with x1, so also will the speed of light vary with x1. In time dt , the wave
front will move forward in the x2 direction, the left end moving forward
a distance γleftdt , and the right end a distance γrightdt . See Figure 5.9.

x1

x2

Wave Front of Width dx1

D

g

Fig. 5.8 On the influence of gravita-
tion on the propagation of light.

x1

x2

Δ

gright dtgleft dt

Fig. 5.9 γ initial.
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dx1

gright dt

g left dt

g left dt
–g right dt

dq

dx1

dq

Fig. 5.10 The change in direction dθ.

The change in direction dθ is given by (see Figure 5.10):

dθ ≈ γleftdt − γrightdt
dx 1 = − (γright − γleft) dt

dx 1

= − (γright − γleft)
dx 1

dx 2

γavg
= − 1

γ

∂γ

∂x1
dx 2

The total deflection is the sum (integral) of the dθs. Remembering that,
in these units, γ = 1, the total deflection B is given as

B =

+∞∫
−∞

∂γ

∂x1
dx 2

For light traveling in the x2 direction, dx 1 = 0, dx 2 �= 0, dx 3 = 0, dx 4 =
dt �= 0. From Eq. (5.73), for a beam of light,

ds2 = 0 = g22(dx2)2 + g44dt2 + g24dx 2dx 4 + g42dx 4dx 2.

But, by Eq. (5.70), g24 = 0, g42 = 0. The speed of light is γ = dx 2/dt =√−(g44)/g22. Using Eqs. (5.70) for g22 and g44,

γ =
√−g44

g22
=

√√√√ − (
1 − α

r

)
−
(
1 + α(x2)2

r3

) ≈
(

1 − 1
2

α

r

)(
1 − 1

2
α
(
x2
)2

r3

)

≈ 1 − 1
2

α

r

(
1 +

(
x2
)2

r2

)
(5.74)

Carrying out the calculation gives (see Appendix 5.4.8 for details)

B =
2α

Δ
=

κM

2πΔ
Considering the situation of the sun being a point mass of mass M, Δ
being the radius of the sun (the light ray “grazing” the edge of the sun),
and κ given by Eq. (5.69), the total deflection of a light ray will be 1.7
seconds of arc.

This result is twice the deflection predicted in his 1911 paper, “On the
Influence of Gravitation on the Propagation of Light.”78 The factor of
two arose from the fact that the 1911 calculation took into account the
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variation of time in the gravitational field,79 whereas the 1915 calculation
included the variation in spatial dimensions, in addition to the variation
of time in the gravitational field.

6. The Precession of the Perihelion of Mercury: As a last comment,
Einstein refers to the precession of the perihelion of the planet Mer-
cury, a calculation in his November 18, 1915, report to the Prussian
Academy of Science, “Explanation of the Perihelion Motion of Mer-
cury from the General Theory of Relativity.”80 (See Appendix 5.4.9
for details.)

Classical theory could account for the precession of the perihelion of
Mercury, but not exactly. After a number of attempts, there remained
an unaccounted 45′′ ± 5′′ of precession advance each century. The general
theory of relativity predicted a precession advance of 43′′, well within
the 45′′ ± 5′′. As Einstein comments, “This theory therefore agrees
completely with the observations.”81 This result, coming out of the
general theory in a natural way with no special hypotheses, convinced
Einstein of the correctness of the theory. See Section 5.3.1.1 for further
discussion of the precession of the perihelion of Mercury.

5.3 Discussion and Comments

5.3.1 Verification of the General Theory of
Relativity

5.3.1.1 The Precession of the Perihelion of Mercury
One of the great triumphs of Newton’s theory of gravity had been the
prediction of the existence of the planets Neptune and Uranus to explain
the orbits of the other planets (see Section 1.3). However, Newton’s
theory of gravity was unable to explain exactly the orbit of the planet
Mercury.

Due to the Newtonian gravitational force between the sun and the
planet, the orbit of each planet is an ellipse. But due to the gravitational
interaction between planets, the elliptical orbit does not exactly close in
on itself, the difference being very slight. These orbits were described
most conveniently as being a perfect elliptical orbit (due to the planet–
sun gravitational interaction), but an ellipse which rotated very slowly
(due to the planet–planet interactions). This rotation was known as the
precession of the perihelion of the orbit, i.e., a rotation of the line drawn
from the sun to the perihelion (point of closest approach) of the planet’s
orbit. See Figure 5.11.

For Mercury, the calculated precession of the perihelion (from inter-
actions with other planets) was about 8.85 minutes of arc per century;
the observed precession of the perihelion was about 9.55 minutes of arc
per century – the difference being about 43 seconds of arc per century
(this is about one extra revolution of Mercury’s orbit every three million
years). Solutions were proposed, such as the presence of another planet
(the planet Vulcan); or Newton’s gravitational force was not exactly a
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Fig. 5.11 Precession of the perihelion
of Mercury.

1/R2 law (perhaps the exponent 2 is not exactly 2 but rather 2 + ε,
where ε is an extremely small correction); or the non-sphericity of the
sun. Each of these, and other, solutions were tried but found wanting,
usually because of other effects they predicted that were not observed.
Similar results for the precession of the orbits of Venus and the earth
were present, but smaller by a factor of five or more.82

Einstein’s general theory of relativity predicted exactly these miss-
ing 43 seconds of rotation each century. More importantly, the result
emerged in a most natural way. The discovery of the explanation of
the precession of the rotation of the perihelion of Mercury without the
need of any special hypotheses was, in the words of Pais, “the strongest
emotional experience in Einstein’s scientific life . . . Nature had spoken
to him. He had to be right.”83 Einstein writes, in a letter to Ehrenfest,
“Imagine my delight at realizing that general covariance was feasible
and at finding out that the equations yield Mercury’s perihelion motion
correctly. I was beside myself with joy and excitement for days.”84 Of
all the early tests of the idea of curved spacetime this was the earliest,
the most convincing, and the most dramatic.85

5.3.1.2 The Bending of Starlight
In his 1915 calculations of the bending of starlight passing near the sun,
Einstein arrived at a deflection of 1.7 seconds, twice the value of his
previous calculations (0.85 seconds). See Appendix 5.4.9 for a discussion
of how the deflection was measured. The failure of the expeditions to
measure the bending of starlight prior to 1915 (Brazil in 1912 and Russia
in 1914) saved Einstein from the embarrassment of having predicted the
wrong value.86

Einstein sent a copy of his general theory paper to Willem de Sitter
who, in turn, forwarded it to Arthur Eddington, secretary of the Royal
Astronomical Society in London. Eddington, a strong mathematician,
was captivated by the beauty of the theory. Fortuitously, another solar
eclipse, with ideal surrounding factors (bright star fields, full eclipse at
certain locations, etc.), would take place in 1919. Eddington set about
making the preparations for the May 29, 1919, eclipse.87

Two expeditions were dispatched to make eclipse observations, one to
Sobral in Brazil (near the equator on the east coast of South America),
the other led by Eddington to Principe Island off the coast of Spanish
Guinea (now named Equatorial Guinea, on the west coast of Africa). On



5.3 Discussion and Comments 215

June 3, Eddington said, of the sixteen photographs taken on Principe,
he could not yet make any announcement, but added, “one plate that
I measured gave a result agreeing with Einstein.” Later in his life,
Eddington referred back to this moment as “the greatest moment of his
life.” But further confirmation awaited full analysis of the photographs
back in England. On September 12, Eddington gave a preliminary report
on the results to the British Association for the Advancement of Science.
But no one had thought to get the word to Albert Einstein!88 Finally, on
September 22, 1919, Lorentz wired to Einstein, “Eddington found stellar
shift at solar limb, tentative value between nine-tenths of a second and
twice that.”89

On Thursday, November 6, 1919, Albert Einstein was present at the
meeting of the Fellows of the Royal Society and Royal Astronomical
Society to hear the official results. These, as announced by Eddington,
showed the bending of light as predicted by Einstein’s general theory of
relativity by an amount of 1.98±0.30 seconds and 1.61±0.30 seconds as
observed at Sobral and Principe, respectively. J. J. Thomson, President
of the Royal Society, proclaimed it “the most important result obtained
in connection with the theory of gravitation since Newton’s day. . . . The
result [is] one of the highest achievements of human thought.”90

When Ilse Rosenthal-Schneider, a student of Einstein’s, expressed her
joy that the results agreed with his calculations, Einstein replied simply,
“But I knew that the theory is correct.” Following up, she asked what
if there had been no confirmation of the prediction, Einstein countered,
“Then I would have been sorry for the Lord – the theory is correct.”91

At this point, in 1919, Albert Einstein became perhaps the most
famous person in the world. He had predicted the impossible – that
gravity would bend light and, further, he had predicted the exact amount
of this bending.

Einstein was now convinced that gravity was a property of space,
and not something reaching out from the sun and pulling on the earth
as Newton had said. The effect of the mass of the sun was to distort
the space around it. The earth, then moving through this distorted
space, followed the path determined by the distortions in space. The
sun distorts the space. The earth follows these distortions.

5.3.1.3 The Gravitational Redshift
By the early 1920s, two of the three predictions of the general theory
of relativity had been confirmed. The predicted precession of the peri-
helion of Mercury agreed with long-known observations. The bending of
starlight had recently been confirmed (in 1919). The third prediction,
the gravitational redshift, was still awaiting certain confirmation.92

Already, in 1915, Erwin Freundlich had confirmed the redshift, but other
astronomers raised questions regarding Freundlich’s analysis and were
unable to confirm the results.93

The first confirmation of substantial accuracy was the Pound–Rebka
experiment of 1959. Although difficult in practice, the experiment is
simple in concept. An emitter at rest emits a signal of frequency ν0. A
receiver, also at rest, receives the signal at the same frequency ν0. If
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there is a constant uniform velocity between the emitter and receiver,
the frequency at the receiver will be Doppler shifted by some amount
ΔνDoppler. A second source of a frequency change is if the system of
(emitter plus detector) is accelerating, producing some frequency shift
Δνacceleration. From the equivalence principle, the same frequency shift
will occur in a gravitational field, Δνgravity = Δνacceleration. In the
Pound–Rebka experiment, Fe57 was used as the emitter, placed at the
top of a 22.5 m tower. Fe57 was used also as the receiver, placed at
the bottom of the tower. If the gravitational redshift predictions were
correct, the frequency of the signal will have been shifted by an amount
Δνgravity when it has reached the receiver. This reduces the absorption
efficiency of the detector an amount that was measurable. The emitter
then was given a velocity to produce a Doppler shift. The velocity giving
the maximum absorption would correspond to the Doppler shift that
exactly compensated the gravitational redshift. The ultimate result of
the Pound–Rebka experiment was a confirmation of the gravitational
redshift prediction to about 1%.94

The terrestrial confirmation of the general theory of relativity had
been delayed some 45 years because precise enough measurements of the
atomic frequencies were not possible until the discovery of the Mössbauer
effect in 1958. In 1961, Ludwig Mössbauer received the Nobel prize for
the Mössbauer effect.

5.3.2 Beyond the General Theory of Relativity:
Cosmology and the Unified Field Theory

With the completion of the general theory of relativity in late 1915,
and its publication in 1916, Einstein moved on to generalize the theory
to include also the electromagnetic fields of Maxwell (the unified field
theory), and to use the theory to speculate on the size and structure of
the universe (founding the modern theoretical study of cosmology95). His
first paper on cosmology, “Cosmological Considerations in the General
Theory of Relativity,”96 was published in 1917, and his first papers on
the unified field theory were published in 1922 and 1923. The 1922 and
1923 papers were reactions to work done by others. In 1925, he published
his own version of a unified field theory.97

But, throughout this period, he continued his search for an under-
standing of quantum mechanics. One of his hopes was that it would
emerge out of a properly developed unified field theory. During this
period there had arisen a wide-spread belief that Einstein simply did
not care anymore about the quantum theory and had moved on. To
the contrary, he was pursuing a unified field theory that he was hoping
not only would join together gravitational and electromagnetic fields,
but also would contain within it the basis for a new interpretation of
quantum phenomena.98

5.3.2.1 Cosmology
Cosmology, as the philosophical study and explanation of the nature of
the universe,99 dates from the ancient Greeks describing the universe
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as earth-centered, with the heavens being perfection and composed of
quintessence. (See Section 1.2.1.)

The ancient Greek concept of a finite universe with the earth at its
center was refuted by the work of Copernicus (earth not at the center)
and Newton (a finite material universe would collapse upon itself).
Newton proposed an infinite universe populated with an infinitude of
stars spread throughout. In the nineteenth century, an “island” universe
existing within an infinite and empty space was proposed. Each of these
proposed universes was a static, unchanging universe.100

In Newton’s infinite universe, the infinite number of stars would pro-
duce a strong force that would give the stars a high velocity throughout
the universe. But observation showed the velocities of stars to be small,
contrary to the assumption of an infinitude of stars. The island universe
also was ruled out, but for more complex reasons. Einstein’s proposed
universe was a curved space, which turned back on itself much as the
surface of a sphere turns back on itself in three-dimensional space. Let
us now begin with the ideas of Isaac Newton.101

Isaac Newton saw the universe as playing out against a backdrop of
absolute space, and set about to determine our motion relative to this
absolute space. When Newton developed his mechanics, he spoke of the
laws of mechanics being valid in absolute space. Newton then realized,
if the laws were valid in absolute space they would be valid also in
any reference system moving with constant linear velocity relative to
absolute space, i.e., the reference frame of absolute space could not be
distinguished from a reference frame moving through absolute space at
a constant linear velocity.

To distinguish absolute motion (motion relative to absolute space)
from relative motion, Newton proposed an experiment that has become
known as “Newton’s Bucket” (see Appendix 5.4.10 for further details
in Newton’s words). In this experiment, a bucket nearly full of water is
sitting at rest on a table. The water is motionless relative to the bucket
and the surface of the water remains flat. The bucket is now set rotating
and, once the water has begun rotating at the same rate as the bucket,
the relative velocity between the water and the bucket is again zero. But
now the surface of the spinning water is concave, rising up on the sides of
the bucket and being depressed in the center. Since the relative velocity
of the water and bucket is the same in both instances, the concave surface
of the water in the second instance cannot be due to the relative velocity
of the water and bucket. This indicated to Newton the rotation is relative
to absolute space.102

In the late 1800s, Ernst Mach reinterpreted Newton’s bucket experi-
ment, noting, “Newton’s experiments with the rotating vessel of water
simply informs us that [the curvature of the water’s surface] is produced
by its relative rotation with respect to the mass of the earth and other
celestial bodies.”103

Thus the question remained unanswered. Is there an absolute space
and, if so, are there any effects that would show its existence? Ein-
stein’s special theory of relativity had shown velocities are relative, not
absolute, while his general theory of relativity had shown accelerations
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also are relative, not absolute. Einstein believed there were no effects
that depended on the concept of absolute space and, thus, in a Machian
perspective, believed there was no place for the concept of absolute space
in science.

After 1915, Einstein’s general theory of relativity became the accepted
theory of gravitation and the foundation on which to discuss the large-
scale structure of the universe.104 Building on the general theory, in
1917 he published “Cosmological Considerations in the General Theory
of Relativity.”105 This is the beginning of cosmology as the scientific
study of the origin and structure of the universe.

In the cosmology paper, Einstein looked first at Newton’s theory
of gravitation. Newton’s gravitational potential, φ, satisfies Poisson’s
equation:

∇2φ = 4πKρ

For φ to be a constant at spatial infinity, the density of matter,
ρ, must go to zero at infinity more rapidly than 1/r2. The ratio of
densities at infinity and at the center corresponds to the finite difference
in potential between infinity and the center. If the density at infinity
is zero, to achieve a finite difference in the potential at infinity and at
the center, the density at the center must also be zero.106 Looking at
these, and other concerns, Einstein believed it would not be possible to
overcome them within Newton’s theory. To overcome them he suggested
a modification of the Poisson equation,

. . . a method which does not in itself claim to be taken seriously; it merely
serves as a foil for what is to follow. In place of Poisson’s equation we write

∇2φ − λφ = 4πKρ

where λ denotes a universal constant. If ρ0 be the uniform density of a
distribution of mass, then

φ = −4πK

λ
ρ0

is a solution [to the modified Poisson equation]. This solution would correspond
to the case in which the matter of the fixed stars was distributed uniformly
through space, if the density ρ0 is equal to the actual mean density of the
matter in the universe. The solution then corresponds to an infinite extension
of the central space, filled uniformly with matter.107

λ, the constant introduced by Einstein, is called the cosmological
constant. It is introduced in an analogous manner into the field equations
of gravitation.108

Rμν − 1
2
gμνR = −κTμν

is replaced by

Rμν − 1
2
gμνR − λgμν = −κTμν



5.3 Discussion and Comments 219

Calculation shows

λ =
1

R2
=

1
2
κρc2

Thus λ is found to be proportional to ρ, the mean mass density
of the universe, and inversely proportional to the square of R, the
radius of curvature of the universe.109 This Einsteinian universe does
not encounter the problem of the Newtonian infinite universe because
the Einstein universe is a three-dimensional spherically bounded space
of radius R =

√
1/λ.110 Einstein concludes the cosmology paper with

these words:

Thus the theoretical view of the actual universe, if it is in correspondence
with our reasoning, is the following. The curvature of space is variable in
time and place, according to the distribution of matter, but we may roughly
approximate to it by means of a spherical space. At any rate, this view is
logically consistent, and from the standpoint of the general theory of relativity
lies nearest at hand; whether from the standpoint of present astronomical
knowledge, it is tenable, will not here be discussed. In order to arrive at this
consistent view, we admittedly had to introduce an extension of the field
equations of gravitation which is not justified by our actual knowledge of
gravitation. It is to be emphasized, however, that a positive curvature of space
is given by our results, even if the supplementary term is not introduced. That
term is necessary only for the purpose of making possible a quasi-static distri-
bution of matter, as required by the fact of the small velocities of the stars.111

“The introduction of [the cosmological constant λ] allowed this first
quantitative cosmological model to be uniform in space and time, with
no evolution taking place. . . . No redshifts are predicted in this universe
model.”112 Einstein believed that “in a consistent relativity theory there
cannot be inertia relative to ‘space’ but only inertia of masses relative to
each other.”113 Calculation showed that if there is no matter, i.e., ρ = 0,
there is no inertia in the Einstein universe. This satisfied Einstein’s
strong belief at the time of the relativity of inertia.114

Einstein’s postulate of a uniform density was an audacious move
because it was contrary to generally accepted information at the time.
As George Ellis states it:

. . . [A]t the time Einstein proposed his static universe model, not only was
there no evidence available that the universe might be spatially homogeneous,
but even the natures and distances of galaxies (‘nebulas’) were unknown.
Indeed it was plausibly thought by many that they might all be subsystems
of the Milky Way – a manifestly anisotropic and inhomogeneous structure. . . .
Einstein’s universe model implied a completely uniform matter distribution
despite the observational evidence then available.115

In 1917, upon learning of Einstein’s cosmological paper, De Sitter pro-
duced a second solution of Einstein’s field equations, these for a density
ρ = 0. This second solution, now termed the de Sitter universe, predicted
gravitational redshifts. It also allowed the possibility of “inertia relative
to space,” raising again the possibility of an absolute space independent
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of matter. Over the next year, Einstein looked for errors in the de Sitter’s
calculations, but concluded de Sitter’s calculations were correct.116

The Einstein and de Sitter universes, Einstein’s uniformly full and
de Sitter’s uniformly empty, were static, non-evolving universes. In
1922, the Russian, Alexander Friedmann, proposed a third model of
the universe, one that was not static but was evolving. Friedmann did
not determine if there were any redshifts.117 George Gamow, a student
of Friedmann, reported that

Friedmann noticed that Einstein had made a mistake in his alleged proof that
the universe must necessarily be stable and unchangeable in time. . . .

It is well known to students of high-school algebra that it is permissible to
divide both sides of an equation by any quantity, provided that this quantity
is not zero. However, in the course of his proof, Einstein had divided both
sides of one of his intermediate equations by a complicated expression which,
in certain circumstances, could become zero.

In the case, however, when this expression becomes equal to zero, Einstein’s
proof does not hold, and Friedmann realized that this opened an entire
new world of time-dependent universes: expanding, collapsing, and pulsating
ones.118

In 1927, Georges Lemâıtre, apparently unaware of Freidmann’s work,
developed a model of an expanding and evolving universe similar to
Friedmann’s, but including an expected redshift. He is given credit for
being the first person to seriously propose an expanding universe as a
model of the real universe. Lemâıtre’s model begins like an Einstein
static universe and evolves into a de Sitter static universe; that is, it
lies “between” the Einstein and de Sitter universes. Since the accepted
wisdom at that time was that the universe was static, i.e., not changing in
time, Lemâıtre’s ideas had little influence on cosmological discussions.119

The observed universe of course was neither full nor empty, thus
neither really an Einsteinian, everywhere full universe, nor a de Sitter,
everywhere empty universe. When Hubble announced his red shift
findings in 1929, it was apparent that something different was needed;
what Eddington called an intermediate solution, a solution between de
Sitter’s emptiness and Einstein’s fullness. Lemâıtre’s model, languishing
on the sidelines the past two years, was recognized as the intermediate
solution Eddington was looking for. “After Lemâıtre’s work was called
to the attention of the astronomical community by Eddington [in 1930],
the expanding and evolving universe concept became widely accepted,
and an explosion of papers then explored this concept.”120 “Consensus
formed around the concept that the universe began in a static Einstein
state, suffered an indeterminate period of ‘stagnation,’ started expanding
due to an instability as described by Lemâıtre, and would end as a de
Sitter universe with galaxies spread out so thinly that a virtual emptiness
would result.121 These universes would have no beginning – they had
existed forever in the past as an Einstein universe – and they would have
no end – they would exist forever into the future, eventually becoming
a de Sitter universe.

With the possibility of a non-static universe there no longer was the
need for Einstein’s cosmological constant. Einstein dropped the cosmo-
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logical constant term from the field equations, i.e., set λ equal to zero.
He felt removing the cosmological constant removed a “blemish on the
beauty of the theory.”122 Years later, looking back on his introduction
of the cosmological constant, he said, “If Hubble’s expansion had been
discovered at the time of the creation of the general theory of relativity,
the cosmological member never would have been introduced. It seems
now so much less justified to introduce such a member into the field
equation, since its introduction loses its sole original justification –
that of leading to a natural solution of the cosmological problem.”123

More emphatically, in a conversation with Gamow, Einstein said, “the
introduction of the cosmological constant was the greatest blunder [I]
ever made in [my] life.”124

R. W. Smith suggests the addition, and subsequent removal, of the
cosmological constant also had an important impact on Einstein’s sub-
sequent scientific methodology,

the cosmological constant had the status of an ad hoc hypothesis, not required
by the kinds of simplicity considerations that were such an important driving
force in Einstein’s work. Realizing that the constant was not needed could
well have renewed Einstein’s faith in simplicity as a criterion of theory
choice, and in this light it is perhaps no accident that this theme emerged
so much more prominently than before in Einstein’s writings in the early to
mid 1930s.125

In 1933, Einstein and de Sitter published a new model, known as the
Einstein–de Sitter universe, that was the simplest expanding universe
model consistent with a zero cosmological constant. But a zero cosmo-
logical constant indicates a singular origin of the universe, i.e., it has a
beginning (the big bang) and has existed for a finite time. Lemâıtre then
started a search for remnant radiation from the big bang, the radiation
discovered in 1965 by Penzias and Wilson:126

Returning to the theme of the reality of absolute space, in 1952
Einstein wrote,

On the basis of the general theory of relativity . . . space as opposed to ‘what
fills space’ . . . has no separate existence. . . . If we imagine the gravitational
field, i.e. the functions gik , to be removed, there does not remain a space . . . ,
but absolutely nothing, and also no ‘topological space.’ For the functions gik

describe not only the field, but at the same time also the topological and
metrical structural properties of the manifold. . . . There is no such thing as an
empty space, i.e. a space without field. Space-time does not claim existence
on its own, but only as a structural quality of the field.127

And in 1954, if there were any lingering doubt on his views, Einstein
wrote,

It required a severe struggle to arrive at the concept of independent and
absolute space, indispensable for the development of theory. It has required
no less strenuous exertions subsequently to overcome this concept – a process
which is by no means as yet completed.128
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5.3.2.2 The Unified Field Theory
By the end of 1915, the general theory of relativity was complete, verified
by the precession calculations for Mercury, and awaiting confirming
measurements for the bending of starlight and for the redshift of radi-
ation in a gravitational field. Just as he had generalized the special
theory of relativity to the general theory of relativity, Einstein was
now looking to generalize the general theory of relativity to include
the electromagnetic field, at that time the only field other than gravity
known to exist. As Pais describes the situation:

. . . the very existence of the gravitational field is inalienably woven into the
geometry of the physical world. . . . Riemannian geometry does not geometrize
electromagnetism. Should not one therefore try to invent a more general geom-
etry in which electromagnetism would be just as fundamental as gravitation?
If the special theory had unified electricity and magnetism and if the general
theory had geometrized gravitation, should not one try next to unify and
geometrize electromagnetism and gravity? . . . [The purpose of his program for
a unified field theory] was neither to incorporate the unexplained nor to resolve
any paradox. It was purely a quest for harmony.129

The first unified field theory based upon the general theory of
relativity was by David Hilbert in 1915.130 In 1919, Einstein considered
a tentative link in his gravitational equations, suggesting electromag-
netism constrains gravitation, this being perhaps his first foray into a
unified field theory.131 Although Einstein’s interest in a unified field
theory dates back to this time, his first proposal for a theory based on
the general theory of relativity was not published until 1925.132

In 1919, Theodor Kaluza sent to Einstein a paper, requesting his help
in having the paper published in the Prussian Academy.133 In the paper,
Kaluza speculated that

the electromagnetic field tensor might be a truncated Christoffel symbol. Since,
in a four-dimensional world, these symbols are saturated by the components
of the gravitational field, one is led ‘to the extremely odd decision to ask for
help from a new, fifth dimension of the world.’ . . . [This] possibility could be
implemented by assuming proportionality of the electromagnetic potential to
the mixed (μ5) components of the metric.134

Thus from the beginning Einstein was interested in a five-dimensional
approach.135

In the general theory of relativity, the gravitational potential was
represented by a symmetric tensor of rank two (a 4 × 4 symmetric
matrix), whereas in the relativistic treatment of Maxwell’s theory, the
electromagnetic field was represented by an antsymmetric tensor of rank
two (a 4 × 4 antisymmetric matrix).

. . . Einstein discovered that there existed a mathematical literature on a
type of Riemannian space including both curvature and torsion. Torsion is
represented by an antisymmetric tensor that generalizes a classical notion in
differential geometry. In those spaces that possess a linear connection, there
are two limiting cases: if the torsion is zero, but not the curvature, the space
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is Riemannian; if the curvature equals zero, but not the torsion, it is a space
with ‘distant parallelism’ (Fernparallelismus) or ‘absolute parallelism.’ . . .

In the ‘old’ theory of gravitation (general theory of relativity)
Riemannian space-time had curvature but no torsion. Now Einstein
suggested a space with torsion and no curvature. Einstein was led in
that direction because there is in this case an antisymmetric tensor of
rank two, which could be taken to be the electromagnetic tensor, and
another symmetric tensor of rank two, which could be used to represent
gravitation.136

In a 1928 paper, Einstein introduced the new geometry, characterized
by the property of distant parallelism.137

For the last thirty years of his life, the unified field theory dominated
Einstein’s thinking. Periodically he would return to the five-dimensional
approach of Kaluza, interspersed with work in four-dimensional space.
His goal was clear: (1) to join gravity with electromagnetism into one
unified theory, and (2) to obtain from this unified theory an under-
standing of the quantum theory. Although this journey never achieved
the success of his journey to the general theory of relativity, he remained
in pursuit of the unified field theory until his last days.

5.4 Appendices

5.4.1 Multiplication of Tensors

5.4.1.1 An Example of the Outer Multiplication of
Two Vectors

Consider two three dimensional vectors, �A and �B, expressed in Carte-
sian coordinates, with unit vectors î, ĵ, k̂ aligned with the x, y, and
z axes, respectively. �A = A1î + A2ĵ + A3k̂ and �B = B1î + B2ĵ + B3k̂.
The outer multiplication of these two vectors is

( �A = A1î + A2ĵ + A3k̂)( �B = B1î + B2ĵ + B3k̂) =⎛
⎜⎝

A1B1 î̂i + A1B2îĵ + A1B3îk̂+

A2B1ĵ î + A2B2ĵĵ + A2B3ĵk̂+

A3B1k̂î + A3B2k̂ĵ + A3B3k̂k̂

⎞
⎟⎠ (5.75)

5.4.1.2 “If AμνBμν is a scalar for any choice of the
tensor Bμν , then Aμν has tensor character.”138

If AμνBμν is a scalar, then A′
στB′στ = AμνBμν . But, from Eq. (5.9),

B′στ = ∂x′σ
∂xμ

∂x′τ
∂xν Bμν . Inverting this, with στ ↔ μν and primed ↔

unprimed, we obtain Bμν = ∂xμ

∂x′σ
∂xν

∂x′τ B′στ . We can write,

A′
στB′στ = AμνBμν = Aμν

∂xμ

∂x′σ
∂xν

∂x′τ B′στ

[
A′

στ − ∂xμ

∂x′σ
∂xν

∂x′τ Aμν

]
B′στ = 0
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For this to be true for arbitrary B′στ , it requires that [ ] = 0. Thus,

A′
στ =

∂xμ

∂x′σ
∂xν

∂x′τ Aμν

By definition, this is the covariant transformation ofAμν . Thus Aμν is a
covariant tensor.

5.4.2 Some Aspects of the Fundamental
Tensor gμν

5.4.2.1 The Determinant of gμν

The determinant of the identity tensor δν
μ = |δν

μ| = 1. Taking the
determinant of gμαgαν = δν

μ we have:

|gμαgαν | =
∣∣δν

μ

∣∣
|gμα| |gαν | = 1

Or, since the two determinants are calculated separately, each set of
indices (subscripts and superscripts) can be set to the same indices, μν.

|gμν | |gμν | = 1

5.4.2.2 The Volume Scalar
Expressed in terms of contravariant differentials, the four-dimensional
volume element is dτ = dx 1dx 2dx 3dx 4. Changing to another set of coor-
dinates, {x′

1, x
′
2, x

′
3, x

′
4} the volume element transforms as dτ ′ = Jdτ ,

where J is the Jacobian of the transformation, J ≡ |∂x′σ
∂xμ |.

The fundamental tensor gμν transforms as g′στ = ∂xμ

∂x′σ
∂xν

∂x′τ gμν . Taking
the determinant of this equation:

g′ = |g′στ | =
∣∣∣∣ ∂xμ

∂x′σ
∂xν

∂x′τ gμν

∣∣∣∣
=
∣∣∣∣ ∂xμ

∂x′σ

∣∣∣∣
∣∣∣∣ ∂xν

∂x′τ

∣∣∣∣ |gμν |

=
∣∣∣∣ ∂xμ

∂x′σ

∣∣∣∣
2

g

Taking the square root of this equation,
√

g′ = | ∂xμ

∂x′σ |√g. Multiplying
the volume element dτ ′ by

√
g′,√

g′dτ ′ =
(∣∣∣∣∂xμ

∂x′
σ

∣∣∣∣√g

)
dτ ′

=
(∣∣∣∣ ∂xμ

∂x′σ

∣∣∣∣√g

)(∣∣∣∣∂x′σ

∂xμ

∣∣∣∣ dτ

)

=
√

gdτ

Since | ∂xμ

∂x′σ | and |∂x′σ
∂xμ | are the determinants of the Jacobian of trans-

formation from the unprimed to the primed coordinates, and then from
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the primed to the unprimed coordinates, the two transformations return
the volume element to the original coordinates and their product must
be equal to one.

5.4.3 The Equation of the Geodetic Line

5.4.3.1 Derivation of Eq. (5.20c): The Equations of
the Geodetic Line

The line drawn between two points P and P′ in four dimensional space
is a geodetic line if

δ

P ′∫
P

ds = 0 (5.20)

The geodetic line is the physical path followed. Einstein derives the
equation of the geodetic line by “carrying out the variation in the usual
way.”139 See Figure 5.12.

1. Consider a number of other paths in close proximity to the geodetic
line that also pass through the points P and P′. See Figure 5.13.

2. Let λ be some function of the contravariant coordinates, λ =
λ(x1, x2, x3, x4), that defines a family of surfaces that intersect
the geodetic line as well as the other lines in proximity to it. See
Figure 5.14. (In four-dimensional space the surfaces defined by λ =
constant are three-dimensional surfaces.)

3. The coordinates xν on a given line (geodetic or proximate) can be
expressed as a function of the parameter λ, xν = xν(λ).

4. Designate the value of λ for the surface passing through the
point P as λ1 = λ(P ) = λ(x1

P , x2
P , x3

P , x4
P ) and the value of λ

P

P¢

Fig. 5.12 The geodetic line between
points P and P′.

P

P¢

Fig. 5.13 The geodetic line and some
proximate lines.
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P¢

P

l2

l1

lm

Fig. 5.14 The family of surfaces
defined by λ.

for the surface passing through the point P′ as λ2 = λ(P ′) =
λ(x1

P ′ , x2
P ′ , x3

P ′ , x4
P ′).

5. For a given λ, δ represents the transition from the point on the
geodetic line to the point on the proximate line.

6. The integral
P ′∫
P

ds is from the point P to the point P′ or, equiva-

lently, from λ1 toλ2.

The expression for ds is manipulated in the following manner:

ds2 = gμνdxμdxν

= gμν

(
dxμ

dλ
dλ

)(
dxν

dλ
dλ

)

= gμν
dxμ

dλ

dx ν

dλ
(dλ)2

ds2 = w2 (dλ)2

With w2 = gμν
dxμ

dλ
dxν

dλ

Thus, Eq. (5.20) can be rewritten as

δ

P ′∫
P

ds = 0 = δ

λ2∫
λ1

wdλ =

λ2∫
λ1

δwdλ (5.20a)

The δ and the integral can be interchanged since the integration is over
λ and the variation δ is for a given value of λ.

The variation of an arbitrary function f is δf = ∂f
∂x′σ δx′σ. Written in

this form, it is seen that δx′σ is a contravariant tensor while, by Eq.
(5.7), ∂f

∂x′σ = ∂xν

∂x′σ
∂f
∂xν transforms as a covariant tensor. By Eq. (5.6),

the quantity δf is an invariant. (For completeness, it should be noted
that we could write δf = ∂f

∂xσ
δxσ. Since δf was just shown to be an

invariant and dxσ is a covariant vector, the derivative ∂f
∂xσ

must have
the properties of a contravariant vector.)

It now remains to determine the expression for δw. The variation δ is
not a variation in λ (δ is for a fixed value of λ), rather it is a variation
in xν , i.e., δ ⇒ Δxν , not Δλ. Working with the expression for w2,
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δ
(
w2

)
= 2wδw = δ

(
gμν

dxμ

dλ

dxν

dλ

)

=
{(

∂gμν

∂xσ
δxσ

)
dxμ

dλ

dxν

dλ
+ gμνδ

(
dxμ

dλ

)
dx ν

dλ
+ gμν

dxμ

dλ
δ

(
dxν

dλ

)}

(a) Since the indices μ and ν in the second and third terms are each
summed over the values 1 to 4, the terms are the same, and can be
written as twice either of them.

(b) Since the δ is at constant λ, we can exchange the variation δ and
the derivative with respect to λ, i.e., δ(dxμ

dλ ) = d
dλ (δxμ).

(c) In the second term, replace the index ν by the index σ:

δw =
1

2w

{(
∂gμν

∂xσ
δxσ

)
dxμ

dλ

dxν

dλ
+ 2gμσ

dxμ

dλ

d

dλ
(δxσ)

}

Substituting this expression for δw into Eq. (5.20a):

0 =

λ2∫
λ1

δwdλ =

λ2∫
λ1

{
1

2w

∂gμν

∂xσ

dxμ

dλ

dxν

dλ
δxσ +

gμσ

w

dxμ

dλ

d

dλ
(δxσ)

}
dλ

Working with the second term, and using

d

dλ
(AB) =

(
dA
dλ

)
B + A

(
dB
dλ

)
⇒ A

(
dB
dλ

)
=

d

dλ
(AB) −

(
dA
dλ

)
B

We obtain(
gμσ

w

dxμ

dλ

)
d

dλ
(δxσ) =

d

dλ

(
gμσ

w

dxμ

dλ
δxσ

)
− δxσ d

dλ

(
gμσ

w

dxμ

dλ

)

The integration over the first term is equal to zero, since δxσ = 0 at λ1

and at λ2:

λ2∫
λ1

d

dλ

{
gμσ

w

dxμ

dλ
δxσ

}
dλ =

gμσ

w

dxμ

dλ
δxσ

]λ2

λ1

= 0

Substituting these results into the integral, one obtains

0 =

λ2∫
λ1

δwdλ =

λ2∫
λ1

{
1

2w

∂gμν

∂xσ

dxμ

dλ

dx ν

dλ
− d

dλ

(
gμσ

w

dxμ

dλ

)}
δxσdλ

But since the δxσ are arbitrary, for the integral always to be zero, the
expression in the brackets {} must be equal to zero. This expression is
denoted as −κσ:

0 = −κσ =
1

2w

∂gμν

∂xσ

dxμ

dλ

dxν

dλ
− d

dλ

(
gμσ

w

dxμ

dλ

)
(5.20c)

These four equations, one for each of the four values of the index σ, are
the equations of the geodetic line.
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5.4.3.2 Alternate Form of the Equations of the
Geodetic Line

The parameter λ has been specified only in that it designate the surfaces
that intersect the geodetic line and the paths (lines) in proximity to the
geodetic line. We can choose to define λ as the length along the geodetic
line, i.e., dλ = ds. As long as ds does not vanish, from the relation in
Eq. (5.20a), above, we have ds = wdλ, and w = 1. Substituting into Eq.
(5.20c) ds for gdλ and w = 1 (note: the order of the terms have been
reversed to agree with the order in Einstein’s paper),

0 =
d

ds

(
gμσ

dxμ

ds

)
− 1

2
∂gμν

∂xσ

dxμ

ds
dx ν

ds

= gμσ
d2xμ

ds2 +
∂gμσ

∂xν

dx ν

ds

dxμ

ds
− 1

2
∂gμν

∂xσ

dxμ

ds
dxν

ds
(5.20e)

Following Christoffel, Einstein introduces the following notation:140

[μν, σ] =
1
2

(
∂gμσ

∂xν
+

∂gνσ

∂xμ
− ∂gμν

∂xσ

)
. (5.21)

In the German original,141 the notation is [
μν
σ

], but represents exactly

the same expression as [μν, σ]. With this notation, the equations for the
geodetic line can be written:

0 = gμσ
d2xμ

ds2 + [μν, σ]
dxμ

ds
dx ν

ds
(5.20d)

That this is true can be seen by writing out the terms for [μν, σ]:

0 = gμσ
d2xμ

ds2 +
1
2

(
∂gμσ

∂xν
+

∂gνσ

∂xμ
− ∂gμν

∂xσ

)
dxμ

ds
dxν

ds

The summation over μ and ν for the first two terms in () × dxμ

ds
dxν

ds gives
the same sum. Thus, combining these two terms, one obtains

0 = gμσ
d2xμ

ds2 +
(

∂gμσ

∂xν
− 1

2
∂gμν

∂xσ

)
dxμ

ds
dxν

ds

Einstein then introduces a second change of notation “where, following
Christoffel, we have written”142

{μν, τ} = gτα [μν, α] (5.23)

Multiplying Eq. (5.20d) by gστ , one obtains

0 = gστgμσ
d2xμ

ds2 + gστ [μν, σ]
dxμ

ds

dxν

ds

0 = δτ
μ

d2xμ

ds2 + {μν, τ} dxμ

ds
dx ν

ds

0 =
d2xτ

ds2 + {μν, τ} dxμ

ds
dxν

ds
(5.22)
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5.4.4 The Formation of Tensors by Differentiation

Let φ be an invariant function of space. ds is the distance along
some arbitrary curve (soon to become the geodetic), where s =
s(x1, x2, x3, x4) = s(xμ). The derivative of φ with respect to s is

dφ

ds
=

∂φ

∂xμ

dxμ

ds
= ψ

Since both dφ and ds are invariants, the derivative also is an invariant,
i.e., ψ is an invariant. Since dxμ is a contravariant four-vector (from
section 8, first paragraph), dxμ

ds also is a contravariant four-vector. From
Eq. (5.6), then,

Aμ =
∂φ

∂xμ
(5.24)

the gradient of φ, is a covariant four-vector.
Since ψ is an invariant on the curve, we can repeat the derivative

operation,

χ=
dψ

ds
=

d

ds

(
dφ

ds

)
=

d

ds

(
∂φ

∂xμ

dxμ

ds

)
=
(

∂2φ

∂xμ∂xν

dx ν

ds

)
dxμ

ds
+

∂φ

∂xμ

d2xμ

ds2

At this point the curve is restricted to the geodetic, and the expression
for d2xμ

ds2 is substituted from Eq. (5.22) (note that the index μ in the
second term is replaced by the index τ . This has no effect because the
index is summed over the values 1, 2, 3, 4.).

χ =
(

∂2φ

∂xμ∂xν

dx ν

ds

)
dxμ

ds
+

∂φ

∂xτ

d2xτ

ds2

χ =
(

∂2φ

∂xμ∂xν

dx ν

ds

)
dxμ

ds
+

∂φ

∂xτ

[
−{μν, τ} dxμ

ds
dxν

ds

]

χ =
(

∂2φ

∂xμ∂xν
− {μν, τ} ∂φ

∂xτ

)
dxμ

ds
dxν

ds
= Aμν

dxμ

ds
dxν

ds

Aμν =
∂2φ

∂xμ∂xν
− {μν, τ} ∂φ

∂xτ
(5.25)

Since

1. χ is a scalar, and
2. Aμν is symmetric in the indices μ and ν, ({μν, τ} is symmetrical

in the exchange of μ ↔ ν, and the exchange of μ ↔ ν in ∂2φ
∂xμ∂xν

simply changes the order of differentiation.), and
3. dxμ

ds and dxν

ds are contravariant four-vectors with arbitrary
components,

4. from property three of Section 5.2.7, Aμν is a covariant vector of
rank two.

To recap:
From the invariant function φ, one can form the invariant tensor of

rank one (a four-vector):
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Aμ =
∂φ

∂xμ
= gradient of φ

= covariant four-vector

From this, one can form by differentiation, Aμν , a covariant tensor of
rank two:

Aμν =
∂2φ

∂xμ∂xν
− {μν, τ} ∂φ

∂xτ
(5.25)

=
∂Aμ

∂xν
− {μν, τ}Aτ (5.26)

= extension of the tensorAμ

= covariant derivative of the tensorAμ

= covariant tensor of rank two

The derivation began with Aμ as the gradient of φ. These results also
are true even if Aμ is not the gradient of φ, i.e., the same operation
leads to a tensor Aμν even if Aμ cannot be represented as a gradient. To
see this:

1. Let Aμ be an arbitrary covariant four-vector with components
A1, A2, A3, A4, each of which is an arbitrary function of the xμ,
i.e., of x1, x2, x3, x4.

2. Since ∂φ
∂xμ is a covariant four-vector, if ψ is a scalar, the product

ψ ∂φ
∂xμ is a covariant four-vector.

3. Consider four scalar functions, ψ(1), ψ(2), ψ(3), ψ(4), and a second
set of four scalar functions φ(1), φ(2), φ(3), φ(4). Form the pair-wise
products of them of the form ψ(1) ∂φ(1)

∂xμ , etc., and form the sum of

the termsSμ = ψ(1) ∂φ(1)

∂xμ + ψ(2) ∂φ(2)

∂xμ + ψ(3) ∂φ(3)

∂xμ + ψ(4) ∂φ(4)

∂xμ .
4. Sμ, being the sum of covariant four-vectors, is a covariant four-

vector.
5. But any arbitrary four-vector Aμ can be represented as the sum

Sμ.This is easily seen if we set

ψ(1) = A1, φ(1) = x1 S1 = A1

ψ(2) = A2, φ(2) = x2 S2 = A2

ψ(3) = A3, φ(3) = x3 ⇒ S3 = A3

ψ(4) = A4, φ(4) = x4 S4 = A4

6. The four-vector Aμ = {A1, A2, A3, A4} = {S1, S2, S3, S4}. Showing
Eq. (5.26) holds for an arbitrary component of Aμ, since Aμ is a
linear combination of the components, Eq. (5.26) will also hold for
the four vector Aμ.

a. Set Aμ = ψ ∂φ
∂xμ

b. From Eq. (5.25), Aμν is a covariant tensor (this is true when Aμ =
∂φ
∂xμ ). The RHS of Eq. (5.25) is, therefore, also a covariant tensor.
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c. If we multiply the RHS of Eq. (5.25) by the scalar ψ, the resultant
product remains a covariant tensor: ψ ∂2φ

∂xμ∂xν − {μν, τ}ψ ∂φ
∂xτ is a

covariant tensor.
d. Bμ = ∂ψ

∂xμ and Cν = ∂φ
∂xν both are covariant four-vectors. Their

product BμCν = ∂ψ
∂xμ

∂φ
∂xν is a covariant tensor of rank two.

e. Adding together the covariant tensors of part c and of part d above,
the resulting sum is a covariant tensor: ψ ∂

∂xμ

(
∂φ
∂xν

)
+ ∂ψ

∂xμ
∂φ
∂xν −

{μν, τ}
(
ψ ∂φ

∂xτ

)

=
∂

∂xμ

(
ψ

∂φ

∂xν

)
− {μν, τ}

(
ψ

∂φ

∂xτ

)

f. We had shown that any vector Aμ could be represented as ψ ∂φ
∂xμ .

Thus, statement e, above, proves that Eq. (5.26) yields a result Aμν

that is a covariant tensor for an arbitrary four-vector Aμ.

Aμν is the extension of the four-vector Aμ. This can be generalized
to define the extension of a covariant tensor of any rank. The example
given is the extension of a covariant tensor of rank two to give a covariant
tensor of rank three. From this, one can easily generalize to the extension
of tensor of any rank.

(a) Any covariant tensor of rank two can be represented as a sum
of tensors of the type AμBν . It will be sufficient to deduce the
expression for this special type because any arbitrary tensor of
rank two can be represented as the sum of a maximum of four such
terms.

(b) From Eq. (5.26), the covariant derivative, the extension, of the
four-vector Aμ and the four-vector Bν is

Aμσ =
∂Aμ

∂xσ
− {σμ, τ}Aτ

Bνσ =
∂Bν

∂xσ
− {σν, τ}Bτ

Each of these expressions is a covariant tensor of rank two.
(c) Outer multiplication of the first of these two equations by Bν , the

second by Aμ, and adding, gives

Aμνσ = Bν
∂Aμ

∂xσ
− {σμ, τ}AτBν + Aμ

∂Bν

∂xσ
− {σν, τ}BτAμ

=
∂

∂xσ
(AμBν) − {σμ, τ}AτBν − {σν, τ}AμBτ

Aμνσ =
∂

∂xσ
(Aμν) − {σμ, τ}Aτν − {σν, τ}Aμτ (5.27)

Aμνσ is the extension of Aμν and is a covariant tensor of rank three.
Summary of Covariant Derivatives, Extensions:

1. Eq. (5.24): Aμ = ∂φ
∂xμ
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2. Eq. (5.26): Aμν = ∂Aμ

∂xν − {μν, τ}Aτ

3. Eq. (5.27): Aμνσ = ∂
∂xσ (Aμν) − {σμ, τ}Aτν − {σν, τ}Aμτ

5.4.5 Some Cases of Special Importance

5.4.5.1 The Fundamental Tensor
To show that dg = gμνgdgμν , with g the determinant of gμν

g =

∣∣∣∣∣∣∣∣
g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

∣∣∣∣∣∣∣∣
The determinant of g = g =∈αβστ g1αg2βg3σg4τ , where ∈αβστ is the
Levi-Civita symbol. The variation of g is

dg =∈αβστ (dg1α)g2βg3σg4τ+ ∈αβστ g1α(dg2β)g3σg4τ

+ ∈αβστ g1αg2β(dg3σ)g4τ+ ∈αβστ g1αg2βg3σ(dg4τ )

Working with the first term,

∈αβστ (dg1α)g2βg3σg4τ = ∈αβστ (dg1μδμ
α)g2βg3σg4τ

= ∈αβστ (dg1μgμνgνα)g2βg3σg4τ

= ∈αβστ (gμνdg1μ)(gνα)g2βg3σg4τ

Writing out explicitly the terms for ν = 1, 2, 3, 4:

∈αβστ (dg1α)g2βg3σg4τ = ∈αβστ gμ1dg1μg1αg2βg3σg4τ

+ ∈αβστ gμ2dg1μg2αg2βg3σg4τ

+ ∈αβστ gμ3dg1μg3αg2βg3σg4τ

+ ∈αβστ gμ4dg1μg4αg2βg3σg4τ

The second, third, and fourth terms are each equal to zero. Consider the
second term. For a given value of σ and τ , for example if α = 1, β = 2
and α = 2, β = 1, we have g2αg2β = g21g22 = g22g21, since g is symmet-
ric. However, the Levi-Civita symbol is antisymmetric in the exchange
{α, β} = {1, 2} → {2, 1}. Thus the sum of these two terms must be zero.
The same is true for each pair of terms {α, β}. In a similar manner the
third and fourth terms above are shown to be zero.

Collecting together, the resulting expression for dg is

dg = ∈αβστ

(
gμ1dg1μ

)
g1αg2βg3σg4τ+ ∈αβστ

(
gμ2dg2μ

)
g1αg2βg3σg4τ

+ ∈αβστ

(
gμ3dg3μ

)
g1αg2βg3σg4τ+ ∈αβστ

(
gμ4dg4μ

)
g1αg2βg3σg4τ

= ∈αβσς

(
gμνdgνμ

)
g1αg2βg3σg4τ = (gμνdgμν) (∈αβσς g1αg2βg3σg4τ )

= gμνgdgμν

dg = gμνgdgμν
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But gμνgμν = δμ
μ = 4 ⇒ d (gμνgμν) = d (gμν) gμν + gμνd (gμν) = 0.

Thus,

dg = gμνgdgμν = −gμνgdgμν (5.28)

Consider the quantity 1√−g
∂
√−g
∂xσ .

1√−g

∂
√−g

∂xσ
=

∂ (log
√−g)

∂xσ
=

∂
(
log (−g)1/2

)
∂xσ

=
1
2

∂ log (−g)
∂xσ

This is the second term of Eq. (5.29). Continuing,

1
2

∂ log (−g)
∂xσ

=
1
2

1
(−g)

∂ (−g)
∂xσ

=
1
2

1
g

∂g

∂xσ

But, from Eq. (5.28), ∂g
∂xσ = gμνg

∂gμν

∂xσ ⇒= 1
2

1
g gμνg

∂gμν

∂xσ = 1
2gμν ∂gμν

∂xσ .
This is the third term of Eq. (5.29). Similarly, from Eq. (5.28), ∂g

∂xσ =
−gμνg ∂gμν

∂xσ ⇒ = − 1
2gμν

∂gμν

∂xσ . This is the fourth term of Eq. (5.29):

1√−g

∂
√−g

∂xσ
=

1
2

∂ log(−g)
∂xσ

=
1
2
gμν ∂gμν

∂xσ
= −1

2
gμν

∂gμν

∂xσ
(5.29)

Taking the variation of gμσgνσ = δν
μ we have

d (gμσgνσ) = d
(
δν
μ

) ⇒ d (gμσ) gνσ + gμσd (gνσ) = 0 ⇒
gμσdgνσ = −gνσdgμσ (5.30a)

gμσ
∂gνσ

∂xλ
= −gνσ ∂gμσ

∂xλ
(5.30b)

These two equations, Eqs. (5.30), are modified, first by multiplying by
gμτ to remove the gμσterm from the LHS of Eq. (5.30):

gμτgμσdgνσ = −gμτgνσdgμσ

δτ
σdgνσ = −gμτgνσdgμσ

dgντ = −gμτgνσdgμσ

Relabeling the indices {ν → μ, τ → ν, σ → α, μ → β, λ → σ},
dgμν = −gβνgμαdgβα (5.31a)

∂gμν

∂xσ
= −gβνgμα ∂gβα

∂xσ
(5.31b)

Repeating the operation on Eqs. (5.30), this time multiplying by gντ

to remove the gνσ term from the RHS, gives gμσgντdgνσ = −dgμτ . This
time relabel the indices as {μ → ν, τ → μ, ν → α, σ → β, λ → σ}.

dgνμ = −gνβgαμdgαβ (5.32a)

∂gνμ

∂xσ
= −gνβgαμ

∂gαβ

∂xσ
(5.32b)
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Returning to the notation of Christoffel, Eq. (5.21),

[μν, σ] =
1
2

(
∂gμσ

∂xν
+

∂gνσ

∂xμ
− ∂gμν

∂xσ

)

[ασ, β]+[βσ, α] =
1
2

(
∂gαβ

∂xσ
+

∂gσβ

∂xα
− ∂gασ

∂xβ

)
+

1
2

(
∂gβα

∂xσ
+

∂gσα

∂xβ
− ∂gβσ

∂xα

)

=
∂gαβ

∂xσ
(5.33)

Substituting this result into Eq. (5.31b), and using Eq. (5.23),

∂gμν

∂xσ
= −gμαgνβ([ασ, β] + [βσ, α])

= −gμα(gνβ [ασ, β]) − gνβ(gμα[βσ, α])

= −gμα{ασ, ν} − gνβ{βσ, μ}
Since in the first term the index α is summed over, and in the second

term the index β is summed over, each can be replaced by the same
index τ :

∂gμν

∂xσ
= −gμτ{τσ, ν} − gντ{τσ, μ} (5.34)

Substituting Eq. (5.34) into Eq. (5.29) gives

1√−g

∂
√−g

∂xσ
= −1

2
gμν

∂gμν

∂xσ

= −1
2
gμν (−gμτ {τσ, ν} − gντ {τσ, μ})

= −1
2

(gμνgμτ {τσ, ν} − gμνgντ {τσ, μ})

= +
1
2
(
δτ
ν {τσ, ν} + δτ

μ {τσ, μ})
=

1
2

({νσ, ν} + {μσ, μ})
1√−g

∂
√−g

∂xσ
= {μσ, μ} (5.29a)

since {νσ, ν} = {μσ, μ} as both μ and ν are summed over the values 1,
2, 3, and 4.

5.4.5.2 The Divergence of a Contravariant Vector
Taking the inner product of Eq. (5.26) with the contravariant funda-
mental tensor,gμν , gives

gμνAμν = gμν ∂Aμ

∂xν
− gμν {μν, τ}Aτ (5.35a)
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The first term on the RHS can be written as

gμν ∂Aμ

∂xν
=

∂ (gμνAμ)
∂xν

− Aμ
∂gμν

∂xν
(5.35b)

Using Eqs. (5.21) and (5.23), the second term on the RHS of Eq. (5.35a)
can be expanded as

−gμν{μν, τ}Aτ = −1
2
gμνgτα[μν, α]Aτ

= −1
2
gμνgτα

(
∂gμα

∂xν
+

∂gνα

∂xμ
− ∂gμν

∂xα

)
Aτ (5.35c)

Using Eq. (5.32b), the first term on the RHS of Eq. (5.35c) becomes

−1
2
gμνgταAτ

(
∂gμα

∂xν

)
= −1

2
gμνgταAτ

(
−gμβgγα

∂gγβ

∂xν

)

= +
1
2

(gμνgμβ) (gταgγα) Aτ
∂gγβ

∂xν

= +
1
2
δν
βδτ

γAτ
∂gγβ

∂xν
= +

1
2
Aτ

∂gτν

∂xν

In a similar manner, the second term on the RHS of Eq. (5.35c) gives
the same result, − 1

2gμνgταAτ
∂gνα

∂xμ = + 1
2Aτ

∂gτμ

∂xμ . Since the index ν n the
first term, and the index μ n the second term, are each summed over
the integers 1, 2, 3, and 4, the two expressions can be added together
into one expression with the index ν, ⇒= +Aτ

∂gτν

∂xν . Substituting this
result into Eq. (5.35c), and then substituting the resulting expression
plus Eq. (5.35b) into Eq. (5.35a),

gμνAμν =
(

∂(gμνAμ)
∂xν

− Aμ
∂gμν

∂xν

)
+
(

Aτ
∂gτν

∂xν
+

1
2
gμνgταAτ

∂gμν

∂xα

)
(5.35d)

On the RHS, the second term in the first parentheses and the first term in
the second parentheses are the negative on one another. Using Eq. (5.29),
we obtain

gμνAμν =
∂ (gμνAμ)

∂xν
+

1√−g

∂
√−g

∂xα
gταAτ (5.35e)

Writing gμνAμ = Aν , Eq. (5.35d) becomes

gμνAμν =
∂ (Aν)
∂xν

+
1√−g

∂
√−g

∂xα
Aα

Again, since the indices ν and α are summed over, they can be repre-
sented as the same index ν:

gμνAμν =
∂(Aν)
∂xν

+
1√−g

∂
√−g

∂xν
Aν =

1√−g

∂

∂xν

(√−gAν
)
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This expression, termed the divergence of the contravariant vector Aν ,
is denoted as

Φ = gμνAμν =
1√−g

∂

∂xν

(√−gAν
)

(5.35)

5.4.5.3 The Curl of a Covariant Vector
From Eq. (5.26), the covariant derivative of the tensor Aμ, i.e., the
extension of the tensor Aμ is Aμν = ∂Aμ

∂xν − {μν, τ}Aτ . If we form the
quantity Bμν = Aμν − Aνμ = ∂Aμ

∂xν − ∂Aν

∂xμ − {μν, τ} + {νμ, τ}, the third
and fourth terms, because of the symmetry in the indices μ and ν, add
to zero. The quantity Bμν is an antisymmetric tensor called the curl of
the covariant vector Aμ:

Bμν =
∂Aμ

∂xν
− ∂Aν

∂xμ
(5.36)

5.4.5.4 Antisymmetrical Extension of a Six-Vector
Consider an antisymmetrical tensor of second rank,Aμν , where Aμν =
−Aνμ. From Eq. (5.27), the extension of Aμν is

Aμνσ =
∂

∂xσ
(Aμν) − {σμ, τ}Aτν − {σν, τ}Aμτ

Form the sum,Bμνσ, of the above equation plus the two equations formed
by a cyclic permutation of the indices μ,ν, and σ.

Bμνσ = Aμνσ + Aνσμ + Aσμν

=
∂Aμν

∂xσ
− {σμ, τ}Aτν − {σν, τ}Aμτ

+
∂Aνσ

∂xμ
− {μν, τ}Aτσ − {μσ, τ}Aντ

+
∂Aσμ

∂xν
− {νσ, τ}Aτμ − {νμ, τ}Aστ

But, by symmetry, {σμ, τ} = {μσ, τ}, and, by antisymmetry,
Aτν = −Aντ . Thus the pair of terms −{σμ, τ}Aτν − {μσ, τ}Aντ =
−{σμ, τ}Aτν + {μσ, τ}Aτν = 0. In a similar manner, the two other
pairs of comparable terms can be shown to be zero.

Bμνσ = Aμνσ + Aνσμ + Aσμν =
∂Aμν

∂xσ
+

∂Aνσ

∂xμ
+

∂Aσμ

∂xν
(5.37)

Bμνσ is antisymmetric in the exchange of any two of the indices, i.e.,
Bνμσ = −Bμνσ. Using the antisymmetry property of Aμν ,

Bνμσ =
∂Aνμ

∂xσ
+

∂Aμσ

∂xν
+

∂Aσν

∂xμ
=

∂(−Aμν)
∂xσ

+
∂(−Aσμ)

∂xν
+

∂(−Aνσ)
∂xμ

= −Bμνσ

5.4.5.5 The Divergence of a Six-Vector
A six-vector is an antisymmetric 4 × 4 tensor. Multiplying Eq. (5.27) by
gμαgνβ , denoting Aαβ

σ = gμαgνβAμνσ and Aαβ = gμαgνβAμν , and using
Eq. (5.34),
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gμαgνβAμνσ = gμαgνβ ∂Aμν

∂xσ
− gμαgνβ{σμ, γ}Aγν − gμαgνβ{σν, γ}Aμγ

Aαβ
σ =

(
∂(gμαgνβAμν)

∂xσ
− Aμνgνβ ∂gμα

∂xσ
− Aμνgμα ∂gνβ

∂xσ

)

−gμαgνβ{σμ, γ}Aγν − gμαgνβ{σν, γ}Aμγ

Aαβ
σ =

∂Aαβ

∂xσ
− Aμνgνβ(−gμγ{γσ, α} − gαγ{γσ, μ})

−Aμνgμα(−gνγ{γσ, β} − gβγ{γσ, ν})
−gμαgνβ{σμ, γ}Aγν − gμαgνβ{σν, γ}Aμγ

Aαβ
σ =

∂Aαβ

∂xσ
+ (Aμνgνβgμγ{γσ, α} + Aμνgμαgνγ{γσ, β})

+(Aμνgνβgαγ{γσ, μ} − Aγνgμαgνβ{σμ, γ})
+(Aμνgμαgβγ{γσ, ν} − Aμγgμαgνβ{σν, γ})

The second parenthesis is equal to zero (this is most easily seen if, in
the second term, the indices are changed as follows:γ ↔ μ, using the
symmetry of gγαand using the symmetry of {σγ, u} in the first two
indices). By a similar analysis, the third parenthesis also is zero (γ ↔ ν).

Aαβ
σ =

∂Aαβ

∂xσ
+ {σγ, α}Aγβ + {σγ, β}Aαγ (5.38)

Equation (5.38) is the expression for the extension of the contravariant
tensor of second rank, Aαβ , just as Eq. (5.27) is the expression for the
extension of the covariant tensor of second rank, Aμν . Multiplying Eq.
(5.27) by gνα and proceeding in a similar manner, Einstein obtains for
the extension of the mixed tensor Aα

μ ,

Aα
μσ =

∂Aα
μ

∂xσ
− {σμ, τ}Aα

τ + {στ, α}Aτ
μ (5.39)

Contracting Eq. (5.38) with respect to the indices β and σ, i.e., inner
multiplication by δσ

β , one obtains

Aα =
∂Aαβ

∂xβ
+ {βγ, α}Aγβ + {βγ, β}Aαγ

In the interchange of β ↔ γ, {βγ, α} is symmetric. But, if it is assumed
Aγβ is an antisymmetric tensor, the sum of {βγ, α}Aγβ over γ and β
will be zero. Using Eq. (5.29a),

Aα =
∂Aαβ

∂xβ
+ {βγ, β}Aαγ =

∂Aαβ

∂xβ
+ Aαγ 1√−g

∂
√−g

∂xγ

In the second term, changing the index γ → β,

Aα =
∂Aαβ

∂xβ
+ Aαβ 1√−g

∂
√−g

∂xβ
=

1√−g

∂

∂xβ
(Aαβ√−g) (5.40)
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Equation (5.40) is the expression for the divergence of a contravariant
six-vector Aαβ .

5.4.5.6 The Divergence of a Mixed Tensor of Second
Rank

Contracting Eq. (5.39) with respect to the indices α and σ, i.e., inner
multiplication by δσ

α, and using Eq. (5.29a0, one obtains

Aμ =
∂Aσ

μ

∂xσ
− {σμ, τ}Aσ

τ + {στ, σ}Aτ
μ

=
∂Aσ

μ

∂xσ
− {σμ, τ}Aσ

τ + Aτ
μ

1√−g

∂
√−g

∂xτ

In the final term, changing the index τ → σ,

Aμ =
∂Aσ

μ

∂xσ
− {σμ, τ}Aσ

τ + Aσ
μ

1√−g

∂
√−g

∂xσ

√−gAμ =
√−g

∂Aσ
μ

∂xσ
−√−g {σμ, τ}Aσ

τ + Aσ
μ

∂
√−g

∂xσ

√−gAμ =
∂

∂xσ

(√−gAσ
μ

)− {σμ, τ}√−gAσ
τ (5.41)

Using Eq. (5.23) and denoting Aρσ = gρτAσ
τ , the last term in Eq. (5.41)

can be expressed as,

−{σμ, τ}√−gAσ
τ = −[σμ, ρ]gρτ√−gAσ

τ = −[σμ, ρ]
√−gAρσ

If Aρσ is symmetrical, this term becomes

−[σμ, ρ]
√−gAρσ = −√−g

1
2

(
∂gσρ

∂xμ
+

∂gμρ

∂xσ
− ∂gσμ

∂xρ

)
Aσρ = −√−g

1
2

∂gσρ

∂xμ
Aσρ

Since the last two terms in the parentheses are antisymmetric in the
indices σ and ρ (for example, consider the values 1 and 2 for the indices
σ and ρ, then the values 2 and 1. Since, by symmetry, A12 = A21 , the
sum of the last two terms in the parentheses add up pair-wise to zero):

√−gAμ =
∂

∂xσ
(
√−gAσ

μ) − 1
2
√−g

∂gσρ

∂xμ
Aσρ (5.41a)

Instead of the contravariant tensor Aσρ in Eq. (5.41a), we can introduce
the covariant tensor Aρσ. Using Eq. (5.32b),

−1
2
√−g

∂gσρ

∂xμ
Aσρ = −1

2
√−g

(
−gσαgρβ

∂gαβ

∂xμ

)
Aσρ

= +
1
2
√−g

∂gαβ

∂xμ
(gσαgρβAσρ) =

1
2
√−g

∂gαβ

∂xμ
Aαβ

Since gσαgρβAσρ = gσαgρβ(gρτAσ
τ ) = gσαδτ

βAσ
τ = gσαAσ

β = Aαβ . Chang-
ing the indices from α and β to ρ and σ, Eq. (5.41a) becomes

√−gAμ =
∂

∂xσ

(√−gAσ
μ

)
+

1
2

∂gρσ

∂xμ

√−gAρσ (5.41b)
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5.4.6 The Riemann–Christoffel Tensor

gμν is the fundamental tensor. The initial quest is to find a tensor that
can be obtained from the fundamental tensor alone, by differentiation.
The first thought is to form the extension of the fundamental tensor,
i.e., place the fundamental tensor into Eq. (5.27),

Aμνσ =
∂

∂xσ
(gμν) − {σμ, τ}gτν − {σν, τ}gμτ

=
∂

∂xσ
(gμν) − gτα[σμ, α]gτν − gτβ [σν, β]gμτ

=
∂

∂xσ
(gμν) − [σμ, α]δα

ν − [σν, β]δβ
μ

=
∂

∂xσ
(gμν) − [σμ, ν] − [σν, μ]

=
∂

∂xσ
(gμν) − 1

2

(
∂gνσ

∂xμ
+

∂gνμ

∂xσ
− ∂gσμ

∂xν

)

−1
2

(
∂gμσ

∂xν
+

∂gμν

∂xσ
− ∂gσν

∂xμ

)
= 0

Since the extension of gμν vanishes identically, it becomes necessary
to look for another way. Returning to the general tensor Aμν and
using Eq. (5.26) to write it as the extension of the tensor Aμ, Aμν =
∂Aμ

∂xν − {μν, ρ}Aρ, this form of Aμν is inserted into the expression for the
extension of Aμν :

Aμστ =
∂

∂xτ
(Aμσ) − {τμ, α}Aασ − {τσ, α}Aμα

=
∂

∂xτ

(
∂Aμ

∂xσ
− {μσ, ρ}Aρ

)
− {τμ, α}

(
∂Aα

∂xσ
− {ασ, ε}Aε

)

−{τσ, α}
(

∂Aμ

∂xα
− {μα, β}Aβ

)

=
∂2Aμ

∂xτ∂xσ
− Aρ

∂{μσ, ρ}
∂xτ

− {μσ, ρ}∂Aρ

∂xτ
− {τμ, α}∂Aα

∂xσ

+{τμ, α}{ασ, ε}Aε − {τσ, α}∂Aμ

∂xα
+ {τσ, α}{μα, β}Aβ

Renaming the indices so that Aα, Aε, Aβ each have the subscript ρ,

=
∂2Aμ

∂xτ∂xσ
− Aρ

∂{μσ, ρ}
∂xτ

− {μσ, ρ}∂Aρ

∂xτ
− {τμ, ρ}∂Aρ

∂xσ

+ {τμ, α}{ασ, ρ}Aρ − {τσ, α}∂Aρ

∂xα
+ {τσ, α}{μα, ρ}Aρ

In this equation, the first and last two terms are symmetric in the indices
σ and τ . Using the symmetries present in the indices σ and τ , the tensor

Aμστ − Aμτσ = Bρ
μστAρ (5.42)
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is formed. In the subtraction, the corresponding symmetric terms add to
zero. The third and fourth terms, when subtracted from the same terms
with the indices σ and τ exchanged also add to zero. The remaining
terms are

Bρ
μστAρ = Aμστ − Aμτσ

=
(
−∂{μσ, ρ}

∂xτ
+

∂{μτ, ρ}
∂xσ

+ {τμ, α}{ασ, ρ} − {σμ, α}{ατ, ρ}
)

Aρ

Bρ
μστ = −∂{μσ, ρ}

∂xτ
+

∂{μτ, ρ}
∂xσ

− {μσ, α}{ατ, ρ} + {μτ, α}{ασ, ρ} (5.43)

1. Equation (5.42), the expression for Aμστ − Aμτσ, is a function of
Aρ alone, not of its derivatives.

2. Bρ
μστ is a tensor. From section 10, Eq. (5.27), since Aμστ and

Aμτσ are tensors their difference Aμστ − Aμτσ is a tensor. Aρ is
an arbitrary tensor. By an analysis similar to that of section 7, it
follows that Bρ

μστ is a tensor.
3. Equation (5.43), the equation for Bρ

μστ , is the same as the equation
for the Riemann–Christoffel tensor.143 Thus, Bρ

μστ is identified as
the Riemann–Christoffel tensor Rρ

μστ :

Bρ
μστ = Rρ

μστ

4. Bρ
μστ is a function of various derivatives of the gμν .

5. If there is a coordinate system in which the gμν are constants, all
of the Bρ

μστ vanish.
6. In another coordinate system, the gμν in general will not be con-

stants.
7. Because Bρ

μστ is a tensor, the components of Bρ
μστ in the new

coordinate system (being linear combinations of the components
in the original coordinate system) will vanish (be equal to zero).

8. The converse of the preceding statement (#7) is that the vanishing
of the Riemann tensor, Bρ

μστ , is a necessary condition that, by
an appropriate choice of the reference system, the gμν may be
constants.

9. The gμν being constants corresponds physically to the situation of
the special theory of relativity holding for a finite region of the
continuum.

Contracting the tensor Bρ
μστ over the indices τ and ρ, one obtains a

covariant tensor of rank two. Also changing the index σ to the index ν,

Bρ
μσρ = Bρ

μνρ = Gμν

= −∂{μν, ρ}
∂xρ

+
∂{μρ, ρ}

∂xν
− {μν, α}{αρ, ρ} + {μρ, α}{αν, ρ}

Regrouping the terms, and changing the indices α → β and ρ → α,

Gμν =
(
−∂{μν, α}

∂xα
+ {μα, β}{βν, α}

)
+
(

∂{μα, α}
∂xν

− {μν, β}{βα, α}
)

= Rμν + Sμν
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With Rμν = −∂{μν,α}
∂xα + {μα, β}{βν, α} = −∂{μν,α}

∂xα + {μα, β}{νβ, α}

Sμν =
∂{μα, α}

∂xν
− {μν, β}{βα, α} =

∂{αμ, α}
∂xν

− {μν, β}{αβ, α}

By Eq. (5.29a), {μσ, μ} = 1√−g
∂
√−g
∂xσ = ∂

∂xσ (log
√−g),Sμν becomes

Sμν =
∂

∂xν

∂ (log
√−g)

∂xμ
− {μν, β}∂ (log

√−g)
∂xβ

=
∂2 (log

√−g)
∂xμ∂xν

− {μν, α}∂ (log
√−g)

∂xα
(5.44)

In the second term, the index β has been changed to the index α.

1. If the choice of coordinates is made such that
√−g = 1, a number

of simplifications to the equations is obtained.
2. For

√−g = 1, the expression for Sμνbecomes zero.
3. For

√−g = 1, Gμν = Rμν .
4. In the remainder of the paper, unless stated specifically otherwise,

the choice of coordinates will be made such that
√−g = 1.

5.4.7 The Hamiltonian Function for the
Gravitational Field

5.4.7.1 The Hamiltonian Form of Eq. (5.47)
The variation of the second of the Eqs. (5.47a),H = gμνΓα

μβΓβ
να, gives

δH = δ(gμνΓα
μβΓβ

να) = (δgμν)Γα
μβΓβ

να + gμν [δ(Γα
μβΓβ

να)]

= Γα
μβΓβ

ναδgμν + gμν [(δΓα
μβ)Γβ

να + Γα
μβ(δΓβ

να)]

But the two terms in the [ ] are the same if the indices α ↔ β and μ ↔ ν
in the first term,

δH = Γα
μβΓβ

ναδgμν + gμν [2Γα
μβδ(Γβ

να)]

= Γα
μβΓβ

ναδgμν + 2Γα
μβ [gμνδΓβ

να]

= Γα
μβΓβ

ναδgμν + 2Γα
μβ [δ(gμνΓβ

να) − Γβ
ναδgμν ]

= −Γα
μβΓβ

ναδgμν + 2Γα
μβδ(gμνΓβ

να)

In the last term, the expression, δ(gμνΓβ
να), can be expanded as

δ(gμνΓβ
να) = −δ(gμν{να, β}) by Eq. (5.45)

= −δ(gμνgβλ[να, λ]) by Eq. (5.23)

= −1
2
δ

[
gμνgβλ

(
∂gνλ

∂xα
+

∂gαλ

∂xν
− ∂gνα

∂xλ

)]
by Eq. (5.21)

Substituting this expanded form of δ(gμνΓβ
να) into the expression, the

last term becomes



242 The General Theory of Relativity

2Γα
μβδ(gμνΓβ

να) = +2Γα
μβ

(
−1

2

)
δ

[
gμνgβλ

(
∂gνλ

∂xα
+

∂gαλ

∂xν
− ∂gαν

∂xλ

)]

Consider the second and third terms in the ( ). If the values of λ and ν
are interchanged (say, λ = 1, ν = 3 → λ = 3, ν = 1), the latter terms are
the negative of the initial terms and, over the summation for all values of
λ and ν, the sum of these terms will be zero. However, when the values
of λ and ν are interchanged in the ( ), the values of λ and ν also must be
interchanged in the gμνgβλ factor preceding the ( ). Exchanging also the
indices μ and β in gμνgβλ( i.e., λ ↔ ν, μ ↔ β), and using the symmetry
Γα

μβ = Γα
βμ, the second and third terms become

Γα
μβδ

[
gμνgβλ

(
∂gαλ

∂xν
− ∂gαν

∂xλ

)]
→ Γα

μβδ

[
gβλgμν

(
∂gαν

∂xλ
− ∂gαλ

∂xν

)]
Thus, in the summation over the indices λ, ν, μ, β, the second and third
terms pair-wise add up to zero, leaving only the first term.

δH = −Γα
μβΓβ

ναδgμν − Γα
μβδ

[
gμνgβλ ∂gνλ

∂xα

]

But, using Eq. (5.31), gμνgβλ ∂gνλ

∂xα = −∂gμβ

∂xα = −gμβ
α , the last term being

an alternate notation for the middle term:

δH = −Γα
μβΓβ

ναδgμν + Γα
μβδgμβ

α

⇒ ∂H

∂gμν
= −Γα

μβΓβ
να (5.48a)

⇒ ∂H

∂gμν
σ

= Γσ
μν (5.48b)

In Eq. (5.48b), the index ν has replaced the index β, and the index σ
has replaced the index α.

Returning to Eq. (5.47a), in analogy to the derivation of Lagrange’s
equations, δ

∫
L(q, q̇, t)dt = 0 ⇒ d

dt (
∂L
∂q̇ ) − ∂L

∂q = 0, Einstein carries out
the variation of Eq. (5.47a). Regarding H as a function of the gμν and
gμν

α = ∂gμν

∂xα , and “where, on the boundary of the finite four-dimensional
region of integration which we have in view, the variations vanish.”144

The gμν are written as gμν(xα,∈) = gμν(xα,∈= 0)+ ∈ η(xα), where
gμν(xα,∈= 0) are the solutions to the variation, the gμν(xα,∈�= 0) define
the proximate paths, ∈ is a small parameter labeling a set of possible
curves, and η(xα) is an arbitrary but well-behaved function in the
interval of integration that vanishes at the boundaries.145

0 = δ

2∫
1

Hdτ =

2∫
1

δHdτ =

2∫
1

δH(gμν , gμν
α , xα)dx 1dx 2dx 3dx 4

=

2∫
1

[
∂H

∂gμν

∂gμν

∂ ∈ δ ∈ +
∂H

∂gμν
α

∂gμν
α

∂ ∈ δ ∈
]
dx 1dx 2dx 3dx 4
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=

2∫
1

[
∂H

∂gμν

∂gμν

∂ ∈ δ ∈ +
∂H

∂gμν
α

∂2gμν

∂ ∈ ∂xα
δ ∈

]
dx 1dx 2dx 3dx 4

=

2∫
1

[
∂H

∂gμν

∂gμν

∂ ∈ δ ∈ +
(

∂

∂xα

(
∂H

∂gμν
α

∂gμν

∂ ∈
)

δ ∈

− ∂gμν

∂ ∈
∂

∂xα

(
∂H

∂gμν
α

)
δ ∈

)]
dx 1dx 2dx 3dx 4

The middle term is equal to zero since all the curves pass through the
boundary points 1 and 3, and ∂gμν

∂∈ = 0 at these boundary points:

2∫
1

∂

∂xα

(
∂H

∂gμν
α

∂gμν

∂ ∈
)

dx 1dx 2dx 3dx 4 =
[

∂H

∂gμν
α

∂gμν

∂ ∈
]2

1

= 0

Returning to the remaining terms,

0 =

2∫
1

Hdτ =

2∫
1

[
∂H

∂gμν
− ∂

∂xα

∂H

∂gμν
α

]
∂gμν

∂ ∈ δ ∈ dx 1dx 2dx 3dx 4

0 =
∫ [

∂H

∂gμν
− ∂

∂xα

(
∂H

∂gμν
α

)]
η (xα) δ ∈ dx 1dx 2dx 3dx 4

But η(xα) is an arbitrary function, except that it continuous, well
behaved, and vanishes at the boundary. For the above integral to vanish
for all arbitrary functions η(xα) it is necessary that the expression in
the square brackets [ ] vanish. Thus,

δ

∫
H(gμν , gμν

α , xα)dτ = 0 ⇒ ∂

∂xα

(
∂H

∂gμν
α

)
− ∂H

∂gμν
= 0 (5.47b)

∂

∂xα

(
Γα

μν

)
+ Γα

μβΓβ
να = 0

by Eqs (5.48a) and (5.48b)
This shows that Eq. (5.47a) is the equivalent of Eq. (5.47). Thus Eqs
(5.47) and (5.47a) are equivalent forms of the same equation.

Einstein then manipulates Eq. (5.47b) into an alternate form. Multi-
plying Eq. (5.47b) by gμν

σ , and using fdg = d(fg) − gdf , the first term
becomes

gμν
σ

∂

∂xα

(
∂H

∂gμν
α

)
=

∂

∂xα

(
gμν

σ

∂H

∂gμν
α

)
− ∂H

∂gμν
α

∂gμν
σ

∂xα

but since ∂gμν
σ

∂xα = ∂
∂xα

(
∂gμν

∂xσ

)
= ∂

∂xσ

(
∂gμν

∂xα

)
= ∂gμν

α

∂xσ this term becomes

gμν
σ

∂
∂xα

(
∂H

∂gμν
α

)
= ∂

∂xα

(
gμν

σ
∂H

∂gμν
α

)
− ∂H

∂gμν
α

∂gμν
α

∂xσ Replacing the first term in
Eq. (5.47b) (multiplied by gμν

σ ), the full expression becomes
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∂

∂xα

(
gμν

σ

∂H

∂gμν
α

)
− ∂H

∂gμν
α

∂gμν
α

∂xσ
− gμν

σ

∂H

∂gμν
= 0

The second and third terms can be combined as
∂H (gμν , gμν

α )
∂xσ

=
∂H

∂gμν
α

∂gμν
α

∂xσ
+ gμν

σ

∂H

∂gμν

giving ∂
∂xα

(
gμν

σ
∂H

∂gμν
α

)
− ∂H

∂xσ = 0
Noting both terms are a derivative, one with respect to xα and the

other with respect to xσ, by introducing the delta function δα
σ , the

equation can be written

∂

∂xα

(
gμν

σ

∂H

∂gμν
α

− δα
σ H

)
=

∂

∂xα
(tασ) = 0 (5.49)

For σ = 4 Einstein integrates Eq. (5.49) over a three-dimensional
volume, and identifies the expression as the conservation laws for
momentum and energy (l, m, n are the direction cosines of the surface
element dS).146

d

dx4

∫
tσdV =

∫ (
lt1σ + mt2σ + nt3σ

)
dS (5.49a)

5.4.7.2 Derivation of Eq. (5.50)
By use of Eqs. (5.48), (5.47a), (5.34), and (5.45), this expression for tασ
can be manipulated into another form, Eq. (5.50).

−2κtασ = gμν
σ

∂H

∂gμν
α

− δα
σ H

= gμν
σ Γα

μν − δα
σ gμνΓλ

μβΓβ
νλ

by Eqs (5.48), (5.47a)

κtασ = +
1
2
δα
σ gμνΓλ

μβΓβ
νλ − 1

2
gμν

σ Γα
μν

Working with the second term:

−1
2
gμν

σ Γα
μν = −1

2
(−gμτ{τσ, ν} − gντ{τσ, μ})Γα

μν

by Eq. (5.34)

= −1
2
(+gμτΓν

τσ + gντΓμ
τσ)Γα

μν

by Eq. (5.45)

= −1
2
(gμτΓν

τσΓα
μν + gντΓμ

τσΓα
μν)

Noting all indices with the exception of α and σ are summed over, it is
seen the two terms in the parentheses are the same. This can formally
be seen by, in the first term, replacing the indices ν → β and τ → ν, and
in the second term, by replacing the indices μ → β, ν → μ and τ → ν:
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−1
2
gμν

σ Γσ
μν = −gμνΓβ

νσΓα
μβ

κtασ =
1
2
δα
σ gμνΓλ

μβΓβ
νλ − gμνΓα

μβΓβ
νσ (5.50)

5.4.7.3 Derivation of Eq. (5.51)
To arrive at the third alternate form of Eq. (5.47), Einstein multi-
plies Eq. (5.47) by gνσ and manipulates the resulting equations in the
following manner:

0 = +gνσ

(
∂Γα

μν

∂xα
+ Γα

μβΓβ
να

)
(5.47c)

Working initially with the first term on the right-hand side,

gνσ
∂Γα

μν

∂xα
=

∂

∂xα
(gνσΓα

μν) −
(

∂gνσ

∂xα

)
Γα

μν

=
∂

∂xα
(gνσΓα

μν) − Γα
μν(−gντ{τα, σ} − gστ{τα, ν})

by Eq. (5.34)

=
∂

∂xα
(gνσΓα

μν) − Γα
μν(+gντΓσ

τα + gστΓν
τα)

by Eq. (5.45)

=
∂

∂xα
(gνσΓα

μν) − gνβΓα
μνΓσ

αβ − gσβΓα
μνΓν

βα

with τ → β In the third term, exchanging the indices ν ↔ β, it is seen
this term is the negative of the second term in Eq. (5.47c). Equation
(5.47c) becomes

0 =
∂

∂xα
(gνσΓα

μν) − gνβΓα
μνΓσ

αβ (5.47d)

We now work with the second term on the RHS. Consider first Eq. (5.50),
the expression for tασ . From this one can form the expression for t, defined
as t = tαα.

κtαα =
1
2
δα
αgμνΓλ

μβΓβ
νλ − gμνΓα

μβΓβ
να

=
1
2
(4)gμνΓλ

μβΓβ
νλ − gμνΓα

μβΓβ
να

Excluding the factor of two with the first term, the second term is the
same as the first term (with α → λ in the second term):

κt = κtαα = gμνΓλ
μβΓβ

νλ

Using this result and the expression for tασ , we form the quantity,

κtσμ − 1
2
δσ
μκt =

(
1
2
δσ
μgγνΓλ

γβΓβ
νλ − gγνΓα

γβΓβ
νμ

)
− 1

2
δσ
μgγνΓλ

γβΓβ
νλ

= −gγνΓα
γβΓβ

νμ
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This is the same expression as the second term in Eq. (5.47d) (in the
second term in Eq. (5.47d), one can set σ → α, β → γ, α → β). With this
substitution Eq. (5.47d) becomes

0 =
∂

∂xα
(gνσΓα

μν) − gνβΓα
μνΓσ

αβ =
∂

∂xα

(
gνσΓα

μν

)
+ κ

(
tσμ − 1

2
δσ
μt

)

∂

∂xα

(
gνσΓα

μν

)
= −κ

(
tσμ − 1

2
δσ
μt

)
(5.51a)

√−g = 1 (5.51b)

5.4.7.4 Derivation of Eq. (5.56)
Contract Eq. (5.52) with respect to the indices μ and σ:{

∂
∂xα

(
gβσΓα

μβ

)
= −κ

[(
tσμ + T σ

μ

)− 1
2δσ

μ (t + T )
]

√−g = 1

}
(5.52)

∂

∂xα
(gβσΓα

σβ) = −κ[(tσσ + T σ
σ )] − 1

2
δσ
σ(t + T )

= −κ

{
(t + T ) − 1

2
(4)(t + T )

}
= +κ(t + T )

In this equation, changing the index σ → λ, multiplying by 1
2δσ

μ and
subtracting the result from Eq. (5.52),

∂

∂xα

(
gβσΓα

μβ − 1
2
δσ
μgλβΓα

λβ

)
= −κ(tσμ + T σ

μ ) (5.52a)

Taking the derivative of Eq. (5.52a) with respect to xσ,

∂

∂xσ

∂

∂xα

(
gβσΓα

μβ − 1
2
δσ
μgλβΓα

λβ

)
= −κ

∂

∂xσ
(tσμ + T σ

μ ) (5.52b)

Working with the first term,

∂

∂xσ

∂

∂xα
(gβσΓα

μβ) =
∂2

∂xσ∂xα

(−gσβ{βμ, α})
by Eq. (5.45)

= − ∂2

∂xσ∂xα
(gσβgαλ[βμ, λ])

by Eq. (5.23)

= −1
2

∂2

∂xσ∂xα

[
gσβgαλ

(
∂gμλ

∂xβ
+

∂gβλ

∂xμ
− ∂gβμ

∂xλ

)]

by Eq. (5.21)
The contributions from the first and third terms in the round parenthe-
ses, ( ), sum to zero. The two terms are the negative of each other as
can be seen by the exchange of the indices β ↔ λ. In the exchange of
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β ↔ λ one must also exchange the indices σ ↔ α. The remaining term,
the second term, is

−1
2

∂2

∂xσ∂xα

(
gσβgαλ ∂gβλ

∂xμ

)
= −1

2
∂2

∂xσ∂xα

(
−∂gσα

∂xμ

)

by Eq. (5.31) Substituting these results, one obtains

∂2

∂xσ∂xα
(gβσΓα

μβ) =
1
2

∂3gσα

∂xσ∂xα∂xμ
=

1
2

∂3gαβ

∂xα∂xβ∂xμ
(5.54)

with σ → β in the last expression. Returning to Eq. (5.52b), the second
term on the left-hand side becomes

∂

∂xσ

∂

∂xα

(
−1

2
δσ
μgλβΓα

λβ

)
= −1

2
∂2

∂xμ∂xα

(
gλβΓα

λβ

)

= −1
2

∂2

∂xμ∂xα

(
gλβ (−{λβ, α}))

by Eq. (5.45)

= +
1
2

∂2

∂xμ∂xα

(
gλβgαδ [λβ, δ]

)
by Eq. (5.23)

=
1
2

∂2

∂xμ∂xα

[
gλβgαδ 1

2

(
∂gδλ

∂xβ
+

∂gδβ

∂xλ
− ∂gλβ

∂xδ

)]

by Eq. (5.21)
The third term in the round parentheses is zero, since

1
2

∂2

∂xμ∂xα

[
−1

2
gαδ

(
gλβ ∂gλβ

∂xδ

)]
=

1
2

∂2

∂xμ∂xα

[
−1

2
gαδ

(
1√−g

∂
√−g

∂xδ

)]

by Eq. (5.29)
= 0 since

√−g = +1 = constant

The first and second terms can be combined as

1
4

∂2

∂xμ∂xα

[
gλβgαδ ∂gδλ

∂xβ
+ gλβgαδ ∂gδβ

∂xλ

]

Exchanging the indices λ ↔ β in the second term in the square
parentheses,[ ], it is seen to be identical to the first term in the paren-
theses. Using Eq. (5.31),

=
1
2

∂2

∂xμ∂xα

[
gλβgαδ ∂gδλ

∂xβ

]
=

1
2

∂2

∂xμ∂xα

[
− ∂

∂xβ
gαβ

]

= −1
2

∂3

∂xμ∂xα∂xβ

(
gαβ

)
(5.54a)



248 The General Theory of Relativity

Assembling these partial results (Eqs. (5.54) and (5.54a)) into Eq.
(5.52b),

∂3

∂xα∂xβ∂xμ

(
1
2
gαβ − 1

2
gαβ

)
= 0 = −κ

∂

∂xσ

(
tσμ + T σ

μ

)
(5.56)

κ
∂

∂xσ

(
tσμ + T σ

μ

)
= 0

Equation (5.56),κ ∂
∂xσ (tσμ + T σ

μ ) = 0, is a statement of the conservation of
momentum and energy of the total system, whereas Eq. (5.49a) was the
same statement but only for the energy components of the gravitational
field in the absence of matter.

5.4.7.5 Derivation of Eqs. (5.57), (5.57a)
Derivation of Eq. (5.57):

Multiplying Eq. (5.53) by ∂gμν

∂xσ = gμν
σ ,

gμν
σ

(
∂Γα

μν

∂xα
+ Γα

μβΓβ
να

)
= −κgμν

σ

(
Tμν − 1

2
gμνT

)

The left-hand side of Eq. (5.53) is the same as the left-hand side
of Eq. (5.47b). This manipulation on Eq. (5.47b) was carried out in
Appendix 5.4.7.1, the result being

gμν
σ

(
∂Γα

μν

∂xα
+ Γα

μβΓβ
να

)
= −2κ

∂tασ
∂xα

Using this result, and that gμν
∂gμν

∂xσ = gμνgμν
σ = 0 (from Eq. (5.29),

gμν
∂gμν

∂xσ = −2 1√−g
∂
√−g
∂xσ = 0 since

√−g = +1),

−2κ
∂tασ
∂xα

= −κgμν
σ Tμν +

1
2
κgμν

σ gμνT = −κgμν
σ Tμν

∂Tα
σ

∂xα
+

1
2
gμν

σ Tμν =
∂Tα

σ

∂xα
+

1
2

∂gμν

∂xσ
Tμν = 0 by Eq. (5.56) (5.57)

Derivation of Eq. (5.57a):
By Eqs. (5.41b) and (5.57), the divergence of the mixed tensor T σ

μ is
(with

√−g = 1)

Tμ =
∂T σ

μ

∂xσ
+

1
2

∂gρσ

∂xμ
Tρσ = 0

by Eq. (5.57)

Tμ = 0 =
∂T σ

μ

∂xσ
− {σμ, τ}T σ

τ =
∂T σ

μ

∂xσ
+ Γτ

σμT σ
τ

by Eqs. (5.41), (5.45)

∂T σ
μ

∂xσ
= −Γτ

σμT σ
τ
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By relabeling the indices σ → α, μ → σ, τ → β,

∂Tα
σ

∂xα
= −Γβ

ασTα
β (5.57a)

5.4.8 Calculation of the Bending of Starlight

The total deflection of starlight passing near to the sun will be deflected

by an amount B =
+∞∫
−∞

∂γ
∂x1 dx2. From Section 5.2.22, we have that

γ = 1 − 1
2

α
r

(
1 + (x2)2

r2

)
. (5.74)

∂γ

∂x1
= −α

2

[
− 1

r2

(
1 +

(
x2
)2

r2

)
+

1
r

(
−2

(
x2
)2

r3

)](
∂r

∂x1

)

= −α

2

[
− 1

r2

(
1 +

3
(
x2
)2

r2

)](
x1

r

)
= +

α

2

[
x1

r3
+

3x1
(
x2
)2

r5

]

The integral for B becomes

B =

+∞∫
−∞

∂γ

∂x1
dx 2 =

α

2

+∞∫
−∞

([
x1

r3
+

3x1
(
x2
)2

r5

])
dx 2

Making the following substitutions:

x1 = Δ; r =
Δ

cos φ
;x2 = r sin φ = Δ

sin φ

cos φ
⇒ dx 2 =

Δ
cos2 φ

dφ

B =
α

2Δ

φ=+ π
2∫

φ=−π
2

(
cos φ + 3 sin2 φ cos φ

)
dφ =

α

2Δ
[
sin φ + sin3 φ

]φ=+ π
2

φ=−π
2

=
2α

Δ

5.4.9 Calculation of the Precession of the
Perihelion of Mercury

To obtain the expression for the precession of the perihelion of the planet
Mercury, Einstein began with the expression for the motion of a point
mass in a gravitational field (the point mass eventually to become the
planet Mercury in the gravitational field of the sun), Eq. (5.46):147

d2xτ

ds2 = Γτ
μν

dxμ

ds
dx ν

ds
(5.75)

A solution to Eq. (5.75) is obtained through a series of successive
approximations in the parameter α. At the outset, Einstein said he
was looking for a solution “without discussing the question whether
the solution might be unique.”148 In the derivation, he uses the
following:
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1. Energy conservation per unit mass

1
2
u2 + Φ = constant = A (5.76)

2. Kepler’s Second Law

r2 dφ

ds
= constant = B (5.77)

3. Gravitational potential (per mass)

Φ = −GM sun

r
= − α

2r
(5.78)

4. u =speed in polar coordinates

u2 =
dr2 + r2dφ2

ds2 =
(

dr
ds

)2

+ r2

(
dφ

ds

)2

(5.79)

Using the assumed solutions for gμν , Eqs. (5.70), and the definition of
Γτ

μν , Eqs. (5.45), (5.23), and (5.21), to a first approximation,149

Γτ
ρσ = −α

2

(
2δρσ

xτ

r3
− 3

xμxνxτ

r5

)
Γν

44 = Γ4
4ν = −α

2
xν

r3

(5.80)

Those components for which the index 4 appears one or three times
vanish.

Substituting Eqs. (5.80) into Eq. (5.75) (and using item h in Sec-
tion 5.2.21),

d2xν

ds2 = Γν
44

dx4

ds
dx4

ds
= Γν

44 = −α

2
xν

r3
for ν = 1, 2, 3

d2x4

ds2
= 0 for ν = 4

(5.81)

Equation (5.81), the first approximation, is Newton’s second law for
motion in a gravitational field.

The equations are then evaluated to the second order in the parameter
α. Using Eqs. (5.47) and (5.80), and remembering Γτ

ρσ �= 0 only when
two of the indices = 4,

∂Γν
44

∂xν
= −Γν

4μΓμ
4ν = −2

(
Γ4

41Γ
1
44 + Γ4

42Γ
2
44 + Γ4

43Γ
3
44

)
−2

(
− α

2r3

)2 [(
x1
)2

+
(
x2
)2

+
(
x3
)2]

= − α2

2r4
(5.82)

Einstein says, from Eq. (5.82), the following expression can be deduced
for Γν

44:

Γν
44 = −α

2
xν

r3

(
1 − α

r

)
(5.83)
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It will be sufficient for our purposes to show that this is “a solution” to
Eq. (5.82).

∂Γν
44

∂xν
=

∂

∂xν

[
−α

2
xν

r3

(
1 − α

r

)]

= −α

2

[
1
r3

(
1 − α

r

)
+ xν

(−3
r4

+
4α

r5

)
xν

r

]

Summing over ν = 1, 2, 3,

= −α

2

[
3
r3

(
1 − α

r

)
+ r

(−3
r4

+
4α

r5

)]

= − α

2r3

[−3α

r
+

4α

r

]
= − α

2r4

This shows that Eq. (5.83) is a solution to Eq. (5.82). Using this
revised expression for Γν

44, the expression for the equation of motion
is recalculated:

d2xν

ds2 = Γν
στ

dxσ

ds
dx τ

ds
(5.84)

Remembering Γτ
ρσ �= 0 only when two of the indices = 4 or when none of

the indices = 4, we consider first the case when the two indices σ, τ = 4.
By Eqs. (5.83) and (5.72), the right-hand side of Eq. (5.84) becomes

Γν
44

dx 4

ds
dx 4

ds

= −α

2
xν
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(
1 − α
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)(
1 +

α

r

)(
1 +

α

r

)

= −α

2
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r3

(
1 +

α

r

)
to order α2 (5.85)

When neither σ nor τ is = 4, i.e.,σ �= 4 �= τ , using Eq. (5.80), the right-
hand side of Eq. (5.84) becomes

Γν
στ

dxσ

ds
dx τ

ds

= −α
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xν

r3
− 3

2
xσxτxν

r5

)
dxσ
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(5.86)

Using r dr
ds = r ∂r

∂xν
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(
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, the sum over σ, τ in Eq. (5.86) gives
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(5.87)
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Using Eqs. (5.85) and (5.87),

d2xν

ds2 = −α

2
xν

r3

[
1 +

α

r
+ 2u2 − 3

(
dr
ds

)2
]

(5.88)

Using Eqs. (5.79) and (5.77),
(
dr
ds

)2
= u2 − r2

(
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r2 ,

d2xν

ds2 = −α

2
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(
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Using Eqs. (5.76) and (5.78), u2 = 2(A − Φ) = 2
(
A + α

2r

)
,
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[
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]

Replacing the variable s with s′ = s
√

1 − 2A,

d2xν

ds ′2
(1 − 2A) = −α

2
xν

r3

[
1 − 2A +

3B2

r2

]

Relabeling s′ as s, setting B′2 = 1
1−2AB2 and then relabeling B′ as B,

Eq. (5.88) becomes
d2xν

ds2 = −∂ΦE

∂xν with ΦE = ΦEinstein = − α
2r

(
1 + B2

r2

)
With this, the expression for energy conservation becomes

1
2
u2 + ΦE = A

u2 = 2A − 2ΦE(
dr
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+ r2

(
dφ
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= 2A − 2Φ = 2A +
α

r
+

αB2

r3

Using Kepler’s Second Law, Eq. (5.77), to eliminate dφ, and substituting
r = 1

x ,

B2

(
dx
dφ

)2

+ B2x2 = 2A + αx + αB2x3

(
dx
dφ

)2

=
2A

B2
+

α

B2
x − x2 + αx3 (5.89)

Einstein points out, “This equation differs from the corresponding one in
Newtonian theory only in the last term on the right side.”150 Excluding
the last term, the solutions to Eq. (5.89) are the elliptical orbits of New-
ton. Including the last term will give a solution that can be described as
the elliptical orbits of Newton, but orbits that are precessing. Inverting
Eq. (5.89),

dφ =
dx√

2A
B2 + α

B2 x − x2 + αx3
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The angle φ between the perihelion and the aphelion is

φ =

α2∫
α1

dx√
2A
B2 + α

B2 x − x2 + αx3

where α1 = 1
r1

= perihelion and α2 = 1
r2

aphelion. Upon integration, the
angle φ between perihelion and aphelion is (a is the semi-major axis of
the ellipse and e is the eccentricity of the ellipse)

φ = π

(
1 +

3
2

α

a(1 + e2)

)
(5.90)

In traveling in orbit from perihelion to aphelion, Eq. (5.90) indicates the
angle φ increases by more than π, by an amount equal to 3π

2
α

a(1+e2) .
Completing the orbit back to the perihelion will increase the angle by
this amount once again, for a total advance per orbit of 3π α

a(1+e2) . This
calculation yields for Mercury a perihelion advance of 43′′ per century.

5.4.10 The Bending of Starlight Experiment

When a star is far from the vicinity of the sun, its light travels in a
straight line to the earth. As we look out from the earth along that
straight line, we see where the star is. See Figure 5.15.

If the starlight passes near to the sun, light coming from the star
would be bent around the sun and travel to the earth as indicated in
Figure 5.16. Looking back along this line from the earth, the star would
appear to be in a slightly different position, relative to all of the other
stars in the sky, than when the starlight was not passing near to the sun.

Measuring the position of the particular star, relative to the other
stars in the background of stars, allows one to measure how far that star
appears to have been displaced (relative to the other background stars)
when the light ray from the star passes near to the sun.

Earth

Sun

Fig. 5.15 Starlight traveling to the
earth passing far from the sun.
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Earth

Sun

Actual
Location

Apparent
Location

Fig. 5.16 Starlight traveling to the
earth passing near to the sun.

5.4.11 Newton’s Bucket

To distinguish absolute motion (motion relative to absolute space) from
relative motion, Newton proposed an experiment that has become known
as “Newton’s Bucket.” First, Newton describes a situation familiar to
most people, that water in a rotating bucket will rise up the sides of the
bucket and be depressed in the center of the bucket. In Newton’s words:

. . . If a bucket is hanging from a very long cord and is continually turned
around until the cord becomes twisted tight, and if the bucket is thereupon
filled with water and is at rest along with the water and then, by some
sudden force, is made to turn around in the opposite direction and, as the
cord unwinds, perseveres for a while in this motion; then the surface of the
water will at first be level, just as it was before the vessel began to move. But
after the vessel, by the force gradually impressed upon the water, has caused
the water also to begin revolving perceptibly, the water will gradually recede
from the middle and rise up on the sides of the vessel, assuming a concave
shape (as experience has shown me), and, with an ever faster motion, will rise
further and further until, when it completes its revolutions in the same times
as the vessel, it is relatively at rest in the vessel.151

In his analysis of this phenomenon, Newton arrives at the conclusion of
the “true and absolute circular motion of the water,” i.e., the motion of
the water relative to absolute space. Continuing in his analysis, Newton
writes:

The rise of the water reveals its endeavor to recede from the axis of motion,
and from such an endeavor one can find out and measure the true and absolute
circular motion of the water, which here is the direct opposite of its relative
motion. In the beginning, when the relative motion of the water in the vessel
was greatest, that motion was not giving rise to any endeavor to recede from
the axis; the water did not seek the circumference by rising up the sides of the
vessel but remained level, and therefore its true circular motion had not yet
begun. But afterward, when the relative motion of the water decreased, its rise
up the sides of the vessel revealed its endeavor to recede from the axis, and
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this endeavor showed the true circular motion of the water to be continually
increasing and finally becoming greatest when the water was relatively at
rest in the vessel. Therefore, that endeavor does not depend on the change
of position of the water with respect to surrounding bodies, and thus true
circular motion cannot be determined by means of such changes of position.
The truly circular motion of each revolving body is unique, corresponding to
a unique endeavor as its proper and sufficient effect . . . 152

In this experiment, Newton distinguished three situations:

1. At the start of the experiment, before the bucket has begun spin-
ning, the water is at rest relative to the bucket and the surface of
the water is flat.

2. Midway through the experiment, when the bucket is spinning
rapidly but the water has just begun to move, the water has its
greatest motion relative to the bucket and the surface of the water
is still nearly flat.

3. Near the end of the experiment, when the bucket is spinning rapidly
and the water is rotating at the same rate as the bucket, the water
is at rest relative to the bucket and the surface of the water is
concave.

By this example, Newton showed there are effects that depend on more
than the relative motion of two objects, i.e., the relative motion of the
bucket and water are the same (no relative motion) in situations 1 and
3, yet the physical result (the shape of the surface of the water) is not
the same. This indicated to Newton the rotation is relative to absolute
space.

5.5 Notes

1. Einstein, Albert, The Foundation of the General Theory of Relativity,
20 March, 1916, Annalen der Physik 49 (1916), pp. 769–822; Kox, A.
J., Klein, Martin, J., and Schulmann, Robert, editors, The Collected
Papers of Albert Einstein, Volume 6, [CPAE6], Princeton University
Press, Princeton, NJ, 1996, pp. 283–339; English translation by Alfred
Engel, [CPAE6 ET], Princeton University Press, Princeton, NJ, 1997,
pp. 146–200.

2. Newton, Isaac, The Principia, A new translation by I. Bernard Cohen
and Anne Whitman, University of California Press, Berkeley, CA, 1999,
paperback version, p. 218.
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The topics presented in this chapter are intended to give an overview
of Einstein’s contribution to the evolution of the ideas of quantum
mechanics, not to present detailed calculations as was done for his 1905
papers and for the general theory of relativity. Any one of the topics
would be worthy of an entire book, or at least a chapter, to present his
contribution. The intent of this chapter is to show how strongly Einstein
was involved in the development of quantum mechanics by highlighting
several of his contributions and to show how, in fact, he remained alone
for nearly twenty years in his defense of the electromagnetic field being
composed of quanta.

6.1 Historical Background

In the 1800s, spectroscopists were studying the light emitted by different
elements. Unlike the spectra of sunlight in which there was a continuous
distribution of the colors from red to violet, different elements emitted
discrete spectra, that is, only certain lines of color (or, equivalently,
certain wavelengths or frequencies), with gaps between the lines. See
Figure 6.1.

By looking at the discrete spectra, an experienced spectroscopist could
identify from which element the spectra had been obtained. Scientists
began to look for some pattern in the emitted discrete spectra.
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Fig. 6.1 The discrete spectra of
Hydrogen.

Source: (From Tipler, Paul A., and
Llewellyn, Ralph A., Modern Physics,
Fifth Edition.1 Reprinted with
permission.)
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Some of the spectra were quite complicated. However, the spectrum
of hydrogen was relatively simple. For this reason, the emission spectra
of hydrogen became one of the most studied. Also, the “reverse” of
this effect was noted, i.e., when white light was shone through hydro-
gen gas and the transmitted light was analyzed, it was noted that
dark bands appeared (bands where light of certain wavelengths were
missing – this was called the absorption spectra). The dark bands of
the hydrogen absorption spectra exactly matched the discrete emission
spectra. Because of the extreme precision in the measurement of these
spectra, any empirical formula for the discrete spectra would need to
be as precise. In 1885, Johann Balmer, a Swiss mathematician and
secondary schoolteacher in Basel, found the lines in the visible portion
of the hydrogen spectra could be represented by the empirical formula,2

λm = 364.6
m2

m2 − 22
nm, with m an integer equal to 3, 4, 5,. . .

This became known as the Balmer series. Subsequently, it was found
that replacing 22 by 32, 42, . . . led to other spectral lines outside the
visible spectrum. Although this basically was numerology, it was hoped
that having such a precise formula for the wavelengths would aid in
obtaining a physical explanation for the emission and absorption spectra.
But none could be found.

For nearly two decades after 1905, Einstein remained alone as the
defender of the electromagnetic field being composed of the elementary
quanta.3 The concept of the quantum generally was accepted by the
scientific community, but as due to the interaction of the radiation field
with matter, not as an element of the radiation itself. In 1913, eight
years after Einstein’s 1905 paper on the quanta, in his nomination of
Einstein for membership in the Prussian Academy of Sciences, Planck
reflected the outlook of the time when he said of Einstein, “That he may
sometimes have missed the target in his speculations, as, for instance, in
his hypothesis of light-quanta, cannot really be held too much against
him, . . . ”4 In 1918, thirteen years after the 1905 paper, in a letter to
Besso, Einstein wrote, “Here I have been pondering for countless hours
about the quantum problem again, naturally without making any head-
way. But I no longer have doubts about the reality of quanta in radiation,
even though I’m still quite alone in this conviction.”5 Additionally, the
independence of Einstein’s quanta was valid only in the Wien (high ν)
region of the blackbody radiation; the quanta were not independent in
the low ν region.6 But before these concerns were answered, in the early
1920s a number of other advances were forthcoming.

Until the mid 1920s, Einstein was the leading scientist in matters
regarding the quantum. With the contributions of Compton, de Broglie,
and Schrödinger, the development of quantum mechanics went in a
direction that parted ways with Einstein.
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6.2 The Evolution of Quantum Mechanics

6.2.1 The Theory of Specific Heat (1906)

The specific heat capacity, denoted c, is the amount of heat needed
to raise the temperature of one mole of a substance by one degree (the
phrase “specific heat capacity” is usually shortened to the term “specific
heat”). In the early 1800s, Dulong and Petit discovered that for several
metals the specific heat had nearly the same value of 6 cal/mole · deg (see
Appendix 6.4.1 for a derivation of this result).7 Although generally true,
it was not universally so; carbon was found to be a significant exception.
In 1840, measurements of diamond dust gave a specific heat of 1.4,8

while 1841 measurements gave a value of 1.8.9 In the 1870s, Heinrich
Weber noted the different readings for the specific heat of diamond were
for different temperature ranges. Proceeding to retake measurements for
diamond over temperatures ranging from 0◦ C to 200◦ C, Weber found
the specific heat increasing with temperature by a factor of three. Later,
extending the range of his measurements, he found the specific heat
to increase by a factor of 15 in the temperature range from –100◦ C
to +1000◦ C. As the temperature rose, the value of the specific heat
became closer to the value of Dulong and Petit. Extending the materials
measured, Weber’s data grew to include boron, silicon, graphite, and
diamond, each in the range from –100◦ C to +1000◦ C.10

In his 1907 paper, “Planck’s Theory of Radiation and the Theory
of Specific Heat,”11 Einstein re-derives the Planck blackbody radiation
distribution function, starting from the quantization of the radiation
field. He then says:

I believe that we must not content ourselves with this result. For the question
arises: If the elementary structures that are to be assumed in the theory of
energy exchange between radiation and matter cannot be perceived in terms
of the current molecular-kinetic theory, are we then not obliged also to modify
the theory for the other periodically oscillating structures considered in the
molecular theory of heat? In my opinion the answer is not in doubt. If Planck’s
radiation theory goes to the root of the matter, then contradictions between
the current molecular-kinetic theory and experience must be expected in other
areas of the theory of heat as well, which can be resolved along the lines
indicated. In my opinion this is actually the case, as I shall now attempt to
show.12

Assuming each atom in a solid undergoes oscillations about its
equilibrium position, classically the specific heat was calculated to be
5.94 cal/mole · deg (times the number of atoms in a molecule). This is
in agreement with the law of Dulong and Petit. But the exceptions of
carbon, boron and silicon remained puzzling.13

For blackbody radiation, Planck had obtained the relation (see Sec-
tion 2.1.3):

U(ν, T ) =
hν

e
hν
kT − 1
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The first published graph dealing with the quantum theory of the solid state:
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Fig. 6.2 Weber’s specific heat data for
diamond.

Source: (From Einstein, Albert, The Col-
lected Papers of Albert Einstein.17 Re-
produced with permission.)

For the oscillating atoms, Einstein used the same equation for the energy.
For one mole of a substance with each atom having three degrees
of freedom, the total internal energy of the system is 3NAU(ν, T ) =
3NA

hν

e
hν
kT −1

. Using the thermodynamic relation cV = (∂U/∂T )V ,

Einstein obtained for the specific heat:14

cV = 3R

(
hν
kT

)2
e

hν
kT(

e
hν
kT − 1

)2 = 5.94

(
hν
kT

)2
e

hν
kT(

e
hν
kT − 1

)2 = 5.94

(
hν
kT

)2
e

−hν
kT(

1 − e
−hν
kT

)2

For low temperatures, i.e., T → 0, the ratio (hν/kT ) → ∞ and cV → 0.
Similarly, for high temperatures, i.e., T → ∞, the ratio (hν/kT ) → 0
and cV → 5.94.15

There was one parameter, the frequency ν or, equivalently, by setting
the ratio (hν/kT ) = 1, the Einstein temperature, TE . Comparing this
expression for cV to Weber’s data for diamond, Einstein found an
almost exact fit for TE = 1300 K. See Figure 6.2. This is well above the
typical room temperature of 300 K, and thus might be expected to show
quantum effects at room temperature. On the other hand, the element
lead has an Einstein temperature of 70 K, well below the typical room
temperature.16

Planck had introduced the quantum to explain the interaction between
blackbody radiation and the walls of the container; Einstein used it as a
fundamental constituent of the radiation field and, with its application
to specific heat, extended it to the solid state of materials.

6.2.2 The Dual Nature of Radiation (1909)

In the 1909 paper, “On the Present Status of the Radiation Problem,”18

Einstein derived an expression for the energy fluctuations of blackbody
radiation in the frequency range ν to ν + dν:19
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〈ε2(ν, T )〉 = kT 2V

(
∂ρ

∂T

)
dν

where V is the volume of the container.
In the low frequency limit, where the wave description of radiation

suffices, ρ is given by the Rayleigh–Jeans law. From the Rayleigh–Jeans
expression, Einstein obtained (actually, it was Pais who obtained this
expression, and the succeeding one. See the previous endnote):

〈ε2(ν, T )〉 =
c3

8πν2
ρ2V dν

In the high frequency limit, where the wave description was not sufficient,
ρ is given by Wien’s law. In his 1905 paper, Einstein had shown in
the Wien region the radiation behaved as if it were composed of n
independent particles.20 From the Wien expression, Einstein (again,
Pais) obtained:

〈ε2(ν, T )〉 = hνρV dν

And using the Planck expression for the radiation density ρ Einstein
obtained:21

〈ε2(ν, T )〉 =
(

hνρ +
c3

8πν2
ρ2

)
V dν

From Planck’s expression, the two terms in the above expression for
〈ε2(ν, T )〉 emerge naturally, the first indicating a particle aspect of the
radiation, the second indicating a wave aspect of the radiation. Einstein
described the meaning this held for him:

I have already tried to show that our current foundations of the radiation
theory must be abandoned . . . .22

Once it had been recognized that light exhibits the phenomena of interfer-
ence and diffraction, it seemed hardly doubtful any longer that light is to be
conceived as wave motion. Since light can also propagate through vacuum . . . it
was necessary to assume . . . [a] luminiferous ether . . .

However, today we must regard the ether hypothesis as an obsolete stand-
point . . . . It is therefore my opinion that the next stage in the development of
theoretical physics will bring us a theory of light that can be understood as a
kind of fusion of the wave and emission theories of light.23

. . .
All I wanted is briefly to indicate . . . that the two structural properties (the

undulatory structure and the quantum structure) simultaneously displayed
by radiation according to the Planck formula should not be considered as
mutually incompatible.24

. . . we are only dealing with a modification of our current theory, not with
its complete abolition.25

6.2.3 The Bohr Atom (1913)

Einstein’s 1905 papers on the size of the atom and Brownian motion
provided the last piece of evidence to tip the scales solidly in favor of
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Fig. 6.3 The Bohr atom.

the reality of atoms. Then followed more focused investigations of the
atom and its composition. In 1905, Einstein (along with a variety of
other investigators) had determined the radius of the atom to be about
10−10 m. In 1911, Ernest Rutherford determined the preponderance of
mass in the atom was associated with a positive charge and was con-
centrated in a “nucleus” with a radius of 10−14 m, 10,000 times smaller
than the atom. Around this positive nucleus, the negative electrons were
placed into an orbit of 10−10 m, held in orbit by the Coulomb force. But
the electrons in circular orbits were accelerating (out of straight-line
motion) and would radiate energy, quickly spiraling into the nucleus.

In 1913, Niels Bohr suggested that on the atomic level there might be
new laws in play that we had not observed previously. The suggestion
was that there were certain preferred orbits (termed stationary states by
Bohr) where the electron, even though accelerating, would not radiate
energy. Each of these preferred orbits would correspond to a particular
value of the energy, and to a particular value of angular momentum (the
angular momentum of these orbits was a multiple of �).26 As an electron
moved from one orbit to another, the difference in energy, ΔE, would
be given off as radiation, with the frequency of the radiation determined
by the Planck–Einstein relation ΔE = hν. See Figure 6.3.

This model not only predicted discrete spectra from atoms, but pre-
dicted the correct values of the frequencies of the experimental spectra,
in particular producing the Balmer formula that had defied a physical
explanation for nearly 30 years.27 By the end of 1914, these ideas had
been confirmed by the experiments of James Franck and Gustav Ludwig
Hertz (referred to today as the Franck–Hertz experiment).28

The unanswered question now was, why should there be such preferred
orbits? Niels Bohr responded that, perhaps, entirely new and different
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laws are needed to describe nature on the atomic scale. In the succeeding
years a variety of explanations were offered, but none of them was totally
satisfactory.

6.2.4 Spontaneous and Induced Transitions (1916)

Building on the Bohr assumption that atoms have a set of discrete
energy states Einstein, looked at the interaction between a gas of
these atoms and electromagnetic radiation.29 He focused on two of
the discrete energy levels of the atoms, Em and En, with Em > En.
For the gas in equilibrium with the radiation the number of atoms
in state m is Nm = pme−Em/kT , with a similar expression for Nn

(p is a weighting factor). In time dt, Einstein hypothesized that the
number of transitions dW from state m → n and from state n → m is
given by30

dWmn = Nm(ρBmn + Amn)dt

dWnm = NnρBnmdt

The A coefficient corresponds to the probability of a spontaneous transi-
tions, while the B terms refer to the probability of an induced emission
and absorption. ρ is the spectral density of the radiation present. In
order that these equations lead to Planck’s law, “[i]t is necessary that the
transitions m←

→n are accompanied by a single monochromatic radiation
quantum. By this remarkable reasoning, Einstein therefore established
a bridge between blackbody radiation and Bohr’s theory of spectra.”31

However, even more, Einstein was “suggesting that probabilities them-
selves might have to be regarded as fundamental, basic, physical prop-
erties of atomic systems.”32 This work is often referred to as the basis
for the laser.33

6.2.5 The Compton Scattering Experiment (1923)

In 1923, Arthur Compton34 and Peter Debye35 each derived the rel-
ativistic kinematics for an x-ray photon scattering from an electron.
They treated the collision between an incoming photon and an electron,
initially free and at rest, as a hard sphere (billiard ball) collision,
assuming energy and momentum conservation, but using the relativistic
expressions for the energy and momentum. See Figure 6.4.

The electrons, even if bound, could be considered free and initially
stationary since the energy of the incoming x-rays was so much greater
than the binding energy. (From the photoelectric effect, an estimate of
the binding energy would be on the order of the incoming ultraviolet
photon. The energy of an x-ray is several orders of magnitude greater
than the energy of an ultraviolet photon.)37

Since the photon has zero mass, the relativistic energy equation, E2 =
p2c2 + (m0c

2)2, becomes E = pc. For a photon of momentum �p0 before
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Fig. 6.4 The Compton scattering
experiment.

Source: (From Eisberg, Robert, and
Resnick, Robert, Modern Physics.36 Re-
produced with permission.)

the collision, and �p1 after the collision, the equations for conservation of
momentum and energy are,

⇀
p o= �pe + �p1

|�p0|c + m0c
2 = |�p1|c + (p2

ec
2 + m0c

2)1/2

Solving these equations in a manner similar to the classical billiard ball
collision, the momentum of the outgoing photon, p1, is determined as a
function of the photon scattering angle θ:38

1
p1

− 1
p0

=
1

m0c
(1 − cos θ)

Writing E = hν = pc and using the wave speed relation, λν = c, the
momentum of the photon can be written p = h/λ. Multiplying by h, the
previous equation relating the change in momentum of the photon to
the scattering angle θ the change in wavelength of the photon is

λ1 − λ0 = Δλ =
h

m0c
(1 − cos θ)

Experiments by Compton showed this relation to be satisfied within
experimental error.39

Thus, finally, an experiment showed the photon as an entity itself; that
it was a basic constituent of the electromagnetic field and existed inde-
pendently of interactions between the field and the walls of the container.
From this time, the idea of the photon became widely accepted.40 No
longer was Einstein “still quite alone in [his] conviction.”41 The reality of
the photon, Einstein’s quanta of the radiation field, now received general
acceptance within the scientific community.

6.2.6 Bose–Einstein Statistics (1924)

In Boltzmann’s derivation of the entropy expression, S = k log W , W is
the probability of the state occurring, calculated by counting the number
of “complexions,” i.e., by counting the number of ways the given state
could occur.42 Planck used Boltzmann’s definition of probability in terms
of complexions in his derivation of the radiation density equation for
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blackbody radiation. Einstein had misgivings about counting complex-
ions to determine the probability of the state. To Einstein, the time-
ensemble definition of the probability of the state of a physical system
was primary. The probability a system is in a given region Γ of the
state variables p1, p2, p3, . . . pn is given by the quantity τ/T in the limit
of T → ∞, where τ is the time spent in Γ out of the total time T .43

Calculations of probability based on the counting of complexions assume
the complexions are equally probable, an assumption that bothered
Einstein. Planck, Boltzmann, and others, assumed all complexions to
be equally probable, an assumption justified a posteriori by its obvious
success in obtaining Planck’s formula.44

S. N. Bose, a very bright young Indian physicist, advised his students,
“Never accept an idea as long as you are yourself not satisfied with
its consistency and the logical structure upon which the concepts are
based.”45 Following his own advice when studying derivations of Planck’s
blackbody radiation formula he found, “In every case, the derivations
do not appear to me to be sufficiently logically justified.”46 Working
through the derivations to satisfy himself, Bose developed a derivation
of Planck’s radiation law with no mention of the electromagnetic theory.
Pais describes this achievement:

The paper by Bose is the fourth and last of the revolutionary papers of the old
quantum theory (the other three being by, respectively, Planck, Einstein, and
Bohr). Bose’s arguments divest Planck’s law of all supererogatory elements of
electromagnetic theory and base its derivation on the bare essentials. It is the
thermal equilibrium law for particles with the following properties: they are
massless, they have two states of polarization, the number of particles is not
conserved, and the particles obey a new statistics.47

In 1924, Bose sent these ideas in a paper to Einstein, with an accom-
panying note saying, “I have ventured to send you the accompanying
article for your perusal and opinion. I am anxious to know what you
think of it . . . . If you think the paper worth publication, I shall be
grateful if you arrange for its publication in Zeitschrift für Physik.”48

Einstein submitted the article, with a note appended, saying, “Bose’s
derivation of Planck’s law appears to me to be an important step
forward.”49 In 1925, Bose traveled to Berlin to work with Einstein for
a year. During this collaboration, one of the questions they worked
on was whether the new statistics of Bose implied a new type of
interaction.

Einstein applied Bose’s new ideas to his thoughts on the quantum
gas. He notes that his theory “is based on the hypothesis of a far-
reaching formal relationship between radiation and gas. According to
this theory, the degenerate gas deviates from the gas of [classical] sta-
tistical mechanics in a way that is analogous to that in which radiation
obeying Planck’s law deviates from radiation obeying Wien’s law . . . .
[I]f it is justified to regard radiation as a quantum gas, then the analogy
between quantum gas and gas of molecules must be complete.”50 In a
subsequent paper he adds, “This theory seems justified if one starts with
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the conviction that (apart from its property of being polarized) a light
quantum differs essentially from a monatomic molecule only in that its
rest mass is vanishingly small . . . ”51

Stachel summarizes the situation regarding complexions and proba-
bility:

. . . The counting of complexions is based on the assumption that, while the
material oscillators or the normal modes of the radiation field are distinguish-
able, the quanta of energy of a given frequency . . . are indistinguishable. If
there are seven quanta of energy associated with one oscillator and five with
another, it makes no sense to ask which seven and which five quanta of energy
are involved.

. . .While elements of the total energy may be indistinguishable, in the sense
that it makes no sense to ask which quanta of that energy are in a given state,
how can one avoid this question for energy quanta, i.e., particles? Classically,
one cannot, and it must have seemed by the nature of the particle concept
that such a question makes sense. No wonder that even Einstein paused before
entering such a statistical morass.

But Bose did so, with a courage perhaps born in part from an incomplete
awareness of the perils . . . [H]e turned the problem of partitioning quanta of
energy among normal modes of the field into one of distributing energy quanta
– that is photons, considered as particles – among cells in phase space; but
continued to count with the old method to solve the new problem. Now the
cells, like the normal modes, are certainly independent of each other; but, if the
old counting method is used for the new problem, then the photons cannot be
statistically independent. For if they were, as Einstein had known since 1905,
Boltzmann’s standard counting method for independent particles, accepted by
everyone, would lead to Wien’s radiation formula rather than Planck’s.52

For a concrete example, consider the simple case of two particles
and two cells.53 Consider first the case of two distinguishable particles,
labeled A and B. These can be distributed into the two cells in four
distinct ways, each way equally probable to the others. See Figure 6.5.

From the table it is seen in two of the four cases, particles A and
B are in the same cell. If the particles are not distinguishable, one can
only say how many are in a given cell (for photons, this leads to the
statement that one can only say how much energy is in a given cell, not
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which photons are in a given cell). For two indistinguishable particles
the distribution is shown in Figure 6.6.

For the second case (indistinguishable particles), it is seen in two
of the three cases there are two particles in the same cell. The first
case (distinguishable particles) corresponds to the usual classical way
of distributing distinguishable particles among cells. The second case
corresponds to the counting introduced by Bose and Einstein, which is
justified a posteriori since it leads to the correct Planck formula.54

From the Bose method of counting, the quanta are more likely to be
together (two out of three cases = 67%) than if they were statistically
independent of one another (two out of four cases = 50%). The Bose
statistics introduces some sort of dependence between the light quanta,
a feature peculiar to quantum theory. By making the (apparently) simple
shift from “quanta of energy to energy quanta, [Bose] introduced a
type of statistical dependence between the latter peculiar to quantum
mechanics.”55 The term now used to talk of this peculiar dependence of
quantum particles is quantum entanglement. Thus, two indistinguishable
particles are more likely to be found near one another (67% of the time)
than are two distinguishable particles (50% of the time).56

Einstein saw Bose’s new statistics as

. . .mysterious and disturbing . . . it was clear to Einstein that something more
fundamental must lie behind Bose statistics . . . .

Einstein was looking for some way of assimilating entanglement of quantum
systems . . . to some more traditional type of interaction between particles . . . .

. . . The work of Einstein, Podolsky and Rosen and subsequent tests of Bell-
type inequalities show that, once two quantum systems of any type interact
(in the ordinary sense of the word), they are quantum-entangled forever . . .

. . . even more than the probabilistic element it was entanglement, and the
attendant non-locality that it introduced into the heart of physics, that most
bothered Einstein about quantum mechanics.57

6.2.7 Einstein, de Broglie (1924), and Schrödinger
(1926)

Louis de Broglie, while contemplating Einstein’s wave–particle duality
for electromagnetism (fields (waves) and photons (particles)) “suddenly
had the idea, during the year 1923, that the discovery made by Einstein
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in 1905 should be generalized by extending it to all material particles
and notably to electrons.”58

In a report to the French Academy of Sciences, Louis de Broglie put
forth the idea that the Planck–Einstein relation relating the frequency
of electromagnetic waves to the energy of the constituent photons,
E = hν, should hold also for material particles such as the electron. This
idea was a natural extension of the idea that if waves exhibit particle
characteristics, the converse should also be true. Inverting the equation
for the energy and momentum of the photon of the electromagnetic
field (E = hν and p = h/λ), de Broglie determined the frequency and
wavelength of the associated electron field (ν = E/h and λ = h/p).
These ideas were developed in de Broglie’s thesis, which he defended
in November, 1924.59

Einstein was intrigued and impressed with de Broglie’s thesis, terming
it “a very notable publication.”60 In his 1909 work on the radiation of
the electromagnetic field, Einstein noted the expression for 〈ε2(ν, T )〉
was composed of two terms, one indicating a wave aspect, the other a
particle aspect (see Section 6.2.2). In 1924, he had obtained a similar
expression for the quantum gas, but was uncertain how to interpret
the term corresponding to the wave characteristics. The de Broglie
waves fit neatly into this picture.61 Both de Broglie and Einstein talked
of experimental confirmation by suitable diffraction experiments with
electrons. In 1927, Davisson and Germer, working at the Bell Lab-
oratories, performed the experiment showing the wave nature of the
electron.62

De Broglie’s theory showed the preferred orbits of Bohr are those
into which an integral number of wavelengths will fit, i.e., the preferred
orbits of Bohr corresponded to the orbits of standing de Broglie waves.
De Broglie waves are the “reason” for the preferred orbits of Bohr. See
Figure 6.7.

n = 1 n = 2 n = 3

Fig. 6.7 De Broglie standing waves.

Source: (Eisberg, Robert, and Resnick,
Robert, Modern Physics.63 Reproduced
with permission.)
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Now the task was to determine what these waves of de Broglie
correspond to in the physical world, if they do, indeed, correspond to
anything in the physical world.

Einstein’s comment that de Broglie’s ideas “involve more than merely
an analogy,”64 drew the attention of Erwin Schrödinger. Schrödinger
was not enthused with the new Bose–Einstein statistics, and set about
starting with the wave picture of the gas and superimposing on that the
quantization conditions.65 He recalled that, “My theory was stimulated
by de Broglie’s thesis and by short but infinitely far-seeing remarks by
Einstein.”66 He comments, also, that his theory “means nothing else but
taking seriously the de Broglie–Einstein wave theory of moving particles,
according to which the particles are nothing more than a kind of ‘wave
crest’ on a background of waves.”67 Out of the de Broglie–Einstein wave
theory was born the Schrödinger equation in 1926:

i�
∂Ψ
∂t

= − �
2

2m
∇2Ψ + UΨ

Initially, Schrödinger interpreted the square of the wave function, |Ψ|2, to
be the matter density or, possibly, the charge density of the particle. As
Cushing points out, the problem with this interpretation is that at a bar-
rier, “Since part of the wave function is reflected . . . and part transmitted,
an electron would have to split up at the barrier, part being reflected and
part transmitted. However, experimentally, one always detects a whole
electron or none at all, but never a piece of an electron.”68 Later, in
1926, Max Born gave us the presently accepted interpretation, that |Ψ|2
represents the probability density of finding the electron at location

⇀
r

at time t.69

6.2.8 Einstein and Bohr (1927, 1930)

In 1925, Heisenberg proposed a theoretical description for quantum
mechanics that replaced the kinematical and dynamical variables of clas-
sical mechanics “by symbols subjected to a non-commutative algebra.”70

This is the matrix formulation of quantum mechanics. From this comes
the uncertainty principle for any two conjugate variables, such as (p, q)
or (E, t),

Δq · Δp ≥ �/2

Δt · ΔE ≥ �/2

At the Como conference in September of 1927, Niels Bohr stated his
view

. . . it is decisive to recognize that, however far the phenomena transcend the
scope of classical physical explanation, the account of all evidence must be
expressed in classical terms . . . . [This] implies the impossibility of any sharp
separation between the behavior of atomic objects and the interaction with
the measuring instruments which serve to define the conditions under which
the phenomena appear . . . . Consequently, evidence obtained under different
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Source: (From Cushing, James T., Philo-
sophical Concepts in Physics.72 Re-
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experimental conditions cannot be comprehended within a single picture, but
must be regarded as complementary in the sense that only the totality of the
phenomena exhausts the possible information about the objects.

Under these circumstances an essential element of ambiguity is involved in
ascribing conventional physical attributes to atomic objects, as is at once
evident in the dilemma regarding the corpuscular and wave properties of
electrons and photons, where we have to do with contrasting pictures, each
referring to an essential aspect of empirical evidence.

. . . It must here be remembered that . . . we are dealing with an implication of
the formalism which defies unambiguous expression in words suited to describe
classical physical pictures.71

Einstein had not been at the Como conference, but he attended the
Fifth Solvay conference the following month (in October of 1927). At the
conference he tried to point out inconsistencies within quantum mechan-
ics. He considered the example of a single electron passing through a
very small hole and hitting a screen, where it is detected. As Cushing
describes it:

Near the beginning of the general discussion session of the 1927 meeting,
he [Einstein] considered an electron passing through a small hole and being
detected on a screen, as shown in [Figure 6.8].

Before any observation is made, there is, according to quantum mechanics,
at nearly every point on the screen a nonzero probability of detecting an
electron. However, once the electron has been detected at, say, point A, there
will then be absolutely zero probability of finding the electron at any other
point B. Einstein argued that, if one were to say that the electron had been
virtually present everywhere over an appreciable portion of the screen before
the observation but that the probability at B had been instantaneously affected
by an observation at A, then this would require an action at a distance that
relativity is usually taken to rule out (since an effect ought not be propagated
instantaneously between two spatially separated points). On the other hand,
he contended, if there did exist some actual trajectory along which the electron
proceeded through the slit to point A on the screen and if quantum mechanics
were incapable of yielding that information, then quantum mechanics would
be an incomplete theory.73

Einstein considered this “ghostlike remote effect” (it also has been
referred to as a “spooky action-at-a-distance force”) an unacceptable
part of any physical theory.74 Cushing continues,
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In the view of Bohr, Born, Dirac, Heisenberg and nearly all of the other
quantum theorists, Einstein’s argument missed the point since the wave
function did not, in their opinion, represent anything like an ordinary wave
propagating in a space-time background.75

At the sixth Solvay conference, held in 1930, Einstein came prepared
with another example, this one apparently violating the uncertainty
principle in the form Δt · ΔE ≥ �/2. Again using Cushing’s description,

Basically what he proposed was to have a box filled with low-density electro-
magnetic radiation and equipped with a shutter driven by a clock inside the
box, as illustrated in [Figure 6.9].

The clock would be set to open and close the shutter very quickly in a time
Δt so that only a single photon would escape from the box. This time interval
Δt could be set as accurately as desired. Since E = mc2, simple accurate
weighings of the radiation filled box before and after the photon had been
emitted would determine the energy difference ΔE that would be the energy
of the ejected photon. Because Δt and ΔE could each be independently
determined to any degree of accuracy, the simultaneous values of Δt and ΔE
could be made so small that Δt · ΔE < �/2, in contradiction to Heisenberg’s
uncertainty relation.77

Initially, Bohr was unable to find a flaw in Einstein’s proposed exper-
iment. After a sleepless night, he realized the flaw was from Einstein’s
own general theory of relativity. The loss of the photon produced a
change in the gravitational field in the box because of the loss of mass,
Δm = ΔE/c2. The change in the gravitational field affects the rate at
which the clock keeps time, which, Bohr showed, exactly restored the
Heisenberg uncertainty principle. After this, Einstein ceased his search
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for inconsistencies in quantum mechanics and focused his efforts on the
incompleteness question.78

In 1935, Albert Einstein, Boris Podolsky, and Nathan Rosen col-
laborated on a paper (usually referred to as the EPR paper) titled
“Can Quantum-Mechanical Description of Reality Be Considered Com-
plete?”79 The paper defines a complete theory as follows:

In a complete theory there is an element corresponding to each element of
reality. A sufficient condition for the reality of a physical quantity is the
possibility of predicting it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities described by non-
commuting operators, the knowledge of one precludes the knowledge of the
other.80

Consider a system of two particles with position and momentum
(q1, p1) and (q2, p2), respectively. The Heisenberg uncertainty principle
holds for each pair of non-commuting variables (q1, p1) and (q2, p2).
But the relative position of the two particles, Q = q1 − q2, and the
total momentum of the system, P = p1 + p2, form a pair of commuting
variables (see Appendix 6.4.2). P and Q, being commuting variables,
can be known simultaneously to any desired degree of accuracy.

The two particles are allowed to interact. Much later, when p1 is
measured, the value of p2 will also be known without disturbing par-
ticle 2. Thus p2 is an element of reality. Then one measures q1, giving
the value of q2 without disturbing the system. Thus q2 also is an
element of reality. But, according to quantum mechanics, p2 and q2

cannot simultaneously be elements of reality because (p2, q2) is a non-
commuting pair of variables. Quantum mechanics must, therefore, be
incomplete.

Bohr responded quickly. He admitted to the correctness of the analysis
in the EPR paper. But he stressed again that, “because of the finite
value of the quantum of action [Planck’s constant] it was impossible –
in contrast to classical physics – to speak of ‘physical reality’ without
including the measuring process. If that is borne in mind, the contradic-
tion highlighted by EPR is only apparent, and quantum mechanics is a
complete description of what physicists can discover about nature.”81

One interpretation of the wave function (actually |Ψ|2) giving the
probability of an electron being at location

⇀
r at time t is that this is

fundamentally the best one can do in light of the uncertainty principle.
A second interpretation is that, due to our incomplete knowledge of the
system, there are additional variables of which we are not yet aware.
These theories are termed “hidden variable” theories, similar to the idea
of unseen atoms underlying the structure of thermodynamics. Although
many place Einstein in the hidden variable theory camp, John Stachel
does not, based partially on a statement by Einstein in 1953, “I think
that it is not possible to get rid of the statistical character of the present
quantum theory by merely adding something to the latter without
changing the fundamental concepts about the whole structure.”82
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Einstein continued to look for the fusion of the wave and particle
theories. In 1939, he wrote:

I do not believe that the light-quanta have reality in the same immediate sense
as the corpuscles of electricity. Likewise I do not believe that the particle-waves
have reality in same sense as the particles themselves. The wave-character
of particles and the particle-character of light will – in my opinion – be
understood in a more indirect way, not as immediate physical reality.83

In 1952, he wrote:

In present-day physics there is manifested a kind of battle between the particle-
concept and the field-concept for leadership, which will probably not be
decided for a long time. It is even doubtful if one of the two rivals finally
will be able to maintain itself as a fundamental concept.84

6.3 Discussion and Comments

Of the two types of physical theories, theories of principle and theo-
ries of construction, we spoke of Einstein’s special theory of relativity
being a theory of principle, while Lorentz’s theory of relativity was a
theory of construction. Quantum theory is a theory of construction,
being constructed piece by piece. In this construction, Einstein was a
major player, at times making contributions of his own, at other times
supporting the work of others or raising points of concern regarding
their work.

In 1905, Einstein brought forth a radically different view of light, the
idea of energy packets (later to be called photons) rather than light
being a wave. He was uncomfortable with the dualism of light being
described some times as particles and at others as a wave. Rather than
seeing the wave and particle aspects of radiation as being at odds with
one another, Einstein began looking for “a theory of light that can be
understood as a kind of fusion of the wave and emission theories of
light,”85 He extended the quantum ideas beyond gases and liquids to
the solid state with his work on the specific heat of solids, explaining
the anomalous behavior of some materials not following the law of
Dulong and Petit. With the success of the Bohr model of the hydrogen
atom, Einstein used the principle of discrete energy states in his work
on spontaneous and induced transitions. Nevertheless, there remained
concerns regarding the determination of probabilities by simply counting
the number of complexions, assuming the complexions were equally
probable. Einstein’s work with Bose addressed this concern. To this point
in the early 1920s, Einstein had remained alone as the defender of the
electromagnetic field being composed of elementary quanta, rather than
the quanta arising from the interaction of the electromagnetic field with
the walls of the container.86 In 1923, the Compton scattering experiment
showed the photon as an entity itself, that it was a basic constituent of
the electromagnetic field.
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After this time, Einstein remained convinced of his interpretation of
quantum theory and what conditions it must satisfy. At the fifth Solvay
conference in 1927, and at the sixth Solvay conference in 1930, he pointed
out what he considered inconsistencies in the interpretation of quantum
theory as presented by Niels Bohr. From this point (1930), Einstein
ceased his search for inconsistencies in the quantum theory and focused
his efforts on the incompleteness question.87

6.4 Appendices

6.4.1 The Specific Heat of Dulong and Petit

The first law of thermodynamics is ΔU = ΔQ − ΔW , with ΔU the
change in the internal energy of the system, ΔQ the amount of heat
added to the system, and ΔW the amount of work done by the system.
The amount of work done by the system is pΔV . Rewriting the first
law as ΔU = ΔQ − pΔV , it can be seen that in any process in which
ΔV = 0, the change in internal energy of the system, ΔU , is equal to
the heat added to the system, ΔQ.

The specific heat, c, is the amount of heat needed to raise the temper-
ature of one mole of a substance by one degree kelvin, c = ΔQ/ΔT . If
the process takes place at constant volume, the specific heat at constant
volume is cV = (ΔQ/ΔT )V = (ΔU/ΔT )V = (∂U/∂T )V . From kinetic
theory, the kinetic energy of an atom is 3

2kT . Boltzmann had shown
that “the average kinetic energy equals the average potential energy for
a system of particles each one of which oscillates under the influence of
external harmonic forces.”88 The average total energy of one atom of a
system is 〈U〉 = 〈KE〉 + 〈PE〉 = 3kT . The average total internal energy
of one mole of the system is U = NA3kT = 3RT ,

cV = (∂U/∂T ) = 3R = 3 × 1.98
calories

K
= 5.94

calories
K

6.4.2 The Commutator of P and Q

The commutator of two variables, x and y, is defined as [x, y] = xy–yx.
For typical situations such as x and y being numbers the commuta-
tor [x, y] is equal to zero. However, some entities do not commute,
i.e., their commutator is not equal to zero (one common example of
this is matrices). In quantum mechanics, the position and momen-
tum variables of a particle do not commute, i.e., the commutator
of those variables is not zero, [q, p] = qp − pq = i�, with q the posi-
tion of the particle, p the momentum of the particle, i =

√−1, and
� = h/2π.

For a system of two particles, the position and momentum of particle 1,
q1 and p1, are non-commuting variables, as are the position and momen-
tum of particle 2, q2 and p2. But the position and momentum variables
of particle 1 commute with the position and momentum variables of
particle 2:
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[q1, p1] = q1p1 − p1q1 = i�

[q2, p2] = i�

[q1, q2] = 0 = [q1, p2] = [p1, q2] = [p1, p2]

But the relative position of the two particles, Q = q1 − q2, and the
total momentum of the system, P = p1 + p2, are commuting variables:89

[Q,P ] = QP − PQ = (q1 − q2)(p1 + p2) − (p1 + p2)(q1 − q2)

= (q1p1 + q1p2 − q2p1 − q2p2) − (p1q1 − p1q2 + p2q1 − p2q2)

= (q1p1 − p1q1) + (q1p2 − p2q1) + (−q2p1 + p1q2) + (−q2p2 + p2q2)

= i� + 0 + 0 − i�

= 0
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7.1 The Inflexible Boundary Condition

In describing Albert Einstein’s approach to science, he frequently is
described as more of an artist than a scientist, that his guiding principles
were order and beauty. In 1933, Einstein said, “Our experience up to
date justifies us in feeling sure that in nature is actualized the ideal of
mathematical simplicity.”1 And, in 1947, he said, “My views are near
those of Spinoza: admiration for the beauty of and belief in the logical
simplicity of the order and harmony which we can grasp humbly and
only imperfectly.”2 In 1970, Banesh Hoffmann said of Einstein, “One
might almost say that he was not so much a scientist as an artist of
science.”3

However, even though it may be proper to describe him as an artist
because of his aesthetic sense and search for beauty and order, Einstein
remained acutely attuned to the “inflexible boundary condition of agree-
ing with physical reality.”4 This sense was honed in his father’s electrical
engineering company, in Weber’s courses on experimental physics at
the ETH, and in examining patents in the patent office, leading to a
discrimination of what was essential from what was incidental. After
detailing many of the mathematical details of his papers in the previous
chapters, we conclude with some reflection on his focus on experimental
results to provide him insights, to set the direction, to correct his path,
and to verify his results.

In Munich, as the Einstein home was on the grounds of the factory,
Albert grew up in daily contact with electromechanical equipment,5 with
first-hand experience of electromagnetism, a cutting edge technology at
the time, and its application in the real world. In college, Professor
Weber’s laboratory courses stressed the importance of measurement.
Einstein’s attitude toward experiment can be seen in his comment on
his enjoyment of the laboratory experience, that he was “. . . fascinated
by the direct contact with experience . . . ”6 Even prior to 1905, in
commenting on the work of Boltzmann, Einstein was concerned that
Boltzmann had not more closely tied his work to experimental results.
In a 1901 letter to Mileva Marić, he wrote, “At present I am again
studying Boltzmann’s theory of gases. Everything is very nice, but there
is too little stress on the comparison with reality.”7

In the paper, “On a Heuristic Point of View Concerning the Produc-
tion and Transformation of Light,”8 Einstein began by noting that in the
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blackbody radiation experiment, in the high frequency regime (Wien’s
distribution law regime), “the theoretical principles . . . fail completely.”9

In sections 7, 8, and 9 of the paper, Einstein shows how the concept
of light quanta can be used to give simple explanations of three experi-
mental phenomena: Stokes’ rule for photoluminescence; the photoelectric
effect; and the generation of cathode rays by photo-ionization.

In the paper, “A New Determination of Molecular Dimensions,”10

Einstein arrived at the size of the atom by comparing his theoretical
results to experimental data on diffusion and viscosity. In the paper
“On the Movement of Small Particles Suspended in Stationary Liquids
Required by the Molecular-Kinetic Theory of Heat,”11 he concludes
it with a request for experimental confirmation (or falsification), “Let
us hope that a researcher will soon succeed in solving the problem
posed here, which is of such importance in the theory of heat.”12 And,
after the confirmation of the Brownian motion equation by Perrin,
Einstein recalled that “. . . the agreement of these considerations [theory
of Brownian motion] with experience . . . convinced the skeptics, who
were quite numerous at that time (Ostwald, Mach) of the reality of
atoms.”13

The paper, “On the Electrodynamics of Moving Bodies,”14 opens with
a comment on the electrodynamic induction experiment, on “asymme-
tries [in electrodynamic induction] that do not seem to attach to the
phenomena.”15, and “. . . the failure of attempts to detect a motion of the
earth relative to the ‘light medium’ [the experimental fact of the constant
value of the speed of light] . . . ”16 Starting with the principle of relativity,
Einstein obtained the Lorentz transformations and obtained the same
transformations of the electric and magnetic fields as were obtained by
Lorentz. As the Lorentz transformations were obtained specifically to be
consistent with experiment, Einstein’s results also would be consistent
with experiment.

In this paper, Einstein considered an electron at rest at the origin
of K′ (the moving reference frame). In K′, the electromagnetic force
on the electron will be purely electric: �F = q �E. In K, the electron is
moving at speed v and, transforming to the reference frame K,17 the
force becomes �F = q( �E + �v

c × �B). This is the Lorentz force on a charged
particle moving in an electromagnetic field, obtained in a natural way as
a consequence of the principle of relativity, not as a separate postulate
as was done by Lorentz.

Of interest, as it was in apparent contradiction to Einstein’s strong
reliance on experiment to guide his theories and to verify his results,
was his response to the experiments of Walter Kaufmann on the mass
of high speed electrons. Stachel describes his response as “. . . cautious
about accepting Kaufmann’s results as definitive, perhaps because of his
familiarity with Planck’s critical analysis of the experiments.”18 In 1905,
after a series of experiments measuring the mass of high speed electrons,
Kaufmann had written that, “The prevalent results decidedly speak
against the correctness of Lorentz’s assumptions as well as Einstein’s.”19
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Einstein waited two years before responding. In his 1907 paper, “On the
Relativity Principle and the Conclusions Drawn from It,” Einstein wrote,
“It should also be mentioned that . . . [other] . . . theories of the motion
of the electron yield curves that are significantly closer to the observed
curve than the curve obtained from the theory of relativity. However, the
probability that their theories are correct is rather small, in my opinion,
because their basic assumptions concerning the dimensions of the moving
electron are not suggested by theoretical systems that encompass larger
complexes of phenomena.”20 Eventually, after two years of investigation,
Planck found an inconsistency in Kaufmann’s data that shifted the
conclusions slightly in favor of Einstein’s theory.21

As John Stachel notes, “The earliest widely accepted empirical evi-
dence for the quantum hypothesis came not from radiation phenomena,
but from data on specific heats of solids.”22 In his 1907 paper, “Planck’s
Theory of Radiation and the Theory of Specific Heat,”23 Einstein
obtained an expression for the specific heat of a solid.24 Comparing
this expression for cV to Weber’s data for diamond, Einstein found an
almost exact fit for TE = 1300K.

In his 1907 review of the special theory of relativity, entitled “On the
Relativity Principle and the Conclusions Drawn from It,”25 in the last
section of the paper, Einstein already commented on the possibility of
a general theory of relativity and its verification by measurement of a
gravitational redshift and the bending of light in a gravitational field.

The paper, “The Foundation of the General Theory of Relativity,”26

begins with the statement, “This view is made possible for us by the
teaching of experience as to the existence of a field of force, namely the
gravitational field, which possesses the remarkable property of imparting
the same acceleration to all bodies.”27 He then references the Eötvös
experiment,28 “Eötvös has proved experimentally that the gravitational
field has this property to great accuracy.”29 He concludes the paper
with reference to three possible verifications (or falsifications) of the
theory: the precession of the perihelion of the orbit of Mercury (a known,
but not explained, fact); a gravitational redshift (a prediction of a new
phenomenon); and the bending of starlight passing near to the sun
(a prediction of a new phenomenon).

In the cosmology paper, “Cosmological Considerations in the General
Theory of Relativity,” Einstein introduced the cosmological constant to
be in agreement with a static universe – the accepted knowledge of the
day.30 Years later, after the Hubble expansion of the universe was known,
looking back on his introduction of the cosmological constant, he said,
“If Hubble’s expansion had been discovered at the time of the creation
of the general theory of relativity, the cosmological member never would
have been introduced.”31

The unified field theory had no physical insight or conflict to guide
him; it was purely a quest for harmony. But even here, in his exchanges
with Cartan, it could be seen Einstein was mostly concerned with
possible physical interpretation, whereas Cartan would be guided by
considerations of logical necessity.32
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In a 1921 lecture in London, Einstein said, “The abandonment of a
certain concept . . . must not be regarded as arbitrary . . . the justification
for a physical concept lies exclusively in its clear and unambiguous
relation to facts that can be experienced.”33 In 1924, describing his
breakthrough to the special theory of relativity, he said, “. . . our concepts
and laws of space and time can only claim validity insofar as they stand
in a clear relation to our experiences; and that experience could very well
lead to the alteration of these concepts and laws.”34 In 1933, apparently
moving closer to pure mathematical constructions, in a lecture delivered
at Oxford, he said, “I am convinced that we can discover by means of
purely mathematical constructions the concepts and the laws connecting
them with each other, which furnish the key to the understanding of
natural phenomena. . . the creative principle resides in mathematics.”35

However, as Michel Biezunski described it in a 1989 article, Albert
Einstein was a person who “. . . wanted a theory that is complete, gen-
eral, aesthetically satisfying, and unified. The means were less important
in his eyes. He used a mathematical theory as a tool, and never more.
He was concerned with physical problems, and refused to be caught in
the trap of formal, mathematical structures.”36
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28. Eötvös, B., Mathematische und Naturwissenschaftliche Berichte aus
Ungarn 8 (1890); Wiedemann’s Beiblätter 15 (1891), 688; citation from
Einstein, Albert, Outline of a Generalized Theory of Relativity and of a
Theory of Gravitation, Teubner, Leipzig, 1913; Klein, Martin, Kox, A.
J., Renn, Jürgen, and Schulmann, Robert, editors, [CPAE4], Princeton
University Press, Princeton, NJ, 1995, p. 304, English translation by Anna
Beck, [CPAE4 ET], p. 151.

29. Einstein, Albert, The Foundation of the General Theory of Relativity,
[CPAE6, p. 288; CPAE6 ET, p. 150].



7.3 Bibliography 295

30. Einstein, Albert, Cosmological Considerations in the General Theory of
Relativity, Königlich Preussische Akademie der Wissenschaften (Berlin).
Sitzungsberichte (1917); citation from Kox et al., [CPAE6, pp. 542–543;
CPAE ET, p. 423].

31. Einstein, Albert, The Meaning of Relativity, 5th edition, Princeton
University Press, Princeton, NJ, 1956 (1922), p. 127, footnote to item
1 in “Summary and Other Remarks.”

32. Biezunski, Michel, Inside the Coconut: The Einstein–Cartan Discussion
on Distant Parallelism, in Einstein Studies, Volume 1, Birkhäuser, Boston,
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