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Preface

Embryo development is a great fascination for biologists, irrespective of their discipline. 
While technically challenging, the study of embryo development provides indispensable 
information concerning the origins of the various forms and structures that make up the 
organism. Moreover, many useful applications have been derived from the knowledge 
gained through the study of plant embryology. The introduction of in vitro culture of 
zygotic embryos has greatly facilitated the study of embryo development and has allowed 
for studies not possible in vivo. In vitro culture has in and of itself proven invaluable as a 
method in plant science for both applied and basic research. The main purpose of this 
book is to provide a ready source of information for culturing zygotic embryos for diffe-
rent types of studies, both theoretical and practical. Although some procedures described 
here are standard, we expect that the assembly under the same theme will provide a quick 
reference source for our readers.

A range of related topics have been selected. Our intention is that the protocols in this 
volume will serve as reference materials that can be used to help others develop their own 
customized methods for different species and for different purposes. It is not intended to 
be exhaustive. The book chapters are divided into five main sections: (1) protocols focus-
ing on the culture of zygotic embryos for developmental studies, (2) application of 
embryo culture techniques focusing on embryo rescue methods, (3) cryopreservation of 
zygotic embryos, (4) the use of zygotic embryos as explants for somatic embryogenesis 
and organogenesis, and (5) transformation protocols using zygotic embryos as starting 
material.

The first chapter for each section is longer, but provides a general overview of the 
topic. Hence, it departs slightly from the recommended format. The main reason for 
organizing the protocols into sections is that the technique itself, zygotic embryo isola-
tion, is a relatively simple one and is similar for different species. What determines how 
and when you excise the embryo is its final use, as will be evident in the various chapters. 
The value of the technique lies in its various applications, which we show to be very broad-
based. Thus, we expect that the book will appeal to a wide array of researchers.

We would like to thank all the authors who contributed to this book project, Ms. 
Stephanie Yeung for her diligent editorial work, and Professor John M. Walker of Humana 
Press for his valuable advice during the assembly of the book.

Calgary, Alberta, Canada Trevor A. Thorpe
Edward C. Yeung
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Chapter 1

Zygotic Embryo Culture: An Overview

Tegan M. Haslam and Edward C. Yeung 

Abstract

Zygotic embryo culture has proven itself an invaluable method in plant science for both pure and applied 
research. The composition of medium used to sustain embryos is a key to successful culture. Optimal 
composition of the medium changes during embryonic development; generally, the younger the embryo, 
the more complex is its nutritional requirements. Feeder cell and “double medium” culture methods 
have been developed to improve the survival of zygotes and proembryos in vitro. In this chapter, we 
discuss the nutritional requirements of cultured embryos and the importance of the osmotic environ-
ment for nurturing young embryos. Specific methodological adaptations used in the culture of Capsella 
are outlined to demonstrate how standard protocols can be manipulated to suit one’s needs.

Key words: Capsella, Embryo culture, Endosperm, Feeder cells, Osmoticum, Phaseolus, Proembryo, 
Suspensor, Zygote

Biologists are fascinated by how embryos develop in vivo. The 
study of embryo development provides indispensable informa-
tion on the origins of various forms and structures of plants (1). 
Useful applications of knowledge gained through the study of 
plant embryology were recognized early (2). In vitro culture of 
zygotic embryos has allowed for study of embryo development 
that would not be possible in in vivo studies and has greatly facili-
tated research methods. Furthermore, it has of itself proven 
invaluable as a method in plant science in both applied and pure 
research. We begin this chapter by outlining some important 
examples of these applications.

Work by Hannig (3) established zygotic embryo culture 
(ZEC) as an experimental tool to study embryo development 
in vitro. Subsequent studies using the technique of ZEC have 

1.  Introduction
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been instrumental in optimizing embryo growth, overcoming 
embryo inviability, and bypassing seed dormancy (2, 4). In 1925, 
Laibach (5) found the first of many practical applications for ZEC 
when he systematically varied medium components and their 
 concentrations to suit the precise needs of developing embryos. 
In doing so, Laibach discovered that very fastidious embryos could 
be grown if culture conditions were optimized. ZEC as a method 
for embryo rescue of fastidious progeny is especially relevant to 
cross-breeding in agriculture and horticulture. Breeders often 
cross inbred individuals having low genetic diversity to wild 
individuals as the latter are usually more hardy or disease resistant. 
However, these crosses are frequently unsuccessful because 
genomic incompatibility between parents disallows double fertil-
ization. This incompatibility prevents development of the 
endosperm, thereby leading to starvation of the embryo. By plac-
ing the embryo in nutrient medium immediately following fertil-
ization, essential nourishment is provided and the embryo may 
survive. This application is discussed by Asif et al. (6) and Bakry 
et al. (7) using banana as a model organism; Clarke et al. (8) also 
discuss this topic in relation to chickpea production. Applications 
for propagation of citrus fruits derived from interploid crosses are 
discussed by Viloria et al. (9). Pérez-Tornero and Porras (10) also 
discuss crosses between citrus fruit, though it limits itself to appli-
cations for embryo rescue by avoiding polyembryony in lemon. 
Methods for raising fastidious zygotic embryos produced from 
cross-pollination of cucumber and melon (Cucumis) are presented 
by Ondrej and Navratilova (11). Again, all of these studies were 
 performed with the aim of raising hardy or disease-resistant crops.

Another common problem in fruit production is that many 
fruits ripen at a rate far exceeding that of the embryo maturation. 
In 1933, Tukey (12) used ZEC to solve this problem in peach. By 
transferring peach embryos to in vitro culture, he allowed them 
to finish developing independently of fruit development. Several 
chapters in this book provide standard protocols that may be 
applied practically to agriculture.

Seed dormancy and its triggers can also be investigated using 
ZEC, as cultured embryos skip this stage of the plant life cycle. 
Dormancy is preceded by desiccation, metabolic reduction, and 
finally quiescence (13). There is obvious value for pure research 
into the physiology of this process. Furthermore, the fact that 
ZEC skips seed dormancy makes it advantageous in allowing 
breeders to massively reduce the generation time of their crops. 
This was demonstrated by Randolph et al. (14, 15), who made 
use of the simple fact that excising young embryos and transfer-
ring them to nutrient media lead to a direct transition between 
embryonic and seedling development. In carefully applying tissue 
culture to iris production, Randolph et al. (14, 15) shortened its 
breeding cycle from years to months.
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Besides its practical applications, ZEC can be an excellent 
experimental system for pure scientific research. Understanding 
embryo growth provides a better theoretical understanding of 
plant growth and development in general, especially during the 
unique period when tissues, organs, and apical meristems are 
being established. A surge of information published in recent 
years concerning zygotic embryo development can attest to 
growing interest in the field. This information was recently 
summarized in Vol. 427 of this series, edited by Suarez and 
Bozhkov (16). In experimental studies on the structural func-
tions, hormonal roles, and the molecular biology of embryo 
development, embryo culture complements in ovulo studies of 
zygotic embryogenesis (17). The culture of young embryos of 
Phaseolus coccineus with and without a suspensor has been used 
to examine this organ’s role during early development. These 
studies have shown that the suspensor plays an important nutri-
tional role in embryo development (18). Auxin has been of special 
interest in the study of the hormone physiology of embryo 
development; auxin has a key regulatory function and is essen-
tial to axis establishment at the proembryo stage (19). Alteration 
of auxin transport using auxin transport inhibitors changes 
embryo symmetry from bilateral to radial (20). Also, interfering 
with polar auxin movement can lead to shoot apical meristem 
abortion (21, 22). In vitro culture of embryo mutants enables 
us to gain better insight to additional molecular mechanisms of 
embryo development (17). Hence, ZEC is an integral part of 
many varied research programmes concerning embryo develop-
ment. The knowledge gained through these methods will also 
have a significant impact on practical applications.

The purpose of the present chapter is to provide the reader 
with a brief overview of standard procedures involved in ZEC and 
how one can modify these methods to suit one’s own needs. 
We begin by emphasizing some key factors that are important for 
ZEC. Table 1 provides selected references to literature in which 
species- and need-specific protocols can be found. Next, the 
model organism Capsella bursa-pastoris is used as an example of 
how general protocols can be modified, in this instance to fulfil 
the stringent requirements of proembryo culture.

Prior to culturing embryos, it is important to establish what the 
developmental stage of interest is, which depends on the aim of 
the study. With embryo rescue, for example, it is important to 
know when the embryos begin to abort so that embryo dissec-
tions are carried out prior to abortion. To determine when 

2. General 
Approaches  
and Methodology

2.1. Understanding 
Your System  
and Establishing 
a Stage of Interest
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Table 1 
Selected references to culture methods

Organism Stage cultured Method Reference

Arabidopsis 
thaliana

Fertilized ovule Plant transfer through a series of simple media 
suiting the developing embryo’s needs

(60, 61)

Proembryo Plant transfer through a series of simple  
media in Petri plates, multiple-well culture 
plates, to initiate multiple shoot growth

(62)

Various Multiple, simple media tested on different 
individuals, for mutant rescue and  
investigation of knockout gene function

(63)

Brassica juncaea Globular and 
heart-stage

Multiple, auxin supplemented-media  
tested on different individuals

(64)

Carica papaya Mature embryo Multiple, simple media tested on different 
individuals for mutant screening

(65)

Centaurea 
tchihatcheff i

Immature embryos Simple medium for seed dormancy investigation (66)

Cicer arietinum Early globular stage Plant transfer through a series of liquid  
culture media in polycarbonate tubes, 
adjusted to the developing embryo’s  
needs for embryo rescue

(8)

Citrus limon Immature embryos Multiple, simple media tested on different 
individuals for embryo rescue

(10)

Citrus spp. Immature embryos Plant transfer through a series of simple  
media

(9)

Cocos nucifera Mature embryos Growth in simple media for ZEC/in vivo 
comparison

(67)

Cucumis spp. Immature embryos Simple medium in tubes, for observation  
of hormone effects

(11)

Gossypium 
hirsutum

Fertilized ovule Solid and liquid-stationary/shaken/rotated 
simple media tested on different plants

(68)

Helianthus spp. Various stages Plant transfer between two separate media,  
for investigation of embryo rescue

(69)

Manihot  
esculenta

Immature embryos Simple medium in tubes, with applications  
in evading seed dormancy

(70)

Musa  
acuminata

Mature embryos Simple medium, for investigation of embryo 
rescue

(6)

Nicotiana 
tabacum

Various stages Nurse cell culture (51)

Oryza sativa Various stages Nurse cell culture, for development of a 
single-cell regeneration system

(50)

(continued)
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abortion occurs, the simplest approach is to dissect the seed and 
observe directly. If necessary, histological sections can be used to 
determine when abnormalities begin to form. Histological sec-
tions can also show potential causes of abortion, such as endosperm 
failure or seed coat abnormalities. Technical information regarding 
histological methods is readily available in the literature, for 
example, Yeung and Sexena (23).

For theoretical studies of embryo development, establishing a devel-
opmental timetable is extremely useful. Although creating the time-
table is time consuming, it greatly facilitates subsequent embryo 
collection at the desired stage. There are various methods of estab-
lishing a timetable. In P. coccineus and Phaseolus vulgaris embryo 
development (24), pod and seed lengths, embryo morphological 
stages, and colour changes provide a quick assessment of embryo 
stages for various types of studies. In contrast, in the study of Capsella 
embryo development, measuring ovule size can help determine 
developmental stage while eliminating the need to open the 
ovule (25).

The most important aspect of embryo culture work is selection of 
a medium that meets the needs of isolated, growing embryos. 
Although there are a number of medium formulas in use, many 
have not been vigorously tested. In general, younger embryos 
have more complex nutritional requirements, while more mature 
embryos can be grown in a simpler inorganic salt media (26). 

2.2. Establishing  
a Developmental 
Timetable

2.3. General 
Consideration  
of Media Components

Table 1 
(continued)

Organism Stage cultured Method Reference

Phaseolus  
vulgaris

Immature embryos; 
pod culture

Multiple simple solid and liquid media  
tested on different individuals

(71)

Prunus persica Immature embryos Simple medium, for investigation of embryo 
rescue

(12)

Taxus baccata Mature, somatic 
embryos

Multiple simple media on different  
individuals, with applications in evading  
seed dormancy

(72)

Taxus brevifolia Mature embryos Simple medium, applications in genetic 
transformation

(73)

Triticum 
aestivum

Fertilized ovule Solid and liquid media tested on different 
individuals

(49)

Vitis vinifera Fertilized ovule Multiple media tested on different  
individuals

(74)

Zea mays Embryo sac culture Double layer (57)
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Culture of relatively young embryos requires proper osmotic 
adjustment of the culture medium, as well as supplementation 
with vitamins, amino acids, and growth hormones.

Murray (27) documented the nutrition of angiosperm 
embryos and discussed the construction of media for embryo 
growth in vitro. His work provides comprehensive information 
on embryo nutrition. Recently, key chemical components for 
in vitro culture and their properties were discussed in detail in a 
book edited by George et al. (28). Examination of different media 
additives has shown that reduced nitrogen strongly influences 
embryo growth in culture. Although ionic ammonium is a ready 
source of reduced nitrogen and is essential to embryo culture 
(27), at too high a concentration it can be toxic to cell and embryo 
cultures (29). Amino acids are readily absorbed and can be used 
directly as a source of nitrogen. The addition of amino acid 
 mixtures, such as casein hydrolysate, or specific amino acids, such 
as glutamine, can thus be highly beneficial. The positive effects 
of glutamine were demonstrated by Rijven (30), and studies 
 continue to indicate that glutamine and other amino acids have a 
positive influence on embryo culture. One example is provided 
by Emershad et al. (31), using fertilized grape ovule culture. 
However, embryonic responses to different nitrogen sources 
change greatly over the course of development (32). Optimizing 
the source and concentration of nitrogen in nutrient media can 
be highly profitable for ZEC studies.

The physical and chemical environments surrounding the zygotic 
embryo in ovulo are very complex (17, 33). For successful in vitro 
culture of small proembryos, the best approach is to simulate an 
environment as close to in ovulo conditions as possible. Zygotic 
embryos develop in an environment with highly negative water 
potential (34); the beneficial effect of high osmolarity on embryo 
growth was established more than 50 years ago. It was found that 
the addition of higher concentration of sucrose improved growth 
of the zygotic embryo in vitro (35). It is important to note that 
the majority of media components also contribute to the total 
water potential of the medium. Further decreases in water poten-
tial can be made by addition of carbohydrates such as sucrose, 
permeable osmotica such as mannitol, or non-permeable osmot-
ica such as polyethylene glycol. The selection and concentrations 
used must be tested and optimized.

The negative osmotic environment may also have a morpho-
genetic role and appears to regulate precocious germination of 
maturing embryos (17, 36). Selective use of different osmotic 
compounds can affect many growth characteristics of the explants. 
A dramatic demonstration of this is shown in work by Ilic-Grubor 
et al. (37, 38) on canola microspore-derived embryos (MDEs). 
Culture of MDEs using 20% (wt/vol) non-permeable polyethylene 
glycol 4000 instead of 13% sucrose as an osmoticum produced 

2.4. The Osmotic 
Environment
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embryos similar to their zygotic counterparts, i.e., having similar 
morphology and storage products. The embryos also had a 100% 
conversion upon germination. On the other hand, MDEs devel-
oped from medium containing 13% sucrose as an osmoticum 
tended to grow larger and had a lower percentage of conversion 
relative to their zygotic counterparts (38, 39).

Zygotic embryos develop within a complex environment in vivo 
(33); however, details of their nutritional needs are not clearly 
understood. The first stage of zygotic embryo development is 
characterized by slow growth of the embryo proper and preco-
cious development of the suspensor. Experimental studies indicate 
that the suspensor is necessary for development of young embryos 
(18, 40). The suspensor connects the embryo proper to the seed 
coat. Its precise role is poorly understood, although its develop-
ment is tightly linked to the embryo’s changing nutritional require-
ments. The suspensor cells in P. coccineus have several unique 
features that hint at organ function; polyteny, well-developed 
organelles, and wall ingrowths (41, 42). Putative functions include 
serving as a conduit channelling nutrients from the maternal 
 tissues and endosperm into the developing embryo proper and 
regulation of embryo nourishment, growth, and differentiation 
(43, 44). In vitro studies have shown that, as the embryo proper 
can be readily cultured on simple medium and germinated preco-
ciously post-histogenesis, the suspensor is no longer necessary 
after this stage in vivo (18). These studies indicate that the proem-
bryo is heterotrophic; suspensor cells may well function as “feeder” 
cells only during early embryo development.

Because the suspensor is cleaved during dissection in prepara-
tion for ZEC, Monnier (32) has suggested that observed lower 
survival rates of proembryos relative to mature embryos in  culture 
are caused by leaching of indispensable cellular substances from 
the suspensor into the medium. Exceptionally, the presence or 
absence of the suspensor does not appear to play an important 
role in the survival of Brassica campestris proembryos (20, 45). 
This discrepancy relative to other studies could be explained by 
the fact that many zygotic embryos used for proembryo culture 
studies are large relative to Brassica embryos and may have higher 
nutrient demands. It is also possible that despite having been sev-
ered from the embryo, a few remaining suspensor cells attached 
to the embryo proper are sufficient for its development.

Embryonic development is closely tied to that of the endosperm; 
failure in endosperm development often leads to embryo abor-
tion. The successful inclusion of coconut water (endosperm 
from coconut palm) to culture medium demonstrates the 
importance of endosperm nutrients in ZEC (46). Inclusion of 
liquid endosperm, which has a complex chemical composition 
(47), in ZEC often leads to increased embryonic growth and/or 

2.5. The Nutrient 
Environment for the 
Culture of Proembryos

2.5.1. The Role of the 
Suspensor in Embryonic 
Development

2.5.2. The Role of the 
Endosperm in Embryonic 
Development
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survival. This has led many researchers to speculate that there is at 
least one nutrient or growth factor usually supplied to the devel-
oping embryo by the endosperm that we are as yet unaware of, 
and that is therefore not included in medium recipes presently in 
use (48).

Feeder cell and double medium methods have been successfully 
used in the culture of zygotes and proembryos, respectively. These 
procedures are designed based on general scientific understanding 
of the embryonic environment in vivo and of the nutritional 
requirements of the embryo.

Feeder cell cultures can be useful for increasing the survival 
rate of zygotes after fertilization and for allowing continuous 
development into an embryo or embryogenic cell mass. In this 
method, selected cells such as microspore suspensions, living 
ovules, mesophyll protoplasts, or suspension cultures are used as 
feeder cells (see Table 1). A sterile mini-dish insert is placed onto 
medium containing the feeder cells, and the isolated zygotes are 
placed onto the membrane of the mini-dish. The use of feeder 
cells may provide necessary nutrients for growth of the zygote 
and early proembryo, substituting the functions of the suspensor 
and endosperm. Kumelehn et al. (49) discuss feeder cell culture 
in wheat, Zhang et al. (50) describe at length a similar system for 
rice, and He et al. (51) provide an excellent reference for ZEC of 
tobacco, as well as an in-depth discussion of culture methods 
using a somatic cell protoplast feeder system to support develop-
ment. One interesting finding from feeder cell culture research is 
that the “unknown factor” that is putatively released from 
endosperm that improves embryo culture is not universally effec-
tive. Furthermore, it is not always effective on its own embryo. 
This has led many scientists to conclude that the “embryo factor” 
is neither species specific nor universal (52).

As proembryos develop in vitro, their osmotic and nutritional 
requirements change. In general, a more positive water potential 
is favoured as the embryos mature, and their nutritional require-
ments become less stringent relative to those of the proembryo. 
In order to avoid transfers of cultured embryos that may cause 
damage or microbial infection, “double” medium systems can be 
used. A complex medium with more negative water potential is 
placed as a well insert within or as a layer atop a simpler medium 
with more positive water potential. Over time, diffusion of com-
ponents will take place, and the complex medium gradually 
becomes dilute and more suitable for the continued development 
of the maturing embryo in culture. Monnier (32) devised a dou-
ble medium by a “well” insert method to study the in vitro  culture 
of proembryos of Capsella.

2.5.3. Feeder Cell Systems 
and Double-Layered Media
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Capsella bursa-pastoris (shepherd’s purse) is an annual, 
 invasive, widespread, and ruderal member of the Brassicaceae 
(Cruciferae) family. It is a popular choice for ZEC studies for 
several reasons. First, its embryos are easy to extract from the 
ovules because the endosperm stays liquid for a long time, and its 
long racemes  provide a basipetal sequence of developing fruits 
from the same genetic background. Furthermore, the develop-
mental pattern of Capsella embryos is quite consistent between 
individuals. Important work with C. bursa-pastoris ZEC has been 
conducted by Rijven (35), Raghavan and Torrey (53), and 
Monnier (32, 54–56).

As mentioned earlier, for very young globular embryos, 
design of the incubation vessel may require some engineering 
to increase the embryo’s chances of survival. Problems in this 
instance arise from the fact that young embryos have different 
nutritional requirements relative to older embryos. Young 
embryos require a high concentration of sucrose as an osmoti-
cum to prevent precocious germination, as well as higher cal-
cium concentration, which has been observed to have a role in 
protecting embryos during development. Young embryos also 
require low concentrations of selected minerals that can be 
toxic at higher concentrations, as they can be especially sensi-
tive to their negative effects. They also require a high concen-
tration of amino acids, as they lack enzymes necessary for nitrate 
catabolism. Conversely, media designed for older embryos are 
generally characterized by lower concentrations of sucrose and 
amino acids and higher concentrations of nitrates and mineral 
salts, especially iron. To accommodate these needs without 
resorting to the often tedious and damaging transfer of embryos 
between media, Monnier contrived a system consisting of two 
concentric rings of solid media. Medium suitable for more 
mature embryos surrounds a central section of young embryo 
medium in the plate where young embryos are cultured. 
Monnier chose to use glass Petri plates for his experiment and 
sterilized glass cylinders as moulds for the central well; how-
ever, there are many other approaches that could be taken to 
creating a central well. One can use a multi-well plate such as 
the six-well multi-well culture plates where each well can serve 
as the outer vessel, and the central well can be created using a 
sterile insert cup.

Recent procedures tend to favour the use of a double-layered 
medium for the culture of zygote and proembryo, for an exam-
ple, see the Zea mays study by Mòl et al. (57). The media used by 
Monnier is detailed in Table 2 as a general reference. Readers are 
encouraged to consult the detailed protocol on Capsella ZEC 
published in Vol. 6 of this series (55).
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In vitro culture of zygotic embryo provides a useful experimental 
tool to study many aspects of the developmental events important 
to embryo development. In recent years, tremendous advances 
have been made in our understanding of zygotic embryo devel-
opment through molecular and genetic studies (16, 17, 58). 
These combined approaches as emphasized by Wetmore and 
Wardlaw in their review (59) will continue to advance our under-
standing of embryo development in plants. The knowledge gained 
will also have direct practical implication in improvements to 
horticulture and agriculture.
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3.  Prospect

Table 2 
Composition of the two media used in different parts of the culture dish to obtain 
uninterrupted growth of globular stage Capsella embryos to maturity

Nutrient  
element

Concentration 
(mg/L) in  
inner medium

Concentration 
(mg/L) in  
outer medium

Nutrient  
element

Concentration 
(mg/L) in 
inner medium

Concentration 
(mg/L) in 
outer medium

KNO3 1990 1990 H3BO3 12.4 12.4

CaCl2 · 2H2O 1320 484 MnSO4 · H2O 33.6 33.6

NH4NO3 825 990 ZnSO4 · 7H2O 21.0 21.0

MgSO4 · 7H2O 370 407 KI 1.66 1.66

KCl 350 420 Na2MoO4 · 2H2O 0.5 0.5

KH2PO4 170 187 CuSO4 · 5H2O 0.05 0.05

Na2EDTA 0 37.3 CoCl2 · 6H2O 0.05 0.05

FeSO4 · 7H2O 0 27.8 Sucrose 180,000 0

Glutamine 600 0 Vitamin B1 0.1 0.1

Vitamin B6 0.1 0.1 Difco Agar 7,000 7,000
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Chapter 2

In Vitro Fertilization with Rice Gametes: Production  
of Zygotes and Zygote and Embryo Culture

Takashi Okamoto 

Abstract

In vitro fertilization (IVF) systems using isolated male and female gametes have been utilized to dissect 
fertilization-induced events in angiosperms, such as egg activation, zygote development, and early 
embryogenesis, since the female gametophytes of plants are deeply embedded within ovaries. A rice IVF 
system was established to take advantage of the abundant resources stemming from rice research for 
investigations into the mechanisms of fertilization and early embryogenesis. Fusion of gametes can be 
performed using electrofusion and the fusion product, a zygote, forms a cell wall and an additional 
nucleolus. The zygote divides into an asymmetric two-celled embryo and develops into an early globular 
embryo, as in planta. The embryo further develops into irregularly shaped cell masses and fertile plants 
can be regenerated from the cell masses. This rice IVF system is a powerful tool for studying the molecular 
mechanisms involved in the early embryogenesis of angiosperms and for making new cultivars.

Key words: Egg cell, Globular embryo, In vitro fertilization, Regeneration, Sperm cell, Two-celled 
embryo, Zygote

In angiosperms, the sporophytic generation is initiated by double 
fertilization, resulting in the formation of seeds (reviewed in (1)). 
During fertilization, a sperm cell from a pollen grain fuses with an 
egg cell and the resultant zygote develops into an embryo. The 
central cell fuses with a second sperm cell and develops into the 
endosperm (reviewed in (2)). In many plant species, for example, 
cotton (3) and grasses such as maize (4), variant cell division occurs 
during embryogenesis, although in some dicot plants, such as the 
crucifers: Arabidopsis, Brassica napus, and Capsella bursa-pastoris, 
the pattern of cell division during early embryogenesis is fixed and 
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the cell fate is traceable (5–7). Despite such variable patterns in 
embryogenesis, zygotic cell division is asymmetric in most angio-
sperms and the apical cell of the two-celled embryo develops into 
the embryo proper, while the basal cell develops into the suspensor 
and hypophysis (4–6, 8, 9) (reviewed in (10)). In addition to such 
cytological observations, it has been reported that two putative 
homeotic genes, WUSCHEL HOMEOBOX2 (WOX2) and WOX8, 
are specifically expressed in the apical and basal cells of the 
Arabidopsis two-celled embryo, respectively, suggesting that the 
two daughter cells from a zygote possess different transcriptional 
profiles (11). Moreover, temporal accumulation of a phytohor-
mone auxin via PIN7, an auxin efflux carrier protein, and the 
YODA-dependent MAPKKK signaling pathway are thought to be 
crucial for cell fate specification of the apical and basal cells of the 
Arabidopsis two-celled embryo, respectively (12, 13). Based on 
these cytological and genetic  analyses, an asymmetric cell division 
of the zygote appears to be the first step for formation of the 
 apical–basal axis of plants and is a fundamental feature of early 
embryogenesis and morphogenesis in angiosperms.

After asymmetrical zygote division, the formation of a globular 
embryo is a general event during early embryogenesis. Morphogenetic 
events for organ differentiation occur after the globular embryo 
stage (3–7) and it has been proposed that a globular embryo can be 
divided into domains, demarcated by gene expression patterns, with 
distinct developmental fates (14, 15). For example, the homeobox 
gene WUSCHEL, which regulates stem cell fate in the Arabidopsis 
shoot meristem, is first expressed in the apical subepidermal cells at 
the 16-cell stage of embryogenesis (16), although the tunica-corpus 
structure, a characteristic of shoot apical meristems, becomes evi-
dent in the late heart or torpedo stage embryo. In addition, OSH1, 
a KNOX-family homeobox gene, is expressed in the ventral region 
of rice globular embryos, where the shoot apex will differentiate 
later (17). Therefore, investigations into early embryogenesis from 
the zygote to the globular embryo stage will be of great importance 
to understand how the subdomains of globular embryos are speci-
fied and/or zonated.

In contrast to animals and lower plants, which use naturally 
free-living gametes, in angiosperms, the fertilization and sub-
sequent events such as gamete fusion, embryogenesis, and 
endosperm development occur in the embryo sac deeply 
embedded  in ovular tissue. Difficulties associated with research 
directly addressing the biology of the female gamete, zygote, and 
early embryo have impeded investigations into the molecular 
mechanisms of fertilization and embryogenesis. Therefore, such 
investigations have been conducted predominantly through 
mutant analyses using Arabidopsis models. However, for a decade, 
in vitro fertilization (IVF) has been utilized as a tool in angio-
sperms to observe and analyze fertilization and postfertilization 
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processes directly (reviewed in (18)). The IVF system used for 
angiosperms includes a combination of three basic microtech-
niques (a) the isolation and selection of male and female gametes, 
(b) the fusion of pairs of gametes, and (c) single cell culture (19). 
Procedures for the isolation of viable gametes have been reported 
for a wide range of plant species including maize, wheat, tobacco, 
rape, rice, barley, Plumbago zeylanica, and Alstroemeria (20–28). 
The isolated gametes can be fused electrically (19, 29) or chemi-
cally using calcium (30–32), polyethylene glycol (PEG) (33, 34), 
or bovine serum albumin (35), as the gametes are generally 
 protoplasts. Analyses with calcium-based fusion of maize gametes 
showed that an influx of calcium is triggered by gamete fusion and 
that calcium influx induces cell wall formation, an event known as 
egg activation (36). In addition, fusion behavior and gamete inter-
action have been traced by video-enhanced  microscopy using 
PEG-mediated  gamete fusion (37). However, tobacco zygotes 
produced by  calcium- or PEG-fusion became arrested in develop-
ment (34, 37) and maize zygotes produced by calcium-fusion did 
not fully develop (31), suggesting that the procedure of calcium-
mediated gamete fusion needs to be  optimized to obtain sufficient 
zygotes for studies of embryogenesis . A complete IVF system was 
developed by Kranz and Lörz (29) using maize gametes and elec-
trical fusion. A maize zygote produced in vitro by the electrical 
fusion of an egg cell with a sperm cell developed into an asym-
metrical two-celled embryo, a proembryo, and a transition phase 
embryo via zygotic embryogenesis in a similar manner to that in 
planta (38). Moreover, the IVF-produced embryo continued to 
develop and grow into a fertile plant (29). This maize IVF system 
has been successfully used to observe and analyze postfertilization 
events including karyogamy in zygotes (39), zygote development 
(38), decondensation of paternal chromatin in zygotes (40), 
changes in the microtubular architecture in zygotes (41), and 
identification of fertilization-induced/suppressed genes (42).

Rice (Oryza sativa L. cv. Nipponbare) is an excellent model 
plant among the monocot crop species as it has a relatively small 
genome of about 440 Mb. The whole genome sequence (43), 
Tos17 retrotransposon insertion plants (20,000 independent loci; 
(44)) and over 28,000 full-length cDNA clones (45) are  available; 
these databases and resources have been released for  academic 
use. A rice IVF system using viable isolated egg and sperm cells 
from rice flowers has been established to apply these resources for 
investigation of the mechanisms involved in fertilization and early 
embryogenesis (27, 46). The rice zygote produced by IVF divides 
asymmetrically into a two-celled embryo consisting of small apical 
and large basal cells and then this divides into the early globular 
embryo through several rounds of egg cleavage-like cell divisions, 
as seen in planta. Rice embryogenesis can be separated into ten 
stages, defined as Em1–10 (47). Em1 represents the zygote stage. 
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The globular embryo stage is divided into three stages: Em2, the 
early globular stage; Em3, the middle globular stage, and Em4, 
the late globular stage. The rice IVF system can be considered to 
reproduce zygotic embryogenesis within embryo sac at least dur-
ing the Em1 and Em2 stages. It can thus provide zygotes and early 
embryos as starting materials for molecular, biochemical, and 
cytological investigations of egg activation, zygote development, 
and early embryogenic events. The globular embryo produced by 
the IVF system does not follow normal embryogenesis within the 
embryo sac, but can be regenerated into fertile plants with com-
plete seed sets through callus-derived shoot regeneration. The rice 
IVF system described here might become an important technique 
for generating new cultivars  with desirable characters.

 1. Environmental chamber (K30-7248, Koito Industries Ltd, 
Yokohama, Japan) (see Note 1).

 2. Laminar flow box.
 3. Inverted microscope.
 4. Nontreated plastic dishes with diameter of 3.5 cm.
 5. Coverslips (24 × 40 mm), siliconized at the edges with 5% 

dichloromethylsilane in 1,1,1-trichloroethane (see Note 2).
 6. Mineral oil (embryo culture-tested grade, Sigma-Aldrich, St 

Louis, MO, USA).
 7. Mannitol solution adjusted to 370 mosmol/kg H2O and 

autoclaved.
 8. Sliding stage for the insertion of a coverslip and a plastic 

dish.
 9. Glass capillaries made from 50-mL aspirator tubes (Drummond 

Scientific Co., Broomall, PA, USA), tip openings 150–250 mm 
(drawn by hand).

 10. Glass needles with fine tips.
 11. Cell transfer systems: computer-controlled dispenser/dilutor 

(NanoSpuit, Ikeda Rika, Tokyo, Japan), or manual handling 
injector (UJI-B, ST Science, Tsukumi-gun, Kanagawa, Japan).

 1. Mannitol solution adjusted to 450 mosmol/kg H2O and 
autoclaved.

 2. Mannitol solution adjusted to 520 mosmol/kg H2O and 
autoclaved.

 3. Electrofusion apparatus (PA-4000, Cyto Pulse Sciences Inc., 
Glen Burnie, MD, USA).

2.  Materials

2.1. Isolation and 
Transfer of Gametes

2.2. Fusion of Gametes
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 4. Manipulator (UMMT-3FC, Narishige Scientific Instrument 
Lab., Tokyo, Japan) with a double pipette holder (HD-21, 
Narishige).

 5. Electrodes (platinum–iridium wire, diameter 150 mm) fixed 
to the pipette holder (see Note 3).

 1. 3.5-cm plastic dishes (nontreated).
 2. Millicell-CM inserts, diameter 12 mm (Millipore, Madison, 

WI, USA).
 3. Feeder cells: rice suspension cell culture (Line Oc, provided by 

RIKEN Bio-Resource Center, Tsukuba, Japan) (see Note 4).
 4. Medium for zygote culture: N6Z-medium (48) with 

 modifications: 2 g/L CHU (N6) basal salt mixture (Sigma-
Aldrich), 0.025 mg/L Na2MoO4·2H2O, 0.025 mg/L 
CoCl2·6H2O, 0.025 mg/L CuSO4·5H2O, 0.01 mg/L retinol, 
0.01 mg/L calciferol, 0.01 mg/L biotin, 1 mg/L 
thiamine·HCl, 1 mg/L nicotinic acid, 1 mg/L pyridoxine·HCl, 
1 mg/L cholin chloride, 1 mg/L Ca-pantothene, 0.2 mg/L 
riboflavin, 0.2 mg/L 2,4-D, 0.02 mg/L cobalamin, 
0.02 mg/L p-aminobenzoic acid, 0.4 mg/L folic acid, 
2 mg/L ascorbic acid, 40 mg/L malic acid, 40 mg/L citric 
acid, 40 mg/L fumaric acid, 20 mg/L Na-pyruvate, 
1,000 mg/L glutamine, and 250 mg/L casein hydrolysate, 
100 mg/L myo-inositol. Osmolality, 450 mosmol/kg H2O 
adjusted with glucose. pH 5.7 and filter sterilized.

 5. Regeneration medium: solidified MS medium with some 
 modifications (49). MS salt, MS vitamin, 100 mg/L myo-
inositol, 2 g/L casamino acid, 30 g/L sucrose, 30 g/L  sorbitol, 
0.2 mg/L 1-naphthaleneacetic acid (NAA), 1 mg/L kinetin, 
and 0.3% Gelrite.

 6. Rooting medium: the same as the regeneration media, but 
omitting kinetin and NAA.

 1. Collect panicles in which some flowers have already opened 
and others remain unflowered. Pick up the unflowered ones 
from the panicles and dissect them. Isolate ovaries and anthers, 
and transfer them separately into 3.5-cm plastic dishes filled 
with 3 mL of mannitol solution (370 mosmol/kg H2O) for 
isolating egg and sperm cells, respectively.

 2. For egg cell isolation, remove the stigmas from ovaries and 
transfer them into new 3.5-cm plastic dishes filled with 3 mL of 

2.3. Culture  
of Zygotes, 
Embryogenesis,  
and Regeneration

3.  Methods

3.1. Isolation  
of Gametes

In Vitro Fertilization with Rice Gametes



Fig. 1. In vitro fusion of rice gametes (a–g), early development of a zygote produced by in vitro fertilization (IVF) into a globular 
embryo (h–m) and development and regeneration of the globular embryos (n–s). (a) An isolated rice egg cell. (b) Rice sperm 
cells released from pollen grain. (c) An illustration of the fusion droplets on a coverslip covered with mineral oil. An arrowhead 
indicates a mannitol droplet for tentative storage of isolated egg cells for subsequent fusion. The gray bar and thin triangle 
indicate electrodes. (d) Alignment of an egg cell with a sperm cell (arrowhead ) on one of the electrodes under an 
 alternating current (AC) field in a fusion droplet. (e) Aligned egg and sperm cells after the addition of mannitol solution
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the mannitol solution (see Note 5). Sink the ovaries to the bottom 
of the dishes and cut them transversely with a razor blade at the 
middle (see Note 6). Approximately, 15 egg cells released from 
the lower parts of the cut ovaries are then transferred into a 
mannitol droplet on coverslips using the cell transfer system 
under an inverted microscope (see Fig. 1a, c; Note 7).

 3. For sperm cell isolation, roughly break anthers in mannitol 
solution with forceps to free the pollen grains. Use the sperm 
cells released from the burst pollen grains for electrofusion 
(see Fig. 1b; Note 8).

 1. Overlay the siliconized coverslip with 0.3 mL mineral oil. For 
tentative storage of isolated egg cells, make one or two 2 mL 
mannitol droplets (370 mosmol/kg H2O) using a microcap-
illary and a micropump. In addition, inject 2 mL mannitol 
droplets (370 mosmol/kg H2O) in two rows, each with six 
droplets (see Fig. 1c). Take care that the droplets do not 
spread over the glass surface, but are located inside the oil and 
have no access to the air.

 2. Set up fusion apparatus and adjust the position of electrodes.
 3. Transfer one egg cell to each of the six mannitol droplets (see 

Note 9), then transfer one or two sperm cells to each 
droplet.

 4. Align and fix the two gametes at one electrode under an alter-
nating current (AC) field (1 MHz, 0.4 kV/cm). By moving 
the microscope stage, first fix an egg cell to the  electrode. 
Using the same procedure, fix a sperm cell to the female gam-
ete (see Fig. 1d). Adjust the final distance of the electrodes to 
approximately twice the sum of the diameters of the cells.

 5. Add 0.5–1.0 mL of mannitol solution (520 mosmol/kg H2O) 
gently to the fusion droplet using a thin glass capillary (see 
Fig. 1e; Note 10).

3.2. Fusion of Gametes

Fig. 1. (continued) with a higher osmolality to the fusion drop. The sperm cell becomes oblong (arrowhead). (f ) Fusion of 
gametes following a negative direct current (DC) pulse. An arrowhead indicates fusion point. (g) A zygote 10 s after fusion. 
The arrowhead indicates the fusion point. (h) An illustration of zygote culture. A white circle in the Millicell insert indicates a 
zygote. Gray oblong circles represent aggregates of feeder cells. (i) A zygote 1 h after fusion. ( j ) A zygote 4 h after fusion. 
Two nucleoli are indicated by arrowheads. (k) An asymmetric two-celled embryo 18 h after fusion. (l, m) Nuclear staining of 
an embryo 48 h after fusion, visualized by brightfield and fluorescence microscopy, respectively. (n) A cell mass 5 days after 
fusion, which developed from the globular-like embryo. (o) A white cell colony 18 days after fusion. (p) A developed cell 
colony 4 days after transferring the white cell colony (panel o) into regeneration medium (22 days after fusion). Green spots 
are visible in/on the cell colony. (q) Regenerated shoots. Generation of shoots can be observed after 8 days of subculturing 
the white cell colony (26 days after fusion). (r) A plantlet after 12 days of subculturing a regenerated shoot in hormone-free 
medium (43 days after fusion). (s) A regenerated plant with seed sets (100 days after fusion). Scale bars indicate 50 mm in 
a, d, i–l, and n; 10 mm in b; 1 mm in o–q; and 1 cm in r (originally published by ref. (47), with permission of Springer).
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 6. Induce cell fusion by applying a single negative direct current 
(DC) pulse (50 ms, 14–15 kV/cm) (see Fig. 1f, g; Note 11).

 7. Remove the fusion products from the electrode by gently  moving 
the sliding stage. Move the electrodes out of the droplet and 
conduct the next gamete fusion (see Subheading 3.2, Step 4).

 1. Place 0.2-mL zygote culture medium in a Millicell-CM insert 
and put it into a 3.5-cm plastic dish containing 2 mL of the 
medium. Add 40–60 mL of a rice suspension cell culture into 
the dish as feeder cells.

 2. After sterilization of the microcapillary by washing with abso-
lute ethanol and sterilized water, transfer IVF-produced 
zygotes into fresh mannitol droplets (450 mosmol/kg H2O) 
twice and then transfer them onto the membranes of a 
Millicell-CM insert (see Fig. 1h; Note 12).

 3. After overnight culture of zygotes at 26°C in the dark with-
out shaking, continue culture with gentle shaking (40 rpm) 
(see Fig. 1i–m; Notes 13 and 14).

 4. Five days after fusion, remove feeder cells by transferring the 
Millicell dishes containing the embryos into new 35-mm diam-
eter dishes filled with 2 mL of fresh zygote culture medium 
(see Fig. 1n; Note 15). Continue culturing as above.

 5. After 18 days in culture, subculture cell colonies developed 
from the IVF-produced zygotes onto a regeneration medium 
by use of a sterilized Pasteur pipette. Incubate under continu-
ous light at 30°C for 12–30 days (see Fig. 1o; Note 16).

 6. Transfer the differentiated shoots into a rooting medium and 
culture them under a 13 h/11 h light/dark cycle at 28°C for 
11–13 days (see Fig. 1p, q).

 7. Transfer the resulting plantlets to soil pods and grow in envi-
ronmental chambers as described in Note 1 (see Fig. 1r). If 
needed, harvest seeds from the regenerated plants and germi-
nate them (see Fig. 1s).

 1. Rice plants (Oryza sativa L. cv Nipponbare) were grown in 
environmental chambers under conditions of 26°C in a 
13/11 h light/dark cycle with a photosynthetic photon flux 
density of 150–300 mmol/m2/s. Under these growth 
conditions, flowers can be obtained throughout all seasons.

 2. Coverslips should be noncoated, as using coated coverslips 
will result in attachment of the cells to the surface of the 
 coverslip. Coverslips supplied from Fisher Scientific (No. 
125485J) are recommended.

3.3. Zygote  
and Embryo Culture 
and Plant 
Regeneration

4.  Notes
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 3. Tips of two wires are patted with small hammer to make their 
thickness to 10–20 mm. Each tip of the flattened wires is trimmed 
into square or thin-triangle shape, and set to the pipette holder.

 4. Rice suspension cells, Line Oc, were subcultured once weekly 
according to instructions from RIKEN Bio-Resource Center. 
No difference in feeder effects between freshly subcultured 
cells and 1-week-cultured cells has been observed.

 5. Without removing the stigmas, ovaries always float on the 
mannitol solution. To isolate egg cells, sinking ovaries into 
the mannitol solution is essential. Usually, 15–25 ovaries are 
put into a dish.

 6. Usually, three to eight egg cells are automatically released 
from approximately 20 cut ovaries. Gentle pushing of the 
basal portion of the lower part of the cut ovary with a glass 
needle will produce additional egg cells.

 7. Egg cells can be kept in the mannitol droplet until 6 h after 
isolation for conducting IVF without decreasing fusion 
efficiency.

 8. Sperm cells should be used for IVF within 1 h after isolation. 
Otherwise, sperm cells appear to degenerate and cannot be 
fused with egg cells.

 9. At each round of fusion procedures, five to six sets of gamete 
fusions are recommended.

 10. The addition of mannitol solution with a higher osmolality 
changes the shape of the sperm cell to oblong and makes the 
attachment of the egg cell to the electrode more stable (see 
Fig. 1d, e). Without this treatment, egg cells are often released 
from the electrode upon fusion induced by a DC pulse and 
fusion efficiency is greatly reduced.

 11. If no cell fusion occurs, reduce the distance between the two 
electrodes and pulse again. Alternatively, transfer the egg cells 
into mannitol solution (370 mosmol/kg H2O) and then 
reuse for IVF.

 12. The efficiency of successful electrofusion is approximately 
85% under optimal conditions. A total of 20–50 egg cells can 
be isolated from 100 processed ovaries, and 20–30 egg cells 
can be fused with sperm cells by one experimenter in a day.

 13. Gamete fusion occurs within 1 s and the shape of the zygote 
on the electrode recovers to a spherical shape at about 10 s 
after fusion (see Fig. 1f, g). The rice zygotes produced by IVF 
start to form cell walls (see Fig. 1i) and two nucleoli can be 
observed in a zygote at least 4 h after fusion (see Fig. 1j). 
At around 12 h after fusion, well-developed granular organ-
elles, probably starch granules, are visible in the zygotes and 
the first asymmetric cell division of the zygotes is observed at 
17–22 h after fusion (see Fig. 1k). After the first division, the 
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two-celled embryos continue to develop into early embryos 
at 40–50 h after fusion (see Fig. 1l, m).

 14. Approximately 90% IVF-produced zygotes divide into two-
celled embryo, and 90% IVF-produced two-celled embryos 
develop into globular embryos.

 15. After 5 days culture of the IVF-produced zygotes, cocultivation 
with feeder cells is not needed.

 16. Normally, after 4 days of subculture of the cell colony on a 
solidified-regeneration medium (22 days after fusion), green 
spots become visible and the emergence of multiple shoots is 
observed after 8 days of subculturing (26 days after fusion).
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Chapter 3

Canola Zygotic Embryo Culture

Nicole S. Ramesar-Fortner and Edward C. Yeung 

Abstract

To further understand the events occurring during embryogenesis, it is imperative to have an experimental 
system. While somatic embryo is the system of choice due to the prolific number and success of protocols 
available, it is necessary to compare in vitro results with those in vivo. This process is often difficult due to 
the inaccessibility of the developing embryo and the complications of manipulating the embryo in vivo. 
The development of protocols that allow for manipulation and comparison of both somatic and zygotic 
embryos is key to elucidating the differences between the two types of embryos and determining if results 
observed using one system can be applied to the other. This chapter details a simple protocol for the cul-
ture of zygotic embryos of canola that allows for the processing of large numbers of embryos with little 
physical damage. Furthermore, this protocol allows for the experimental manipulation of zygotic embryos 
in vitro and comparisons to be made with a well-established microspore-derived embryo system.

Key words: Apical meristem, Arabidopsis, Brassica napus, Canola, Conversion

Brassica spp. include many important agricultural crops such as 
the oilseed, canola (Brassica napus), and other vegetables such as 
 broccoli, cauliflower, cabbages, and kales (different species of 
B. olearacea). Canola is becoming an increasingly important tar-
get for research because of its economic and nutritional values. 
There is a continuous effort to improve the yield and nutritional 
value of this oilseed which is now primarily performed through 
functional genomics. The model plant, Arabidopsis thaliana, that 
is indispensable to plant biotechnology, is closely related to 
Brassica spp. and has been the key to genetically engineering 
many desirable traits of canola. Unfortunately, the size of A. thaliana 
often hinders experimental manipulation and its larger relative, 
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canola, becomes the system of choice for experimental studies. 
The information gained from either plant can be easily applied to 
the other.

One area of research that is essential to genetic improvements 
is experimental embryogeny. Embryogenesis, in plants, is an 
important process that serves to establish the body plan and 
 primary tissues that will eventually form the basis of the mature 
plant. One of the most fundamental events to occur is the forma-
tion of the two apical meristems. The proper formation of these 
two generating centers is critical for the post-embryonic develop-
ment of plants. Hence, a proper understanding of the formative 
process related to meristem initiation and development is of theo-
retical interest and has practical implications. Tremendous 
advances have been made in recent years in the understanding of 
the genetic mechanism related to embryo and seed development 
in Arabidopsis. Numerous reviews have been published on this 
topic, e.g., Suarez and Bozhkov (1). Because of the larger size of 
the Brassica embryos and the ability of some lines of Brassica 
 species to form microspore-derived embryos (2, 3), additional 
information on embryo development has been gained through 
the use of Brassica species as experimental systems.

Through the use of zygotic embryo culture, Liu et al. (4) 
were the first to show that treatment of globular embryos with 
auxin transport inhibitors prevents proper cotyledon formation. 
Instead of having two separate cotyledons, only a single “trumpet ” 
shape cotyledon is formed. This results in the change of the 
embryo symmetry from bilateral to radial. A subsequent study by 
Hadfi et al. (5) using a defined medium confirmed and extended 
the work of Liu et al. (4) and clearly demonstrated that auxin has 
an important morphogenetic role during embryo development. 
A similar result was also obtained in the study of wheat zygotic 
embryo development (6). Using zygotic embryo culture (7) and 
subsequently through the use of the microspore-derived embryo 
(8), we demonstrated that the process of meristem formation is 
sensitive to changes in auxin distribution and levels. Treatment of 
the globular embryos with triiodobenzoic acid prevents shoot 
apical meristem formation. However, it has no effect once the 
shoot apical meristem has formed by the heart-shape stage of 
development. Our work indicates that the shoot apical meristem 
forms within a narrow window of time. Perturbation of auxin 
levels prevents meristem formation. However, once formed, it is 
a fully determined structure. All these studies clearly indicate the 
importance of auxin during embryo development.

Experimental embryogenesis augments current studies 
on zygotic embryo development. The successful in vitro culture of 
zygotic embryos has been a process that has required diligent 
experimentation and improvement over the years. The ability to 
culture earlier and earlier stages of zygotic embryos has allowed 
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for physiological manipulation of the embryo environment that 
furthers our understanding of embryogenesis.

Different embryo culture methods have been devised for the 
culture of zygotic embryos in Brassicaceae, e.g., Brassica juncea 
(9) and B. napus (7), Capsella (10–14), and Arabidopsis (15–17). 
Liu et al. (9) developed a system to culture proembryos of 
B.  juncea as small as 35 mm. They optimized the embryo culture 
medium by including sterile nonautoclaved coconut water, vary-
ing the sugars and organic acid composition, and improving the 
method by which the embryos were cultured. The method 
involves first dissecting the proembryos in a 9% (w/v) glucose 
solution in order to prevent osmotic shock. After isolation, 
the embryos were rinsed once with the same glucose solution 
before transferring to the culture medium. A two-layer system 
was used with the top layer having a high osmotic pressure due to 
the addition of 6% sucrose (w/v) to the culture medium. A low 
temperature gelling agarose was used as the gelling agent. The 
culture medium was gently heated using a microwave oven. Once 
the agarose was melted, the entire medium was sterilized using a 
disposable filter unit with the aid of a vacuum. Twenty four-well 
culture plates were used for the culture of proembryos. A small 
volume (300 mL) of the bottom-layer medium was added to each 
well. Embryos were then dissected and placed onto the surface of 
the medium. The embryos were then overlaid with 100 mL of the 
top medium. The top medium was maintained at 38°C to prevent 
it from gelling prior to applying it onto the embryos. The embryos 
were sandwiched between the two media. This procedure allowed 
for the growth of proembryos that are similar to their in vivo 
counterparts. The success of this system allowed Liu et al. (4) to 
investigate the physiological control of embryo development. 
The ability to culture proembryos successfully provides an experi-
mental system that is critical to further understand and dissect 
fundamental processes in embryogenesis. Details of media com-
ponents and techniques of embryo isolation and culture can be 
found in Liu et al. (9).

In Arabidopsis, due to the small size of the developing proem-
bryo, Sauer and Friml (15–17) cultured fertilized ovules instead of 
culturing isolated embryos. The culture of ovules enables the study 
of in vitro embryo development after a successful fertilization event. 
Excision of intact ovules is rapid and a large number of fertilized 
ovules can be cultured at one time. Furthermore, the nutrient 
requirement may not be as stringent as for the isolated embryos. 
The maternal tissues, i.e., the developing seed coat, may provide 
additional factors for proper embryo development, as well as initial 
physical protection to the developing embryo. The ovules were first 
cultured using a high osmotic pressure medium (10% sucrose in a half-
strength Murashige and Skoog (18) (MS) medium)  supplemented 
with 400 mg/L  glutamine (15). In order to allow further develop-
ment of the embryo, the ovules were then  transferred to a low 
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osmotic pressure medium (1% sucrose in ½ MS) 5 days after the 
initial culture. Ovules had to be placed on the surface of the medium 
to allow for proper development of the embryo. This method was 
successful in rearing young zygotic embryos as judged by the 
normal progression of embryo development within the fertilized 
ovule. Details of the culture protocol can be found in Sauer and 
Friml (15–17).

In our study of B. napus cv Topas, we used a half seed culture 
procedure instead of excising intact proembryos to increase the 
number of embryos sampled and avoid physical damage to the 
embryo during dissection (7). Although culturing intact fertilized 
ovules as described for Arabidopsis is a faster culturing procedure, 
seed coat development usually lags behind embryo growth in 
vitro and this can hinder embryo development. Hence, culturing 
of zygotic embryos with half of the seed coat removed enables a 
large number of embryos to be cultured and easy assessment of 
embryo development in vitro. In our studies, the proembryo with 
a small portion of the seed coat attached is placed directly onto 
the culture medium. The process of dissection is relatively fast 
with no physical damage to the small zygotic embryo. A single 
medium is used instead of the double layered method as detailed 
in Liu et al. (9). The medium composition for the culturing of the 
embryos is similar to that reported by Liu et al. (9). However, in 
order to assess the normality of embryo development, i.e., the 
functional integrity of the apical meristems, after initial culture, a 
conversion test needs to be performed. For the conversion test, 
the developing embryos have to be transferred to half MS medium 
with a low percentage (2%) of sucrose. The following protocol 
details the method of culture. It is important to note that we are 
culturing slightly older embryos when compared with those used 
by Liu et al. (9). The culture requirement for the globular embryo 
is not as stringent as the very young proembryos as indicated in 
Liu et al. (9).

 1. Maturation medium: the components of the maturation  
are detailed in Table 1. Prepare stock solutions for the 
“organics,” “sugar mixture” (minus sucrose and glucose), 
and “organic acids,” dispatch into small volumes and frozen.

 2. Coconut water (Sigma C-5915).
 3. Difco Noble agar (Fisher Scientific).
 4. Conversion medium: half-strength MS medium (18) with 2% 

sucrose and 0.8% agar.

2. Materials
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Table 1
Composition of maturation medium for 
culture of zygotic embryos of Brassica napus

Component Maturation medium (mg/L)

Macronutrients

NH4NO3 200
KNO3 1,500
CaCl2 · 5H2O 622
MgSO4 · 7H2O 400
KH2PO4 · 2H2O 79
Na2EDTA · 2H2O 33
FeSO4 · 7H2O 28

Microelements

KI 0.75
H3BO3 3
MnSO4 · H20 13.2
ZnSO4 · 7H2O 2
NaMoO4 · 2H2O 0.25
CuSO4 · 5H2O 0.025
CoCl · 6H2O 0.025

Organics
Myo-inositol 500
Glutamine 200
Thiamin · HCl 1
Nicotinic acid 0.1
Pyrodoxine · HCl 0.1
d-Biotin 0.01

Organic supplements

Casein hydrolysate 100
Coconut water 100 mL/L

Sugar mixture

Sucrose 40 g
Glucose 20 g
Fructose 100
Ribose 100
Xylose 100
Mannose 100
Rhamnose 100
Cellobiose 100
Sorbitol 100
Mannitol 100

(continued)
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 5. Sterilization solution: a 30% bleach solution prepared by 
diluting commercial Javex® bleach which can be obtained 
locally from stores (see Note 1) with sterile water and 0.1% 
(v/v) Tween 20 (Sigma) as a wetting agent.

 6. Equipment and supplies: a stereomicroscope, forceps, scal-
pels, Petri dishes, and Parafilm.

 1. Grow plants of B. napus cv Topas in a greenhouse mix soil in 
a growth chamber maintained at 25°C days and 16°C nights 
with a 16 h photoperiod. In order to sustain the growth of 
plants until seed set, large pots about 1 gal in size should be 
used per plant and the plants should be fertilized regularly 
with a complete fertilizer.

 2. The plants start to flower approximately 6–7 weeks after the 
initiation of germination (see Note 2).

 3. Hand-pollinate the flowers and tag on the day of anthesis (see 
Note 3).

 1. Prepare maturation medium as detailed in Table 1 in prepara-
tion of autoclaving without the coconut water.

 2. After autoclaving, allow the media to cool, and then add the 
coconut water (see Note 4). Depending on the volume, use 
sterile pipettes to distribute the coconut water to the media 
flasks.

 3. After the medium is poured into Petri plates, store at 4°C.

3.  Methods

3.1. Plant Growth  
and Maintenance

3.2. Maturation 
Medium

Table 1 
(continued)

Component Maturation medium (mg/L)

Organic acids

Sodium pyruvate 20
Citric acid 40
Malic acid 40
Fumaric acid 40
Agar 10 g
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 1. Pick developing siliques and surface sterilize in the sterilization 
solution for 15 min and subsequently wash three times with 
sterile water (see Note 5).

 2. The embryos are at the globular stage of development at 
approximately 6 days after pollination and at the heart stage 
at approximately 8 days after pollination. Within one silique, 
the seeds could contain embryos at slightly different stages of 
development, but these could be easily differentiated under 
the dissecting microscope (see Note 6).

 3. Split siliques open along the replum with the tip of a fine 
forceps while holding the base of the silique with another 
pair of forceps. The two halves of the wall (the valves) can 
then be separated by gently pulling them exposing the parti-
tion (the replum) and the seeds. Since a majority of seeds are 
still attached to the replum, exposed seeds can be easily cut 
with a sharp double-edge razor blade or using a scalpel with 
a no. 11 sterile stainless steel surgical blade (see Note 7). All 
attached seeds can be cut quickly one at a time since they are 
“immobilized” and attached to the replum through a funic-
ulus (see Note 8). Quickly remove the half attached seeds 
using a fine forceps and place onto the maturation medium. 
Using fine forceps partially submerge the half seed with the 
cut surface facing up at the same level as the medium. Do 
not submerge the half seeds into the medium.

 4. Place approximately 20–25 embryos in each Petri plate, seal 
with Parafilm, and place in the dark for 2 days and then under 
light conditions (photon flux density of 90–95 mmol/m2/s, 
PAR) with a 16 h photoperiod for a further 12 days.

 1. At the end of the maturation period, transfer the half seeds to 
a conversion medium and maintain under similar conditions. 
The embryo should have grown large enough to see readily 
with an unaided eye or through a stereomicroscope.

 2. Embryos that develop normally with properly developed apical 
meristems will start to grow giving rise to a shoot with new 
leaves and a root within days. These embryos usually have a 
bilateral symmetry.

 3. Embryos that fail to develop apical meristems will become 
arrested. The cotyledons often fuse to form a trumpet.

 1. It is important to ensure that the commercial bleak solution 
is still effective and not to use the bleach solution beyond the 

3.3. Preparing Half 
Seeds for In Vitro 
Culture

3.4. Transfer  
to Conversion Medium 
to Evaluate Normality 
of Development

4. Notes
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expiration date indicated on the bottle. The cap of the bottle 
needs to be tightly secure after each use.

 2. The canola plants when matured are relatively large with 
active transpiration. It is imperative the plants are not allowed 
to dry out at the time of flowering as this can cause flower 
abortion or poor seed set.

 3. Canola is a prolific plant that continues to flower and set seeds 
for several weeks. Based on the tagging of flowers, we find that 
the first set of seeds goes through defined changes in morpho-
logical stages in a reproducible manner. For those flowers that 
form later in the flowering period, embryo development tends 
to be slower. This is most likely due to competition for nutri-
ents among the numerous siliques present. Hence, it is prefer-
able to use the first crop of seeds for experimental purposes.

 4. Coconut water can be purchased readily from various com-
mercial sources. Since the solution is already sterile, it can be 
added directly to the warm culture medium. If a large volume 
of coconut water is added such as 10%, it is important to 
 dissolve proper amounts of the major and minor salts and 
additives in a reduced volume of water allowing for the added 
volume of coconut water used.

 5. In order to ensure proper embryo staging, it is important to 
check the stage of embryo development by careful dissection 
of a few seeds under a stereomicroscope before sampling. This 
is especially important when siliques are from older plants.

 6. Filter sterilization of media components is preferred for com-
ponents other than the major and minor elements. In a num-
ber of studies, it has been recommended that a shorter 
autoclave time be used, i.e., 10 min (15).

 7. For excising plant tissues, often a scalpel with a no. 11 pointed 
blade is used. However, the blade tends to be a bit thick and 
does not give a clean cut. We prefer breakable carbon steel 
double-edge blades as our cutting knives. A special blade 
holder is used to clamp and break off a small piece of the steel 
blade and which can then be used as a knife. Since the blades 
are thin, a sharp clean cut can be made. Such instruments can 
be obtained from Fine Science Tools (catalog number 10050-
00 and 10052-11).

 8. It is essential to know the location of the micropylar end of a 
seed. When excising the seed half, locate the micropylar end 
of the seed as the embryo is sitting next to the micropyle to 
the inside. Gently hold onto the micropylar end of a seed 
with a pair of fine forceps and make the incision at the oppo-
site end. If the seeds are still attached to the silique, excision 
of seed halves can be done simultaneously as the seeds have 
the same orientation.
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Chapter 4

Immature Seeds and Embryos of Medicago truncatula 
Cultured In Vitro

Sergio J. Ochatt 

Abstract

Legumes are an important source of proteins and lipids for food and feed. In addition, they are  environmentally 
friendly because of their capacity to fix nitrogen through a symbiosis with Rhizobium that permits them to 
produce abundant proteins even in the absence of nitrogen fertilization. Seed development in plants follows 
three chronological steps (1) seed coat differentiation, embryo morphogenesis and endosperm development; 
(2) embryo maturation with storage accumulation and (3) dehydration and the acquisition of desiccation 
tolerance. Finally, germination occurs when the environmental conditions become favourable. Working with 
the model legume Medicago truncatula, an in vitro protocol was developed for the culture of immature 
embryos that permits their development in a way comparable to that observed in plants.

In this chapter, the usefulness of this system for investigating embryo development in legumes is 
outlined.

Key words: Abscisic acid, Embryo morphogenesis, Flow cytometry, Gibberellin, Medicago trunca-
tula, Nitrogen, Storage proteins, Sulphur

Seed development in plants follows three chronological steps. 
The first step corresponds to seed coat differentiation, embryo 
morphogenesis, and endosperm development. Following this step, 
embryo maturation with storage accumulation occurs. The last 
step is dehydration and the acquisition of desiccation tolerance. 
Germination may then occur when the environmental conditions 
become favourable (1, 2). The immature seeds of many species 
have been  cultured in vitro to study the regulation of storage product 
accumulation, but this frequently resulted in callus development 
from the embryo axis or the cut surfaces of explanted tissues (3, 4). 
In addition, even if explants expanded through water uptake, cell 

1.  Introduction
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division slows down and storage product accumulation either stops 
or strongly reduces as compared with in vivo rates. Hence, a  strategy 
to sustain in vitro development comparable with that observed 
in vivo is of great value to investigate the effects of plant growth 
factors (nutrients and hormones) on storage product accumula-
tion, its metabolic regulation and the interactions between differ-
ent seed tissues and with the mother plant (5). Non-viable mutants 
affected during seed development may also be analyzed if such 
embryo rescue in vitro is possible.

Legumes are an important source of proteins and lipids for 
food and feed. In addition, they are also environmentally friendly 
as a result of their capacity to fix nitrogen through a symbiosis 
with Rhizobium that permits them to produce abundant proteins 
even in the absence of nitrogen fertilization. Medicago truncatula 
is an annual diploid (2n = 16) autogamous legume species that 
originated in the Mediterranean basin with a small genome size 
500 Mb/1C (6). It is designed as a model species in the context 
of studies on plant-Sinorhizobium meliloti symbiosis (7) and has 
been used extensively since then in research on mutagenesis, 
genomics and also at the plant physiology level. M. truncatula is 
phylogenetically close to the most widely cultivated legumes in 
Europe, pea and field bean (8, 9), and its seeds have been shown 
to consist mainly of the embryo at maturity. However, they also 
possess persistent endosperm that contributes about 10% of the 
final seed mass. M. truncatula seed protein content, at 35–45%, is 
significantly higher than that of pea or faba bean and most of the 
remaining carbon stored in the mature seed is in the form of oil 
with starch content being less than 1% (10).

The in vitro protocol for seed filling with immature seeds of 
M. truncatula described in this chapter was modified from a method 
previously used to shorten generation cycles with various protein 
legumes (4). It was used to analyse the effects of variations in the 
nitrogen content of the medium, demonstrating that the accumula-
tion of storage proteins in embryos cultured in vitro on an MS medium 
(5) corresponded to that observed in planta (11). Once established, 
the same protocol was used to determine the time of competence for 
in vitro culture to compare the performance of isolated embryos with 
that of entire grain explants, and to analyse the response of both varia-
tions in sulphur and hormonal nutrition. In this respect, grain legumes 
are generally penalized as feed when contrasted with cereals because 
of the poor sulphur content in their protein. Modification of the 
exogenous sulphur supply appeared to be an interesting way of study-
ing its effects on the accumulation of storage proteins richer in this 
element. Likewise, it was tempting to assess the effects of some growth 
regulators on embryo development and seed filling as a method to 
improve the stability of this trait in protein legumes. Naturally, the 
choices of gibberellin and abscisic acid were made. The use of flow 
cytometry (12, 13) then appeared as a tool to analyse the mitotic 
index and cell cycle of such cultured seeds and embryos.
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 1. M. truncatula seeds, harvested at maturity, scarified (H2SO4, 
3 min) and sown to give the donor plants.

 2. N:P:K (20:20:20) fertilizer solution (PlantProd; Quebec, 
Canada, or any other brand with the same composition).

 3. 2-L pots.
 4. A 1:1 soil:pozzolane potting mixture.
 5. Glasshouse/growth chamber facilities for controlled environ-

mental conditions of donor plants.

 1. Stock solutions for preparation of Murashige and Skoog (14) 
basal medium (MS) as follows (see Table 1 for details): mac-
roelements concentrated 10× (kept in the fridge until use or for 

2.  Materials

2.1. Plant Material  
and Culture Conditions 
of Donor Plants

2.2. In Vitro Culture

Table 1
Composition of the basal Murashige and Skoog (14) 
medium used for culture of immature seeds and embryos 
that supported embryo development and seed filling as 
observed in planta

Components Concentration (mg/L)

Macroelements NH4NO3 1,650
KNO3 1,900
CaCl2 · H2O 440
MgSO4 · 7H2O 370
KH2PO4 170

Microelements H3BO3 6.22
MnSO4 · 4H2O 22.3
ZnSO4 · 7H2O 10.6
KI 0.83
Na2MoO4 · 2H2O 0.25
CuSO4 · 5H2O 0.025
CoCl2 · 6H2O 0.025

Fe EDTA FeSO4 · 7H2O 27.85
Na2EDTA 37.23

Vitamins/organics Nicotinic acid 0.5
Pyridoxine-HCl 0.5
Thiamine-HCl 0.1
Glycine 2
myo-Inositol 100

Sugars Sucrose 130,000

Agar 6,000
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maximum 1 month), microelements concentrated 1,000× (kept 
in the fridge until use or for maximum 1 year), FeEDTA con-
centrated 200× (kept in fridge in a brown bottle until use or up 
to 1 year) and vitamins/organics (altogether) are concentrated 
500× and aliquoted before use (frozen stock may be kept for up 
to 1 year while in the fridge for a few months only).

 2. Sucrose.
 3. Agar.
 4. KOH and HCl 1 N to adjust pH.
 5. Ultrafiltration equipment to filter-sterilize hormones to be 

added to media as required.
 6. Standard tissue culture equipment (autoclave, dissection 

tools, laminar flow hood, etc.).

 1. Flow cytometer equipped with UV excitation lamp.
 2. Dissection tools (for chopping of material).
 3. Petri dishes for chopping of tissues.
 4. Buffers for extraction and nuclei and their staining with DAPI 

(4¢,6-diamidino-2-phenylindole): two-step procedure con-
sisting of nuclei extraction buffer followed by staining buffer, 
or single-step procedure with a unique buffer.

 5. Plastic or nylon meshed sieves (50-mm pore size) for filtering 
of the nuclei suspension prior to measurements.

 1. Fluorescein diacetate (FDA) solution prepared by diluting 60 mL 
of a stock solution of 5 mg FDA/mL acetone in 8 mL mannitol 
(9%, w/v). The stock can be kept frozen for a very long time.

 2. Photonic epi-fluorescence microscope.

M. truncatula genotype A17, derived from cultivar Jemalong 
(provided by P. Guy, Plant Breeding Station, INRA Lusignan, 
France), was used throughout.

 1. Culture plants in 2-L pots with soil mixed with pozzolane 
(1:1), with fertilization (N:P:K, 20:20:20; PlantProd; Quebec, 
Canada) through drop watering during the first week and 
once weekly thereafter.

 2. Maintain plants in the glasshouse, under a photoperiod of 
16 h, with warm fluorescent lamps at an intensity of 220 mE/
m2/s, a temperature of 19°C (day) and 22°C (night) and a 
relative humidity of 60–70%.

2.3. Flow Cytometry

2.4. FDA Assessments 
of Viability

3. Methods

3.1. Plant Material  
and Culture Conditions 
of Donor Plants
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 3. For harvest of immature seeds and embryos, identify flowers 
morphologically on the day following pollination (Fig. 1a–c; 
see Note 1) and label with the date for the determination of 
the number of days after pollination (DAP) (see Note 2).

 4. Immature seeds (Fig. 1d; see Note 3) and embryos (see Note 4) 
are harvested from 8 DAP onwards depending on the kind of 
studies to be performed, with material of the respective ages 
(Fig. 1d) harvested in plants used as controls. The optimum age 
to compare in vitro and in planta seeds and embryos is 12 DAP.

 1. All media are based on Murashige and Skoog (14) basal 
medium (MS) supplemented with 6-g/L agar and 130-g/L 
sucrose (MS130) (Table 1; see Note 5). The pH of all media 
is adjusted to 5.6 with 1 N KOH before autoclaving, for 
30 min at 112°C.

 2. No addition of growth regulators is needed to support devel-
opment and seed filling comparable to that observed in planta. 
Thus, growth regulators are added only when aimed at assess-
ing their role on embryo development and seed filling (see 
Note 6). Similarly, for studies on the nitrogen or sulphur con-
tent of the medium, modifications are performed from this 
basal formulation (Table 1).

 3. Dispense media as 2-mL aliquots into 5 × 5 multi-well plastic 
dishes and store at 4°C in the dark until used.

 4. For culture, seal dishes with Parafilm and keep them under a 
photoperiodic regime of 16-h light/8-h dark from warm flu-
orescent tubes at an intensity of 90 mE/m2/s and under a 
thermoperiod of 22/20°C.

3.2.  In Vitro Culture

Fig. 1. Developmental stages of harvest of immature pods of Medicago truncatula. (a) Plant with flowers labelled with the 
date of pollination; (b, c) front and side view of a flower at the pollination stage, used to calculate pod age subsequently; 
(d) immature seeds at 12, 14, 16 and 20 DAP as used for culture.
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 5. At least 15 embryos and 15 seeds per age should be cultured 
on each tested medium and all experiments should be repeated 
three times.

 6. Immature pods are disinfected for 1 min in 70% ethanol and 
15 min in calcium hypochlorite (37 g/L) then rinsed four 
times in sterile water.

 7. Aseptically open sterilized pods and excise grains or embryos 
for culture.

 8. Seeds are examined at 24-h interval (see Note 7).
 9. This protocol, without major modifications, should also work 

with field pea, grass pea and other grain legumes.

Flow cytometry assessments were carried out on material at 12-, 
16,- and 20-DAP harvested directly from the mother plants for the 
controls (Fig. 1c) and on seeds and embryos that had been cul-
tured for different periods of time (i.e. typically for 4 days: 12→16 
and 16→20, or 8 days: 12→20) on the various media assessed 
depending on the studies carried out (MS0, ABA10 and ABA50).

The typical stepwise methodology for flow cytometry analyses 
of M. truncatula (12) does not differ from that used for other 
 species (13) by our team, and is as the following:

 1. All assessments are performed using a Partec PAS II flow 
cytometer, equipped with a mercury HBO 100-W lamp, a 
dichroic mirror (TK 420), and a built-in programme for the 
treatment of data (Flomax, Partec GmbH).

 2. All plant tissues (leaves of mother plant, seeds, and embryos) 
are prepared following methods as described (12, 13) and are 
stained with DAPI (4¢,6-diamidino-2-phenylindole) (see Note 8). 
Briefly, a small amount of tissue is chopped in 400 mL nuclei 
extraction buffer, diluted with 1,600 mL of staining buffer 
[both from Partec GmbH (Germany), Cystain UV Precise T 
kit] or in a one-step procedure (Cystain UV Precise one-step 
kit from Partec GmbH, Germany), where 1 mL of buffer is 
used to chop tissues for simultaneous extraction and staining 
of nuclei. Following extraction and staining, the nuclei sus-
pension is sieved through a 50-mm mesh (Celltrics from 
Partec GmbH, Germany, or home-made) and recovered into 
vessels (generally 2.5-mL haemolysis tubes) adapted to the 
flow cytometer employed.

 3. For each measurement, a minimum of 2,500 nuclei are 
counted and the results presented as a linear scale on a 
 real-time graph with the size of nuclei (intensity of the epi- 
fluorescence emitted) in the abscissa and the number of nuclei 
counted in the ordinates. The parameters for flow cytometry 
readings were as described previously for M. truncatula 
(12, 13). Two instrument settings are very important to 

3.3.  Flow Cytometry
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obtain exploitable data from analyzed samples. The first is the 
adjustment of the lower threshold (LL) to avoid acquisition 
of small and unwanted “noise” signals below this emission 
value and to allow the system to have more time for the par-
ticles of interest. So, measurements must be performed with 
a LL high enough to remove all the small “noise” signals in 
the histograms but low enough to retain all signals from the 
particles of interest. The second one is the speed since highly 
accurate measurements require a low speed (~2 mL/s). If the 
speed is too high, peaks in the histograms tend to become 
wider and hence accuracy decreases. However, care should be 
taken not to use a speed too low, because in that case, particle 
sedimentation effects can influence a counting result.

 4. For peak and cell cycle analysis (Fig. 2), the studied tissues are 
compared with leaves taken from mother plants of 
M. truncatula  A17 cultured on MS0 medium (blank).

 5. The cytometer is calibrated prior to the analyses with leaves of 
the pea cultivar Victor (Pisum sativum L.) as a standard.

 6. The mitotic index is calculated and analyzed as described 
(12, 13) (see Notes 9 and 10).

 1. Viability of tissues is evaluated with FDA (15) under UV, 
using a OMRB Leica photonic microscope.

 2. The FDA solution employed is prepared by diluting 60 mL of 
a stock solution of 5 mg FDA/mL acetone in 8 mL mannitol 
(9%, w/v).

 3. Then, two droplets (~50 mL) of this solution are added to 
each slide. Once excited with UV, living cells fluoresce yel-
low–green, confirming membrane integrity and the conserva-
tion of enzymatic activity (Fig. 3).

 4. Viability is expressed as a percentage (of the number of fluo-
rescing cells counted divided by the total number of cells in a 
sample and multiplied by 100).

 5. At least 100 cells per microscopic fields are counted and three 
or more independent counts are performed for each sample 
analyzed.

By the end of the cell division phase, the cell number in the 
 cotyledons is established and, in grain legumes, it determines the 
storage capacity of the organ (16). The onset of endoreduplica-
tion is a progressive phenomenon in storage accumulating organs 
during the transition between cell division and maturation phases 
(17) whose control is therefore of considerable agronomic 
interest . In plants with a small genome, this alternative to a cell 
cycle is a means of increasing genetic and metabolic capacities.

3.4. FDA Assessments 
of Viability

3.5. Comments
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With an exogenous nitrogen supply, both 12-DAP seeds and 
embryos developed with storage protein synthesis comparable to 
that observed in vivo. Conversely, in the absence of added nitro-
gen, seeds during initial stages of embryo development exhibited 
a remobilisation of endogenous nitrogen from tissues surround-
ing the embryo thereby ensuring initial storage protein accumu-
lation, whereas isolated embryos rapidly ceased synthesizing 
de novo proteins and their development appeared arrested, pre-
sumably reflecting a shortage of nitrogen.

When studying sulphur exogenous supply, it was observed 
that the sulphur content of the medium affects development of 
embryos and seeds as well as their maturation except in media Sh 
and Sh + Nd, where an increased sulphur content seemed to com-
pensate for the nitrogen deficiency. Conversely, sulphur deficiency 
dramatically altered development by demonstrating anthocyanin 
accumulation in the tissues (possibly a stress-response) and a 
 significantly reduced albumin synthesis that were both resolved 
by adding sulphur to the medium. This system is hence useful to 
investigate the embryo’s response to nitrogen and sulphur.

Using this strategy for the analysis of ABA and GA3 helped to 
provide evidence for their actions in several important processes 
during seed development and stressed that 12-DAP is a key stage 
corresponding to the end of embryo morphogenesis and the 
beginning of the maturation phase and storage protein accumula-
tion (11). Beyond 12-DAP, development and morphogenesis are 
finished, the embryo is formed, and the storage accumulation 
phase starts (2, 5, 18).

Fig. 3. An immature M. truncatula embryo stained with FDA observed under UV light. 
Two dead, non-fluorescing cells are arrowed.
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Seeds germinated in the presence of 10-mM ABA showed that 
only root elongation was delayed. While cell division did occur, it 
was slowed down. Flow cytometry analysis at 12-DAP gave pro-
files with a number of peaks of decreasing intensity, reflecting 
endoreduplication (13). There is therefore an arrest of divisions; 
phases G1, S, and G2 do take place but with very few mitoses, and 
most nuclei in the second peak are in phase G2 rather than M of 
the cell cycle. Conversely, on 50-mM ABA, germination was com-
pletely blocked (the lack of a second peak in flow cytometry pro-
files indicates that nuclei were blocked at G1 and/or S phase) and, 
even if they remained viable (Fig. 3), seeds looked withered, which 
is probably correlated with the role of ABA intolerance to desicca-
tion (18, 19). Thus, embryos and immature seeds at 12-DAP are 
able to germinate within 48 h on MS0 medium, while, later, only 
excised embryos remain capable of rapid germination that sup-
ports the hypothesized presence of exogenous ABA in the seed 
coat (20). In other words, the combination of endogenous and 
exogenous ABA determines the kinetics of storage protein accu-
mulation and modulates the onset of germination.

On the other hand, studies of GA3 alone or combined with 
ABA proved that on GA10 and GA50, cell divisions increased 
and the cell cycle typically showed endoreduplication, while on 
media with both GA and ABA, the cell cycles were normal 
(Fig. 2). Likewise, the cell cycle of control in planta in embryos 
from 16 DAP showed a strong endoreduplication (Fig. 2), but, 
when the time course of the onset of endoreduplication was 
observed between 12- and 20-DAP, it also appeared that these 
would not be fixed phases but more a progression of events 
instead, as while division frequency is reduced the accumulation 
of storage compounds commences (i.e. at 12 DAP cell division 
continues despite an even stronger endoreduplication than at 

Table 2 
Relative DNA content/nucleus of various tissues  
of M. truncatula A17 in planta

Tissue

2C 4C 8C 16C
32C/64C/ 
128C

PgDNA/ 
nucleus

PgDNA/ 
nucleus

PgDNA/ 
nucleus

PgDNA/ 
nucleus

PgDNA/ 
nucleus

Leaf 0.483 0.977

Embryo 12DAP 0.418 0.801 1.326 2.02 5.43

Embryo 16DAP 0.485 0.8455 1.483 1.92

Embryo 20DAP 0.45 1.028 1.438
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16 DAP; Table 2). Hence, it seems that there are transition 
periods rather than distinct phases, and the use of this strategy 
was instrumental to demonstrate it.

This strategy also showed that GA not only stimulates cell 
division, but it also compensates for the inhibitory effect of ABA 
and delays the onset of storage protein accumulation in seeds.

 1. When the petal is at its largest, the pistil will not be apparent.
 2. M. truncatula pods are collected from the mother plants before 

the accumulation of storage proteins (8 and 12 DAP) and during 
early stages of storage protein accumulation (14 and 16 DAP), as 
in intact plants storage proteins begin to accumulate by 14 DAP 
(5). The authentic in vitro development of grains on MS130 
medium prompted a comparison with isolated embryos on this 
same medium. Then, both seeds and embryos developed and 
yielded protein profiles corresponding to that of material grown 
in vivo. However, the arrest in cotyledon growth and lack of 
anthocyanin accumulation coupled with a reduced chlorophyll 
pigmentation for embryos cultured on medium-N may reflect 
metabolic defects and a possible hormonal imbalance for such 
tissues, such as increased endogenous ABA levels (21, 22), which 
encouraged further studies on the effects of this growth regulator 
on seed filling using this same strategy. In addition, a study of 
other environmental factors such as the sulphur content in the 
medium and the temperature during culture is also of interest, 
having affected protein synthesis in soybean (23) and pea (24).

 3. Seeds and embryos were harvested from 8 to 12 DAP for 
studies with nitrogen and from 12 to 20 DAP for those with 
hormones or sulphur. The choice of testing the in vitro 
response of seeds isolated at 8 and 12 DAP is because 12 
DAP immediately precedes the onset of accumulation of stor-
age proteins at 14 DAP (5) and 8 DAP is the earliest stage at 
which seeds can be easily detached without damage. In this 
respect, it should be mentioned that the minimum number of 
DAP from which seeds and/or embryos may be harvested for 
culture will vary with different species, but for protein 
legumes, in general, will remain at around 8–12 DAP.

 4. To assess the autonomy of metabolic processes in place during 
embryo development, embryos were cultured in parallel to 
seeds under the same conditions. With nitrogen, cotyledons 
enlarge significantly, root tips extend and within 6 days 
embryos doubled in size, coupled with an accumulation of 
anthocyanins as seen for the seeds. On MS130-N, cotyledon 

4.  Notes
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size did not increase significantly although the root continued 
to grow, and there was a progressive loss of chlorophyll pig-
mentation,  suggesting a loss of photosynthetic capacity. In 
contrast to embryos on MS130+N, there was no anthocyanin 
or carotenoid accumulation in embryos cultured in the absence 
of nitrogen.

 5. For assessments on the effects of sulphur, seeds and embryos 
at different stages of maturity were cultured on 12 different 
MS media (14) of a modified composition to render sulphur 
either deficient or excessive and to combine it with accord-
ingly deficient or excessive nitrogen contents as follows: Sn, 
Sd, Sh, Nd, Nh, Nh+, Sd + Nd, Sd + Nh, Sd + Nh+, Sh + Nd, 
Sh + Nh and Sh + Nh+. Thus, media were based on MS for-
mula (14) with 130-g/L sucrose (see Table 1), but were 
modified to supply deficient (Sd; no S; MgSO4 in MS formula 
replaced by MgCl2), normal (Sn; 1.5-mM S as in MS for-
mula) or high (Sh; 4.5 mM S supplied as Na2SO4 because, at 
such concentration, MgSO4 would precipitate) sulphur con-
tents and nitrogen at deficient (Nd; 544-mg N2/L), normal 
(Nn; 824.1-mg N2/L), high (Nh; 1384.1-mg N2/L) or very 
high (Nh+; 1944.1-mg N2/L) concentrations.

 6. When appropriate, the growth regulators ABA (cis-trans race-
mic mixture, Sigma) at 0, 1, 5, 10 or 50 mM (i.e. 0, 0.264, 
1.321, 2.643 or 13.215 mg/L) or GA3 (gibberellic acid) at 0, 
10 or 50 mM (i.e. 0, 3.46 or 17.3 mg/L) were added to auto-
claved media. Stock solutions of the growth regulators tested 
were filter-sterilized. To avoid imposing an osmotic stress to 
the cultured tissues, the sucrose content in the medium used 
in these studies was reduced from 130 g/L used in our previ-
ous work with nitrogen (5) and sulphur (see above) to 
30 g/L, as used routinely in vitro (4, 14).

 7. At 12 DAP in planta, a seed measured 3 mm and an embryo 
1.5 mm in length, while at 20 DAP, both measured 5 mm 
stressing the role of the endosperm, whose size decreases as 
the embryo grows.

 8. DAPI specifically binds to the adenine and thymine bases of 
DNA is excited under UV (at 372 nm) and emits (at 456 nm) 
fluorescence that is proportional to the relative DNA content 
per nucleus.

 9. For normal tissue, the flow cytometry profile will exhibit two 
peaks corresponding to the nuclei in the G1 (2C) and G2/M 
(4C) phases of mitosis (12, 13), respectively.

 10. Similarly, such a profile will include around 80% of nuclei in 
G1, 10% in S and 10% in G2/M of the mitotic cycle. From this 
set of data, it is equally possible to analyse the cell cycle and the 
division frequency expressed as the mitotic index (MI):
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 MI 4 4C / 2C 4C.= × Σ +  

Where 2C and 4C correspond to the mean intensity of the first 
(nuclei in phase G1) and second peak (nuclei in phase G2/M) in 
the profile obtained, respectively. For a normal cell cycle, 
MI = 2 ± 0.15. A slight variation from this figure indicates a prob-
lem with cell division and the cell cycle itself (12).

The onset of endoreduplication in M. truncatula is indicative 
of the transition between cell division and seed filling. This is 
reflected by the start of the storage protein accumulation phase 
during the embryo maturation cycle concomitant with the appear-
ance of endoreduplication peaks in the flow cytometry profiles 
from the developing embryos (see Table 2; (12, 13)).
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Chapter 5

In Vitro Culture and Germination of Terrestrial 
Asian Orchid Seeds

Yung-I. Lee 

Abstract

Orchidaceae is one of the largest families of flowering plants, and many of its species are highly valuable 
as herbal medicines and to the horticultural industry. To meet commercial requirements and to conserve 
natural resources, in vitro seed germination has been utilized to produce large quantities of uniform 
seedlings. In general, terrestrial orchid seeds are more difficult to germinate and grow than epiphytic 
orchids. Terrestrial orchid seeds have a hardened seed coat and more stringent requirements for germina-
tion in vitro. In this chapter, we document the timing of seed collection and pretreatments for improving 
in vitro germination of some terrestrial Asian orchids. The process of in vitro germination is demon-
strated, including (1) the culture of immature seeds; (2) the culture of mature seeds; and (3) subsequent 
seedling development. For immature seed culture, optimal timing of seed harvest is key to maximizing 
germination; for mature seed culture, selection of adequate pretreatment conditions (i.e., the duration 
and concentrations of pretreatment solutions) is essential to improve germination.

Key words: Asymbiotic germination, Calanthe, Cuticular material, Cypripedium, Seed coat, Zygotic 
embryos

Orchidaceae is one of the largest families of flowering plants, 
consisting of more than 22,000 species (1). Some orchid genera, 
such as Phalaenopsis, Dendrobium, Oncidium, Paphiopedilum, and 
Cymbidium, have become economically important as potted plants 
and cut flowers. According to a United States Department of 
Agriculture report, the total annual wholesale value of potted orchids 
for 2007 was 126 million USD in the United States alone. Some 
species of Dendrobium, Gastrodia, and Vanilla are also valuable herbs 
and flavoring agents (2). Many orchids that remain unstudied have 
potential use in natural medicine and as ornamentals. However, the 

1.  Introduction
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majority of plants currently sold by nursery growers are collected from 
wild strains without regard for their scarcity. Therefore, practical and 
efficient methods of propagation are necessary to prevent depletion  
of natural populations and to supply commercial production.

The numerous and tiny seeds of orchids are unique in several 
ways (3). As orchid capsules mature, they bear seeds that consist of 
a globular embryo covered by a thin seed coat. The seeds are with-
out an endosperm and are regarded as precociously released proem-
bryos (4). Under natural conditions, successful germination of 
orchid seeds is dependent on the formation of mutualistic associa-
tions with specific mycorrhizal fungi (5). However, Knudson (6) 
discovered in 1922 that orchid seeds are able to germinate on some 
synthetic media without the assistance of mycorrhizal fungi. That is, 
they can germinate asymbiotically. Asymbiotic culture of orchid 
seeds (undifferentiated embryos) is similar to embryo rescue of other 
crops and has become a practical tool for most orchid propagation 
 systems (7). Generally, the process of seed germination of terrestrial 
orchids is more intricate than that of epiphytic orchids (8). It has 
been suggested that difficulties encountered in the former may be 
due to impermeability of the seed coat. In Phalaenopsis amabilis var. 
 formosa, an easy-to-germinate epiphytic species, cuticular materials, 
form a discontinuous layer around the embryo proper; this intermit-
tency enables the embryo to access water and nutrients and reduces 
physical constraints on germination (9). In contrast, histochemical 
studies of developing seeds of the terrestrial orchid Cypripedium 
have found that the embryo is enclosed tightly and compactly by the 
carapace (the inner seed coat) and that various chemicals, such as 
cuticular substances (10), lignin (11), and suberin (12), accumulate 
in the carapace and seed coat as the seeds mature. In another ter-
restrial orchid, Calanthe tricarinata, cuticular substances and phe-
nolic compounds are present in the seed coat (13). The deposition 
of these hydrophobic compounds plays a key role in the imperme-
ability of mature seeds. Moreover, high levels of endogenous abscisic 
acid (ABA) have been found to accumulate in the mature seeds of 
hard-to-germinate terrestrial orchids (13–15). These findings sug-
gest that the accumulation of ABA in mature terrestrial orchid seeds 
may be responsible for their low germination percentages.

Immature temperate terrestrial orchid seeds are easier to 
germinate in vitro than they are at maturity (16–18). At the optimal 
inoculation time, seeds are usually yellowish-white in color, moist, 
and remain partially attached to the placenta. Culturing imma-
ture seeds may avoid full development of the impermeable seed 
coat (10, 19) and the accumulation of substances inhibitory to 
germination (13, 15, 20). For immature seed culture, optimized 
timing of seed harvest is crucial to maximize germination rates. 
For example, in Cypripedium formosanum, seeds collected from 
90 to 105 DAP are the most suitable for culture in vitro, while 
after 105 DAP, seed germination decreases abruptly (10).
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For mature seed culture, pretreating seeds with hypochlorite 
(20, 21), ultrasound (22), and/or chilling (23, 24) are often good 
strategies to maximize germination percentages. In C. tricarinata, 
soaking mature seeds into 1 N NaOH and 1% NaOCl solution not 
only scarifies the seed coat but also demolishes endogenous ABA 
(13). Thus, pretreatment increases the permeability of the seeds 
by scarification and releases substances linked to seed dormancy.

Though orchid seeds are tiny and simple, many characteristics of 
the seed coat (such as cell layers of the seed coat and chemical 
constituents of the cell wall) vary widely among species. Therefore, 
the choice of an adequate pretreating condition (i.e., the duration 
and concentrations of the pretreating solution) is important to improve 
germination of mature seeds. In this chapter, the optimum timing  
of seed collection and the seed pretreatments for improving in vitro 
germination of some Asian terrestrial orchids are documented.

 1. Culture media for immature and mature seed culture: 
1/4–1/10 strength macroelements of Murashige and 
Skoog (MS) basal salts with full strength microelements 
(25–28), or Thomale GD basal salts (29), as detailed in 
Table 1. Basal media are supplemented with 20 g/L 
sucrose (Sigma Chemical Co., St. Louis, Mo), 1 g/L tryp-
tone (Merck KGaA, Darmstadt, Germany), and 100 mL/L 
coconut water (obtained from fresh green coconut fruit) 
and solidified with 2.2 g/L Phytagel ((Sigma Chemical 
Co.). See Table 1 for composition.

 2. Banana extract: obtained bananas just as they are turning yellow.
 3. Potato extract: obtain fresh potatoes from local market.
 4. Capsule sterilizing solution: 1% sodium hypochlorite solution 

containing two drops of a wetting agent (Tween-20; Sigma).
 5. Seed scarifying solution: NaOH (1 N) solution with two 

drops of Tween-20.
 6. Hyponex protocorm medium: Hyponex No. 1; 7N-6P-19K 

(Hyponex Corp., Marysville, Ohio) with 20 g/L sucrose, 
1 g/L tryptone, 1 g/L activated charcoal, 20 g/L potato 
homogenate, and 30 g/L banana homogenate, solidified 
with 2.2 g/L Phytagel.

 7. An ultrasonicator (200 W, 44 kV, Branson 8210; Branson 
Ultrasonic Corp., Danbury, Conn.) is used for seed scarification.

 8. Other laboratory equipment and supplies: a stereomicroscope, 
laminar flow hood, sterile droppers, scalpels, and forceps.

2.  Materials
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 1. When the flowers are fully open, hand pollinate the flowers to 
ensure good capsule sets and seed quality. Use a clean tooth-
pick to touch the sticky fluid of the stigma and then touch 
the pollinia. The pollinia will stick onto the toothpick. 
Carefully place the pollinia on the surface of the stigma.

 2. Capsules will develop after successful pollination and fertilization. 
For immature seed culture, the timing of seed collection plays 
an important role in further development of the embryo and in 

3.  Methods

3.1. Flower Pollination

Table 1 
Composition of MS (25) and Thomale GD (29) media

Component MS medium (mg/L) Thomale GD medium (mg/L)

Macronutrients

KNO3 1,900 400
NH4NO3 1,650 370
(NH4)2SO4 – 60
KH2PO4 170 300
CaCl2 ⋅ 2H2O 440
MgSO4 ⋅ 7H2O 370
Mg(NO3)2  ⋅ 6H2O 110

Micronutrients

MnSO4 ⋅ 4H2O 22.3
ZnSO4 ⋅ 7H2O 8.6
CuSO4 ⋅ 5H2O 0.025
KI 0.83
CoCl2 ⋅ 6H2O 0.025
H3BO3 6.2
NaMoO4 ⋅ 2H2O 0.25
FeSO4 ⋅ 7H2O 27.84 20
Na2 ⋅ EDTA 37.3

Organics

Myo-inositol 100
Nicotinic acid 50
Pyridoxine-HCl 50
Thiamine-HCl 10
Glycine 200
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protocorm formation. Table 2 lists the optimal time for seed 
collection of some species (see Note 1). Prior to seed culture, 
it is important to check seed quality. Examine the seeds under 
a microscope to make sure embryos are present and the seed 
coat has not yet acquired moisture-repellency (19, 30).

Different media can be used for culturing immature embryos 
from different species; preliminary testing is required to deter-
mine the best medium for a specific project. Immature embryos 
can be successfully cultured using 1/4–1/10 strength macroele-
ments from MS basal salts (25) or Thomale GD basal salts (29) 
with full strength microelements (Table 1) supplemented with 
20 g/L sucrose, 1 g/L tryptone, and 100 mL/L coconut water, 
solidified with 2.2 g/L Phytagel. The pH of media is adjusted to 
5.7 before autoclaving at 121°C. Ten mL of medium is poured 
into each 25 × 100 mm culture tube.

3.2. Preparation  
of Media for the  
In Vitro Culture  
of Immature Seeds

Table 2 
The optimum time for seed collection of some Asian 
terrestrial species

Taxon
The optimum  
time (DAP) References

Calanthe tricarinata 150 Lee et al. (13)

Cymbidium ensifolium var.  
misericors

190 Lu et al. (26)

Cymbidium sinense 150 Lee (27)

Cypripedium formosanum 90–105 Lee et al. (10)

Paphiopedilum armeniacum 120 Unpublished data

Paphiopedilum bellatulum 120–150 Lee (28)

Paphiopedilum delenatii 150 Lee et al. (30)

Paphiopedilum godefroyae 90–120 Lee (28)

Paphiopedilum niveum 120–150 Lee (28)

Paphiopedilum helenae 150 Lee (28)

Paphiopedilum henryanum 120–180 Lee (28)

Paphiopedilum spicerianum 120–180 Lee (28)

This table lists the optimum time for seed collection of Asian terrestrial species; for the 
European and North American terrestrial species, see Rasmussen (19)
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 1. Harvest the green capsule at the optimum time and determine 
whether the seeds hold embryos (see Note 2).

 2. Wash the capsules for 3 min in tap water and sterilize for 
30 min in capsule sterilizing solution. Wash 3 times with ster-
ile distilled water.

 3. Cut and open the capsules in a laminar flow hood. Scoop out 
the seeds and distribute onto the medium (see Note 3). Add 
a few drops of sterile distilled water to the immature seeds if 
necessary (see Note 4).

 4. Place the culture tubes in a darkened growth room at 25 ± 2°C 
(see Note 5).

 5. After protocorm formation, transfer the culture tubes to lit 
conditions with a 12 h photoperiod at 30 mmol/m2/s (see 
Note 6).

 1. Harvest the mature seeds just prior to splitting of mature 
capsules (see Note 7). Place the seeds in a test tube (20 × 100-mm) 
and surface sterilize for 20–60 min in capsule sterilizing solu-
tion (see Note 8). The capsule sterilizing solution is not only 
used for surface sterilization but also serves to partially erode 
the seed coat (Fig. 1). This improves in vitro seed germina-
tion. Rinse the seeds 3 times with sterile distilled water before 
sowing.

 2. Soak hardened seeds in seed scarifying solution for 10–30 min 
(see Note 9). Nonhardened seeds do not require this treat-
ment. Rinse the seeds 3 times with sterile distilled water, as in 
step 1.

3.3. Immature Seed 
Germination

3.4. Germination from 
Mature Seeds

Fig. 1. SEM micrographs of seedcoat of Paphiopedilum armeniacum after soaking in 
sodium hypochlorite solution. (a) The surface of seed coat is pitted (arrowhead ) because 
of the unevenly deposited cell wall constituents. Scale bar = 50 mm. (b) After soaking in 
1% sodium hypochlorite solution for 60 min, the surface of seed coat is eroded (arrow-
head ), and some cracks (arrow ) are formed. Scale bar = 50 mm.
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 3. Ultrasound treatment is another way to scarify hardened 
seeds. Scoop the seeds into tubes with sterile distilled 
water and treat with an ultrasonicator for 8–30 min (see 
Note 10). Rinse the seeds 3 times with sterile distilled 
water, as in step 1.

 4. Transfer the seeds to 25 × 100-mm test tubes containing 
culture media as indicated in Subheading 3.2. Maintain the 
culture tubes in the dark.

 5. Liquid culture is another way to hasten and synchronize seed 
germination. After surface sterilization or ultrasound treat-
ment, place the seeds into liquid medium in a 125 mL flask 
(1/4 MS or Thomale GD without gelling agent). Place the 
flasks in the dark on a rotary shaker at approx. 100 rpm. 
Transfer to gelled medium as the embryos emerge from their 
seed coats (see Note 11).

 6. Transfer the culture tubes to light conditions with a 12 h 
photoperiod at 30 mmol/m2/s photon flux density after pro-
tocorm formation.

 1. Once the protocorms have turned green and their first leaves 
become visible, place them on Hyponex protocorm medium. 
For the banana extract, peel bananas and cut them into cubes 
(about 1 cm3). Boil fresh materials with water (20 g fresh 
material per 100 mL water) for 10 min and homogenize them 
with a kitchen blender. For the potato extract, peel potatoes 
and process them as in the banana extract procedure. Add the 
homogenate to the basal medium prior to pH adjustment. 
The pH of the medium is adjusted to 5.7 before autoclaving. 
Pour 100 mL medium into a 500-mL flask (see Notes 12 
and 13).

 2. Incubate in the light (30 mmol/m2/s photon flux density) 
under a 12 h photoperiod until the seedlings develop roots 
approximately 1–2 cm in length.

 3. Subculture the seedlings to fresh Hyponex medium every  
2 months if the species of interest secretes inhibitory chemi-
cals into its environment.

 4. In a laminar flow hood, pick 15–20 seedlings of the same size 
and transplant to the 500 mL flask of Hyponex medium. 
Adjust the banana homogenate to 50 g/L and the sucrose to 
10–15 g/L.

 5. Incubate in the light (30 mmol/m2/s photon flux density) 
under a 12 h photoperiod for approximately 4–8 weeks and 
transfer to a greenhouse for further growth (see Note 14).

3.5. Seedling 
Development
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 1. Temperature affects embryo development substantially. 
Adjust the harvest time according to your local climate. 
Sample the capsules and examine embryos under a micro-
scope before sowing to confirm that you have collected 
them at the correct developmental stage. Figure 2 shows 
the developing embryos of C. tricarinata and C. formosa
num at the optimum time for their inoculation. The plants 
of C. tricarinata and C. formosanum are maintained in the 
greenhouses at Mei-Fong high-land farm (lat. 24° 5¢N, 
long. 121° 11¢E, 2,100 m above sea level), Taiwan; the 
plants of Paphiopedilum species are grown in pad-and-fan 
system greenhouses in flat, low elevation areas of Taiwan.

 2. If many of the embryo sacs are not successfully fertilized, the 
capsule will contain many “empty seeds.” Before sowing, 
quickly examine the seeds under a microscope to ensure that 
they contain embryos.

 3. The germinating seeds of some orchid species secrete inhibitory 
chemicals into their environment. If the seeds are sown too 
close together, the germinating seeds/protocorms will necro-
tize quickly.

4. Notes

Fig. 2. Light micrographs of the developing embryos at their optimum time for inoculation. 
(a) The globular embryo with a single-celled suspensor (S) of Calanthe tricarinata at 150 
days after pollination. Scale bar = 50 mm. (b) The early globular embryo of Cypripedium 
formosanum at 90 days after pollination. At this stage, cell division (arrowhead ) is 
occurring. Scale bar = 20 mm.
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 4. If the surface of the gelled medium appears dry, add a few 
drops of sterile distilled water to moisten the seeds after 
sowing.

 5. For some temperate species, incubation of the seeds at 4°C 
for about 2 weeks can stimulate germination (23, 24).

 6. The span of the germination and protocorm developing phases 
are variable among species, ranging from 1 month to 2 years.

 7. Harvest the capsule and place on a clean bench before split-
ting. Sow the seeds as quickly as possible.

 8. Since the character of the seed coat is diverse among different 
species, the duration and concentration of optimal seed treat-
ments differ. One indicator of how easily a seed will germi-
nate is the color of its seed coat. If the seed coat is darker in 
color, soak the seeds until the dark color disappears.

 9. In the case of C. tricarinata (13), NaOH solution may scarify 
the seed coat, allowing the efflux of endogenous ABA from 
mature seeds. Use sterile distilled water to prepare NaOH 
solution.

 10. To allow for variations among different seed coats and ultra-
sonicator models, test different durations before regular 
ultrasound treatment. A good indicator can be the seeds’ 
buoyancy following ultrasound treatment. If most of the 
seeds do not float on water, they may not have been scarified 
enough.

 11. Use a sterile dropper with a wide opening to suck up the 
seeds.

 12. Peptone and yeast extract are also good organic sources for 
orchid seedling development.

 13. In many cases, banana homogenate promotes growth of pro-
tocorms and seedlings. However, some species are sensitive 
to banana homogenate, and protocorms will turn brown if 
they receive this treatment.

 14. Acclimatization conditions are important for seedling sur-
vival. For many terrestrial orchids, the required light quantity 
for seedlings is less (about 1/10–1/20) than full sun light. 
We usually use sphagnum moss to grow seedlings under high 
humidity and low light conditions.
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Chapter 6

In Vitro Culture of Coconut (Cocos nucifera L.)  
Zygotic Embryos

Florent Engelmann, Bernard Malaurie, and Oulo N’Nan 

Abstract

Coconut is a very important crop for millions of people in tropical countries. With coconut, in vitro 
culture protocols have been developed with two main objectives, viz. the large scale production of 
 particular types of coconuts and the international exchange and conservation of coconut germplasm. The 
methods described in this chapter have been developed in the framework of collaborative activities between 
research institutes in Côte d’Ivoire and France. Two coconut embryo in vitro collecting protocols have 
been established, one consisting of storing the disinfected embryos in a KCl solution until they are brought 
back to the laboratory, where they are re-disinfected and inoculated in vitro under sterile conditions, and 
the other including in vitro inoculation of the embryos in the field. For international germplasm exchange, 
zygotic embryos inoculated in vitro in plastic test tubes or endosperm cylinders containing embryos in 
plastic bags are used. For in vitro culture, embryos are inoculated on semi-solid medium supplemented 
with sucrose and activated charcoal and placed in the dark, and then transferred to light conditions with the 
same (solid or liquid) medium once the first true leaf is visible and the root system has started developing.

Key words: Coconut (Cocos nucifera L.), in vitro collection, in vitro culture, International germ-
plasm exchange, zygotic embryo

Coconut (Cocos nucifera L.), the “tree of life”, plays a very impor-
tant role in the life and welfare of millions of people in tropical 
countries. The world coconut production in 2007 was 61 M tons, 
with the three main producing countries, Indonesia, the Philippines 
and India, accounting for over 75% of the total  production (1). 
The most important part of the coconut palm is the nut, from 
which the solid endosperm is used primarily for oil production. 
However, over 100 products made from the coconut palm have 
been identified, with almost all parts of the palm  having a use (2).

1.  Introduction

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_6,  
© Springer Science+Business Media, LLC 2011
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With coconut, in vitro culture protocols have been developed 
with two main objectives, viz. the large scale production of particular 
types of coconuts and the international exchange and conservation 
of coconut germplasm.

Normal coconuts have a hard and crisp endosperm at matu-
rity, but some coconuts (called Makapuno in the Philippines, 
Dikiri in Sri Lanka, Kopyor in Indonesia, etc.) have a soft, jelly-like 
endosperm, which fills the nut cavity. Such coconuts are highly 
priced in the ice cream and pastry industries as well as for prepar-
ing sweetened preserves. However, the yield of Makapuno-bearing 
palms, which are heterozygous for the character, is only 2–20%, 
and the phenomenon is believed to be governed by a single reces-
sive gene (3). Makapuno embryos are visually and anatomically 
similar to normal embryos, but they do not germinate because the 
soft endosperm does not support their germination. However, 
efficient protocols have been developed, which allow Makapuno 
embryos to be extracted from the nuts, inoculated and successfully 
grown in vitro (4–6). They will germinate into normal coconuts, 
bearing 100% Makapuno nuts if properly isolated from contami-
nation by pollen from other coconut varieties.

The other application of in vitro culture techniques to coconut 
is for the international exchange and conservation of germplasm. 
Indeed, within the plant kingdom, coconut is one of the species 
with seeds of the largest dimensions. Moreover, coconut seeds are 
highly recalcitrant; there is no dormancy, and germination imme-
diately follows seed maturation (7). These characteristics drasti-
cally limit the amount of material, which can be gathered during 
collecting missions. Germplasm exchange is made even more 
 difficult due to the high risks of introducing pests and diseases in 
the recipient country if whole nuts are exchanged, and also to the 
high cost of transporting whole nuts. Exchanging coconut germ-
plasm in the form of embryos would allow both avoiding the 
phytosanitary problems and reducing costs linked with transpor-
tation of whole nuts. Using in vitro techniques for collecting, 
exchanging and conserving coconut germplasm requires efficient 
protocols for in vitro germination of embryos, development of 
embryos into whole plantlets, their acclimatization to in vivo 
 conditions and further development into seedlings, which can be 
transferred to the field.

As regards to germplasm exchange, the FAO/IBPGR Technical 
Guidelines for the Safe Movement of Coconut Germplasm recom-
mended as early as 1993 that coconut germplasm be distributed as 
zygotic embryos in vitro to reduce risks of introducing diseased 
material into disease-free areas (8). The need for operational coco-
nut in vitro culture techniques has become especially significant 
with the establishment of the multi-site International Coconut 
Genebank or ICG (9) and the implementation of the various inter-
national breeding and testing programmes coordinated by the 
International Coconut Genetic Resources Network (COGENT; 
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http://www.cogentnetwork.org/), which rely heavily on in vitro 
techniques for collecting and exchanging germplasm (10).

Research teams in different countries in Africa, the Americas, 
Asia, Australia, the Caribbean, Europe, India, the Pacific and 
Oceania have worked towards the development of in vitro tech-
niques for collecting and exchanging coconut germplasm, with 
varying degrees of success (11, 12). In order to improve and stan-
dardize the coconut embryo culture technology, COGENT orga-
nized a series of workshops and coordinated research projects 
with a group of coconut researchers worldwide. The first work-
shop was held in the Philippines in 1997 (13), the second in 
Mexico in 2002 (14), and, more recently, a third workshop, 
funded by the Global Crop Diversity Trust (Rome, Italy, www.
croptrust.org/) took place in the Philippines in 2008 (15).

In parallel to the development of embryo in vitro culture pro-
tocols, research has been performed towards the establishment of 
medium- and long-term storage methods for coconut embryos. 
For medium-term storage, Assy-Bah and Engelmann (16) dem-
onstrated that, after proper modification of the culture medium, 
embryos could be stored in vitro for 1 year in the growth room 
and successfully germinate and produce plantlets afterwards. For 
long-term storage, Assy-Bah and Engelmann (17) have  developed 
an efficient cryopreservation protocol based on pre-treatment of 
coconut embryos with high sugar medium, partial desiccation 
and rapid freezing in liquid nitrogen. This protocol has been 
applied to ten different varieties, with 44–100% cryopreserved 
embryos giving rise to whole in vitro plantlets (18). Other research 
teams have successfully adapted the original protocol to their local 
conditions and plant material, thereby demonstrating its efficiency 
and broad applicability (19, 20).

 1. For in vitro culture experiments, embryos collected from 
mature nuts (11–12 months after fecundation) were used. 
The fresh weight of embryos varied between 80 and 160 mg, 
depending on the variety and the maturity stage. Selection of 
mature nuts in the field was performed based on the date of 
fecundation, in the case of hand-pollinated nuts or on the 
colour of the nuts, which changes from shiny to matt at matu-
rity, in the case of open-pollinated nuts (21).

 2. Tools and equipment used during field collection: Folding 
table, hammer or machete, cork borer (3 cm diameter), camping 
stove, dissection tools, culture tubes (24 × 150 mm).

 3. KCl solution for storing disinfected endosperm cylinder: 
16.2 g/L.

2.  Materials
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 4. Disinfection solutions: 80% ethanol; commercial bleach 
solution.

 5. Cryotubes (2 mL sterile polypropylene) for storage of 
embryos.

 6. Embryo culture medium: Murashige and Skoog (22) macro- 
and microelements, Morel and Wetmore (23) vitamins, 
100 mg/L sodium ascorbate, 60 g/L sucrose, 2 g/L  activated 
charcoal (Sigma C5386) and 8 g/L agar (Labosi AL 540, 
France). The pH is adjusted to 5.5 before adding agar and 
charcoal and autoclaving at 110°C for 20 min.

 7. Carbendazin-based fungicide solution: benlate (2 g/L).
 8. Nutritive solution for plantlet acclimatization (see Table 1).
 9. Fertilizing solution for plantlets: 50 mL of an N:P:K solution 

(8:11:14 g/L), prepared using urea, phosphate bicalcite and 
potassium chloride from SPPC Vidri company.

 10. Chelated iron solution: 6% solution prepared by mixing 
26.1 g EDTA with 24.9 g FeSO·7H2O in 2 L ultrapure 
water.

Table 1 
Composition of the nutritive 
solution used for acclimatization 
of plantlets (mg/L) (30)

KNO3 274

Ca (NO3)2 · 4H2O 1,095

KH2PO4 137

MgSO4 · 7H2O 274

(NH4)2SO4 137

KCl 2.74

H3BO3 3

MnSO4 · H2O 1.7

znSO4 · 7H2O 2.74

(NH4)6MO7O24 · 4H2O 2.74

H2SO4 0.137

CuSO4 · 5H2O 1.37

EDTA 26.1

FeSO4 · 7H2O 24.9

EDTA ethylenediaminetetraacetic acid
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 11. Forest leaf mould mixed with sand (1:1 ratio, leaf mould col-
lected from forest around the plantation, river sand collected 
from nearby river).

Various protocols have been developed for in vitro collecting, 
international exchange and in vitro culture of coconut zygotic 
embryos, which can be found in Engelmann (12, 24), Batugal 
and Engelmann (13), Engelmann et al. (14) and references 
therein. The methods described hereafter are those developed in 
the framework of the long-lasting collaboration between Côte 
d’Ivoire (CNRA – Centre National de Recherche Agronomique) 
and France (IRD and CIRAD – Centre de coopération interna-
tionale en recherche agronomique pour le développement).

Assy-Bah et al. (25) developed two coconut embryo in vitro col-
lecting protocols, one consisting of storing the disinfected 
embryos in a KCl solution until they are brought back to the 
laboratory, where they are re-disinfected and inoculated in vitro 
under sterile conditions, the other including in vitro inoculation 
of the embryos in the field. These two protocols have been 
described in details as follows (24).

 1. Preliminary operations are performed in the open air, on a 
folding table that has been washed and disinfected with pure 
commercial bleach.

 2. Select and dehusk mature nuts.
 3. Break nuts open with a clean hammer or machete.
 4. Use a cork borer to remove a cylinder of solid endosperm 

containing the embryo, and use forceps to transfer the cylin-
der to a jar containing 500 mL commercial bleach. Disinfect 
all instruments with 100% commercial bleach and sterilize in 
the flame of the gas burner.

 5. Immerse batches of 25 cylinders in commercial bleach for 
20 min.

 6. Immediately after disinfection, transfer endosperm cylinders 
without rinsing to individual 30 mL containers containing 
15 mL KCl solution.

 7. In the laboratory, under the laminar airflow cabinet, remove 
endosperm cylinders from the KCl solution and immerse them in 
batches of 25 cylinders in 100% commercial bleach for 20 min.

 8. Place one cylinder in a sterile Petri dish and dissect out the 
embryo using forceps and a scalpel. Flame dissecting tools 

3.  Methods

3.1. In Vitro Collecting

3.1.1. Protocol 1 
(Inoculation of Embryos  
in the Laboratory)
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before manipulating a new embryo to reduce the risk of cross-
contamination.

 9. Rinse the embryo once in sterile water (using one flask per 
embryo to reduce the risk of cross-contamination) and trans-
fer it to solid embryo medium in a culture tube.

 10. Seal the tube with cling film and place it on a rack for culture 
in the growth room.

The following operations are performed inside a wooden box, 
which provides some protection from external contaminants. The 
inside walls of the box are disinfected with bleach.

Steps 1–5 are the same as in Subheading 3.1.1

 6. Place one cylinder in a sterile Petri dish and dissect out the 
embryo using forceps and a scalpel. Flame dissecting tools 
before manipulating a new embryo to reduce the risk of cross-
contamination.

 7. Rinse the embryo once in sterile water (using one flask per 
embryo to reduce the risk of cross-contamination) and transfer 
it to solid embryo culture medium in a culture tube.

 8. Seal the tube with cling film and place it on a rack for trans-
port to the laboratory (see Note 1).

Two different methods have been employed for international 
exchange of coconut germplasm, viz. zygotic embryos inoculated 
in vitro or endosperm cylinders containing embryos in plastic bags.

Steps 1–9 are the same as in Subheading 3.1.1, except that 
embryos are inoculated in polypropylene sterile tubes 
(15 × 100 mm) on solid embryo culture medium devoid of sugar 
(26), or in 2 mL sterile cryotubes containing 1 mL solid agar 
medium (0.45% agar + water) (27).

 10. Seal the tubes with cling film and place them on polystyrene 
holding racks.

 11. Place racks with tubes in cardboard boxes, fill boxes with 
polystyrene chips and dispatch by air courier.

 12. Upon arrival in the recipient laboratory, tubes are inspected 
for contamination; non-contaminated embryos are trans-
ferred to solid medium in culture tubes (see Subheading 3.3 
for medium composition), tubes are sealed with cling film 
and placed in the growth room (see Note 2).

 13. Upon arrival in the recipient laboratory, non-contaminated 
embryos shipped in cryotubes on solid agar embryo culture 
medium are disinfected for 5 min with diluted commercial 
bleach (6% active chlorine) and then rinsed once in sterile 
water before inoculation on culture medium (see Note 3).

3.1.2. Protocol 2 
(Inoculation of Embryos  
in the Field)

3.2. International 
Exchange  
of Germplasm

3.2.1. Embryos Inoculated 
In Vitro (26, 27)
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 1. Preliminary operations are performed in the open air, on a 
folding table that has been washed and disinfected with pure 
commercial bleach.

 2. Select and dehusk mature nuts.
 3. Break nuts open with a clean hammer or machete.
 4. Use a cork borer to remove a cylinder of solid endosperm 

containing the embryo, rinse the cylinders under running tap 
water and then use forceps to transfer the cylinders to a jar 
containing 500 mL 80% ethanol. Disinfect all instruments 
with 100% commercial bleach and sterilize in the flame of the 
gas burner.

 5. Immerse batches of 25 cylinders in 80% ethanol for 5 min.
 6. Remove ethanol, replace with commercial bleach and immerse 

cylinders for 30 min.
 7. Rinse six times with sterile water.
 8. Transfer cylinders by batches of 10 in small plastic bags previ-

ously disinfected with 80% ethanol and seal the bags.
 9. Place 10 small plastic bags in a larger plastic bag and seal bag.
 10. Place larger bags in a polystyrene isothermal box, add sealed 

plastic bags filled with ice and dispatch by air courier.
 11. Upon arrival in the recipient laboratory, disinfect cylinders by 

batches of 10 in commercial bleach for 20 min and rinse five 
times with sterile water.

 12. In the laboratory, under the laminar airflow cabinet, place 
one cylinder in a sterile Petri dish and dissect out the embryo 
using forceps and a scalpel. Flame dissecting tools before 
manipulating a new embryo to reduce the risk of cross-
contamination.

 13. Disinfect the embryo for 5 min with commercial bleach, rinse 
five times in sterile water (using one flask per embryo to 
reduce the risk of cross-contamination) and transfer it to solid 
embryo culture medium in a culture tube.

 14. Seal the tube with cling film and place it on a rack for culture 
in the growth room (see Note 4) (Malaurie B, personal 
communication).

The method described is based on the papers published by Assy-
Bah (29), Assy-Bah et al. (30) and Verdeil et al. (26).

 1. Inoculate embryos in 24 × 150 mm culture tubes containing 
20 mL embryo culture medium, seal with cling film and place 
them in the growth room at 27 ± 1°C in the dark. Subcultures 
to fresh medium are performed every 4–6 weeks.

 2. When the first true leaf is visible and the root system has 
started developing (at least one root with ramifications), 

3.2.2. Endosperm Cylinders 
in Plastic Bags (28)

3.3. In Vitro Culture  
of Zygotic Embryos
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transfer plantlets to light conditions (12 h light/12 h dark 
photoperiod, 45 mmol/m2/s, light intensity, Sylvania Grolux 
daylight tubes) either on the same solid medium (29, 30) or 
to 1 L glass bottles containing 100 mL liquid medium (26).

 3. Transfer plantlets every 4–6 weeks into large tubes (36 × 200 mm) 
containing fresh medium. Using liquid medium, generally no 
haustorium (cotyledon) growth and development is observed 
as is often the case on solid medium (30). When haustorium 
development is observed, cut it off after 3 months of embryo 
culture, when the gemmule is 2–4 cm in height. Haustorium 
removal will improve survival of plantlets during acclimatiza-
tion. Plantlets can be acclimatized when they display 3–4 
unfolded green leaves. The more advanced plantlets reach the 
acclimatization stage 6–7 months after initial inoculation.

The method described is based on the papers published by Assy-
Bah (29), Assy-Bah et al. (30) and Verdeil et al. (26).

 1. Remove plantlets from culture tubes, rinse them with dis-
tilled water and plunge them for 5 min in a benlate solution 
to prevent fungal development.

 2. Transfer plantlets to the greenhouse and plant in pots filled 
with sterilized river sand. Plantlets are covered with a plastic 
bag (acrylic polypropylene) during the first 2 weeks to main-
tain maximum relative humidity conditions. They are watered 
daily during the first month, after which a nutritive solution is 
applied every 2 days.

 3. After 2 months, plantlets are transferred to plastic bags filled 
with forest leaf mould mixed with sand. Fifty millilitre of an 
N:P:K solution (8:11:14 mL/L) are applied every 2 weeks, 
and 50 mL of chelated iron (6%) every 2 months.

 1. Using Protocol 2, contamination was around 10%, while it 
was only around 5% with Protocol 1. No differences were 
noted in germination and development between embryos 
treated following Protocols 1 and 2. Embryos could be stored 
for up to 14 days in the KCl solution without any impact on 
their further development. After direct inoculation in the field 
(following Protocol 2), embryos could be kept on semi-solid 
medium under non-controlled environmental conditions  
for 2 months before being grown in the culture room of a 
laboratory (31).

 2. This method has been used successfully for shipping several 
thousands embryos between Côte d’Ivoire and France (21).

3.4. Acclimatization  
of Plantlets

4. Notes
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 3. This method has been used successfully for shipping several 
hundred embryos from Sri Lanka to France (27).

 4. This method has been used successfully for shipping over 
20,000 embryos from Côte d’Ivoire to France (28) as well as 
around 1,000 embryos from Sri Lanka to France (27).
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Chapter 7

Immature Embryo Rescue and Culture

Xiuli Shen, Fred G. Gmitter Jr., and Jude W. Grosser 

Abstract

Embryo culture techniques have many significant applications in plant breeding, as well as basic studies 
in physiology and biochemistry. Immature embryo rescue and culture is a particularly attractive tech-
nique for recovering plants from sexual crosses where the majority of embryos cannot survive in vivo or 
become dormant for long periods of time. Overcoming embryo inviability is the most common reason 
for the application of embryo rescue techniques. Recently, fruit breeding programs have greatly increased 
the interest in exploiting interploid hybridization to combine desirable genetic traits of complementary 
parents at the triploid level for the purpose of developing improved seedless fruits. However, the success 
of this approach has only been reported in limited number of species due to various crossing barriers and 
embryo abortion at very early stages. Thus, immature embryo rescue provides an alternative means to 
recover triploid hybrids, which usually fail to completely develop in vivo. This chapter will provide a brief 
discussion of the utilization of interploid crosses between a monoembryonic diploid female with an allo-
tetraploid male in a citrus cultivar improvement program, featuring a clear and comprehensive illustration 
of successful protocols for immature embryo rescue and culture. The protocols will cover the complete 
process from embryo excision to recovered plant in the greenhouse and can easily be adapted to other 
plant commodities. Factors affecting the success and failure of immature embryo rescue to recover trip-
loid progeny from interploid crosses will be discussed.

Key words: Citrus, Culture medium, Embryo abortion, Embryo developmental stage, Genotypes, 
Interploid hybridization, Shoot tip grafting, Triploid

Crosses between two different ploidy levels of the same or different 
species or genera are referred to as interploid hybridization (1). 
Like interspecific or intergeneric crosses at the same ploidy level, 
interploid hybridization has been a useful tool for the intro-
duction of novel genetic traits for new cultivar development and 
crop improvement (2). One of the advantages of interploid crosses 
is that some crosses which are not successful at the same ploidy 

1.  Introduction

1.1. Interploid 
Hybridization in Crop 
Improvement

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_7,  
© Springer Science+Business Media, LLC 2011
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level can be made possible via interploid crosses by manipulating 
parental chromosome levels (3). Interploid crosses also provide a 
means to increase heterozygosity through sexual polyploidization 
as compared with colchicine-induced asexual polyploidization 
(4–6). However, interploid hybridization has only been reported 
in relatively few crops, including citrus (7–13), grapes (14–20), 
and banana (21–24) for seedless fruit production via triploidy, 
and in ornamental plants for novel flower and foliage characteris-
tics (2, 25–29). As a general rule, crosses between different ploidy 
levels are more recalcitrant in yielding plantlets than crosses car-
ried out using parents of the same ploidy level, primarily due to 
embryo inviability. The difficulty in obtaining interploid hybrids 
has been attributed to the taxonomic distance between parental 
species, chromosome imbalances, and endosperm failure (30).

Crossing barriers are frequently encountered during inter-
ploid crosses. Sexual barriers limiting the success and efficiency of 
interploid hybridization have been classified as pre- and postfertil-
ization (31). Prefertilization barriers can be overcome by selec-
tion of cross-compatible parents, ploidy manipulation (3, 32, 33), 
and a variety of techniques such as direct injection of pollen into 
the ovary, in vitro pollination, cut-style pollination, the use of 
mentor pollen, or grafting of the style (31, 34).

Nevertheless, postfertilization barriers are more common in 
interploid crosses due to the failure of normal endosperm devel-
opment (35). The endosperm plays an important role in the 
development of the seed because of its physical, physiological, 
and genetic relationships to the embryo (36). Therefore, normal 
endosperm development is a prerequisite for normal embryo 
development. It has been proposed that a 2 maternal:1 paternal 
ratio of endosperm balance number (EBN) (in the endosperm 
itself) is necessary for normal endosperm development. Any 
maternal/paternal ploidy ratio that deviates from the 2:1 ratio 
may affect embryo development and subsequent seed or fruit for-
mation (37, 38). Failure in normal endosperm development in 
most interploid crosses is common due to the abnormal maternal 
and paternal ratio, especially in crosses between a diploid female 
and a tetraploid male. As a consequence, abortion of hybrid 
embryos usually occurs prior to fruit maturity (1, 13, 31).

The plant tissue culture technique of embryo rescue offers a 
means to recover starving embryos prior to abortion (39). 
Immature or mature zygotic embryos can be excised from their 
natural growing environment and cultured on an artificial medium 
in vitro, which is a substitute for the endosperm, allowing contin-
ued development and subsequent germination to produce a plant 
(40, 41). Interploid hybrids rarely have been obtained in vivo 
from interploid crosses (13, 15). With the aid of embryo rescue, 
interploid hybrids can be produced with various frequencies 
through in vitro culture of abortive seeds and embryos (42).

1.2. Immature Embryo 
Rescue and Culture



77Immature Embryo Rescue and Culture

The genotype, the developmental stage of the embryo at 
excision, and composition of the embryo culture media are the 
three main factors affecting the success and efficiency of embryo 
rescue (43). Selection of parents is very important for successful 
interploid crosses (15–17). Some considerations in parental selec-
tion include cross compatibility of parents, ploidy level of seed 
and pollen parents, and crossing direction (44). A cross is expected 
to be successful when male and female gametes have matching 
EBN (3, 35). Ploidy level is also important because it can influ-
ence male and female fertility, cross fertility, and plant vigor (45). 
The crossing direction affects EBN, and thus whether or not 
embryo rescue is required for hybrid recovery. Some interploid 
crosses are reciprocal, while others are nonreciprocal (36, 38). 
It has been postulated that maternal excess crosses, e.g., 4x × 2x 
(2 maternal:1 paternal in endosperm), typically result in less 
postzygotic lethality than paternal excess (2x × 4x) crosses 
(2 maternal:2 paternal) (3), and we have found this to be true 
with limited experience in citrus (Grosser, unpublished data). 
However, the availability of quality monoembryonic citrus tetra-
ploids that generate zygotic offspring is quite limited.

Zygotic embryo development within seeds has been divided into 
a series of stages including globular, heart, torpedo, and cotyle-
donary for dicots. This classification indicates not only the change 
in embryo shape but also a gradual progression towards indepen-
dence from surrounding tissues for nutrients (34). It is under-
standable that an embryo at its latter developmental stage is easier 
to isolate and has a greater chance for survival in vitro. It has been 
postulated that the late heart-stage embryo coincides with the 
change from heterotrophic to autotrophic growth of the embryo. 
Heterotrophic embryos generally require a more complex media 
composition for their growth (46). For embryos that abort at 
a very early stage, it is impossible to isolate the embryo; 
thus, instead of embryo culture, ovary, ovule, or embryo sac 
 culture can be used to increase the likelihood of embryo survival 
(47–49).

A wide array of media with numerous modifications in inor-
ganic salts, sugars, vitamins, amino acids, organic adjuvants (yeast 
extract, malt extract, and coconut water), and plant growth regu-
lators (PGRs) have been used to culture excised embryos (5, 34, 
40, 41, 49). In addition to parental genotypes, the age of the 
embryo at excision requires particular medium compounds for 
optimal growth. As a general rule, medium composition is more 
critical for immature than mature embryos for their growth 
in vitro. Medium complexity increases with decreasing embryo 
age (41). For mature or near-mature embryos, a simple medium 
with only mineral salts and low level of sugar is enough to support 
normal growth. However, for younger embryos, a complex 
medium including various organic supplements is generally 

1.3. Embryo Growth 
and Development
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required (49, 50). Globular or early heart-stage embryos may fail 
to develop and germinate even on a complex medium, and a 
 section of endosperm from mature seeds, intact suspensor, or 
“nurse endosperm” may help their growth (42).

Although embryo rescue techniques have been widely used as an 
aid in interspecific, intergeneric, and interploid crosses for over 
100 years (49), few publications have provided a detailed proto-
col. To illustrate the process of embryo rescue in a step-by-step 
manner, this chapter will feature our routine citrus protocol 
applied to recover triploid hybrids, from an interploid cross 
between a monoembryonic diploid seed parent (“LB8-10” tan-
gelo (“Clementine” × “Minneola”)) and an allotetraploid pollen 
parent (somatic hybrid of “Valencia” sweet orange + “Murcott” 
tangor), to generate a large number of progeny toward the selec-
tion of high-quality seedless fruits. To date, this protocol has been 
used successfully to recover more than 12,000 triploid citrus 
hybrids in our breeding program.

In 2x × 4x crosses, a 2 maternal:2 paternal ratio of endosperm 
is expected in hybrid seeds, instead of a normal endosperm ratio 
of 2:1. Therefore, embryo abortion occurs at a certain point of 
growth, and undeveloped, wrinkled seeds are produced with a 
size of 1/6 to 1/3 of fully developed seeds (7, 9, 10). Such 
undeveloped seeds usually contain triploid zygotic embryos at 
different developmental stages. Thus, properly staged undevel-
oped seeds serve for triploid hybrid recovery via embryo rescue 
(12, 51).

 1. General tissue culture equipment and tools: culture room 
with controlled temperature and photoperiod, laminar flow 
hood, burner, sharp surgical scalpel, forceps, pliers, Petri 
dishes (100 × 15 mm) (Fisher Scientific, Canada), Magenta 
box GA-7 vessels (Magenta Corporation, Chicago, USA), 
and self-sealing film (Nescofilm or Parafilm) (Karlan Research 
Products Corporation, Cottonwood, AZ, USA).

 2. Other equipment: Growth chamber, dissecting microscope 
(Leica Zoom 2000, model Z45L, Leica Inc., Buffalo, NY, 
USA), autoclave.

 3. Chemical solutions: 0.1 N NaOH to adjust pH of media; 
regular Clorox bleach to surface sterilize fruits; 95% ethanol 
to disinfect equipment, tools, and hybrid fruits.

 4. Media composition: All medium formulations are listed in 
Table 1. Embryo germination (EG) and shoot elongation 

1.4. Protocol for 
Immature Embryo 
Rescue and Culture

2.  Materials
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Table 1 
Composition of EG, SE, BH3, EME, DBA3, and RMA media

Components EG(mg/L) SE(mg/L) BH3(mg/L) EME(mg/L) DBA3(mg/L) RMA(mg/L)

Inorganics

KCl 1,500

KNO3 1,900 1,900 1,900 1,710 950

NH4NO3 1,650 1,650 1,650 1,485 825

MgSO4 · 7H2O 181 181 370 370 333 185

KH2 · PO4 · 6H2O 170 170 170 170 153 85

H3 BO3 6.2 6.2 6.2 6.2 5.6 3.1

MnSO4 · 4H2O 16.8 16.8 16.8 16.8 15.1 8.4

ZnSO4 · 7H2O 8.6 8.6 8.6 8.6 7.7 3.9

KI 0.8 0.8 0.8 0.8 0.8 0.4

Na2MoO4 · 2H2O 0.3 0.3 0.3 0.3 0.2 0.1

CuSO4 · 5H2O 0.025 0.025 2.5 2.5 2.5 2.5

CaCl2 · 2H2O 332 332 440 440 440 440

CoCl2 · 6H2O 0.025 0.025 2.5 2.5 2.5 2.5

Na2 EDTA · 2H2O 37.3 37.3 37.3 37.3 37.3 37.3

FeSO4 · 7H2O 27.9 27.9 27.9 27.9 27.9 27.9

Organics

Adenine 25
myo-Inositol 100 100 90 50
Thiamine–HCl 10 10 9 5
Pyridoxine–HCl 10 10 9 5
Nicotinic acid 5 5 4.5 2.5
Glycine 2 2 1.8 1
Fumaric acid 40
Citric acid 40
Malic acid 40
Pyruvic acid 20
Ascorbic acid 2
Calcium pantothenate 1
Choline chloride 1
Folic acid 0.4
Riboflavin 0.2
p-Aminobenzoic acid 0.02
Biotin 0.02
Retinol (vit. A) 0.01
Cholecalciferol (vit. 

D3)
0.01

Vit. B12 0.02
Glutamine 3,100

(continued)
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Table 1 
(continued)

Components EG(mg/L) SE(mg/L) BH3(mg/L) EME(mg/L) DBA3(mg/L) RMA(mg/L)

Casein enzyme 
hydrolysate

250

Fructose 250
Ribose 250
Xylose 250
Mannose 250
Rhamnose 250
Cellobiose 250
Galactose 250
Malt extract 500 1,000 500 1,500
Coconut water 20 (mL) 20 (mL)
Mannitol 82,000
Sucrose 50 50 51,300 50,000 25,000 25,000
Activated charcoal  4    500

Plant growth regulators

2,4-D 0.01
BAP 3.0
NAA 0.02
GA3  3     

(SE) media were composed of MS (Murashige & Skoog) (52) 
inorganic salts in combination with various organic supplements 
and PGRs. BH3, EME, DBA3, and RMA media consisted of 
MT (Murashige & Tucker) basal medium (53) supplemented 
with a variety of organics and PGRs. PGRs including BAP 
(6-benzylaminopurine), GA3 (gibberellic acid), 2,4-D 
(2,4-dichlorophenoxyacetic acid), and NAA (1-naphthalene 
acetic acid) can be stored at room temperature with desic-
cant, but stock solutions made with them (1 mg/mL) must 
be stored in a refrigerator at 5°C. Pyruvic acid, ribose, cal-
cium pantothenate, p-aminobenzoic acid, vitamin B12 also 
need to be stored in a refrigerator at 5°C. Retinol must be 
stored in a freezer. Dissolve retinol and cholecalciferol in eth-
anol prior to use. Maintain all other chemical materials at 
room temperature. Adjust the pH of media to 5.8 with 0.1 N 
NaOH prior to the addition of 8 g/L TC agar (Fisher 
BioReagents, Fair Lawn, NJ, USA). Autoclave media at 
1.2 kg/cm2 for 20 min. Add GA3 to autoclaved SE medium 
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through filter sterilization (0.22 mm) (Syringe Driven Filter 
Unit, Millex™, Millipore Corporation, Bedford, MA, USA), 
once the medium cools down to about 45°C. Dispense the 
medium either into 100 × 15-mm sterile Petri plates (20 mL) 
for embryo germination or into GA-7 vessels (50 mL) for 
shoot elongation.

 1. Parental trees of various ages were grown in the orchard at 
the Citrus Research and Education Center of University of 
Florida in Lake Alfred (28°N, 081°W). Hand pollination for 
this specific cross was performed on 25 March 2008. Maternal 
inflorescences were emasculated 1 day before expected open-
ing of the petals and immediately pollinated with fresh pollen. 
The number of flowers pollinated varied according to the 
availability of flowers on individual trees. Hybrid fruits from 
the crosses were harvested on 30 July 2008, which was 126 
days after pollination (see Note 1).

 2. Wash hybrid fruits thoroughly under running water to remove 
any dirt on the fruit surface.

 3. Disinfect hybrid fruits in 50% Clorox® regular bleach (3% 
sodium hypochlorite, v:v) for 30 min. (Fig. 1a), followed by 
immersing them in 95% ethanol for 30 s (Fig. 1b), and imme-
diately flaming them with 95% ethanol for about 10 s (Fig. 1c) 
(see Note 2).

 4. Cut fruits with a sharp knife at the equatorial zone, avoiding 
the core where seeds are embedded (Fig. 1d) (see Note 3). 
Twist both halves of fruits in opposite directions until they 
are totally separated (Fig. 1e).

 5. Select and remove immature, wrinkled small seeds (Fig. 1f). 
Label seeds properly (Fig. 1g).

 1. Excision of embryo: In a laminar flow hood, examine the 
seeds under a dissecting microscope (Fig. 2a). Hold the 
antipodal end of the seed (flattened end) with one hand using 
forceps (Fig. 2b). Place the other forceps near the micropylar 
end (pointed end) (Fig. 2c). Tear seed coats apart from each 
other using both hands (Fig. 2d). Expose and excise the 
hybrid embryo (Fig. 2e) (see Note 4).

 2. Record embryo developmental stage of the rescued embryo. 
Based on the shape of embryos, they are divided into globu-
lar, heart, torpedo, and cotyledonary stages (Fig. 3a–d) (see 
Note 5).

3.  Methods

3.1. Fruit Sterilization, 
Seed Extraction

3.2. Embryo Excision, 
Growth, Germination, 
Shoot Elongation
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 3. Immediately culture excised embryos in 100 × 15-mm sterile 
Petri plates containing 20 mL of EG. Four embryos can be 
cultured on each plate (see Note 6). Seal plates with Nescofilm. 
Use only freshly made medium; the use of stored medium is 
not recommended.

Fig. 1. Fruit surface sterilization and seed extraction. (a) Sterilize fruits in 50% Clorox regular bleach for 30 min. 
(b) Disinfect fruits in 95% ethanol for 30 s. (c) Flame fruits with 95% ethanol for 10 s. (d) Cut fruits with a sharp knife at 
equatorial zone avoiding the core. (e) Twist both halves of fruits in opposite direction. (f) Pick immature, undeveloped 
seeds. (g) Collect and label the seeds.

Fig. 2. Excision of the embryo from undeveloped seeds under the dissecting microscope. (a) Place an undeveloped seed 
in a Petri dish. (b) Hold the antipodal end of the seed (flattened end) with one hand using forceps. (c) Place the other 
forceps near the micropylar end (pointed end). (d) Tear the seed coat apart with both forceps. (e) Expose the embryo 
under the microscope (arrow).
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Additional culture options: Rescued embryos can also be 
cultured on 0.22-mm cellulose acetate membrane filters placed 
directly on the surface of the selected embryo culture medium 
to improve normalization and enlargement (54). Recently we 
have discovered that the addition of a thin layer of liquid 
medium with elevated osmoticum over the solid embryo cul-
ture medium also enhances embryo survival and growth. This 
can be achieved by pipetting 2–3 mL of a 1:2 solution (v:v) of 
BH3 protoplast culture medium: EME liquid suspension cul-
ture medium (55) over the selected agar-solidified embryo 
culture medium. BH3 is a high-osmoticum (0.6 M) medium 
enriched with additional vitamins and organic acids. We now 
routinely use the liquid overlay in conjunction with the cel-
lulose acetate membrane filters.

 4. Maintain embryo cultures in a culture room at a temperature 
of 22 ± 3°C with 12/12-h light/dark photoperiod at 
40 mmol/m2/s provided by cool white fluorescent lamps 
(Lithonia Lighting F40W/SS, Georgia, USA).

 5. Observe and record responses of embryos on EG medium 
(Fig. 4a–c) (see Note 7). Embryos should be transferred to 
fresh medium every 4 weeks. Normal-sized embryos (usually 
exhibiting altered morphology) that do not germinate after 
three passages can be sliced in half longitudinally and cultured 
on DBA3 medium [56) to induce adventitious shoots, which 
can take two to three passages (at 4-week intervals).

 6. Germinated embryos with good roots and shoots are trans-
ferred into GA-7 vessels containing 50 mL of SE medium for 
shoot elongation. Four germinated embryos can be cultured 
in each GA-7 vessel (Fig. 4d). Shoots from embryos that pro-
duce no roots directly can be removed and cultured in GA-7 
vessels containing 50 mL of RMA rooting medium (55) 
to induce adventitious rooting; this medium also allows 
for shoot elongation. However, if shoot tip grafting is used 
(see below) successfully, there may be no need to attempt 
root induction.

Fig. 3. Developmental stages of the embryo, globular (a), torpedo (b), heart (c), and cotyledonary (d).
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 1. Commercially available Carrizo citrange (Citrus sinensis Osb. 
× Poncirus trifoliata L. Raf.) rootstock seeds are germinated 
to provide rootstock seedlings for grafting (Fig. 5a). Carrizo 
exhibits trifoliate leaves, so it is easy to identify and remove 
unwanted rootstock sprouts from the young trees in their 
early development.

 2. Soak seeds in tap water for 2 h. Dry seeds with a paper towel. 
Remove outer seed coat with pointed forceps (Fig. 5b). Tear 
inner seed coat apart at the chalazal end but do not com-
pletely remove (Fig. 5c) (see Note 8).

 3. Autoclave soil at 1.2 kg/cm2 for 20 min.
 4. Sow seeds individually in 38-cell plug trays containing steril-

ized soil. Seeds are planted about 20 mm deep.
 5. Keep trays in the dark at 25°C in a growth chamber. Hand 

water twice a week (see Note 9).
 6. Remove at least 30-day-old germinated rootstock seedlings 

from the growth chamber and maintain under standard 
greenhouse conditions (Fig. 5d).

3.3. Shoot Tip Grafting 
to Accelerate Plant 
Recovery

3.3.1. Preparation  
of Rootstocks

Fig. 4. In vitro responses of embryos rescued from interploid crosses (2x × 4x). Embryos were cultured on MS medium 
supplemented with 50 g/L sucrose, 0.5 g/l malt extract, 25 mg/L adenine for 8 weeks. (a) Formation of leafy structure 
(1), germinated embryo with swollen root and nongrowing apex (2 ), and nonresponse (3 ). (b) Callus formation (4 ) and 
deformed shoots (5 ). (c) Normal germinated embryos. (d) Developed seedlings from germinated embryos after transfer 
to the shoot elongation medium composed of MS basal medium, 50 g/L sucrose, 4 g/L activated charcoal, and 8.7 mM 
GA

3 for another 8 weeks.
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 1. Remove hybrid plantlets from SE medium (Fig. 6a).
 2. Excise shoot tips about 10–15 mm long with two or three 

leaves (Fig. 6b) (see Note 10). Keep excised shoot tips in a 
moist environment to prevent desiccation.

 3. Subculture remaining plants onto fresh SE medium (Fig. 6c); 
this retains the original hybrid plant for repropagation should 
the shoot tip grafting procedure fail.

 1. Decapitate rootstocks to about 90 mm in height and remove 
all leaves and lateral buds (Fig. 7a, b) (see Note 11).

 2. Cut a vertical slit of 2–3 mm in length in the middle of stump 
(Fig. 7c) (see Note 12).

 3. Trim the base of scion to form a “V” 2–3 mm in length 
(Fig. 6d) (see Note 13).

 4. Insert the scion into vertical slit in the rootstock (Fig. 7d) 
(see Note 14).

 5. Cover grafted plants with transparent covers to maintain high 
humidity (see Note 15).

3.3.2. Preparation  
of Scions from Recovered 
Embryo

3.3.3. Grafting

Fig. 5. Rootstock preparation. (a) Dry rootstock seeds with paper towel after 2-h soak in water. (b). Remove the outer seed 
coat. (c) Tear inner seed coat apart at the chalazal end (flattened end). (d) Sow seeds in a plastic tray containing sterilized 
soil and germinate seeds in the dark at 25°C in a growth chamber.
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 6. Acclimatization of the grafted plants must be gradual. 
Transplant acclimatized plantlets to larger pots as necessary in 
the greenhouse (Fig. 8a, b) and finally to the field for growth 
until fruiting and evaluation (Fig. 8c).

 1. The timing of fruit harvest varies by cross. Fruits are usually 
harvested at 120–150 days after pollination (DAP) in citrus. 
The optimal harvest time (DAP) also varies by species and geo-
graphical locations, the same as pollination date and methods.

 2. Problems with contamination. Contamination is a big hin-
drance for any in vitro manipulation. Plant materials are one 
source of contamination (57, 58). If fruits are used as starting 
materials and they are not damaged at all, surface sterilization 
of fruits is sufficient because the internal fruit tissue is sterile. 
If fruits are cracked or damaged compromising the pulp, 
seeds must be extracted and surface sterilized to avoid any 
contamination risk. The embryo is located in the sterile 

4.  Notes

Fig. 6. Scion preparation. (a) Remove hybrid plants from SE medium after 8 weeks culture. (b) Excise a shoot tip of 
10–15 mm in length with two to three leaves. (c) Subculture the remaining part of plants to a fresh SE medium. (d) Cut 
the basal end of the scion to form a “V” shape in a length of 2–3 mm (arrow).
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environment of the seed, and surface sterilization of embryos 
is usually not necessary (43). However, bacteria and fungi 
may reside inside the seed, and it is impossible to remove 
these internal contaminants by surface sterilization. In the 
situation where seed coats are cracked or if endophytic patho-
gens exist inside the seed coats, direct disinfection of embryos 
is needed. Another source of contamination is from the exci-
sion operation itself. To minimize this, thoroughly and 
frequently sterilize tools, and change the operating plates as 
often as possible.

Fig. 7. Grafting technique. (a) A germinated rootstock seedling with a pale elongated shoot, small unexpanded leaves of 
height of about 150 mm after 4 weeks growth in the dark at a temperature of 25°C. (b) Decapitate the rootstock to about 
90 mm in height and remove all leaves and lateral buds. (c) Cut a vertical slit, 2–3 mm long in the middle of the stump. 
(d) Insert the prepared scion into the vertical slit.

Fig. 8. Grafted hybrid plants grown in the greenhouse and the field. (a) Grafted hybrid plants were grown in plastic trays 
8 weeks after grafting. (b) Hybrid plants were transferred to larger pots and grown in the greenhouse to a size acceptable 
for field transplantation. (c) Field evaluation of fruits on triploid hybrid trees.
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 3. Seeds are embedded in the core of fruits. Do not cut fruits 
through the core, otherwise seeds may be damaged.

 4. The dissection of the embryos to separate them from ovular 
tissue can be difficult. Large embryos are not difficult to 
excise. However, it is not easy to isolate small embryos with-
out injury (40). Caution should be taken not to damage 
embryos when seed coats are removed. The location of the 
embryo can usually been seen as a darker area under the 
microscope, so do not touch this darker area directly with 
forceps. Knowledge of specific seed composition may also 
help. When dissection of the embryo is not possible, ovary, 
ovule, and embryo sac culture may be used as long as mater-
nal tissues do not exert an inhibitory effect on the develop-
ment of the embryo. The medium needed for ovary and ovule 
culture is also less critical than that needed for immature 
embryo culture (44).

 5. Embryo abortion can occur at any developmental stage. 
Embryos excised at the optimal stage could result in better 
embryo germination rates and vigorous growth in vitro (5, 7). 
Embryos excised earlier than optimal stage are difficult to 
excise and have a lesser chance of survival in vitro but also 
require a more complex medium for growth and subsequent 
germination. Embryos excised too late during fruit develop-
ment increases the risk of abortion. Fruits or seeds can be 
harvested at different days after pollination (DAP) and exam-
ined to determine the optimal stage of excision. For very 
immature embryos, care should be taken not to damage the 
suspensor because the growth of immature embryos can be 
enhanced in the presence of the suspensor, as the presumed 
suspensor function is the production of gibberellins and cyto-
kinins that enhance growth (49).

 6. It is also important that the excised embryos do not become 
desiccated. Excised embryos should be immediately placed 
directly onto culture medium after isolation. Embryos are 
easily damaged when removed from surrounding protective 
tissues, so sharp or pointed instruments should not be used to 
dissect and remove embryos. Embryos usually adhere to the 
surface of instruments due to their tiny size.

 7. Following embryo isolation and culture, variable responses of 
embryos in vitro are common, including formation of leafy 
structures, swollen roots, nonresponsive embryos (Fig. 4a), cal-
lus formation, or deformed shoot/cotyledon growth (Fig. 4b). 
In cultures showing normal embryo growth and germination, 
the radicle of embryos starts to grow down first within 3–4 
weeks, followed by the emergence of embryonic leaves in the 
following weeks (Fig. 4c). Fully developed plantlets are gener-
ally obtained within another 8 weeks on SE medium (Fig. 4d).
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 8. Soaking seeds in water for 2 h helps to soften seed coats and 
ease its removal. Besides, it stimulates seed germination. Do 
not remove inner seed coats completely. The micropylar end 
of the seed, where radicle emerges, is fragile and easily falls 
apart or can be damaged when sown in the soil. Tearing the 
inner seed coat apart at the chalazal end is sufficient to allow 
seed imbibition.

 9. The development of plants at a low light level or in the absence 
of light (in the dark) is referred to as etiolation. Etiolation usually 
results in pale elongated shoots, small unexpanded leaves, less 
lignified stem, and enhanced rooting potential (59, 60). All 
these characteristics are desirable for rootstocks used for micro-
grafting of shoots of recovered germinated embryos. In the 
dark, rootstock seedlings can grow to a suitable height for graft-
ing in about 3–4 weeks, instead of about 8 weeks in the light.

 10. The size and age of scions affect micrografting success (60, 
61). Shoots 2–3 months of age exhibiting a size of 10–20 mm 
in length seem to be optimal in our system. If the size of a 
scion is too small (<5 mm), it is very difficult to make a “V” 
cut at the base for grafting; if too large (>20 mm), the scion 
can easily fall off the rootstock.

 11. The height and age of rootstocks influence the success of graft 
union development (61, 62). All leaves and lateral buds on the 
rootstock should be removed, otherwise mineral nutrition 
supplied by the rootstock would go to these organs, instead of 
the grafted scion, resulting in the eventual death of scion.

 12. A clean vertical cut should be made directly in the center of 
the stump. Since the diameter of the stem of the rootstock is 
usually less than 2 mm, it is not easy to make the straight cut. 
Place a sharp scalpel in the middle of the stump, and slowly 
make the vertical cut keeping the scalpel straight.

 13. Place a sharp scalpel at about 2–3 mm above the basal end of 
the scion, and make one smooth-tapered cut toward the end 
of the scion. On the opposite side, make a similar symmetric 
cut. Be sure the basal end of the scion gradually tapers off 
along both sides and takes the shape of a “V.”

 14. The key to success in grafting is the intimate contact of the 
vascular cambium of the scion with that of the rootstock; 
choosing the scion and the rootstock of about the same diam-
eter maximizes cambial contact between them.

 15. Maintaining high relative humidity during the first 2 weeks 
after grafting is critical for success. During this period, the 
graft union process has not been completed, and leaves of 
scion easily dehydrate. Scion shoot flushing generally occurs 
3–4 weeks after grafting. Afterwards, humidity can be gradu-
ally reduced until plants can grow under natural conditions.
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Chapter 8

Chickpea Hybridization Using In Vitro Techniques

Nalini Mallikarjuna and Fred J. Muehlbauer 

Abstract

Tissue culture techniques play an important role in the utilization of wild Cicer species for the improvement  
of cultivated chickpea. Utilization of wild Cicer species has become essential as a series of evolutionary 
bottlenecks have narrowed the genetic base of chickpea, thus making it susceptible to a range of diseases 
and pests. Crosses with wild Cicer can broaden its genetic base and introduce useful traits. Except for two 
wild species, none of the other Cicer species are cross-compatible. To use a range of Cicer species for the 
improvement of chickpea, embryo rescue and tissue culture techniques are necessary. The success of the 
cross with incompatible species depended on a range of techniques including the application of growth 
regulators to pollinated pistils and saving aborting embryos in vitro. Further, the chances of successful 
transfer of hybrid shoots to soil are greater if the hybrid shoots are grafted to chickpea stocks.

Key words: Chickpea, Cicer species, Cleft graft, Embryo rescue, Growth regulators, Incompatibility

Chickpea is one of the Neolithic crops and in cultivation for more 
than 10,000 years. It is an important source of staple protein 
source in many Asian, African, and Middle Eastern countries. 
It has one of the highest nutritional compositions of any dry edible 
legume. Chickpeas’ average nutritional composition is 23% pro-
tein, 64% total carbohydrates, 47% starch, 5% fat, 6% crude fiber, 
6% soluble sugar, and 3% ash (1). Chickpea protein digestibility is 
the highest among the dry edible legumes. Like other food 
legumes, chickpea is rich in the essential amino acid lysine. 
Chickpeas are unique in moderating the rise in plasma glucose 
after meals and help control diabetes. Chickpea is high in phos-
phorus (343 mg/100 g), calcium (186 mg/100 g), magnesium 
(141 mg/100 g), iron (7 mg/100 g), and zinc (3 mg/100 g) 
(1). The seeds contain carotenoids such as beta-carotene, 

1.  Introduction
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cryptoxanthin, lutein, and zeaxanthin in amounts above the 
 engineered beta-carotene-containing “golden rice” level (2). 
Nutritional benefits of chickpea could be one of the reasons for 
the rise of civilization in the Fertile Crescent of Mesopotamia. 
According to Kerem et al. (3), chickpea contains higher amounts 
of tryptophan, which is a precursor of the neurotransmitter sero-
tonin, which affects brain function and human behavior. Hence, 
higher amounts of tryptophan might have played a major role in 
selecting chickpea during human expansion as tryptophan promotes 
birth rates and accelerated growth in humans and animals.

Chickpea has undergone a series of evolutionary bottlenecks, 
which has narrowed its genetic base, and hence is susceptible to more 
than 47 diseases (4) and 54 insect pests (5). Sources of resistance to the 
desired level are not present in the cultivated gene pool and this opens 
up avenues to look for resistant sources in the related wild species ger-
mplasm. Chickpea has 34 accessions of perennial Cicer and 8 acces-
sions of annual Cicer species. In spite of this immense wealth of wild 
species germplasm, only two wild Cicer species are crossable with the 
cultigen and are amenable to gene transfer through wide crosses. The 
remaining 6 annual and 34 perennial Cicer species are not available for 
chickpea improvement.

The proven method of bringing in large variation into chickpea 
is through wide crosses, as the other methods of somaclonal vari-
ation and mutation breeding are cumbersome, time consuming, 
and unpredictable. Compatible wild species of chickpea have 
played an important role in broadening the genetic base through 
the introduction of desirable traits such as Ascochyta blight resis-
tance (6), Botrytis gray mold resistance (7), Helicoverpa armigera 
resistance (8), nematode resistance (9), and high yield (10).

The genus Cicer is classified into three gene pools based on its 
crossability with cultigens. Based on their crossability with  cultivated 
species, wild species, both annual and perennial, have been grouped. 
Using the classification proposed by Harlan and de Wet (11), 
a modification of the classification is proposed. Although the 
 modification does not deviate much from the previously proposed 
gene pools for chickpea, the secondary gene pool is strengthened 
by the placement of Cicer reticulatum. The proposed classification 
is similar to the recent classification proposed by van der Maesen 
et al. (12). The primary gene pool consists of cultivated species and 
land races. The secondary gene pool consists of the progenitor 
 species, C. reticulatum and C. echinospermum, a species that is 
crossable to C. arietinum but with reduced fertility of the resulting 
hybrids and progenies; nevertheless, both are cross compatible with 
the cultigen and do not need in vitro interventions to produce 
hybrids. The tertiary gene pool consists of all the annual and peren-
nial Cicer species that are not crossable to cultivated C. arietinum. 
All of the perennial Cicer species are considered to be in the tertiary 
gene pool as none of the species of this group are known to cross 
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readily with the cultivated species and produce mature seeds 
(Mallikarjuna and Muehlbauer, unpublished).

Many of the Cicer species in the tertiary gene pool harbor 
important traits/genes necessary for the improvement of chickpea 
such as H. armigera resistance in C. judaicum, C. pinnatifidum 
and C. bijugum (13), Ascochyta blight resistance in C. judaicum, 
C. bijugum and C. pinnatifidum (12), Botrytis gray mold resis-
tance (14), and drought tolerance (15). There are 34 perennial 
wild Cicer species that require very specific soil and environmental 
conditions for growth and reproduction. Traits of interest such as 
resistance to Ascochyta blight (16), H. armigera (17), Fusarium wilt 
(18), and drought tolerance (19) are present in this gene pool. 
Perennial Cicer species survive the severe frost conditions and 
resume their vegetative growth with the onset of summer in the 
USDA-ARS nursery located at Washington State University, 
Pullman, USA. All the perennial Cicer species have larger plant 
morphology compared to the annual Cicer species with robust veg-
etative growth. The flowers are larger with multiseeded fruits/pods. 
Desirable traits that chickpea would benefit from perennial Cicer 
are large and robust vegetative growth, large pods with multiple 
seeds, drought and cold tolerance, and disease and pest resistance.

It is now known that the barriers to hybridization between 
cultivated chickpea and Cicer species in the tertiary gene pool 
occur after zygote formation (20, 21). Fertilizations take place, 
but the zygote begins to abort by 3–5 days after fertilization. 
Badami et al. (22) were able to postpone the abscission of  pollinated 
pistils to 15–18 days by the application of growth regulators. This 
facilitated the growth of the hybrid embryo to early cotyledonary 
stage of development and being 0.5–1.0 mm in size (19).

Embryos of the size 0.5 mm or less did not grow directly on 
culture medium, while 0.3–0.4 mm size embryos responded well to 
specific growth hormones when cultured as in-ovulo embryo cul-
ture. Embryo response was maximum when zeatin (Zn) was used in 
combination with indole-3-acetic acid (IAA) in in-ovulo embryo 
culture medium and was evident by the emergence of embryos from 
the ovule after 3–4 weeks (21). Similar response was not obtained 
when zeatin was replaced with other cytokinins, which reduced the 
number of responding embryos (Mallikarjuna, unpublished).

The best time to save the aborting seeds/ovules was when 
the hybrid embryo had reached its maximum growth and devel-
opment, being at the cotyledonary stage of development, which 
was 15–18 days after pollination. If left longer on the plant, the 
pods turned yellow, indicating abortion of the hybrid seed.

Techniques such as in vitro culture to save aborting embryos 
from incompatible pollinations, multiplication of the hybrid 
shoots and their further growth, development of plants/shoots 
from somatic embryos, rooting in vitro grown shoots, grafting 
hybrid shoots on chickpea stocks, and induction of androgenesis 
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from the hybrid plant’s microspores will be discussed in the 
following paragraphs.

Hybrid shoots from the cross C. arietinum × C. pinnatifidum 
were pale yellow in color, and the scanning electron microscopic 
(SEM) studies showed that the chloroplasts were abnormal. Use 
of a cytokinin in culture medium in combination with light 
helped the conversion of leucoplastids to chloroplasts (22). 
Whereas hybrids between C. arietinum × C. bijugum and 
between C. arietinum × C. judaicum were green in color and 
albino shoots have not been observed. Hybrids between C ari-
etinum and C. pinnatifidum were fragile with the leaves resem-
bling those of C. pinnatifidum. The color of the flower was pale 
violet, resembling the violet color of the male parent, and the 
pollen was 100% nonviable (21).

Genotype of the cultivated chickpea, the female parent in the 
crossing program, was important for the success of the cross with 
respect to the number of hybrid ovules, in the size range of 
2.5 mm or more, obtained and hybrid embryos responded. When 
chickpea cultivar ICCV 2 was crossed with C. pinnatifidum acces-
sion ICCW 37, although a larger number of pods were obtained 
than when crossed with cultivar ICCV 92318, the difference was 
larger with respect to the number of hybrid plants obtained. Many 
of the hybrid embryos from the crosses with ICCV 2 were small 
and abnormal even after ovule culture. A similar situation was 
observed in crosses with desi cultivars. Crosses with ICCV 6 did 
not set a large number of pods and ovules suitable for culture, and 
seedlings were not obtained. ICCV 10 set a large number of pods, 
and nine seedlings were obtained (21).

 1. The hormone solution application to prevent flower abscis-
sion contains Gibberellic acid A3, naphthaleneacetic acid, and 
kinetin (GA3 50 mg/L + NAA 10 mg/L + Kn 10 mg/L).

 2. Sterilizing solution: a 30% commercial bleach, Clorox solution.
 3. Chickpea culture media: Murashige and Skoog’s (MS) 

medium is generally used for chickpea tissue culture (Table 1). 
Modification of the MS medium known as the ML-6 medium 
(23) also works well for chickpea tissue culture. Major and 
minor salts (tissue culture grade) are prepared as 10× stocks 
and used to prepare medium.

 4. Growth regulators: indole butyric acid (IBA), indole acetic 
acid (IAA), Gibberellin A3, benzyladenine, kinetin, and zeatin. 
All growth regulators are filter sterilized.

1.1. Technical 
Comments

2.  Materials
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Table 1 
Media composition

Nutrientsa MS ML-6 Ovule culture Shoot growth Root inductionb

Macronutrients

NH4NO3 1,650 1,000 + + +
KNO3 1,900 1,000 + + +
MgSO4 · 7H2O 370 170 + + +
CaCl2 · 2H2O 440 440 + + +
KH2PO4 170 170 + + +
Na2EDTA + + +
FeSO4 + + +

Micronutrients

MnSO4 · 4H2O 22.3 0.0 + + +
ZnSO4 · H2O 8.6 8.6 + + +
H3BO3 6.2 6.2 + + +
KI 0.83 0.83 + + +
Na2MoO4 · 2H2O 0.25 0.25 + + +
CoCl2 · 6H2O 0.025 0.025 + + +

Vitamins

myo-Inositol 100 100 + + +
Nicotinic acid 0.5 0.5 + + +
Thiamine 0.5 0.5 + + +
Glycine 1.0 0.0 + + +

Growth regulators

IBA 0.5
IAA 0.25 0.5 −
KN − 2.0 −
Zeatin 1.0 − −
Agar (%) − 0.68 0.7
Sucrose (%) 3 3 0.3
pH 5.8 ± 0.2 5.8 ± 0.2 5.9 ± 0.2

aAll ingredients are mg/L
bHalf strength MS medium

 5. Ovule culture medium (see Table 1) is a liquid medium 
devoid of agar.

 6. Filter paper bridges for ovules (immature seeds) are prepared 
using Whatman No. 1 filter paper.

 7. PVC tubing of 0.6 cm length and 3 mm in width was selected 
to hold the grafted shoot in place.
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 8. Laboratory supplies: forceps, cotton swab, vials, polyethylene 
bags, scalpels, pots, and sand.

Plants used in the crossing program are cultivated under natural 
field conditions at 26–30°C maximum and 12–15°C minimum. 
These conditions give better pod set when used in the crossing 
program than grown in a glasshouse under similar temperature 
regimes. Wild species of Cicer take longer time to flower com-
pared to cultivated chickpea. It is recommended to have stag-
gered plantings of cultivated species to have continuous supply of 
flowers. Under ICRISAT, India conditions, wild species grown 
under additional light regime, after initial vegetative growth of 
about a month, induces profuse flowering.

Cross pollinations were carried out before 10.00 AM in the 
chickpea growing season at ICRISAT, India (maximum 26–28°C 
and minimum 12–14°C), although chickpea stigmas are receptive 
till late in the afternoon. It has been observed that the stigmas of 
cultivated chickpea remain receptive even at 35°C and till late in 
the afternoon.

 1. Anthers were mechanically removed the previous evening from 
the buds chosen for pollination. All others buds at the node 
were removed to facilitate the growth of pollinated pistil.

 2. Pollinations were carried out in the morning using fresh 
 pollen from the male parent.

 3. Soon after pollinations were carried out, cotton swab soaked 
with hormone solution containing Gibberellic acid A3, 
Naphthaleneacetic acid, and kinetin (GA3 50 mg/L + NAA 
10 mg/L + Kn 10 mg/L) was wrapped around the base of the 
individual pistils to prevent flower abscission.

 4. The process of hormone application was repeated for 1–3 
days depending upon the retention of flowers on the plant.

 5. After 15–25 days of pollination, pods from cross pollinations, 
which began to turn yellow from green, were harvested and 
prepared for ovule culture (Fig. 1).

 1. Immature pods from cross pollinations were collected from 
plants. Care was taken to allow immature seed to grow to its 
maximum, when the green pod wall began to turn pale shades 
of yellow (see Note 1).

 2. Pods were surface-sterilized in a 30% commercial bleach 
(Clorox) for 15 min, and the bleach was washed off by giving 
three to four washes with sterilized distilled water (see Note 2).

3.  Methods

3.1. Cross Pollinations 
with Incompatible 
Cicer Species

3.2. Embryos Rescued 
from Interspecific 
Incompatible Crosses 
(Ovule Culture)
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 3. Liquid ovule culture medium was taken in small vials with 
filter paper bridges (see Notes 3 and 4; Table 1). It is cut as a 
14 cm long and 3 mm width strip. The strip is longitudinally 
folded into half (1.5 mm strip) and made in the shape of an 
“M” with the outer borders longer than the central “V.” Care 
is taken to see that the liquid medium does not cross the 
lower end of the shape “V.”

 4. Ovules (immature seeds) are carefully dissected out of the 
pods with the placental region still attached to the ovule and 
cultured on filter paper bridges. Care should be taken not to 
submerge the ovules in the liquid medium, which consisted 
of MS or ML-6 basal salts + 3% sucrose + IAA (0.25 mg/L) + Zn 
(1.0 mg/L) (Table 1 and also see Notes 5 and 6). Zeatin and 
IAA used is always filter-sterilized.

 5. After 3 weeks of culture, ovules were transferred to fresh 
ovule culture medium till the embryos emerged out of the 
ovules (see Note 7).

 6. Embryos that emerged out of the ovule were transferred to 
shoot growth medium, where the source of cytokinin was 
kinetin instead of zeatin.

 7. Well-grown shoots were transferred to root induction 
medium, which consists of 1/2 strength MS basal salts, 1.5% 

Fig. 1. Pod set, embryo abortion, and embryo rescue in chickpea wide crosses. (a) Pods from cross pollination C. arieti-
num × C. pinnatifidum. (b) Pod from cross pollination (C. arietinum × C. pinnatifidum), without the application of growth 
regulators, showing aborted seeds. (c) Pod from cross pollination (C. arietinum × C. pinnatifidum) showing a 4.0 mm 
seed/ovule. (d) Cross section of a pod, obtained as a result of hormone aided pollination, from the cross C. arietinum × C. 
pinnatifidum, showing the growth of the embryo (arrow). (e) Hybrid embryo emerging out of the cultured ovule. (f) Embryo 
dissected out of the ovule and cultured.
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sucrose, 0.7% agar, with IBA 0.5 mg/L. Alternatively, shoots 
are grafted to cultivated chickpea stocks (see Note 8).

 8. After a pulse treatment of 15 days on the rooting medium, 
shoots were transferred to the basal MS medium to induce 
roots on shoots.

 9. Rooted shoots were transferred to pots with sieved sand and 
watered with sterilized tap water (see Note 9; Fig. 2).

 10. It was important to maintain high humidity by covering the 
transferred plants with a polythene bag.

 1. Shoot buds were produced in clumps when embryos are 
transferred to embryo/shoot growth medium.

 2. Individual shoots that were more than 2–3 cm long are separated 
from the clumps and transferred to the shoot growth medium, 
which was same as embryo growth medium (Table 1).

 3. Shoots that grew further were transferred to root induction 
medium or grafted to cultivated chickpea stocks.

 1. Immature pods of either kabuli or desi chickpea are surface 
sterilized with 30% Clorox (commercial bleach).

 2. Pods are washed with sterilized distilled water for four to five 
times to remove traces of Clorox (see Note 10).

 3. Immature cotyledons (4–5 mm in size) devoid of embryo axis 
are isolated in a sterilized Petri dish.

 4. Medium for culture [MS + 3.0% sucrose + Zn (14.0 mM/L) + IAA 
(5.0 mM/L) at pH 5.8] is poured into sterile Petri dishes.

3.3. Shoot 
Multiplication In Vitro

3.4. Somatic Embryos 
from Immature 
Cotyledons

Fig. 2. Hybrid plants obtained through ovule culture in vitro. (a) C. arietinum × C. judaicum seedling. (b) C. arietinum × C.
bijugum seedling. (c) C. reticulatum × C. pinnatifidum seedling. (d) C. arietinum × C. pinnatifidum seedling.
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 5. Cotyledons are cultured on the medium with their adaxial 
surface up, against the medium.

 6. For further growth, somatic embryos were transferred to 
MS medium with 2 mg/L BAP and 0.5 mg/L IAA (see 
Note 11).

 7. Those embryos, which have grown into seedlings and with-
out good root systems, were transferred to the rooting 
medium mentioned above (see Note 12).

 8. Well-grown shoots were transferred to fine sand initially and 
later to soil: sand: farm yard manure (1:1:1) (see Note 13).

Transfer of hybrid shoots to soil is a critical step for the success of 
crosses with incompatible annual Cicer species. Although percent 
response with respect to the number of pollinations made and 
the number of hybrid plants obtained are low (21), techniques to 
produce hybrid shoots are in place when chickpea is crossed 
with C. pinnatifidum, C. bijugum, and C. judaicum. It is possible 
to multiply hybrid shoots in vitro by transferring the hybrid shoot 
buds to 0.7% agar solidified MS medium with 3% sucrose, 
0.5 mg/L IAA, and 2.0 mg/L KN at pH 5.8 (Table 1). Shoots 
can be rooted on full strength or ½ MS basal medium with 1.5% 
sucrose, 0.5 mg/L IBA (Table 1). In most of the cases, the roots 
were stunted, and hence very few shoots survived the transfer to 
soil. To overcome the problem of rooting hybrid shoots, an alter-
native method of grafting hybrid shoots to chickpea stocks was 
standardized (see Fig. 3; (24)).

 1. 15 days old chickpea seedlings were used as stocks.
 2. The hybrid shoots to be grafted (scion), which were 3 cm or 

more, are cut into a “V” shape.
 3. The Root stock plants are cut just above the base of the stem, 

about 2–3 cm from the soil. All axillary buds are removed to 
prevent the growth of axillary shoots.

 4. A 0.5 cm PVC tubing whose diameter is slightly more than that 
of the stem is slid on the blunt end of the stem. It is essential 
to see that the tubing selected is flexible and can expand 
marginally.

 5. The slit is made on the blunt send of the stem, dividing it into 
two equal parts.

 6. The scion is inserted into the slit and secured in place with 
the help of the rubber tubing.

 7. When the grafts had established, the tubing was slit longitu-
dinally to free the grafted region.

 8. The pot is covered with a plastic bag to maintain high humidity 
(see Note 14).

3.5. Grafting Hybrid 
Shoots to Chickpea 
Stocks
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Development of haploid plants from anther/microspore culture 
is now possible (25). It is also possible to get multicellular 
microspores from wide crosses. Mallikarjuna and Jadhav (24) and 
Mallikarjuna et al. (26) demonstrated that the hybrid between 
chickpea and C. pinnatifidum gave rise to flower buds with mul-
ticellular microspores in large numbers with divisions in all the 
microspores in some plants. As the critical step of induction of 
androgenesis in chickpea microspores had taken place, culturing 
such microspores may give rise to high frequency of haploid plants.

 1. Hybrid plants from the cross C. arietinum × C. pinnatifidum 
need to be maintained in a growth chamber with 70% relative 
humidity (see Note 14).

 2. Plants are watered with either de-ionized or drinking quality 
water with 1 mg/L zeatin. Inclusion of zeatin induces floral 
buds on the plants (see Note 15).

 3. The buds/flower are fragile, and many of the buds have 
anthers with multicellular microspores with the number of 
cells ranging from 4 to more than 10 (see Note 16).

 4. The authors have not cultured such microspores to obtain 
haploid plants.

 1. Application of growth regulator combination, specified for 
chickpea wide crosses with any of the incompatible species is 
mandatory. Without its application, ovules begin to abort 
from third day after pollination (21).

3.6. Development  
of Multicellular 
Microspores

4. Notes

Fig. 3. Grafting technique in chickpea. (a) C. arietinum plant grafted with C. arietinum × C. bijugum hybrid shoot. Note the 
rubber tubing holding the grafts. (b) After 3–4 weeks, the rubber tubes have been removed to facilitate further growth. 
(c) The graft (C. arietinum × C. pinnatifidum) growing well. Arrow points to the region of the graft.
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 2. Surface sterilization in alcohol or even brief wash in alcohol is 
not advisable as it reduces the number of responding ovules.

 3. Adding filter sterilized IAA and zeatin into the ovule culture 
medium gives better response.

 4. Embryos do not respond when cultured on semisolid 
medium.

 5. Percent response is better when cultured with the placental 
region attached to the ovule.

 6. Ovules respond only when cultured on the liquid medium 
with zeatin as the source of cytokinin. Ovules do not respond 
when zeatin in the culture medium is replaced with either 
kinetin or benzyl amino purine.

 7. A second transfer of the ovules to the ovule culture medium 
increases the number of responding ovules.

 8. Although a method to root shoots in vitro has been devel-
oped, it is not efficient, which is reflected in the percent suc-
cessful transfer of rooted shoots to soil. Alternatively, grafting 
the shoots to chickpea stocks is very successful (>90%).

 9. In vitro rooting is not very efficient for chickpea plants regen-
erated through multiple subcultures in vitro.

 10. Traces of Clorox on the pod wall can reduce percentage of 
responding embryos.

 11. Embryos cluster all around the cotyledons. Culturing clumps 
of embryos on the shoot growth medium enhances the growth 
of normal embryos. It is to be noted that many of the somatic 
embryos are abnormal without the shoot or root axis.

 12. It is a straight forward process to root chickpea shoots in vitro, 
which have not been subcultured in vitro. Every subculture 
reduces rooting efficiency and by third subculture very few 
shoots root. Roots on the shoots from three or more subcul-
tures are not only scanty but are unhealthy and do not with-
stand the transfer to soil. This may be one of the reasons why 
hybrid shoots, which have undergone subculture/s, do not 
root well on the root induction medium.

 13. Hybrid shoots regenerated from immature aborting embryos 
are fragile and do not withstand the transfer to soil directly. 
They are transferred to pots with sand initially. Later, they are 
transferred to soil.

 14. Even though the plants are maintained in an incubator at 
25°C and high relative humidity, covering them with a poly-
thene cover helps the grafts grow faster.

 15. Interspecific hybrid between C. arietinum × C. pinnatifidum 
starts flowering when zeatin 1.0 mg/L is added to the nutrient 
solution or the water, which is used to water the hybrid plants (24).
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 16. Multicellular microspores are starting material to obtain 
haploid plants. Although dihaploid plants are reported for 
chickpea, another mode of obtaining the induction of andro-
genesis is by wide crosses.
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Chapter 9

Muskmelon Embryo Rescue Techniques Using In Vitro 
Embryo Culture

Hector Gordon Nuñez-Palenius, Rafael Ramírez-Malagón,  
and Neftalí Ochoa-Alejo 

Abstract

Among the major cucurbit vegetables, melon (Cucumis melo) has one of the greatest polymorphic fruit 
types and botanical varieties. Some melon fruits have excellent aroma, variety of flesh colors, deeper 
flavor, and more juice compared to other cucurbits. Despite numerous available melon cultivars, some of 
them are exceedingly susceptible to several diseases. The genetic background carrying the genes for toler-
ance and/or resistance for those diseases is found in wild melon landraces. Unfortunately, the commercial 
melon varieties are not able to produce viable hybrids when crossed with their wild melon counterparts. 
Plant tissue culture techniques are needed to surpass those genetic barriers. In vitro melon embryo rescue 
has played a main role to obtain viable hybrids originated from commercial versus wild melon crosses. 
In this chapter, an efficient and simple embryo rescue melon protocol is thoroughly described.

Key words: Anther, Cucumis melo, Cucurbitaceae, Melon, Ovary, Plant tissue culture, Zygotic 
embryos

Plants belonging to the Cucurbitaceae family are commonly well 
known as cucurbits. The most important cultivated cucurbits – 
based on harvestable area and total production – around the 
globe are watermelon (Citrullus lanatus Thunb.), cucumber 
(Cucumis sativus L.), melon (Cantaloupe and other melons) 
(Cucumis melo L.), pumpkin, and squash (Cucurbita spp.) (1). 
C. melo L. is an important worldwide vegetable crop; for exam-
ple, in 2007, the international melon fruit production (honey-
dews, cantaloupes, muskmelons, and others) was more than 26 
million tons (1), representing a significant income for seedmen 

1. Introduction

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_9,  
© Springer Science+Business Media, LLC 2011
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and growers. Despite the elevated production, substantial eco-
nomical losses took place since some C. melo varieties, highly 
demanded by consumers, are exceedingly susceptible to pests and 
diseases, caused by insects, viruses, bacteria, and fungi, among oth-
ers (2). According to plant breeding experts (3), the shortest, saf-
est, and easiest way to avoid or reduce melon production losses, 
even  better than application of pesticides and disease-preventive 
activities, is the use of pest- and disease-resistant melon varieties. 
Unfortunately, not all commercial melon varieties are tolerant or 
resistant to all pests and diseases, and the genetic background that 
could provide the tolerance or resistance for most C. melo diseases 
is not present in this species. Fortunately, the genetic pool with 
tolerance and/or resistance for C. melo diseases is found in 
Cucumis-related ones, such as C. metuliferus Mayer, C. pustula-
tus Naudin, C. myriocarpus Naudin, and C. melo ssp. agrestis 
(4, 5), among others. However, the ability to cross C. melo with its 
pest- and disease-resistant Cucumis relatives, in order to pass those 
desirable agronomic characteristics into commercial melon variet-
ies, is extremely low or unfeasible by traditional breeding systems. 
Therefore, plant tissue culture techniques are needed to surpass 
those genetic barriers.

In vitro embryo culture methods have successfully been used 
to rescue valuable embryos in diverse plants (6–13). Nevertheless, 
the embryo rescue techniques may not be totally efficient, since in 
some cases, the embryo failed to undergo a complete differentia-
tion and full morphogenetic process through in vitro culture, 
producing nonviable embryos (14, 15). Several factors, biological 
and physicochemical, play a main role during the in vitro embryo 
culture; among them genotype (13), embryo-developmental 
stage (16, 17), type of culture media (15), plant growth regulator 
and carbohydrate source (18), season when the embryos are col-
lected (19), temperature (20), and light (21) have been reported. 
Numerous reports have been published on in vitro gamete (ovary 
and anther) and embryo culture of Cucumis spp. (16, 17, 20–
44), and most of them have been applied to cucumber. It is gen-
erally accepted that both species, C. sativus and C. melo, have 
similar culture media requirements. Concerning the specific case 
of C. melo-embryo culture, this technique has been used to 
 rescue valuable hybrids acquired from interspecies crosses (45), 
as well as to obtain haploid plants to select resistance to diseases 
such as powdery mildew (46–48), Fusarium wilt (49), and 
 several viruses (13).

To apply the techniques employed for melon embryo rescue 
culture, a simple and efficient protocol developed for a “Galia” 
muskmelon (C. melo L. var. reticulatus Ser.) male parental line is 
outlined in this chapter. One advantage of this system is that, 
unlike other rescue embryo protocols, it does not require a 
 double-layer system culture or several culture media.
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 1. Plant material: it is well recognized that healthy C. melo plants 
will provide the best zygotic embryos for a successful embryo 
culture (45). Hence, the embryo-donor melon plants must 
be grown under the utmost optimal conditions; for instance, 
mature and healthy (not showing visible damage) melon 
seeds are germinated on a mixture of 70% Terra Lite Plug 
Mix (Terra Asgrow, Apopka, FL) and 30% coarse vermiculite 
in polystyrene trays (cell size 2.25 cm2 and 164 cells per tray, 
Speedling, Bushnell, FL). Seedlings are grown under drip 
irrigation in plastic pots (11.3 L) filled with soilless media 
(coarse grade perlite) in an evaporative-cooled fan and pad 
glasshouse, with temperatures maintained at 28°C day and 
20°C night. Hermaphrodite and/or female flowers should be 
pollinated in the morning (7:00–10:00 AM), since the pollen 
grains show the greatest survival rate in this period (45), using 
at least three newly opened male flowers. A higher in vitro 
embryo culture success is obtained when older melon fruits 
[17–30 days after pollination (DAP)] are utilized; nonethe-
less melon seeds from fruits as young as 4 DAP may be used 
for embryo rescue.

 2. Culture medium: salt formulations, organic additives, and 
plant hormones for E-21 (34) culture medium are summa-
rized in Table 1. The culture-medium pH is adjusted to 5.9 
using a few drops of KOH 0.1 N, before adding 10 g/L agar. 
The E-21 medium (200 mL) is placed in 500-mL Erlenmeyer 
flasks and sterilized at 121°C (15 lb/in.2) for 20 min. 
Putrescine, glutamine, and coconut water are added to the 
sterile E-21 medium (50°C). These compounds are previ-
ously filter-sterilized using sterile Millipore® membranes 
(GSWP09050, 0.22 mm).

 3. Sterilizing solutions: (a) 70% ethanol and (b) 1.2% sodium 
hypochlorite solution (15 or 20% commercial bleach contain-
ing three drops of Tween 20™ per 100 mL).

 4. Phytatray™ (Sigma Chemical Co., St. Louis, MO, USA).
 5. Polystyrene trays (cell size 2.25 cm2 and 164 cells per tray, 

Speedling, Bushnell, FL).
 6. Terra Lite Plug Mix (Terra Asgrow, Apopka, FL) and coarse 

vermiculite.
 7. Other equipment and laboratory supplies: a steromicroscope, 

glass dry-seal desiccator, vacuum pump, a 2,000 mL beaker, 
scalpels, forceps, Petri dishes, Phytatray™ vessels, and alumi-
num foil.

2. Materials
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 1. Melon fruits are harvested (using a sterile scalpel) in the 
morning (as early as possible), and their surface is meticu-
lously washed (at least three times) with liquid detergent and 
tap water using a sponge.

 2. Washed fruits are placed into a sterile laminar-air-flow cabi-
net. Afterward, they are surface-sterilized by treating them 
with 70% ethanol for 10 min into a 2,000-mL beaker. Fruits 
are then immersed into a 1.2% sodium hypochlorite solution 
for 40 min in a glass dry-seal desiccator (see Note 1). Vacuum 
force is applied (10 min) to the glass dry-seal desiccator to 
facilitate the air removal from the fruit surface (see Note 2). 
Wash, at least six times, with sterile distilled water until no 
bubbles are observed when the container is shaken.

 3. Remove the surface (exo- and mesocarp) of sterile fruits until 
seeds are visible (see Note 3) and dissect them carefully using 
a scalpel, forceps and, if needed a stereomicroscope (see Note 4). 
Discard damaged seeds.

3. Methods

3.1. Fruit Sterilization 
and Seed Preparation

Table 1 
Components of E-21 nutrient medium

Macroelements (mg/L) Microelements (mg/L)

KNO3 1,075.0 MnSO4 11.065
NH4NO3 619.0 ZnSO4 · 7H20 1.812
MgSO4 · 7H2O 206.0 H3BO3 1.575
CaCl2 · 2H2O 156.5 KI 0.345
KH2PO4 71.0 Na2Mo4 · 2H2O 0.094
Ca(NO3)2 · 4H2O 25.0 CuSO4 · 5H2O 0.008
NaH2PO4 · 4H2O 19.0 CoCl2 · 6H2O 0.008
(NH4)2SO4 17.0 Na2EDTA 37.3
KCl 3.5 FeSO4 · 7H2O 27.8

Organics (mg/L) Plant growth regulators (mg/L) and other supplements

myo-Inositol 50.300 Indole-3-acetic acid 0.01
Pyridoxine–HCl 5.500 Indole-3-butyric acid 0.01
Nicotinic acid 0.700 6-Benzylaminopurine 0.01
Thiamine 0.600 Coconut water 5%
Ca-D-pantothenate 0.500 Xylose 0.02
D-Biotine 0.005 Glutamine 1
Glycine 0.100 Agar (g/L) 10
Sucrose (g/L) 20 pH 5.9
Putrescine 0.25 mM
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 4. Once a seed is excised, leave it immediately in a Petri dish 
containing a 9% sterile (by filtration through a Millipore® 
membrane) sucrose solution. From this solution, seeds 
(up to 60) will be placed on a Petri dish containing the E-21 
medium.

 1. Transfer the melon seed directly to a Petri dish containing 
E-21 medium (initially, the embryo is not removed from the 
seed for in vitro culture). It is absolutely important that the 
hilum must face the surface medium, as well as the seed must 
be partially buried into the medium (see Fig. 1).

 2. Wrap the Petri dish completely with aluminum foil to avoid 
any incoming light, and keep the embryo cultures in a culture 
room at 25 ± 1.5°C for 35–40 days. During this period, the 
embryo developmental process will take place (see Fig. 2).

 3. After the incubation period, the germinated embryos are 
transferred, under axenic conditions, to Phytatray™ vessels 
having ½ strength E-21 medium with 0.7% phytagar. These 
transferred embryos are cultured for 2–5 more weeks (depend-
ing on their developmental stage) under 100 mmol/m2/s 
light (cool white lamps) and a 16 h photoperiod at 25 ± 1.5°C 
(see Fig. 2d, e).

 4. Healthy well-developed seedlings (first true-leaf stage) are 
removed from in vitro culture vessels and planted on 70% 
Terra Lite Plug Mix (Terra Asgrow, Apopka, FL) and 30% 
coarse vermiculite in polystyrene trays (see Fig. 3). A transparent 

3.2. Embryo Culture 
and Transfer of Plants 
to Soil

Fig. 1. Dissection of seeds from “Galia” male parental line fruit (17 days after-pollination 
(DAP) stage) under axenic conditions. Notice how seeds are semiburied with the hilum 
facing the culture medium (arrows ).
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plastic cover is placed over the recently transferred seedlings 
and the polystyrene trays are kept in a plant growth walking-
chamber (Controlled Env. Ltd, Winnipeg, Manitoba, Canada) 
with temperatures maintained at 28°C day and 20°C night 
and 16-h artificial lighting. Melon seedlings are watered as 
needed and plastic cover is removed after 1 week.

 1. 400 mL of distilled water, plus 12 drops of Tween 20™ are 
prepared in a glass dry-seal desiccator, from which the desiccant 
material was previously removed. This container is sterilized at 
121°C (15 lb/in.2) for 20 min. Once the glass dry-seal desiccator 

4.  Notes

Fig. 2. “Galia” male parental line fruit at 10 DAP stage (a). In vitro embryo development from 10 DAP stage, (b), (c), (d), 
and (e) are stages after 0, 15, 21, and 35 days, respectively, of in vitro culture. (b) Embryo (circle ) and seed coat (arrow ). 
(c) Embryo (circle ) and seed coat (arrow ). (e) Seedlings growing on elongation media.
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has cooled down, commercial bleach (15 or 20%) is added to the 
water + Tween solution under a sterile laminar-air-flow cabinet.

 2. It is of utmost importance to apply a vacuum force to the 
melon fruit when it is inside the glass dry-seal desiccator to 
remove all surface air and allow a more efficient penetration 
of the disinfectant solution, since pathogens are able to thrive 
when air bubbles are not removed from melon fruit surface.

 3. When melon fruits below 12 days after-pollination (DAP) are 
used, special care must be taken, since seeds have not devel-
oped their hard testa; consequently, it is very easy to damage 
the immature seeds. If fruit above 15 DAP are used, it is  easier 
to cut the melon fruit longitudinally and scoop out the seeds 
(see Fig. 1).

 4. Sizes of melon seeds and physical state of placental tissues will 
depend on fruit age. Consequently, if melon fruits are above 
15 DAP, seeds are easily scooped from a semiliquid placenta, 
and 300–500 seeds may be collected in less than 2 h. On the 
other hand, if melon fruits are below 15 DAP, a scalpel and 
smooth-tip microforceps should be used to carefully remove 
seeds from placenta tissues and the procedure to obtain 100 
seeds will take more than 4 h.

Fig. 3. Normal “Galia” male parental line seedlings obtained from embryo rescue, having 
well-developed cotyledonary (arrows ) and true leaves (arrows ).
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Chapter 10

Phaseolus Immature Embryo Rescue Technology

Pascal Geerts, André Toussaint, Guy Mergeai,  
and Jean-Pierre Baudoin 

Abstract

Predominant among the production constraints of the common bean Phaseolus vulgaris are infestation of 
Ascochyta blight, Bean Golden Mosaic virus (BGMV), and Bean Fly. Interbreeding with Phaseolus 
 coccineus L. and/or Phaseolus polyanthus Greenm has been shown to provide P. vulgaris with greater 
resistance to these diseases. For interspecific crosses to be successful, it is important to use P. coccineus and 
P. polyanthus as female parents; this prevents rapid reversal to the recurrent parent P. vulgaris. Although 
incompatibility barriers are post-zygotic, early hybrid embryo abortion limits the success of F1 crosses. 
While rescue techniques for globular and early heart-shaped embryos have improved in recent years, 
 success in hybridization remains very low. In this study, we describe six steps that allowed us to rescue 
2-day-old P. vulgaris embryos using a pod culture technique. Our methods consisted of (i) pod culture, 
(ii) extraction and culture of immature embryos, (iii) dehydration of embryos, (iv) germination of 
embryos, (v) rooting of developed shoots, and (vi) hardening of plantlets.

Key words: Dehydration conditions, Embryo rescue, Micropropagation, Phaseolus, Pod culture, Secondary 
gene pool, Zygotic embryos

In many parts of Latin America, common bean (Phaseolus vulgaris L.) 
is considered to be one of the most valuable sources of plant pro-
tein. Common bean also contributes substantially to the sustain-
ability of traditional cropping systems. However, dry production of 
P. vulgaris remains very low, averaging less than 600 kg/ha/year  
(1, 2). Several factors contribute to this low productivity. For one, 
high-energy investment is required for both the production of large 
amounts of protein in the beans and rhizobial nitrogen fixation in 
the root nodules. This competes directly with sequestration of 
photosynthate in the pods. Severe yield losses are also caused by high 

1. Introduction

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_10,  
© Springer Science+Business Media, LLC 2011
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incidences of pests and diseases, and by unfavourable climatic and 
edaphic conditions prevalent in the region.

One of the greatest factors reducing the dry seed yield of  common 
bean is the lack of improved cultivars adapted for traditional multiple 
cropping systems. On small-scale subsistence farms  typical of the 
tropical and subtropical regions of Latin America, P. vulgaris and 
other Phaseolus cultivars are often cultivated in association with one or 
several other companion crops. These may include cereals, root and 
tuber plants, vegetables, fruit trees, and other commodities. Multiple 
cropping systems constitute risk insurance for small farmers and offer 
biological and socioeconomic benefits (3–5).

Generally, breeders have concentrated their efforts on the charac-
terization and utilization of P. vulgaris landraces crossed to wild forms 
for genetic improvement programmes. However, there is insufficient 
genetic variation within the common bean primary gene pool to 
overcome several major production  constraints (6). Better sources of 
resistance to these have been identified in alien germ plasm, namely, 
in the secondary gene pool. Common bean’s secondary gene pool 
consists of the species P. coccineus and P. polyanthus. Both species are 
well adapted to highlands (above 2,000 m) and express useful agro-
nomic traits (e.g. plant architecture, rusticity, disease resistance, and 
cold and acid soil tolerance) lacking in P. vulgaris. To improve beans 
for multiple cropping systems genetically, these two legumes could be 
bred as distinct crops or hybridized with common bean (7).

We undertook an in-depth evaluation of worldwide germ plasm 
collections of P. coccineus and P. polyanthus in representative sta-
tions and identified lines showing strong resistance to Phoma exigua 
var. diversispora, Colletotrichum lindemuthianum, and Phaeisariopsis 
griseola (6, 8). The most striking finding of our screening was the 
strong and stable field resistance of the whole P. polyanthus collec-
tion to Ascochyta leaf blight. However, in breeding the hybrids, we 
experienced great difficulty in rupturing the genetic linkage in  
P. polyanthus between high levels of disease resistance and unfa-
vourable traits such as lateness in flowering, profuse branching, and 
low harvest index. In these crosses, the use of P. vulgaris as female 
parent increased the abundance of successful hybrids; however, the 
presence of P. vulgaris cytoplasm caused a quick reversal to the 
recurrent species at the expense of the donor species (9).

Given these circumstances, a critical case study was undertaken 
to examine methods of integrating Ascochyta blight resistance from 
P. polyanthus into P. vulgaris. We describe two alternative methods 
to develop new hybrids using P. polyanthus as the mother parent.

The first option is to increase the number of cross pollinations, 
which are affected by parental combination and environmental 
conditions. In crosses between P. polyanthus and P. vulgaris, the 
use of P. polyanthus cytoplasm avoids a quick reversal to the recur-
rent parent P. vulgaris explained above, but up to 60% of globular 
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embryos failed to develop due to as yet undefined incompatibility 
barriers between the embryo and the mother plant. Among more 
than 3,000 crosses, only one hybrid could be obtained using 
embryo culture, and its seed production was relatively low (10). 
This hybrid is the only one obtained so far using P. polyanthus as 
the female parent in cross-pollination programmes.

The second alternative requires that we further our knowledge of 
the cause and developmental stage of the hybrid embryo’s abortion. 
Such knowledge could allow for the development of customized 
in vitro embryo rescue culture techniques. Geerts et al. (11) 
 determined that differences between early embryo abortions in recip-
rocal crosses are generally related to endosperm development. Rapid 
division of the primary endosperm nucleus (PEN) is observed in  
P. vulgaris × P. polyanthus (PvPp) seeds. This allows greater develop-
ment of the embryo, which is initiated 2–3 days after pollination 
(DAP). However, PEN remains uninucleated in PvPp seeds during 
the first four DAP, limiting nutrient exchange between maternal 
 tissues and the zygote for the second through fourth DAP (11). 
Moreover, Geerts et al. (11) showed that zygotes of PvPp seeds were 
still able to divide five DAP when PEN had divided at least once. This 
suggests that embryo abortion in PvPp seeds could be related to low 
nutrient exchange during early development. Therefore, manipulat-
ing the time at which cell divisions occur may be a means to overcome 
incompatibilities between hybrid embryo and endosperm.

On the basis of these results, rescue of PvPp embryos could 
be facilitated by the development of an in vitro technique of cul-
turing early globular embryos. We will present the steps that led 
Geerts et al. (12) to rescue 2-day-old P. vulgaris embryos using a 
pod culture technique. Production of plantlets via immature 
embryos’ rescue requires at least six stages: (i) pod culture, (ii) 
extraction and culture of immature embryos, (iii) dehydration of 
embryos, (iv) germination of embryos, (v) rooting of developed 
shoots, and (vi) hardening of plantlets.

 1. Plant materials: genotypes of P. polyanthus were chosen based 
on their ability to cross with P. vulgaris and on their resistance 
to one of the following pathogens: Ascochyta blight, BGMV 
or Bean fly. Phaseolus vulgaris genotypes were selected for 
high productivity and for their origin (13).

 2. Media: stock salt formulations, organic additives, and  phytohor-
mones for in vitro culture of pods and embryos are detailed  
in Table 1. All stock solutions are stored at 4°C for up to 

2. Materials
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Table 1 
Composition of the media: P00 and P01 used for young 
Phaseolus pod culture and P01, G6, and G7 used for 
Phaseolus embryo culture (15)

Elements P00
a P01

a G6a G7a

Major elements (mg/L)

CaCl2 · 2H2O 300 600 150 150
MgSO4 · 7H2O 220 435 250 250
KNO3 1,050 2,100 2,500 2,500
NaH2PO4 · H2O 42 85 150 150
(NH4)2SO4 – – 134 134
KH2PO4 162 325 – –
NH4NO3 500 1,000 400 –

Minor elements (mg/L)

MnSO4 · 7H2O 7.50 15 10 10
ZnSO4 · 7H2O 2.50 5 2 2
CuSO4 · 5H2O 0.050 0.1 0.025 0.025
CoCl2 · 6H2O 0.050 0.1 0.025 0.025
KI 0.50 1 0.75 0.75
H3BO3 3.70 5 3 3
NiCl2 · 6H2O 0.018 0.04 – –
Na2MoO4 · 2H2O 0.2 0.4 0.25 0.25
FeSO4 · 7H2O 12.50 25 27.85 27.85
Na2EDTA 18.62 37.25 37.25 37.25

Vitamins (mg/L)

Thiamin 0.25 1 1 1
Nicotinic acid 1.25 5 0.1 5
Pyridoxine 0.125 0.5 0.1 0.5
myo-Inositol 25 100 100 100

Sugars (g/L)
Sucrose : 580 mosm 143 – – –

Sucrose : 450 mosm – 102 – –

Sucrose : 350 mosm – 80 – –
Sucrose – – 100 30

Amino acids (g/L)

L-Glutamine 0.25 1 – 0.1
Casein hydrolysate 0.25 1 – 0.1
Hormones (mM)

N6-benzylaminopurine 
(BAP)

– 1 – 1

(continued)
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4–6 weeks. All reagents were obtained from Duchefa except 
for Tween-20, which was purchased from Sigma.

 3. Solutions for sterilization: 70% ethanol; 12% calcium hypochlo-
rite solution containing Tween-20 (two drops per 100 mL 
solution) as a surfactant.

 4. Plant preservative mixture (PPM, Plant Cell Technology, Inc, 
Washington, DC 20036 USA).

 5. Other laboratory equipment and supplies: sterile glass beads 
(3 mm), Petri dishes (15 × 4 cm), Reynolon film, 20 × 160 mm, 
borosilicate glass culture tubes, forceps, scalpels, dissecting 
needles, peristaltic pump, and stereomicroscope.

The potential of various in vitro culture techniques to rescue 
immature embryos (14) was investigated. Our objectives were 
twofold: (i) to rescue 2- to 4-day-old embryos and (ii) to develop 
in vitro culture techniques adapted to P. vulgaris/P. polyanthus 
hybrids. There are two common, major challenges that arise 
 during the culture of immature embryos: (i) selecting a medium 
that meets the complex nutritional requirements of very small 
embryos and (ii) extracting very small embryos without damaging  
their suspensors. To reduce suspensor damage, we applied in 
ovulo pod culture, which protects the embryos, for 5–10 days 
before extracting them. Embryos are thus extracted at a stage 

3. Methods

Table 1 
(continued)

Elements P00
a P01

a G6a G7a

Gibberellic acid (GA3) – – – 0.18
Abscisic acid (ABA) 0.095 – – –
Tryptophan 5.5 – – –
1-Naphthalene acetic 

acid (NAA)
0.1 0.1 – –

Adenin – 10.0 – –

Gel and other (g/L)

DIFCO agar 5 5 8 5
Activated charcoal – – 5 –

a P00, P01, G6, and G7 represent, respectively, two new modified Phillips et al. (32) 
media used for pod and embryo culture, the dehydration medium as described by Hu 
and Zanettini (19) modified, and the Mergeai et al. (15) rooting medium modified
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when the role of the suspensor is much less important, i.e. the late 
heart-shaped or cotyledonary stage. Such evolution is particularly 
well observed in pods cultivated 4 DAP. Some embryos at the 
globular developmental stage proceed to develop to the cotyle-
donary stage. For these 2-day-old embryos, further rescue tech-
niques are used. For our study, we also examined the impact of 
manipulating osmolality of the media.

Several bean genotypes (see Note 1) were grown in a controlled 
growth chamber set to 24 and 20°C day and night temperatures, 
respectively. The chamber was set to 75% relative humidity, 
580 mmol/m2/s light intensity (measurements at 60 cm from 
400 W Grolux lamps), and 11.5 h day length.

The mineral salt composition of germination media is one of the 
most important factors that influence the success of in vitro imma-
ture embryo rescue. Our research (12, 15–18) has allowed us to 
compile a series of media for the in vitro rescue of immature 
embryos. We found that applying high and variable osmotic con-
ditions similar to those observed in vivo produced the best results 
in terms of ovule and embryo development during pod culture 
and before embryo extraction (see Table 2).

Most of the major salts, the amino acids, myo-inositol, and 
sucrose are added directly to the medium at concentrations vary-
ing between 0.1 and 143 g/L. Minor salts, vitamins, and growth 
regulators are taken from stock solutions concentrated 50×. All of 
these ingredients are dissolved in 600-mL high-purity deminera-
lised water in a 1-L beaker on a magnetic stirrer. The pH of the 
medium is adjusted to 5.7 by drop-wise addition of 0.1 N KOH. 
For solidification, plant agar is pre-dissolved in 400 mL of 

3.1. Plant Maintenance

3.2. Media Preparation

Table 2 
In vitro culture steps of pod and embryo culture

Stages Media

Pod culture (1 week) P00: Philips et al. (32) modified at 
580 mosm

P01: Philips et al. (32) modified at  
450 and 350 mosm

Embryo maturation (2 weeks) P01: Philips et al. (32) modified at 
350 mosm

Embryo dehydration (2 weeks) G6: Hu and Zanettini (19) modified

Germination and rooting  
(1 week)

G7: Mergeai et al. (15) modified + 
IAA (1 mM)

Growth (±2 weeks) G7: Mergeai et al. (15) modified
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 high-purity demineralised water and warmed until clarification, 
and then added to the medium. The latter is then autoclaved 
(120°C for 20 min) to obtain 1 L of solid medium.

After homogenisation and cooling, but before solidification, 
30 mL media is aliquoted into sterile Petri dishes (55 mm × 1.5 cm) 
in a sterile laminar flow cabinet. Petri dishes are sealed with a 
Reynolon film when gel is solidified (about 4 h later). Prepared Petri 
dishes are stored at room temperature in the dark (see Note 2).

 1. Harvest young pods 2–5 DAP during the early morning when 
plants are not subject to water or temperature stress. Carry 
the pods from the growth chamber to the laboratory in a 
sealed plastic box maintained at 21°C to avoid desiccation.

 2. Dip the pods in 70% ethanol and mix gently for 1 min. Drop 
the pods in 12% calcium hypochlorite solution containing 
Tween-20 (two drops per 100 mL solution) as a surfactant, 
and mix gently for 2–3 min. Wash three times with sterile 
distilled water (see Note 3).

 3. Liquid medium is used to provide an environment in which 
constant changes of osmolality can be obtained during the 
first week of culture (Fig. 1). The pods are supported on 
sterile glass beads (3 mm) in Petri dishes (15 × 4 cm), each 
containing 100 mL liquid P00 medium (osmolality adapted 
to pre-globular embryos: 580 mosm; see Note 4). Petri 
dishes are connected via a peristaltic pump to 1 L bottles 
containing P01 medium (osmolality adapted to cotyledonary 

3.3. Pod Culture

Fig. 1. Evolution of osmolality in pods, seeds, and embryos of P. vulgaris (NI637) by Geerts (26). There is a gradient 
between liquid endosperm, embryo, seed, and pod, as reported in the literature (26). Modifications of osmolality values 
occur at two different periods: immediately after pollination, up to 11 DAP, when embryos reached cotyledonary stage, 
and 22 DAP, corresponding to dehydration of seeds (reproduced by permission of P. Geerts).
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embryos: 350 mosm) (Fig. 2). A Millipore filter attached to 
the pump prevents contamination of media flowing from the 
bottle to the plates (Fig. 2; see Note 5).

 4. Place the Petri dishes under light (60 mmol/m2/s light inten-
sity; 11.5 h day length) at 26°C and 100% relative humidity.

 5. During the first 5 days of culture, 100 mL of medium per day 
is dripped from the bottle decanter into each Petri dish, 
enabling a constant evolution of the culture medium osmola-
lity. A lateral aperture permits the discharge of excess liquid, 
maintaining a constant volume within the Petri dish (see 
Notes 6 and 7). After 5 days, the osmolality of the liquid 
medium should reach 350 mosm.

 1. Dissect the pods and extract fertilized ovules under a stereo-
microscope after 5–7 days of culture. The microscope should 
be fitted with a 12× magnification ocular micrometer.

 2. Transfer fertilized ovules to a sterile water solution with 
120 g/L sucrose and 1.75 g/L agar. In this environment, 
extract the embryos from ovules, reaching at least 2 mm using 
two dissecting needles under a binocular with 40× magnifica-
tion (see Note 8).

 3. After extraction, aspirate the embryos from the sterile dissec-
tion solution using a Pasteur pipette. Transfer each embryo 
with two droplets of sterile solution to the Petri dishes con-
taining maturation medium (P01), where they will continue 
the maturation processes. The above three operations are 
 carried out in a sterile laminar flow cabinet.

 4. Divide the Petri dishes into eight sections by a pencil mark line 
on the bottom of the Petri dish after medium preparation, and 
mark each with a reference indicating the culture medium 

3.4. Extraction and 
Culture of Immature 
Embryos

Fig. 2. Experimental design used for in vitro culture of young Phaseolus pods and 
 permitting a constant evolution of the culture medium. On the right side, culture of 
young pods on solid medium (see Note 7) (Picture: A. Toussaint).
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characteristics and the number of each of the embryos isolated 
at the same early heart-shaped stage. Seal the dishes with 
Reynolon.

 5. Incubate the immature embryos in darkness at 26°C for 2–3 
weeks (16) while maturation proceeds (see Note 9).

Transfer the mature embryos to dehydration medium G6 under 
the laminar flow hood (19) (see Note 10). Maintain the Petri 
dishes in darkness at 26°C for 1–2 weeks.

 1. Transfer the embryos to germination medium G7 with salts, 
as per the procedure described by Gamborg et al. (20), and 
1 mM indole acetic acid (IAA). Incubate for 1 week, or until 
germination takes place.

 2. Place the Petri dishes under light (60 mmol/m2/s light inten-
sity; 11.5 h day length) at 26°C (see Note 11).

 1. Transfer the developed shoots to 20 × 160 mm borosilicate 
glass culture tubes containing 20 mL sterile rooting medium 
G7 (without IAA). At this stage, the embryos are 3–5 mm in 
length.

 2. Cover the culture tubes with plastic caps (not sealed with 
Reynolon, as this would suffocate the plantlets).

 3. Place the culture tubes in an incubator (Luminincube II, 
Analis) under controlled conditions: 60 mmol/m2/s light 
intensity, 11.5 h day length, and 26°C. Roots should appear 
after 2–3 weeks of culture (Fig. 3) (see Note 12).

3.5. Dehydration  
of Embryos

3.6. Germination  
of the Embryos

3.7. Rooting  
of Developed Shoots

Fig. 3. After a dehydration period, germinated embryos are transferred in tubes for 
rooting. After rooting and a period of in vitro growth, plantlets are transplanted in Jiffy 
pot for acclimatisation (Picture: A. Toussaint).
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 1. Plantlets sufficiently developed, as indicated by a good rooting 
ramification and at least one trifoliate leaf, are transferred to 
Jiffy pots for acclimatisation. These are placed in closed glass 
boxes with 100% relative humidity (see Note 13).

 2. Carry out progressive acclimatisation of plantlets by increasing 
the atmospheric water vapour deficit.

 3. Water plantlets once a week with an aqueous solution con-
taining one half the concentration of Murashige and Skoog 
(21) minerals.

 4. Transfer plantlets after 15 days of growth to a controlled 
chamber with 24°C day temperature, 20°C night tempera-
ture, and 12.5 h day length (60 mE/m2/s; see Note 14).

 1. Seven cultivated (NI 637, PVA 773, G 6620, G 9545, 
G 22090, G 17723, and Altense) and one wild (G 21245) 
P. vulgaris genotypes, as well as eight P. polyanthus genotypes 
(NI 429, ×1059, NI 1015, NI 1029, G 35526, G 35345, 
G 35547, and G 35348) were used for our experiments (1). 
Phaseolus embryos of different origins reacted similarly to 
modifications of the in vitro conditions (16).

 2. For preparation of stock solutions, various reagents as well 
as laboratory equipments and supplies are required 
(12, 16–18).

 3. After the treatment with calcium hypochlorite, ensure that 
the pods remain green. If the pods appear discolored, this 
may indicate that the ovules are burnt.

 4. Sugar content, osmotic pressure, and ABA level of the growth 
medium appear to exert a strong effect on physiological and 
morphological changes that occur during early development 
of immature embryos and ovules. In particular, membrane 
permeability, calcium transport, endogenous ABA synthesis, 
and precocious germination are sensitive to changes in these 
factors (16, 22–24).

 5. A low concentration (from 0.1 to 1 mL/L) of plant preservative 
mixture (PPM, Plant Cell Technology, Inc, Washington, DC 
20036 USA) may be added to media to control pod contamina-
tion. PPM contains a mixture of two isothiazolones and is a 
broad-spectrum industrial biocide reported as non- phytotoxic at 
concentrations suitable for the prophylactic control of microbial 
contaminants in plant tissue culture. Using this  protocol, 
contamination was almost completely eliminated.

 6. Pod culture method was adapted from Lazaridou et al. (25) 
and Mergeai et al. (15).

3.8. Hardening  
of Plantlets

4. Notes
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 7. Osmotic pressure of culture media should change depending 
on pod age (26, 27). When using solid media, this transition is 
carried out by applying a series of solid media: P00 medium at 
580 mosm during the first day, P01 medium at 450 for 2 days 
more, and lastly, basal medium 350 mosm for 4 days (Fig. 2).

 8. During our experiments, no germination occurred when the 
suspensor was damaged during transfer to culture medium. 
Yeung (28) and Brady and Comb (29) have demonstrated 
the active role of the suspensor in P. coccineus and P. vulgaris 
embryonic development.

 9. In general, pod growth was greater in liquid medium than in 
solid medium. However, pod growth was not correlated with 
the development of ovules or embryos; the number of pods con-
taining at least one developed ovule was not different between 
solid and liquid media. Moreover, the number of ovules longer 
than 2 mm per pod was greater in solid medium (mean of 3.7 
developed ovules per pod) compared to that in liquid medium 
(mean of 2 developed ovules per pod). The number of extracted 
embryos was also higher in solid medium (3.8 per pod) than 
that in liquid medium (1.9 per pod). The developmental stage 
of extracted embryos was quite variable, ranging from globular 
to cotyledonary. Mean embryo length was higher when extracted 
from pods of P. vulgaris cultured in liquid medium than in solid 
medium (17). P. polyanthus yielded a higher percentage of ger-
minated embryos and plantlets in acclimatisation when pods 
were cultivated in solid medium (30).

 10. The incorporation of a dehydration medium, which reflects 
the natural process of seed dehydration, considerably increases 
the number of plantlets regenerated. The importance of this 
medium is well detailed in Gamborg and Philips (31).

 11. Germination of extracted embryos is higher in P. vulgaris 
(68.7%) than in P. polyanthus (28.4% in NI 1015 and 20.7% in 
G 35348). Pod age at the time of in vitro culture does not appear 
to influence the germination capacity of the embryos (30).

 12. One factor responsible of the loss of embryos during in vitro 
culture is the development of a callus on the root apex, 
accompanied by vitrification. The callus appears between the 
25th and 30th day of culture at the end of the dehydration 
phase in more than 85% of developed embryos.

 13. A better acclimatisation rate is observed when damaged 
embryos are cultivated in germination medium containing 
GA3. A 71.29% germination rate was observed with GA3, 
compared to 47.36% in control medium.

 14. The ratio between the number of plantlets undergoing accli-
matisation and the initial number of germinated embryos is 
higher in P. polyanthus (76.2% for NI 1015 and 73.7% for 
G 35348) than in P. vulgaris (51.1%). Six weeks after the 
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onset of acclimatisation, the percent of plantlets growing out 
of the number of extracted embryos is higher in P. vulgaris 
(>30%) than that in P. polyanthus (£5%) (30).
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Chapter 11

Wide Crossing in Lentil through Embryo Rescue

Richard Fratini and Maria L. Ruiz 

Abstract

Lentil seeds have provided an appreciated source of protein, carbohydrates and fibre to the diet of humans 
since the dawn of agriculture. Low amounts of variation have been detected in the cultivated lentil ger-
mplasm collections. Interspecific crosses allow for the introgression of important alleles of agricultural 
interest from wild species, such as the resistance or tolerance to abiotic and biotic stresses. Interspecific 
crosses within the genus Lens generally abort and embryo rescue techniques are necessary to recover 
hybrids. The in vitro culture procedure to rescue interspecific hybrids of Lens consists of at least four dif-
ferent stages: (1) in ovulo embryo culture (2), embryo culture, (3) plantlet development and finally, 
(4) the gradual habituation to ex vitro conditions of the recovered interspecific hybrid plantlets. In this 
chapter, the approach to rescue interspecific hybrids in the genus Lens is outlined.

Key words: Interspecific hybridization, Legume, Lens, Ovule-embryo culture, Pulse crop

1. Introduction

Pollination followed by fertilization normally leads to the production 
of an embryo, which in the intact plant is linked with normal seed 
development. Crossability is defined (1) as the potential for inter-
crossing individuals belonging to the same or different taxa and for 
producing embryos or seeds that can give rise to an F1 plant. 
Crossability is either limited by incompatibility or by incongruity; 
the sexual barriers belonging to the second aspect have been divided 
into pre- and post-fertilization barriers (2). Part of post-fertiliza-
tion barriers may be overcome by using in vitro embryo rescue 
methods (3), although depending on plant species, the process can 
entail the culture of ovaries immediately after pollination and/or in 
ovulo embryo culture and/or embryo culture. Ladizinsky (1) 
explained that success in lentil crosses depends on the interaction 
between the parental genomes in the hybrid zygote, embryo or 

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_11,  
© Springer Science+Business Media, LLC 2011
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endosperm and between the hybrid tissue and the surrounding 
maternal tissue. The crossability between lentil and its wild relatives 
is hampered by pre- and post-fertilization barriers (4–8).

Lentil (Lens culinaris Medik.) belongs to the group of crops 
first domesticated in the Near East Fertile Crescent, concretely in 
the foothills of the mountains of southern Turkey and northern 
Syria (9, 10). It has been cultivated for at least 10,000 years in the 
most difficult agricultural environments, growing in poor soils 
and withstanding a high degree of drought and cold resistance. 
Throughout the ages lentil seeds have contributed an appreciated 
source of protein, carbohydrates and fibre to human food con-
sumption habits. As a pulse crop belonging to the cool season 
food legumes, lentil is also valued in crop rotations with cereals to 
replenish soil nitrogen levels. In addition, the whole plant may 
also be used as animal fodder. Lentil flowers are complete with a 
typical structure of the sub-family Papilionaceae of the Leguminosae 
family, the cultivated species with cleistogamous flowers (11) is self-
pollinated with a degree of outcrossing which ranges between 0.06 
and 5.12% depending on cultivar, location and year (12, 13).

An essential aspect for breeding genetically improved lentil 
cultivars is to possess abundant amounts of genetic variability. 
Unfortunately, low levels of variation have been identified in the 
cultivated lentil germplasm collections (14–19). Artificial cross-
pollination in a highly self-pollinated crop species, such as lentil, 
is important to generate genetic variability. With regard to wide 
crosses, interspecific hybridization allows for the introgression of 
important alleles of agricultural interest from wild species to cul-
tivars, as for instance, the resistance or tolerance to abiotic and 
biotic stresses (20–22).

The genus Lens comprises of the cultivated lentil (L. culi-
naris subsp. culinaris), which includes small seeded (microsperma) 
or large seeded (macrosperma) varieties, its wild ancestor L. culi-
naris subsp. orientalis, as well as the species L. odemensis, L. nig-
ricans, L. ervoides, L. tormentosus and L. lamottei (10, 22). 
Intraspecific crosses between cultivated lentils produce viable 
descendants (23–27). With regard to intersubspecific hybrids of 
lentil, it has been reported that the domesticated lentil is readily 
crossable with subspecies orientalis (10, 21, 22, 27, 28), although 
the fertility of the hybrids depends on the chromosome arrange-
ment of the wild parent (28, 29). Interspecific crosses within the 
genus Lens abort (4, 7) and embryo rescue techniques are neces-
sary to recover hybrids (30–32). Nonetheless, by applying GA3 
to developing pods viable interspecific Lens hybrids have been 
obtained (33). Hybridization by hand-pollination followed by 
embryo  rescue is in some cases the only practical method to 
recover interspecific hybrids of Lens. However, a major bottle-
neck of the method is to obtain enough embryos to rescue 
in vitro. Emasculation and artificial crossing are difficult due 
to different characteristics of the reproductive system of lentil 
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(small and fragile cleistogamous flowers and low seed per pod 
set), manual crossing is tedious and often unsuccessful or entails 
a low success rate (27, 32).

So far, only two embryo rescue protocols have been published 
in lentil to recover hybrids of wide crosses (30, 32). In the first 
case (30), ovule-embryos were collected 2 weeks after pollination 
and cultured on MS medium (34) supplemented with 10% sucrose 
and 0.2 mg/L IAA + 0.5 mg/L ZEA + 0.5 mg/L GA3 and 0.9% 
agar. After 1 week in culture, embryos were excised from the ovu-
lar integuments and placed on MS medium supplemented with 
3% sucrose and 0.2 mg/L IAA + 0.2 mg/L ZEA and 0.9% agar, 
the method has allowed for the recovery of interspecific hybrids 
between the cultivated lentil and L. ervoides and L. nigricans. 
Afterwards, using the same embryo rescue procedure, interspe-
cific hybrids between the cultivated lentil and L. ervoides were 
again obtained (31). With regard to the second embryo rescue 
technique (32), interspecific hybrids between the cultivated lentil 
and L. odemensis, L. ervoides and L. nigricans have been recovered 
in our laboratory. The main differences between both methods 
are the number of media used and the amount of carbohydrate 
added to the media. Whereas in the first study (30), media were 
supplemented with 10 and 3% of sucrose, the medium used in our 
procedure contained only 1% sucrose (32). With regard to the 
phytohormones, both procedures have approximately equivalent 
concentrations of auxins and cytokinins, even though ZEA (30) 
and KN (32) were respectively used.

In order to illustrate the approaches used to obtain hybrids of 
wide crosses in the genus Lens, the details of our work carried out 
by performing hybridizations and embryo rescue between Spanish 
landraces of lentil (L. culinaris M.) and L. odemensis, L. ervoides 
and L. nigricans will be shown. Taking into account the rescue of 
interspecific Lens hybrids, the in vitro culture procedure consists 
of at least four different stages: (1) in ovulo embryo culture, 
(2) embryo culture, (3) plantlet development and finally, (4) the 
gradual habituation to ex vitro conditions of the recovered inter-
specific hybrid plantlets.

 1. Lentil rescue medium (LRM). LRM medium is based on the 
Murashige and Skoog (MS) (34) basal medium (Sigma) sup-
plemented with 1 mM Indole-3-acetic acid sodium salt (IAA) 
(Sigma) + 0.8 mM 6-Furfurylaminopurine (KN) (Sigma) and 
1% (w/v) sucrose (10 g/L) plus 0.8% (w/v) American bacte-
riological agar (Pronadisa) (8 g/L). Adjust the pH of the 
 culture medium to 5.7 before adding the agar, autoclave for 
20 min at 121ºC. After autoclaving add the phytohormones 

2. Materials
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previously sterilized using a 0.22 mm nitrocellulose filter 
(Millipore).

 2. Phytohormone stock solutions can either be prepared at a 
1,000× (1 mM/mL) or 10,000× (10 mM/mL) strength rela-
tive to the final concentration and are stored cold (5ºC). 
Culture medium is placed in Petri dishes (20 mL) and in test 
tubes (20 mL) (see Note 1).

 3. 70% (v/v) ethanol and 70% commercial bleach (5% NaOCl) 
for surface sterilization.

 4. Pots of approximately 1 and 10 L, enriched peat (COMPO 
SANA Universal; www.compo.es) and vermiculite are need at 
various stages.

 5. General laboratory equipment and supplies: forceps, micro-
scope slides, pots and plastic bags.

 1. In order to harvest pollen, remove anthers from flowers with 
a relation of petals to sepals of ¾, 1 to 1 and open flowers; 
place anthers on a microscopic slide and carefully squash with 
the forceps to release pollen grains (see Note 2).

 2. Carry out emasculation and hybridization when the petals of 
flowers have reached three-quarters of the length of the 
sepals. Hold the flower bud between the thumb and the fore-
finger with the standard facing the operator, take particular 
care not to bend or twist the peduncle; use sharp-pointed 
forceps to remove the sepals and to twist back the standard, 
then incise the upper end of the keel to open the flower and 
to remove all of the ten anthers, pay attention not to touch 
the stigma with anthers or forceps so as to avoid selfing or 
damage of the stigma, pollinate manually immediately after 
emasculation; push out the stigma of the flower previously 
emasculated and rub three consecutive times on the micro-
scope slide carrying the pollen; after pollination, return the 
standard, the keel and the wings to their original position 
around the pistil and tag flower buds (see Note 3).

 3. Harvest pods of wide crosses 18 days after pollination (DAP) 
(see Note 4).

 4. Surface sterilize pods by immersion for about 5 s in 70% etha-
nol followed by immersion in the bleach solution for 
5–10 min.

 5. After surface sterilization, rinse pods three consecutive times 
with sterile water in a laminar flow cabinet.

3. Methods

3.1. Obtaining 
Material, Explant 
Preparation 
and Sterilization
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 6. In order to obtain ovule-embryos, cut and split open lentil 
pods of wide crosses with a scalpel at the seam opposite to 
that where the ovules via the funiculus are attached to the 
pericarp (see Note 5).

 1. Place only one ovule-embryo in a Petri dish containing the 
LRM medium so as to avoid loss of other explants due to 
contamination, only the micropylar end of the ovule should 
be in direct contact with the medium (see Note 6).

 2. Culture ovule-embryos for 2 weeks in a growth chamber at 
25 ± 1ºC exposed under a 12 h photoperiod to a photosyn-
thetic photon flux density (PPFD) of 30 mmol/m2/s (see 
Note 7).

 1. Cut open ovules at the end opposite to that of the micropyle 
and carefully excise embryos from the ovular integuments 
(see Note 5).

 2. Place only one embryo per Petri dish containing LRM 
medium to avoid loss of other explants due to contamination, 
culture embryos in an upright position with the medium 
reaching up to the hypocotyl (see Note 8).

 3. Culture embryos for about 2 weeks (see Note 9) in a growth 
chamber at 25 ± 1ºC and exposed under a photoperiod of 
12 h (see Note 10) to a light intensity of 60 mmol/m2/s.

 4. Transfer the rescued embryos to test tubes holding LRM 
medium, place in upright position with radicle entirely sub-
merged and medium reaching up to the hypocotyl (see 
Note 8).

 5. Maintain for approximately a month the test tubes contain-
ing the interspecific hybrid embryos in a growth chamber 
at 25 ± 1ºC exposed to a 12 h photoperiod of 75 mmol/
m2/s, allow embryos to develop into plantlets (see Notes 
10 and 11).

 1. Transfer the hybrid lentil plantlets recovered from test tubes 
to a greenhouse programmed to maintain 25 ± 5ºC and place 
in 1 L pots containing a 1:1 mixture of enriched peat and 
vermiculite and covered with plastic bags. Leave covered for 
at least a week (see Note 12).

 2. Perforate progressively the plastic bags for about another 
week to slowly acclimatize plantlets to ex vitro conditions 
until pots are finally left uncovered.

 3. Transplant the recuperated interspecific hybrids to large 10 L 
pots containing a 1:1 mixture of clay soil and enriched peat 
(see Note 13).

3.2. Ovule-Embryo 
Culture

3.3. Embryo Excision 
and Culture

3.4. Plantlet Hardening
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4. Notes

 1. For stock solution preparation, usage of implements, equipment, 
and so on, as well as requirements for a tissue culture facility 
(see (35–37)).

 2. Use preferentially vigorous plants as pollen donors; fertiliza-
tion may be aided by collecting pollen in different develop-
ment stages ranging from flowers in the ¾ stage of petals to 
sepals up to the blossom stage.

 3. Only vigorous plants should be used for emasculation and 
hybridization, careful attention must be made so as not to 
damage the tiny and delicate lentil flowers. Hybridization 
success in lentil is generally favoured by high relative humid-
ity (RH) conditions, shading and temperatures ranging 
between 20 and 25ºC (24, 25, 27). After wide crosses are 
made, plants should be pruned of open flowers and selfed 
pods (27). For more information regarding hybridization 
technique in lentil (see (11, 23–27, 38)).

 4. Abortion of wide crosses in lentil usually takes place around 
18 DAP (32), depending on environmental conditions and 
cross combination. Nevertheless, crosses with certain  
L. odemensis accessions do not need rescue (29), while crosses 
with L. nigricans, L. ervoides, L. tormentosus and L. lamottei 
might abort earlier and pods should be harvested around 14 
DAP (4, 7, 30, 31).

 5. Proceed immediately to the next step to avoid explant 
dehydration.

 6. Placing ovules flat on medium might result in swelling of the 
embryo’s radicle and/or hypocotyl or overall callus forma-
tion depending on cross combination and on time elapsed 
until the moment of rescue (with younger tissues more sensitive 
to medium components) (32).

 7. After a 2-week culture period, ovular integuments become 
pale green and holding the ovule against light allows us to 
clearly spot the embryo which has increased in size. These 
ovules are ready to proceed to the next step. In contrast, 
immature embryos which have not increased in size may con-
tinue culture for another 1–2 weeks.

 8. Maintaining the natural geotropism of embryos aids rescue, 
horizontal embryo culture on medium might result in radicle 
and/or hypocotyl swelling or abnormal development (32).

 9. Culture period depends on rate of embryo development, the 
apical meristem should not be allowed to touch the lid of the 
Petri dish in order to avoid the vitrification of tissues, proceed 
to the following step of hybrid plantlet culture in a test tube 
according to epicotyl elongation.
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 10. As a cool season pulse legume, lentil is a long-day plant char-
acterized by a flowering induction at circa 14 h of daylight; 
keeping the in vitro cultures exposed to a 12-h photoperiod 
maintains the juvenile phase and allows for a prolonged veg-
etative development of the interspecific hybrids.

 11. Culture period depends on rate of plantlet development, 
plantlets should be allowed to develop a functional radicular 
system with secondary roots and the epicotyl should possess 
at least four nodes before proceeding to the next stage of 
gradual habituation to ex vitro conditions (see Fig. 1 of 
ref. (32)).

 12. Ex vitro acclimatization conditions are extremely important; 
survival and vigour of interspecific hybrid lentil plantlets are 
maximized by bagging each pot individually, on the contrary, 
acclimatization tunnels with a continuously operating fog 
system are not well tolerated.

 13. Lentil plants grow well on sandy loamy to heavy soils pro-
vided they are well drained. However, vitality is maximized by 
transferring interspecific hybrid lentil plantlets into the large 
pots containing a non-sterilized equal mixture of clay soil and 
enriched peat to assure symbiotic nodulation. Establishing 
plants early in the season allows for an extended vegetative 
development phase which is suitable to maximize the produc-
tion of F2 seeds. Nevertheless, due to the limited number of 
interspecific lentil hybrids obtained in certain desirable cross-
combinations, together with the fact that in determined inter-
specific hybrids the F2 seed production might be scarce, the 
in vitro propagation of interspecific hybrids is an appropriate 
method to multiply and construct large F1 populations which 
produce abundant numbers of segregating F2 descendants 
useful for further genetic study and breeding (39).
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Chapter 12

Generation of Interspecific Hybrids of Trifolium Using 
Embryo Rescue Techniques

Ajoy Kumar Roy, Devendra Ram Malaviya, and Pankaj Kaushal 

Abstract

The genus Trifolium Leguminosae (Fabaceae), commonly called clovers, includes 237–290 annual and 
perennial species, of which about 20 are important as cultivated and pasture crops. Taxonomic distribu-
tion supported by molecular analysis indicates that Mediterranean region is one of the main centers of 
distribution of the genus and also a center of domestication and breeding. Self-incompatibility is preva-
lent in the genus, controlled by a single, multiallelic gene expressed gametophytically in the pollen. It was 
suggested that hybridity did not play a major role in the evolution of the genus due to the poor cross-
ability of the species under natural conditions. Interspecific hybridization in the genus Trifolium by 
conventional crossing techniques has been largely unsuccessful. Post-zygotic barriers appear to be a pri-
mary cause of the reproductive isolation, associated with endosperm disintegration and consequent 
abnormal differentiation and starvation of the hybrid embryo. As hybridization using conventional tech-
niques has almost failed in Trifolium, embryo culture technique was used by breeders to obtain new 
combinations of interspecific hybrids. Embryo culture has been effectively used in developing interspe-
cific hybrids in Trifolium ambiguum, T. pratense, T. montanum, T. occidentale, T. isthomocarpum, 
T. repens, T. nigrescens, T. uniflorum, T. sarosiense, T. alexandrinum, T. apertum, T. resupinatum, 
T. constantinopolitanum, T. rubens, and T. alpestre in various combinations. The successful embryo  rescue 
and development of hybrid plantlets requires skilled techniques of tissue culture and field practices. It 
includes hybridization in field; excision of hybrid embryos at appropriate stage; disinfection and culture in 
suitable culture media to allow maturation of embryo, multiplication of shoots, and rooting; hardening 
of the plantlets; inoculation with suitable Rhizobium culture; and transfer to field.

Key words: Clovers, Embryo rescue, Forage, Interspecific hybridization, Pasture, Tissue culture, 
Trifolium, Zygote

The genus Trifolium of tribe Trifolieae of the Leguminosae 
(Fabaceae) is very important for its agricultural value. The genus 
Trifolium, commonly called clover, includes 237–290 annual and 

1. Introduction

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_12,  
© Springer Science+Business Media, LLC 2011
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perennial species, of which about 20 are agriculturally important 
as cultivated and pasture crops.

The important perennial pasture clovers T. repens (white 
 clover), T. hybridum (alsike clover), T. pratense (red clover), and 
T. ambiguum (Caucasian clover) are widely distributed in the 
temperate and subtemperate regions of the world. The annual 
types T. alexandrinum (Egyptian clover or Berseem), T. resupinatum 
(Persian clover or Shaftal), and T. subterraneum (subterranean 
clover) are commonly cultivated as winter annuals in the sub-
tropical regions such as Egypt, India, Pakistan, Turkey, and the 
Mediterranean countries.

Mediterranean region with its 110 species belonging to 7  sections 
is accepted as one of the main centers of distribution of the genus 
and also as a center of domestication and breeding (1). Molecular 
analysis also supported the Mediterranean origin of the genus 
with new world clade embedded with old world species (2). Based 
on nrDNA and cpDNA markers, it was suggested that the genus 
has a monophyletic origin in the Mediterranean region (3). 
Another center of distribution is the Californian region which is 
considered as a primary center of speciation of the genus, although 
the number of the species in this region is lower. It was suggested 
that some of the species native to the western part of America 
migrated to Asia and then spread to the Mediterranean area, 
where they created a highly diversified speciation center (4, 5).

Self-incompatibility is prevalent in the genus and is reported to be 
controlled by a single, multiallelic gene expressed gametophyti-
cally in the pollen. Populations of self-incompatible species of 
clover contain a large number of S-alleles (6, 7). However, true 
self-compatibility is conferred by the very rare “Sf ” allele (8).

Populations of T. repens have been reported to contain about 
100 alleles and those of T. pratense contain up to twice this num-
ber, while T. hybridum populations possesses only 17 S-alleles (9). 
In T. alexandrinum (Egyptian clover), using different pollination 
methods ranging from selfing, tripping, and controlled bee visit 
to open pollination, it was proved that genotypes can be grouped 
into four classes ranging from total self-fertile to total self-
incompatible class. Thus in this species, several populations with 
different breeding mechanisms exist (10).

Interspecific hybridization in the genus Trifolium has been largely 
unsuccessful. Near absolute failure of interspecific hybridization 
in Trifolium is of great evolutionary interest. Great variation in 
chromosome complexes in Trifolium has been suggested to be a 
result of mutational changes in species, which have become iso-
lated by intersterility rather than the result of hybridization. Thus, 
while early in the evolution of Trifolium, natural hybridizations 
have taken place, later mutational and chromosomal changes were 

1.1. Center of Origin

1.2. Self-
Incompatibility

1.3. Interspecific 
Compatibility
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dominant factors in the speciation of this genus. This resulted in 
the cytological incompatibility between the species which is 
responsible for the failure of most interspecific crosses in 
Trifolium (11). Isozymes study in 134 accessions belonging to 25 
species indicated the existence of a strong incompatibility barrier 
among the species (12). It was suggested that hybridity did not 
play a major role in the evolution of the genus Trifolium due to 
the poor crossability of the species under natural conditions (4).

Reports on the development of interspecific hybrids in 
Trifolium under natural conditions are meager. Successful hybrid-
ization between T. repens and T. nigrescens without embryo cul-
ture has been reported (13). T. occidentale, T. uniflorum, and 
T. ambiguum have been reported to produce occasional hybrids 
with T. repens (14, 15).

Interspecific hybridization in Trifolium is very difficult to 
obtain by conventional crossing techniques, since strong pre- and 
postfertilization barriers exist in the genus. Post-zygotic barriers 
appear to be a primary cause of the reproductive isolation, which 
is commonly associated with endosperm disintegration and con-
sequent abnormal differentiation and starvation of the hybrid 
embryo (16–18).

In many interspecific crosses, the embryo starts growing 
normally only for 2–4 days. The hybrid embryo grows up to 
heart-shaped stage in T. ambiguum × T. repens (18) and up 
to globular stage in T. semiplosum × T. repens (17). Slower mitotic 
rate was recorded after 4–5 days in T. repens × T. medium hybrid 
embryo (19). These studies suggest that the action of deleterious 
genes is initiated at the time of fertilization or shortly thereafter. 
Endosperm disintegration is another phenomenon associated with 
failure of embryo development. In T. ambiguum × T. repens crosses, 
the endosperm develops only up to 128 nucleate stage (18).

As hybridization using conventional techniques has almost failed 
in Trifolium, embryo culture technique was used by breeders to 
obtain new combinations of interspecific hybrids.

The first successful Trifolium embryo culture was reported by 
Keim (20), by obtaining normal mature plants by culturing  immature 
embryos (8 days post-pollination) of red clover. Fifteen days post-
pollination, the embryos were cultured from T. repens × T. nigrescens 
cross and mature hybrid embryos were obtained. Hybrids of  
T. ambiguum × T. hybridum were obtained utilizing embryo culture 
technique; however, these hybrids did not flower (20).

Embryo culture has been effectively used in developing inter-
specific hybrids in T. ambiguum, T. pratense, T. montanum, T. occi-
dentale, T. isthomocarpum, T. repens, T. nigrescens, T. uniflorum, 
T. sarosiense, T. alexandrinum, T. apertum, T. resupinatum, and 
T. constantinopolitanum in different combinations (15, 21–34).

Embryo rescue technique was used in interspecific crosses 
involving red clover with zigzag clover, T. rubens, T. alpestre, 

1.4. Embryo Rescue 
Technique for 
Interspecific 
Hybridization  
in Trifolium



144 Roy, Malaviya, and Kaushal

T. incarnatum, T. lupinaster, and T. hybridum. Embryos were 
available 8–15 days after pollination in crosses with zigzag clover, 
T. rubens, T. alpestre, and T. hybridum. However, embryos 
developed abnormally and no hybrid plants were rescued (34).

Generation of new plants from T. repens crossed with Kura 
clover, T. nigrescens, T. uniflorum, and T. isthomocarpum has 
been reported (35). Successful rescue of immature hybrid 
embryos of diploid red clover crosses with T. sarosiense (2n = 48) 
by in vitro culture (36) and of crosses of red clover with zigzag 
clover and T. alpestre was reported (23). Successful hybridiza-
tion and recovery of plants following embryo rescue have been 
reported in case of T. alexandrinum × T. constantinopolitanum 
(29), T. alexandrinum × T. apertum (30), and T. alexandrinum ×  
T. resupinatum (31).

Transplanted nurse endosperm was utilized to culture heart-
shaped embryos excised 14–16 days after pollination from white 
clover by tetraploid kura clover crosses (15). Success was achieved 
in 10% of the embryos and plantlets were produced after 4–6 
months. Embryo culture with the aid of nurse endosperm was 
used in Trifolium (37).

Ovule culture has been used for the production of interspe-
cific hybrid between T. ambiguum and T. repens (38). It was 
reported that ovules of T. repens could be cultured as early as 1 day 
after pollination when the proembryo was at the two-celled stage, 
but only on a medium supplemented with the juice of water melon 
or young cucumber (39).

White clover has been successfully hybridized with six 
Trifolium species such as T. nigrescens (34, 40), T. uniflorum (14, 
24, 34, 41), T. argutum (syn T. xerocephalum (42)), T. occidentale 
(43), T. isthomocarpum (44), and T. ambiguum (25, 45). In crosses 
with T. repens × T. nigrescens and T. repens × T. uniflorum, imma-
ture embryos excised 12–25 days after pollination were cultured 
and hybrid plants were raised. In crosses of white clover with  
T. alexandrinum, T. subterraneum, and T. arvense, embryos 
were cultured, but showed either abnormal or no growth (34). 
Triploid male and female sterile hybrids were obtained from 
crosses of T. pratense (2n = 28) and T. pallidum (2n = 16) (46).

Embryo and ovule culture were successfully used to develop 
interspecific hybrids in various combinations of Trifolium 
 species (22). A sterile hybrid was obtained using immature embryo 
 culture in T. alpestre × T. pratense cross (21). Development of 
hybrids of T. repens with T. hybridum using in ovulo embryo and 
embryo culture was reported. Ovules containing hybrid embryos 
were excised 12–14 days after pollination and cultured for 5–6 
days on Nitsch medium (47) supplemented with 15% young 
cucumber juice. The embryos were subsequently excised and 
transferred to a hormone-free EG medium. A total of 118 hybrid 
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seedlings were obtained, all of which showed chlorophyll 
 deficiency (26).

Methods for the rescue of heart-staged hybrid embryos of red 
clover prior to in situ abortion were developed and standardized. 
A series of defined culture media were adjusted for the osmotic 
sensitivity of immature embryos and for maturation of embryos, 
promotion of shoot germination and development, multiplica-
tion of shoots, and rooting. Plant regeneration was also achieved 
from some embryos which produced only callus (36).

 1. Hybridization: Glass house or field conditions for raising 
crops. Needle, forceps, brush, alcohol, hand lens, etc.

 2. Embryo rescue and culture: Tissue culture facility including 
laminar air flow, inoculation chamber, tissue culture racks, 
standard tissue culture media, and chemicals as per Table 1.

 3. Hardening of plants: A glasshouse facility will be better for 
hardening and establishment.

 4. Culture media: The compositions of various media used are 
detailed in Table 1. The basal media used are EG, MS, L2, 
and RL. The EC3 medium is composed of the Murashige and 
Skoog (MS) basal medium supplemented with 2.3 mM kine-
tin and 3% sucrose. The LSP3 medium is based on the L2 
basal medium supplemented with 4.3 mM a-naphthalene acetic 
acid (NAA), 0.66 mM 6-benzyladenine(BA; see Note 1), and 
2.5% sucrose. The RL1 medium is based on the RL basal 
medium supplemented with 1.2 mM indole-3-acetic acid 
(IAA) and 2.5% sucrose. The LIH medium is composed of 
the L2 basal medium supplemented with 0.365 M sucrose, 
25 nM picloram, and 15 mM adenine. The LSP2 medium is 
composed of L2 basal medium supplemented with 4 nM 
picloram and 0.66 mM BA.

 5. Cucumber juice preparation: Juice from the fresh green ten-
der cucumber is made in distilled water, sterilized by mem-
brane filtration, and added post-autoclaving to the medium 
as per the procedure detailed by Nakajima et al. (39); 15% 
cucumber juice is recommended.

 6. Rhizobium solution: The easiest way is to take out young 
green plants of same species carefully from field. From the 
roots of these plants, young pinkish nodules are taken out, 
washed, and crushed in distilled water. This solution contains 
enough strains of Rhizobium to inoculate the young plants at 
the time of hardening.

2. Materials
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 7. Rhizobium trifolii: Any native strain will serve the purpose. 
It will vary from location to location and from species to 
species.

 8. Sterilizing solutions: 0.1% mercuric chloride; 40% commer-
cial bleach.

 9. Supplies: Waxed paper bags, needles, brushes, dissection 
tools, cellophane paper, and 0.2-mm filter units.

Table 1 
Composition of L2, MS, RL, and EG basal media (26, 48, 49)

Components
EG medium 
(mg/L) MS basal L2 basal RL basal

KNO3 950 18.8 mM 20.8 mM 10.4 mM

NH4NO3 600 20.6 mM 12.5 mM 6.25 mM

KH2PO4 170 1.25 mM 2.34 mM 2.34 mM

MgSO4 · 7H2O 185 1.5 mM 1.8 mM 0.9 mM

CaCl2 · 2H2O 166 3.0 mM 4.1 mM 2.0 mM

NaH2PO4 – – 0.6 mM 0.3 mM

FeSO4 · EDTA · 
7H2O

27.85 100 mM 90 mM 90 mM

Na2 · EDTA · 2H2O 37.25 100 mM – –

MnSO4 · 4H2O 2.23 100.0 mM 90 mM 45 mM

H3BO3 0.62 100.0 mM 82 mM 41 mM

ZnSO4 · 7H2O 0.86 30.0 mM 18 mM 9 mM

KI 0.083 5.0 mM 6 mM 3 mM

Na2MoO4 · 2H2O 0.025 1.03 mM 1.7 mM 0.85 mM

CoCl2 · 6H2O 0.0025 0.105 mM 0.42 mM 0.21 mM

CuSO4 · 5H2O 0.0025 0.1 mM 0.4 mM 0.2 mM

Myo-inositol – 100 mg/L 1.4 mM 0.7 mM

Thiamine HCl – 0.1 mg/L 6 mM 3.0 mM

Pyridoxine HCl – 0.5 mg/L 2.4 mM 1.2 mM

Nicotinic acid – 0.5 mg/L – 8.5 mM

3-Aminopyridine – – – 24 mM

Sucrose – 87.6 mM 73 mM 44 mM

Glucose 30 g/L – – –

Agar 7 g/L 0.7% 0.8% 0.65%

pH 5.8 5.8 5.8 5.8
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Protocols for developing interspecific hybrids are detailed below. 
This section has been divided into three parts depending upon 
the female parent used: (a) T. alexandrinum, (b) T. pratense, and 
(c) T. repens.

 1. The crop (both male and female parents (for female parent, 
see (29–31) and personal experiences)) should be raised as 
per standard agronomic practice recommended for the crop 
in that particular zone. Staggered sowing should be done if 
the flowering time differs in the parents. It will ensure avail-
ability of pollen and receptive stigma for crossing.

 2. Emasculate flower buds prior to anther dehiscence in early morn-
ing hours. Remove the anthers and bag the emasculated flowers 
using waxed paper bags to prevent drying up (see Note 2).

 3. Pollinate emasculated flower buds by applying pollen gently 
to the stigma using a needle or a brush. For pollination, col-
lect pollen from freshly opened flowers of the male parent.

 4. After pollination, cover the flowers with waxed paper bags 
and label properly.

 5. Watch for indicators of fertilization such as petal weathering, 
swollen ovary, etc.

 1. The time of excision of flowers depends on different cross 
combinations. Usually, in interspecific hybrids, growth of 
embryo is slow. Embryo excised at the heart-shaped stage 
(10–12 DAP) was found to respond best.

 2. Take the pollinated flowers to the laboratory, dissect the swollen 
ovaries, and surface sterilize for 2 min using 0.1% mercuric 
chloride.

 3. Dissect the embryos from ovaries and culture on EC3 medium 
containing MS (48) basal medium supplemented with 2.3 mM 
kinetin and 3% sucrose.

 4. The embryos are initially kept in the dark for 2 days; after 
germination, they are cultured at 25 ± 2°C under a 16/8-h 
(light/dark) photoperiod.

 5. Subculture the germinated embryos in the shoot-inducing 
LSP3 medium supplemented with 4.3 mM NAA, 0.66 mM 
BA (see Note 1), and 2.5% sucrose. It helps in accelerated 
growth of the plantlets and multiple shoot formation.

 6. For root induction, split multiple shoots and transfer them 
separately in RL1 medium (49) supplemented with 1.2 mM 
IAA (see Note 3) and 2.5% sucrose.

3. Methods

3.1. T. alexandrinum 
as Female Parent

3.1.1. Hybridization in Field

3.1.2. Embryo Rescue  
and Culture
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 1. Keep the embryo-rescued plants in the culture tubes out of 
the culture room for 2–3 days at room temperature (30°C).

 2. Remove the plants from the culture tubes, free them of media, 
and keep for an additional day with the roots submerged in 
sterilized distilled water. High humidity should be maintained 
by covering the plant with cellophane paper.

 3. Inoculate with Rhizobium culture suitable for the female 
parent (see Note 4).

 4. Transfer the regenerated plants to sterile soil in pots (see 
Note 5).

 5. Protect the plants from direct sunlight for the first 3–5 days 
in the field.

 1. Hand-pollinate target female flowers with desired genotypes/
species.

 2. Collect the female pollinated florets 14–19 days after pollina-
tion. The time varies for different species combinations.

 3. Disinfect the florets by rinsing with water, immerse in 70% 
ethanol for 1–2 min, transfer to 40% commercial bleach (2% 
sodium hypochlorite) for 5–8 min, and rinse in sterile, deion-
ized distilled water for 5 min.

 4. Excise immature embryos from each floret and place them 
individually onto LIH medium for 8–14 days at 25°C under 
low-intensity light. It helps in embryo maturation.

 5. Transfer the embryos to LSP2 medium for shoot emergence 
and development (see Note 6).

 1. Place individual shoots on RL medium at 25°C under low-
intensity light. Normally, roots appear within 2–4 weeks.

 2. An additional 1 month culture on fresh RL medium encourages 
further root and plant development.

 1. Free the plants of agar by using forceps and rinse gently in 
lukewarm water.

 2. Pot the plants in a mixture of soil, peat, and prewashed ver-
miculite (1:1:1, by volume). Root tips must be planted in a 
downward orientation (see Note 5). Inoculation with R. trifolii 
is performed at this time.

 3. Conditions of high humidity must be provided for about 
2 weeks. After about 2 weeks, most plants adjust to normal 
greenhouse conditions and can then be transplanted in the 
field.

 1. Make crosses by hand pollination. In case of self-compatible 
plants, emasculate the flowers, or where the plants were known to 
be self-incompatible or male sterile, no emasculation is required.

3.1.3. Hardening of Hybrid 
Plantlets, Transfer to Field, 
and Their Growth

3.2. T. pratense as 
Female Parent (49 )

3.2.1. Embryo Rescue  
and Culture

3.2.2. Rooting of Shoots

3.2.3. Hardening

3.3. T. repens as 
Female Parent (26)
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 2. Remove pods 12–14 days after pollination and surface 
sterilize for 90 s in 70% alcohol and then for 10 min in 
20% “Janol” (Commercial bleach, 5% sodium hypochlorite), 
followed by two rinses in sterile distilled water.

 3. Dissect stimulated ovules aseptically and culture for 5–6 days 
on Nitsch medium (47) supplemented with 15% young 
cucumber juice (39). Sterilize the juice by membrane filtra-
tion and add to the medium aseptically post-autoclaving.

 4. Check all the ovules for the presence of embryos after 5–6 
days. Gently remove the ovule containing an embryo to nutri-
ent medium in a drop of sterile water.

 5. Culture immature embryos in EG medium developed princi-
pally for T. repens.

 6. Maintain in vitro cultures in a temperature-controlled growth 
room and at a light intensity of 600 Lux for 16 h with 18°C 
at night.

 7. Transfer developing embryos to fresh medium every 3 weeks. 
Transfer plants with four to five trifoliate leaves to a half-
strength MS medium (48) for hardening.

 8. After development of four to five normal foliage leaves, remove 
the plants from sterile culture and transplant to soil. This needs 
a hardening step similar to that used for T. pratense as described 
under Subheading 3.2.3. Keep in a humidity chamber for 
7–10 days and subsequently transfer to the glass house.

 1. BA is dissolved in 1 N NaOH and final volume made up with 
H2O.

 2. In case of Egyptian clover, emasculation in the morning hours 
when temperature is 20–25°C was found to be the best. 
Pollination 48 h after emasculation was found to be most 
appropriate.

 3. IAA solutions should be stored in amber-colored bottles 
in dark.

 4. For inoculation with Rhizobium, green plants in the field 
were carefully uprooted. Young pinkish live nodules were 
taken out from root surface, washed with distilled water, and 
crushed in the water solution. Roots from tissue culture-
derived plants are dipped in this solution for 24 h before 
transplanting to the field. It was found to be quite effective 
for nodulation of new plantlets.

 5. During transplanting in pots, extra care should be taken that 
root tips do not break and roots are pointed downwards.

4.  Notes



150 Roy, Malaviya, and Kaushal

 6. As the crossing and culture protocols are difficult and hybrids 
are generally obtained in very small numbers, it is desirable to 
multiply the hybrids. It is more important as the hybrids are 
often obtained when the crop growing season is over. So the 
hybrids are multiplied and maintained in vitro till the next 
growing season when they are transplanted in the field.
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Chapter 13

Cryopreservation of Embryos: An Overview

Florent Engelmann 

Abstract

Cryopreservation (liquid nitrogen, −196°C) is the only safe and cost-effective option for long-term 
 conservation of genetic resources of non-orthodox seed species. Cryopreservation protocols have been 
developed for various materials including seeds, dormant buds, cell suspensions, calli, apices, zygotic, and 
somatic embryos of numerous plant species. Zygotic embryos or embryonic axes of almost 100 different 
species and somatic embryos of almost 40 different species from both temperate and tropical climates, 
comprising crops, fruit, and forest trees as well as wild species, whose seeds displayed orthodox, intermedi-
ate, and recalcitrant storage characteristics, have been successfully cryopreserved. With zygotic embryos 
and embryonic axes, the desiccation technique has been used with the majority of the species tested, lead-
ing to highly variable survival and recovery after freezing, especially during earlier experiments. More 
recently, new cryopreservation techniques viz. encapsulation-dehydration and vitrification have been 
employed, leading to generally improved results. With somatic embryos, different cryopreservation meth-
ods have been used viz. desiccation, pre-growth-desiccation, encapsulation-dehydration, vitrification, 
encapsulation-vitrification, and droplet-vitrification. There are also a few examples of the utilisation of slow 
controlled freezing, which correspond to the earlier experiments performed with somatic embryos. The 
development and application of cryopreservation is significantly more advanced for somatic embryos, in 
comparison with zygotic embryos, mainly because of the different origin and characteristics of the species 
treated. In most cases, zygotic embryos originate from tropical, wild species, for which knowledge and 
techniques relevant to the development of cryopreservation protocols are limited, or even non-existent. 
By contrast, somatic embryos are generally produced from cultivated species, which have already been 
studied extensively and for which propagation techniques are already operational. A number of technical 
possibilities to explore exist in order to improve the development of cryopreservation protocols for zygotic 
embryos and embryonic axes. For both categories of materials, the utilisation of analytical techniques has 
proved to be extremely useful to assist in the development of cryopreservation protocols.

Key words: Conservation, Cryopreservation, Genetic resources, Somatic embryos, Zygotic embryos

Many of the world’s major food plants produce seeds that undergo 
maturation drying and are thus tolerant to extensive desiccation 
and can be stored dry at low temperature. Seeds of this type are 

1. Introduction
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termed “orthodox” (1). Storage of such orthodox seeds is the 
most widely practised method of ex situ conservation of plant 
genetic resources since 90% of the 6.1 million accessions stored in 
genebanks are maintained as seed (2). Techniques have been 
devised which allow seeds of many species to be conserved in this 
way for several decades. These techniques involve drying seeds to 
low moisture content (3–7% fresh weight basis, depending on the 
species) and storing them, in hermetically sealed containers, at 
low temperature, preferably at −18°C or cooler (3). All relevant 
techniques are well established and a series of practical documents 
have been published which cover the main aspects of seed conser-
vation (4–7). A recent significant application of the orthodox 
seed storage technology is the establishment of the Svalbard 
Global Seed Vault (http://www.croptrust.org/main/). Another 
technical achievement in the area of orthodox seed conservation 
concerns the development of the so called “ultra-dry” seed stor-
age technology (8), which is based on the principle that desiccat-
ing seeds to much lower moisture contents (MC) than those 
generally used in standard procedures will allow their storage for 
extended periods at room temperature, thereby avoiding the 
requirement for refrigeration facilities.

In contrast to orthodox seeds, a considerable number of 
 species, predominantly tropical or sub-tropical in origin, such as 
coconut, cacao and many forest and fruit tree species, produce 
seeds which do not undergo maturation drying and are shed at 
relatively high moisture content (9). Such seeds are unable to with-
stand desiccation and are often sensitive to chilling. They therefore 
cannot be maintained under the conventional seed storage condi-
tions described above, that is storage at low moisture content and 
low temperature. Seeds of this type are called “recalcitrant” and 
have to be kept in moist, relatively warm conditions to maintain 
viability (1, 10). Even when recalcitrant seeds are stored in an opti-
mal manner, their lifespan is limited to weeks, occasionally months. 
Of more than 7,000 species for which information on seed storage 
behaviour has been published (11), approximately 3% are recorded 
as recalcitrant and an additional 4% as possibly recalcitrant.

More recent investigations have identified species exhibiting 
“intermediate” storage behaviour. While such seeds can tolerate 
desiccation to fairly low MC, once dried, they become particu-
larly susceptible to injury caused by low temperature (12, 13). 
The storage life of intermediate seeds can be prolonged by fur-
ther drying, but it remains impossible to achieve the long-term 
conservation of orthodox seeds. About 1% of the aforementioned 
7,000+ species studied and included in the Compendium on Seed 
Storage Behaviour are reported as producing intermediate seeds 
and another 1% have been characterised as possibly intermediate 
(11). Included in this category are some economically important 
species such as coffee, citrus, rubber, oil palm, and many tropical 
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forest tree species. It should be noted that the percentages of 
intermediate and recalcitrant seed-producing species cited above 
are likely to be largely underestimated. These figures are based on 
scientific and technical publications, which, by default, concern 
mainly temperate species. In addition, it can be expected that a 
large proportion of the species for which no information is avail-
able, which are predominantly from tropical or sub-tropical ori-
gin, exhibit recalcitrant, or to a lesser extent intermediate seed 
storage behaviour.

There are other species for which conservation as seed is 
problematic. First, there are those that do not produce seeds at all 
and, consequently are propagated vegetatively, for example 
banana and plantain (Musa spp.). Second, there are crops such as 
potato (Solanum tuberosum), other root and tuber crops such 
as yams (Dioscorea spp.), cassava (Manihot esculenta) and sweet 
potato (Ipomoea batatas), and sugarcane (Saccharum spp.) that 
have either some sterile genotypes and/or some that produce 
orthodox seeds. However, these seeds are highly heterozygous 
and, therefore, of limited utility for the conservation of particular 
genotypes. These crops are usually propagated vegetatively to 
maintain genotypes as clones.

Traditionally, the field genebank has been the ex situ storage 
method of choice for the aforementioned “problem materials”. 
Around 527,000 accessions are maintained in field genebanks (2). 
In some ways, this method offers a satisfactory approach to 
conservation. The genetic resources under conservation can be 
readily accessed and observed, thus permitting detailed evalua-
tion. However, there are certain drawbacks that limit its efficiency 
and threaten its security (14). The genetic resources are exposed 
to pests, diseases, and other natural hazards such as drought, 
weather damage, human error, and vandalism. In addition, they 
are not in a condition that is readily conducive to germplasm 
exchange because of the great risks of disease transfer through the 
exchange of vegetative material. Field genebanks are costly to 
maintain and, as a consequence, are prone to economic decisions 
that may limit the level of replication of accessions, the quality of 
maintenance and even their very survival in times of economic 
stringency. Even under the best circumstances, field genebanks 
require considerable inputs in the form of land (often needing 
multiple sites to allow for rotation), labour, management and mate-
rials, and, in addition, their capacity to ensure the maintenance of 
much diversity is limited.

Tissue culture techniques are of great interest for the collect-
ing, multiplication and storage of plant germplasm (14). Tissue 
culture systems allow propagation of plant material with high 
multiplication rates in an aseptic environment. During the last 
40 years, in vitro propagation techniques, mainly based on micro-
propagation and somatic embryogenesis, have been extensively 
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developed and applied to well over 1,000 different species. 
 Virus-free plants can be obtained through meristem culture in 
combination with thermotherapy, thus ensuring the production of 
disease-free stocks and simplifying quarantine procedures for the 
international exchange of germplasm. The miniaturisation of 
explants allows reducing space requirements and consequently 
labouring costs for the maintenance of germplasm collections. 
Different in vitro conservation methods are employed, depending 
on the storage duration required (15). For short- and medium-
term storage, various techniques have been devised, which allow 
reduction of growth and which increase the intervals between sub-
cultures. In vitro conservation techniques using slow growth stor-
age have been developed for a wide range of species, including 
temperate woody plants, fruit trees, horticultural species, as well as 
numerous tropical species. However, despite the availability of 
such techniques, only around 38,000 accessions are conserved 
in vitro worldwide (2), because many conservation programmes 
are unable to meet requirements for relatively sophisticated equip-
ment, reliable electricity supply, and trained staff. In addition, only 
a limited amount of genetic diversity can be maintained in vitro. 
Slow growth storage is used routinely in national, regional, and 
international germplasm conservation centres with species includ-
ing, notably, banana, root and tuber crops, and temperate fruits.

For long-term storage, cryopreservation, that is storage at ultra low 
temperature (liquid nitrogen, −196oC), is employed. At this tem-
perature, all cellular divisions and metabolic processes are stopped. 
The plant material can thus be stored without alteration or modifi-
cation for a theoretically unlimited period of time. Moreover, cul-
tures are stored in a small volume, protected from contamination, 
and requiring very limited maintenance. Cryopreservation cur-
rently offers the only safe and cost-effective option for the long-
term conservation of genetic resources of problem species (16).

Some materials, such as orthodox seeds or dormant buds, dis-
play natural dehydration processes and can be cryopreserved without 
any pre-treatment. However, most of the experimental systems 
employed in cryopreservation (cell suspensions, calluses, shoot tips, 
embryos, etc.) contain high amounts of cellular free water and are 
thus extremely sensitive to freezing injury since most of them are not 
inherently freezing-tolerant. Cells have thus to be dehydrated artifi-
cially to protect them from damage caused by crystallisation of intra-
cellular water into ice (17). The techniques employed and the physical 
mechanisms upon which they are based are different in  classical and 
new cryopreservation techniques (15). Classical  techniques involve 

2. Cryopreser
vation
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freeze-induced dehydration, whereas new  techniques are based on 
vitrification. Vitrification can be defined as the transition of water 
directly from the liquid phase into an amorphous phase or glass, 
whilst avoiding the formation of crystalline ice (18).

Cryopreservation protocols are now available for various 
materials including seeds, dormant buds, cell suspensions, cal-
luses, apices, and zygotic and somatic embryos of several hun-
dreds of species of temperate and tropical origin. Thanks to the 
development of new cryopreservation procedures for apices and 
embryos, reports involving a larger number of genotypes/variet-
ies are becoming more frequent (19, 20) There are an increasing 
number of cases where cryopreservation is currently used in a 
genetic resources conservation framework (21).

In this chapter, we first briefly describe the current cryo-
preservation techniques available for freezing plant tissues and 
organs. We then review their application for the long-term con-
servation of zygotic and somatic embryos.

Classical cryopreservation techniques involve slow cooling down to 
a defined pre-freezing temperature, followed by rapid immersion in 
liquid nitrogen. With temperature reduction during slow cooling, 
cells and the external medium initially supercool, followed by ice 
formation in the medium (17). The cell membrane acts as a 
physical barrier and prevents the ice from seeding the cell interior 
and the cells remain unfrozen but supercooled. As the temperature 
is further decreased, an increasing amount of the extracellular solu-
tion is converted into ice, thus resulting in the concentration of 
intracellular solutes. Since cells remain supercooled and their 
aqueous vapour pressure exceeds that of the frozen external com-
partment, cells equilibrate by loss of water to external ice. Depending 
on the rate of cooling and the pre-freezing temperature, different 
amounts of water will leave the cell before the intracellular contents 
solidify. In optimal conditions, most or all intracellular freezable 
water is removed, thus reducing or avoiding detrimental intracel-
lular ice formation upon subsequent immersion of the specimen in 
liquid nitrogen. However, too intense freeze-induced dehydration 
can incur different damaging events due to concentration of intra-
cellular salts and changes in the cell membrane. Rewarming should 
be as rapid as possible to avoid the phenomenon of recrystallization 
in which ice melts and reforms at a thermodynamically favourable, 
larger and more damaging crystal size (17).

Classical freezing procedures include the following successive 
steps: pre-growth of samples, cryoprotection, slow cooling (0.5–
2.0°C/min) to a determined pre-freezing temperature (usually 

3. Classical 
Cryopreservation 
Techniques
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around −40°C), rapid immersion of samples in liquid nitrogen, 
storage, rapid rewarming, and recovery. Classical techniques are 
generally operationally complex since they require the use of 
sophisticated and expensive programmable freezers. In some 
cases, their use can be avoided by performing the slow freezing 
step with a domestic or laboratory freezer.

Classical cryopreservation techniques have been successfully 
applied to undifferentiated culture systems such as cell suspen-
sions and calluses (15). In the case of differentiated structures, 
these techniques can be employed for freezing apices of cold-
tolerant species (22).

In vitrification-based procedures, cell dehydration is performed 
prior to freezing by exposure of samples to concentrated cryopro-
tective media and/or air desiccation. This is followed by rapid 
cooling. As a result, all factors that affect intracellular ice forma-
tion are avoided. Glass transitions (changes in the structural con-
formation of the glass) during cooling and rewarming have been 
recorded using thermal analysis (23). Vitrification-based proce-
dures offer practical advantages in comparison to classical freez-
ing techniques. Like ultra-rapid freezing (above), they are more 
appropriate for complex organs (shoot tips, embryos) which con-
tain a variety of cell types, each with unique requirements under 
conditions of freeze-induced dehydration. By precluding ice for-
mation in the system, vitrification-based procedures are opera-
tionally less complex than classical ones (e.g. they do not require 
the use of controlled freezers) and have greater potential for 
broad applicability, requiring only minor modifications for differ-
ent cell types (24).

A common feature to all these new protocols is that the criti-
cal step to achieve survival is the dehydration step, and not the 
freezing step, as in classical protocols. Therefore, if samples to be 
frozen are amenable to desiccation down to sufficiently low water 
contents (which vary depending on the procedure employed and 
the type and characteristics of the propagule to be frozen) with 
no or little decrease in survival in comparison to non-dehydrated 
controls, no or limited further drop in survival is generally 
observed after cryopreservation (24).

Eight different vitrification-based procedures can be identified: 
(1) encapsulation-dehydration, (2) vitrification, (3) encapsulation-
vitrification, (4) dehydration, (5) pre-growth, (6) pre-growth-
dehydration, (7) droplet freezing, and (8) droplet-vitrification.

The encapsulation-dehydration procedure is based on the 
technology developed for the production of artificial seeds. 
Explants are encapsulated in alginate beads, pre-grown in liquid 

4. New 
Cryopreservation 
Techniques
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medium enriched with sucrose for 1–7 days, partially desiccated 
in the air current of a laminar air flow cabinet or with silica gel to 
a water content around 20% (fresh weight basis), then frozen rapidly. 
Survival is high and growth recovery of cryopreserved samples is 
generally rapid and direct, without callus formation. This tech-
nique has been applied to apices of numerous species from tem-
perate and tropical origin as well as to cell suspensions and somatic 
embryos of several species (21).

Vitrification includes the following steps: pre-culture of sam-
ples on medium enriched with cryoprotective substances, treat-
ment with a loading solution (e.g. a mixture of 2 M glycerol and 
0.4 M sucrose, dehydration with a highly concentrated vitrifica-
tion solution such as the glycerol-based PVS2 solution (23) which 
has a molarity of 7.8 M, rapid freezing and thawing, and removal 
of cryoprotectants and recovery. This procedure has been devel-
oped for apices, cell suspensions, embryogenic tissues and somatic 
embryos of numerous species (25).

Encapsulation-vitrification is a combination of encapsulation-
dehydration and vitrification procedures, where samples are 
encapsulated in alginate beads, then subjected to freezing by vit-
rification. It has been applied to apices of an increasing number of 
species (25).

Dehydration is the simplest procedure since it consists of 
dehydrating explants, then freezing them rapidly by direct immer-
sion in liquid nitrogen. This technique is mainly used with zygotic 
embryos or embryonic axes extracted from seeds. It has been 
applied to embryos of a large number of recalcitrant and interme-
diate species (26–28). Desiccation is usually performed in the air 
current of a laminar airflow cabinet, but more precise and repro-
ducible dehydration conditions are achieved by using a flow of 
sterile compressed air or silica gel.

The pre-growth technique consists of cultivating samples in 
the presence of cryoprotectants, then freezing them rapidly by 
direct immersion in liquid nitrogen. The pre-growth technique 
has been developed for Musa meristematic cultures (29).

In a pre-growth-dehydration procedure, explants are pre-
grown in the presence of cryoprotectants, dehydrated under the 
laminar airflow cabinet or with silica gel, and then frozen rapidly. 
This method has been applied notably to asparagus stem seg-
ments, oil palm polyembryonic cultures, and coconut zygotic 
embryos (16).

The droplet-freezing technique has presently been applied to 
apices of potato, asparagus, and apple (16). Apices are pre-treated 
with liquid cryoprotective medium, then placed on an aluminium 
foil in minute droplets of cryoprotectant and frozen slowly (apple) 
or rapidly (potato) in liquid nitrogen.

Finally the newly developed droplet-vitrification technique con-
sists in treating explants with loading and vitrification solutions like 
in a vitrification protocol and in freezing them ultra-rapidly in a 
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droplet of vitrification solution placed on an aluminium foil, as 
described for the droplet-freezing technique. Droplet-vitrification is 
being successfully applied to an increasing number of species (25).

Table 1 presents a list of species whose embryos or embryonic 
axes have been reported to withstand cryopreservation. It includes 
almost 100 different species from both tropical and temperate 
climates, comprising crops, fruit, and forest trees as well as wild 
species. Various observations can be made concerning this list.

Cryopreservation experiments have been performed with embryos 
sampled from seeds displaying all three categories of storage 
behaviour, viz. orthodox (e.g. maize, wheat), intermediate (e.g. 
citrus, coffee, oil palm), and recalcitrant (e.g. coconut, cocoa, 
rubber tree). As regards the latter category, it should be noted, 
however, that recalcitrance is a dynamic concept which evolves 
with research on the biology of species and improvement in clas-
sical storage procedures. As a result, some species previously clas-
sified as recalcitrant have thus been moved to the intermediate or 
even sub-orthodox categories and stored using classical or new 
storage techniques (27).

Depending on the species, whole embryos or embryonic axes 
are employed for cryopreservation. Important parameters for  freezing 
are the size, histological composition, and developmental stage of 
explants. If explants are too large, the hydration and thermal gradi-
ents created within the samples during pre-treatment with cryopro-
tectants or physical desiccation and during freezing, respectively, will 
result in structural damage (16). In order to avoid such problems, 
cotyledons are often removed from embryos and only the embry-
onic axis is used for cryopreservation. However, if excision of cotyle-
dons results in the production of smaller and more homogenous 
explants, of a size more favourable for freezing, it has been observed 
with a variety of tropical/sub-tropical woody species that shoot 
development fails to occur from such explants, with the apical mer-
istem becoming necrotic (30). This lack of regrowth, which is a con-
sequence of excision injury, can be overcome by leaving blocks of 
cotyledon tissue attached to the axis, even though this increases 
explant thermal mass unfavourably. A similar observation had been 
made by Kim et al. (31) with tea zygotic embryos, for which cotyle-
donary embryonic axes (excised cotyledons containing embryonic 
axis) showed higher regrowth rate than excised embryonic axes.

Zygotic embryos are histologically highly heterogeneous 
structures. However, embryos are often of very complex tissue 
composition which display differential sensitivity to desiccation 

5. Cryopreservation  
of Zygotic Embryos

5.1. Characteristics  
of Plant Material
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Table 1 
List of species for which cryopreservation 
protocols have been developed using embryos 
and embryonic axes

Species Reference

Acer platanoides (91)

A. pseudoplatanus (91)

Aesculus hippocastanum (92)

A. glabra (93)

Amaryllid (94)

Anadenantha colubrina (95)

Arachis hypogaea (96)

Araucaria hunstenii (97)

Artocarpus heterophyllus (35, 40, 98)

Azadirachta indica (99, 100)

Baccaurea motleyana (37, 101)

B. polyneura (37, 101)

Bactris gasipaes (44)

Bletilla striata (102)

Brassica napus (103)

Byrsonima intermedia (104)

Calamus mannan (105)

Camellia japonica (106)

C. sinensis (31, 33, 35, 51–53, 107)

Capsella bursa-pastoris (108)

Carva (92)

Carya illinoiensis (109)

Castanea sativa (45, 84, 92, 93)

Citrus aurantifolia (110)

C. latipes (111)

C. madurensis (48, 50, 112)

C. macroptera (111)

C. sinensis (113, 114)

C. suhuiensis (115)

Cocos nucifera (32, 116–118)

(continued)
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Table 1
(continued)

Species Reference

Coffea spp. (119–121)

C. arabica (122)

C. liberica (123)

Corylus avelana (124, 125)

Durio zibenthinus (39)

Ekebergia capensis (126)

Elaeis guineensis (127–129)

Elateriospermum tapos (130)

Euphoria longan (131)

Fagus (91, 92)

Fraxinus excelsior (132)

Hevea brasiliensis (46, 49, 133)

Hopea odorata (38)

Hordeum vulgare (103)

Howea foeteriana (134)

Ilex brasiliensis, I. brevicuspis,  
I. dumosa, I. intergerrima,  
I. paraguariensis,  
I. pseudoboxus , I. taubertiana,  
I. theezans

(42)

Juglans regia (92)

Landolphia kirkii (41)

Lansium domesticum (101)

Livistona chinensis (135)

Manihot esculenta (136)

Melia azedarach (53)

Musa acuminata,  
M. balbisiana

(137)

Nephelium lappaceum (39)

Olea europaea (138)

Paeonia lactiflora (43)

Phaseolus vulgaris (139)

Pinus radiata (140)

(continued)
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and freezing, the root pole seeming more resistant than the shoot 
pole. Due to the characteristics of their cells (small size, low vacu-
olation, dense cytoplasm, high nucleocytoplasmic ratio), meristematic 
zones (root and shoot pole) withstand desiccation and freezing 

Species Reference

Pisum sativum (58)

Poncirus trifoliata (141, 142)

Prunus amygdalus (143)

Prunus persica (144)

Ptychospermum macarthurii (37)

Quercus faginea (145)

Q. falcata (93)

Q. ilex (146)

Q. macrocarpa (93)

Q. nigra (93)

Q. palustris (93)

Q. robur (147)

Q. rubra (93)

Q. suber (146)

Ricinus communis (148)

Sechium edule (149)

Shorea leprosula (38)

Shorea odorata (38)

S. ovalis (37)

S. parvifolia (37)

Sterculia cordata (36, 47)

Swietenia macrophylla (150)

Theobroma cacao (151)

Triticum aestivum (139, 152)

Veitchia merillii (133)

Vigna (123)

Zea mays (153, 154)

Zizania palustris (155)

Z. texana (156)

Table 1
(continued)
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much better than more differentiated tissues such as cotyledons 
which are highly hydrated and are therefore severely harmed or 
killed by desiccation and freezing. A histological study of coconut 
embryos during freezing has shown that the haustorium (cotyle-
don) is destroyed during the cryopreservation process (32). As a 
result, no development of the haustorium is observed during 
regrowth of frozen embryos, in contrast to non-frozen controls.

As regards the importance of the developmental status of 
embryos, there is generally an optimal developmental stage, which 
leads to higher survival after cryopreservation. In the case of 
coconut embryos, survival after cryopreservation could be 
obtained with both immature (7–8 month-old) embryos and fully 
mature (12–13 month-old) embryos (31, 33). However, despite 
their smaller size, which is a favourable element for cryopreserva-
tion, only a few plantlets could be regenerated from immature 
embryos, whereas cryopreserved mature embryos consistently 
produced high percentages of fully developed plantlets. This 
result is related to the high difficulties faced with in vitro culture 
of immature embryos, for which very complex culture media and 
sequences are required in order to allow their development to 
take place (34). Comparable results have been notably obtained 
during cryopreservation of tea, jackfruit (35), and Sterculia (36) 
embryos, with embryos at an intermediate development stage 
producing the highest recovery percentages.

Various cryopreservation techniques have been employed for 
cryopreservation of embryos and embryonic axes. However, the 
desiccation technique has been used with the majority of the spe-
cies tested, especially during the earlier experiments performed in 
the 1980s and 1990s (28). In these experiments, survival was 
extremely variable, regeneration frequently restricted to callusing 
or incomplete development of plantlets and the number of acces-
sions tested per species was generally very low, as demonstrated 
by the in-depth critical analysis performed by Engelmann (28). 
A number of reasons have been mentioned to explain this situa-
tion. Most of the species studied were wild species, in their major-
ity tropical forest trees. As a consequence, no or little is known on 
the biology, and all the more so on the seed storage behaviour of 
many of these species. In cases where some information on seed 
storage behaviour was available, tissue culture protocols, includ-
ing inoculation in vitro, germination and growth of plantlets, 
propagation and acclimatisation which are needed for regrowth 
of embryos and embryonic axes after freezing, were often non-
existent or not fully operational. Seeds and embryos of recalci-
trant species also display very important variations in moisture 
content and maturity stage between provenances, between and 
among seed lots, as well as between successive harvests, which 
make their cryopreservation difficult.

5.2. Techniques 
Employed
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The optimal embryo/embryonic axis MC for cryopreservation 
vary depending on the species, between, for example 4 and 8% 
MC (fresh weight basis) for Shorea (37, 38) and 30 and 33% MC 
for Nephelium lappaceum (39) and Artocarpus heterophyllus (40). 
The group of Prof. Patricia Berjak (University of Natal, Durban, 
South Africa) has demonstrated that very rapid desiccation (a 
technique termed Flash-drying) followed by ultra-rapid freezing 
was very effective for cryopreservation of several species including 
tea and Landolphia kirkii (41).

More recent experiments have capitalised upon the newer 
cryopreservation techniques developed during the 1990s and 
2000s, which have been described in a previous section of this 
chapter. Better results have generally been obtained compared 
with earlier works, thanks to the higher efficiency of these tech-
niques and to the fact that, for most of the plant species studied, 
in vitro culture protocols for their embryos and/or embryonic 
axes were already sufficiently developed when cryopreserved 
experiments were initiated. As a result, high survival percentages 
and recovery of whole plantlets from cryopreserved material have 
been more frequently reported.

The new cryopreservation techniques most frequently 
employed for freezing embryos are vitrification and  encapsulation- 
 dehydration. With both techniques, optimal conditions vary 
depending on the sensitivity of the species to exposure to 
 cryoprotectant solutions and desiccation. For encapsulation-
dehydration, embryos of various Ilex species were excised from 
seeds, pre-cultured for 1 week on medium with 0.3 M sucrose, 
encapsulated in 3% calcium alginate, pre-treated in liquid medium 
with daily increasing sucrose concentration (from 0.5 to 1.0 M), 
then desiccated to around 25% MC (fresh weight basis) before 
freezing (42), leading to 18–83% survival depending on species. 
In the case of Poenia embryos, optimal conditions consisted of 
pre- culture on standard medium for 1 day followed by encapsula-
tion in calcium alginate and treatment for 1 h in medium with 
2 M glycerol and 0.5 M sucrose (43). For peach palm cryopreser-
vation, embryos were encapsulated in alginate with 2 M glycerol 
and 0.4 M sucrose, then pre-treated for 24 h in medium with 
1.0 M sucrose and desiccated to 20% MC before rapid freezing 
(44). Under these conditions, 29% of frozen embryos withstood 
cryopreservation and developed plantlets.

When the vitrification technique was tested for freezing 
zygotic embryos and embryonic axes, the PVS2 solution (30% 
glycerol + 15% ethylene glycol (EG) + 15% dimethyl sulfoxide 
(DMSO) + 0.4 M sucrose) was generally employed and an optimal 
PVS2 treatment duration had to be determined. In the case of 
Castanea embryos, 68% recovery was achieved by 3-day pre-culture 
on high sucrose medium followed by 60 min application of PVS2 
vitrification solution prior to cryogenic storage (45). With Hevea 
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zygotic embryos, the PVS2 vitrification solution was more effective 
than the other solutions tested (PVS: 22% glycerol + 15% EG + 
15% propylene glycol + 7% DMSO + 0.4 M sucrose; and L: 20% 
glycerol + 30% EG + 10% DMSO + 15% sucrose + 10 mM CaCl2) 
to achieve survival after freezing in liquid nitrogen (46). The 
optimal PVS2 exposure duration was 80 min. By contrast, when 
freezing Sterculia embryos, no optimal PVS2 treatment could be 
identified among the durations tested, which varied between 1 
and 3 h (47). It should be noted that with Sterculia, the PVS2 
treatment was non-toxic to the embryos, in contrast to what is 
generally observed with other plant species. A very comprehen-
sive study has been performed with Citrus madurensis embryonic 
axes (48). Among the seven different loading solutions tested, 
the solution containing 2 M glycerol + 0.4 M sucrose was the 
most efficient. Of the six vitrification solutions tested, the PVS2 
vitrification solution, applied for 20 min at 25°C or for 60 min at 
0°C, ensured the highest survival. A three-step vitrification proto-
col, involving treatment of embryonic axes at 0°C with half-
strength PVS2 solution for 20 min, then with full-strength PVS2 
for an additional 40 min was more efficient than a two-step pro-
tocol that involved treatment of axes directly with full-strength 
PVS2 solution for 60 min. After rapid immersion in liquid nitro-
gen, rapid rewarming, unloading in a 1.2-M sucrose solution for 
20 min, culture on solid medium with 0.3 M sucrose for 1 day 
and growth recovery for 4 weeks on standard medium, survival of 
C. madurensis embryonic axes reached 85% following the three-
step process, compared with 70% for the two-step process.

In some cases, only one cryopreservation technique proved 
to be effective for a given material, whereas in other cases it was 
possible to achieve survival of the same material using different 
techniques, developed in the same or in different laboratories. In 
the case of Hevea, vitrification was very effective for freezing 
zygotic embryos, whereas desiccation of embryos, embryos with 
sucrose pre-treatment, and encapsulated embryos with sucrose 
pre-treatment was relatively ineffective (46, 49). By contrast, 
Castanea embryos were successfully cryopreserved using vitrifica-
tion and also desiccation to 24–20% MC (FWB), giving between 
93 and 100% survival (45). Citrus madurensis embryonic axes 
were successfully frozen using both the vitrification (48) and the 
encapsulation-dehydration technique (50) with optimal survival 
reaching 85% for vitrification and 65% for encapsulation- 
dehydration. Cryopreservation of tea embryonic axes has been 
successfully achieved by several research teams in various coun-
tries. In Korea, embryonic axes were cryopreserved using flash-
drying (31) and desiccation (33). Flash-drying was also employed 
in South Africa (51) and desiccation in India (52). More recently, 
tea axes were also cryopreserved using the encapsulation- 
dehydration technique by an Iranian group (53).
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There are various options to consider for improving storage of 
zygotic embryos and embryo axes. First of all, basic knowledge of 
the plant material studied, including its biology, physiology, etc., 
is a pre-requisite to any cryopreservation project. Indeed, it has 
been demonstrated that physiological parameters, for example 
the developmental stage of embryos, are of critical importance for 
the success of any cryopreservation experiment (35, 54). 
An  operational in vitro culture protocol for the plant material 
studied including disinfection, inoculation in vitro, germination 
of embryos or embryonic axes, plantlet development, and possibly  
limited propagation also needs to be established.

Most importantly, different analytical techniques are now 
available to describe and understand the physical and biological 
processes which take place in explants during cryopreservation (16). 
These techniques are extremely useful in cryopreservation proto-
col development, and allow to move from the more empirical 
approach followed in earlier cryopreservation works to a more 
scientific and rational approach for the establishment of a cryo-
preservation protocol. The most directly relevant technique is 
differential scanning calorimetry (DSC), which allows, among 
various possibilities, to measure the thermal events occurring in 
samples during cooling and warming. There is indeed a narrow 
window of hydration levels within which survival is possible, and 
the optimal water content for cryopreservation usually corre-
sponds to the unfrozen water content, as shown notably with 
coffee and citrus seeds (55, 56).

The new vitrification-based cryopreservation techniques 
described and discussed in previous sections of this chapter includ-
ing pre-growth-desiccation, encapsulation-dehydration, vitrifica-
tion, encapsulation-vitrification, and droplet-vitrification offer 
interesting possibilities for cryopreserving zygotic embryos and 
embryonic axes. Manipulating the plant material before cryo-
preservation may also have a positive impact on cryopreservation 
results. Notably, pre-growth on media containing cryoprotective 
substances may confer on the tissues increased tolerance to fur-
ther desiccation and reduce the heterogeneity of the material (27, 
57). Other medium manipulations may be envisaged. Mycock 
(58) indicated that the addition of calcium and magnesium ions 
in the cryoprotectant solutions employed for freezing pea embryos 
improved recovery by reducing callus formation. The reduction 
in callus formation is proposed to be a result of the stabilisation of 
the subcellular cytoskeletal system by the added elements. More 
recently, Uchendu et al. (59) showed the beneficial effect of add-
ing the antioxidants vitamin C and E to various media employed 
for freezing Rubus shoot tips.

The very precise control of sample desiccation, which is a 
crucial step of cryopreservation protocols, by using saturated salt 
solutions, which has been successfully employed for freezing coffee 

5.3.  Prospects
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and citrus seeds (56, 60) may also be instrumental in improving 
recovery. Preliminary experiments performed recently with coffee 
embryos (Dussert, 2009, personal communication) have shown 
promising results.

Finally, with species for which attempts to freeze whole 
embryos or embryonic axes have proven unsuccessful, it has been 
suggested to use shoot apices sampled on the embryos, adventitious 
buds or somatic embryos induced from the embryonic tissues (57). 
This might be the only solution for species which do not have 
well-defined embryos but this will request that more sophisticated 
tissue culture procedures be developed and mastered. A recent 
example of this strategy has been provided by Varghese et al. (61) 
for freezing Trichilia emetica, a tropical tree species producing 
recalcitrant seeds, whose embryos and embryonic axes have 
proven impossible to cryopreserve (62). Shoot tips sampled on 
in vitro plantlets originating from in vitro germinated seeds were 
successfully cryopreserved following treatment with sucrose and 
glycerol, cryoprotection with the PVS2 solution, and slow cool-
ing, with 71% of cryopreserved shoot tips producing shoots.

In Table 2, we have listed the plant species for which cryopreser-
vation work has been performed using somatic embryos only, but 
not embryogenic cultures, which are usually cryopreserved using 
the classical techniques established for cell suspensions and cal-
luses (16).

Somatic embryo cultures are generally highly heterogenous 
since they consist of embryos at different developmental stages. 
However, embryos at one particular stage are selected for freez-
ing experiments. As a consequence, the material employed for 
cryopreservation becomes highly homogenous in terms of size, 
water content, and histological composition.

The plant species included in Table 2 originate from tropical 
and temperate areas; their seeds can fall in the orthodox, interme-
diate, or recalcitrant categories. They are generally cultivated 
plants for which the establishment of large-scale propagation pro-
tocols is relevant. In most cases, the primary objective for the 
establishment of a cryopreservation protocol is the improvement 
of large-scale production management; plant genetic resource 
conservation is only a secondary objective.

As in all cryopreservation experiments, the developmental 
stage of the plant material is a very important parameter, as it is 
correlated with size, bearing the risk that explants become too 
large, with the occurrence of detrimental dehydration and  thermal 
gradients and with their histological structure, with the  problems 

6. Cryopreservation 
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Table 2 
List of species for which cryopreservation 
protocols have been developed using 
somatic embryos

Species Reference

Abies nordmanniana (157)

Aesculus hippocastanum (158)

Asparagus officinalis (159, 160)

Brassica napus (161)

Camellia japonica (106)

C. sinensis (162)

Carya illinoensis (163)

Castanea sativa (84)

Citrus grandis (164)

C. junos (164)

C. platymamma (164)

C. sinensis (73, 77, 165)

Clitoria ternatea (166)

Cnidium officinale (167)

Coffea arabica (63, 71, 72, 88)

C. canephora (82, 87)

Coriandrum sativum (168)

Cucumis melo (74, 169)

Daucus carota (79, 170, 171)

Elaeis guineensis (75, 76, 172)

Iris nigricans (173)

Juglans regia (68, 163, 174)

Macropidia fulginosa (83)

Manihot esculenta (88, 175)

Melia azedarach (78, 176)

Olea europea (80)

Paeonia lactiflora (65)

Phoenix dactylifera (88)

Picea mariana (177)

P. glauca (177, 178)

(continued)
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created by complex tissue composition, which will have different 
desiccation/freezing sensitivities. In the case of carrot somatic 
embryos, Florin et al. (63) showed that embryos cryopreserved at 
the heart and torpedo stages (with a size up to 0.50 mm) dis-
played a better development and conversion rate than larger 
embryos. Smaller embryos were not or little injured by freezing 
whereas larger embryos withstood irreversible freezing injury. 
The increased cellular differentiation in larger embryos leads to 
different cell types with different water contents, making con-
trolled osmotic dehydration for different tissues difficult to 
achieve. With cocoa, early cotyledonary somatic embryos with-
stood freezing better than globular, heart, and torpedo embryos 
(64). In the case of Paeonia, embryos of intermediate size dis-
played higher survival than smaller or larger embryos (65).

It is important to mention that it is with somatic embryos that 
DSC was first employed to assist in the development of cryopreser-
vation protocols. Using DSC, it was shown with oil palm somatic 
embryos that recovery of cryopreserved samples increased in line 
with decreasing freezable water content in samples (66). Recovery 
was optimal when all freezable water had been extracted from 
embryos during conditioning treatment (sucrose pre-treatment 
followed by desiccation), that is only glass transitions were recorded 
during cooling and warming, indicating that vitrification of inter-
nal solutes occurred. Similar results have been obtained notably 
with carrot (67) and Juglans (68) somatic embryos.

Depending on the material, different cryopreservation 
techniques (mostly vitrification-based) have been used for 
freezing somatic embryos, viz. desiccation, pre-growth-desiccation, 
encapsulation-dehydration, vitrification, encapsulation-vitrification, 
and droplet-vitrification. There are also a few examples of the 

6.2. Techniques 
Employed

Species Reference

P. glauca x engelmannii (178)

Pinus patula (179)

Picea sitchensis (180)

Pisum sativum (88)

Quercus suber (181)

Saccharum spp. (86)

Theobroma cacao (64, 81, 182)

Vitis vinifera (183)

Table 2
(continued)
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utilisation of slow controlled freezing, which correspond to the 
earlier experiments performed with somatic embryos.

It is interesting to note that a number of the protocols devel-
oped for temperate and/or even some tropical plants include a 
treatment of the somatic embryos with abscisic acid (ABA) before 
cryopreservation. ABA is an important stress hormone which 
increases tolerance of plants to desiccation and low temperature. Its 
mode of action includes maintenance of water balance in cells (69) 
and triggering specific genes that initiate the production of anti-
freeze products (70). The ABA concentration employed and treat-
ment duration vary depending on the species. In the case of Brassica 
somatic embryos, the ABA treatment consisted of a 7-day applica-
tion of 10 mg/L ABA. Coffee somatic embryos were treated with 
1 mM ABA for 6 weeks before freezing (71), whereas the optimal 
treatment for Aesculus was 4 days with 0.75 mM ABA.

The first experiments performed for somatic embryo 
 cryopreservation employed classical cryopreservation protocols, 
including pre-treatment of material with cryoprotectant mixtures 
consisting of sucrose and dimethylsulfoxide (DMSO), slow 
 pre-freezing in a programmable freezer followed by immersion of 
samples in liquid nitrogen. Examples include, notably, coffee 
somatic embryos (72) which were pre-treated with 0.5 M 
sucrose and 5% DMSO, then pre-frozen at 0.5°C/min to −40°C 
before immersion in liquid nitrogen, and Citrus sinensis embryos 
(73), which were treated with 0.1 M sucrose and 10% DMSO 
then cooled at 0.5°C/min to −42°C, before immersion in liquid 
nitrogen.

The desiccation technique has produced very good results 
with embryos of desiccation-tolerant species such as conifers, 
melon, Brassica, or Paeonia. Embryos are placed in containers 
with controlled relative humidity (RH) produced using saturated 
solutions until equilibration of their water content with the exter-
nal RH, then frozen rapidly. Optimal conditions for Picea glauca 
and P. mariana included equilibration of embryos for 48 h in 
97% RH, resulting in a moisture content decrease to 0.23 g/g 
H2O and a recovery percentage of 93% after cryopreservation. 
In the case of melon somatic embryos, equilibration in 60% RH 
reduced water content to 11.8% and resulted in 65% survival after 
cryopreservation (74).

Pre-growth-desiccation, which includes culture of embryos 
on medium with high sucrose concentration followed by desicca-
tion, was first established with oil palm somatic embryos (75, 76). 
Optimal conditions vary depending on the material. With oil 
palm, embryos were pre-grown for 7 days on medium with 
0.75 M sucrose before desiccation to around 30% MC (76). 
Coffee embryos required a 2-week treatment with 0.44 M sucrose 
followed by desiccation to 25% MC (71), whereas citrus embryos 
were treated for only 1 day with 0.75 M sucrose, then dehydrated 
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to 20–25% MC (77). Melia embryos were pre-treated with daily 
increasing sucrose concentrations, from 0.5 to 1 M, desiccated to 
19% MC, then frozen slowly at 1°C/min to −30°C before immer-
sion in liquid nitrogen (78).

Encapsulation-dehydration was first applied to carrot somatic 
embryos (79). The main parameters of the technique, viz. dura-
tion of sucrose treatment, concentration of sucrose and optimal 
water content vary depending on the material employed. With 
carrot somatic embryos, optimal conditions were pre-culture in 
medium with 0.3 M sucrose for 18 h followed by desiccation to 
19% MC, ensuring 92% survival after cryopreservation (79). After 
treatment for 4 days with 0.75–1.25 M sucrose, desiccation to 
21% MC and rapid freezing, survival of olive somatic embryos 
was 40% (80). In the case of Theobroma cacao, embryos were 
treated for 7 days with 1 M sucrose and desiccated 16% MC. After 
freezing, regrowth was between 25 and 72% with the four geno-
types tested (81). An original protocol was established for coffee 
somatic embryos (82). Indeed, naked embryos were pre-treated 
on media with progressively increasing sucrose concentration, 
from 0.3 to 0.8 M, and only then encapsulated in alginate beads 
with 0.5 M sucrose. After desiccation to 13% MC, direct regrowth 
was observed on around 30% of cryopreserved embryos.

All vitrification protocols developed to date with somatic 
embryos use the PVS2 vitrification solution. Macropidia embryos 
were successfully cryopreserved with the following procedure: 
they were pre-treated for 2 days on medium with 0.8 M glycerol, 
then treated with PVS2 at 0°C for 30–40 min before rapid freez-
ing (83), thus achieving 90% regrowth. In the case of Castanea 
(84), optimal conditions including pre-treatment with 0.3 M 
sucrose for 3 days, dehydration with PVS2 for 60 min ensured 
68% regrowth of somatic embryos after cryopreservation. A recent 
study performed on Theobroma cacao showed that high survival 
(74%) of somatic embryos was achieved after treatment with 
0.5 M sucrose, loading, PVS2 treatment for 60 min at 0°C, and 
rapid freezing (85).

Encapsulation-vitrification has been successfully applied to 
olive and sugarcane somatic embryos (80, 86). With olive, 64% 
survival was achieved after pre-culture of encapsulated embryos 
for 4 days in 0.75–1.25 M sucrose, 3 h treatment with PVS2 vit-
rification solution and rapid freezing. With sugarcane, somatic 
embryos were loaded in 2 M glycerol and 0.4 M sucrose for 
20 min, treated with PVS2 solution for 80 min at 0°C and frozen 
rapidly, ensuring 30% recovery after cryopreservation.

Until now, droplet-vitrification has been experimented only 
with sugarcane embryos (86). Embryos were loaded with 1.5 M 
glycerol + 0.3 M sucrose, dehydrated with PVS2 vitrification 
solution for 20–40 min, and cooled rapidly. Under these condi-
tions, viability reached 55%.
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It has been shown in several cases that different techniques 
could be developed for the same material, either in the same labo-
ratory or in different laboratories. The best example is provided 
by coffee for which somatic embryos have been cryopreserved in 
France using slow freezing (72, 87) and pre-growth-desiccation 
(63), in South Africa using desiccation (88) and in Japan using 
encapsulation-dehydration (83). In the case of sugarcane, encap-
sulation-dehydration and droplet-vitrification were successful, the 
highest results being obtained with the latter technique, but no 
survival was achieved with vitrification (86). Finally, Castanea 
embryos were cryopreserved using pre-growth-desiccation and 
vitrification, giving 33% survival with the former technique and 
68% with the latter (84).

There are very good prospects for the future development and 
application of cryopreservation to somatic embryos. Indeed, the 
protocols available are generally very effective, thanks to the posi-
tive impact of the new, vitrification-based, cryopreservation tech-
niques. They have been developed for a broad range of species 
and there are already examples of their routine application, as in 
the case of coffee (89). The use of analytical tools, especially DSC, 
has been very instrumental in facilitating their optimisation in 
cases where they have been employed. With the current state of 
the art, these protocols are relatively easy to establish. The infor-
mation published indicates indeed that, for any new material, 
there is at least one technique which produces positive results 
among the techniques tested. Today, the main bottleneck seems 
to lie more with the establishment of somatic embryo cultures 
from any new material than with the development of a cryopreser-
vation protocol for this material.

In conclusion, we have reviewed in this chapter the past and cur-
rent research on cryopreservation of zygotic and somatic embryos. 
The development and application of cryopreservation is signifi-
cantly more advanced for somatic embryos, in comparison with 
zygotic embryos. This is mainly due to the different origin and 
characteristics of the species treated. In the majority of cases, 
zygotic embryos originate from tropical, wild species, for which 
knowledge and techniques relevant to the development of cryo-
preservation protocols are limited, or even non-existent. By con-
trast, somatic embryos are generally produced from cultivated 
species, which have already been studied extensively and for which 
propagation techniques are already operational. A number of 
technical possibilities to explore have been identified in order to 

6.3.  Prospects

7.  Conclusion
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improve the development of cryopreservation protocols for 
zygotic embryos and embryonic axes.

For both categories of materials, the utilisation of analytical 
techniques has proved to be extremely useful to assist in the devel-
opment of cryopreservation protocols. It is obvious that a better 
understanding of the biological and physical processes underlying 
the tolerance of plant tissues to desiccation and freezing have had 
a highly significant impact on cryopreservation research. This 
stresses the importance of increasing the level of fundamental 
research related to cryopreservation. The first International 
Symposium on cryopreservation in horticultural species, held in 
Belgium in April 2009 (http://www.biw.kuleuven.be/dtp/tro/
ISHSPlantCryo/) has shown that the number of researchers 
worldwide working on different fundamental areas related to cry-
opreservation is increasing, which is an encouraging signal.

Concomitantly to cryopreservation, a strong research focus 
should be directed towards the development of improved seed 
storage techniques. Indeed, it can be expected that progress made 
in this area will result in the possibility of storing genetic resources 
of an increasing number of plant species in seed form. The results 
obtained recently with coffee and citrus seeds (56), for which 
cryopreserved storage has now become a reality, thanks to the 
very precise control of seed desiccation, are very good examples 
of such possibilities.

Finally, attention should also focus on two important areas 
related to the development and use of cryopreservation. The first 
one is the analysis of the costs of cryopreserved storage in com-
parison with other storage techniques. A very thorough study has 
been published recently, which clearly demonstrates the cost- 
efficiency of cryopreserved storage for plant genetic resource 
 conservation (90). The second one concerns the integration of 
cryopreservation as an additional technology towards the devel-
opment of complementary plant genetic resource conservation 
strategies. It is indeed necessary to start envisaging now how the 
future availability of a cryopreservation protocol for a given plant 
will impact on the respective utilisation of the other existing con-
servation technologies.
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Chapter 14

Cryogenic Technologies for the Long-Term Storage  
of Citrus Germplasm

Anna De Carlo, Maurizio Lambardi, and Elif Aylin Ozudogru 

Abstract

With its beautiful trees, Citrus species have long been valued by humanity. The tasteful fruits, extensively 
used for nutrition, are also good for health due to the high content in vitamins, minerals, and dietary 
fibers. Like majority of the woody fruit plants, Citrus germplasm is conserved mainly as field collections 
in clonal orchards. However, such a traditional approach presents several difficulties, among which are 
the high cost, manual labor, and extensive land required to maintain the collections, as well as the neces-
sity of a careful protection of plants from diseases and extreme environmental conditions. As many species 
in the genus have seeds recalcitrant to desiccation, conservation in seed banks is also inadequate. On the 
other hand, cryopreservation, i.e., the storage of specimens at ultra-low temperatures (usually in liquid 
nitrogen, at −196°C) where reactions within the cells are minimized, presents a unique alternative for the 
safe storage of such germplasm. The present contribution outlines the cryopreservation techniques 
applied to seeds, zygotic and somatic embryos, embryogenic callus cultures of Citrus spp. and provides 
sample protocols to be used for Citrus conservation.

Key words: Citrus, Cryopreservation, Desiccation, Embryogenic callus, Embryos, Encapsulation, 
Nucellar cells, Seeds, Slow-cooling 

Citrus, a member of the Rutaceae family, is one of the major fruit 
crops, produced in about 90 countries worldwide (1). True citrus 
fruits fall into three genera: Citrus, Poncirus, and Fortunella. 
Among these, the genus Citrus includes all the commercial citrus 
fruits, while Poncirus is a monotypic genus, represented only by the 
commercial rootstock P. trifoliata, and Fortunella includes some 
ornamental plants with relatively less commercial interest (2).

Like most vegetatively propagated species, citrus has tradition-
ally been conserved as field collections. However, ancient – and 

1.  Introduction

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_14,  
© Springer Science+Business Media, LLC 2011
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often unique – citrus germplasm preserved this way is highly vul-
nerable to damage due to the action of pests and diseases (the 
control of which requires careful periodical monitoring of plants) 
and to the effects of late and hard frosts, particularly when 
collections are located outside the optimum climatic zone of the 
species (3, 4). Hence, much effort is being conducted today to 
develop alternative techniques to field collections for germplasm 
conservation, such as the conservation of in vitro cultures at above 
freezing temperatures (slow growth storage) and the cryopreser-
vation, i.e., the storage of plant organs and tissues at the ultra-low 
temperature of liquid nitrogen (LN). The latter technique, in 
particular, is today attracting much attention for its potential in 
allowing a safe long-term storage of plant germplasm (5, 6).

Cryopreservation was initially developed in the 1960s for the 
storage of suspension and callus cultures; the experiment carried 
out by Quatrana (7) on flax cells being the first successful in vitro 
plant cryopreservation. Today, the technology is largely applied 
also to conserve reproductive organs, such as seeds, embryonic 
axes, and shoot tips (8, 9). The various procedures today available 
can be grouped within the ones requiring a controlled-rate freez-
ing of specimens (slow cooling) and the ones allowing their direct 
immersion in LN (one-step freezing), such as “vitrification,” 
“encapsulation-desiccation,” “encapsulation-vitrification,” and 
the “droplet method” (10).

Slow cooling is the traditional approach for the cryopreserva-
tion of embryogenic callus cultures (11). The principle of the 
method is the precooling (ranging from 0.1 to 5°C/min, more 
often 1°C/min) of embryogenic cultures to an intermediate tem-
perature of −40°C (in the presence of suitable cryoprotectants) 
before being immersed in LN. Hence, the method is also known 
as two-step freezing. Determination of how fast the cooling rate 
should be is the key step for the prevention of cryoinjuries. 
Indeed, too slow cooling rates may lead to desiccation injury due 
to the loss of excess amount of water from the cells, while too fast 
cooling rates do not permit sufficiently the loss of freezable water 
and thus lead to the lethal intracellular ice formation (12). The 
method requires a programmable freezer for a gradual and  precise 
drop rate of temperature; however, a cheap device (“Mr. Frosty®”) 
is also available today (see 1.1.1).

The desiccation of seeds, excised embryos, or embryonic axes 
by air flow in a laminar flow cabinet, or by exposure to silica gel 
or saturated salt solutions, followed by the direct immersion of 
specimens in LN, is the simplest one-step freezing technique. The 
removal of the freezable water within the cells by desiccation pre-
vents the formation of intracellular ice crystals during ultra-rapid 
freezing in LN (13).

As for the encapsulation methods, the inclusion of explants 
(generally, shoot tips) in alginate capsules allows them to tolerate 
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the exposure to extreme treatments, such as preculturing with 
high sucrose concentrations and desiccation to relatively lower 
moisture contents (MC), which would be damaging or even 
lethal if applied to naked tissues (14). The gelation method devel-
oped by Redenbaugh et al. (15) is still today the most employed 
for the production of encapsulated explants (commonly called 
“synthetic seeds” or “synseeds”), firm enough to allow manipula-
tion and handling of beads in cryopreservation procedures. The 
method involves the incubation of the explants in a sterile 
Na-alginate solution (ranging from 2 to 5%), and release of the 
solution in a drop-wise manner, each drop containing one explant, 
into a sterile solution of complexing agent (usually 100 mM 
CaCl2). Capsule hardening occurs in 20–30 min at room tem-
perature due to the ion-exchange reaction, where calcium replaces 
sodium (16).

Alternatively, cryoprotection of shoot tips, somatic embryos, 
and cultured cells can be induced by chemical desiccation through 
the use of highly concentrated vitrification solutions, PVS2 being 
largely the most used (17). Vitrification solutions, applied both to 
naked or encapsulated explants, provide cell protection during 
ultra-rapid freezing in LN by the physical process of transition of 
the aqueous solution of cell cytosol into an amorphous and glassy 
(i.e., noncrystalline) state, thus preventing the formation of intra-
cellular ice crystals (18).

The present contribution focuses the attention on the appli-
cation of cryopreservation techniques to seeds, embryos, and 
embryogenic/nucellar callus of Citrus spp., with the aim of the 
safe storage of valuable germplasm (see Table 1). Sample proto-
cols, characterized by successful recovery of explants after the 
storage in LN, are also provided.

An expensive apparatus, i.e., programmable freezer, was initially 
the only sound method for the slow cooling of the plant material 
to be cryopreserved. In time, use of Nalgene Freezing Containers 
(also known as “Mr. Frosty®”, where a cooling rate of 1°C/min 
is achieved with the use of chilled isopropyl alcohol inside the 
freezer) or –70/–80°C freezers (usually for 1–24 h) became also 
widespread (11).

Na-alginate is by far the most used gelling agent for capsule pre-
paration. Excellent water solubility, moderate viscosity at room 
temperature, long-term storability, and the absence of any kind of 
toxicity are among the main advantages of the compound. Once 
mixed with the complexing agent (i.e., di- or tri-valent metal salt, 
such as calcium chloride or calcium nitrate), it easily turns into a 
hardened Ca-alginate gel by an ion-exchange reaction. Rigidity of 
the capsule is simply adjusted by optimizing the concentration of 
the calcium solution and/or gellation time (usually 20–30 min at 
room temperature) (16).

1.1. Practical 
Comments

1.1.1.  Slow Cooling

1.1.2.  Encapsulation
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Physical desiccation of the naked or encapsulated specimens is 
achieved by subjecting them either to the sterile air flow of a 
laminar flow cabinet or to activated silica gel. Desiccation time 
and the method to be used may depend on the type of the explant 
and its initial MC, and it ranges from minutes to hours. 
Alternatively, desiccation of the specimens can also be achieved 
by the use of saturated solutions (e.g., KOH, KNO3, K2CO3, 
NH4NO3, (NH4)2SO4, NH4Cl, NaCl, KCl, BaCl2). Here, speci-
mens are considered desiccated when they reach equilibrium to 
the certain relative humidity of the salt solution at the given 
 temperature (19).

Cryoprotectants, used both in slow cooling and one-step freez-
ing approaches, belong to one of the two category; those that 
penetrate the plasma membrane (i.e., DMSO and glycerol), and 
those that do not penetrate (i.e., polyethylene glycol (PEG) and 
sucrose). Numerous authors use DMSO solution (at a concen-
tration of 5–10%) as a single cryoprotectant, while many others 
prefer a combination of cryoprotectants at lower concentra-
tions, considering the latter approach less toxic to the plant tis-
sues (11). Indeed, there is a small amount of evidence indicating 
that DMSO may be involved in generating a variety of genetic/
epigenetic alterations. For that reason, it is often applied for 
short intervals and at ice temperature, where both physical and 
chemical reactions are considerably slower (20). The most com-
mon cryoprotectant combination is called “Plant Vitrification 
Solution 2” (PVS2; (17)), consisting of 30% glycerol (w/v), 
15% ethylene glycol (w/v), and 15% DMSO (w/v), prepared in 
liquid MS (21) medium containing 0.4 M sucrose. PVS2 does 
not permeate into the cytosol during the desiccation process. 
The solution easily supercools below −100°C and solidifies at 
−115°C (18). However, PVS2 may also exhibit some toxic 
effects to the tissues (due to the presence of DMSO), thus its 
incubation time and the temperature to be applied are funda-
mental parameters which must always be optimized (11). Toxic 
effect of the solution may be reduced or eliminated also by 
dehydrating the specimens in two steps. First step involves the 
incubation of the specimens in “loading solution” ((LS), 2 M 
glycerol and 0.4 M sucrose; (22)) at room temperature for 
20 min, and the second step is the incubation in PVS2 at 0°C. 
During treatment with loading solution, the cells are consider-
ably desiccated and plasmolyzed. However little or no perme-
ation of glycerol into the cytosol was observed after a 20-min 
incubation. Thus, the protective effect of a brief incubation 
with the solution might be a result of the protective effect of 
plasmolysis (18).

1.1.3.  Desiccation

1.1.4.  Vitrification
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 1. All culture media are based on either the Murashige and 
Skoog (MS) (21) or Murashige and Tucker medium (MT) 
(23) with different concentrations of plant growth regulators, 
sucrose, and additives.

 2. Plant growth regulators: N6-benzyladenine (BA), naphtha-
lene acetic acid (NAA), gibberellic acid (GA3), zeatin, and 
kinetin.

 3. Media additives: yeast or malt extract, Difco bacto agar.
 4. “Plant Vitrification Solution 2” (PVS2): 30% glycerol (w/v), 

15% ethylene glycol (w/v), and 15% DMSO (w/v) liquid MS 
(21) medium containing 0.4 M sucrose.

 5. Loading solution: 2 M glycerol and 0.4 M sucrose.
 6. Other chemicals and solutions: glycerol, DMSO, sodium 

alginate, calcium chloride, silica gel, Tween 20, bleach, 2% 
(w/v) sodium hypochlorite solution, 70% ethanol, absolute 
ethanol.

 7. Other materials: liquid nitrogen, water bath, cryovial, silica 
gel, Nalgene Freezing Containers.

 1. Harvest fresh ripe fruits and extract the seeds.
 2. Surface sterilize the seeds by a 5-min immersion in 70% (v/v) 

ethanol, followed by a 15-min treatment in 2% (w/v) sodium 
hypochlorite solution.

 3. Rinse the seeds three times (5 min each) in sterile distilled 
water and peel off the external integument in a laminar flow 
cabinet.

 4. Store the seeds at 4°C in darkness until use in cryopreserva-
tion trials.

 1. To determine the initial MC of the seeds (on a fresh weight 
basis), dry batch of seeds at 60°C for 48 h (see Note 1).

 2. To desiccate the seeds, maintain them under the sterile air flow 
of a laminar flow cabinet. To bring the seeds to comparable 
levels of MC, the MC decrease in relation to the air-flow expo-
sure time should be determined preliminarily (see Note 2).

 3. Place the seeds in 2-mL cryovials (5 seeds/cryovial) and 
plunge directly into LN.

2.  Materials

3. Methods

3.1. Cryopreservation 
of Whole Seeds (4, 9)

3.1.1. Seed 
Decontamination

3.1.2. Cryopreservation  
by Desiccation
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 4. For recovering from LN, rewarm the seeds in a water bath at 
37°C for 5 min.

 5. For germination, place the seeds on semisolid MS medium, 
containing 146 mM sucrose and 500 mg/L malt extract 
(from (24)), at pH 5.7.

 6. Maintain the seeds at 26°C in darkness for 1 week, then trans-
fer them to plastic boxes (MagentaTM GA-7, Sigma Chem.), 
containing 50 mL of medium, under a 16-h photoperiod, 
provided by cool-white fluorescent tubes (60 mmol/m2/s).

 1. Extract the seeds and surface sterilize them with absolute 
ethanol for 2 min. Then place them in 20% commercial bleach 
(0.54% active chlorine), with a few drops of Tween 20, for 
20 min on a rotary shaker (see Note 3).

 2. Rinse the seeds three to five times with sterile distilled water.
 3. Remove the testa of the seeds and excise aseptically the 

1–2 mm long embryonic axes from the cotyledons with a 
scalpel blade.

 1. Preculture the embryonic axes on MS medium, containing 
0.1 M sucrose, 7 g/L Difco agar, and 0.3 mg/L BA for 24 h.

 2. Desiccate the embryonic axes in the laminar flow cabinet  
for 2 h.

 3. Wrap them in aluminum foil envelops and freeze rapidly by 
direct immersion in LN.

 4. After 24-h storage in LN, rewarm the embryonic axes in a 
water bath at 40°C for 5 min.

 5. Place them on MS medium, containing 0.3 M sucrose for 1 
day, then transfer them on MS medium, containing 0.1 M 
sucrose and 0.1 mg/L BA at 25°C under 16-h photoperiod 
and 25 mmol/m2/s of light intensity.

 1. Pregrow excised embryonic axes on semisolid MS medium, 
containing 0.1 mg/L BA, 0.1 mg/L NAA, and 0.1 mg/L 
GA3 for 3 day.

 2. For preculture, transfer the embryonic axes on semisolid MS 
medium, containing 0.1 mg/L BA, 0.1 mg/L NAA, and 
0.1 mg/L GA3 and 0.3 M sucrose for 1 day.

 3. Encapsulate pretreated embryonic axes in 3% alginate beads 
with 100 mM CaCl2 solution.

 4. Dehydrate the beads in liquid MS medium, containing 0.6 M 
sucrose and 2 M glycerol for 60 min on a rotary shaker (200 
rpm) at 25°C.

 5. Dry them in a Petri dish sealed with silica gel (20 beads/40 g 
silica gel) for 3 h.

3.2. Cryopreservation 
of Embryonic Axes 
(25, 26)

3.2.1. Excision  
of Embryonic Axes

3.2.2. Cryopreservation  
by Desiccation

3.2.3. Cryopreservation by 
Encapsulation-Desiccation
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 6. Place the dried beads in cryovials and plunge into LN.
 7. After storage in LN, rewarm the beads in a water bath at 

40°C for 5 min.
 8. For embryonic axes development, place the beads on MS 

medium, containing 0.3 M sucrose for 1 day, then transfer 
them on MS medium, containing 0.1 mg/L BA, 0.1 mg/L 
NAA, and 0.1 mg/L GA3 at 25°C under a 16-h photoperiod 
(25 mmol/m2/s).

 1. For preculture, place freshly excised embryonic axes on semi-
solid MS medium, containing 0.1 mg/L BA, 0.1 mg/L NAA, 
0.1 mg/L GA3, and 0.1 M sucrose for 1 day, then transfer 
them on MS medium, containing 0.3 M sucrose and 0.5 M 
glycerol for an additional day.

 2. Transfer the embryonic axes in 2-mL cryovials (20 axes/ 
cryovial), containing 2 M glycerol and 04 M sucrose (loading 
solution) and incubate at 25°C for 20 min.

 3. Replace the loading solution with half-strength PVS2 solu-
tion and incubate at 0°C for 20 min. Then, replace the half-
strength solution with full-strength solution and treat the 
embryonic axes for additional 40 min.

 4. At the end of vitrification treatment, renew the PVS2 solu-
tion and adjust the final volume inside the cryovial to 0.5 mL 
and rapidly immerse in LN.

 5. After storage in LN, rewarm the beads in a water bath at 
40°C for 5 min.

 6. Remove the PVS2 solution and incubate the embryonic axes 
with 0.5 mL liquid medium, containing 1.2 M sucrose for 
20 min.

 7. Retrieve the embryonic axes, dry them on sterile filter paper, 
and place on MS medium, containing 0.1 mg/L BA, 
0.1 mg/L NAA, and 0.1 mg/L GA3 at 25°C under a 16-h 
photoperiod (25 mmol/m2/s).

 1. Harvest the young fruits 4–5 week after pollination and excise 
the immature ovules.

 2. Dissect the ovules into halves and introduce in vitro the 
micropylar portion.

 3. For direct embryogenesis, incubate the tissues on MT 
medium, containing 0.1 mg/L zeatin and 500 or 1,000 mg/L 
yeast or malt extract.

 4. Add cryoprotectant solution, containing 10% DMSO (w/v) 
and 1.0 M sucrose, prepared in liquid MS medium, into 
50-mL flask and immerse the somatic embryos into the solu-
tion at room temperature for 48 h.

3.2.4. Cryopreservation  
by Vitrification

3.3. Cryopreservation 
of Somatic Embryos 
(22, 24, 27)

3.3.1. Cryopreservation  
by Slow Cooling
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 5. Following pretreatment, transfer the somatic embryos to a 
5-mL cryovial, loaded with 3 mL MS medium, containing 
one-third strength PVS2 solution, with sucrose concentra-
tion raised to 1.0 M.

 6. After 90-min PVS2 treatment at 0°C, prefreeze the somatic 
embryos by placing the flask at −16 and −32°C, respectively, 
in a total of 24 h exposure, prior to immersion in LN.

 7. Thaw the somatic embryos in water bath at 37°C for 5 min.
 8. Remove the embryos from the vial and culture them on MT 

medium, containing 1.0 mg/L zeatin and 0.01 mg/L NAA 
at 25°C and 16 h photoperiod (160 mmol/m2/s).

 1. Culture the unfertilized ovules on MS medium, containing 
9.29 mM (i.e., 2 mg/L) kinetin, 3% (w/v) sucrose and 0.8% 
(w/v) agar (pH 5.6).

 2. Allow the somatic embryos to mature on the same medium and 
use embryos at heart stage to torpedo stage for encapsulation.

 3. For encapsulation, mix the freshly developed embryos with 
4% sodium alginate solution, prepared in liquid MS medium, 
containing 3% sucrose.

 4. Drop the embryos mixed with sodium alginate solution into 
75 mM CaCl2·2H2O using a wide glass dropper.

 5. Keep the drops, each containing a single embryo, in 
CaCl2·2H2O solution for 45 min on a rotary shaker (70 rpm).

 6. After 45 min, decant the solution to recover the beads, wash 
them with sterile distilled water and dry by spreading on ster-
ile filter paper for 30 min in laminar flow cabinet.

 7. For the storage in LN, transfer the encapsulated embryos into 
10-mL cryovial (10 beads per cryovial), containing 10% 
(w/v) DMSO and 0.4 M sucrose in liquid MS medium.

 8. Keep the cryovials at 4°C for 30 min and then at 0°C for 24 h.
 9. Cool them slowly in an ultra-cooling bath to −20°C, and then 

transfer to LN.
 10. For thawing, remove the cryovials from LN and rapidly warm 

in water bath at 40°C for 4 min.
 11. Wash the beads with sterile distilled water and place them on 

MS medium, containing 9.29 mM kinetin.
 12. Maintain the cultures at 26°C and 16-h photoperiod 

(40 mmol/m2/s).

 1. Collect the flowers before opening and disinfect them by 
soaking in a 2% (v/v) sodium hypochlorite solution, containing 
0.1% (v/v) wetting agent (Tween 20), for 20 min.

 2. Rinse the seeds three times in sterile distilled water.

3.3.2. Cryopreservation  
by Encapsulation-Slow 
Cooling

3.3.3. Cryopreservation by 
Encapsulation-Desiccation
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 3. Open the flowers under sterile conditions and dissect the 
whole pistils with a scalpel.

 4. Cut the stigmas, styles, and ovaries perpendicularly to the 
longitudinal axis at a thickness of 0.4–0.5 mm.

 5. For induction of somatic embryogenesis, place the thin cut 
layers, with the abaxial surface toward the medium, on MS 
medium, containing 7 g/L agar (pH 5.7).

 6. Use the somatic embryos for cryopreservation when they 
become available at globular, torpedo, or heart-shaped stages.

 7. Incubate the encapsulated somatic embryos in liquid medium, 
containing 0.75 M sucrose for 1 day.

 8. After pregrowth in liquid medium, dehydrate the encapsu-
lated somatic embryos in the air current of a laminar flow 
cabinet for 5 h, reaching the final MC of 20–25% (fresh 
weight basis).

 9. Rapidly freeze the desiccated, encapsulated somatic embryos 
by direct immersion in LN.

 10. After storage in LN, thaw the samples in the laminar air flow 
for 2–3 min.

 11. Transfer them to standard culture medium for recovery 
(1 week in the dark, followed by standard light conditions).

 1. Maintain the callus cultures by subculturing in 2-week intervals 
on MT medium, containing 40 g/L sucrose and 7 g/L agar.

 2. For suspension cultures to be used in cryopreservation treat-
ments, transfer the calluses to liquid MT medium, containing 
500 mg/L malt extract and 50 g/L sucrose, and maintain the 
culture vessels on a rotary shaker (120 rpm) at 27°C and on 
14-h photoperiod (33 mmol/m2/s).

 3. Subculture the calluses every 2 weeks for at least two times 
before using it for cryopreservation.

 1. After 8–10 days of culture, transfer 1.5 mL of cell suspension 
(containing about 0.1 mL packed cell volume) to a 2-mL 
cryovial and allow to settle.

 2. Discard the supernatant and add 1.5 mL of PVS2 at room 
temperature.

 3. Centrifuge the cell suspension at 100 × g for 20 s.
 4. Discard the supernatant and add 1 mL of fresh PVS2.
 5. Following 3-min PVS2 treatment at room temperature, 

plunge the cryovial into LN.
 6. After storage, thaw rapidly the cell suspension in a 40°C water 

bath.

3.4. Cryopreservation 
of Embryogenic Callus 
Cultures (28)

3.4.1. Maintenance  
of Embryogenic Callus 
Cultures

3.4.2. Cryopreservation  
by Vitrification
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 7. Replace the PVS2 solution by 1.5 mL of MT medium, 
 containing 1.2 M sucrose, and incubate for 10 min.

 8. For recovery, disperse the cells over double-layer sterile filter 
paper, placed on 20 mL MT medium, containing 50 g/L 
sucrose and 7 g/L agar in a 90-mm Petri dish.

 9. After overnight equilibration, transfer the cells with the upper 
filter paper to another Petri dish containing the same medium.

 10. Incubate the Petri dishes at 27°C and on 14-h photoperiod 
(33 mmol/m2/s).

 1. For nucellar callus induction (see Note 4), excise the ovules 
(better if it is close to the flowering stage) and place on MT 
basal medium, containing 0.15 M sucrose, 10 mg/L BA, and 
0.8% Difco Bacto agar (pH 5.7).

 2. Incubate the cultures at 25°C under 16-h photoperiod, 
 provided by cool-white fluorescent tubes (25 mmol/m2/s) 
and subculture every 2 weeks.

 3. For suspension cultures to be used in cryopreservation treat-
ments, inoculate about 1 g of nucellar callus into 50 mL of 
liquid MT medium, supplemented with 10 mg/L BA, and 
culture on a shaker (110 rpm) in the same environmental 
conditions mentioned above.

 1. Transfer 10 mL of the cell suspension (containing 3 mL of 
packed cell volume) from 6-day-old cultures to 50 mL glass 
tubes.

 2. Replace completely the medium by MT medium, containing 
1.2 M sucrose.

 3. Chill the glass tubes containing the cells in an ice bath.
 4. Add gradually 2 mL of ice-cold MT medium, containing 

1.2 M sucrose and 30% DMSO (w/v) in 1 h, reaching the 
final DMSO concentration of 5%.

 5. Dispense 500 mL aliquots of cell suspensions (containing 
about 100 mg cells) into 2-mL cryovials.

 6. Place the cryovials in the freezing chamber of a programma-
ble freezer and cool at cooling rate of −0.5°C/min to −40°C 
prior to immersion in LN.

 7. After storage, thaw rapidly the cryovials in a 40°C water bath.
 8. Dispense the cell suspensions of 0.5 mL on double-layer  sterile 

filter paper (Ø 50 mm), placed on 20 mL of MT medium, con-
taining 5 mg/L BA and 0.8% agar in a Petri dish (Ø 90 mm).

 9. After 4–5 h, transfer the filter paper with the cells to another 
Petri dish containing the same medium.

3.5. Cryopreservation 
of Nucellar Cells and 
Callus (29, 30)

3.5.1. Induction  
and Maintenance  
of Nucellar Callus Cultures

3.5.2. Cryopreservation  
by Slow Cooling
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 10. Incubate the Petri dish at 25°C and 16-h photoperiod 
(25 mmol/m2/s).

 1. Transfer the cell suspensions (8/10-day-old cultured cells) 
into a 10-mL conical glass tube (110 × 15 mm) and allow to 
settle.

 2. Discard the supernatant.
 3. Add 4 mL of PVS2 at 25°C to 0.2 mL of packed cells.
 4. Centrifuge the cells at 100 × g for 20 s.
 5. Discard the supernatant and add 2 mL of fresh PVS2.
 6. After 3 min of PVS2 treatment at 25°C, load the cell suspen-

sions into a 0.1-mL plastic straw and seal the top end of each 
straw by a heat sealer (see Note 5).

 7. Plunge the straws into LN.
 8. For thawing, place the straws in a water bath at 25°C and 

hold there for 10 min.
 9. Expel the cell suspensions into 2 mL of MT medium, con-

taining 1.2 M sucrose, and hold there for 10 min at 25°C.
 10. Pour the cell suspensions on two pieces of sterile filter paper 

(Ø 50 mm), placed on 20 mL of MT medium, containing 
5 mg/L BA and 0.8% agar in a Petri dish (Ø 90 mm).

 11. After 4–5 h, transfer the filter paper with the cells to another 
Petri dish containing the same medium.

 12. Incubate the Petri dishes at 25°C and 16-h photoperiod 
(25 mmol/m2/s).

 1. Alternatively, seed MC can be determined by a moisture ana-
lyzer device (e.g., HG63 Halogen, Mettler Toledo).

 2. In these studies, desiccation time ranged from 10 to 36 h, 
depending on the species and the initial MC. However, the 
time necessary to reduce seed MC can change consistently 
according to humidity conditions in the room and the flow 
rate of the cabinet.

 3. Alternatively, seeds can be sterilized in 20% commercial 
Clorox for 20 min, followed by 70% ethanol for 5 min.

 4. It is worth to mention that the nucellar embryos in polyem-
bryonic Citrus spp. are ovular in origin, and thus somatic in 
nature (31). In accordance with that, cultured nucellar cells 
present high phenotypic stability (32).

3.5.3. Cryopreservation  
by Vitrification

4.  Notes
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 5. The mean cooling rate of the straws is about 1,600°C/min 
between −30 and −150°C. When the experiment is repeated 
with 2-mL plastic cryovials, cooling rate is about 280°C/min.
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Chapter 15

Cryopreservation of Zygotic Embryonic Axes and Somatic 
Embryos of European Chestnut

Ana M. Vieitez, M. Carmen San-José, and Elena Corredoira 

Abstract

For Castanea sativa (European chestnut), a species with recalcitrant seeds that is not easily propagated 
vegetatively, cryopreservation is one of the most promising techniques for maintaining genetic resource 
diversity and for conservation of selected germplasms. Long-term conservation of selected seeds and valu-
able embryogenic lines can be achieved through the cryopreservation of zygotic embryonic axes and somatic 
embryos, respectively. This chapter describes methods for the desiccation-based cryostorage of zygotic 
embryonic axes, and the vitrification-based cryopreservation of somatic embryos. For zygotic embryonic 
axes, the highest post-thaw survival and plantlet recovery rates are obtained by desiccation in a laminar flow 
hood to 20–25% moisture content, followed by direct immersion in liquid nitrogen. For somatic embryos, 
embryogenesis resumption rates of over 60% are achieved by preculture of embryo clumps for 3 days on 
solid medium containing 0.3 M sucrose, incubation in PVS2 vitrification solution for 60 min at 0°C, and 
direct immersion in liquid nitrogen. Plantlet recovery from cryostored embryogenic lines requires prolifera-
tion of the thawed embryos and subsequent maturation before germination and conversion into plantlets.

Key words: Castanea sativa, Chestnuts, Cryostorage, Cryopreservation, Embryo desiccation, 
European chestnut, Plant regeneration, Somatic embryogenesis, Vitrification, Zygotic embryos

The genus Castanea, belonging to the family Fagaceae, is native 
to the temperate regions of the Northern hemisphere. European 
chestnut (C. sativa Mill.) is a hardwood species with a wide dis-
tribution and an important economic role in Europe. It probably 
originated in the Caucasus mountains, but is currently present in 
25 European countries. European chestnut stands cover an area 
of over two million hectares (1), mainly in the Mediterranean 
region. Historically, chestnuts have been a major food source for 
many European mountain populations, while chestnut wood has 

1.  Introduction

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_15,  
© Springer Science+Business Media, LLC 2011
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been used in furniture, for tannin production, and as a source of 
renewable energy (2). Although many chestnut stands have under-
gone degradation by disease and cultural abandonment since the 
end of the nineteenth century, the past 25 years have seen an upturn. 
In line with the sustainable agriculture policies followed in many 
countries, the chestnut has gained in value not only for timber and 
nut production, but also because of the contribution of European 
chestnut stands to wildlife conservation, protection from erosion, 
and recreational landscapes (3). Accordingly, there is increasing 
interest in safeguarding European chestnut from disease.

The two most devastating diseases of European chestnut – 
which also affect American chestnut (C. dentata) – are root rot or 
ink disease (caused by Phytophthora spp.) and chestnut blight 
(caused by Cryphonectria parasitica). Resistance to these diseases 
has been sought through conventional cross-breeding with  resistant 
or tolerant Asian chestnut species (C. crenata and C.  mollisima). 
Since such programmes require long periods of time, genetic trans-
formation by biotechnological methods appears as an attractive and 
complementary alternative approach to the traditional breeding. 
Regardless of how resistant genotypes are produced, once obtained 
they must be propagated and conserved.

Chestnut trees have recalcitrant seeds, and because of strong 
maturation effects, they are also difficult to propagate vegetatively 
by conventional methods based on cuttings, grafting, or stooling. 
These difficulties, which complicate the conservation of high-
value genotypes (4), could be overcome, at least partially, by 
micropropagation methods (5) including somatic embryogenesis 
(SE). Embryogenic cultures of European chestnut have been ini-
tiated from both immature zygotic embryos (6–9) and leaf sec-
tions obtained from shoots cultured in vitro (10). The proliferation 
of these somatic embryos by secondary embryogenesis has also 
been reported, as has the achievement of viable rates of germina-
tion and plant recovery (9, 11). These embryogenic systems have 
allowed the development of a relatively efficient genetic 
 transformation protocol involving the culture of somatic embryos 
of C. sativa with different strains of Agrobacterium tumefaciens 
carrying marker genes (12–14).

Embryogenic lines obtained from selected elite individuals or 
genetically transformed embryos must be conserved. However, 
long-term maintenance by subculture involves a concomitant risk 
of contamination, somaclonal variation, and loss of embryogenic 
capability. Cryopreservation of these embryogenic cultures 
appears to offer the best prospects for long-term conservation 
and management of these valuable genotypes (15, 16). Moreover, 
the importance of cryopreservation as a link between breeding 
and subsequent mass propagation after clonal selection of field-
tested seed progenies has also been emphasized for both conifers 
(17) and hardwood forest trees (18). Cryopreservation can in fact 
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be applied to both somatic embryos and zygotic embryos or their 
embryonic axes (4), and in the case of C. sativa, both approaches 
have been investigated. Pence (19) applied a desiccation-based 
procedure to embryonic axes, but although surviving axes under-
went root pole elongation, no plantlets developed. Later, how-
ever, a method likewise based on desiccation and rapid immersion 
in liquid nitrogen (LN) allowed Corredoira et al. (20) to achieve 
90% survival and 63% plant recovery rates.

Both desiccation-based and vitrification-based procedures 
have been used to cryopreserve somatic embryos of European 
chestnut (20). The most efficient is the latter, which achieved an 
embryogenesis resumption rate of 68% as against 33% for the 
desiccation-based technique. The vitrification protocol also allows 
cryostorage of transgenic embryogenic lines, with post-thaw 
embryo recovery rates higher than 60%, and proven stability of 
the inserted foreign genes (13).

In this chapter, we provide details of viable methods for the 
cryopreservation of European chestnut based on (1) the desicca-
tion of zygotic embryonic axes and (2) the vitrification of somatic 
embryos. In both cases, the protocol described covers the whole 
process, from the plant material of origin to the regenerated 
plantlet: (i) preparation of the original plant material by precul-
ture, desiccation, or application of vitrification solutions; (ii) 
immersion in LN, thawing, and rewarming; and (iii) post-thaw 
culture and regeneration.

 1. Plant material: mature chestnut seeds collected from open 
burs.

 2. Material for nut surface sterilization: 70% ethanol, 5% chlo-
rine solution (Millipore® chlorine tablets), Tween 80, and 
sterile distilled water.

 3. Culture medium for recovery of embryonic axes after thawing: 
MS medium (21) with half-strength nitrates, 1 mL/L pre-
servative for plant tissue culture media (PPM™, Plant Cell 
Technology, Inc., Washington, DC), 0.09 M sucrose, 
6.0 g/L Vitro agar (Hispanlab, S.A., Spain), and the other 
organic additives listed in Table 1. The pH is adjusted to 
between 5.6 and 5.7 before autoclaving at 121°C for 20 min, 
after which the recovery medium is dispensed into 90-mm 
diameter Petri dishes (25 mL/dish) and 150 × 20 mm cul-
ture tubes (16 mL/tube).

 4. Empty sterile Petri dishes and 2-mL cryovials.

2.  Materials

2.1. Cryopreservation 
of Zygotic Embryonic 
Axes
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 1. Plant material: stock chestnut embryogenic lines maintained 
by secondary embryogenesis.

 2. Proliferation medium (for maintenance of embryogenic 
lines): MS mineral salts (with macronutrients at half strength) 
with 0.09 M sucrose, 7 g/L agar (Sigma), and the other 
organic additives listed in Table 1. The pH is adjusted to 5.6–
5.7 before autoclaving at 121°C for 20 min, after which the 

2.2. Cryopreservation 
of Somatic Embryos

Table 1 
Culture media used in the cryopreservation and recovery of zygotic embryonic 
axes and somatic embryos of European chestnut

Components

Embryonic axes Somatic embryos

Recovery 
medium

Proliferation/
recovery medium

Preculture  
medium

Unloading 
medium

Macronutrients MS  
(½ nitrates)

MS  
(half strength)

MS  
(half strength)

MS  
(half strength)

Micronutrients MS MS MS MS

Fe-EDTA MS MS MS MS

m-Inositol (mg/L) 100 100 100 100

Thiamine-HCl  
(mg/L)

1 1 1 1

Nicotinic acid  
(mg/L)

0.1 0.1 0.1 0.1

Pyridoxine-HCl 
(mg/L)

0.1 0.1 0.1 0.1

L-Glutamine 
(mg/L)

– 438 – –

PPM (mL/L) 1 – – –

BA (mM) 0.88 0.44 – –

NAA (mM) – 0.54 – –

Sucrose (M) 0.09 0.09 0.3 1.2

Agar (g/L)  
(Sigma A-1296)

– 7a 7 –

Vitro agar (g/L) 
(Hispanlab)

6b – – –

BA 6-benzyladenine; MS medium of Murashige and Skoog (21); NAA naphthaleneacetic acid; PPM preservative for 
plant tissue culture media
aReduced to 6 g/L in medium used for the first 24 h of recovery culture
bReduced to 5 g/L in medium used for the first 24 h of recovery culture



205Cryopreservation of Zygotic Embryonic Axes

medium is dispensed into 90-mm diameter Petri dishes 
(25 mL/dish).

 3. Preculture medium: proliferation medium devoid of glu-
tamine and plant growth regulators, and with sucrose con-
centration increased to 0.3 M (Table 1); dispensed in Petri 
dishes (25 mL/dish).

 4. Plant Vitrification Solution 2 (PVS2): 30% w/v glycerol, 15% 
w/v dimethylsulfoxide, and 15% w/v ethylene glycol in liq-
uid MS medium containing 0.4 M sucrose (22).

 5. Unloading medium: liquid preculture medium devoid of 
agar, with sucrose concentration increased to 1.2 M (see 
Table 1); for unloading embryo samples after thawing.

 6. Sterile filter paper discs (Whatman no. 1) and cryovials.
 7. Sterile pipettes for replacing solutions from cryovials.
 8. Recovery medium: same as the proliferation medium, except 

that agar concentration is reduced to 6 g/L in the medium 
used for the first 24 h of recovery culture (Table 1); dispensed 
in Petri dishes.

A reliable method for successful cryopreservation of zygotic 
embryonic axes is described that is based on partial desiccation. 
Desiccation-based methods, consisting in dehydrating explants 
following induction of dehydration tolerance, and rapid cooling 
by direct immersion in LN, are simpler and more practical than 
classical slow-cooling protocols involving freeze-induced dehy-
dration (20, 23). In the protocol described below, plantlets are 
regenerated directly in the recovery medium.

 1. Collect chestnuts of selected trees from mature open burs, 
generally in October, and store them in paper bags at 4°C 
until use, which should occur within 4–6 weeks of nut collec-
tion (see Note 1).

 2. Remove the external seed coat, leaving the inner coat intact, 
and surface sterilize by successive immersion in (1) 70% (v/v) 
ethanol for 2 min and (2) a 5% solution of free chlorine with 
three or four drops of Tween 80/500 mL for 30 min (stir 
gently) (see Note 2).

 3. Drain off the chlorine solution and rinse the decoated seeds 
three times in sterile distilled water; the first water bath should 
last just a few seconds and the other two 10 min each.  
The seeds are then transferred to a fourth water bath pending 
axis excision.

3. Methods

3.1. Cryopreservation 
of Zygotic Embryonic 
Axes

3.1.1. Desiccation-Based 
Cryopreservation
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 4. Dissect the embryonic axes aseptically from the surrounding 
cotyledons and transfer them to empty Petri dishes (20–25 
axes/dish) (Fig. 1a).

 5. Desiccate the embryonic axes in the open Petri dishes in a 
laminar flow hood until their moisture content has been 
reduced to 20–24% of fresh weight (see Note 3).

 6. Transfer the desiccated axes to 2-mL cryovials (five axes per 
vial), place the vials in a cryostorage cane or cryobox, and 
plunge them rapidly into LN.

 7. For thawing, immerse the vials for 2 min in a water bath at 
40°C.

 1. To rehydrate embryonic axes, transfer them to Petri dishes 
containing recovery medium (Table 1) solidified with 5 g/L agar 
(10 axes to a dish) and culture in the dark for 24 h at 24°C.

3.1.2.  Plantlet Recovery

Fig. 1. Plant material of Castanea sativa before and after application of cryopreservation methods. (a) Freshly isolated 
zygotic embryonic axes prior to being subjected to the desiccation-based procedure. (b) Plantlet development from 
chestnut embryonic axes after 8 weeks of culture on recovery medium following a 4-h desiccation period (24% moisture 
content) and rapid cooling in liquid nitrogen. (c) Somatic embryo clumps prior to being subjected to the  vitrification-based 
procedure. (d) Somatic embryo formation from a cryopreserved somatic embryo clump after 6 weeks of culture on 
recovery medium following preculture in 0.3 M sucrose medium and exposure to PVS2 solution for 60 min and rapid 
cooling in liquid nitrogen.
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 2. Transfer the axes to culture tubes containing fresh recovery 
medium solidified with 6 g/L agar (place each axis upright in 
its own individual tube) and keep in the dark at 24°C for 2 
weeks (see Notes 4 and 5).

 3. Subject the cultures for 5–6 weeks to a 16-h photoperiod 
with a photon flux density of 50–60 mmol/m2/s provided by 
white fluorescent lights, with light and dark temperatures of 
25 and 20°C, respectively.

 4. Seven to eight weeks after thawing, plantlet recovery may be 
evaluated as the percentage of whole plantlets (plantlets with 
both root and shoot growth, Fig. 1b) that has developed 
directly from embryonic axes (see Note 6).

 5. The plantlets recovered from cryostorage may be used either 
directly for plant regeneration (by transfer to substrate and 
acclimatization in a greenhouse for further growth under 
nonsterile conditions), or as a source of clonal micropropaga-
tion cultures.

The protocol for reliable cryopreservation of chestnut somatic 
embryos that is described below is based on vitrification, i.e., the 
transition of water directly from the liquid phase into an amor-
phous phase or glass, while avoiding ice crystallization (24). 
Vitrification involves treatment of samples with cryoprotective 
substances, dehydration in a highly concentrated vitrification 
solution, and rapid cooling. In the present case, somatic embryos 
recovered from cryopreservation must be proliferated and 
matured before plantlets can be obtained by germination.

 1. As the source of somatic embryos, use stock embryogenic 
lines maintained by secondary embryogenesis with sequential 
 subculture at 5–6-week intervals onto solidified embryo pro-
liferation medium (Table 1) and incubation under a 16-h 
photoperiod of 50–60 mmol/m2/s photon flux density, with 
25°C light/20°C dark temperatures (standard conditions) 
(see Note 7).

 2. Isolate 6–8 mg of clumps of globular and/or heart-shaped 
embryos (Fig. 1c) from stock embryogenic cultures 3–4 
weeks after the last subculture (see Note 8).

 3. Place the embryo clumps in Petri dishes containing solid precul-
ture medium (Table 1; use 1 dish per 10 clumps) and incubate 
for 3 days under the standard conditions defined in step 1.

 4. After preculture, place the embryo clumps in 2-mL cryovials 
(10 clumps to a vial), and to each vial, add 1.8 mL of ice-cold 
PVS2 vitrification solution and leave for 60 min at 0°C (see 
Notes 9 and 10).

3.2. Cryopreservation 
of Somatic Embryos

3.2.1. Vitrification-Based 
Cryopreservation
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 5. Resuspend the embryo clumps in 0.6 mL of fresh PVS2, place 
the cryovials in a cryostorage cane or cryobox, and immerse 
rapidly in LN.

 6. To thaw, proceed as in step 7 under Subheading 3.1.1.

 1. Drain off the PVS2 solution, replace it with unloading 
medium (Table 1), leave for 10 min, replace the medium with 
fresh unloading medium, and leave for a further 10 min.

 2. Transfer the embryo clumps in each cryovial to a filter paper 
disc placed on recovery medium in a Petri dish (use medium 
with 0.6 g/L agar; see Table 1). Culture for 24 h under the 
standard light and temperature conditions described in step 1 
under Subheading 3.2.1.

 3. Transfer the embryo clumps to fresh recovery medium gelled 
with 0.7 g/L agar in Petri dishes without any filter paper disc. 
Culture for 6 weeks under standard conditions (see Note 11).

 4. Six weeks after thawing, the embryo recovery frequency may 
be evaluated as the proportion of clumps showing resump-
tion of embryogenesis (Fig. 1d). The number of new embryos 
per embryogenic clump should also be considered in evaluat-
ing the efficiency of the cryopreservation process (see Notes 
12 and 13).

 1. Isolate somatic embryos or embryo clumps from embryogenic 
cultures retrieved from LN and grown on recovery medium, 
and transfer to Petri dishes containing 25 mL of embryo pro-
liferation medium (10 explants to a dish). Culture under stan-
dard growth conditions, as in step 1 under Subheading 3.2.1, 
to multiply embryos by secondary embryogenesis.

 2. Subculture onto fresh multiplication medium at 5–6-week 
intervals to maintain or increase the number of embryogenic 
cultures (see Note 14).

 1. Isolate opaque white cotyledonary somatic embryos 4–8-mm 
long from proliferating embryogenic cultures and transfer to 
Petri dishes (10–12 embryos to a dish) containing 25 mL of 
maturation medium, defined as basal medium (proliferation 
medium devoid of phytohormones) with 0.08 M maltose 
instead of 0.09 M sucrose. Culture for 4 weeks under stan-
dard growth conditions.

 2. Transfer the embryos from maturation medium to dishes 
containing basal medium and keep in the dark at 4°C for 2 
months (see Note 15).

 3. Transfer the cold-treated matured embryos to sterile open Petri 
dishes, 12 embryos to a dish, and dehydrate in a laminar flow 

3.2.2.  Embryo Recovery

3.2.3. Maintenance and 
Multiplication of Recovered 
Cryostored Embryos

3.2.4.  Embryo Maturation
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cabinet at room temperature to a moisture content of 54–58% 
(approximately 2 h under our conditions) (see Note 16).

 1. Place the partially desiccated embryos horizontally in Petri 
dishes containing germination medium consisting of basal 
medium supplemented with 0.44 mM 6-benzylaminopurine 
(BA) and 0.49 mM 3-indolebutyric acid (IBA) and with glu-
tamine concentration reduced to 200 mg/L (for the defini-
tion of basal medium, see step 1 under Subheading 3.2.4).

 2. Incubate for 6–8 weeks under standard light and temperature 
conditions as in step 1 under Subheading 3.2.1.

 3. Germination response may be evaluated as the proportion of 
embryos that have developed into plantlets (conversion into 
somatic seedlings). For evaluation of potential plant recovery, 
the proportion of embryos developing only shoots (“shoot 
germination”) should also be taken into account (see Notes 
17 and 18).

 4. Isolate shoots from embryos that have grown shoots but not 
roots, and use micropropagation procedures developed for 
chestnut (5).

 5. Place plantlets obtained in steps 3 and 4 in pots containing a 
3:1 mixture of commercial substrate (Pinot®) and perlite. 
Keep under a 16-h photoperiod (95 mmol/m2/s from cool-
white fluorescent lamps) in a growth chamber at 25°C and 
85–90% relative humidity until resumption of growth within 
6–12 weeks of transplantation. Move the plantlets to green-
house conditions for further growth before planting out.

 1. Chestnut seeds require cold storage to germinate. Storage of 
chestnuts in paper bags for several weeks is preferred to the 
alternative of cold stratification in sand, which has proved to 
reduce the efficiency of sterilization. Contamination rates 
never exceed 5–10% among seeds stored in paper bags (25).

 2. To avoid contamination problems during culture, use only 
healthy chestnuts without any signs of deterioration of seed 
covers or cotyledon tissues (signs include any kind of stain or 
blot, which will probably have been due to attack by fungi or 
microorganisms). It is important to perform surface steriliza-
tion of the seeds before the excision of embryo axes, rather 
than surface sterilization of isolated axes, which may nega-
tively act along with freezing stress.

3.2.5. Embryo Germination 
and Conversion to Plantlets

4.  Notes
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 3. The success of embryonic axis cryopreservation depends on 
procuring moisture levels that minimize both desiccation 
damage and freezing damage. During desiccation, samples of 
axes should be used for periodic monitoring of water content, 
at least during method development. By way of orientation, 
freshly excised zygotic axes (Fig. 1a) have a water content of 
approximately 66%, and the optimal moisture content defined 
in this protocol (20–24%) is achieved by 4–5 h of desiccation 
in a laminar flow cabinet at room temperature (20).

 4. In method development, in order to be able to optimize cry-
opreservation procedures, it is first necessary to identify con-
ditions that are appropriate for the culture of embryonic axes 
in recovery medium (25). In optimizing the BA content of 
the recovery medium used in this protocol, it was found that 
varying the concentration between 0.22 and 2.22 mM had 
little effect on the germination and development of non- 
cryostored axes, but omission of BA or its inclusion at a 
 concentration of 4.44 mM or higher resulted in reduced plant 
recovery and/or was detrimental for plantlet quality (20).

 5. When this protocol is followed, 70–100% of non-cryostored 
embryo axes develop as whole plantlets within 8 weeks of 
culture, regardless of whether or not they had previously been 
desiccated to a moisture content of 20% (20).

 6. Although the efficiency of the protocol must evidently be 
measured on a whole plantlet basis, it may also be of interest 
to evaluate survival, i.e. the percentage of cryopreserved axes 
exhibiting any kind of growth (including not only normal 
development, but also development of the root pole only and 
callus formation). Under the conditions of this protocol, sur-
vival increased with decreasing moisture content from 0% for 
non-desiccated axes to 100% for axes in which water content 
had been reduced to approximately 20% by 5-h desiccation; 
with this treatment, 63% of surviving axes achieved plantlet 
recovery and 37% only root growth.

 7. Embryogenic lines may be initiated from immature zygotic 
embryos or from leaf explants excised from axillary shoot 
multiplication cultures (9). Although somatic embryogenesis 
induction rates from original explants are relatively low, mass 
production of embryos may be achieved by secondary 
embryogenesis.

 8. The developmental stage of somatic embryos used for cryo-
preservation did influence post-cryostorage recovery rates in 
chestnut and other related species such as oaks (26). Clumps 
of 2–3 globular or heart-shaped embryos withstand storage 
in LN better than more differentiated, cotyledonary stage 
embryos. In the globular and early torpedo stages, somatic 
embryos have a greater number of active embryogenic cells 
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than at the cotyledonary stage, when cells exhibit higher levels 
of vacuolization and differentiation (27).

 9. An adequate response to dehydration in vitrification solution 
is essential for successful vitrification. PVS2 solution is well 
tolerated by chestnut embryogenic cultures, the recovery rate 
of PVS2-treated and non-cryopreserved embryos generally 
exceeding 85% even after exposure times of up to 120 min.

 10. Using PVS2 solution at room temperature (24°C) instead of 
0°C significantly reduces the recovery of cryostored embryo 
clumps treated for 60 min.

 11. Following rewarming, cryopreserved embryo clumps turn 
brown-black, but 2–3 weeks later, their surviving cells begin 
to produce cream-coloured globular-stage embryos. In our 
experience, whole original embryos do not survive 
cryopreservation.

 12. As in the case of cryopreserved zygotic embryonic axes (see 
Note 6), survival (evidenced by any sign of growth, including 
callus formation) must be distinguished from embryo  recovery 
(evidenced by the production of torpedo or cotyledonary 
stage embryos). The protocol described here (20) has achieved 
post-cryostorage embryogenesis resumption rates of 60–70% 
when applied to a variety of chestnut lines, including geneti-
cally transformed embryogenic lines (13), with numbers of 
new embryos per clump ranging from 1.4 to 3.4.

 13. The post-thaw survival rate of European chestnut achieved by 
the present vitrification-based protocol is similar to that of 
American chestnut embryogenic cultures cryopreserved by a 
cryoprotectant/slow-freezing method (28), and the present 
protocol is both less expensive and simpler than the slow-
freezing procedure.

 14. Repetitive embryogenesis is mainly sustained through the 
development of secondary embryos on the root-hypocotyl 
zone of torpedo or early cotyledonary stage primary embryos. 
In addition, nodular proembryogenic masses (PEMs) may 
also be developed from cotyledons of primary embryos (10).

 15. A 2–3-month cold treatment before germination has been 
found to be necessary to obtain plantlets of both European 
chestnut and hybrids (9), and also for the germination of 
American chestnut somatic embryos (29).

 16. During desiccation, samples of embryos should be used for 
periodic monitoring of water content as a percentage of fresh 
weight, at least during method development. Under our con-
ditions, water content was on average 85% before desiccation 
treatment, and fell to 54–58% after 2-h desiccation by laminar 
flow (11). Desiccation treatment is not essential for conver-
sion to plantlets, but it does enhance both potential plant 
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recovery (by increasing the number of germinating embryos 
exhibiting only shoot development; see Note 17) and the 
quality of regenerated plantlets.

 17. Although rates of direct conversion into plantlets are rela-
tively low (18–22%), total plant recovery can be increased to 
40–50% by making use of shoots produced by embryos that 
develop shoots but not roots (10, 11). These shoots can be 
multiplied by axillary shoot proliferation, rooted, and accli-
matized (5).

 18. The genotype is an important factor influencing not only the 
embryo proliferation ability but also the germination and 
plantlet recovery of chestnut somatic embryos.
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Chapter 16

Cryopreservation of Ilex Immature Zygotic Embryos

Luis Mroginski, Natalia Dolce, Pedro Sansberro, Claudia Luna,  
Ana Gonzalez, and Hebe Rey 

Abstract

Tropical Ilex species have recalcitrant seeds. This chapter describes protocols for long-term conservation of 
Ilex brasiliensis, I. brevicuspis, I. dumosa, I. microdonta, I. integerrima, I. paraguariensis, I. pseudoboxus, 
I. taubertiana, and I. theezans through cryopreservation of zygotic rudimentary embryos at the heart 
developmental stage. The embryos are aseptically removed from the seeds and precultured (7 days) in the 
dark at 27 ± 2°C on solidified quarter-strength Murashige and Skoog medium with 3% sucrose and 0.1 mg/L 
zeatin. The embryos are then encapsulated in 3% calcium alginate beads and pretreated at 24-h intervals in 
liquid medium supplemented with progressively increasing sucrose concentrations (0.5, 0.75, and 1 M). 
The beads are dehydrated for 5 h with silica gel to 25% water content (fresh weight basis) and then placed 
in sterile 5-mL cryovials. Then the beads are either plunged rapidly in liquid nitrogen where they are kept 
for 1 h (rapid cooling), or cooled at 1°C/min to −30°C and then immersed in liquid nitrogen for 1 h (slow 
cooling). After cryopreservation, the beads are rewarmed by immersion of the cryovials for 1 min in a water 
bath at 30°C. Finally, the beads are transferred onto culture medium (1/4MS, 3% sucrose, and 0.1 mg/L 
zeatin, solidified with 0.8% agar) and incubated in a growth room at 27 ± 2°C under a 14-h light (116 mmol/
m2/s) and 10-h dark photoperiod. Maximum recovery percentages between 15 and 83% (depending on the 
species and the treatment) were obtained with the cryopreserved embryos.

Key words: Cryopreservation, Embryo culture, Encapsulation dehydration, Fruit cryopreservation, 
Germplasm preservation, Ilex spp, Liquid nitrogen, Plant, Regeneration

The genus Ilex is the largest of the family Aquifoliaceae. 
The  systematics of the genus presents some difficulties and the 
total number of species is still uncertain, probably due to the lack 
of appropriate collections considering that Ilex is usually  comprised 
of woody dioecious plants (1). Giberti (2) has mentioned 400 
species widely distributed in the world. However, more recent 
taxonomic studies recognized at least 600 species (3, 4). Most 
species of this genus are deciduous or evergreen shrubs or small 

1. Introduction
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trees, but in the tropics the genus also includes some very large 
trees and, in some cases, climbers. Despite that the distribution is 
predominantly in subtropical–tropical regions of both  hemispheres, 
few species grow in temperate areas. Ilex species extend north to 
64° and south to 33° (3).

The Ilex genus is comprised of several species of economic 
importance. Some of them, commonly named “hollies,” such as 
“English holly” (Ilex aquifolium L.), “Chinese holly” (I. cornuta 
Lindl. Hitchcock), “American holly” (I. opaca Ait.Farage), and 
“Japanese holly” (Ilex crenata Thunb.), have long been symbolic of 
Christmas and also have been cultivated by nurserymen in the 
United States for landscaping, and various institutions and com-
mercial breeders are developing hybrids with improved tolerance to 
winter and with more foliage (5). In South America, I. paraguar-
iensis St. Hil. (named “maté tree,” “yerba mate,” or “ka’a y”) is a 
species that grows typically in acidic soil with its natural distribution 
restricted to 3% of the South American territory (6). This species, a 
tree or sometimes a shrub as much as 16-m tall, is a perennial crop 
which is an important source of income in some regions of north-
eastern Argentina, Paraguay, northern Uruguay, and southern 
Brazil (2, 7). Of these regions, Argentina (Provinces of Misiones 
and Corrientes) is the largest producer with around 152,000 hect-
ares. The overall value of “mate tree” production around the world 
was estimated in 2004 at one billion USD (8). Its dried leaves and 
twigs are used for making a stimulating drink named “mate,” “chi-
marrao,” “mate tea,” and “tereré,” which has been consumed for 
centuries and are very appreciated by people of this region. Actually, 
it is well known that its leaves contain caffeine, which can explain 
this physiological effect (9–11). This plant has many other uses in 
canned drinks, soluble teas, cosmetics, colourings, and medicines 
(11). Mate tea has been mentioned as a central nervous system 
stimulant, diuretic (12), antioxidant (13), and cardioprotective 
agent (14) and as having other health benefits (8, 15). Other spe-
cies of Ilex, such as I. brevicuspis (16) and I. dumosa (17), have been 
recently mentioned for their health benefits. The leaves of I. dumosa 
have similar components to I. paraguariensis while they have less 
caffeine and saponins content. Other members of the genus Ilex, 
such as “Yaupon Holly” (I. vomitoria), “guayusa” (I. guayusa), and 
I. tarapotina, are also used in infusions (18).

Regarding the possibilities for germ plasm conservation, most 
of the Ilex species present two major constraints: (A) They usually 
have seeds with rudimentary embryos that remain in the imma-
ture heart-shaped stage for a long time after the fruits reach matu-
rity (5, 19, 20). When fruits of I. paraguariensis are ripe, only 
about 1% of the seeds (pyrenes) contain mature embryos and 99% 
of the seeds have embryos either in the heart stage (70%) or in the 
torpedo stage (29%) (21). In the same sense, it has been reported 
that when fruits of I. dumosa and I. brevicuspis are mature, only 
7.22 and 1.90% of the embryos are at the cotyledonary stage, 
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respectively (22). Similar results were reported in 14 species of 
Ilex which occur in Hong Kong (3). As a result, seed germination 
is delayed, and in I. paraguariensis, a minimum of 5–9 months 
under appropriate environmental conditions is required for 
embryo maturation (23). In the case of I. opaca, germination in 
nature requires 1–3 years, as the percentage of germination is 
about one in ten million (19). The technique of embryo rescue 
has been employed successfully in many crops to solve this prob-
lem (24–26). This technique permits the acceleration of the mat-
uration of rudimentary embryos, resulting in the highest 
germination rates. It was used in numerous species of Ilex (Table 1). 

Table 1 
Plant regeneration by in vitro culture of rudimentary embryos  
of 21 species of Ilex

Species
Maximum percentage of embryos 
converted to seedlings References

I. aquifolium 86.13 (5, 20, 47)

I. argentina 97 (43, 48)

I. brasiliensis 56–82 (36, 38)

I. brevicuspis 8–94 (36, 38, 48)

I. cassine 1.37–62.5 (5, 20)

I. cornuta 97.51 (5, 20, 47)

I. crenata 96.40 (5, 20, 47)

I. dumosa 40–74 (36, 38, 48, 49)

I. integerrima 27–61 (36, 38, 48)

I. glabra 84.89 (5, 20, 47)

I. longipes 93.10 (20, 47)

I. microdonta 43–89 (36, 48)

I. opaca 28.96–75.0 (5, 20, 43, 44, 47)

I. pedunculosa 87.77 (5, 20)

I. pernyi 15.73–91.7 (5, 20, 47)

I. paraguariensis 40–60 (36–38, 48, 50, 51)

I. pseudoboxus 23–93 (36, 38, 48)

I. serrata 60.81 (20, 47)

I. taubertiana 10 (38)

I. theezans 33–67 (36, 38, 48)

I. verticillata 89.89 (5, 20, 47)
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(B) They have seeds (especially the subtropical and tropical 
species) which are highly sensitive to desiccation and which can-
not be stored at low temperatures. In other words, according to 
Roberts (27), they are recalcitrant seeds and, therefore, are not 
suitable for long-term preservation using conventional seed stor-
age methods. Thus, the germ plasm of Ilex spp. is maintained in 
the field as ex situ gene banks (28). Under this storage method, 
the genetic resources are exposed to diseases, pests, and natural 
hazards. In addition, labor costs and trained personnel require-
ments are very important (29–31).

Currently cryopreservation appears, at least in some species, 
to be an ideal procedure for long-term conservation of plant germ 
plasm. It consists of bringing the plant material to a metabolically 
inactive state through its immersion in liquid nitrogen (−196°C). 
Cryopreservation protocols have been developed for seeds and 
several explants of various plant species (32–34).

Two strategies for in vitro cryopreservation of germ plasm of 
Ilex species using zygotic embryos were tested: (a) embryos cryo-
preserved in fruits and (b) cryopreservation of isolated embryos 
(Fig. 1) (28). The protocols for both procedures require several 
steps which depend on the procedure chosen.

 1. Nine species of Ilex (see Table 2).
 2. Surface sterilization of fruits and embryos: 70% ethanol and 

1.8% sodium hypochlorite, with two drops of Triton X-100® 
(Merck, Darmstadt, Germany).

 3. Pretreatment of fruits: plastic bags and refrigerator (4°C).
 4. Solution for cryopreservation: 2.5 mL of cryoprotectant 

solution (50% sucrose and 50% glycerol) in 5-cm3 polypro-
pylene cryotubes.

 5. Controlled Rate Freezing System (Gordinier Electronics, 
Inc., USA, Model 9000).

 6. Liquid nitrogen.
 7. Water bath (30°C) for thawing.
 8. For isolation of embryos: laminar flow hood and sterile tools 

(scalpel, sterile glass Petri plate, needle, razor, blade, and 
 forceps) (see Note 1).

 9. For embryo culture: Murashige and Skoog (MS) medium 
(35) with agar (Sigma Chemical Co. A-1296) and zeatin 
(6-[4-hydroxy-3-methylbut-2-enylamino] purine) (Sigma 
Chemical Co.) in 11-cm3 glass tubes.

2. Materials
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 10. Aluminum foil and Resinite AF® (Casco SAIC Company) for 
cover glass tubes.

 11. Autoclave.
 12. Silica gel (Riedel-de Haën, AG-D-30926, Seelze, Germany).
 13. Growth room at 27 ± 2°C with a 14-h photoperiod 

(116 mmol/m2/s).
 14. For transplanting seedlings: pots containing fine vermiculite.

Fig. 1. Strategies for cryopreservation of germ plasm of Ilex spp.
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This protocol (36) using vitrification method consists of the 
following:

 1. Preparation of plant materials. Fruits will be chosen either 
from plants growing in the field or from potted plants grow-
ing in greenhouse (Fig. 1). This condition is generally prefer-
able, since the fruits are more free of superficial contamination 
with bacteria or fungi. It is highly desirable that in both cases 
the mother plants have good sanitary conditions.

Immature light green fruits (drupes) of Ilex spp. (Fig. 2a) 
should be harvested during summer (2–3 months after hand 
pollination) and superficially sterilized in 70% ethanol for 
5 min, followed by immersion for 30 min in 1.8% sodium 
hypochlorite, with two drops of Triton X-100®. Subsequently, 
the fruits should be rinsed three times with autoclaved  distilled 
water. They can be stored in a refrigerator (4°C) in  plastic 
bags until use (see Notes 2–4).

 2. Pretreatment. The superficially sterilized fruits should be 
 cold-pretreated (for 1 month at 4°C) and hermetically sealed 
in 5-cm3 polypropylene cryotubes (ten fruits per tube) 

3. Methods

3.1. Cryopreservation 
of Embryos in Fruits

Table 2 
In vitro germination (%) of cryopreserved zygotic embryos 
of Ilex species

Maximum percentage of embryos

Species converted  
to seedlings by using

Embryos  
cryopreserved  
in fruits (36)a

Isolated  
cryopreserved 
embryos (38)a

I. brasiliensis 3 67

I. brevicuspis 0 3

I. dumosa 13 30

I. integerrima 0 40

I. microdonta 3 –

I. paraguariensis 10 67

I. pseudoboxus 23 10

I. taubertiana – 10

I. theezans 0 40
a Ref. (36, 38) – not tested
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 containing 2.5 cm3 of cryoprotectant solution composed of 
50% sucrose (v/v) and 50% glycerol (v/v).

 3. Freezing and storage. The cryotubes containing fruits 
immersed in the cryoprotectant solution should be frozen 
slowly, by cooling from 25°C (room temperature) to −40°C 
at 1°C/min before storage in liquid nitrogen (−196°C) using 
a Controlled Rate Freezing System (Gordinier Electronics, 
Inc., USA, Model 9000) (see Note 5).

 4. Thawing. For thawing, the cryotubes containing the fruits 
should be placed in a 30°C water bath for 1 min.

 5. Viability assessment. After freezing, the rudimentary embryos 
at the heart-shaped stage (Fig. 2f) should be excised and cul-
tured in vitro for survival assessment. For isolation of embryos, 
firstly, the fruits should be surface sterilized by soaking in 70% 
ethanol (5 min) followed by immersion in 1.8% hypochlorite 
and two drops of Triton X-100® (30 min), rinsing three times 
with sterile distilled water, and maintaining in the final rinse 
until embryo excision. After that the embryos should be 

Fig. 2. Embryo cryopreservation of Ilex spp. (Vertical bars represent 1 mm) (a) Fruits. (b) Seeds. (c–e) Embryo excision 
procedure. (f) Embryo at the heart development stage. (g) Seedling obtained by embryo culture.
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 separated from pulp under aseptic condition, working with 
the aid of a stereomicroscope in a laminar flow hood, using a 
sterile glass Petri plate. The dissecting tools should be disin-
fected frequently by dipping into 70% ethanol and drying 
them on a sterile glass Petri plate. Since the embryos are min-
ute (0.16–0.35 mm in length) and easily damaged during the 
manipulation of the isolation, it is necessary to know exactly 
the place of the seed in which they are located. Normally, the 
embryos appear at the end of the seeds, close to the micropy-
lar plug, and it possible to separate of the rest of the tissues of 
the seeds with a scalpel (Fig. 2b–e) (see Notes 6–8).

The excised embryos should be cultured on 3 mL of cul-
ture medium in 11-mL glass tubes (one embryo per tube). 
The tubes are sealed with Resinite AF® (Casco SAIC 
Company) and incubated in darkness at a constant tempera-
ture of 27 ± 2°C. The culture medium was that reported by 
Sansberro et al. (37) for embryo culture of I. paraguariensis 
and consists of quarter-strength MS medium (35) with 3% 
sucrose, 0.65% agar, and 0.1 mg/L zeatin (see Note 9). The 
cultured embryos show the same developmental sequences 
as they pass in situ, and the first seedlings (Fig. 2g) can be 
observed after 14–35 days (depending upon the species) of 
culture. These seedlings can be successfully transplanted to 
pots containing vermiculite in a growth room at 27 ± 2°C 
with a 14-h photoperiod (116 mmol/m2/s). Relative humid-
ity should be maintained at 95–100% during the first week 
and then decreased gradually during the establishment in a 
greenhouse.

This protocol (38), using encapsulation–dehydration method, 
was tested for eight species of Ilex, Table 2.

 1. Preparation of plant material. This step is the same as the one 
described in Subheading 3.1 step 1, and for the isolation of 
rudimentary embryos, the procedure is described in 
Subheading 3.1 step 5.

 2. Pretreatment. Excised embryos (Fig. 2a–f) should be precul-
tured for 7 days in the dark at 27 ± 2°C on solidified (0.8% 
agar) quarter-strength MS medium (35) with 3% sucrose and 
0.1 mg/L zeatin. After preculture, the embryos should be 
encapsulated in 3% calcium alginate (see Note 10) and then 
(beads of approximately 4–5 mm in diameter) transferred at 
27 ± 2°C with 24-h intervals in liquid medium supplemented 
with progressively increasing sucrose concentration (0.5, 0.75, 
and 1 M). The beads should then be dehydrated for 5 h with 
silica gel to 25% water content (fresh weight basis). Finally, the 
dried beads should be placed in sterile 5-mL cryotubes (ten 
beads/cryotube) (see Notes 11–13).

3.2. Cryopreservation 
of Isolated Embryos
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 3. Storage. Cryotubes containing dried beads can be plunged 
rapidly in liquid nitrogen (rapid cooling) or cooled at 1°C/
min to −30°C (using a Controller Rate Freezing System, 
Gordiner Electronics, Inc., USA) and then immersed in liq-
uid nitrogen (slow cooling).

 4. Thawing and viability assessment. The beads should be 
rewarmed by immersing cryotubes in a 30°C water bath for 
1 min. Finally, the beads should be transferred to the same 
culture medium described under Subheading 3.1 step 5 and 
incubated under a 14-h light (116 mmol/m2/s)/10-h dark 
photoperiod. Survival of the embryos should be evaluated 
after freezing by counting the number of embryos that 
develop plantlets.

 1. For tissue culture laboratory facilities, media preparation, 
equipment, and handling, see refs. (39–42).

 2. For seed preparation, embryo excision, culture, and incuba-
tion, see ref. (5).

 3. In addition to immature fruits, mature red fruits can be a 
source of embryos.

 4. Embryos cryopreserved in fruits using rapid cooling do not 
germinate.

 5. In the case of slow freezing, a programmable freezing appara-
tus will be necessary in order to obtain precise and reproduc-
ible freezing conditions.

 6. Seeds that float should be discarded.
 7. Take care that the pressure does not injure the fragile embry-

onic tissue.
 8. A drop of sterile water can be added to the seed during dis-

section in order to avoid dehydration injury of immature 
embryos.

 9. Excised embryos of most of Ilex spp. are sensitive to light 
during the initial period of incubation. Thus, dark incubation 
is recommended for at least the first week (5, 43, 44).

 10. The encapsulation of embryos should be done individually by 
using the classical procedure described for somatic embryos 
(45), where the explants are suspended in liquid culture 
medium and 3% sodium alginate. This mixture, with the 
explants, is dispensed with a 2-mL sterile Pasteur pipette by 
dropping in a 0.1-M calcium chloride solution at room tem-
perature. After 30 min, the resulting beads (about 4–5 mm in 

4. Notes
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diameter) containing one embryo are removed from the liquid 
medium and dried on filter paper (46).

 11. As an alternative to the drying treatment with silica gel, 
embryos can be dried in a laminar flow hood.

 12. Dehydration was carried out by setting the beads on an alu-
minum net at 15 mm from 30 g silica gel in a hermetically 
closed sterile plastic container (50 mL capacity)(46).

 13. The period of dehydration was obtained from dehydration 
curves by determining gravimetrically the water content (fresh 
weight basis) at 1-h intervals between 0 and 6 h (46).
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Chapter 17

The Use of Zygotic Embryos as Explants for In Vitro 
Propagation: An Overview

Mohamed Elhiti and Claudio Stasolla 

Abstract

Plant propagation in vitro via somatic embryogenesis or organogenesis is a complicated process requiring 
the proper execution of several steps, which are affected by culture conditions and environment. A key 
element for a successful outcome is the choice of the explants. Several studies have shown that factors 
such as age, ontogenic and physiological conditions, and degree of differentiation affect the response of 
the explants to culture conditions. As a general rule, younger tissues, such as zygotic embryos, are the 
preferred choice for tissue culturists as they have better potential and competence to produce embryos 
and organs compared to more differentiated and mature tissues. This chapter focuses on how compe-
tence and commitment to regenerate embryos and organs in cultures are acquired by somatic cells and 
why zygotic embryos are so often utilized for propagation practices.

Key words: Embryo, Organogenesis, Plant growth regulators, Propagation, Somatic embryogenesis

The utilization of in vitro techniques to regenerate plants in vitro 
has been largely used as a “propagation” tool as well as a model 
system to understand basic aspects of plant development. Plant 
regeneration in culture can be achieved either through embryo-
genesis, that is the formation of bipolar structures, i.e., embryos, 
or through organogenesis, the generation of a specific organs, 
i.e., shoots or roots. Regeneration through either process can 
occur directly or indirectly, depending on whether an intervening 
proliferation of undifferentiated tissue (callus) is required.

Embryogenesis represents an important event in the plant life 
cycle which is initiated with double fertilization, followed by the 
formation of embryos which are characterized by lateral, radial, 

1. Introduction

1.1. Embryogenesis

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_17,  
© Springer Science+Business Media, LLC 2011
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and longitudinal growth. Embryonic growth, which has been well 
documented in both angiosperms and gymnosperms, results in 
precise morphological changes which in angiosperms define the 
globular, heart, and torpedo stages of development. The final 
phases of embryogenesis are marked by the accumulation of stor-
age products and, at least for the majority of species, acquisition of 
dormancy. Proper execution of these events is ensured by an 
intrigued genetic network contributing to the expression and 
interaction of factors which regulate histodifferentiation and tissue 
patterning. Perturbations of this signaling often results in aberrant 
growth and ultimately embryo abortion. In higher plants, embryo-
genesis can also occur through apomixis, which involves the asex-
ual formation of embryos from the maternal tissues. This process, 
executed without intervening meiotic and fertilization phases, has 
been described in a variety (more than 400) of species included in 
40 different families (1). As suggested by Feher (2) the apomictic 
process suggests that fertilization is not a determinant factor for 
embryogenesis and that cells other than gametes have the poten-
tial to regain embryogenic potential and form embryos. Both 
notions have been demonstrated in vivo by the early realizations 
that embryos can often arise from the leaf margins of several spe-
cies, including Bryophyllum or Malaxis (3, 4).

Applications of these concepts have been extrapolated in vitro 
where somatic embryogenesis, the process whereby somatic cells, 
i.e., cells other than gametes, change their developmental fate and 
embark on an embryogenic pathway culminating in the forma-
tion of somatic embryos, has been implemented successfully in 
many species. The history of somatic embryogenesis starts with 
the pioneering work of Levine (5) who reported the regeneration 
of carrot embryos from tissue culture in the presence of low levels 
of auxins. This work was later followed by Steward et al. (6) who 
documented embryo-like structures originating from cultured 
carrot cells. Since then these studies have been replicated in other 
systems resulting in numerous species able to form somatic 
embryos in culture. For a historical perspective of in vitro embryo-
genesis the readers are encouraged to consult a recent review (7). 
The process of somatic embryogenesis is successfully carried out 
by a proper selection of the explant, medium, growth substances, 
and the control of the physical culture environment. Thorpe and 
Stasolla (8) proposed that the limited production of somatic 
embryos for several species is ascribed to the failure to achieve the 
proper balance and order of the above factors.

Embryo development in vitro is generally divided into an induc-
tion phase, in which somatic cells must be reprogrammed to embark 
into a new fate, followed by a developmental phase characterized by 
the growth of the embryo. A lot of information concerning the latter 
phase is available in literature as many structural, physiological, and 
molecular studies have been conducted during the different phases 
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of embryo development (8). However, the inductive phase has not 
been investigated in details given the  difficulties in identifying cells 
within the explant undergoing somatic-embryogenic transition.

Besides embryogenesis, plantlet formation from cultured cells can 
occur through the formation of primordia, which subsequently 
undergo organogenesis. In many instances, shoot primordia are 
formed first followed by leafy vegetative shoots, which are then 
rooted via root organogenesis. The organogenic process was first 
documented by White (9) who obtained shoots from tobacco 
hybrids and Nobecourt (10) who observed root formation from 
carrot callus. During the following years several other plant spe-
cies were shown to form de novo shoots and roots from callus, 
thanks to the finding of Skoog and Miller (11) who identified the 
auxin/cytokinin balance as the main regulatory mechanism con-
trolling organogenesis. In addition to phytohormones, other 
metabolites have shown to stimulate organogenesis in different 
species. These metabolites include adenine, amino acids, uracil, 
uridine, nicotine, and phenolic acids (12). However the interac-
tions among all these compounds are in agreement with the 
notion postulated by Skoog and Miller (11); a concept which still 
leads the majority of research dealing with organogenesis. An 
updated review on the physiological and molecular events occur-
ring during the organogenic process is provided in (13).

This chapter provides an overview on the use of zygotic 
embryos to initiate somatic embryogenesis and organogenesis 
in vitro. Factors regulating embryogenic/organogenic potential 
and competence are first discussed in order to appreciate why 
immature and mature zygotic embryos are the preferred choices 
of explants for many species.

Induction of embryos and/or organs from somatic cells within an 
explant is a complex process, which is exemplified as consisting of 
three conditions (2, 14). First, the explant must have the 
“ potential” to produce embryos or organs. Second, some cells 
within the explant must be “competent” to respond to endoge-
nous or exogenous signals. Third, these competent cells must be 
“induced” by specific signals and become “committed” to initiate 
the embryogenic/organogenic pathway.

Acquisition of potential is determined at several levels with the 
genotype being the most important factor. This concept is easily 
demonstrated by the variation in embryogenic response, which is 
often observed among different genotypes within the same  species. 

1.2. Organogenesis

2. The Embryo
genic/Organogenic 
Pathway from 
Somatic Cells

2.1. Acquisition  
of Embryogenic/
Organogenic  
Potential
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Several studies in alfalfa have also reinforced this notion (15). In 
an elegant experiment (15), it was possible to express  embryogenic 
potential in a nonregenerative alfalfa clone through the introgres-
sion of “favorable” alleles isolated from an embryogenic clone. 
Although the genetic makeup of the explant plays a determinant 
role on embryogenic potential, it is also true that the inability to 
initiate the embryogenic process might be due to suboptimal cul-
ture conditions. Therefore, a recalcitrant clone might indeed have 
the genetic potential to regenerate embryos in culture but would 
fail to do so because of unsuitable in vitro conditions. Feher (2) 
further elaborated on the importance of the genotype suggesting 
that “genetic determinants” specify the temporal and spatial abil-
ity of the explant to express competence to regenerate embryos, 
which is, however, affected by both developmental and environ-
mental cues. This statement implies that not all the tissues of a 
genotype with embryogenic potential are able to respond in cul-
ture and thus the choice of the explant has to be carefully 
considered.

In the case of embryogenesis, various plant tissues have been 
employed in culture to regenerate embryos. For some species, 
including alfalfa, somatic embryo formation can be initiated from 
all organs within the seedling, including hypocotyls and cotyle-
dons (16). Excised cotyledons of soybean cultured with their 
abaxial epidermis in contact with the medium produce a large 
number of embryos (17). For other species, however, the explant 
is limited to a specific ontogenic stage. In grasses, for example, 
only zygotic embryos, inflorescences, and leaves can be used to 
generate somatic embryos, and all these explants contain mer-
istematic cells that can be maintained and propagated in culture by 
applications of exogenous auxin (18). In pea, only the embryonic 
axis, and not the cotyledons from seed embryo explants, is embryo-
genic (19). Ewans et al. (20) reported that in about 40% of crop 
species undergoing somatic embryogenesis, the cultures were 
derived from either hypocotyls or zygotic embryos. For many spe-
cies the explant of choice is the zygotic embryo which, according 
to Neumann (21) is at the top of the hierarchical gradient of tis-
sues responding to embryogenesis (embryo > hypocotyl > peti-
ole > leaf lamina > root). It is not surprising that the embryogenic 
potential is highest in zygotic embryos since they consist of cells 
already possessing embryogenic fate and therefore would respond 
better in culture. Other more differentiated plant tissues can, how-
ever, be induced to acquire embryogenic or organogenic potential 
through a reprogramming into the embryonic state.

An important factor which would advance the field of plant 
propagation would be understanding differences existing between 
embryogenic and nonembryogenic phenotypes. Physiological 
studies revealed that alfalfa embryogenic genotypes are more 
 sensitive to auxin compared to nonembryogenic genotypes (22). 
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In the former, the expression of auxin-responsive genes was 
affected by low concentrations of auxin which did not have any 
affect on the nonembryogenic genotypes. In the same study, it 
was shown that auxin concentrations which arrested callus cell 
proliferation and induced embryo development in embryogenic 
genotypes promoted callus growth in the nonembryogenic geno-
type. These studies clearly indicate that possession/acquisition of 
embryogenic or organogenic competence make cells and tissues 
more receptive to environmental stimuli required to initiate the 
embryogenic process.

Expression of the embryogenic/organogenic potential only 
occurs if cells within the explant are “competent” or responsive to 
specific culture cues which allow them to differentiate into 
embryos or organs. In general, zygotic embryos can be consid-
ered competent explants, whereas others require an inductive sig-
nal to acquire a competent status. This concept is further 
complicated by the notion that it is often difficult to discriminate 
between cues promoting morphogenesis in competent cells and 
those inducing competence. Over the years several systems have 
been developed to study the nature of competent cells. Using car-
rot cultures, Nomura and Komamine (23) isolated small embryo-
genic cells able to differentiate into embryos in response to 
changes in auxin levels. Tracking experiments revealed that these 
cells have unique structural features which make them easily dis-
tinguishable from other cells. They tend to be small, highly cyto-
plasmic, generally contain a few small vacuoles and undergo 
asymmetric cell divisions (24). Cytological studies in maize fur-
ther documented that competent cells have characteristic patterns 
of microtubule arrangements (25). These structural features are 
accompanied by a unique physiology. Independent studies (22, 
26) indicated that competent leaf-protoplast-derived cells have a 
faster rate of DNA biosynthesis resulting in faster cell division. 
These events were accelerated by an experimental acidification of 
the medium which also promoted the formation of embryogenic 
cells in the presence of low 2,4-D levels, which under normal 
conditions prevent the process. In the same line, embryogenic 
cell formation was abrogated if the pH of the cultured was main-
tained high (2, 26). For more detailed information about com-
parative physiological studies between embryogenic and 
nonembryogenic cells the reader can consult Feher (2). A key ele-
ment for the initiation of the embryogenic or organogenic pro-
cess is represented by the inductive signals which trigger competent 
cells to form embryos or organs. These signals include stress and 
hormones.

Cell fate acquisition and maintenance is determined by positional 
information cues existing within the organism’s body. Excision of 

2.2. Acquisition  
of Competence  
and Induction

2.2.1. Stress-Induced 
Competence
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cells, tissues, or organs alters these cues and induces inevitable 
stress conditions. These events are observed in culture where the 
excised and wounded tissue is exposed to media providing 
 suboptimal levels of nutrients and plant growth regulators. 
As suggested by Feher in (2), the response to stress conditions 
is dependent upon two key factors: the level of stress, which does 
not have to exceed the tolerance of the explant or cells will die, 
and the “physiological state” of the explant which mediates cel-
lular responses. The imposed stress is important for promoting 
dedifferentiation of cells within the explant (2). The first notion 
is exemplified by the formation of callus observed when tissue is 
removed from its original in vivo environment and placed in arti-
ficial growth conditions. Grosset et al. (27) showed that the 
majority of genes expressed by tobacco mesophyll protoplasts are 
indeed induced by wounding. Similarly, in leaf-protoplast-derived 
cells the imposition of oxidative stress initiates the differentiation 
process, as estimated by the acidification of the culture medium 
(26). Besides dedifferentiation, wounding is also required for the 
activation of the embryogenic program. Extreme examples 
include the improved somatic embryogenesis observed in Quercus 
suber cells cultured by alternating between proliferation and star-
vation-stress media (28), and suspension cultures produced from 
mature explants of Phoenix dactylifera grown in media without 
sucrose (29). Inclusions of heavy metal stress were also used to 
induce somatic embryogenesis (without the applications of 
growth regulators normally needed to promote the process) from 
apical shoots of carrot seedlings (30). Although these experiments 
show the effects of extreme stress conditions, it must be men-
tioned that the simple dissecting of tissues/organs, including 
zygotic embryos, induces tremendous stresses which per se might 
be enough to elicit a response.

The mechanism(s) whereby stress affects embryogenesis and 
organogenesis has not been fully elucidated, although there is evi-
dence that multiple cellular responses are triggered. Krishnaraj and 
Thorpe (31) showed that salt stress might be required for altering 
cellular energy status and reducing power which increase the rate 
of the pentose phosphate pathway. Activation of this pathway has 
been associated with in vitro morphogenesis. Stress has also been 
implicated in the production of arabinogalactan proteins, which 
have been found to promote somatic embryogenesis. In a study 
(32), it was shown how nonembryogenic cultures can acquire 
embryogenic competence if exposed to arabinogalactan proteins 
produced from embryogenic cells. A similar promotive effect was 
also observed by chitinases, which also tend to accumulate in 
response to stress conditions (33).

Oxidative stress plays a key role in the acquisition of embryo-
genic competence. Feher et al. (34) showed that compounds pro-
moting oxidative stress are able to produce embryogenic cells 
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from alfalfa leaf protoplasts. Although the inducting mechanisms 
remain elusive, it has been suggested that oxidative stress might 
be connected to mitogen-activated protein kinase (MPAK) 
 phosphorylation cascade which plays a central role in cell division 
 processes (2).

Competent cells can produce embryos or organs in response to 
internal and external stimuli often represented by changes in plant 
growth regulators. For embryogenesis the most effective inducer 
is generally auxin, the level of which increases during the early 
stages of carrot fertilization in vivo (35). As indicated in (2, 34), 
it is difficult to discern whether this growth regulator is only 
needed for the acquisition of cell competence or also for the ini-
tiation of the embryogenic process. Experiments conducted by 
Kitamiya et al. (36) on Medicago cells suggest that auxin is impor-
tant in promoting the embryogenic program, which however can 
proceed in the absence of growth regulators. 2,4-D is the most 
commonly used auxin and its exact mode of action still remains 
elusive. It has been suggested that the direct effect of 2,4-D is less 
significant compared to the effect that this synthetic growth regu-
lator has on the endogenous IAA content (2).

Inclusions of 2,4-D in the culture medium stimulate native 
IAA production, which has been associated to increased embryo-
genic response (37). A peak of endogenous IAA levels has been 
observed in immature zygotic embryos during the induction of 
somatic embryogenesis (38), as well as in alfalfa leaf protoplasts 
able to generate embryos in culture (26). The role of endogenous 
IAA as an inductive signal for the initiation of the embryogenic 
process was further confirmed by localization studies conducted 
during the induction of somatic embryos from cultured sunflower 
embryos (39).

Besides IAA, applications of 2,4-D increase the expression 
levels of ethylene and ABA biosynthetic genes: 1-aminocyclopro-
pane-1-carboxylic acid synthase and 9-cis-epoxycarotenoid dehy-
drogenase, respectively (40). The fact that both ethylene and 
ABA are considered “stress” hormones, reinforces the importance 
of stress for the initiation of the embryogenic process and also 
suggests a link between auxin and stress.

The auxin-increase of ABA levels might per se be responsible 
for promoting embryogenesis. It is well established that ABA 
induces somatic embryogenesis in many systems. Charriere et al. 
(38) showed that applications of this hormone to sunflower 
zygotic embryos stimulate somatic embryo initiation under levels 
of sucrose not suitable for embryogenesis. A developmental arrest 
of somatic embryos as a result of ABA depletion was observed in 
Nicotiana plumbaginifolia; this arrest was overcome if ABA was 
reapplied in the culture medium (41). It is worth mentioning that 
besides auxin, stress can increase the endogenous ABA content. 

2.2.2. Hormone-Induced 
Competence
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Therefore, the level of this plant regulator also is altered as 
explants are dissected and placed on culture media.

Exposure to auxin increases DNA methylation level, which is 
involved in gene silencing (42). As reviewed by Feher (2) 
 alterations in methylation level occur during the initiation of 
somatic embryogenesis. The author suggested that it may be pos-
sible to start the embryogenic process of recalcitrant species by 
experimental modifications of the methylation pattern. In the 
carrot system, the removal of 2,4-D results in a rapid drop in 
methylation and this pattern is reversed as the embryos develop 
(43). The regulation of methylation level by auxin appears to be 
mediated by S-adenosylmethionine (SAM) and S-adenosylcysteine 
(SAH). As reviewed by von Aderkas and Bonga (44), a reduction 
of auxin results in a reduction in ethylene production and this 
increases SAM levels, thereby favoring a high SAM/SAH ratio 
which in turn promotes methylation. Therefore a depletion of 
2,4-D from the culture medium, which in many systems such as 
carrot promotes embryogenesis, increases the methylation level. 
These conditions are required for triggering embryogenesis. The 
role of methylation during embryogenesis was also observed dur-
ing tobacco androgenesis. The methylation level in the degenera-
tive cells decreased to values lower than those observed in the 
vegetative cells which are the only ones able to generate haploid 
embryos (45). Besides promoting the acquisition of the embryo-
genic potential SAM might also be required for the progression 
of embryo development (46). Since preferential synthesis of auxin 
in plants occurs in young and developing tissues and organs, it is 
assumed that zygotic embryos have higher levels of this growth 
regulator compared to more mature explants. This physiological 
condition would therefore render zygotic embryos more respon-
sive to the culture environment and enable them to initiate 
somatic embryos at higher frequency.

As indicated in the previous section, studies by Toonen et al. (24) 
on carrot cultures revealed that several cell types can generate 
embryos in culture, although maximal embryogenic frequency 
was observed for small, highly cytoplasmic cells. Structure of 
embryogenic carrot cells was further investigated by Nomura and 
Komamine (23) who using fractionation studies identified single 
cells (state 0) which were able to form small cellular aggregates 
and developed into embryos upon removal of auxin. State 0 cells 
were also small and highly cytoplasmic, thereby confirming previ-
ous observations. Accurate identification of competent cells was 
rendered possible by the development of cellular markers,  including 

3. Morphology  
and Physiology  
of Embryogenic/
Organogenic Cells
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the JIM8 cell wall epitope and somatic embryogenesis receptor 
kinase (SERK) (47, 48). The JIM 8 epitope was located on the 
wall of single carrot cells and specific to embryogenic cultures 
(47). The authors suggested that JIM 8-targeted cells represent a 
transitional state. These cells can undergo two distinct develop-
mental pathways: either elongate and eventually die, or divide and 
form the initial cell of the somatic embryos. Cells expressing the 
JIM-8 epitope were also small and cytoplasmic rich. A different 
morphology of competent cells was reported by Schmidt et al. 
(48) who employed “SERK” as a marker to identify embryogenic 
cells (discussed below). Using hypocotyl explants of carrots as a 
model system, the authors demonstrated that cells competent for 
embryogenesis were large and elongated. A similar conclusion was 
also reached by Somleva et al. (49) who using a similar approach 
in Dactylis glomerata showed that the SERK marker was also 
expressed by a group of large, vacuolated cells; although only 
small, cytoplasmic cells were able to produce embryos.

Despite these isolated studies, it is accepted that embryogenic 
cells are generally round, small and highly cytoplasmic, whereas 
their nonembryogenic counterparts are elongated and contain 
large vacuoles. This notion is supported by several independent 
studies using angiosperm and gymnosperm systems (50). Another 
feature of embryogenic cells is the accumulation of starch, the 
presence of small vacuoles characterized by low transparency, as 
well as the high levels of proteins, possibly storage, as estimated 
by the strong staining with toluidine blue O (51). The small size 
and the highly cytoplasmic nature observed in the embryogenic 
cells are also featured by cells committed to undergo shoot 
organogenesis (12). These cells undergo high mitotic activity 
forming meristemoid centers which will subsequently form uni-
polar primordia.

Differences in pH and calcium level were also observed 
between embryogenic and nonembryogenic cells. Compared to 
their nonembryogenic counterparts, the symplast of embryogenic 
cells is characterized by an higher pH (52). This notion was 
 experimentally proven by culturing carrot zygotic embryos in the 
presence of NH4Cl, which increased the cellular pH. These con-
ditions guaranteed a continuous production of somatic embryos 
(53). It was postulated (2) that the difference in pH observed 
between embryogenic and nonembryogenic cells is related to 
vacuolar function, with a storage role in the former and a lytic 
function in the latter cells. Alkalinization of competent cells can 
also be linked to the initiation of cell divisions, leading to somatic 
embryo formation. Despite the paucity of information regarding 
the functional role of pH changes in plant cells, Pichon and 
Desbiez (54) showed that cellular alkalinization induced cell divi-
sions in meristematic and hypocotyl Arabidopsis cells, whereas 
cellular acidification had opposite effects. This notion is not new 
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since the role of high pHs in promoting cell cycle progression in 
yeast cells has been well documented (55).

As reviewed in (2), competent cells respond to embryogenic 
inductive conditions by increasing the endogenous Ca++ level. 
The role of calcium as a key regulator for a variety of physiological 
events in plant cells is well recognized. Calcium level generally 
increased during the initial phases of fertilization in both animal 
and plant zygotes (56). In carrot cultures an experimental increase 
in Ca++ level in an auxin-free environment increased somatic 
embryo yield, whereas a decrease in Ca++ effected by ionophores 
and channel blockers had an opposite effect (57). A similar depen-
dence of embryo initiation and calcium level was documented 
during sandalwood somatic embryogenesis. As reviewed in (2) 
calcium signal might be mediated by calmodulin and other Ca++-
dependent protein kinases and results in the establishment of cell 
polarity which is one of the first events in embryo initiation.

Extensive reprogramming of gene expression accompanies the 
transition from somatic cells into embryogenic competent cells in 
response to inductive signals. Extensive effort has been focused 
on the identification of “master” genes required for this transition 
although it is now apparent that the induction of the  embryogenic 
pathway is not governed by a single gene, but it is under the 
 control of an intrigued genetic network. It was documented (58) 
that ectopic expression of SERK resulted in a fourfold increase in 
embryogenic production from Arabidopsis seedlings. The 
 expression of this gene, which is generally higher in cell cultures 
with enhanced embryogenic capabilities (59), is unique to cells 
 showing a rapid response to hormonal signals and competent to 
produce somatic embryos (58). Two other genes involved in the 
 somatic-embryogenic transition encode the transcription factors 
Leafy Cotyledons 1 (LEC1) and Baby Boom (BBM) (60, 61). 
Overexpression of both genes is sufficient to induce embryo 
development from Arabidopsis vegetative tissue.

As suggested by Feher (2), embryogenic competence might 
not be necessarily due to an induction of genetic events, but 
rather to release from a suppression state. This notion is sup-
ported by studies conducted on pickle mutants in which embryos 
form from root meristems. This gene encodes for a chromatin-
remodeling ATPase which is required to suppress the expression 
of several embryogenesis-related genes, including LEC1, in 
somatic cells (62). Therefore, embryogenic competence might be 
acquired from a release of specific factors from a silencing condi-
tion mediated by the organization of chromatin (2). This notion 

4. Molecular 
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is not new as in eukaryotes the overall gene expression pattern has 
been shown to be controlled by the presence of compact or loose 
regions within the chromatin (63).

Information on the genetics related to the acquisition of 
competence for shoot organogenesis is reviewed in (13). A candi-
date gene during the early dedifferentiation phases is CYCD3, 
whereas competence acquisition and shoot formation are related 
to changes in expression of CRE1 and CKI1 (involved in cytoki-
nin reception and perception) as well as shoot meristem genes, 
such as SHOOTMERISTEMLESS and WUSCHEL.

Based on the above studies it emerges that the majority of 
 structural and physiological features needed for inducing somatic 
embryogenesis and organogenesis in culture are present in zygotic 
embryos. Zygotic embryo cells already express the “embryogenic 
potential” with many of the genes required for the induction pro-
cess already expressed. Therefore, their fate is already committed 
and does not need to be redirected toward a new developmental 
path. This is why in many species embryogenic tissue can be 
 readily obtained using immature or mature zygotic embryos. Of 
interest, a degree of response in culture is also related to the 
developmental stage of the zygotic embryos. He et al. (64) 
divided wheat embryos in several developmental stages and 
showed that the higher yield of embryogenic tissue was obtained 
using stage II and III embryos. A similar specificity was also 
observed in conifers where immature zygotic embryos are more 
responsive then their fully mature counterparts (7). Over the last 
few years the number of species regenerated in culture using 
somatic embryogenesis or organogenesis from zygotic embryos 
has increased and includes both conifers and angiosperms 
(Tables 1 and 2).

Several reports describe the use of zygotic embryos as initial 
explants for inducing somatic embryogenesis in both conifers and 
angiosperms. In the majority of the species, the generation of 
somatic embryos comprises five steps: induction, maintenance, 
development, maturation, and conversion. During the induction 
phase, embryogenic tissue is generated from zygotic embryos 
(immature or mature), and this step usually requires high levels of 
auxins and cytokinins, as well as high osmoticum. In white spruce, 
for example, BA and 2,4-D are used at a concentration of 5 and 
10 mM, respectively (65). These requirements are also needed 
during the induction process of other species (8), although auxin 
alone is often sufficient (66, 67). It is not clear which regions of 
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the zygotic embryos are responsive to the induction process, 
although several studies indicate that embryogenic tissue forma-
tion is initiated from the upper hypocotyl (8). As indicated 
 previously, the level of maturity of the zygotic embryos is a very 
important factor since differences in induction frequencies are 
often observed. As a general rule, immature (early cotyledonary) 
embryos are more responsive than their fully mature counterparts. 
Embryogenic tissue is generally easily recognizable from nonem-
bryogenic tissue. In conifers, for example, embryogenic tissue is 
translucent and composed of immature, filamentous-shaped 
embryos characterized by a well-developed suspensor region and 
an embryo proper, which is formed by small highly cytoplasmic 
cells. This is in contrast to the nonembryogenic tissue which has a 
green/brown coloration, and it is mainly composed of paren-
chyma cells without any recognizable structure (65). Embryogenic 
tissue produced from zygotic embryos can be maintained on solid 
or liquid medium for a long period of time. Often the mainte-
nance step also requires some auxins or cytokinins, although at 
lower concentrations to those used for the induction phase. 
In some instances, however, the hormonal requirements for induc-
tion and maintenance are identical (68). The time of subculturing 
during maintenance is strictly genotype dependent with some cell 
lines requiring a higher subculture frequency. Growth of the 
somatic embryos is encouraged on development medium, the 
composition of which is species dependent. In some species, 
including maize, embryo development can be achieved in the 
absence of plant growth regulators (68), whereas for others auxins 
or abscisic acid are required (65, 66). Physiological maturation is 
not necessarily a prerequisite found in fully developed embryos. 
In some instances, a desiccation period is required to terminate 
the developmental program and initiate the germination process. 
This maturation step is very common in conifers where embryos 
must experience a water stress prior to postembryonic growth. In 
spruce this can be achieved using a partial treatment, in which 
embryos are slowly dried in a high relative humidity environment. 
Inclusions of osmoticum agents in the development medium are 
also used to increase the tolerance to desiccation (65). It must be 
mentioned, however, that for the majority of species this desicca-
tion step is not required and embryos can be transferred directly 
from the developmental medium onto the germination medium 
(68). The final step of the somatic embryogenic process is germi-
nation, in which embryos start their postembryonic growth and 
regenerate viable plants. This step is usually achieved in a medium 
devoid of plant growth regulators (65, 68).

A general shoot organogenic process comprises three distinct 
steps: callus induction, shoot induction, and root induction. The 
last two steps are collectively called regeneration.

5.2. The Use of Zygotic 
Embryos for Inducing 
Organogenesis
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Induction of callus can be initiated using both mature and 
immature embryos (69, 70) and is usually achieved on media 
containing either auxins and cytokinins (69) or auxin alone (69, 
70). The incubation time is species dependent and the callus 
responsive to organogenesis can be often recognized by its non-
embryogenic counterpart. In rice, for example, responsive callus 
is creamy and become visible after only 2 weeks of incubation in 
the dark. Generation of shoots from the callus is achieved in the 
presence of cytokinins which stimulate the formation of meriste-
moids, i.e., organized cellular aggregates which will further 
develop into shoots. Compared to somatic embryogenesis,  studies 
on the initial phases of the organogenic process are scarce in 
 literature. Once developed, shoots are transferred onto rooting 
medium, which is generally devoid of plant growth regulators 
(71, 72), or it may contains low levels of auxins (70).

Plant regeneration in vitro via embryogenesis or organogenesis is 
a multistep process, the success of which is dependent upon the 
proper execution of each step. A key element for both propagation 
techniques is the choice of the explant. Overall young tissues, 
especially immature and mature embryos, represent the preferred 
choice since they are composed of cells early in their developmental  
path and able to dedifferentiate and embark on a new fate.
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Chapter 18

Somatic Embryogenesis and Plant Regeneration  
in the Culture of Arabidopsis thaliana (L.) Heynh.  
Immature Zygotic Embryos

Malgorzata D. Gaj 

Abstract

Immature zygotic embryos (IZEs) of Arabidopsis thaliana (L.) Heynh., a model species for plant 
 genomics, provide efficient explants for a simple, rapid, and effective system for inducing somatic embryo-
genesis (SE) under in vitro culture. The process of SE can be induced directly from explant tissue, or 
indirectly through a callus stage, and the mode of morphogenesis depends on the developmental stage of 
the IZEs that are used. Auxin treatment, preferably with 2,4-D, results in the formation of embryogenic 
callus tissue in cultures derived from IZEs less advanced in development, i.e., at globular and torpedo 
stages, while IZE at the late cotyledonary stage rapidly produces somatic embryos, mostly via a direct 
pathway. In the best SE-responsive genotypes, including the commonly used Col-0 ecotype, up to 90% 
of the late cotyledonary-stage zygotic embryos undergo rapid and efficient SE. The subculture of somatic 
embryos onto auxin-free medium results in their conversion into plantlets with an average frequency of 
80%. Such a high frequency of somatic embryos developing rapidly from explant tissue, followed by effi-
cient regeneration of fertile plants with a low level of somaclonal variation, is the recommended system 
for wide application in studies on mechanisms governing plant totipotency; and especially for identifying 
genetic factors controlling embryogenic transition of somatic plant cells. In this chapter, the induction, 
development, and maturation of somatic embryos leading to subsequent regeneration of Arabidopsis 
plantlets in culture of IZEs are presented.

Key words: Auxin treatment, Conversion rate, Immature zygotic embryo culture, Plant regenera-
tion, Somaclonal variation, Somatic embryogenesis

Molecular mechanisms governing plant cell plasticity have 
become of central interest for modern developmental biology. 
The process of somatic embryogenesis (SE) illustrates a 
unique phenomenon of plant cell developmental plasticity, and 

1. Introduction

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_18,  
© Springer Science+Business Media, LLC 2011
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thus provides an attractive model system for studies on the 
genetic and physiological factors controlling the fate of 
plant cells. During SE, the already differentiated somatic cells 
undergo numerous changes related to erasing of the existing 
 developmental  program,  followed by  induction of a new embry-
onic pathway of development. Understanding the key factors 
promoting vegetative-to-embryogenic transition, and especially 
the identification of genes involved in the induction of compe-
tence for embryogenesis and subsequent embryo development, 
present a challenge for modern molecular biology. Moreover, 
SE shares considerable similarity with zygotic embryogenesis 
(ZE), and thus provides an attractive experimental model sys-
tem for studying molecular and cellular mechanisms determin-
ing in vivo plant embryogensis (1, 2).

Since 1950s, the carrot SE system (3, 4) has been widely used 
in studies of plant embryogenesis, due to its simplicity and repro-
ducibility in the production of somatic embryos from undifferen-
tiated callus tissue in large quantities (1). However, the discrepancy 
between the easy and routinely used SE system in carrot, and our 
limited knowledge of the structure and function of the carrot 
genome, presents obstacles to further progress in the molecular 
analysis of plant embryogenesis in this species. Thus, numerous 
efforts were taken to establish a method for SE induction in 
Arabidopsis thaliana (L.) Heynh, a model species in structural 
and functional plant genomics, including studies on developmen-
tal processes (5).

In the last decade, an efficient system of SE in Arabidopsis was 
established, based on the use of immature zygotic embryos (IZEs) 
as explants. In general, two developmentally different pathways 
lead to somatic embryo formation in vitro: (1) a rapid and efficient 
process of direct embryogenesis and (2) a much less efficient, 
slower pathway of indirect embryogenesis, which is preceded by 
cell dedifferentiation and callus formation. In Arabidopsis cultures, 
both direct and indirect developmental pathways can be induced, 
and a strictly defined developmental stage of IZE explants is criti-
cal for the particular pathway of SE (6). The utilization of IZEs in 
the globular to torpedo stages results in the induction of embryo-
genic callus cultures (7–9), while the culture of IZEs presenting a 
more advanced, namely, the late cotyledonary (LC), stage enables 
efficient production of somatic embryos via a direct pathway (6). 
Histological studies on SE induction in LC explants indicated that 
protodermal and subprotodermal explant cells are involved in the 
formation of embryogenic-like centers, while in the direct forma-
tion of somatic embryos protoderm-derived cells are involved 
(10). Analysis of genetic chimerism in SE-derived plants (11), and 
histological observations (10), indicated single and multicell ori-
gins of IZE-derived somatic embryos.
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In contrast to IZE explants, the postembryonic tissue able to 
produce embryogenic cultures in Arabidopsis was only found in 
certain mutants, i.e., primordia timing (pt), altered meristem 
 program (amp1 allelic to pt), and clavata (clv 1 and clv3), in 
which germinating seeds and seedlings were shown to form 
somatic embryos (9, 12). The pt/amp1 mutant forms cotyledon-
like leaves (13) and, as a consequence, embryogenic competence 
is prolonged until the seedling stage, and thus postembryonic 
cells in shoot apical meristems can respond in vitro and form 
somatic embryos (12). In contrast to pt and clv mutants, in which 
cells retain competency for SE at the seedling stage, the lec 
mutants exhibited strongly impaired embryonic potential of IZE-
derived cultures (14). This phenotype of the lec mutants results 
from their enhanced maturation process and seedling characteris-
tics during embryonic development, leading to leaf-like cotyle-
dons, “leafy cotyledons” (15).

In addition to an appropriate explant type, to induce efficient 
SE, a specific hormonal treatment of cultured tissue is also a com-
mon prerequisite (16). In dicots, the induction of SE usually 
requires a single hormonal treatment, and in most species, includ-
ing Arabidopsis, an auxin, preferably 2,4-D, is recommended 
(17). Somatic embryo induction is followed by transfer onto hor-
mone-free medium for embryo maturation and conversion into 
plantlets. Within a procedure leading to production of plantlets 
via SE, several steps can be distinguished, including (1) induction 
and maintenance of embryogenic tissue, (2) development and 
maturation of somatic embryos, (3) their germination and con-
version, and (4) regeneration of SE-derived plantlets.

The present protocol describes a rapid and efficient system 
enabling the production of Arabidopsis somatic embryos from 
cultures of IZEs. Somatic embryos are frequently formed through 
direct somatic embryogenesis (DSE), and the protocol can be 
used for a wide range of A. thaliana ecotypes, including Col-0 
which is the most commonly used in molecular studies.

 1. E5 induction medium: stock salt formulations and organic 
additives used in the media are presented in Table 1. The E5 
medium containing the basic B5 Gamborg salts and organic 
components (18) supplemented with 5 mM 2,4-D, 20 g/L 
sucrose and 8.0 g/L Oxoid agar are used for SE induction.

 2. MS20 medium for embryo development and conversion: 
Murashige and Skoog (MS) basic medium (19) supplemented 

2. Materials
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with 20 g/L sucrose and solidified with 3.5 g/L Phytagel. 
The media pH is adjusted to 5.8 before adding the solidifying 
agent. The medium is placed in plastic Petri dishes (35 mm) 
for continual embryo development and in larger Petri dishes 
(60 mm), jars, or test tubes for embryo conversion.

 3. The seeds are of A. thaliana (L.) Heynh., ecotype Col-0  
(see Note 1).

 4. Sterilizing solution: 2% solution of sodium hypochlorite with 
three drops of Tween 20/100 mL as surfactant.

 5. Culture plates and containers: Petri dish (35 × 10 mm; 
SIGMA, No. C 6296); glass jars (SIGMA, No. V 0633) with 
Magenta B-caps (SIGMA, No. B 8648); glass tubes (DURAN® 
25 × 200 mm).

Table 1 
Composition of basal MS and B5 media

Component MS medium (mg/L) B5 medium (mg/L)

Macronutrients

NH4NO3 1,650 –
KNO3 1,900 3,000
MgSO4 · 7H2O 370 500
KH2PO4 170 –
NaH2PO4 · 2H20 – 150
(NH4)2SO4 – 134
CaCl2 440 150

Micronutrients

KI 0.83 0.75
H3BO3 6.2 3.0
MnSO4 · 4H2O 22.3 13.2
ZnSO4 · 7H2O 8.6 2.0
CuSO4 · 5H2O 0.025 0.025
Na2MoO4 · 2H2O 0.25 0.25
CoCl2 · 6H2O 0.025 0.025
FeSO4 · 7H2O 27.8 27.8
Na2EDTA · 2H2O 37.3 37.3

Organics

Myo-inositol 100.0 100.0
Nicotinic acid 0.5 1.0
Pyridoxine-HCl 0.5 1.0
Thiamine-HCl 0.1 10.0
Glycine 2.0 –

From refs. (18, 19)
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 1. Place the seeds at 4°C for 2–4 days to overcome dormancy, 
and allow the seeds to germinate synchronously.

 2. Fill the pots with top soil mixed with vermiculite (1:1)  
(see Note 2).

 3. Sprinkle the seeds onto the surface of the soil (five seeds per 
pot of 10 cm in diameter) (see Note 3).

 4. Place the pots at the temperature of 20–22°C under a 16-h 
photoperiod with a white light of 100 mmol/m2/s intensity.

 5. Keep the soil slightly damp, but not saturated (see Note 4).

 1. Collect the siliques with immature seeds from 7- to 8-week-
old plants (see Note 5).

 2. Sterilize the siliques for 20 min in the sterilizing solution, and 
then rinse three times in sterile water. From this step onwards, 
all procedures are done under sterile conditions.

 3. Open the sterile siliques with very fine needles under a dis-
secting microscope.

 4. Select the IZEs at an advanced late stage (LS) of develop-
ment; the appropriate embryos are >600 mm in length (at 
11–13 DAP) and display fully developed, green and bent cot-
yledons (see Note 6).

 5. Place ten of the isolated LS immature embryos in a Petri dish 
(35 × 10 mm) with E5 solid medium, Table 1 (see Note 7), 
containing 5 mM 2,4-D (see Note 8) and seal with Parafilm. 
Keep cultures at 21–23°C under a 16-h photoperiod of 
40 mmol/m2/s of white, fluorescent light.

 1. Maintain the explants for 15 days on E5 induction medium 
(see Notes 9 and 10).

 2. Transfer the explants exhibiting embryogenic response (see 
Note 11) onto Petri dishes (60 × 10 mm) with solid MS20 
medium (Table 1).

 1. After 10 days, dissect the somatic embryos from the primary 
explant tissue with the use of fine needles (see Notes 12–15).

 2. Place the separated embryos in 60 × 10 mm Petri dishes, or 
glass jars with Magenta B-caps on MS20 agar medium  
(see Note 16) for their further growth and conversion into 
plants (see Note 17). Keep the culture for 10 days at 20–22°C 
under a 16-h photoperiod with 40 mmol/m2/s light 
intensity.

3. Methods

3.1. Cultivation  
of Arabidopsis Plants 
Delivering Explants

3.2. Explant 
Preparation  
and Culture Initiation

3.3. Embryo Induction 
and Development

3.4. Conversion  
of Somatic Embryos 
into Plants
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 3. Transfer the developing plantlets into glass tubes (DURAN®) 
with MS20 medium (see Note 18), and grow the regenerants 
at 18–20°C (see Note 19) under a 16-h photoperiod with a 
white light of 100 mmol/m2/s intensity.

 4. Harvest the seeds (see Notes 20 and 21).

 1. The protocol can be used for different genotypes, but with 
different efficiencies. The frequency of explants forming 
somatic embryos (SE efficiency) ranges from 80–90% for the 
most responsive genotypes (e.g., Col-0, RLD) to 60% in 
those which are less embryogenic (e.g., Wassilewskija and 
Landsberg erecta) (6, 20).

 2. To eliminate pests, the soil can be presoaked with distilled 
water and then sterilized in an autoclave for at least 20 min.

 3. The seeds require light for germination and should not be 
covered with soil.

 4. Insects, and frequently aphids, can cause substantial damage 
to Arabidopsis plants, and to minimize the risk of aphids inva-
sion the plants, and especially the underside of the rosette 
leaves, the stems, and the base of the inflorescence should be 
regularly inspected. Washing plants with a mild detergent is 
recommended, but to eliminate the insects entirely the use of 
systemic pesticides is required. The special care of the plants 
is very important as the explants isolated from the aphid-
damaged plants show drastically reduced capacity for SE.

 5. First inflorescences with flower buds are usually seen after 5–6 
weeks, and an additional 2 weeks is needed for silique 
development.

 6. The efficiency of SE increases with the age of the IZE used as 
the explant. In cultures of Col-0, 73–90% of zygotic embryos 
at the advanced late stage (fully developed, green and bent 
cotyledons) undergo embryogenic transition, while only 
22–29% of younger, heart to torpedo-shaped, zygotic embryos 
produce somatic embryos (6).

 7. When a liquid medium is used to culture IZE explants at the 
“early bent cotyledon” stage, callus is produced during a 
21-day auxin treatment. In this system, the somatic embryos 
are formed indirectly from green embryogenic clusters 
 developing in liquid cultures, following their transfer onto 
solid auxin-free medium (9).

4. Notes
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 8. Development of somatic embryos is also observed in the pres-
ence of NAA (10–20 mM), but the process is less efficient and 
is accompanied with strong callus tissue and hairy root struc-
ture formation (21).

 9. Distinct morphological changes of the explant accompany 
the induction of somatic embryogenesis. During the first 
week, the straightening and expansion of previously bent 
cotyledons, and swelling of the cotyledonary node, is 
observed. By the second week (8–10 day) of the culture, the 
first somatic embryos appear on the adaxial side of cotyle-
dons, in the area proximal to the cotyledonary node. Somatic 
embryos are produced asynchronously, and by the end of 
week 2 the cotyledon-part of the IZE is covered with somatic 
embryos in various stages of development. Indirect SE 
development starts later on, at the third week of the culture, 
from callus tissue formed mostly from the abaxial side of 
 cotyledons (10).

 10. To stimulate efficient embryogenic response, and to minimize 
the risk of other morphogenic responses, an optimal time of 
15 days for 2,4-D treatment is recommended. A shorter time 
of auxin treatment (8 days) promotes frequent shoot and leaf 
organogenesis (22), while a prolonged 30 days of exposure to 
auxin stimulates secondary callus formation.

 11. The explants not responding in SE produce callus which upon 
subculture onto fresh E5 medium develops somatic embryos 
with frequency below 20% (Col-0).

 12. In practice, somatic embryos, contrary to other regenerative 
structures, can be easily detached from explant tissue, as they 
are not connected with explants through vascular tissue (10). 
However, it should be noted that not all embryo-like struc-
tures represent true somatic embryos, since partial embryos 
lacking a properly formed root pole can be produced (23). 
Analysis of the root pole in regenerative structures, with the 
use of a reporter auxin-activated GUS gene, indicated that 
the frequency of complete somatic embryos depends on 
length of 2,4-D treatment. The highest number (around 
65%) of embryos developing root meristems was observed in 
culture induced for 15 days on E5 medium (Gaj and Manka, 
unpublished).

 13. Variation in somatic embryo morphology is commonly 
observed. Single typical embryos of normal morphology are 
usually in minority, while the more frequent clusters of single 
trumpet-shaped embryos, or multiple embryos with fused cot-
yledons, are observed. The somatic embryos are usually larger 
(about 2 mm) than their zygotic counterparts (6, 9, 10).
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 14. The number of somatic embryos produced per explant (SE 
productivity) can range from 1 to 25, but the majority (80%) 
of embryogenic explants produce 2–10 somatic embryos with 
average number of 8.0 ± 4.8 per responding explant (6).

 15. Alternatively, whole primary explants can be transferred onto 
MS20 medium. In such a case, the development of all types 
of regenerative structures into plants is observed, and bushes 
of plantlets/shoots are developed from each responding 
explant. The plants can be isolated and cultured separately, 
which leads to high multiplication of plant number obtained 
from one primary explant. Following this procedure, up to 
40 plants can be derived from one explant (6).

 16. Alternatively, the primary somatic embryo can be used as an 
explant to induce secondary SE (SSE (20)), and to establish 
callus embryogenic culture (24). The primary somatic 
embryos placed on E5 medium produce callus in which sec-
ondary somatic embryos are formed. These embryos develop 
into plants on hormone-free medium. The culture of SSE in 
the presence of 9 mM 2,4-D is recommended to establish and 
maintain embryogenic callus culture which upon monthly 
subculture retain their SE potential at least for 1 year (24).

 17. Despite frequent developmental malformation of somatic 
embryos (see Note 13), high plant regeneration can be 
obtained, and no distinct differences in ability for conversion 
into plants were observed for normal and multiple/mal-
formed somatic embryos. On the average, 66.2% of somatic 
embryos produced shoots with roots (6).

 18. To promote rooting and better plant development, MS20 
medium can be supplemented with 3 mL/L of 6% KH2PO4.

 19. The temperature below 20°C is recommended to provide 
vigorous growth of regenerants.

 20. Over 70% of the regenerants set seeds (6), and to maximize 
the number of seeds harvested per plant nonsterile conditions 
for the growth of rooted plants are recommended. Before 
planting into pots, plants (2–5 cm in height), with well- 
developed roots, should be selected, and the roots washed 
out gently under tap water to remove all agar clumps, then 
follow steps 2–5. Acclimatization conditions (shading, high 
humidity) are important to maximize survival of the trans-
planted regenerants.

 21. The seed-derived progeny of regenerants display high genetic 
uniformity and fidelity, as confirmed with the use of cytoge-
netic analysis and a test on embryo-lethal and chlorophyll 
mutations (6, 11).
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Chapter 19

Pine Somatic Embryogenesis Using Zygotic Embryos  
as Explants

Gerald S. Pullman and Kylie Bucalo 

Abstract

Somatic embryogenesis (SE) has the potential to be the lowest-cost method to rapidly produce large 
numbers of high-value somatic seedlings with desired characteristics for plantation forestry. At least 24 of 
the 115–120 known Pinus species can undergo SE. Initiation for most species works best with immature 
megagametophytes as starting material, although a few pines can initiate SE cultures from isolated mature 
seed embryos. Successful initiation depends heavily on explant type, embryo developmental stage, and 
medium salt base. Most first reports of initiation used 2,4-D and BAP or a combination of cytokinins. 
More recent reports have optimized initiation for many Pinus spp., but still use mostly the combinations 
of auxin and cytokinins. Initiation can be stimulated with medium supplements including abscisic acid 
(ABA), brassinosteroids, ethylene inhibitors, gibberellin inhibitors, organic acids, putrescine, specific sugar 
types (maltose, galactose, d-chiro-inositol, and d-xylose), triacontanol, vitamins (B12, biotin, vitamin E, 
and folic acid), or manipulation of environmental factors including pH, water potential, cone cold storage, 
gelling agent concentration, and liquid medium. Embryo development and maturation usually occur best 
on medium containing ABA along with water potential reduction (with sugars and polyethylene glycol) 
or water availability reduction (with raised gelling agent increasing gel-strength). Activated carbon and 
maltose may also improve embryo maturation. The main issues holding SE technology back are related to 
the high cost of producing a somatic seedling, incurred from low initiation percentages for recalcitrant 
species, culture loss, and decline after initiation and poor embryo maturation resulting in no or poor ger-
mination. Although vast progress has been made in pine SE technology over the past 24 years, fundamen-
tal studies on seed and embryo physiology, biochemistry, and gene expression are still needed to help 
improve the technology to a point where large-scale commercialization is economically viable for a broad 
range of pine species.

Key words: Conifer, Embryogenesis, Pinus, Somatic embryogenesis

Approximately 115–120 species of Pinus are recognized depending 
on the authority. Most originate in the Northern Hemisphere 
where Pinus is the largest genus of conifers (1). Many species of 

1.  Introduction
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Pinus are valued for their timber, wood, and recreational value. 
Large numbers of seedlings from several species are planted 
 annually. For example, loblolly pine (Pinus taeda L., LP.) is the 
major species planted across the southern USA with 1–1.5 billion 
trees planted annually (2).

Forest productivity can be increased by tree plantations with 
large numbers of elite, high-value trees, and efforts are ongoing 
to propagate genetically superior conifer trees through clonal 
propagation by somatic embryogenesis (SE). SE can capture the 
benefits of breeding or genetic engineering programs by multiply-
ing trees with improved wood quantity, quality, and uniformity. 
SE technology can also be highly useful to study embryo develop-
ment, differentiation, and to help preserve endangered species.

Conifer SE proceeds through four steps: initiation, multipli-
cation, maturation, and germination. A fifth step of cryogenic 
storage may be added when storage of embryogenic cultures is 
desired. SE has been demonstrated for many coniferous species 
including pines. At least 27 Pinus species are reported to go 
through SE (Table 1). Several comprehensive reviews on conifer 
SE and recent advances are available (3–12). Due to the commer-
cial interest in SE technology, much additional information is 
available in published patent applications and issued patents. To 
illustrate the approaches used with SE in Pinus, P. taeda L. will be 
used as a model throughout this chapter.

Somatic embryos can be generated from a variety of tissues 
 including: immature megagametophytes or excised zygotic 
embryos (Pinus strobus (13, 14), P. pinaster (15–17), P. sylvestris 
(16, 18, 19), P. caribaea (20), P. taeda (21, 22), P. monticola 
(23)); excised full-term embryos (P. geradiana (24), P. kesiya 
(25), P. koraiensis (26), P. lambertiana (27), P. massoniana (28), 
P. nigra (29), P. strobus (30), P. taeda (31), P. wallichiana (32)); 
and recently, vegetative shoot apices from aged trees (P. kesiya 
(33), P. sylvestris (34), P. patula (35), and P. roxburghii (36)).

The most success has occurred with immature megagame-
tophytes. Fertilized megagametophytes from surface-sterilized 
seeds are excised and placed on medium to permit the extrusion 
of embryogenic tissue from the micropylar end. Use of the 
whole megagametophyte avoids the laborious dissection  process 
of embryo excision. Numerous somatic embryos often form in 
the extruded material which can then be subcultured to a 
 multiplication medium (37–39). When using this method, par-
ticular attention needs to be paid to the stage of embryo devel-
opment, rather than time of year, to optimize initiation (see 
Note 1).

A number of tools can improve embryogenic tissue initiation 
from coniferous tissue. These include traditional factors such as 
choice and optimization of salt mixtures, auxins, and cytokinins 

1.1. Embryogenic 
Tissue Initiation  
and Maintenance



269Pine Somatic Embryogenesis Using Zygotic Embryos as Explants

Ta
bl

e 
1 

Fi
rs

t a
nd

 re
ce

nt
 re

po
rt

s 
of

 s
om

at
ic

 e
m

br
yo

ge
ne

si
s 

in
 P

in
us

 s
pp

.

Sp
ec

ie
s

Ex
pl

an
t

In
du

ct
io

n 
m

ed
ia

In
du

ct
io

n 
ho

rm
on

es
In

iti
at

io
n 

fr
eq

ue
nc

y 
(fi

rs
t/

re
ce

nt
)

Re
sp

on
se

Re
fe

re
nc

e:
  

fir
st

 re
po

rt
Re

fe
re

nc
e:

 
re

ce
nt

 re
po

rt

Pi
nu

s a
rm

an
di

i 
Fr

an
ch

. V
ar

. 
am

am
ia

na
 

(K
oi

dz
.)

 
H

at
us

im
a

M
G

-P
C

M
od

ifi
ed

 1
/

2 
E

M
10

 m
M

 2
,4

-D
, 5

 m
M

 B
A

P
1.

5%
SE

, P
L

(1
03

)
–

P.
 b

an
ks

ia
na

 
L

am
b.

M
G

, E
E

1/
2 

L
itv

ay
; D

C
R

10
 m

M
 2

,4
-D

, 5
 m

M
 B

A
P

0.
4%

SE
, P

L
, 

C
R

(1
04

)
–

P.
 b

ru
ti

a 
T

E
N

 
M

G
-P

C
Su

pp
le

m
en

te
d 

D
C

R
13

.6
 m

M
 2

,4
-D

, 2
.2

 m
M

 
B

A
P

11
.6

%
SE

, P
L

(1
05

)
–

P.
 b

un
ge

an
a 

Z
uc

c.
 e

x 
E

nd
l.

E
E

-P
C

D
C

R
1

10
 m

g/
L

 2
,4

-D
, 4

 m
g/

L
 

B
A

P
84

.4
%

SE
(1

06
)

–

P.
 c

ar
ib

ae
a 

M
or

el
et

M
G

-P
E

P
L

PG
10

 m
M

 2
,4

-D
, 5

 m
M

 B
A

P
5%

SE
, P

L
, 

C
R

(2
0)

(1
07

, 1
08

)

P.
 d

en
sifl

or
a

M
G

-P
C

M
od

ifi
ed

 D
C

R
; 

m
od

ifi
ed

 L
P

10
.0

 m
M

 2
,4

-D
, 5

 m
M

 B
A

P
2.

9,
 1

.0
/

5%
SE

, P
L

SE
, P

L
(1

09
, 1

10
)

(1
11

, 1
12

)

P.
 e

lli
ot

ti
i  

E
ng

el
m

E
E

-P
E

P
W

PM
G

; M
N

C
I

20
 m

M
 2

,4
-D

, 5
 m

M
 B

A
P;

 
20

 m
M

 2
,4

-D
, 2

.5
 m

M
 

B
A

P,
 2

.5
 m

M
 k

in
et

in

2–
6/

9%
SE

, P
L

(1
13

)
(1

14
, 1

15
)

P.
 g

er
ad

ia
na

  
W

al
l

E
E

-M
1/

2 
M

SG
9.

0 
mM

 2
,4

-D
81

.2
%

SE
, P

L
(2

4)
–

P.
 h

el
dr

ei
ch

ii
M

G
-P

C
G

re
ss

ho
ff

 a
nd

 D
oy

2 
m

g/
L

 2
,4

-D
, 0

.5
 m

g/
L

 
B

A
P

6.
7%

SE
(1

16
)

–

(c
on

tin
ue

d)



270 Pullman and Bucalo

Ta
bl

e 
1 

(c
on

tin
ue

d)

Sp
ec

ie
s

Ex
pl

an
t

In
du

ct
io

n 
m

ed
ia

In
du

ct
io

n 
ho

rm
on

es
In

iti
at

io
n 

fr
eq

ue
nc

y 
(fi

rs
t/

re
ce

nt
)

Re
sp

on
se

Re
fe

re
nc

e:
  

fir
st

 re
po

rt
Re

fe
re

nc
e:

 
re

ce
nt

 re
po

rt

P.
 k

es
iy

a 
R

oy
le

 
ex

. G
or

d.
E

E
-M

; V
A

; 
E

E
-P

C
M

od
ifi

ed
 1

/
2 

M
S;

 
1/

2 
D

C
R

22
.6

 m
M

 2
,4

-D
, 2

6.
9 

mM
 

N
A

A
, 8

.8
7 

mM
 B

A
P

N
D

/
86

/
0–

46
%

SE
, P

L
(2

5)
(3

3,
 1

17
)

P.
 k

or
ai

en
sis

 
Si

eb
 e

t 
Z

uc
c.

E
E

-M
Su

pp
le

m
en

te
d 

L
itv

ay
10

 m
M

 2
,4

-D
, 5

 m
M

 B
A

P
14

.7
%

 (
3 

w
ee

ks
)

SE
(2

6)
–

P.
 la

m
be

rt
ia

na
 

D
ou

gl
.

E
E

-M
M

od
ifi

ed
 D

C
R

3–
50

0 
m

g/
L

 2
,4

-D
4–

5%
SE

, P
L

(2
7)

(1
18

)

P.
 m

as
so

ni
an

a 
L

am
b.

E
E

-M
D

C
R

10
 m

g/
L

 2
,4

-D
, 4

 m
g/

L
 

ki
ne

tin
, 4

 m
g/

L
 B

A
P

17
–4

5%
SE

, P
L

(2
8)

–

P.
 m

on
ti

co
la

 
D

ou
gl

.
M

G
-P

E
P 

to
 

PC
M

od
ifi

ed
 L

itv
ay

2.
25

 m
M

 2
,4

-D
, 2

.2
5 

mM
 

B
A

P
0.

8–
6.

7%
SE

, P
L

, 
C

R
(2

3)
–

P.
 n

ig
ra

 A
rn

M
G

-P
C

D
C

R
2 

m
g/

L
 2

,4
-D

, 0
.5

 m
g/

L
 

B
A

P
2/

7–
9%

SE
, P

L
(1

19
)

(4
9,

 1
20

)

P.
 p

al
us

tr
is

M
G

-P
C

M
od

ifi
ed

 M
SG

; 
D

C
R

3.
0 

m
g/

L
 2

,4
-D

, 
0.

5 
m

g/
L

 B
A

P
3.

5%
SE

(4
6)

–

P.
 p

at
ul

a 
Sc

hi
ed

e 
et

 
D

ep
pe

M
G

-P
E

P 
;  

V
A

Su
pp

le
m

en
te

d 
D

C
R

1
3.

0 
m

g/
L

 2
,4

-D
, 

0.
5 

m
g/

L
 B

A
P

2.
6–

8.
5%

SE
, P

L
, 

C
R

(1
21

)
(3

5,
 8

5,
 1

22
, 

12
3)

P.
 p

in
as

te
r 

A
it.

M
G

-P
E

P,
 

E
E

-P
E

P;
 

E
E

-P
C

H
 m

ed
iu

m
; 

m
od

ifi
ed

 L
itv

ay
2.

2 
m

g/
L

 2
,4

-D
, 

1.
1 

m
g/

L
 B

A
P;

 9
 m

M
 

2,
4-

D
, 4

.4
 m

M
 B

A
P

5–
19

/
93

%
SE

, P
L

, 
C

R
(1

5)
(1

6,
 7

1)

P.
 r

ad
ia

ta
  

D
. D

on
M

G
-P

C
M

od
ifi

ed
 E

M
; 

m
od

ifi
ed

 S
H

N
D

/
±1

–2
 m

g/
L

 2
,4

-D
N

D
/

40
%

SE
, P

L
, 

C
R

(1
24

)
(5

3,
 1

25
–1

27
)



271Pine Somatic Embryogenesis Using Zygotic Embryos as Explants

Sp
ec

ie
s

Ex
pl

an
t

In
du

ct
io

n 
m

ed
ia

In
du

ct
io

n 
ho

rm
on

es
In

iti
at

io
n 

fr
eq

ue
nc

y 
(fi

rs
t/

re
ce

nt
)

Re
sp

on
se

Re
fe

re
nc

e:
  

fir
st

 re
po

rt
Re

fe
re

nc
e:

 
re

ce
nt

 re
po

rt

P.
 r

ig
id

a 
× 

 
P.

 ta
ed

a
M

G
-P

E
P

M
od

ifi
ed

 P
6

13
.5

 m
M

 2
,4

-D
, 4

.4
 m

M
 

B
A

P
1.

1%
SE

, P
L

(1
28

)
–

P.
 r

ox
bu

rg
hi

i 
Sa

rg
.

M
G

, E
E

-P
C

, 
SN

D
C

R
10

.0
 m

M
 2

,4
-D

, 5
 m

M
  

B
A

P
9.

6/
46

–6
5%

SE
, P

L
, 

C
R

(1
29

)
(4

4,
 1

30
)

P.
 se

ro
ti

na
M

G
, E

E
M

od
ifi

ed
 M

S;
 

m
od

ifi
ed

 D
C

R
1

2–
5 

m
g/

L
 2

,4
-D

 o
r 

N
A

A
, 

0–
1 

m
g/

L
 B

A
P

12
%

SE
(1

31
)

–

P.
 st

ro
bu

s L
.

M
G

-P
C

M
od

ifi
ed

 D
C

R
2 

m
g/

L
 2

,4
-D

, 1
 m

g/
L

 
B

A
P

54
/

2.
6–

23
%

SE
, P

L
, 

C
R

(1
3)

(3
0,

 1
32

, 
13

3)

P.
 sy

lv
es

tr
is 

L
.

M
G

-P
E

P;
  

V
A

M
SG

; m
od

ifi
ed

 
L

itv
ay

9.
0 

mM
 2

,4
-D

, 4
.4

 m
M

 
B

A
P 

5/
22

%
SE

, P
L

(1
8)

(1
6,

 3
4,

 1
33

, 
13

4)

P.
 ta

ed
a 

L
.

M
G

-P
C

; 
M

G
-P

E
P

M
od

ifi
ed

 1
/

2 
M

S
11

.0
 m

g/
L

 2
,4

-D
, 

4.
5 

m
g/

L
 B

A
P,

 
4.

3 
m

g/
L

 k
in

et
in

9–
10

/
20

–3
3%

SE
, P

L
, 

C
R

(9
4)

(5
1,

 1
35

, 
13

6)

P.
 th

un
be

rg
ii

M
G

-P
C

M
od

ifi
ed

 D
C

R
; 

m
od

ifi
ed

 L
P

10
.0

 m
M

 2
,4

-D
, 5

 m
M

  
B

A
P

8.
0;

 3
.0

/
2%

SE
, P

L
  

SE
, P

L
(1

09
, 1

10
)

(1
37

)

P.
 w

al
lic

hi
an

a 
A

. B
. J

ac
ks

E
E

-M
M

SG
9.

0 
mM

 2
,4

-D
, 2

.0
 m

M
 

24
-e

pi
br

as
si

no
lid

e
61

–9
2%

SE
, P

L
(3

2)
–

M
G

 m
eg

ag
am

et
op

hy
te

, E
E

 e
xc

is
ed

 e
m

br
yo

, P
C

 p
re

co
ty

le
do

na
ry

 e
m

br
yo

s,
 P

E
P 

po
ly

 e
m

br
yo

ny
 p

ha
se

, C
 c

ot
yl

ed
on

ar
y,

 M
 m

at
ur

e,
 V

A
 v

eg
et

at
iv

e 
ap

ic
es

 fr
om

 m
at

ur
e 

tr
ee

s,
 S

N
 

se
co

nd
ar

y 
ne

ed
le

s 
fr

om
 m

at
ur

e 
tr

ee
s,

 B
A

P 
6-

be
nz

yl
am

in
op

ur
in

e,
 6

-b
en

zy
la

de
ni

ne
, N

6-
be

nz
yl

ad
en

in
e,

 b
en

zy
la

de
ni

ne
, B

A
, 6

-B
A

P,
 S

E
 s

om
at

ic
 e

m
br

yo
s,

 P
L 

pl
an

ts
, C

R
 s

uc
ce

ss
 

in
 c

ry
op

re
se

rv
at

io
n

N
ot

e:
 N

D
 n

o 
da

ta
 p

re
se

nt
ed

, o
nl

y 
th

e 
m

os
t 

su
cc

es
sf

ul
 m

ed
iu

m
 is

 li
st

ed
 in

 in
du

ct
io

n 
m

ed
iu

m
 c

ol
um

n 
fo

r 
ea

ch
 s

pe
ci

es



272 Pullman and Bucalo

(4, 9, 22); media supplementation with abscisic acid (ABA) 
 (40–42),  brassinosteroids (32, 43) (see Note 2), triacontanol (35, 
44), putrescine (24), ethylene inhibitors (45), specific sugar types 
(22, 46–51), vitamins B12, biotin, vitamin E, and folic acid (32, 
38, 39); organic acids (39); and gibberellin inhibitors (52). Cold 
storage of cones prior to seed preparation for explanting can sig-
nificantly increase initiation results for P. radiata (53) and P. taeda 
(Pullman, unpublished). Control of environmental factors, 
including water potential (54, 55), pH (38, 56, 57), adsorption 
of medium components by activated carbon (AC), gelling agent 
content liquid media, and study of embryo gene expression pat-
terns, has led to further improvements (22, 45, 58–65, 138). 
Using a combination of media and environmental agents has per-
mitted great increases in embryogenic tissue initiation.

After initiation, somatic embryos are moved to a capture 
medium that usually contains reduced hormones. Further mainte-
nance occurs bimonthly or weekly on gelled or liquid medium, 
again with auxins and cytokinins, to continue cleavage polyembry-
ony and somatic embryo multiplication. Liquid media have the 
advantage of faster growth rates, decreasing variation, simplifying 
preparation of cells for cryostorage, ease of visualizing somatic 
embryos, and automation of cell suspension transfer (see Note 3).

Maturation improvements have been achieved in many pines 
and other coniferous species (10). Most improvements occur 
through stage-specific medium optimization that involves, but is 
not limited to, manipulation of basal salts, ABA, choice or 
 combination of sugars such as sucrose, maltose, and trehalose, 
addition of water potential mediators such as polyethylene  glycol 
(PEG), gelling agents, carbohydrates, or other osmoticum, 
 tissue partial desiccation, and addition of AC to control  hormone 
pulse and/or remove unwanted compounds. Most maturation 
media for Pinus sp. contain 60–480 mM ABA (66). For P. taeda, 
19.6–37.8 mM ABA works well for initial and subsequent 
medium transfers (67).

Pullman and Buchanan (139) analyzed stage-specific female 
gametophyte (FG) and embryo tissues of P. taeda for 14 key met-
als. A tenfold increase in cotyledonary embryos occurred along 
with improved gene expression patterns that were more similar to 
zygotic embryos when maturation medium was modified to bet-
ter match boron, calcium, potassium, and iron levels present in 
similar stages of natural embryos (45).

Pullman and Gupta (68) combined AC and high concentra-
tions of ABA (to compensate for ABA adsorption by AC) in 
gelled or liquid medium. Variations included AC-coated embryos 
plated on a maturation medium containing ABA, or plating 
embryos on filter paper coated with AC placed on ABA-
containing medium. This combination worked extremely well 

1.2. Somatic Embryo 
Maturation
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for Picea abies, Pseudotsuga menziesii, and P. taeda resulting in 
improved embryo quantity and quality (68–70). Later, Lelu-
Walter et al. (71) found these combinations also worked well for 
P. pinaster.

Osmotic conditions appear to control embryo development 
in many plant species (72). Water relation parameters have 
been partially investigated for zygotic and somatic embryos of 
P.  resinosa, P. taeda, and P. strobus (54, 55, 73–75). These inves-
tigations show that seed tissue water potential values are much 
greater (in mmol/kg) than that measured in a typical plant tissue 
culture medium. So, it was no surprise that early researchers found 
ABA alone was often not enough to prevent premature conifer 
somatic embryo germination and medium water potential also 
needed to be altered through the addition of osmoticants (4).

There are two main methods used today to control osmotic 
conditions during embryo maturation in Pinus. The first method 
adds sucrose, maltose, sugar alcohols, PEG, or combinations of 
these osmoticants to the medium to lower water potential. The 
second method adds extra gelling agent to the maturation 
medium to increase gel-strength and reduce medium water avail-
ability (14). Combinations of these methods are also used (17, 23, 
76). Mild desiccation of maintenance tissue causing 50% water 
loss is reported to stimulate maturation in P. kesiya and P. patula 
(33, 35).

Additional factors are beneficial for somatic embryo develop-
ment in other coniferous genera and may play a role in Pinus. 
Early stage embryo development appears to occur best in a reduc-
ing environment while late-stage development requires shifting 
to a more oxidizing environment (77). Both embryo develop-
ment and germination can be enhanced with the addition of 
redox chemicals to the medium ((10), Pullman, unpublished). 
Arabinogalactan proteins are glycosylated polypeptides consisting 
of up to 90% carbohydrate and are capable of stimulating SE 
when added to a weakly embryogenic cell line (78–80). 
Endogenous levels of ethylene are low in developing seeds but 
may be high in culture (81). Control of ethylene in vitro through 
biosynthesis or ethylene action inhibitors improved embryo mor-
phology and postembryonic performance for Picea glauca and 
may also stimulate SE in some pines (82–84).

Somatic embryos are usually germinated on medium devoid of 
plant growth hormones and with reduced levels of salts, sugars, 
and nutrients. AC is often present to facilitate the removal of 
residual plant growth hormones. Unfortunately, germination of 
Pinus embryos depends heavily on genotype and is often difficult 
to achieve (17, 19, 61, 85). The eventual goal of many SE sys-
tems is to reduce costs and labor through delivery of embryos to 
soil through production of artificial seeds (86, 87).

1.3. Somatic Embryo 
Germination
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Several treatments increase the germination of pine somatic 
embryos including: embryo drying or desiccation prior to 
 germination (88), stratification (89), application of red light to 
pregermination and germinating embryos (90), direct or indirect 
exposure to the ectomycorrhizal fungus Psolithus tinctorius (91), 
and  supplementation of medium with redox chemicals (92). 
Merkle et al. were able to increase conversion, root growth and 
 germination in P. taeda, P. elliottii, and P. palustris, and hybrids of 
P. elliottii × P. palustris with red light treatments provided by light-
emitting diodes (90). When 0.1 mM ascorbic acid (an antioxi-
dant) was added to the germination medium, white spruce somatic 
embryos increased germination and germinants had enlarged api-
cal regions causing more leaf primordia and larger shoots (92).

Cryogenic storage maintains long-term cell viability at ultra low 
temperatures in liquid nitrogen allowing long storage periods 
that prevent culture decline often observed during repeated 
 culture maintenance. Clones can be placed in cryostorage shortly 
after initiation and later revived for production after evaluation 
of field performance. Most cryopreservation protocols are modi-
fications of Kartha et al. (93) developed for white spruce. Table 1 
lists Pinus species that have shown successful cryostorage.

The first pine somatic embryo was reported from P. lambertiana 
in 1986 and 1 year later success occurred with P. taeda (27, 94). 
Despite progress over the past 23 years, SE technology has yet to 
make a significant contribution to the billions of pine seedlings 
that are planted around the world. While at least one company 
produces several million somatic loblolly pine seedlings annually, 
the economic feasibility of this propagation system currently 
restricts its use to a fraction of the desired genetic material. Factors 
currently limiting commercialization of SE for LP include: (1) 
low initiation of recalcitrant high-value seed sources; (2) inability 
to maintain culture growth for many genotypes once initiation 
has occurred; (3) decline of cultures resulting in loss of plant 
regeneration potential; and (4) low quality of embryos produced, 
resulting in slow initial growth and low germination percentages. 
While these factors may be overcome for individual genotypes, 
they raise the cost of genotypes that can be produced.

Since the FG tissue that normally surrounds and feeds the natural 
embryo is not present during SE in vitro, the addition of 
 compounds normally provided by the FG may be necessary to 
maximize somatic embryo growth. Duplication of hormonal, 
nutritional, and physical environments found in vivo, study of 
embryo gene expression patterns, and understanding how 
medium changes over time, such as AC adsorption and pH 
change, have advanced the protocol development in P. taeda.

1.4. Embryogenic 
Tissue Cryostorage

1.5. Toward Large-
Scale SE Technology 
Commercialization: 
Challenges Ahead

1.6. Approaches  
to Improve SE 
Technology
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Analyses of P. taeda seed tissues were conducted to determine 
the levels of ABA (67, 95), organic acid (96), and vitamins and 
sugars (97). A somatic embryo bioassay was used to evaluate 
growth-promotion of the individual compound added to medium 
at concentrations found in the zygotic tissue. Compounds that 
increased early stage embryo growth were then tested for effects 
on initiation. When tested for initiation, media supplementation 
with ABA, a-ketoglutaric acid, pyruvic acid, succinic acid, folic 
acid, biotin, vitamins E and B12, d-xylose, and d-chiro-inositol 
caused statistically significant increases in initiation. A promising 
approach was recently shown by Carman et al. (98) where corro-
sion cavity fluids in Douglas fir were analyzed. Cyclitols, sucrose 
equivalents, erythrose, and arabinose were many-fold higher in 
corrosion cavity fluid than in whole seed tissues and provided a 
model for SE protocol improvement.

 1. Seed (collected at specific developmental stages).
 2. Media for P. taeda: initiation (2212, 2305), capture and 

maintenance (1250, 1133), embryo development (1562), 
germination (397), and cryopreservation (2007). Components 
are shown in Table 2.

 3. Sterilizing solutions: 10% liquinox with 0.2% Tween 20; 20% 
H2O2.

 4. Chemical reagents: reagent alcohol (70%), DMSO, and liq-
uid nitrogen.

 5. Consumable supplies: scalpel blades (sterile), pipettes (10, 
50 mL), vacuum filters (0.2 mm, 250 mL), syringe filter 
(0.2 mm, 13 mm) Costar #3526 Well Culture Cluster Plates, 
Cryostorage vials (13.5 × 48.3 mm, 2.0 mL), and parafilm.

 6. Equipment: CryoMed Freezing rate controller and chamber 
and CryoPlusII Liquid Nitrogen Storage Unit.

SE offers the advantage of rapid embryo multiplication in small 
spaces. The disadvantage is that, while fairly efficient for many 
plants and some steps of the process, the process currently does 
not produce a vigorous full-term loblolly pine somatic embryo. 
Understanding and improving SE is a major research effort at 
IPST. The SE process used in our laboratory is briefly described 
in Table 3 (45, 61, 99).

2.  Materials

3.  Methods
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 1. High-value seeds from breeding programs are used to initiate 
a culture. Cross-pollinated cones are collected in early to mid-
July from clonal seed orchards, shipped on ice, and received 
within 24–48 h. Cones are stored at 4–5°C for 1–5 weeks 
(see Notes 4 and 5). Cones containing seeds with embryos 
mostly at stages 2–4 (Fig. 2 (100)) are used for initiation 
experiments as described by Pullman et al. (43).

 2. Seeds are removed from cones, mixed in 10% liquinox with 
0.2% Tween 20 for 10 min, rinsed in flowing tap water for 
30 min, agitated aseptically in 20% H2O2 for 10 min, and 
rinsed five times for 5 min with sterile deionized water.

 3. Aseptic dissection: seeds are opened, the integument and 
nucellus removed, and the whole megagametophyte is placed 
on 2 mL of medium 2212 (Table 2) in wells of Costar #3526 
Well Culture Cluster Plates wrapped in Parafilm and incu-
bated at 23–25°C in the dark.

 4. After 14 days, 0.25 mL of medium 2305 (Table 2) is added 
(64). The liquid overlay contains fresh medium, ABA, greatly 
reduced NAA and functions to refresh medium contents and 
pH, and expose extruding tissues to supplemental materials 
such as ABA. Our best medium now further contains 100 mg/L 
d-xylose added to both the gelled and liquid medium (51).

 5. Percent extrusion and initiation are evaluated after 9–10 
weeks. In LP, about 50–60% of extrusions will progress to 
form somatic embryos.

The initiation sequence for P. taeda is shown in Fig. 1 (43) 
and described in more detail by Becwar and Pullman (37). Pinus 
taeda initiation occurs in three steps: extrusion at 1–4 weeks when 
one or more usually subordinate zygotic embryos expand out of 
the megagametophyte micropylar end; proliferating cells and 

3.1. Initiation  
of P. taeda 
Embryogenic Tissue

Fig. 1. Typical sequence of embryogenic tissue initiation in loblolly pine. Reproduced from Pullman et al. (43) with per-
mission from Springer.
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somatic embryos appear in extruded tissue at 5–7 weeks; and 
resulting embryogenic tissue multiplies to form a mass. These phases 
can be evaluated as percent extrusion, percent initiation (somatic 
embryos visible through a dissecting microscope), and percent of 
cultures achieving a target mass or size. Extrusion and initiation 
are routinely evaluated 9–10 weeks after placement of megagame-
tophytes on medium. Care should be taken to distinguish between 
extrusion and initiation.

 1. After 7–9 weeks, initiations are transferred to capture medium 
1250 (Table 2) and re-cultured every 2–2.5 weeks until tar-
get masses of 200 mg/culture are reached. About 50% of the 
new initiations can be maintained on capture medium. The 
remaining 50% do not grow even though embryogenic tissue 
formed during initiation or initially grow slowly and then 
stop growth within several weeks to several months.

 2. Cultures are maintained on gelled or liquid medium. 
Embryogenic cell suspensions are established by adding 
about 1 g of 10- to 14-day-old semisolid-grown tissue to 
9 mL of liquid medium 1133 (Table 2) in a 250 mL 
Erlenmeyer flask rotating at 120 rpm. After 5–7 days, each 
flask is swirled vigorously to facilitate breakup of tissue, and 
10 mL of medium is added. After another 7 days, contents 
of the flask are poured into sterile centrifuge tubes and set-
tled for 20 min. Old liquid medium is removed and settled 
volumes are measured.

 3. Cells are resuspended in medium at a density of 1 mL settled 
cells per 9 mL medium, rotated at 90–100 rpm, and main-
tained on a weekly transfer schedule at the same ratio of cells to 
medium. Cells replicate 2–6 times weekly, rapidly producing 
large numbers of somatic embryos.

 1. Replicate aliquots of 0.5–1 mL of suspension-grown cells are 
spread onto support material on 20 mL of maturation medium 
1562 contained in 100 × 15 mm Petri plates ((45, 61), see 
Note 6).

 2. Two additional transfers of support and tissue, each 4 weeks 
apart, occur on fresh medium for a total of 3 months on mat-
uration medium.

 3. Typically 10–100 cotyledonary embryos form and can be 
counted and categorized by stage. Using the embryo staging 
system of Pullman and Webb (100), embryos develop to a 
maximum of stage 9.1 compared with zygotic embryos that 
complete development with an additional 7–10 weeks of 
growth (stages 9.7–9.10) (45, 61). Some genotypes produce 
more embryos or advance development slightly if ABA is 

3.2. Maintenance  
and Multiplication  
of P. taeda Somatic 
Embryos

3.3. Maturation  
of P. taeda Somatic 
Embryos
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increased to 10 mg/L during the second and third month on 
maturation medium or if a fourth month of maturation is 
added (67).

The last step is germination and acclimation to achieve growth 
in vivo and to produce somatic seedlings ready for planting in the 
field.

 1. After 2.5–4 months on maturation medium, somatic embryos 
are selected that exhibit normal embryo shape.

 2. Ten embryos are placed horizontally on 20 mL of germina-
tion medium 397 (101) contained in 100 × 20 mm Petri 
plates.

 3. Plates are incubated for 7 days in the dark and then placed under 
fluorescent lights (16 h of 7 mmol photons/m2/s light daily).

 4. Embryos are scored at the end of 6 and 12 weeks for the pres-
ence of roots and shoots. An embryo is considered to have 
germinated when it contains both a root and a shoot. Our 
most advanced somatic embryos resemble stages 7–8 zygotic 
embryos in germination performance (61). Conversion, accli-
mation, and field testing procedures used in the past are 
described in Pullman et al. (61).

We have modified the successful cryopreservation procedure in 
Pullman et al. (61). Protocols have been formulated and tested 
for plant material originating from either a solid media or liquid 
cell suspension.

 1. LP cultures growing on solid maintenance media (1250) are 
transferred every 2 weeks until total mass is at least 1 g. When 
processed for cryostorage, 1 g of tissue will produce three 
vials for storage.

 2. Measured tissue is added to a sterile Erlenmeyer flask with 
liquid media 2007 (Table 2) at a ratio of 1 g tissue:1.5 mL 
medium.

 3. Flasks are left on a shaker overnight.
 4. After agitation, flasks are placed on ice in a laminar flow hood.
 5. A total of 150 mL of filter-sterilized DMSO (cryoprotectant) 

is added per gram of tissue in five equal aliquots over 30 min, 
swirling after each DMSO addition to prevent premature 
freezing of cells, and promote mixing.

 6. Aliquots of 1 mL are dispensed into sterile Nalgene cryogenic 
vials on ice.

 7. Vials are transferred to a freezing chamber regulated by a 
controlled rate freezing program that cools cells to −35°C at 
a rate of 0.33°C/min.

3.4. Germination  
of P. taeda Somatic 
Embryos

3.5.  Cryogenic Storage

3.5.1. Embryogenic Tissue 
Grown on Gelled Medium
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 8. Vials are then transferred to a storage container and s 
ubmerged in liquid nitrogen for long-term storage at 
−196°C.

 9. To retrieve cultures, vials are removed from liquid N2, 
immersed in warm-sterilized deionized water at 37°C for 
~2 min, and removed when half of the vials look thawed.

 10. After thawing, vials are wiped with 70% alcohol to remove 
potential contamination.

 11. Vials are opened, flamed to sterilize the vial lip, and contents 
poured onto sterile nylon fabric (see Note 5) in a Petri dish 
(100 × 15 mm) on 20 mL semisolid medium 1133 minus 
ABA + 2.5 g/L Gelrite.

 12. After 1 h, the nylon overlain with cells is moved to a plate of 
fresh medium.

 13. Eighteen hours later, cells are again transferred to fresh media. 
Plates are kept in the dark.

 1. LP cultures in liquid maintenance media 1133 are transferred 
every 7 days until the settled cell volume reaches at least 
30 mL. It is best if cells are collected at day 6–7 of the transfer 
cycle.

 2. Settled cells are added to a sterile flask with liquid media 2007 
at a ratio of 1:4 parts cells:medium. When 30 mL cells:120 mL 
medium is used, approximately 50 cryogenic vials are 
generated.

 3. Flasks are left on a shaker overnight.
 4. After agitation, flasks are removed from the shaker, placed on 

ice in a laminar flow hood, and contents are poured into a 
sterile glass graduated volumetric cylinder.

 5. After 20 min of settling, a sterile pipette is used to remove 
liquid until 97 mL of mixture remains in the cylinder.

 6. The mixture is placed back into the flask and put on ice.
 7. Filter-sterilized DMSO (3.5 mL) is added per 30 mL of cells 

in three aliquots (1.2, 1.2, and 1.1 mL) over 30 min, swirling 
the flask after each DMSO addition.

 8. 1 mL of prepared cells is dispensed into each vial on ice.
 9. Vials are transferred to a freezing chamber and cooled to 

−35°C at 0.33°C/min.
 10. Vials are then placed in a storage box and submerged in liquid 

N2 in a storage chamber for long-term storage.
 11. To retrieve cultures, the same procedure is used as indicated 

above. After 1–3 weeks, visible embryogenic tissue colonies 
begin to form. Resulting tissue can be grown on medium 
1250 or liquid medium 1133.

3.5.2. Embryogenic Tissue 
Grown in Liquid Medium
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 1. Use of a staging system is critical for the initiation process to 
help understand variation in zygotic embryo development 
due to mother tree location, time of year, and genotype. 
A clear staging system becomes important again to help mon-
itor somatic embryo development. We use the embryo stag-
ing system of Pullman and Webb (100) to evaluate 
morphological development in zygotic and somatic embryos 
(Fig. 2). Stages 1–8 are based on changes in embryo mor-
phology while stage 9 zygotic embryos are categorized by 
the week they are collected; e.g., 9.1 (stage 9, week 1), 9.2 
(stage 9, week 2). This system is based on the literature con-
cerning embryology within the pine family and is detailed to 
enable close scrutiny of embryo development. We use the sys-
tem to classify both zygotic and somatic embryos to compare 
early, mid-, and late-stage development.

 2. Brassinosteroids of reliable quality are difficult to purchase. 
An excellent company, CIDtech Research Inc (Mississauga, 
Ontario, Canada), provided high-quality brassinosteroids for 
many years but disappeared in the early 2000s. High-quality 
brassinosteroids can be purchased from Sigma-Aldrich 
(St. Louis, MO) or Duchefa (Haarlem, The Netherlands).

 3. It is important to keep clumps of embryogenic tissue small to 
increase surface area where new tissue grows most rapidly. 
Old brown and dying embryogenic tissue in the center of 
larger clumps should be removed along with nonembryo-
genic tissue forming callus (often hard and/or green). This 
selection process is important to maintain embryogenic tissue 
as the culture ages.

4.  Notes

Fig. 2. Stages of zygotic embryos in loblolly pine. Stages 2–4 are optimal for loblolly pine embryogenic tissue initiation. 
Reproduced from Cairney and Pullman (65) with permission from Wiley-Blackwell.
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 4. In some cases, 5–6 weeks of cone storage at 4–5°C can 
 significantly increase initiation (Pullman, unpublished). In 
several Abies species employing a cold treatment increased 
initiation (9). Pinus taeda cones collected when zygotic 
embryos are at stages 1–2 can be stored in the cold for up to 
7–9 weeks. After 6–7 weeks, a browning, indicating microbial 
colonization, will be noted on the ovuliferous scale that 
begins on the cone surface and progresses toward the seed 
with time. When the brown coloration reaches the seed, con-
tamination rates after sterilization will rapidly rise.

 5. When late precotyledonary zygotic embryos (stages 4–5 
(100)) are desired for initiation, a time- and labor-saving tet-
razolium chloride embryo staining technique may be used to 
evaluate seed health and screen out seed sources with high 
proportions of dead embryos (102). Zygotic embryos earlier 
that stage 4 do not stain well.

 6. Acceptable low-cost support materials for the maturation and 
cryostorage retrieval steps have been difficult to find. Early in 
our program, we used black filter paper (Ahlstrom Filtration, 
no. 8613-0425) placed on maturation or cryostorage medium 
(61). In 1999/2000, the filter paper manufacturing process 
changed, and the product dyes caused pH decreases that were 
detrimental to embryo growth and survival. Later, black cot-
ton (100%) fabric (Beechwood Country Class Solid 6785 
(61)) was substituted for filter paper, but embryo growth was 
still not optimal. Most recently, a low-cost nylon mesh, similar 
to that used for high-quality tea bags, has been found to work 
very well. Monofilament and spun nylon fabrics can be pur-
chased from Decotex Inc., Pawling, New York. We currently 
use fabric 06400JP-72 with 162 × 162 fibers/in. and openings 
about 60 mm in size. We selected this fabric based on cost, tis-
sue growth, and ease of cutting on a paper cutter. When last 
purchased (January 2007), the cost was $4.86/square yard.
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Chapter 20

Micropropagation of Phalaenopsis Orchids via Protocorms 
and Protocorm-Like Bodies

Kee Yoeup Paek, Eun Joo Hahn, and So Young Park 

Abstract

Phalaenopsis orchids have high economic value in the floriculture industry. Hybridization or cross-
pollination in the breeding program have proven to be very reliable techniques for the production of a 
wide range of successful cultivars with attractive combinations of spray length, bud number, flower color 
and type, fragrance, seasonality, and compactness. In vitro propagation makes it possible to clonally mass 
propagate hybrids of commercial value and conserved species. However, in vitro culture technologies are 
still a challenge because of the slow growth of plantlets, low multiplication rate, poor rooting, and soma-
clonal variation. Although seed-raised plants can be used for conservation and breeding for the selection 
of superior features, genetic characteristics including seasonality, inflorescence, flower color, and type are 
not uniform. In this regard, micropropagation through protocorm-like bodies obtained from germinating 
embryos and somatic tissues is an important strategy in obtaining genetically stable plants and the 
improvement of quality. However, not all genotypes of Phalaenopsis respond to the same protocol under 
the same culture conditions and often result in the development of undesirable characteristics. In this 
chapter, plantlet production in Phalaenopsis orchids via the culture of protocorms from seeds and 
protocorm-like bodies from leaf sections and root tips are detailed.

Key words: Asymbiotic germination, Leaf segment, Micropropagation, Protocorm, Protocorm-
Like body, Phalaenopsis, Somaclonal variation

For centuries, orchids have held a fascination for people; there is 
an air of mystery surrounding them such as sizes, shapes, colors, 
and fragrances. With an estimated 750 different genera with at 
least 25,000–30,000 species worldwide, it is probably the largest 
family (Orchidaceae) in the plant kingdom, larger even than the 
sunflower family (Asteraceae). The number of bi- and pluri-
generic hybrids registered is fast approaching over 100,000 due 

1. Introduction

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_20,  
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to the high degree of compatibility among genera and species, 
which has increased public awareness and stimulated an exciting 
industry of hybridization.

Many of these hybrids are important commercial plants used as 
cut flowers and potted plants to satisfy a strong demand, both locally 
and internationally. Over the years, it has evolved from a hobbyist’s 
market into a highly commercial market and the potential remains 
high for further growth. Large-scale cultivation of orchid cut flow-
ers and potted orchids is now the trend of the horticultural industry. 
Mass cultivation became possible with a breakthrough in orchid 
seed germination. This laid the foundation for intensive breeding 
and selection of new commercial orchid hybrids. The discovery and 
the development of asymbiotic germination of orchid seeds by 
Knudson (1, 2) have also paved the way for the development of 
plant tissue culture techniques for micropropagation of orchids. 
The availability of asymbiotic seed germination and clonal propaga-
tion in vitro has also made commercial-scale orchid cultivation pos-
sible and created an economically feasible market (3).

Since orchid seeds are minute and dust-like, a single fruit or 
capsule has the potential to produce up to a million seeds, depend-
ing on the species. However, orchid seeds have little food storage 
and rely on a specific type of fungus from orchid mycorrhizae for 
their germination and development. Orchid seeds can be germi-
nated in vitro using relatively simple sugar-containing nutrient 
media, since the survival rate in the wild habitat is very low. 
Generally, orchid seed germination in vitro is not a difficult or 
complex procedure, but it does require the acquisition of certain 
skills and knowledge. Many of the terrestrial native orchid species, 
especially those from temperate latitudes, do not germinate well 
on media used for tropical orchids but can be germinated in the 
presence of a symbiotic fungus or aseptically on more complex 
media using either mature seeds or ovules gathered from green 
pods. For example, there exists two distinctly different organo-
genic pathways between terrestrial and subtropical or tropical 
Cymbidium in vitro. Organogenesis of Cymbidium from an asym-
biotic seed or shoot-tip culture can be attained by way of proto-
corms (the small spherical tuber-like bodies formed by germinating 
orchid seeds) or protocorm-like bodies (PLBs: the structures that 
resemble protocorms but are formed by tissue explants and/or 
callus in vitro); but in temperate Cymbidium, organogenesis is via 
the rhizome which is recalcitrant to regeneration when compared 
to the protocorm system (4–6). Micropropagation of orchids via 
protocorm systems can be widely used for the purpose of a breed-
ing program and for the conservation of endangered native ones.

Orchid seeds differ from the majority of flowering plants by 
having minute embryos. Their apical meristems and cotyledons 
are not usually present at the time of seed dispersal and a variety 
of embryo developmental patterns, especially in the suspensor 
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morphology, can be found (7–9). Since orchid seeds germinate 
only by fungal infection, a practical seed germination method 
utilizing fungi has been utilized for a long time. After Knudson 
(1, 2) discovered that orchid seeds could germinate on a relatively 
simple mineral and sugar-containing medium, asymbiotic proce-
dures gained wide acceptance instead of symbiotic methods (10, 11). 
This approach also made it possible to produce magnificent orchid 
hybrids, especially colored Phalaenopsis hybrids which early growers 
might not have imagined.

The clonal propagation of highly heterozygous varieties of 
orchid became possible on a large scale following the work of 
Morel (12, 13), who showed that the in vitro culture of shoot tips 
of Cymbidium and other orchid genera may lead to the formation 
of structures like seedling protocorms. These structures some-
times produced a great number of PLBs and could be multiplied 
by cuttings. By repeating this process, large tissue stocks of any 
one clone could be obtained within a relatively short time (14, 15). 
If the culture is left undisturbed, many plantlets with normal 
shoots and roots can be regenerated from the PLBs. Somatic tis-
sue cultures such as shoot meristem, leaf (16), root tip (17), and 
flower stalk (18) in orchids usually result in either direct forma-
tion of PLBs, or in the formation of callus from which proto-
corms are regenerated (19). As orchid PLBs represent an early 
embryonic stage, protocorm formation in orchids is considered 
either direct or indirect embryogenesis (20). Thus, the callus 
formed from orchid seeds or explants is considered to be embryo-
genic callus from which protocorms are regenerated. Plants pro-
duced via tissue culture of vegetative orchid tissues, especially 
meristems, are often sold as mericlones. A mericlone could there-
fore be defined as an orchid plant originating from vegetatively 
propagated PLBs derived from somatic tissue of a single mother 
plant. In this chapter, plantlet production in Phalaenopsis orchids 
via the culture of protocorms by asymbiotic seeds is detailed. 
Since PLBs produced from somatic tissues have a similar develop-
mental pattern as protocorms, the protocol of plantlet formation 
from PLBs produced from leaf segments and root tips is also 
detailed (Fig. 1). This serves to illustrate the importance of PLBs 
production in in vitro orchid propagation.

In vitro cultures of orchid seeds and somatic tissues including 
shoot and root tip, flower stalk, and leaf segment can be compli-
cated depending on genus, species and genotypes, so it requires 
certain equipment, skill, experience and knowledge. The general 
outline of these skills as well as media and apparatus presented in 
this chapter are mostly from commercial tissue culture labs and 
references (see Note 1). Media used for orchid tissue culture and 
seed germination may reflect both a special requirement for each 
species and the preference of the investigators who carried out the 

1.1. Practical 
Considerations
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initial research (8). The simple media used for the germination 
such as Vacin and Went (VW) (21), Knudson C (2), or Hyponex (22) 
are generally employed for mericlone culture. More complex 
media such as Murashige and Skoog (MS) (23) have been 
described and may be required in some genera. Because there are 
no vitamins or amino acids in simple media, many laboratories 
often add undefined natural complex addenda as supplementary 
substances. Coconut water and homogenate of green bananas 
and potatoes are used in many cases. Low concentrations of auxin 
and cytokinin are sometimes added to the media at the initial 
stage of protocorm proliferation, but they are unnecessary at the 
later stage for the development of shoot and root from proto-
corms. The effects of auxins in a certain species and genotype may 
be different from those in other orchids. As with auxins, the 
choice of cytokinins and their concentration are based on species 
and genotypes. Sucrose is added to the media for initial culture of 
explants, but occasionally protocorm formation is improved in its 
absence. Transfer of a culture to a medium lacking sugar is essen-
tial in some genera to promote greening and plantlet differentia-
tion such as in Phalaenopsis (24). Activated charcoal improves the 
growth of Paphipedilum (25) and Phalaenopsis (11) and led to 
the development of charcoal supplemented media, which gained 
wide acceptance in a short time. One possible explanation of the 
effect of charcoal on orchid seedlings or tissue culture-derived 

Fig. 1. Vegetative propagation of elite Phalaenopsis via PLB multiplication.
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plantlets can be the improvement of aeration. The second possibility 
is that the charcoal absorbs ethylene (11) and phenolic inhibitors 
that inhibit growth and development. However, charcoal also 
absorbs plant growth regulators and other compounds such as 
vitamins in the medium and, therefore, should be used with cau-
tion. When preparing media, it is important to follow instructions 
carefully and strictly as given in recipes and to measure and weigh 
all compounds accurately (see Note 1).

Stock solutions save work because only one weighing is 
 necessary to prepare enough concentrate of 10, 100, or even 
1,000 L. Methods recommended for preparation and usage can 
vary considerably from one laboratory to another. Individual 
stock solutions should be prepared for each macroelement, vita-
min, amino acid, and plant growth regulator, while all microele-
ments should be combined into one stock solution. Since stock 
solutions containing nitrogen such as NO3

–, NH4
+, and urea tend 

to become contaminated with time, they must be kept in a refrig-
erator before use. Plant growth regulators, vitamins, and amino 
acids may not be stable for a prolonged period, so that it is best 
to prepare only small volumes of stock solutions. Ascorbic acid 
and glutamine, for example, are known to be broken down in a 
solution, even at low temperatures. Stock solutions of inositol, 
sugar or agar should not be made. The pH of the medium is 
mostly adjusted to 5.5–5.8 using NaOH, KOH, or HCl after all 
the components in the medium have been mixed prior to auto-
claving. Selection of a relatively high pH before autoclaving is 
usually thought to be necessary in agar media to ensure gelation 
(see Note 1).

Culture media, tools, working space, and tissues must be ster-
ilized to avoid contamination in cultures. A number of methods 
are used to ensure sterility by using autoclaves, filtering, micro-
wave ovens, open flame, solvent (ethanol), and liquids (hypochlo-
rite solution). Culture media are usually autoclaved at 121°C 
under a 1.05 kg/cm2 (103.4 KPa). To become sterile, a solution 
is required to reach 121°C and be kept at this temperature for 
15 min. The time taken for the sterilization in an autoclave 
increases according to the volume of the liquid in a vessel. A large 
number of autoclave models and sizes are available. The standard 
conditions for sterilization can be obtained automatically in auto-
claves or in pressure cookers. Some media components are 
destroyed by elevated temperatures so they cannot be heat steril-
ized. Solutions containing these substances may be sterilized by 
passing them through very fine sterilizing filters (Millipore filter) 
which permit the passage of liquids but not particles larger than 
0.22 or 0.45 mm. Disposable filter membranes are made for vari-
ous pieces of apparatus and both small and large volumes of liquid 
can be treated with them. Heating can be used to sterilize tools 
and the surface of culture vessels for cultures. A natural gas burner 
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such as Bunsen burner is the best because it produces a clean, 
nonsmoking, high temperature flame. If it is not available,  
an alcohol flame can also be used, but it may not be hot enough. 
Another possibility is to dip the tools in alcohol and ignite the 
liquid with an alcohol flame to sterilize their surfaces. Surface 
sterilization can be carried out with several different germicidal 
reagents. Clearly, the best sterilization method is cheap and non-
toxic to both plants and people, and effective on a wide range of 
plant materials. The most commonly used materials are the 
hypochlorite ion and simple alcohols. As the germicide should 
make the best possible contact with plant materials, it is advisable 
to add a few drops of wetting agent to the aqueous sterilization 
solution. Liquid sterilants containing 4.75 or 5.25% (w/v) NaOCl 
(5% available chlorine) such as household bleaches (Clorox, Javex, 
and Purex) are simple and excellent sterilants for sterilization of 
work area, tools, and tissues. If used to sterilize seeds, capsules, 
and tissues, these bleaches should be diluted to avoid damage of 
culture materials. A saturated solution of calcium hypochlorite 
can be used to surface-sterilize tissues and seeds. This solution is 
prepared by dissolving 10 g calcium hypochlorite in 140 mL 
water, stirring vigorously, and allowing the solution to stand for 
3–5 min. This is repeated until the precipitate has settled and 
then filtered. It should be used within 12 h (26). While calcium 
hypochlorite may be less effective than NaOCl in removing con-
taminants, it is equal in activity and less liable to induce tissue 
browning or injury (27), possibly due to the high concentration 
of calcium ions in the solution (see Note 1).

Containers used for plant tissue culture need to be translu-
cent so that cultures may be illuminated and inspected easily. The 
culture vessel should become larger as the culture stage proceeds, 
e.g., from test tubes to Erlenmeyer flasks and to large jars. The 
container size and type can directly influence the multiplication 
rate, growth, and quality. The optimum size to use depends on 
the types of plant material being multiplied and has to be deter-
mined by culture stage. Glass test tubes are commonly used for 
the initiation of cultures because there is a danger that infection 
from contaminated explants can easily spread when several 
explants are placed together in a single vessel. The use of dispos-
able culture vessels considerably reduces the cost of washing, but 
they are too expensive for most commercial tissue culture labs. 
PVC pots and jars manufactured for the food industry are par-
ticularly useful in terms of repeated autoclaving and cost reduc-
tion. Polypropylene and polycarbonate tubes, jars and boxes may 
prove to be cheaper alternatives, but they often become cloudy 
after repeated autoclaving, which is a disadvantage due to the 
reduction of light transmission (see Note 1).
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 1. Seed germination medium (see Table 1): Hyponex 
(N:P:K = 6.5:6:19, 2 g/L) medium supplemented with 2% 
(w/v) sucrose and 0.2% (w/v) Gelrite or 0.8% (w/v) Bacto 
agar, and adjusted to pH 5.5.

 2. First transplantation (1st TP) medium (see Table 2): same as 
the Hyponex seed germination medium supplemented with 
0.03% (w/v) activated charcoal.

 3. Second transplantation (2nd TP) medium (see Table 2): same 
as the 1st TP medium supplemented with 30–100 g/L of 
green banana or unsprouted potato homogenate.

2.  Materials

Table 1 
Composition of modified MS, VW, and Knudson media

Component MS (mg/L) VW (mg/L) Knudson (mg/L)

Macronutrients

NH4NO3 825
(NH4)2SO4 500 500
Ca3(PO4)2 200
Ca(NO3)2 · 4H2O 1,000
CaCl2 · H2O 220
MgSO4 · 7H2O 185 250 250
KNO3 950 525
KH2PO4 85 250 250

Micronutrients

Na2EDTA 18.65
FeSO4 ·7H2O 13.9 25
Fe2(C4H4O6)3·2H2O 28
H3BO3 3.1
CoCl2 · 6H2O 0.0125
CuSO4 · 5H2O 0.0125
MnSO4 · 4H2O 11.15 7.5
Kl 0.415
Na2MoO4 · 2H2O 0.125
ZnSO4 · 4H2O 4.3

Organics

Glycine 2
Myo-inositol 100 100
Nicotinic acid 0.5 1
Pyridoxine 0.5
Thiamine HCl 0.1 1
Adenine sulfate 10

From refs. (9–11)EDTA ethylenediamine tetraaceticacid
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Table 2 
Composition of modified Hyponex media

Component
Seed 
germination

Protocorm 
multiplication 
(PM)

First trans- 
planting (1st TP)

Second trans-
planting (2nd TP)

Hyponex (g/L)

N:P:K = 6.5:6:19 3.0 1.0 1.0 1.0
N:P:K = 20:20:20 1.0 1.0 1.0

Adenine sulfate  
(mg/L)

5.0

Peptone (g/L) 2.0 2.0 3.0

Coconut water (%) 20 10 10

Potato or banana  
homogenate (g/L)

30–100 30–100

Activated charcoal (%) 0.05 0.05 0.05 0.05

From refs. (17, 22, 28, 33)

 4. Potting mix for seedlings: sphagnum moss or a mixture of 
coarse vermiculite, perlite, and peat moss (1:1:1), or small 
particles of bark can be used as potting media.

 5. Protocorm multiplication (PM) medium (see Table 2): Hyponex 
(N:P:K = 6.5:6:19, 1 g/L), Hyponex (N:P:K = 20:20:20, 1 g/L), 
2 g/L peptone, coconut water 10% (v/v), unsprouted potato 
homogenate 30 g/L, activated charcoal 0.05%, and 0.8% agar, 
and adjusted to pH 5.5.

 6. Flower stalk culture medium: VW or Hyponex medium (see 
Tables 1 and 2), 2% (w/v) sucrose, 20% (v/v) coconut water, 
and 1% Bacto agar.

 7. Leaf thin-section culture medium: half-strength MS medium 
(23) supplemented with 2.0 mg/L TDZ or 10.0 mg/L BA, 
10 mg/L adenine sulfate, 2% (w/v) sucrose, 20% (v/v) coco-
nut water, and 0.23% Gelrite. Adjust the pH of the medium 
to 5.7 before adding Gelrite.

 8. Root tip culture medium: half-strength MS medium, 1 mg/L 
TDZ, 20% (v/v) coconut water, 10 mg/L adenine sulfate, 
and 0.23% (w/v) Gelrite.

 9. Coconut water: liquid endosperm of coconut is drained from 
ripe nuts, filtered through two layers of cheese cloth or coffee 
filter paper and either used immediately or frozen in deep 
freezer (−70°C).
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 10. Mature green banana homogenate: peel off coat and homogenize 
30–100 g green banana with 200 mL water in blender for 30 s at 
high speed. The liquid extract is mixed immediately with other 
medium components.

 11. Unsprouted potato homogenate: prepare in the same manner 
as banana homogenate. Potatoes that have not had long stor-
age give the best results. Homogenate obtained from sprouted 
potato can cause medium browning after culture.

 12. Activated charcoal: finely divided activated charcoal has fre-
quently been added to media (0.01–0.05% w/v) at different 
stages of tissue culture. Just as in the case of agar, there has 
been the idea that various brands of activated charcoal are in 
and themselves far better than others for use in orchid tissue 
culture. It is recommended that vegetable charcoal be used 
since this has a much higher percentage (95–99%) of active 
charcoal (Sigma) than charcoal obtained from other sources.

 13. Sterilization solutions: 70% ethanol, 1.5% sodium hypochlorite 
solution with two drops of Tween 20/100 mL for seed steriliza-
tion, 3% sodium hypochlorite solution for vegetative explants.

 1. Collect seeds from a dehisced (mature) capsule. Place seeds 
into 125 mL Erlenmeyer flasks containing sodium hypochlo-
rite solution with Tween 20 for 15 min by agitating on an 
orbital shaker at a speed of 50–60 rpm. The hypochlorite 
solution is conveniently removed by filtration with a Buchner 
funnel. Wash seeds three times with sterile water.

 2. Undehisced capsules are first washed with soap and water, 
dipped in 70% ethanol for 10 s and then soaked in 3% sodium 
hypochlorite solution for 20 min. Wash three times with sterile 
distilled water and sterilize the capsule surface by open flame 
for a second before opening the capsule on a clean bench 
(see Note 2). To remove immature seeds, cut green capsules 
with a sterile knife, scalpel, razor blade, or spatula. Scrape out 
seeds with a sterile spatula.

 3. Sow seeds on the seed germination medium in wide-
mouth 150-mL Erlenmeyer flasks containing 50 mL 
medium. Distribute the seeds evenly over the surface of 
the medium using a spatula and a small amount of sterile 
water, which normally condenses on the agar. Mature 
seeds can be placed on the medium in the same manner 
as immature seeds.

3.  Methods

3.1. Asymbiotic Seed 
Germination  
and Seedling 
Establishment
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 4. Place flasks in a culture room at 20–25°C under 16–24 h 
photoperiod at 40 mmol/m2/s. Swollen embryos with several 
rhizoid breaks from testa start to form protocorms after 
10–14 days in culture and the culture will appear crowded.

 5. Collect protocorms which have one developed leaf (about 
5 mm) and transfer them onto the 1st TP medium (Table 2). 
Be careful not to damage clumps of protocorms during sepa-
ration of the proliferated protocorm clumps and transfer. 
Damaged protocorms or seedlings are one of the sources of 
growth-inhibiting phenolic compounds which turn the 
medium brown (see Note 3).

 6. After 2–3 months of the first transfer, transplant seedlings 
with two more leaves and roots to the 2nd TP medium 
(Table 2). Addition of 5% (v/v) coconut water into the 
medium is favorable for the growth of seedlings. Required 
culture period of second transfer is about 3 months.

 7. Acclimatization conditions are important to maximize the 
survival rate and to stimulate the vigorous growth of seed-
lings. After 6 months of in vitro culture, seedlings may develop 
4–5 leaves and 3–4 roots. Wash away the medium from the 
roots in tap water. The need to remove agar is due to the agar 
trapping sucrose and other organic compounds in roots causing 
disease and infection. It is probably unnecessary to remove 
the agar if the culture medium does not contain sugar. The 
seedlings are put into a potting mix and hardened in a green-
house setting. The most common method of hardening small 
batches of seedlings is to place them in benches as planted in 
pots or plugs covered with clear plastic lids or with plastic 
domes made of thin film. Seedlings kept in a greenhouse after 
removal from flasks must be shaded up to 90% from direct 
light for 7–10 weeks. Direct light can be gradually increased 
up to 70% for photosynthesis of the seedlings (19, 21, 22). 
The most suitable temperature range for acclimatization of 
seedlings is 20–25°C under high humidity.

 1. Percentages of seed germination and protocorm formation 
are dependent on genotype, seed maturity, media composi-
tion, and culture environment. Select well-growing greenish 
globular protocorms for proliferation.

 2. Remove small shoots (one leaf) developed on top of proto-
corms and transfer the protocorms to fresh PM medium 
(Table 2) at 4-week intervals. For more rapid proliferation, 
protocorms can be divided into 2–4 pieces longitudinally. 
One piece of protocorm produces 10–20 protocorms after 4 
weeks in culture.

 3. Discard small yellowish protocorms and divide the protocorm 
clumps into one protocorm before subculture. Subculture in 

3.1.1. In Vitro Multiplication 
of Protocorms
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time to prevent old and/or deteriorated protocorms which 
give rise to abnormal shoots and the retarding of growth both 
in vitro and ex vitro. Do not subculture for more than 1 year 
to reduce the number of off-type plantlets. Production of less 
than 30,000 plantlets per capsule (Standard Phalaenopsis) is 
advisable for commercial purposes.

 4. Place 20 pieces of protocorms in one disposable Petri-dish 
(10 cm in diameter) containing 25 mL of PM medium. 
Maintain the cultures at 25°C for 4 weeks with a 16 h photo-
period under 30 mmol/m2/s.

 5. Once the seedlings develop the first leaf, they can be trans-
planted onto the 1st TP medium as for asymbiotic seed ger-
mination and subsequently to soil.

 1. The flower stalks which have 3–5 open flowers with buds in 
their node are good material to induce adventitious shoots 
(Fig. 1).

 2. Wipe-trimmed stalks are cut into sections with one lateral 
bud in the center of a 3–4 cm length of stalk. Immerse nodal 
sections into 3% sodium hypochlorite solution containing 
one drop of Tween 20 for 10 min and then rinse three times 
with sterilized water. Remove bleached end of sections before 
placing flower stalk section into medium with its base 
submerged (28).

 3. Place trimmed flower stalk section on VW medium (Table 1) 
with 2% (w/v) sucrose, 20% (v/v) coconut water, and 1% 
(w/v) agar. Addition of 3.0 mg/L BAP or 1.0 mg/L TDZ in 
medium stimulates shoot development. Place the cultures in 
the culture room at 26–28°C under 16 h photoperiod at 
30 mmol/m2/s.

 4. Shoots with two or three leaves generally appear within 1–2 
months depending on the species and genotypes.

 5. Leaves from flower stalk culture are a suitable source of material 
for making thin leaf segments (28). Five to seven 1 mm seg-
ments are cut transversely using a surgical blade from the 
proximal (basal) portion of the youngest leaf from each plant-
let (see Note 3).

 6. Soak thin-sectioned segments into half-strength MS liquid 
medium for 2 h.

 7. Forty sections are placed cut side down onto Petri-dishes 
(10 cm in diameter) containing 30 mL of leaf thin-section 
culture medium (see Note 4).

 8. Cultures are incubated for 1 week at 27°C in the dark, 
transferred to a tissue culture room at 25°C under a 16 h 
photoperiod at a 20 mmol/m2/s and maintained for 6 
weeks.

3.2. The Induction  
of Protocorm-Like 
Bodies from Leaf Thin 
Sections and Root Tip 
Explants

3.2.1. PLB Formation from 
Leaf Thin-Section Culture
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 1. Root tips (less than 0.5 cm long) dissected from in vitro 
plantlets derived from flower stalk culture (see Sub heading 3.2) 
can be used. They are placed on root tip culture medium with 
cut side down. TDZ is found to be more effective cytokinin 
in the induction of PLBs from root tip than BAP or zeatin.

 2. About 20 root tips are cultured in a plastic Petri-dish (10 cm 
diameter) containing 25 mL of medium and culture condi-
tions are the same as in leaf thin-section culture.

 3. Two to six PLBs can be obtained from a root tip after 8 weeks 
of culture.

 1. PLBs developed from the leaf segments or root tip are 
proliferated using the same protocol as the protocorms 
from asymbiotic seed germination (see Subheading 3.1.1, 
Note 4).

 2. For subculture and further proliferation of PLBs, use the 
upper portion of PLBs as explants for proliferation to reduce 
the occurrence of variation. Discard the lower portion of 
PLBs (see Note 5). Sucrose-free VW medium with 20% coco-
nut water or the PM medium can be used for multiplication 
of PLBs.

 3. Discard all abnormal PLBs during subculture. Generally, 
4-week intervals are advisable (see Note 6).

 4. Cultures in liquid medium respond better when agitated on a 
horizontal gyratory (100 rpm) or a vertical-wheel type 
(2–3 rpm) shaker.

 5. Distinguish normal and off-type PLBs to reduce the fre-
quency of somaclonal variation after transplanting plantlets to 
the greenhouse. Off-type PLBs are categorized into two 
types: One is translucent and turgid, and another is small and 
branched. Both types are difficult to develop into plantlets, 
and the latter has the characteristics of differentiating new 
PLBs from the surface (29).

 6. Collect normal PLBs having one leaf (about 5 mm) after 
separation of PLB clumps and transfer them onto the 1st TP 
medium (Table 2). For the PLB-derived shoot development 
and acclimatization, the protocol for protocorm seedling can 
be used (see Subheading 3.1).

 1. For a general outline of techniques including preparations of 
media and stock solutions, procedures, equipment, and facili-
ties, see refs. (10, 26, 30, 31).

3.2.2. PLB Formation from 
Root Tip Culture

3.2.3. Subculture and 
Multiplication of PLBs

4.  Notes
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 2. The size of capsule varies from 5 cm long in native species to 
10 cm long in large flower cultivars. For seed maturation of a 
pollinated flower, it takes 5–7 months depending on 
genotypes.

 3. In thin leaf section culture, wounding caused by the excision 
process plays an important role in PLB production (28, 32). 
Polyphenolics are released to the medium immediately from 
the cut side of explants, which subsequently oxidize and cause 
browning of the medium. Finally, the explants die. Therefore, 
one or two times of subculture of explants (at 1–2 week inter-
vals) to fresh media at an early stage of culture are desirable to 
increase survival and PLB formation (28).

 4. Formation of PLBs and callus-like bodies is more stimulated 
by ethylene released from thin leaf sections compared with 
thick leaf segment (over 5 mm) culture. Changes of ethylene 
concentration in the culture vessel during the culture period 
are closely related to the percentage of PLB forming explants 
(19, 33).

 5. Endoreduplication is variable according to tissue types, ages, 
and parts in one tissue. Although the proliferation rate is high 
when PLBs are used as explants, this often results in soma-
clonal variation, especially tetraploidy which tends toward 
high levels of endoreduplication. Shoot apical meristem in 
the upper part of PLBs having low degree of endoreduplica-
tion is more suitable for stable in vitro culture compared with 
that in lower part of PLBs (29, 34).

 6. Days required for initial PLB formation depend on geno-
types. Some genotypes show relatively high percentages (up 
to 70%) of off-type plantlets. It is very difficult to distinguish 
the PLBs which eventually develop into off-type plantlets. 
Also the occurrence of off-types does not exactly match with 
subculture time and culture period but is mainly related to 
the genotypic traits of clones (34–36).
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Chapter 21

Genetic Transformation Protocols Using Zygotic  
Embryos as Explants: An Overview

Muhammad Tahir, Ejaz A. Waraich, and Claudio Stasolla 

Abstract

Genetic transformation of plants is an innovative research tool which has practical significance for the 
development of new and improved genotypes or cultivars. However, stable introduction of genes of 
interest into nuclear genomes depends on several factors such as the choice of target tissue, the method 
of DNA delivery in the target tissue, and the appropriate method to select the transformed plants. 
Mature or immature zygotic embryos have been a popular choice as explant or target tissue for genetic 
transformation in both angiosperms and gymnosperms. As a result, considerable protocols have emerged 
in the literature which have been optimized for various plant species in terms of transformation methods 
and selection procedures for transformed plants. This article summarizes the recent advances in plant 
transformation using zygotic embryos as explants.

Key words: Agrobacterium, Biolistic transformation, Embryo transformation, Plant cell tissue and 
embryo culture, Plant transformation protocols, Zygotic embryogenesis

The concept and practice of “genetic modification (GM) of 
plants” is not new. Spontaneous mutations followed by the natural 
selection has been the principal force behind the GM of plants for 
millions of years as reflected in the evolution of plant species 
which we see today (1). The slow natural process of GM has been 
accelerated by human interventions in selecting plants with desir-
able traits. This rapid increase in GM of plants is specially wit-
nessed in agriculturally and/or economically important plant 
species (1) which has been tailored according to human needs 
and preferences, and this practice is persistent for at least 10,000 
years even without an understanding about the nature of genetic 
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material (2). The discovery of Mendel’s laws of inheritance in 
early 1900s was followed by dramatic developments in understanding 
the nature of genetic material (DNA). GM of plants, especially agri-
cultural crops, has become a key tool employed by plant breeders 
(searchable database: http://www.agbios.com/dbase.php).

The breakthrough in GM of plants was triggered by the land-
mark discovery of Frederick Griffith in 1928 when he demonstrated 
the “transforming principal” (3, 4), whereas the DNA could be trans-
ferred between bacterial cells causing the cells to behave differently in 
causing the disease pneumonia. Later on, classic research work during 
1940s conducted by Colin Macleod and Maclyn MacCarthy proved 
Griffith’s transforming principal and termed the GM by foreign DNA 
as transformation (3). With better understanding about the structure 
and replication of genetic material (DNA), and codevelopment of 
tissue culture or biotechnological techniques, the concept of GM 
evolved from GM at the massive level to the modification of only a 
specific or few genes without alteration in the rest of the genome.

GM technology now also referred as transgenic technology 
rapidly developed and expanded in the past decade, although GM 
or genetically modified plants/crops started becoming a com-
mercial reality in 1990s. The boom in the development and use 
of transgenic crops is a result of cumulative advancements in the 
fields of molecular genetics, transformation techniques, plant cell 
and tissue culture, regeneration of transformed cells/tissues, and 
developmental processes underlying the plant growth (5). No 
wonder that the year 2007 witnessed the production of GM crops 
on 114.3 million hectares in 23 countries of the world (1). 
Samples of successful plant transformation in angiosperms and 
gymnosperms are presented in Tables 1 and 2.

The actual procedure of producing the transgenic plants (6) 
involves the introduction of foreign DNA into a plant tissue and 
then regenerating the plants containing the introduced DNA. The 
success of the procedure is directly proportional to the successful 
transformation as measured by the change in the phenotype of an 
organism by the insertion of foreign DNA to its genome. Essentially, 
the requirements for production of transgenic plants (4, 6, 7) can be 
categorized into (1) a suitable target tissue and/or cells which have 
the ability to regenerate plants, (2) an effective method to introduce 
DNA into the regenerative cells/tissue, and (3) an appropriate pro-
cedure to select the transformed plants in sufficient numbers.

For production of transgenic plants, the first most important 
prerequisite is the selection of suitable target tissue. Different 
plant tissues including leaf tissue, immature cotyledons, roots, 
stems, shoot apices, embryogenic suspension cells, somatic and 
zygotic embryos, and whole seedlings can be used as a target 
tissue (5, 8–10). Immature zygotic embryo has been the widely 
used explant source to develop embryogenic callus lines, cell sus-
pensions, and protoplasts for transformation of cereal crops 
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Table 1 
Transformation in angiosperms using zygotic embryos as explants

Species Method Explant References

Maize Agrobacterium Immature (15, 44, 45)

Maize Agrobacterium Mature (11, 46)

Maize Biolostic Immature (14, 15, 17, 47–55)

Wheat Agrobacterium Immature (18, 56)

Wheat Biolistic Immature (57)

Wheat Biolistic Mature (27)

Rice Agrobacterium Mature (58)

Rice Agrobacterium Mature (59)

Rice Biolistic Immature (60)

Rice Biolistic Immature (9)

Oat Biolistic Immature (61–64)

Oat Biolistic Mature (65)

Barley Agrobacterium Immature (66, 67)

Barley Biolistic Immature (19, 20, 68–73)

Barley Biolistic Mature (74, 75)

Sorghum Agrobacterium Immature (76)

Sorghum Biolistic Immature (77, 78)

Millet Biolistic Immature (79, 80)

Cotton Agrobacterium Mature (34)

Arabidopsis Agrobacterium Mature (33)

Peanut Agrobacterium Mature (32, 81)

Brassica Biolistic Mature (30)

Avocado Agrobacterium Mature (29)

Papaya Biolistic Immature (25, 26)

Pearl millet Biolistic Immature (17)

Soybean Agrobacterium Immature (22)

Soybean Agrobacterium Mature (11)

Soybean Biolistic Immature (23)

Sunflower Other Immature (24)

Cowpea Agrobacterium Mature (11)

Black henbane Agrobacterium Mature (28)

Thorn apple Agrobacterium Immature (82)

White lead tree Agrobacterium Immature (10)
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including maize, wheat, rice, oat, barley, sorghum, and millet (8). 
There are several other reports (see Tables 1 and 2) in which 
zygotic embryos have been used as a explants for the production 
of  transgenic plants.

The second prerequisite is an effective method to introduce 
DNA into the regenerative cells/tissue. There are different methods 
by which DNA can be introduced into the target tissues. DNA can 
be delivered into cells via Agrobacterium-mediated transformation, 
microinjection, electroporation, and/or polyethylene glycol 
(PEG)-mediated protoplast transformation, pollen tube pathway, 
ultrasonication-mediated DNA transfer, and whiskers-mediated 
DNA transfer (5, 9–11). With the various gene transfer methods 
currently available, simple placement or transfer of DNA into a 
plant cell is no longer a limiting factor (6). However, both the 
mechanism for DNA transfer to a plant cell and targeting of the 
DNA to a complex tissue or organ competent for regeneration is 
still a major limitation (12). The third requirement for the produc-
tion of transgenic plants is an appropriate procedure to select the 
transformed plants (reviewed in (7, 13)) in sufficient numbers. One 
of the best methods to select the transformed plants is the use of 
vector-assisted selectable markers. The selectable markers are of 
three types, i.e., kanamycin resistance, hygromycin resistance, and 
bleomycin resistance. In spite of selectable markers scorable makers 
(NPT II activity, opine production, b-glucuronidase (GUS) activity, 
chloramphenicol acyl transferase activity, luciferase activity) can also 
be used as reporter genes. These genes can be placed under the 

Table 2 
Transformation in gymnosperms using zygotic embryos as explants

Species Method Explant References

Hinoki cypress Other Immature (35)

White spruce Agrobacterium Mature (11, 83)

Pinus Agrobacterium Mature (36)

Loblolly pine Agrobacterium Mature (37)

Larix gmelinii Biolistic Mature (38)

Terminalia chebula Agrobacterium Mature (39)

Chir pine Biolistic Mature (40)

Christmas tree species Agrobacterium Mature (41)

Picea abies Biolistic Mature (42)
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control of a specific promoter. If the necessary cell machinery is 
present, then the  promoter will be activated, and RNA polymerase 
will make the mRNA of the reporter gene and it will be translated. 
To determine if the gene was activated, plant tissue is treated with 
the appropriate substrate and expression can be monitored. If 
expression of the reporter gene is detected then the expression 
pattern of the promoter can be determined.

This review is an effort to highlight the advancements in pro-
cedures which are being employed for transformation of zygotic 
embryos and to provide basic concepts related to the transforma-
tion of angiosperm and gymnosperm species.

The efficiency of transformation can be measured by studying the 
parameters such as the ability of the transformed embryos to pro-
duce secondary embryos, regeneration ability of the embryos and 
the transient gene expression. In maize, Aulinger et al. (14) 
showed that immature embryos can potentially be transformed 
by particle bombardment, since they responded positively to all 
the studied parameters, although with lower efficiencies than fully 
mature embryos. In particular, differences were found in the rate 
of secondary embryogenesis and the density of transformed cells. 
In another study (15), production of transgenic maize from bom-
barded zygotic embryo-derived type II callus was studied. These 
researchers observed the effect of gold particle size and callus 
morphology on transformation efficiency. They presented a rou-
tine and efficient protocol for year-round production of fertile 
transgenic maize plants. Type II callus derived from maize imma-
ture zygotic embryos were transformed using the PDS 1000/He 
biolistic gun and selected on bialaphos. In an effort to improve 
the transformation protocol, they also investigated the effects of 
gold particle size and callus morphology on transformation effi-
ciency. The average transformation efficiency of preembryogenic, 
early embryogenic, and late embryogenic callus did not vary 
significantly. In an earlier study (16), efficient transformation 
of scutellar tissue of immature maize embryos was established 
by improving transformation conditions for the particle bom-
bardment, such as the amount of gold particles used per 
bombardment, particle velocity, preculture time of the scutellum 
prior to bombardment, and osmotic treatment of the target tissue 
before and after bombardment. Fertile transgenic plants selected 
on Basta-containing medium were regenerated for three inbred 
lines and two hybrids. The transformation frequency ranged from 
2 to 4% and a total of 29 transgenic plant lines were obtained and 
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verified with Southern blot analysis. All of the transgenic plants 
were fertile and set seeds. The R1 progeny of single plants 
was analyzed and a Mendelian segregation of the transgenes was 
observed for all of the transformants. For one of the candidates, 
stable inheritance and stable expression of the transgenes were 
followed up to the R4 generation. Further improvements were 
reported by O’Kennedy et al. (17) in the elite white maize using 
the particle inflow gun followed by detailed analysis of a low-copy 
integration event. The culture of immature zygotic embryos of 
selected elite white maize lines on medium containing 2 mg/L 
2,4-dichlorophenoxyacetic acid and 20 mM L-proline proved to 
be most successful explants for transformation.

Wheat, barley, and pearl millet are other monocot species 
where immature zygotic embryos have been successfully trans-
formed. Wu et al. (18) developed a protocol for Agrobacterium-
mediated transformation of bread and durum wheat using 
freshly isolated immature embryos. In barley, fertile transgenic 
plants were obtained by bombarding the embryonic axis of 
immature embryos (19). The transformed plant produced 98 
fertile spikes where integration and inheritance of the trans-
ferred nptII gene was confirmed by Southern blot hybridiza-
tion. Although present as several copies, the transferred gene 
was inherited as a single Mendelian locus into the T2 progeny. 
In another study (20), a large numbers of independently trans-
formed fertile barley plants were obtained from immature 
zygotic embryos. A total of 91 independent bialaphos-resistant 
callus lines expressed functional phosphinothricin acetyltrans-
ferase and integration of the marker gene was confirmed by 
DNA hybridization in the 67 lines analyzed. Transmission of the 
transgenes to T1 progeny was demonstrated in the five families 
analyzed by DNA hybridization. O’Kennedy et al. (21) studied 
Pearl millet transformation system using the positive selectable 
marker gene phosphomannose isomerase. Proliferating imma-
ture zygotic embryos were used as target tissue for bombard-
ment using a particle inflow gun. Different culture and selection 
strategies were assessed in order to obtain an optimized 
mannose selection protocol. Stable integration of the manA 
gene into the genome of pearl millet was confirmed by PCR and 
Southern blot analysis. Stable integration of the manA trans-
gene into the genome of pearl millet was demonstrated in T1 
and T2 progeny of two independent transformation events with 
no more than four to ten copies of the transgene.

Within dicotyledonous species, transformation of soybean was 
achieved (22) by Agrobacterium tumefaciens mediated transfer of 
genes in immature zygotic cotyledon explants. Sato et al. (23) 
studied stable transformation via particle bombardment in two dif-
ferent soybean regeneration systems. The first system was multiple 
shoot proliferation from shoot tips obtained from immature zygotic 
embryos of the cultivar Williams 82, and the second was somatic 
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embryogenesis from a long-term proliferative  suspension culture of 
the cultivar Fayette. Bombardment of shoot tips with tungsten par-
ticles, coated with precipitated DNA containing the gene for GUS, 
produced GUS-positive sectors in 30% of the regenerated shoots. 
However, none of the regenerants which developed into plants 
continued to produce GUS-positive tissue. Bombardment of 
embryogenic suspension cultures produced GUS-positive globular 
somatic embryos which proliferated into GUS-positive somatic 
embryos and plants. An average of 4 independent transgenic lines 
were generated per bombarded flask of an embryogenic suspen-
sion. Particle bombardment delivered particles into the first two-
cell layers of either shoot tips or somatic embryos.

In sunflower, it was found (24) that immature embryos were 
more suitable for transformation than their mature counterparts. 
The highest level of transient GUS expression after 3 and 14 days 
was obtained with embryos (£1.5 mm) precultured for 3 days in 
the presence of NAA and BAP. It was further reported that after 
2 and 4 weeks of culture, following bombardment with plasmids 
harboring a doubled CaMV 35S and a stress-inducible promoter, 
GUS activity increased. In mature embryos GUS-expressing cells 
were mostly observed in the epidermal layer, while in immature 
embryos they were located between the epidermis and the fourth 
mesophyll layer. The performance of the two biolistic equipments 
was also comparable. Under any condition, GUS expression 
declined with increasing culture time.

Cai et al. (25) developed an efficient transformation protocol 
for Carica papaya L. and provided useful tips for improving the 
process. In this study, they obtained a total of 83 transgenic 
papaya lines expressing the nontranslatable coat protein gene 
of papaya ring spot virus (PRSV). The transformation efficiency 
was very high as 100% of the bombarded plates produced trans-
genic plants. In another study on papaya (26), stable transforma-
tion was achieved via microprojectile bombardment. Three types 
of embryogenic tissues, including immature zygotic embryos, 
freshly explanted hypocotyl sections, and somatic embryos derived 
from both, were bombarded with tungsten particles carrying 
chimeric NPTII and GUS genes. Upon transfer to 2,4-D-free 
medium containing 150 mg/L kanamycin sulfate, ten putative 
transgenic isolates produced somatic embryos and five regener-
ated leafy shoots. Leafy shoots were produced 6–9 months 
following bombardment. Tissues from 13 of these isolates were 
assayed for NPTII activity and 10 were positive. Six out of 15 
isolates assayed for GUS expression were positive. Three isolates 
were positive for both NPTII and GUS.

Successful transformation of mature zygotic embryos has been 
reported in several angiosperm species. One such example (27) is 
in wheat where gene transfer into intact scutellum cells was 
achieved by electroporating zygotic embryos without any special 
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pretreatment. The use of plasmids carrying either two chimeric 
anthocyanin regulatory genes or a chimeric gusA gene allowed 
clear identification of transformed cells in the scutellum. Moreover, 
it was observed that gene transfer by electroporation was tissue 
specific as scutellum cells were found to be much more susceptible 
to gene transfer than other cell types of the embryo. An efficient 
Agrobacterium-based transformation technology termed SAAT 
(sonication-assisted Agrobacterium-mediated transformation) 
was reported to be applicable to both monocots and dicots and 
was claimed to overcome the barriers of transformation and 
enhance DNA transfer (11). The SAAT involves subjecting the 
plant tissue to brief periods of ultrasound in the presence of 
Agrobacterium. Scanning electron and light microscopy revealed 
that SAAT treatment produced small and uniform fissures and 
channels throughout the tissue allowing the Agrobacterium easy 
access to internal plant tissues. Unlike other transformation meth-
ods, this system has the potential to transform meristematic tissue 
buried under several cell layers. It was also revealed that SAAT 
treatment was necessary to obtain stable transformation in soy-
bean. Tu et al. (28) studied transformation of Hyoscyamus Niger 
by A. tumefaciens. They inoculated leaf, root, stem, petiole, hypo-
cotyl, and zygotic embryo explants, as well as pollen embryoids, 
and redifferentiated tissues from pollen embryoid-derived plant-
lets with Agrobacterium harboring the binary vectors (pGS Gluc1) 
and then cultured on media containing kanamycin. They found 
that transient GUS activity and kanamycin-resistant callus forma-
tion were influenced by explant origin. Transgenic calluses were 
obtained at a frequency of up to 30% from all the explants tested. 
They confirmed that transformation by the ability of the cells to 
produce kanamycin-resistant callus, GUS histochemical and fluro-
metric assays, polymerase chain reaction, and Southern blot anal-
yses. Their results showed that embryos may be an alternative 
source for both efficient transformation and regeneration of trans-
genic plants in recalcitrant species. In avocado, transformed 
somatic embryos were regenerated by A. tumefaciens – mediated 
transfer of uidA (GUS) and nptII genes in embryogenic cultures (29). 
Embryogenic avocado cultures derived from zygotic embryos of 
“Thomas” and consisting of proembryonic masses were gently 
separated and cocultivated with disarmed, acetosyringone-
activated A. tumefaciens strain A208, which contained the 
cointegrative vector pTiT37-ASE::pMON9749 (9749 ASE). 
Kanamycin-resistant embryogenic suspension cultures were 
selected in two steps: (1) initial selection in maintenance medium, 
consisting of MS basal medium, supplemented with 0.1 mg/L 
picloram and 50 mg/L kanamycin sulfate for 2–4 months and (2) 
subsequent selection in maintenance medium with 100 mg/L 
kanamycin sulfate for 2 months in order to eliminate chimeras. 
Somatic embryo maturation was initiated by subculture onto 
semisolid maturation medium followed by transfer to maturation 
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medium with 100 mg/L kanamycin sulfate. Genetic transforma-
tion of embryogenic cultures and somatic embryos was confirmed 
by the X-gluc reaction, and integration of nptII and uidA into 
the avocado genome was confirmed by PCR and Southern hybrid-
ization, respectively.

A method that allows the transfer of genes into single cells of 
excised zygotic embryos by particle bombardment was demon-
strated in Brassica juncea or Indian mustard (30). The fate of 
single, genetically marked cells was followed during in vitro 
embryogenesis. A simple and defined embryo culture medium has 
been designed on which zygotic B. juncea embryos, excised at the 
globular or at later stages, develop normally into mature, fully 
grown embryos. The embryos grow on the surface of solid medium 
without embedding and are freely accessible to microprojectile 
bombardment. Shooting at globular, transition, and early heart-
shaped embryos using both a particle inflow gun and a microtar-
geting particle accelerator resulted in transient expression of genes 
encoding visible markers. For both particle-acceleration devices 
the shooting conditions have been optimized based on transient 
GUS expression. Bombarding embryos under optimal conditions 
had no deleterious effects on in vitro embryogenesis. Multicellular 
GUS-expressing sectors were obtained, showing that bombarded 
cells can survive and resume normal development. The examina-
tion of these sectors has provided new information about cell 
division patterns characterizing early B. juncea embryogenesis. To 
be able to follow the development of particular genetically marked 
sectors, the authors tried to identify reporter genes that, in 
contrast to the uidA gene (which encodes GUS), can be nonde-
structively assayed in embryonic cells. Preliminary data has shown 
that expression of the firefly luciferase gene (Luc) can be detected 
in bombarded embryos without affecting their viability. Rochange 
et al. (31), reported DNA delivery into Eucalyptus globulus zygotic 
embryos through a biolistic approach. They optimized the proce-
dure in terms of biological and physical parameters of bombard-
ment for two different particle guns using the transient expression 
of a reporter gene as a test. Six-day-old cultured embryos were the 
best target material, and osmotic treatment increased the expres-
sion rate. The conditions of bombardment (particle acceleration 
and quality of the particle:DNA mix) were optimized and up to 
130 GUS expression events per embryo with a good distribution 
over the tissue were reported.

In another study (32), Agrobacterium-mediated transforma-
tion of peanut (Arachis hypogaea L.) embryo axes led to the 
development of transgenic plants. The zygotic embryo axes from 
mature peanut seed were cultured with A. tumefaciens (strain 
EHA101) harboring a binary vector that contained the genes for 
the scorable marker GUS and the selectable marker neomycin 
phosphotransferase II. It was observed that 9% of the germinated 
seedlings were GUS-positive. Polymerase chain reaction analysis 
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confirmed that GUS-positive shoots and T1 progeny contained 
T-DNA. Molecular characterization of one primary transformant 
and its T1 and T2 progeny plants established that T-DNA was 
integrated into the host genome.

An efficient procedure for Agrobacterium-mediated transfor-
mation of zygotic embryos derived from different Arabidopsis 
thaliana ecotypes has also been developed (33). This procedure 
yielded an average transformation rate of 76% for ecotype C24, 
and 15–20% for ecotypes Landsberg-erecta and Columbia. Light 
and electron microscopical studies showed that, during precul-
ture, procambium cells of embryos became highly susceptible to 
Agrobacterium infection. Transformed cells developed callus and 
regenerated shoots within 4–5 weeks of culture. A total of 1,500 
fertile transgenic plants were regenerated.

Leelavathi et al. (34) developed a simple and rapid 
Agrobacterium-mediated transformation protocol for cotton 
(Gossypium hirsutum L.). Embryogenic callus, derived from 
zygotic embryos, were cocultivated with Agrobacterium carrying 
the cry1Ia5 gene and then cultured under dehydration stress and 
antibiotic selection for 3–6 weeks to generate several transgenic 
embryos. An average of 75 globular embryo clusters were 
observed on selection plates and these embryos were cultured on 
multiplication medium followed by development of cotyledonary 
embryos on embryo maturation medium to obtain an average of 
12 plants per Petri plate of cocultivated callus. About 83% of these 
plants have been confirmed to be transgenic by Southern blot 
analysis. An efficiency of ten kanamycin-resistant plants per Petri 
plate of cocultivated embryogenic callus was obtained. The sim-
plicity of the procedure and the efficiency of the initial material 
allow transformation of any variety where a single regenerating 
embryogenic callus line can be obtained. In addition, multiple 
transformations can be performed either simultaneously or 
sequentially. The method is extremely simple, reliable, efficient, 
and much less laborious than any other existing method for 
cotton transformation.

Compared to angiosperms, there are very few reports available on 
the genetic transformation of coniferous species. In one study (35), 
a plant regeneration system from immature zygotic embryos of 
Hinoki cypress (Chamaecyparis obtusa) via somatic embryogenesis 
was established. According to this investigation, embryogenic tissues 
derived from immature zygotic embryos were successfully induced 
on three kinds of Smith media from  mega-gametophyte explants 
containing precotyledonary embryos of C. obtusa plus-trees. 
The addition of 30 g/L maltose to the medium had a positive 
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effect on embryo maturation, but sucrose was ineffective. The 
mature somatic embryos germinated at a germination frequency of 
approximately 60%, and the presence of activated charcoal was 
effective in stimulating plantlet growth. The plantlets acclimatized 
successfully in a greenhouse.

Many labs have been interested in developing protocols for 
transformation of gymnosperms using mature zygotic embryos. 
A study by Charity et al. (36) reported Agrobacterium-mediated 
transformation of Pinus radiata cotyledons. This experiment 
resulted in up to 55% of cotyledons transiently expressing the 
reporter gene uidA. The authors developed a transformation pro-
tocol for both cotyledons and the apical meristematic dome, 
which is the portion of the embryo remaining after cotyledons 
were detached, and from which the apical shoot and axillary 
shoots regenerate. Molecular analysis of putatively transformed 
shoots regenerated either adventitiously from cotyledons or via 
axillary shoots from apical domes, indicated the presence of uidA 
and nptII genes in some of these shoots. Biochemical analysis of 
putatively transformed shoots using nptII ELISA indicated that 
they contained the nptII enzyme. However, Southern hybridiza-
tion indicated stable integration of nptII only in one shoot which 
was regenerated from an apical dome. Shoots regenerated from 
cotyledons appeared to exhibit chimeric expression and were not 
stably transformed. Based on a comparison of time for regenera-
tion, technical difficulty, and molecular and biochemical analysis, 
apical domes may be more suitable as explants for transformation 
and subsequent regeneration of transclones than detached cotyle-
dons. Tang et al. (37) studied the regeneration of transgenic 
loblolly pine from zygotic embryos transformed with A. tumefaciens. 
Embryos of 24 open-pollinated families were used as explants. 
The A. tumefaciens strain GV3101 harboring the plasmid was 
used to transform mature zygotic embryos of seven families of 
loblolly pine. The frequency of transformation varied among fam-
ilies infected with A. tumefaciens. The highest frequency (100%) 
of transient GUS-expressing embryos was obtained from family 
11 to 1,029 with over 300 blue spots per embryo.

A new protocol for stable genetic transformation of Larix 
gmelinii was reported (38) using particle bombardment of zygotic 
embryos. Thirty mature zygotic embryos precultured for 3 days 
on solid medium supplemented with benzyladenine were bom-
barded with plasmids pUC-GHG (GUS, HPT, and green fluores-
cent protein (GFP) genes) or pBI221-HPT (HPT and GUS 
genes). After a 2-month culture on selection medium, hygromycin-
resistant callus appeared on the surfaces of the necrotic embryos. 
The frequencies of embryos with resistant callus were 18.4 and 
17.4% in the transformations with pUC-GHG and pBI221-
HPTDNA, respectively. More than 20 adventitious shoots formed 
from each of the transgenic calluses. Of 17  elongated shoots 
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selected for culturing on a rooting medium, five shoots rooted 
after 2 months. Expression of the GFP and GUS genes was 
detected in the resistant tissues by microscopic observations 
and by a histological GUS activity assay, respectively. PCR and 
Southern analysis confirmed the stable insertion of the introduced 
DNA into the genome. In a recent study (39) on Terminalia 
chebula, multiple explants such as cotyledon, hypocotyl, and 
excised mature zygotic embryos were transformed using A. tume-
faciens strain C-58 followed by detection of tannin in transformed 
tissue. The transformed callus was subjected to nopaline assay 
using paper electrophoresis. The analysis indicated the trans-
formed nature of the callus with the presence of nopaline and its 
absence in nontransformed control callus. Transformed callus 
grown on fresh MS basal medium showed more than twofold 
increase in the growth after 4 weeks of culture compared to 
normal control callus. Normally, no growth was observed in 
untransformed control callus. The transformed callus was 
analyzed for the presence of tannins using thin layer chromatog-
raphy, which indicated the presence of tannic acid in the trans-
formed callus. Genetic transformation of T. chebula and detection 
of tannin in transformed callus can be used to study the tannin 
biosynthetic pathway using biochemical and molecular approaches. 
In Chir Pine (Pinus roxbughii Sarg.), a particle inflow gun was 
used to transfer the plasmid pAHC25 containing the bar gene 
conferring resistance to glufosinate and the gusA reporter gene, 
each driven by the maize ubiquitin promoter, to mature (40). 
High levels of transient expression were obtained when embryos 
were cultured for 6 days on 10 mM benzyl adenine-containing 
medium and then exposed to high osmoticum (0.5 M sucrose) 
before and after bombardment. Tang and Newton (41) worked 
on transgenic Christmas trees regenerated from A. tumefaciens 
mediated transformation of zygotic embryos using the green 
fluorescence protein as a reporter. Mature zygotic embryos of 
recalcitrant Christmas tree species Fraser fir and Nordmann fir 
(Abies nordmanniana L.k.), and Virginia pine (Pinus virginiana 
Mill.) were used as explants for A. tumefaciens strain GV3850-
mediated transformation using the GFP gene as a reporter. A 
high transformation frequency was obtained on TE medium 
containing 50 mg/L acetosyringone and using 500 mg/L timentin 
to eliminate bacteria. Transient gene expression was observed in 
all three Christmas tree species, but transgenic plants were only 
produced from Virginia pine. These results demonstrated that a 
stable transformation system has been established in Virginia pine 
and this system would provide an opportunity to transfer eco-
nomically important genes into Christmas tree species. A particle 
inflow gun enabled efficient production of transgenic plantlets of 
Picea abies from embryogenic suspension cultures generated from 
mature zygotic embryos was reported (42). In transient assays, 
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the Zea ubiquitin promoter was 12–16 times as active as the 35S 
promoter. Cells were maintained from 1 to 3 h before bombard-
ment on proliferation medium supplemented with 0.25 M myo-
inositol and, from day 8, supplemented with Basta as selective 
agent. Embryogenic colonies resistant to Basta appeared 2 months 
after bombardment. Of over 100 independent Basta-resistant 
sublimes tested, 65% expressed the cotransformed reporter gene, 
even when it was not linked to the selectable marker. Over 80% of 
the sublines retained their embryogenic potential. Of 11 transfor-
mants analyzed, 4 contained transgenes in low copy number 
(1–3), the rest contained transgenes in up to 15–20 copies. Over 
200 Basta-resistant sublines from four cell lines have been estab-
lished, of which 138 are confirmed as transformed. Plantlets have 
been regenerated and grown on in pots.

The previous sections deal with transformation procedures using 
Agrobacterium or biolistic approaches. However, success in trans-
formation is often related to the ability of regenerating trans-
formed cells into viable plants. Regeneration is achieved through 
either somatic embryogenesis, that is the ability of somatic cells to 
form bipolar structures, i.e., embryos or shoot organogenesis.

As reviewed by others (43) somatic embryogenesis can be 
subdivided into induction, maintenance, and development. All 
these steps must be well executed and rely on different levels of 
plant growth regulators. As a general rule, the induction phase, 
that is the formation of embryogenic tissue from the transformed 
cells is achieved under high levels of auxins and cytokinins. In 
maize (15), the type-2 (embryogenic) callus formation from the 
base of the scutellum of the transformed zygotic embryos is 
induced by high auxin levels. A similar requirement of auxin, in 
the form of 2,4-D was also described in the induction phase of 
cotton (34). High levels of auxin, in conjunction with cytokinins 
were necessary to induce embryogenic tissue from transformed 
Norway spruce embryos (42). Embryogenic tissue is usually eas-
ily recognizable from the nonembryogenic counterpart. Apparent 
differences are visible in coniferous species where embryogenic 
tissue is translucent and characterized by the presence of many 
protruding immature embryos. This is in contrast to the nonem-
bryogenic tissue, which is usually dark and more compact (43).

Once generated, embryogenic tissue can be maintained and 
regularly subcultured on media supplemented with auxin and 
cytokinins (42) and embryo development can be induced by 
either removing plant growth regulators, as often observed for 
angiosperm species (15) or by adding abscisic acid (35, 42), 
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which is a key requirement for many gymnosperm species. 
Embryo  production is also favored by application of osmoticum 
agents, which reduce water availability in the tissue and induce 
proper growth and histodifferentiation. The most commonly 
used agent is PEG, which is a nonpermeating compound unable 
to cross the plasma membrane (43).

Regeneration of transformed cells via organogenesis appears to 
be the preferred method for many plant species. While the require-
ments for callus induction are similar to those described for somatic 
embryogenesis, with auxin and cytokinins as the main plant growth 
regulators, shoot formation requires levels of cytokinins which 
need to be optimized for each species. This requirement is unique 
to both angiosperms and gymnosperms (19, 37, 38).

Plant transformation has become a common tool to introduce 
useful traits in crop species as well as to gain information about 
gene function. Over the past few years several protocols have been 
developed for both angiosperms and gymnosperms which utilize 
biological and nonbiological methods for gene integration. Despite 
great advancements in this area, there are still several aspects of 
plant transformation that need to be elucidated. One above all is 
the mechanism whereby the transgene is integrated in the host 
genome. This information is crucial for the design of optimized 
protocols and for the application of genetic transformation to a 
larger variety of plant species. Another limitation of plant transfor-
mation is represented by the ability to regenerate viable plants 
from the transformed cells. Despite the advancements in tissue 
culture practices which have occurred over the past decades, rapid 
and efficient regeneration procedures are still required for assisting 
the transformation of recalcitrant species or varieties.
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Chapter 22

Genetic Transformation Using Maize Immature  
Zygotic Embryos

Bronwyn Frame, Marcy Main, Rosemarie Schick, and Kan Wang 

Abstract

Epidermal and subepidermal cells in the abaxial, basal region of the maize (Zea mays L.) immature 
zygotic embryo (IZE) scutellum can be induced by exogenous auxin to proliferate and undergo somatic 
embryogenesis. Successful genetic transformation of IZEs depends not only on optimizing transforma-
tion parameters for these totipotent cells, but also on achieving high embryogenic callus induction fre-
quency (ECIF) in a population of targeted explants. In maize, ECIF is strongly influenced by genotype, 
the tissue culture media used, and the interaction of these two factors. Altering tissue culture media 
components to increase ECIF and/or transformation frequency (TF) has been one approach used to 
expand the range of maize genotypes amenable to genetic transformation using the IZE. This chapter 
outlines such an approach – an Agrobacterium-mediated transformation protocol is used for direct-
targeting IZEs of the hybrid Hi Type II and inbred B104 lines. Two different media regimes are used for 
successful culture and transformation of two distinct genotypes.

Key words: Agrobacterium tumefaciens, B104, Callus induction frequency, Embryogenic callus, 
Genetic transformation, Hi II, Immature zygotic embryo, Maize

Evidence that scutellar cells of the maize (Zea mays L.) immature 
zygotic embryo (IZE) can be induced to produce embryogenic 
callus in the presence of exogenous auxin was first reported over 
30 years ago (1). Regeneration of fertile plants from this callus 
(2) demonstrated the totipotent nature of these epidermal and 
subepidermal meristematic cells found in the abaxial, basal region 
of the IZE scutellum (3). Both compact Type I and friable Type 
II embryogenic callus phenotypes (4) were observed to originate 
from these scutellar cells (3).

1. Introduction

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_22,  
© Springer Science+Business Media, LLC 2011
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In the last two decades, numerous studies have shown that 
callus and cell suspensions derived from these totipotent cells are 
also transformation competent (5, 6). Of particular impact were 
reports demonstrating that the IZE scutellum can itself be directly 
targeted for genetic transformation using electroporation (7), the 
biolistic gun (8, 9) and Agrobacterium-mediated methods (10–12). 
Expected progeny segregation ratios for the inherited transgene 
provided evidence that, whether targeted embryos formed Type I 
(7, 10, 13) or Type II (9, 12, 14) callus, transformation occurred in 
a single cell in this meristematic region of the embryo scutellum.

A major benefit of direct-targeting the IZE for genetic 
transformation is a reduction in the in vitro culture period 
required to recover transgenic plants (8). This not only reduces 
the amount of labor required for routine maintenance of cell 
cultures, it also minimizes aberrant plant phenotypes caused by 
culture-induced somaclonal variation thereby favoring trans-
genic plant fertility (9). A practical drawback to using imma-
ture embryos for transformation is the dependency on 
year-round, high quality greenhouse space for growing embryo 
donor plants. Perhaps the greatest hurdle to using maize IZEs 
for transformation is achieving an adequate Type I or Type II 
embryogenic callus induction frequency (ECIF) in a targeted 
explant population (9, 13, 15, 16). While high ECIF does not 
guarantee success (13, 17) it is a necessary prerequisite for 
achieving a robust transformation protocol using the IZE. In 
maize, the frequency of embryogenic callus induction is geno-
type specific (18–20) and influenced by factors such as tissue 
culture media components (4, 19, 21, 22), embryo size (23), 
and environmental conditions of the embryo donor plants (23). 
Transformation and cocultivation parameters can themselves 
affect ECIF and need to be optimized while maintaining ade-
quate ECIF after transgene delivery (9, 12, 15, 16, 24). Maize 
genotypes which exhibit high ECIF (~100% Type I or Type II 
callus phenotype) in culture such as the hybrid genotype Hi 
Type II or Hi II (25), and inbred lines A188 or H99 (20) have 
been successfully transformed using super-binary (10, 14, 16) 
or standard-binary (12, 26) Agrobacterium vectors to direct-
target IZEs. Efforts to extend these routine transformation 
protocols to elite or diverse inbred lines have focused on breeding 
responsiveness into the genotype of choice (27), optimizing an 
array of transformation parameters (14, 28, 29), or altering 
culture media components to improve ECIF (13,17) or trans-
formation frequency (TF) (12–14, 16, 26).

This chapter describes side by side protocols for using a stan-
dard-binary Agrobacterium vector and two media regimes to 
transform IZEs from two distinct maize genotypes: the Hi II 
hybrid line (25) and inbred line B104 (30).
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 1. Hi II. F1 seed of the hybrid Hi II line (25) is produced in the 
field (Ames, IA) each summer by pollinating Hi II parent A silks 
with Hi II parent B pollen (Hi II pA x Hi II pB, see Note 1). 
These two parent seed germplasms were obtained from the 
Maize Genetics Coop (https://maizecoop.cropsci.uiuc.edu/
request/). F2 IZEs used for all Hi II  transformation experi-
ments are produced from sib-pollinated F1 plants grown year 
round in the ISU Plant Transformation Facility greenhouse in 
Ames, Iowa as described in our  greenhouse protocol at: http://
www.agron.iastate.edu/ptf/protocol/Greenhouse%20
Protocol.pdf. Nine (in summer) to eleven (in winter) day-old 
ears are harvested when embryo size is between 1.2 and 1.8 mm. 
After harvest, maize ears (in their husks and inside their pollina-
tion bag) are stored in the refrigerator (4°C) in a loosely sealed 
dark plastic bag. Ears are stored for at least 1 and at most 4 days 
before being used for Agrobacterium-mediated genetic trans-
formation experiments (see Notes 2 and 3).

 2. B104. Greenhouse or field grown (see Note 4) embryo donor 
ears of maize inbred line B104 (30) are harvested 10 (from 
summer greenhouse) to 13 (from summer field) days after 
cross pollination when IZEs are 1.5–2 mm long (see Note 5). 
B104 seed can be obtained from the Iowa State University 
Committee for Agriculture Development (http://www.ag.
iastate.edu/centers/cad/corn.html). Greenhouse care of 
B104 plants and storage of ears after harvest are identical to 
that described for Hi II (see Note 6).

The cloning vector used routinely for Hi II and B104 
Agrobacterium-mediated transformation of IZEs is pTF101.1 
(31) – a derivative of the pPZP binary vector with a broad host 
range pVS1 origin of replication (32). pTF101.1 is an 11.6 kb 
standard binary vector in A. tumefaciens strain EHA101 (33) and 
contains a spectinomycin-resistant marker gene (aadA) for bacte-
rial selection. In this vector, the herbicide resistant bar selectable 
marker gene (34) is driven by the cauliflower mosaic virus (CaMV) 
double 35S promoter (2 × P35S). The tobacco etch virus (TEV) 
translational enhancer (35) was inserted at the 5′ end of the bar 
gene and the soybean vegetative storage protein terminator (36) 
was cloned to its 3′ end. A multiple cloning site for introducing 
any gene of interest (GOI) into pTF101.1 between the right 
border region and the plant selectable marker gene carries unique 
restriction sites for BamH I, EcoR I, Hind III, Sac I, Sma I, and 
Xba I (see Note 7). The stock solutions and culture media for A. 
tumefaciens are as follows.

2. Materials

2.1. Plant Materials

2.2. Plasmids  
and A. tumefaciens 
Strains Used for Hi II  
and B104 Genetic 
Transformation
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 1. Spectinomycin sulfate (Sigma, St. Louis, MO, USA): 100 mg/
mL stock in ddH2O. Sterilize by filtration through a 0.2 mm 
membrane (Fisher Scientific Inc, Pittsburgh, PA, USA), 
 aliquot (0.05 mL) and store at −20°C for up to 6 months (see 
Note 8).

 2. Kanamycin sulfate (Sigma): 10 mg/mL stock in ddH2O. 
Sterilize by filtration. Dispense in 0.25 mL aliquots in eppen-
dorf tubes and store at −20°C for up to 6 months.

 3. YEP medium (37): 5 g/L yeast extract, 10 g/L peptone, 
5 g/L NaCl, pH 6.8. For solid medium, add 15 g/L Bacto 
agar. Appropriate antibiotics are added to autoclaved medium 
after it cools to 50°C. For the strain EHA101 containing 
pTF101.1, the final antibiotic concentrations are: 50 mg/L 
kanamycin (for maintaining of the disarmed Ti plasmid 
pEHA101), 100 mg/L spectinomycin (for maintaining the 
binary vector plasmid pTF101.1).

 1. N6 vitamin stock (38): 1.0 g glycine, 0.5 g thiamine HCl, 
0.25 g pyridoxine HCl, and 0.25 g nicotinic acid are dis-
solved in 500 mL ddH2O. This stock solution (1,000×) is 
filter sterilized, and stored at −20°C in 40 mL aliquots, which 
are thawed and used over a period of weeks as needed.

 2. MS vitamin stock (39) (modified, see Note 9): 1.0 g glycine, 
0.25 g thiamine HCl, 0.25 g pyridoxine HCl, and 0.025 g 
nicotinic acid are dissolved in 500 mL ddH2O. This stock 
solution (1,000×) is filter sterilized, and stored at −20°C in 
40 mL aliquots which are thawed and used over a period of 
weeks.

 3. 2,4-D: 200 mg of powdered 2,4-dichlorophenoxyacetic acid 
(2,4-D) is dissolved in 5 mL of 1 N KOH on low heat and 
brought up to a final volume of 200 mL with ddH2O. The 
stock solution (1 mg/mL) is stored at 4°C (see Note 10).

 4. Dicamba: 0.0663 g of Dicamba (3,6,dichloro-o-anisic acid) is 
dissolved in 1 mL 1 N KOH on low heat and brought up to 
a final volume of 10 mL with ddH2O. The stock solution 
(30 mM) is stored at 4°C.

 5. Bialaphos: 100 mg of Bialaphos (Gold Biotechnology, 
Duchefa, St. Louis, USA) is dissolved in 100 mL of ddH2O. 
The stock solution (1 mg/mL) is filter sterilized and stored at 
4°C for up to 6 months.

 6. Glufosinate: 100 mg of glufosinate ammonia is dissolved in 
100 mL of ddH2O. The stock solution (1 mg/mL) is filter 
sterilized and stored at 4°C for up to 6 months.

 7. Acetosyringone (AS): 0.392 g of AS is dissolved in 10 mL of 
dimethyl sulfoxide (DMSO). This solution is diluted 1:1 with 

2.3. Culture Media  
for Maize 
Transformation

2.3.1. Stock Solutions  
for Transformation  
of Hi II and B104
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ddH2O and filter-sterilized. Aliquots (0.5 mL) of stock 
 solution (100 mM) are stored at −20°C for up to 6 months  
(see Note 11).

 8. Cysteine: 500 mg of L-cysteine (Sigma) is dissolved in 5 mL 
of ddH2O. The stock solution (100 mg/mL) is filter steril-
ized and added the same day to autoclaved, cooled co- 
cultivation medium for a final concentration of 300 mg/L. 
Any unused stock solution is discarded.

 9. Silver Nitrate: 0.85 g of silver nitrate is dissolved in 100 mL 
of ddH2O. The stock solution (50 mM) is filter sterilized and 
stored in a foil-wrapped duran at 4°C for up to 1 year.

 10. Cefotaxime: 1.0 g of cefotaxime (Phytotechnology Labora-
tories, Overland Park, KS, USA) is dissolved in 5 mL ddH2O. 
The stock solution (200 mg/mL) is filter sterilized, aliquoted 
(0.250 mL) and stored at −20°C for up to 1 month.

 11. Vancomycin: 1.0 g of vancomycin hydrochloride 
(Phytotechnology Laboratories) is dissolved in 5 mL ddH2O. 
The stock solution (200 mg/mL) is filter sterilized, aliquoted 
(0.250 mL), and stored at −20°C for up to 1 month.

 12. Carbenicillin: 1.0 g of carbenicillin (Phytotechnology 
Laboratories) is dissolved in 10 mL ddH2O. The stock solu-
tion (100 mg/mL) is filter sterilized, aliquoted (1.25 mL) 
and stored at −20°C for up to 3 months (see Note 12).

Media 1–5 are after Zhao et al. (14) with the addition of cysteine 
(300 mg/L) to cocultivation medium and the use of cefotaxime 
and vancomycin instead of carbenicillin for counter-selection of 
Agrobacterium after cocultivation. Solid media (Media 2–5) use 
100 × 25 mL Petri plates and are stored at room temperature.

 1. Infection (liquid): 4 g/L N6 salts (38), 1 mL/L N6 vitamin 
stock, 1.5 mg/L 2,4-D, 0.7 g/L L-proline, 68.4 g/L sucrose, 
and 36 g/L glucose, pH 5.2. This medium is filter sterilized 
and stored at 4°C. AS (100 mM) is added prior to use.

 2. Cocultivation (see Note 13): 4 g/L N6 salts, 1.5 mg/L 2, 
4-D, 0.7 g/L L-proline, 30 g/L sucrose, and 3 g/L Gelrite 
(bioWorld PlantMedia, Dublin, OH, USA), pH 5.8. Filter 
sterilized N6 vitamin stock (1 mL/L), silver nitrate (5 mM), 
AS (100 mM), and L-cysteine (300 mg/L) are added after 
autoclaving.

 3. Resting: 4 g/L N6 salts, 1.5 mg/L 2,4-D, 0.7 g/L L-proline, 
30 g/L sucrose, 0.5 g/L 2-(4-morpholino)-ethanesulfonic 
acid (MES), and 8 g/L purified agar (Sigma), pH 5.8. Filter 
sterilized N6 vitamin stock (1 mL/L), cefotaxime (100 mg/L), 
vancomycin (100 mg/L), and silver nitrate (5 mM) are added 
after autoclaving (see Notes 14 and 15).

2.3.2. Media  
for Agrobacterium-
Mediated Transformation 
of Hi II
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 4. Selection I: 4 g/L N6 salts, 1.5 mg/L 2,4-D, 0.7 g/L L-proline, 
30 g/L sucrose, 0.5 g/L MES, and 8 g/L purified agar, pH 
5.8. Filter sterilized N6 vitamin stock (1 mL/L), cefotaxime 
(100 mg/L), vancomycin (100 mg/L), silver nitrate (5 mM), 
and bialaphos (1.5 mg/L) are added after autoclaving.

 5. Selection II: The same as Selection I except that bialaphos 
concentration is increased to 3 mg/L.

 6. Pre-regeneration medium (see Note 16): 4.3 g/L MS Salts 
(39), 1 mL/L (1,000×) MS vitamin stock (modified), 
100 mg/L myo-inositol, 0.25 mL/L 2,4-D, 30 g/L sucrose, 
3 g/L gelrite, pH 5.8. Filter-sterilized bialaphos (2 mg/L) 
and cefotaxime (100 mg/L) are added after autoclaving. Use 
100 × 15 Petri plates.

All solid media described below use 100 × 25-mm Petri plates and 
are stored at room temperature. Media is modified from Carvalho 
et al. (22) and L-cysteine (300 mg/L) is added to the cocultiva-
tion medium.

 1. Infection (liquid): 4.3 g/L MS salts, 1 mL/L modified MS 
vitamin stock, 0.5 mL/L dicamba, 0.7 g/L L-proline, 
68.4 g/L sucrose, and 36 g/L glucose, pH 5.2. This medium 
is filter sterilized and stored at 4°C. AS (100 mM) is added 
prior to use (see Note 17).

 2. Cocultivation: 4.3 g/L MS salts, 0.5 mL/L dicamba, 0.7 g/L 
L-proline, 100 mg/L casein hydrolysate, 100 mg/L myo-
inositol, 30 g/L sucrose, and 2.3 g/L Gelrite, pH 5.8. Filter 
sterilized modified MS vitamin stock (1 mL/L), silver nitrate 
(88 mM), AS (100 mM), and L-cysteine (300 mg/L) are 
added after autoclaving (see Note 18).

 3. Resting: 4.3 g/L MS salts, 0.5 mL/L dicamba, 0.7 g/L 
L-proline, 0.5 g/L MES, 100 mg/L casein hydrolysate, 
100 mg/L myo-inositol, 30 g/L sucrose, and 2.3 g/L 
Gelrite, pH 5.8. Filter sterilized modified MS vitamin stock 
(1 mL/L), silver nitrate (88 mM), and carbenicillin 
(250 mg/L) are added after autoclaving.

 4. B104 Selection I: 4.3 g/L MS salts, 0.5 mL/L dicamba, 
0.7 g/L L-proline, 0.5 g/L MES, 100 mg/L casein hydro-
lysate, 100 mg/L myo-inositol, 30 g/L sucrose, and 2.3 g/L 
Gelrite, pH 5.8. Filter sterilized modified MS vitamin stock 
(1 mL/L), silver nitrate (88 mM), bialaphos (2 mg/L), and 
carbenicillin (250 mg/L) are added after autoclaving (see 
Note 19).

 5. B104 Selection II: The same as B104 Selection I medium 
except that the bialaphos concentration is increased to 
6 mg/L.

2.3.3. Media  
for Agrobacterium-
Mediated Transformation 
of B104 Inbred Line
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Regeneration media, after McCain et al. (40), uses 100 × 25 mL 
Petri plates and is stored at room temperature.

 1. Regeneration I: 4.3 g/L MS salts, 1 mL/L modified MS 
 vitamin stock, 100 mg/L myo-inositol, 60 g/L sucrose, 
3 g/L Gelrite, pH 5.8. Filter-sterilized glufosinate ammonia 
(6 mg/L) and cefotaxime (100 mg/L) are added after 
autoclaving.

 2. Regeneration II: The same as Regeneration I with the sucrose 
concentration reduced to 30 g/L and no glufosinate or cefo-
taxime is added.

 1. Horizontal laminar flow benches (The Baker Company, 
Sanford, ME, USA)

 2. Dark biological incubator (I36NL, Percival Scientific, Perry, 
IA, USA)

 3. Light biological incubator (Cu36L5, Percival Scientific)
 4. Steriguard 350 bead sterilizers (Inotech Biosystems International, 

Rockville, MD, USA).
 5. Vortex Genie (Fisher Scientific, USA)

 1. The vector system, pTF101.1 in strain EHA101, is stored as 
a glycerol stock at −80°C.

 2. Every 4 weeks, a “mother” plate is re-initiated from this long-
term glycerol stock by streaking the bacteria to YEP (with 
antibiotics) and growing it for 2 days at 28°C.

 3. The “mother” plate is then kept in the refrigerator (4°C) and 
used as a source plate for plating Agrobacteria cells (at 19°C 
for 3 days) in preparation for twice-weekly experiments  
(see Note 20).

 1. Dehusk the ear, break off the tip of the cob and insert a pair 
of numbered forceps. This labels the ear while acting as a 
“handle” for aseptic manipulation during dissection. In a 
laminar flow bench, place up to 15 prepared ears in a sterile, 
4 L beaker. Do not use any ears exhibiting extreme tip rot or 
discolored kernels (see Note 21).

 2. Add ~2 L of sterilizing solution (50% commercial bleach (6% 
hypochlorite) in ddH2O + 1 drop of surfactant Tween 20 per 
liter) to completely submerge the ears while leaving the for-
ceps handles protruding (see Note 22).

2.4. Culture Media  
for Regeneration  
of Hi II and B104
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 3. During the 20-min disinfection, occasionally grasp forceps 
and swirl the ears in an effort to dislodge air bubbles. Pour off 
the bleach solution and rinse the ears three times using at 
least 2 L of sterile ddH2O at each rinse. The final rinse is 
drained off and the beaker of ears is left (covered) in the 
bench until dissections begin.

 4. Using aseptic technique, and working in a laminar flow bench, 
hold onto the end of the forceps, prop the surface-sterilized 
ear on a large (150 × 15 mm) sterile Petri-plate, and cut off 
the top 1–2 mm of the kernel crowns with a sharp scalpel 
blade. Steriguard 350 bead sterilizers are used for sterilization 
of utensils throughout this protocol.

 5. To excise an embryo, insert the end of a sharpened spatula 
between the endosperm and pericarp at the basipetal side of 
the kernel and pop the endosperm out of the seed coat. The 
embryo axis side of the untouched embryo will be visible and 
the scutellum side will be nested in the endosperm. Gently 
coax the IZE onto the spatula tip and transfer it directly to 
liquid infection medium (see Note 23).

 1. Grow Agrobacterium cultures for 3 days at 19°C (or 2 days at 
28°C) on solid YEP medium amended with antibiotics.

 2. To begin an experiment, scrape one full loop (3 mm) of  bacteria 
culture from the plate and suspend it in 5 mL infection medium 
supplemented with 100 mM AS in a 50 mL Falcon tube. Affix 
the tube horizontally to a Vortex Genie (Fisher) platform head 
using lab tape and shake on lowest setting for 2 h at room tem-
perature. Using liquid infection medium (with AS), adjust to 
between OD550 = 0.30 and 0.40 just prior to use.

 3. Once this 2 h Agrobacterium pre-culture step is complete, 
dissect up to 100 IZEs directly into a 2-mL Eppendorf tube 
filled with Agrobacterium-free infection medium (with 
100 mM AS). These wash tubes are prepared 2 h ahead of 
time and stored at 4°C until dissection begins.

 4. Remove this first wash then wash the embryos a second time 
with 1 mL of the same medium. After removing the final wash, 
add 1 mL of Agrobacterium suspension (OD550 = 0.30–0.40).

 5. To infect the embryos, gently invert the tube 20 times before 
resting it on its side (in the dark) for 5 min with embryos 
submerged in the Agrobacterium suspension (see Note 24). 
These and all subsequent tissue culture steps are carried out 
in a laminar flow bench using aseptic technique.

 1. After the 5 min infection, use a 1-mL Pipetman equipped 
with a wide-bore pipet tip (see Note 25) to gradually transfer 
the embryos, along with a minimum amount of Agrobacterium 
suspension, out of the Eppendorf tube and onto the surface 
of the cocultivation medium. Embryos are collected, a few at 

3.1.3. Agrobacterium 
Infection

3.1.4. Co-Cultivation
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a time, with minimal liquid uptake at each transfer to avoid 
adhesion of the embryos to the inside of the pipet tip.

 2. When embryo transfer is complete, use a 1-mL tip to remove 
excess Agrobacterium suspension from the surface of the 
 co-cultivation medium and the area surrounding each 
embryo. Collect the used bacterial suspension in a disposable 
Petri-dish (see Notes 26 and 27).

 3. Leave the lid of the cocultivation plate ajar for up to 1 h to 
let the medium and embryo surfaces dry further before 
 orienting each embryo scutellum side up with the aid of a 
stereo microscope.

 4. Wrap plates with vent tape (air permeable adhesive tape) and 
incubate at 20°C (dark) for 3 days in a biological incubator.

 1. After 3 days cocultivation, transfer all embryos to resting 
medium at 28°C (dark) for 7 days.

 2. Continue to transfer all embryos throughout the following 
selection steps. Do not discard any embryos prematurely. 
Tissue culture plates are incubated in a biological chamber 
throughout resting and selection steps.

 1. After 7 days on resting medium (see Note 28), use sterile 
forceps to transfer embryos to Selection I medium (35 IZEs 
per plate) containing 1.5 mg/L bialaphos, for 2 weeks fol-
lowed by two more 2-week passages on Selection II medium 
(3 mg/L bialaphos). Plates are wrapped with Parafilm® and 
incubated at 28°C in the dark. All Hi II selection steps are 
done without the aid of a stereo microscope.

 2. As early as five and as late as 10 weeks after infection, putative 
Type II callus events are visible (with the naked eye) emerg-
ing from a subset of embryos.

 3. Putative events are transferred away from the original experiment 
plate to a fresh plate of Selection II medium for an additional, 
2-week subculture to verify that they are bialaphos resistant. We 
refer to this latter step as “picking” putative events.

 4. If a putative callus event continues to grow rapidly, it is assigned 
an ID number. Callus events containing stalked somatic embryos 
(prescreened with the aid of a stereo microscope) are subcul-
tured, one event per plate, to Pre-regeneration medium.

 5. If the diameter of the callus clump is greater than 2 cm at this 
stage, it is divided into smaller pieces (1 cm) at transfer. Petri 
plates are wrapped with Parafilm® and incubated in the dark 
(25°C) for 10–14 days.

 6. Average TF for Hi II using this protocol is 8%, or 8 indepen-
dent, bialaphos resistant Type II callus per 100 infected (and 
selected) IZEs.

3.1.5. Resting

3.2. Selection  
for Stable 
Transformation  
Events

3.2.1. Hi II Events
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 1. After 7 days on B104 resting medium (see Note 29), transfer 
all embryos to B104 Selection I medium (35 IZEs per plate) 
containing 2 mg/L bialaphos, for 2 weeks followed by two 
more 2-week passages on B104 Selection II medium containing 
6 mg/L bialaphos. Plates are wrapped with Parafilm® and 
incubated in the dark (28°C).

 2. As early as six, and as late as 12 weeks after infection, putative 
Type I callus events are visible emerging from a subset of 
selected IZEs (see Note 30).

 3. Putative events are transferred away from the original experi-
ment plate to a fresh plate of B104 Selection II medium for  
2 additional weeks. Continued vigorous proliferation after this 
“picking” step verifies that the event is bialaphos resistant.

 4. Unlike the corresponding Hi II step in which the clump of 
Type II callus representing one putative event is kept intact, 
when a B104 putative event is picked, embryogenic Type I 
callus is separated from non-embryogenic callus lobes and 
differentiating leaf or root portions of the callus clump with 
the aid of a stereo microscope. Only the embryogenic callus 
is retained and broken into 0.25 cm pieces on the surface of 
a fresh plate of B104 Selection II medium.

 5. After 2 weeks, the Type I embryogenic callus proliferating 
from some or all of these pieces is regrouped and subcultured 
in 0.5 cm pieces, again using the stereo microscope, to the 
surface of B104 Selection II medium in preparation for nam-
ing and regeneration.

 6. Average TF for B104 using this protocol is 3%, or 3 indepen-
dent, bialaphos-resistant Type I calluses per 100 infected (and 
selected) IZEs.

 1. With the aid of a stereo microscope, use sterile scalpels or 
needle nose forceps to transfer 12–15 small pieces (4 mm) of 
somatic embryo-enriched callus from Pre-regeneration 
medium to Regeneration I medium. Wrap plates with vent 
tape and incubate at 25°C (dark, see Note 31).

 2. After 2 weeks on Regeneration I medium, somatic embryos 
appear swollen, opaque and white. In some cases, the col-
eoptile is already visible emerging from these germinating, 
somatic embryos.

 3. Use a stereo microscope to transfer ~12 individual, mature 
somatic embryos from Regeneration I medium to the surface 
of Regeneration II medium for germination in a lighted bio-
logical incubator (25°C, 80–100 mE/m2/s light intensity, 
16:8 photoperiod).

 4. Wrap Petri plates with vent tape. Hi II plantlets sprout leaves 
and roots on this medium within 1 week and are ready for 

3.2.2. B104 Events
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transfer directly to soil about 3 days later (10 days after 
 transfer to Regeneration II medium).

 1. Using a stereo microscope, transfer 15–20, 5 mm embryo-
genic Type I callus pieces (pried apart, not cut) from the sur-
face of B104 Selection II medium to the surface of 
Regeneration I medium. Multiple somatic embryos may be 
fused together in one piece of callus. Wrap Petri plates with 
vent tape and incubate in the dark (25°C).

 2. After 3 weeks, the majority of callus pieces will produce one 
or more mature somatic embryos. Like the corresponding Hi 
II regeneration step, the B104 mature somatic embryos will 
appear opaque and white, but unlike Hi II, they will form at 
lower frequency and will, in many cases, be fused together.

 3. Using a stereo microscope, pry these mature somatic embryos 
apart from any unhardened callus and from each other where 
possible without damaging embryo integrity.

 4. Transfer these pieces (fused or not), 15 per plate, to 
Regeneration II medium for germination in the light (25°C, 
80–100 mE/m2/s light intensity, 16:8 photoperiod). 
Germinated B104 plantlets with roots and shoots are ready 
for transfer to soil from between 7 and 14 days later (see 
Notes 33 and 34).

 1. A detailed protocol for growing immature embryo donor 
plants from seed, and for growing regenerated transgenic 
plantlets to maturity, can be found in the ISU Plant 
Transformation Facility greenhouse protocol at: http://www.
agron.iastate.edu/ptf/protocol/Greenhouse%20Protocol.
pdf. Our greenhouse is located in Ames, IA, USA.

 2. While this protocol provides helpful guidelines for growing 
greenhouse maize, it should be noted that conditions for  success 
will vary depending on location and greenhouse conditions.

 1. These two parents may differ in vigor. Multiple plantings of 
both parents ensure constant availability of parent A silks × 
parent B pollen for the F1 cross.

 2. In general, greenhouse derived Hi II IZEs transform at higher 
rates (using Agrobacterium-mediated methods) than do field 
embryos using this protocol, although transgenic events have 
been recovered from both sources.

 3. We generally recover at least 120 IZEs from one greenhouse-
grown Hi II ear.

3.3.2. B104 (see Note 32)

3.4. Growth Chamber 
and Greenhouse Plant 
Care

4. Notes
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 4. In general, greenhouse derived IZEs of B104 transform at 
higher rates using Agrobacterium-mediated methods than do 
field embryos using this protocol, although transgenic events 
have been recovered from both.

 5. Post-infection ECIF for 1.2 mm B104 embryos is lower than 
for 1.5 mm B104 embryos or 1.2 mm Hi II embryos.

 6. We generally recover ~150 IZEs from one greenhouse-grown 
B104 ear.

 7. We have also used strains LBA4404 and GV3101 with this 
vector with varying degrees of success.

 8. Spectinomycin may come out of solution in the freezer and 
must be resuspended after thawing and before using.

 9. Modified MS vitamins (13) contain higher thiamine HCl and 
lower nicotinic acid concentrations compared to MS vitamins.

 10. Use low heat. Do not boil the 2,4-D while dissolving it in 
KOH.

 11. AS will sometimes precipitate after freezer storage and is 
 re-dissolved by vortexing for 15 min.

 12. Carbenicillin efficacy may vary by lot number.
 13. Cocultivation medium is either 1 or 4 days old when used.
 14. Resting medium is made in small batches to ensure that it is 

as fresh as possible at use (<3 weeks old).
 15. Vancomycin and cefotaxime will form a precipitate if mixed 

together. Add each to media separately and stir well after 
adding.

 16. This medium is used to slow Hi II callus growth and encour-
age somatic embryo formation.

 17. This is our current liquid infection medium for B104 and is 
modified from Frame et al. (13).

 18. This cocultivation media is also used at 1 or 4 days old and 
when solidified is hazy compared to Hi II cocultivation 
medium. Stir well before pouring.

 19. This is our current selection scheme for B104 and is modified 
from Frame et al. (13).

 20. We compared the effect of using refrigerator-stored (4°C) 
Agrobacterium mother plates, or −80°C stored glycerol stocks 
to initiate the 19°C/3 day bacteria plate used for infection 
experiments. The average TF for embryos infected with the 
vector pTF102 (12) in EHA101 initiated from a 4°C mother 
plate was 6.4%. For embryos infected with Agrobacteria initi-
ated from glycerol stock (−80°C), TF was 5.6%.

 21. Pink kernels in particular may be an indication of bacterial 
contamination.

 22. We reuse this bleach once and store it in the dark between uses.
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 23. A skilled technician can dissect at least 150 IZEs per ½ h. Do not 
damage embryos at dissection or dig around the ear for embryos 
that are not easily retrieved, as this increases the probability of 
introducing contamination into your experiment tube.

 24. We do not leave embryos in the wash for extended periods of 
time. Washing, infection and plating to cocultivation medium 
steps are all carried out without interruption.

 25. One mL filtered pipet tips are trimmed using scissors to make 
a 3 mm bore hole and re-autoclaved before using.

 26. This waste, along with all tissue culture plates, medium  (liquid 
or solid), or plant tissues exposed to Agrobacterium and the 
genetically modified DNA it contains are autoclaved as bio-
hazard waste before disposal.

 27. If infecting multiple constructs on the same day, be sure to 
discard the Agrobacterium-liquid disposal dish between con-
structs so that no back splashing occurs; this may result in 
cross contamination between constructs.

 28. After 1 week on resting medium, ECIF for Agrobacterium-
infected Hi II embryos cocultivated on medium containing 
300 mg/L cysteine is ~85%.

 29. After 1 week on resting medium, ECIF for Agrobacterium-
infected B104 embryos cocultivated on medium containing 
300 mg/L cysteine is ~70% (13).

 30. B104 Type I putative callus events grow vigorously and often 
appear to “dig into” the medium surface.

 31. Do not overfill the plate and keep pieces small and enriched 
with stalked embryos – the key to this regeneration method is 
to induce differentiation of the preformed somatic embryos 
through desiccation and slowed growth.

 32. The regeneration method and media described here were  
reported in Frame et al. (13) and take 35 days to recover trans-
genic plants. Regeneration protocol comparisons carried out since 
2006 using non transgenic B104 callus indicate that 5 plantlets 
per plate can be regenerated within 15 days using a regeneration 
protocol modified from Zhao et al. (14) in which the media 
includes 6% sucrose and zeatin, and for which all regeneration 
steps are carried out in the light. To date, we have not compared 
these regeneration protocols using transgenic B104 callus.

 33. Plantlet recovery for B104 may require in vitro pruning. 
Subculture sprouting plantlets to a fresh plate of Regeneration 
II medium after 10 days in the light to encourage maximum 
plantlet recovery.

 34. To confirm that the bar gene is expressed in B104 regenerated 
plants, 2–3 weeks after being taken to soil, plantlets are sprayed 
with 500 mg/L glufosinate prepared from the herbicide Liberty® 
(Bayer Crop Sciences, USA) and 0.1% Tween 20 (v/v).
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Chapter 23

Biolistic-Mediated Transformation Protocols for Maize  
and Pearl Millet Using Pre-Cultured Immature Zygotic 
Embryos and Embryogenic Tissue

Martha M. O’Kennedy, Hester C. Stark, and Nosisa Dube

Abstract

Maize (Zea mays L.) is the most important cereal food crop in sub-Saharan Africa and Latin America, and 
a key feed crop in Asia, whereas pearl millet (Pennisetum glaucum (L.) R. Br.) is a staple food that supplies 
a major proportion of calories and protein to large segments of the populations living in the semi-arid tropi-
cal regions of Africa and Asia. The limitations of biological gene transfer with Agrobacterium tumefaciens 
specifically related to recalcitrant cereal crops, led to the development of alternative methods of which high-
velocity microprojectiles, biolistic genetic transfer is the most successful and also the most widely employed. 
Agrobacterium facilitated transformation is the method of choice especially for deregulation of commercial 
transgenic food crop products, but biolistic-mediated transformation is still valid for proof of concept and 
functional genomics applications. Biolistic-mediated transformation and the production of transgenic plant-
lets via somatic embryogenesis of two maize strains viz. Hi-II (a laboratory strain) and M37W (a South 
African elite white maize genotype) as well as a pearl millet strain (842B) are described in this chapter. The 
stages described include: (1) proliferation of immature zygotic embryos for biolistic-mediated transforma-
tion, (2) induction and maintenance of transgenic embryogenic tissue on selection medium; (3) maturation 
(both morphological and physiological) of transgenic somatic embryos; and (4) germination of the somatic 
embryos to putative transgenic primary events. Maize and pearl millet cultures were regenerated via somatic 
embryogenesis as they are bipolar structures that shoot and root simultaneously. The culture media 
described in this chapter rarely induced or regenerated plantlets via organogenesis.

Key words: Immature zygotic embryos, Maize, Pearl millet, Somatic embryogenesis, Transgenic

Maize is a major world crop and an important model monocot 
plant for studying genetics, genomics and molecular biology (1). 
Agrobacterium is an indispensable tool for transformation of 
a large number of model crops (2), which usually generates 

1. Introduction

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_23,  
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transgenic plants carrying a single-copy transgene of a “clean” 
transgene flanked by the left and the right T-DNA border sequences. 
Recently, a number of reports have shown the presence of multiple 
transgene copies and vector sequences in up to 75% of 
Agrobacterium-mediated transformation events (2,3). Particle 
bombardment remains a uniquely advantageous transformation 
method, and indeed the only one available for many species (4). 
Recently, Lowe et al. (5) produced more than 1,600 maize (inbred 
H99) events consistently yielding single copy events at transforma-
tion frequencies of 46% using only 2.5 ng cassettes DNA per shot. 
This chapter, therefore, describes a detailed procedure on the 
biolistic-mediated introduction of minimal transgene expression 
cassettes (MTECs) in maize and pearl millet. This approach enhances 
low copy number integration of transgenes, and minimising trans-
gene rearrangements and gene silencing (5–7). The removal of 
vector backbones, which have the tendency to promote transgene 
rearrangements, would minimise the influence of recombinogenic 
elements on the process of integration (6).

The structural gene (manA) from Escherichia coli has previously 
been used to successfully produce transgenic maize (8–10), cassava 
(11), sugarbeet (12, 13) and pearl millet (14). The manA gene is 
known to be superior to antibiotic or herbicide (pat or bar) selectable 
marker genes for plant transformation of maize, wheat and sugar beet 
(10, 12, 15). The method outlined in this chapter for both maize and 
pearl millet transformation, describes the use of the mannose selec-
tion system which involves the phosphomannose isomerase (PMI)-
expressing gene, manA, as the selectable marker gene and mannose, 
which is converted to mannose-6-phosphate by endogenous hexoki-
nase, as the selective agent (Positech marker, Syngenta). The positive 
mannose selectable marker gene technology is used to (1) limit the 
number of escapes, (2) improve the transformation efficiency and (3) 
eliminate the use of antibiotic or herbicide resistant genes as selectable 
marker genes in maize and pearl millet transformation.

A preliminary risk assessment done by Reed et al. (15) indicated 
that the PMI protein in transgenic maize was (1) readily digested in 
simulated mammalian gastric and intestinal fluids, (2) there was no 
detectable changes in glycoprotein profiles and (3) no statistically sig-
nificant differences were obtained in grain yield and nutritional com-
position compared to untransformed maize. Furthermore, the database 
search revealed no significant homology of the E. coli manA gene 
product to any known toxin or allergen (15).

A laboratory strain of maize, Hi-II, was obtained from the Maize 
Genetics Cooperation Stock Center and M37W from the 
Agricultural Research Council (ARC), South Africa, whereas 

2. Materials

2.1. Plant Material
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pearl millet seed, genotype 842B, was kindly provided by 
ICRISAT, Zimbabwe.

 1. Tissue culture media composition: MS, N6 and L3 are 
described in detail (Table 1).

 2. N610 callus induction medium contains N6 macro-, micronu-
trients and organic compounds, 20 g/L sucrose, 6 g/L aga-
rose (Sigma, A0169), 10 mg/L AgNO3, 2 mg/L 2,4-D, 
25 mM L-proline, 100 mg/L Casein hydrolysate, pH 5.8 
(see Note 1).

2.2. Tissue  
Culture Media  
and Components

Table 1 
Composition of MS, N6 and L3 based tissue culture media

Components (mg/L) MS N6 L3

Macro nutrients

KNO3 1,900 2,830 1,750
NH4NO3 1,650 200
MgSO4 · 7H2O 370 185 350
KH2PO4 170 400 200
CaCl2. · 2H2O 440 166 450
(NH4)2SO4 463

Micronutrients

H3BO3 6.2 1.6 1.25
MnSO4 · H2O 16.9 3.3 6.25
ZnSO4 · 7H2O 8.6 1.5 1.875
NaMoO4 · 2H2O 0.25 0.25 0.0625
CuSO4 · 5H2O 0.025 0.00625
CoCl2 · 6H2O 0.025 0.025 0.00625
KI 0.8 0.8 0.1875
FeSO4 · 7H2O 27.8 55.6 55.6
Na2EDTA · 2H2O 74.6 74.6 74.6

Organics

Thiamine-HCl 0.1 1 10
Pyridoxine-HCl 0.5 0.5 1
Nicotinic acid 0.5 0.5 1
myo-Inositol 100 100
Glycine 2 2
L-Glutamine 420
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 3. N6E callus induction medium contains N6 macro-, 
 micronutrients and organic compounds, 30 g/L sucrose, 
8 g/L agar, 0.85 mg/L AgNO3, 1.5 mg/L 2,4-D, 6 mM 
L-proline, pH 5.8 (see Note 1).

 4. Pearl millet induction medium (medium J, (18)) contains L3 
macro-, micronutrients and organic compounds, 30 g/L 
maltose, 4 g/L Gelrite, 2.5 mg/L 2,4-D, 20 mM L-proline, 
pH 5.8 (see Note 1).

 5. Key organic components such as L-proline, L-sorbitol, 
L-mannitol, thiamine-HCl, nicotinic acid, myo-inositol, gly-
cine, L-glutamine, agarose and Spermidine free base (S4139), 
preferably cell tissue culture tested, were all purchased from 
Sigma-Aldrich, Life Sciences.

 6. d-(+)-Mannose was purchased from Fluka, Laboratory chem-
icals and analytical reagents. Agar was purchased from biolab, 
MERCK.

 1. The Biolistic helium-driven PDS-1000/He Biorad was used 
for all experiments and operated according to the manufac-
turer’s recommendations.

 2. Gel extraction kits used were: QIAquick (QIAGEN) and 
Geneclean II kit (Q BIOgene).

Seed was germinated between layers of absorbent brown paper 
and cellulose wadding (Multa seed) before planting. Seed of both 
maize and pearl millet were planted in a soil mix consisting of red 
soil, rough sand and compost (1:1:1) and were watered daily with 
a soluble fertiliser (Hortichem N:P:K at 3:1:5; Ocean Chemicals) 
until flowering. Cobs were harvested 10–14 days post-pollination 
for excision of immature zygotic embryos (IZEs).

Greenhouse-grown cobs or florets of maize or pearl millet, were 
soaked in 70% (v/v) ethanol for 1 min and sterilised for 15 min 
in a 2.5% (v/v) sodium hypochlorite solution containing 0.1% 
(v/v) of the surfactant Tween 20 before being thoroughly rinsed 
with sterile distilled water. IZEs were aseptically excised from the 
florets using a dissecting microscope and placed with their axes in 
contact with the callus induction medium. All tissue culture pro-
cedures were performed under aseptic conditions.

Aseptically, holding the kernel with a curved ended watch-
maker’s forceps, the pericarp of pearl millet was gently sliced at the 
embryo end with a blade. The kernel was gently squeezed with 

2.3. Apparatus  
and Kits

3. Methods

3.1. Donor Plants  
and Explant Source

3.2. Sterilisation  
of Kernels and Embryo 
Isolation
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the forceps and the embryo lifted out with the tip of the blade. 
Isolation of embryos from maize cobs was done by  wearing gloves 
thoroughly sprayed by 70% (v/v) ethanol, holding the cob in one 
hand. The tip of the kernels on the silk scar end was shaved off 
from top to bottom (approximately 1–2 mm depth), the scalpel 
blade inserted on the outer adaxial side of the kernel and gently 
pressed down to squeeze out the endosperm. The embryo was 
then gently removed from the adaxial side of the kernel just below 
the pericarp (see Note 2).

The embryos (strictly 0.8–1.1 mm in length) were cultured 
on solid callus initiation medium for 3–7 days prior to bombard-
ment (M37W and 842B) or 1–2 months to produce embryo-
derived embryogenic callus (Hi-II maize; see Note 3).

Proliferating IZEs (M37W and 842B) or embryo derived 
embryogenic callus (Hi-II) were used as target tissue for bom-
bardment using a Biolistic helium-driven PDS-1000/He 
Biorad device.

MTECs (16) were isolated with the appropriate restriction 
enzymes, whereafter the fragments of interest were gel purified 
with a QIAquick (QIAGEN) gel extraction kit or Geneclean II 
kit (Q BIOgene) under sterile conditions. A single purification is 
sufficient if the fragments are separated efficiently (far apart on 
the gel) before excision and purification.

On the day of bombardment, the most responsive pre-
cultured embryos which proliferates in the scutellum area 
(M37W and 842B) or embryogenic callus (Hi-II maize) are 
placed in the centre (0–2 cm diameter) of a 9 cm Petri dish of 
callus induction medium (see Subheading 3.7.2) supple-
mented with osmoticum (0.2 M l-sorbitol and 0.2 M l-man-
nitol) as described (17).

Proliferating IZEs or embryogenic callus were co-bombarded 
with the selectable marker gene and gene(s) of interest at a ratio 
(molar) of 1:2 respectively. After 3–4 h on osmoticum pretreat-
ment, particle bombardment proceeds at a helium pressure of 
900–1,100 psi (M37W and 842B) or 450–650 psi (Hi-II callus). 
The bombarded embryos or embryogenic tissue are then spread 
on the same plate and left for an additional 16 h post bombard-
ment treatment on osmoticum medium in the dark.

Subsequently, bombarded embryos or embryogenic tissue 
are cultured for 4–6 days on osmoticum-free medium for recov-
ery before they are transferred to mannose-containing selection 
medium (10 g/L mannose is the osmotic equivalent of 20 g/L 
sucrose).

Cells containing and expressing the manA transgene, PMI, 
were selected for by using various concentrations of mannose 
in combination with maltose or sucrose as described in 
Subheading 3.7.2 below.

3.3. Preparation  
of Minimal Transgene 
Expression Cassettes 
and Particle 
Bombardment
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The bombardment method is described in detail by the manufac-
turer (Biorad), briefly:

 1. Thirty milligram of 0.6 mm gold particles were sterilised by 
adding 1 mL of 70% ethanol (v/v) and vortexed vigorously 
for 3–5 min. The particles were allowed to soak in 70% etha-
nol for 15 min before pelleting by centrifugation for 2 s at 
6,000 rpm. The supernatant was discarded.

 2. The following wash steps were repeated thrice:
(a) Add 1 mL of sterile H2O.
(b) Vortex vigorously for 1 min.
(c) Allow the particles to settle for 1 min.
(d) Pellet by spinning for 5 s at 11,000 rpm.
(e) Remove and discard the supernatant.

 3. Five hundred microlitres of sterile 50% glycerol was added to 
bring the microparticle concentration to 30 mg 500/mL 
(assuming no loss of gold particles). The mix was vortexed 
vigorously and immediately aliquoted as 50 mL (3 mg gold) 
volumes in 1.5 mL microcentrifuge tubes and stored at 4°C 
(see Note 4).

 1. The microcarriers prepared in 50% glycerol were vortexed 
vigorously for 5 min (50 mL containing 3 mg gold) to resus-
pend and disrupt agglomerated particles. In addition, con-
tinuous agitation of the microcarriers is needed for uniform 
DNA precipitation onto microcarriers. The following was 
added while vortexing:
5 mL DNA (50–160 ng per shot)
50 mL 2.5 M CaCl2 (see Note 5)
20 mL 0.1 M spermidine (see Note 6)

 2. The mixture was continuously finger tapped for 2–3 min. The 
microcarriers were allowed to settle for 1 min and then pel-
leted by centrifugation for 2 s in a microcentrifuge (6,000 rpm). 
The supernatant was discarded. A 140 mL of 70% ethanol 
(HPLC or spectrophotometric grade) was added and then 
briefly tapping the tube with a finger to resuspend the parti-
cles. The coated microcarriers were centrifuged as described 
above and the supernatant discarded. The coated microcarriers 
were then washed with 140 mL absolute ethanol, centrifuged 
as before and the supernatant discarded. Enough absolute 
ethanol was added to the pellets to provide 12–20 mL per 
sterile disposable macrocarrier. The pellets were gently resus-
pended by tapping the side of the tube several times, and then 
pipetted onto sterile disposable macrocarriers (6 macrocarriers; 
50–160 ng/shot; 1:2 ratio of MTECs of selectable marker 
gene and gene(s) of interest).

3.4. Microcarriers 
Sterilisation

3.5. Coating Washed 
Microcarriers with 
DNA
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 1. A distance of 7.5 cm (2nd slot) between the macrocarriers 
and the target tissue was used for all bombardments.  
The helium supply exceeded 200 psi beyond the indicated 
pressure of the rapture disk. The helium pressure used was 
450–650 psi (Hi-II maize) or 900–1,100 psi for elite maize 
and pearl millet.

 2. The following components were pre-sterilised in a vertical 
Systec 95 autoclave at 121°C for 20 min: rupture disk retaining 
cap, microcarrier launch assembly and macrocarrier holders. 
The rupture disks were sterilised by dipping (no more than 
5 s) in 70% isopropanol as extensive exposure to isopropanol 
will lead to delamination.

 3. After spraying the chamber with 70% ethanol, sterile rupture 
disks were loaded into the sterile retaining cap. The macro-
carrier launch assembly and target cells were placed in the 
chamber, the Petri dish lid removed and the door closed.

 4. The chamber was evacuated by holding the vacuum at desired 
level (24–25 in. of Hg). The fire button was continuously 
depressed until rupture disk bursts, then released so that the 
helium pressure gauge drops to zero.

 5. The vacuum from the chamber was released immediately after 
the rupture disk busted, the target cells were removed and 
covered with the Petri dish lid. Disposable macrocarriers, 
spent rupture disks and stopping screens were all discarded.

 1. The bombarded callus or embryos were spread evenly on the 
same Petri dish and transferred after approximately 16–18 h 
(after recovery from bombardment shock) onto callus induc-
tion medium omitting the osmoticum.

 2. After 2–7 days (preferably 7 days for M37W) culturing on 
callus induction medium, the proliferating embryos or callus 
are transferred to callus induction medium supplemented 
with mannose as selection agent:
M37W: N610 medium supplemented with 4 g/L sucrose and 
8 g/L mannose for a period of 3–4 weeks (see Note 7).
Hi-II maize: N6E medium supplemented with 6 g/L sucrose 
and 12 g/L mannose for a period of 2–4 weeks followed by 
medium supplemented with 4 g/L sucrose and 13 g/L man-
nose for an additional 2–4 weeks with 2 weekly subcultures.
Pearl millet: Callus induction medium with 2 g/L maltose 
and 15 g/L mannose.

 3. A maturation step followed on the callus induction medium 
omitting the osmoprotectant L-proline (for more detail of 
function see (18, 19)) and 2,4-D (see Note 8), whilst  doubling 
the carbohydrate source, for a period of 9–14 days  
(see Subheading 3.8).

3.6. Bombardment 
Procedure

3.7. Post 
Bombardment  
and Selection  
of Putative  
Transgenic Events
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 4. Plants were transferred to regeneration media as described 
below (see Subheading 3.8). Regenerating putative transgenic 
plants were subcultured at 2–3 weeks intervals until they 
reached 8–10 cm in height and subsequently hardening off.

 5. The total period in tissue culture, from the excision of IZEs 
until the time that plantlets were hardened off to the green-
house, was:
M37W: Callus selection medium (3–4 weeks), maturation 
(7–9 days) and regeneration (2 weeks) followed by ½ MS (2 
weeks) without mannose at the appearance of a 1 cm shoot in 
order to develop a strong root system with well developed 
root hairs (see Note 9).
Hi-II: Callus selection medium (4–8 weeks), maturation 
(12–14 days) and regeneration (1–2 months).
Pearl millet: Callus selection medium (4–6 weeks), matura-
tion (12–14 days) and regeneration (1–3 months).

The composition of the tissue culture media are described in 
Table 1.

Callus induction media described below have been previously 
described (18–20). The media were designated N610 for elite line 
(M37W) and N6E for the laboratory strain of maize (Hi-II).

Excised IZEs were cultured on N6 based medium containing 
2 mg/L 2,4-D, 25 mM l-proline, 10 mg/L AgNO3, 20 g/L 
sucrose and 6 g/L agarose; this medium was designated N610. 
The pH of the medium was adjusted to 5.8 before autoclaving. 
Cultures were incubated at 25°C in the dark for 4–7 days before 
transfer to N610 mannose selection medium containing 4 g/L 
sucrose and 8 g/L mannose for a period of 3–4 weeks. Proliferating 
IZE cultures were subcultured every 7–14 days to fresh media. 
After 3 weeks, callus induced was subsequently cultured on matu-
ration medium, containing MS salts and B5 vitamins (10 mg/L 
Thiamine HCl, 1 mg/L of each Pyridoxine HCl and Nicotinic 
acid, and 100 mg/L myo-inositol), 8 g/L sucrose, 16 g/L man-
nose and 6 g/L agarose. Regeneration medium contained MS 
salts and B5 vitamins, 20 g/L sucrose and 6 g/L, 4 g/L Bacto 
agar and 2 g/L Gelrite. Regeneration took place in the light  
(see Note 10).

The culture media and procedure without mannose as selection 
agent was previously described (20–22). IZEs were excised and 
cultured embryo-axis side down (scutellum side up) on N6E 
media (N6 salts and vitamins (23), 2 mg/L 2,4-D, 100 mg/L 
myo-inositol, 2.76 g/L L-Proline, 30 g/L sucrose, 100 mg/L 
casein hydrolysate, 2.5 g/L Gelrite, pH 5.8 as previously described (24). 
Silver nitrate (25 mM) was added after autoclaving. The plates 

3.8. Culture Media 
Details

3.8.1. Maize

3.8.1.1. Elite Maize Line, 
M37W, Media Regime

3.8.1.2. Hi-II, Media 
Regime
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were wrapped with vent tape and incubated at 26 ± 2°C in the 
dark for 2–4 weeks.

Friable Type II callus was bulked up from a few separate embryo 
explants (20–30) over 8 weeks by subculturing every 2 weeks on the 
same medium. The callus was subsequently used for biolistic-
mediated transformation. After 4 days culturing on N6E medium 
without osmoticum, callus was transferred to N6E medium supple-
mented with 6 g/L sucrose and 12 g/L mannose for a period of 2–4 
weeks followed by 4 g/L sucrose and 13 g/L mannose for an addi-
tional 2–4 weeks with 2 weekly subcultures. Callus was then sub-
jected to maturation conditions by transferring about 12 small pieces 
(approximately 4 mm) of embryo-enriched embryogenic callus to 
Regeneration Medium I (MS salts and vitamins; (25)), 100 mg/L 
myo-inositol, 8 g/L sucrose and 26 g/L mannose, 3 g/L Gelrite, 
pH 5.8) and incubating for 12–14 days at 25 ± 2°C in the dark. After 
2 weeks, matured somatic embryos were identified using a light 
microscope, and transferred to Regeneration Medium II (as for 
Regeneration Medium I but with 6 g/L sucrose and 12 g/L man-
nose), and placed in the light (70–80 mmol/m2/s) for germination. 
Plantlets sprouted leaves and roots on this medium (see Note 11).

Callus induction medium, was previously described (26) and con-
tains L3 salts and vitamins as described (27), 2.5 mg/L 2,4-D, 
maltose as a carbon source and mannose as selection agent, 4 g/L 
Gelrite as solidifier and modified by supplementing the medium 
with 20 mM L-proline (18). Maturation and regeneration 
medium were identical to callus induction medium apart from 
the omission of L-proline and 2,4-D.

Furthermore, cultures initiated were matured on medium 
containing double the amount of carbohydrates (4 g/L maltose 
and 30 g/L mannose) for a period of 2 weeks, followed by regen-
eration medium with 2 g/L maltose and 15 g/L mannose as 
described above. Cultures on callus induction and maturation 
media were incubated at 25 ± 2°C under low-light conditions 
(1.8 mmol/m2/s), whereas regenerating shoots (≥1 cm) were 
incubated under full light (80 mmol/m2/s).

The micro and macro elements were prepared as independent 
stock solutions; and components FeSO4.7H2O and Na2EDTA.2H2O 
were combined in a third stock solution. The organic components 
were prepared as individual stock solutions and added after auto-
claving. Media composition as previously described (18–21, 23, 
25, 26). Abbreviation: EDTA, ethylenediamine tetra-acetic acid.

Maize M37W plantlets 8–10 cm in height were hardened-off by 
placing the plantlets with well developed roots directly into small 
pots (15 cm diameter × 12 cm height) containing sterilised moist 
fertile soil and placed in a growth room with controlled humidity. 
The plants were covered with perforated margarine plastic tubs 
(12.5 cm diameter, 7.0 cm high) (see Note 12).

3.8.2. Pearl Millet

3.9. Regenerated 
Plantlets Were 
Hardened-Off as 
Follows
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Pearl millet and maize Hi-II plantlets 8–10 cm in height were 
hardened-off by placing the plantlets in a mix of perlite and ver-
miculite (1:1) and watering it daily with Hoagland’s solution in a 
growth rooms (70% humidity at 26 ± 2°C). The plantlets were 
covered with a plastic autoclave bag, sprayed with water in the 
inside and kept covered for the first 3–5 days to maintain humidity. 
The plastic bag was gradually opened and eventually removed. 
Hardened-off plantlets were fertilised with N:P:K 3:2:1 every  
6 weeks.

Transgenic plants and their progeny were self-pollinated or 
cross-pollinated with plants originating from the same transfor-
mation event or pollinated with non-transgenic donor genotypes. 
Pearl millet was flowering in growth rooms (containment level 3) 
whereas maize was grown in a greenhouse facility (containment 
level 2).

Progeny of transgenic plants expressing the positive selectable 
marker transgene phosphomannose isomerase were identified on 
half-strength MS medium containing half-strength MS salts, 
8 g/L agar and the mannose, sucrose or maltose combination as 
used in regeneration medium of the different cereal crops.

Protocols describing the molecular downstream analysis con-
firming stable integration and expression of the transgenes, fall 
outside the scope of this chapter.

 1. L-Proline and organic compounds are filter sterilised and 
added after autoclaving.

 2. Take care to excise without damaging the embryos; scalpel 
blade poked or half cut embryos will not proliferate.

 3. Immature embryo derived embryogenic tissue was prepared 
by excision and culturing of immature embryos on N6E 
medium for a period of 4–6 weeks. The highly embryogenic 
tissue was used for bombardment within 2–5 months after 
embryo excision to ensure regeneration of fertile transgenic 
plants.

 4. Gold microparticles can be stored at room temperature for 
up to 2 weeks or for 1 month at 4°C.

 5. 2.5 M CaCl2 was stored at 350 mL aliquots and used only for 
one bombardment experiment to avoid contamination.

 6. Spermidine free base was stored as 1 M stock solution at 
−20°C. Dilute to 0.1 M just before use.

 7. Regeneration of transgenic callus was more efficient when 
transfer was done during the softer stages of the callus  

3.10. Germination  
of Transgenic Progeny

4. Notes
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(3 weeks); longer culturing on selection may result in forma-
tion of hard white callus which fails to regenerate.

 8. 2,4-D is the only hormone used in callus induction medium 
for both maize and pearl millet and is a synthetic and highly 
active auxin responsible for cell elongation, swelling of tissue 
and cell division leading to callus formation.

 9. Plants that have developed in vitro have a poorly developed 
cuticle layer due to the relatively high humidity in vitro and 
poorly developed roots with few or no root hairs. These roots 
are vulnerable and may lead to difficulties in plant growth 
in vivo especially in less humid environment. Well developed 
root hairs help in more water absorption assisting the thin 
cuticle layered in vitro plant not to dry out and die (28).

 10. Cultures on callus induction and maturation media were 
incubated at 25 ± 2°C in the dark, whereas callus for regen-
eration was incubated under a 16 h photoperiod with light 
being supplied by fluorescent tubes at an intensity of 
70–80 mmol/m2/s.

 11. M37W plantlets of 1 cm in height were transferred to selec-
tion free ½ MS medium to obtain fertile transgenic events 
(30%), even though 70% proved to be escapees. In order to 
avoid escapees, the selection pressure can be adjusted to 
5 g/L mannose and 25 g/L sucrose (8).

 12. Perforated plastic tubs were used to keep the relative high 
in vitro humidity with the goal of acclimatising the plantlets 
in vivo. Acclimatised plantlets were later transferred to a 
greenhouse (N. Dube et al., manuscript in preparation).
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Chapter 24

Agrobacterium tumefaciens-Mediated Genetic 
Transformation of Cereals Using Immature Embryos

Ashok K. Shrawat and Allen G. Good 

Abstract

A critical step in the development of a robust Agrobacterium tumefaciens-mediated transformation  system 
for cereal crop plants is the establishment of optimal conditions for efficient T-DNA delivery into target 
tissue, from which plants can be regenerated. Although, Agrobacterium-mediated transformation of 
cereals is an important method that has been widely used by many laboratories around the world, routine 
protocols have been established only in specific cultivars within a species and with specific tissues of high 
regeneration potential. Cocultivation of highly embryogenic callus tissue or healthy immature embryos 
with A. tumefaciens is considered one of the critical factors in successful genetic transformation of crop 
plants. Immature embryos collected only from vigorously growing healthy and green plants grown in the 
field or in the well-conditioned greenhouse are the ideal target for genetic transformation of recalcitrant 
crop species. Here, we describe an Agrobacterium-mediated transformation method that uses immature 
embryos as the starting material for inoculation with Agrobacterium. The aim of this chapter is to provide 
the key steps/components involved in Agrobacterium-mediated transformation of cereal crops. However, 
these steps or components often vary between protocols and from laboratory to laboratory, and can be 
optimized or modified based on the requirement of a specific cultivar or species.

Key words: Agrobacterium, Cereals, Immature embryos, Transgenic plants

The development of an efficient method for genetic transformation 
is a prerequisite for the application of transgenic approaches to the 
improvement of a given crop species. Cereals are an important 
source of calories and therefore, cereal crops have been primary 
targets for improvement by genetic transformation. Although 
microprojectile bombardment has revolutionized the field of 
genetic transformation of cereals, there is considerable variation 

1.  Introduction

Trevor A. Thorpe and Edward C. Yeung (eds.), Plant Embryo Culture: Methods and Protocols,  
Methods in Molecular Biology, vol. 710, DOI 10.1007/978-1-61737-988-8_24,  
© Springer Science+Business Media, LLC 2011
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seen in the stability, integration, and expression of the intro-
duced transgene (1). In comparison, Agrobacterium-mediated 
 transformation is considered the method of choice for the genetic 
modification of many plant species because it allows efficient inser-
tion of stable, unrearranged, and single-copy sequences into the 
plant genome (2, 3). In general, Agrobacterium tumefaciens is first 
transformed with the DNA construct of interest (T-DNA) and 
then this modified bacterial strain is used to introduce the T-DNA 
into plants. For the last two decades, dicotyledonous plants have 
been transformed using the soil phytopathogen A. tumefaciens. 
Initially, it was not clear if this technology could be extended to 
monocotyledonous plants, as they are not natural hosts of 
Agrobacterium. However, in 1994, a highly efficient method 
of Agrobacterium-mediated transformation of Japonica rice was 
reported (4). Since 1994, Agrobacterium-mediated transformation 
has emerged as a method of choice for transferring genes of interest 
not only into rice, but also into the other major cereals including 
maize, barley, wheat, sorghum, and sugarcane (5, 6). Key factors in 
these achievements include the optimization of the type of plant 
material for infection with Agrobacterium, the choice of vectors, 
the choice of A. tumefaciens strains, and optimization of tissue cul-
ture techniques. For the successful production of transgenic plants 
in any species, foreign genes must be delivered into cells that are 
actively dividing and are capable of regenerating plants. The majority 
of researchers world-wide have used immature embryos as the 
primary target tissue for the delivery of foreign genes. Thus, 
the primary determinants of a successful transformation are the 
response of immature embryos in tissue culture, the types of cells 
that grow from immature embryos, and subsequent characteristics 
in growth and regeneration.

The advantages of using immature embryos are especially evi-
dent when transforming elite cereal cultivars, which are often 
quite recalcitrant to tissue culture and transformation. It is impor-
tant to emphasize that successful transformation using immature 
embryos depends on the quality of the embryos. In cereal tissue 
culture, it is well established that somatic embryogenesis and 
transformation frequency are influenced by the age of the explant 
and that younger embryos produce comparatively more somatic 
embryos and consequently more transgenic plants than older 
explants (7–9). Scutellum size has also been shown to influence 
culture response and subsequently transformation frequency in 
cereals. In wheat, in comparison to scutella smaller than 0.5 mm 
or larger than 1.5 mm, Rasco-Gaunt et al. (10) obtained highest 
embryogenesis and shoot regeneration from scutella ranging 
from 0.75 to 1.0 mm in size. Unfortunately, the response from 
immature embryos are very genotype specific and many agro-
nomically important genotypes of major cereals, especially 
so-called elite varieties are poor in tissue culture response, and 
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thus only a limited number of genotypes have been efficiently 
transformed so far (6).

Following the success of rice, Ishida et al. (11) reported stable 
transformation of maize cultivar A188 and its hybrids after cocul-
tivation of freshly isolated immature embryos with Agrobacterium 
harboring a super-binary vector similar to that developed by Hiei 
et al. (4). The developed system resulted in transgenic maize plants 
with transformation frequencies ranging from 5 to 30%. To extend 
the range of maize genotypes susceptible to Agrobacterium, Zhao 
et al. (12) developed an efficient system for Agrobacterium-
mediated transformation of maize Hi-II. By optimizing inocula-
tion and cocultivation conditions, they produced transgenic maize 
plants with a transformation frequency of 7.1%.

A major breakthrough in the Agrobacterium-mediated trans-
formation of cereals was reported by Tingay et al. (13), when 
they used a non-super-virulent strain of Agrobacterium carrying a 
binary vector and produced transgenic barley plants with 4.2% 
transformation frequency. The major factors which influenced the 
generation of transgenic barley plants included the wounding of 
immature embryos and the removal of the axis of immature 
embryos. Using the same or similar strategy, many other 
laboratories have successfully produced transgenic barley with 
Agrobacterium (6). In order to increase the transformation fre-
quency in barley, Matthews et al. (14) transformed the barley cul-
tivar Golden Promise following the same strategy as described by 
Tingay et al. (13), except that immature embryos were infected 
with Agrobacterium on the same day of isolation without prior 
wounding by biolistic gold particles, and the transformed tissues 
were selected on hygromycin rather than bialaphos. Their method 
produced transgenic barley plants with average frequencies of 
2–12%. Apart from immature embryos, Kumlehn et al. (15) have 
recently demonstrated that androgenetic pollen cultures can also 
be used as an effective target tissue for Agrobacterium-mediated 
transformation of barley. By optimizing a number of factors, such 
as the pollen preculture time, choice of Agrobacterium strain and 
vector system, Agrobacterium population density, medium pH 
and the concentration of acetosyringone, CaCl2 and glutamine, 
these authors produced 2.2 fertile transgenic plants per spike. 
Recently, Shrawat et al. (9) studied a number of factors and found 
that preculture of immature embryos, cocultivation, presence of 
acetosyringone and sonication, and vacuum filtration assisted 
inoculation of 1-day precultured immature embryos produced 
significant difference in T-DNA delivery. By optimizing these fac-
tors for T-DNA delivery, they produced transgenic barley plants 
with transformation efficiencies ranging from 2.6 to 6.7%.

Following the success of Agrobacterium-mediated genetic trans-
formation of rice, maize, and barley, Cheng et al. (16) produced 
stable transgenic wheat plants within 3 months by cocultivating 
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freshly isolated immature embryos, precultured immature embryos, 
and embryogenic calli with Agrobacterium. In addition to acetosy-
ringone, the presence of a surfactant during inoculation of the tissue 
with Agrobacterium was found to be an important factor for the 
efficient delivery of T-DNA into wheat. Later, Cheng et al. (17) fur-
ther exploited the fact that an explant such as an immature embryo 
with active cell division can enhance T-DNA delivery in order to 
increase the recovery of stable transgenic plants in wheat (16, 18, 19). 
Following desiccation of plant tissues after Agrobacterium infection 
and the use of paromomycin and glyphosate selection, they pro-
duced stable transgenic wheat plants with frequencies ranging from 
4.8 to 19%.

In comparison to rice, maize, wheat, and barley, sorghum is 
considered the most difficult plant species to manipulate through 
tissue culture and transformation. For the first time, Zhao et al. (20) 
attempted to transform sorghum and successfully produced trans-
genic sorghum plants with an average transformation frequency of 
2.1% after cocultivation of immature embryos with Agrobacterium 
carrying a super-binary vector. It was found that the source of the 
immature embryos had a very significant impact on the transforma-
tion efficiency, with field-grown embryos producing a higher trans-
formation frequency than greenhouse grown embryos. Using the 
Agrobacterium-mediated transformation protocol, Gao et al. (21) 
produced stable transgenic sorghum plants in two inbreds (Tx 430 
and C401) and one commercial hybrid (Pioneer 8505) with an 
average transformation frequency of 2.5% within 4–5 months.

The natural ability of Agrobacterium to deliver a discrete seg-
ment of DNA into the recipient genome has been exploited in 
Agrobacterium-mediated transformation of cereals (6, 22, 23). 
Several factors influencing Agrobacterium-mediated transforma-
tion of cereals have been investigated and discussed (6, 23). These 
factors include the screening of the most responsive genotype and 
explant, the Agrobacterium strain, the binary vector, the selectable 
marker gene and promoter, inoculation and coculture conditions, 
and the tissue culture and regeneration medium. Despite success-
ful reports of Agrobacterium-mediated transformation of crop 
plants, there are still serious handicaps with Agrobacterium-
mediated transformation of elite cultivars of major cereal crops. 
Agrobacterium-mediated transformation is limited to certain tissues 
and cultivars (6, 23). A major problem during Agrobacterium-
mediated transformation of immature embryos is the development 
of a necrotic response in immature embryos after cocultivation. 
Immature embryos have been found to be very sensitive to 
Agrobacterium infection and embryo death after cocultivation is 
considered a limiting step to develop or improve transformation 
efficiency in cereals (6). Therefore, in order to achieve sufficient 
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number of T-DNA transfer events to occur in the target tissue 
while maintaining the regenerability of recipient plant cells, a fine 
balance between the factors affecting the transformation frequency 
is required. Such a balance may help not only to develop methods 
to enhance the transformation frequency of economically  important 
plant species, but also to extend the range of Agrobacterium-
mediated transformation to elite cultivars. In addition, further 
refinement or optimization of parameters that are considered to 
be crucial for cereal transformation, such as the screening of highly 
regenerative tissue, the genotype and the development of an effi-
cient plant tissue culture, and the regeneration system, should 
broaden the scope for the genetic transformation of economically 
important crop plants.

Immature embryos: quality of immature embryos is one of the 
key factors for Agrobacterium-mediated transformation of cereals 
(see Note 1).

A number of Agrobacterium strains such as LBA4404 (24), 
EHA101 (25), EHA105 (26), AGL1 (27), or A281 (25) harboring 
the gene of interest and an appropriate selectable marker gene 
such as hygromycin resistance gene (hpt) for plant selection in a 
binary vector have successfully been used for cereal transforma-
tion. The neomycin phosphotransferase (nptII) gene, which con-
fers plants resistant to Geneticin (G418) and paromomycin, has 
also been used in genetic transformation of cereals. Recently, pos-
itive selection marker, such as the phosphomannose-isomerase 
(pmi) gene, has been reported to be an efficient selective marker 
for rice and maize transformation. In this system, selection is 
carried out on media that contain mannose as the main carbon 
source (28). If paromomycin is used as a selective agent, Gelrite 
should be replaced with agar or agarose because paromomycin is 
insoluble in media containing Gelrite. If the phosphoinothricin 
acetyl transferase (bar) gene is employed as a selectable marker, 
glutamine must be removed from the selection media because it 
may neutralize the mode of action of the selective agent phos-
phoinothricin, which is a potent inhibitor of glutamine synthetase. 
Choice of promoter to drive gene of interest and marker gene 
vary from laboratory to laboratory and according to the need of 
the project. In cereal transformation, 35S cauliflower mosaic virus 
(CaMV) and Ubiquitin-1 promoter from maize have commonly 
been used to drive the expression of a selectable marker gene.

2.  Materials

2.1.  Target Tissue

2.2. Agrobacterium 
tumefaciens Strain(s)
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 1. Sterilized distilled water.
 2. 70% (vol/vol) ethanol in distilled water – (see Sub-

heading 2.5).
 3. 50% Bleach in distilled water – (see Subheading 2.5).
 4. 2,4-Dichlorophenoxy acetic acid (2,4-D) – (see Sub-

heading 2.5).
 5. 6-Benzylaminopurine acid (6BA) – (see Subheading 2.5).
 6. Indole-3-butyric acid (IBA) – (see Subheading 2.5).
 7. Acetosyringone – (see Subheading 2.5).
 8. Hygromycin B solution – (see Subheading 2.5).
 9. 100 mM 5-bromo-4-chloro-3-indoxyl-b-d-glucuronic acid 

cyclohexylammonium salt (X-gluc) – (see Subheading 2.5).
 10. Cefotaxime – (see Subheading 2.5).
 11. Timintin – (see Subheading 2.5).
 12. YEP plates – (see Subheading 2.5).
 13. AB medium – (see Subheading 2.5).
 14. Gelrite or phytagel.
 15. Tissue culture and transformation media – (see Sub heading 

2.5).
 16. Infection medium – (see Subheading 2.5).
 17. Coculture medium – (see Subheading 2.5).
 18. Selection medium – (see Subheading 2.5).
 19. Preregeneration medium – (see Subheading 2.5).
 20. Regeneration medium – (see Subheading 2.5).
 21. Rooting medium – (see Subheading 2.5).

 1. Stereomicroscope for isolation of immature embryos.
 2. Laminar flow hood with Bunsen burner to carry out transfor-

mation and tissue culture steps.
 3. Autoclave for sterilization of tissue culture and transforma-

tion media.
 4. Incubator for Agrobacterium preculture and coculture steps.
 5. Controlled tissue culture room for regenerating transgenic 

plants under light/dark conditions.
 6. Greenhouse for growing transgenic plants in soil.
 7. Tabletop shaker.
 8. Balance.
 9. pH meter.
 10. Fridge (4°C) and freezer (−20 and −80°C).
 11. Scalpel blade: sterilization is required.

2.3.  Reagents

2.4.  Equipment
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 12. Forceps/fine forceps: sterilization is required.
 13. Micropore surgical tape.
 14. Parafilm.
 15. Pipetting aid (1–50 mL).
 16. Micropipettes and micropipette tips.
 17. Microfuge tubes.
 18. Glassware: sterilization is required.
 19. Sterile plastic deep Petri plates (100 × 20 mm).
 20. Syringe filter.
 21. 0.22 mm filter membrane for sterilizing stock solution of 

hormones.
 22. Magenta jars: sterilization is required.
 23. Majenta stirring bar.

 1. 2,4-D (1 mg/mL stock solution of 2,4-D): add 1 N NaOH 
or 70% ethanol dropwise to 2,4-D powder until completely 
dissolved. Make up final volume by adding distilled water, 
filter sterilize, and store the stock solution at 4°C. Caution – 
2,4-D is toxic and therefore, extreme caution is required 
whether preparing stock solution or using in tissue culture 
medium. The use of a fume hood is recommended while 
weighing and making stock solution of 2,4-D.

 2. 6-Benzylaminopurine (BAP; 1 mg/mL stock solution of 
BAP): add 1 N NaOH dropwise to the powder of BAP until 
completely dissolved. Make up final volume by adding distilled 
water, filter sterilize, and store the stock solution at 4°C.

 3. IBA (1 mg/mL stock solution of IBA): add 1 N NaOH or 
70% ethanol dropwise to the powder of IBA until completely 
dissolved. Make up final volume by adding distilled water, 
filter sterilize, and store the stock solution at 4°C.

 4. Acetosyringone (3¢,5¢-dimethoxy-4¢-hydroxyacetophenone): 
dissolve acetosyringone (SIGMA Product number D134406) 
powder in 100% dimethyl sulfoxide (DMSO) and sterilize 
through filtration. Powder should be stored in a tightly closed 
container and wrapped with aluminum foil.

 5. Hygromycin B solution: dissolve 50 mg hygromycin B powder 
in 50 mL distilled water (stock solution), filter sterilize, and store 
at 4°C. For selection of transformed cells, 50 mg/L hygromycin 
is used in the selection medium. CAUTION – hygromycin is 
highly toxic and therefore, extreme precaution is needed while 
preparing hygromycin B solution. Wear protective clothing and 
gloves to prevent contact with skin and eyes. Alternatively, 
purchase hygromycin B solution (50 mg/mL) from Sigma 
(Product number-H0654).

2.5.  Reagent Setup
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 6. 100 mM X-gluc: dissolve 52 mg X-gluc in 1 mL of ethylene 
glycol monomethyl ether. Store the solution in the dark at 
−20°C. X-gluc powder is also stored in tightly closed 
container and desiccated at −20°C. CAUTION – X-gluc is 
harmful if swallowed, inhaled, or absorbed through skin. 
CAUTION – ethylene glycol monomethyl ether is very toxic. 
Wear gloves and eye/face protection.

 7. Cefotaxime (200 mg/mL stock solution): dissolve cefotaxime 
powder in distilled water, filter sterilize, and store the stock 
solution at −20°C in 1 mL aliquots. CAUTION – powder is 
irritating to eyes, respiratory system, and skin. Do not breathe 
dust and wear suitable protective clothing and gloves.

 8. Timintin (100 mg/mL stock solution): dissolve timintin 
powder (Ticarcillin/Clavulanic, 15:1) in distilled water, filter 
sterilize, and store at −20°C in 1 mL aliquots.

 9. YEP medium (for A. tumefaciens culture): dissolve 5 g yeast 
extract, 10 g peptone, and 5 g sodium chloride in 900 mL of 
distilled water and adjust pH to 7 with NaOH. After adjusting 
the final volume to 1,000 mL, add 15 g bacto agar and auto-
clave at 121°C for 20 min for solidifying the YEP medium. 
Cool the medium to ~50°C, add appropriate antibiotics, and 
pour 20 mL medium into Petri plates (100 × 20 mm). Use of 
antibiotics in the medium depends on the type Agrobacterium 
strain and type of plasmid.

 10. AB medium (for A. tumefaciens culture): dissolve 5 g glucose 
and 15 g agar in 800 mL distilled water and adjust the vol-
ume to 900 mL with distilled water before autoclaving at 
120°C for 20 min. After autoclaving, allow medium to cool 
down ~50°C and then add 50 mL of 20× AB buffer, 50 mL 
of 20× AB salts, and appropriate antibiotics. Mix buffers and 
antibiotics well before pouring into sterile Petri plates. Use of 
antibiotics in the medium depends on the type and 
Agrobacterium strain and type of plasmid.

 11. 20× AB buffer: dissolve 60 g dipotassium hydrogenphosphate 
and 20 g sodium dihydrogenphosphate dehydrate in 800 mL 
distilled water. Adjust the final volume to 1,000 mL with dis-
tilled water after adjusting the pH to 7.0. Store the buffer at 
room temperature after autoclaving at 121°C for 20 min.

 12. 20× AB salts: dissolve 20 g ammonium chloride, 6 g magne-
sium sulfate heptahydrate, 3 g potassium chloride, 240 mg cal-
cium chloride dehydrate, and 50 mg iron (II) sulfate heptahydrate 
in 800 mL distilled water. Adjust the final volume to 1,000 mL, 
autoclave, and store the solution at room temperature.

 13. Tissue culture and transformation media: medium for tissue 
culture and Agrobacterium-mediated transformation vary 
from genotype to genotype, species to species, and laboratory 
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to laboratory. An example of media used for Agrobacterium-
mediated transformation of immature embryos of barley is 
given in Table 1. Optimization of plant tissue culture and 
transformation media is required if trying to establish 
Agrobacterium-mediated transformation protocol for an elite 
cultivar.

 14. Infection medium (liquid coculture medium): infection 
medium varies from genotype to genotype, species to species, 
and laboratory to laboratory. Typically, infection medium 

Table 1 
An example of the media we have used for Agrobacterium-mediated  
transformation of immature embryos of barley

Medium Composition of the medium

Callus induction medium PL medium (34) + 187.5 mg/L l-glutamine + 37.5 mg/L  
l- proline + 25 mg/L L-asparagine + 2.0 mg/L 2,4-D + 30 g/L 
maltose, pH 5.8, 0.3% Gelrite. Note: Filter sterilize the medium 
before adding the Gelrite

Liquid coculture medium 
(infection medium)

Callus induction medium without maltose + 0.25 M glucose + 100 mM 
acetosyringone + 1.0 mg/L 2,4-D, pH 5.2. Note: Filter sterilize

Solid coculture medium  
(cocultivation medium)

Liquid coculture medium + 0.25 M glucose + 100 mM  
acetosyringone + 400 mg/L l-cysteine + 2.0 mg/L 2,4-D  
pH 5.2, 0.3% Gelrite. Note: Filter sterilize the medium

Selection medium I Callus induction medium + 3.0 mg/L 2,4-D + 5 mg/L bialaphos or 
50 mg/L hygromycin + 250 mg/L cefotaxime + 150 mg/L 
timintin, pH 5.8, 0.3% Gelrite. Note: Filter sterilize the medium

Selection medium II Callus induction medium + 3.0 mg/L 2,4-D + 0.1 mg/L 
BAP + 5 mg/L bialaphos or 50 mg/L hygromycin + 250 mg/L 
cefotaxime + 150 mg/L timintin, pH 5.8, 0.3% Gelrite. Note: Filter 
sterilize the medium

Selection medium III Callus induction medium + 2.0 mg/L 2,4-D + 0.1 mg/L 
BAP + 5 mg/L bialaphos or 50 mg/L hygromycin + 250 mg/L 
cefotaxime + 150 mg/L timintin, pH 5.8, 0.3% Gelrite. Note: Filter 
sterilize the medium

Preregeneration medium FHG or MS medium + 5 mg/L ABA + 1 mg/L BAP + 0.5 mg/L 
NAA + 5 mg/L bialaphos or 50 mg/L hygromycin + 100 mg/L 
cefotaxime + 100 mg/L timintin, pH 5.8, 0.3% Gelrite. Note: Filter 
sterilize the medium

Regeneration medium Preregeneration medium + 3 mg/L BAP + 0.5 mg/L 
NAA + 2.5 mg/L bialaphos or 25 mg/L hygromycin + 100 mg/L 
cefotaxime + 50 mg/L timintin, pH 5.8, 0.4% Gelrite. Note: Filter 
sterilize the medium before adding the Gelrite

Rooting medium 1/2 MS medium, pH 5.8, 0.3% Gelrite. Note: Autoclave
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contains a high concentration of glucose. In some protocols, 
high concentration of sucrose and glucose is added into the 
infection medium. For example, in Agrobacterium-mediated 
transformation of maize and rice, infection medium enriched 
with 68.46 g of sucrose and 36.04 g of glucose support high 
transformation frequency (29). In addition, infection medium 
also contains a number of amino acids such as l-glutamine, 
aspartic acid, and casamino acids. The type and concentration 
of amino acids in the infection medium varies from protocol 
to protocol. Sterilization of infection medium with a 0.22 mm 
cellulose-acetate filter is critical for high frequency of transfor-
mation. Infection medium containing 100–500 mM acetosy-
ringone has been found to support efficient T-DNA transfer 
to the target tissue. Acidic pH of the infection medium is very 
crucial for successful transformation. In the majority of the 
Agrobacterium-mediated transformation protocols, pH 5.2 
has been found to support high frequency of transformation.

 15. Coculture medium (solid coculture medium): coculture 
medium is similar to the infection medium except it is solidi-
fied with gelling agent such as Gelrite before pouring into the 
sterile Petri plates.

 16. Selection medium (for selection of transformed cells): type 
of selection medium varies from genotype to genotype and 
species to species. For example, in maize, better growth of 
transformed tissues has been reported on LS medium (29). 
While, for rice, N6 medium has been reported to support 
better growth of transformed tissue (30). Typically, selection 
medium is enriched with myo-inositol, casein hydrolysate, 
l-proline, and L-glutamine (see Table 1). Type and concentra-
tion of antibiotics to check the growth of Agrobacterium vary 
from protocols to protocols. Commonly, 250 mg/L carbeni-
cillin or 250 mg/L cefotaxime with or without another antibi-
otic such as timintin has been effectively used in selection and 
regeneration medium. In our laboratory, for selection and 
regeneration of barley and rice transgenic plants, we used a 
combination of cefotaxime (250 mg/L) and timintin 
(150 mg/L) to check Agrobacterium growth. Depending on 
the type of selectable marker gene(s) in the plasmid, 5 mg/L 
phosphinothricin for bar selection or 50 mg/L hygromycin for 
hpt selection is used for regenerating basta or hygromycin-
resistant transgenic plants. It is important to use high concen-
tration of selective agent from the beginning to obtain a strong 
selection. However, the appropriate concentration of selective 
agents in the selection medium should be established. It is 
important to keep low numbers (5–7) of transformed calli on 
selection medium because overcrowding at this stage nega-
tively influences the growth of resistant tissue. To enhance 
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good selection, it is important to detach the proliferation or 
sub calli from the mother calli and spread them around to 
ensure that they are in good contact with the medium containing 
selective agent.

 17. Regeneration medium: the type of regeneration medium 
varies from species to species and laboratory to laboratory. 
For example, FHG medium (31) has been found to support 
high-frequency plant regeneration in barley. While, for 
maize, LS medium (29) and, for rice, N6 medium (30) have 
been reported to support efficient plant regeneration from 
transgenic callus tissues. Depending on the type of select-
able marker gene(s) in the plasmid, 5 mg/L phosphinothricin 
for bar selection or 50 mg/L hygromycin for hpt selection 
is used for regenerating basta or hygromycin-resistant trans-
genic plants. It is important to use high concentration of 
selective agent (phosphinothricin or hygromycin) to avoid 
or minimizing the regeneration of escapes. The appropriate 
concentration of selective agents in the regeneration medium 
should be established. It is important to keep only 5–6 resis-
tant calli on regeneration medium because overcrowding 
will negatively influence neoformation, especially in recalci-
trant varieties.

 18. Rooting medium: rooting medium varies from species to spe-
cies and laboratory to laboratory. Typically, MS medium (32) 
containing 1 or 2 mg/L IBA is used for inducing/promoting 
strong root system in transgenic plants.

 1. Grow plants in a growth chamber as per the specific tempera-
ture and photoperiod conditions for individual cereal plants. 
For example, for growing rice plants (cv. Nipponbare), main-
tain the greenhouse at 28°C day and night under a 14/10-h 
day and night photoperiod. For maize (cv. A188), maintain 
daytime temperature between 30 and 35°C and night time 
temperature between 20 and 25°C. For barley (cv. Golden 
Promise), maintain day time temperature between 18 and 20°C 
and night time temperature between 13 and 15°C and for 
wheat (cv. Bobwhite), greenhouse is maintained at 18–20°C 
day and 14–15°C night temperatures with a relative humidity 
of 50–70% under a 16-h photoperiod. Light intensity also varies 
from species to species.

 2. Harvest the spikes or ear containing the correct developmental 
stage of immature embryos (usually 10–15 days after anthesis) 
(see Note 1).

3.  Methods

3.1. Preparation  
of Immature Embryos 
for Transformation
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 3. Spikes are surface sterilized in 70% (v/v) ethanol for 30 s and 
then 5–10 min in 20% (v/v) bleach (5.25% sodium hypochlo-
rite) with gentle shaking. Rinse with sterile distilled water at 
least five times. Immature embryos are then dissected from 
young caryopses under a stereomicroscope in a sterile envi-
ronment using a sharp scalpel and fine forceps. In case of 
maize, kernels are detached from cob by cutting the base of 
the kernel with a scalpel. Immature embryos are then removed 
by inserting a scalpel into the detached kernel. Embryonic 
axis can be removed from immature embryos using fine for-
ceps under stereomicroscope. Immature embryo without 
embryo axis is referred to as the scutellum. Immature embryos 
or scutella with axis side (now removed) down can be cul-
tured onto solid inoculum medium plate. Due to asynchro-
nous development, all the seeds on any spike or ear will not 
be suitable for the isolation of immature embryos. Generally, 
the seeds nearest to the peduncle are younger and smaller. In 
barley, removal of embryonic axis from immature embryos 
has supported higher frequency of transformation (9, 13).

 1. Streak a single colony of Agrobacterium carrying the gene of 
interest in a binary vector on AB medium containing appro-
priate antibiotics for the selection of Agrobacterium strain 
and binary vector. Incubate the cultures at 28°C for 3 days.

 2. After 3 days, collect Agrobacterium cells using a sterilized 
microspatula and suspend in liquid coculture medium (infec-
tion medium) at a density of 0.5 × 109 colony forming units 
(OD = 1.0 at 600 nm) (see Note 2). The OD of the medium is 
adjusted using liquid coculture medium. Inoculum should be 
prepared fresh (see Note 3). The suspension should be homog-
enized gently and ensure that no cells aggregate remain in the 
suspension medium. Complete homogenization of suspension 
medium improves transformation frequency by preventing 
excess growth of Agrobacterium during cocultivation.

Common steps in Agrobacterium-mediated transformation of 
immature embryos are illustrated in Fig. 1.

 1. Immerse the immature embryos or scutella in 2 mL of liquid 
coculture medium (infection medium) containing freshly 
made acetosyringone (see Note 4) at room temperature until 
the remaining embryos have been isolated. A skilled person is 
required to isolate the immature embryos within a very short 
period of time without damaging them.

 2. Pour the Agrobacterium cell suspension prepared in step 3.2 
into the sterile Petri plates. 40–50 immature embryos are 
immersed into 10–15 mL liquid coculture medium (infection 
medium) containing 100 mM acetosyringone, briefly shaking 

3.2. Preparation  
of Agrobacterium  
for Transformation

3.3. Transformation  
of Immature Embryos 
or Scutella
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the Petri plates. Infection periods vary from explant to explant, 
genotype to genotype, and species to species and therefore, it 
is important to optimize inoculation time. Generally inocula-
tion time ranges from 1 to 30 min. Removal of excess 
Agrobacterium from immature embryos is critical for mini-
mizing the Agrobacterium contamination during cocultiva-
tion (see Note 5).

 3. Remove the infection medium and transfer the embryos 
(without washing, see Note 5) onto fresh solid coculture 
medium with the scutellum face up and seal the Petri plates 
with parafilm. For cocultivating immature embryos with 

With pre-treatment

Harvest green and healthy looking spikes/or ears

Sterilization of spikes and ears - Remove very top and bottom spikelets

or

Culture Agrobacterium from fresh glycerol stock
Liquid co-culture (Inoculation) - room temperature - 1 minute to 30 minutes (vary species to species)

Solid co-culture (co-cultivation) - 20 to 24°C -2 days to 7 days in the dark (vary species to species)

(e.g. pre-treatment with heat and centrifugation in case of maize transformation)

Without pre-treatment

orImmature embryos - Target tissue for transformation OPTIONAL

Isolation of immature embryos – 1.0 to 1.5 mm OPTIONAL

Pretreatment of immature embryos – OPTIONAL AND VARY SPECIES TO SPECIES

GUS or GFP assay – Examination of marker gene Expression 

Selection Phase I – 21 days 

Selection Phase II – 21 days    Duration vary species to species 

Selection of transformed tissue - In the dark - Temperature vary between species to species

Pre-regeneration - 7 days in the dark - Maturation of tissues before regeneration

Regeneration - Light/dark condition - 3 to 4 weeks - Temperature vary between species to species

Rooting - Light/dark condition - 15 to 20 days - Temperature vary between species to species

Transfer to soil - cover plants with transparent lids for 7 days

Growing transgenic plants - T0 plants

T0 plants T1 plantsT1 seeds analysis T2 seeds and screening of homozygous plants

Selection Phase III – 21 days 

-
OPTIONAL

Removal of embryo axis 

With embryo axis 

Fig. 1. General steps in Agrobacterium-mediated transformation of cereals.
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Agrobacterium, incubate the plates in the dark at 25°C for 
2–3 days. Cocultivation time and duration also vary between 
genotype to genotype and species to species. In general, for 
cereal crops, cocultivation for 2–3 days at 20–25°C has been 
found optimal for achieving successful transformation. 
However, in maize, 7-day cocultivation has been reported to 
produce high transformation frequency (29). Gene delivery 
efficiencies can be determined by assaying the transient activ-
ity of uidA gene by histochemical assays and by visualizing 
the expression of green fluorescent protein gene (gfp) under 
the fluorescence stereomicroscope following cocultivation 
(see Note 8). Jefferson (33) recommended the establishment 
of optimal conditions for gene transfer through preliminary 
experiments of transient gene expression using reporter genes. 
Therefore, transient gus or gfp expression-based studies will 
be helpful for optimizing conditions affecting the transgene(s) 
expression and transformation process in crop plants.

 1. First selection – after 3 days of cocultivation period, transfer 
the uncontaminated embryos to selection medium containing 
a selection component such as hygromycin for selection of 
transformed cells and a combination of antibiotics such as 
cefotaxime and timintin to kill the Agrobacterium (see 
Table 1). Incubate the cultures in the dark at 25°C for  
10 days. It is important to transfer only 7–10 embryos per 
plate for better selection. Do not rinse the embryos or devel-
oping calli as rinsing with an antibiotic solution tends to result 
in poor growth of cells on selection medium (see Note 6).

 2. Second selection – transfer the scutellum-derived resistant 
calli onto fresh selection medium plate and incubate the cul-
tures in the dark for 3 weeks. Calli showing Agrobacterium 
overgrowth should be discarded at this stage (see Note 6).

 3. Third selection – transfer the actively proliferating resistant 
calli onto fresh selection medium and incubate the cultures in 
the dark for another 3 weeks. During final round of selection, 
cutting scutellum-derived embryogenic calli into small species 
and spreading around the mother calli on selection medium is 
critical to ensure good selection of transformed cells. It is 
important to transfer only 5–10 calli onto selection medium 
during third and final round of selection (see Note 7). It is 
very important to examine the level of expression of a trans-
gene in the immature embryos after cocultivation duration of 
2–3 days and in the stable calli after first round of selection for 
both developing and optimizing the protocol (see Note 8).

 1. For regeneration of transgenic plants, transfer the resistant 
calli to preregeneration medium (see Table 1) containing a 
cytokinin such as BAP, a selection component such as 

3.4. Selection  
of Transformed Calli

3.5. Regeneration  
of Transformed Plants
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 hygromycin, and a combination of antibiotics such as 
 cefotaxime and timintin (see Table 1 and Note 9). Incubate 
the tissues in the dark for 10 days. Resistant calli are trans-
ferred on preregeneration medium for maturation.

 2. After 10 days, resistant calli are transferred to regeneration 
medium under appropriate temperature and photoperiod 
conditions for 3 weeks (see Table 1). Temperature and pho-
toperiod varies between genotype to genotype and species to 
species. For example, maize regeneration can be carried out 
at 25°C under continuous illumination (5,000 lx) (29), bar-
ley regeneration can be carried out at 24°C under a 16/8-h 
(light/dark) photoperiod (9), and rice regeneration can be 
achieved at 28°C under 12/12-h (light/dark) photoperiod 
(30). Generally, fluorescent light provided at an intensity of 
55 mmol/m2/s is sufficient for regenerating plants from trans-
formed calli.

 1. Plantlets, reaching a length of 2 cm, are transferred on rooting 
medium for 2 weeks to permit vigorous root development 
before being transferred to soil (see Note 10).

 2. After 2 weeks on rooting medium, plantlets with strong 
rooting system are transferred to soil (see Note 10).

 1. The use of immature embryos at the right developmental 
stage (usually 10–15 days after anthesis) is one of the criti-
cal factors in genetic transformation of cereals. Day after 
anthesis time may differ between species to species and 
genotype to genotype and therefore, it is important to 
examine the size of the immature embryos carefully based 
on the time of their collection after anthesis. Healthy 
embryos are obtained from healthy and vigorously grown 
plants. The size of the embryos is a very good indicator of 
the right stage. Immature embryos that are between 1.0 
and 1.5 mm and milky translucent in color in length are 
optimal for cereal transformation. The color of the embryos 
is another good indicator of the right developmental stage 
of immature embryos. If transformation frequency is low, 
efforts should make to optimize the conditions of green-
house before troubleshooting other parameters of the pro-
tocol. For continuous harvesting of healthy immature 
embryos, it is very important to seek an advice of a breeder 
to ensure the proper condition of growth chamber, soil 
condition, fertilizer and watering, etc.

3.6. Rooting  
of Regenerated Plants 
and Transfer to Soil

4.  Notes
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 2. It is also crucial that the bacteria must be rapidly growing and 
that the bacteria should not grow greater than 109 cells per 
milliliter. Bacteria near the stationary phase of growth change 
their physiology and do not induce well after acetosyringone 
treatment.

 3. For cereal transformation, we always prepare fresh bacterium 
inoculum by streaking from a glycerol stock frozen at 
−80°C.

 4. It is very important to keep the acetosyringone stock solution 
(Sigma, catalog number D13440-6) in the dark at −20°C. 
Instead of making stock of acetosyringone, we use freshly 
prepared stock of acetosyringone because it oxidizes during 
freeze and thaw and lose its potency.

 5. Removal of the excess Agrobacterium suspension is critical to 
avoid the excess growth of Agrobacterium during 3 days of 
cocultivation. Flame forceps thoroughly before using between 
different constructs to avoid cross-contamination.

 6. Do not rinse the embryos with antibiotic solution after cocul-
tivation with Agrobacterium because this tends to results in 
poor growth of cells and subsequently poor growth of callus 
formation. If there is excess growth of Agrobacterium after 
cocultivation duration, decrease the concentration of 
Agrobacterium in infection medium.

 7. It is important not to wash the infected immature embryos or 
developing calli after first selection, but rather to discard 
Agrobacterium-infected immature embryos or calli from the 
selection plates before collecting the calli for subculture. The 
callus selection is a key point for efficient transformation. 
Subculturing healthy and well grown callus pieces tends to 
produce healthy and green transgenic plants.

 8. Examining the level of expression of a transgene in the imma-
ture embryos after cocultivation duration of 2–3 days and in 
the stable calli after first round of selection is considered very 
useful for both developing and optimizing the protocol, espe-
cially for developing a protocol in recalcitrant varieties. 
Histochemical assay to assess the expression of the reporter 
genes such as b-gucurondise (uidA) gene in cereal transfor-
mation can be carried out by staining of transformed tissues 
with 5-bromo-4-chloro-3-indolyl-b-d-glucuronide acid 
(X-Gluc) as substrate (33). After chlorophyll extraction with 
70% ethanol for at least 3 h, histochemical GUS expression 
can be determined in leaf samples of the primary regenerants 
and control plants. Inheritance of another popular reporter 
gene, green fluorescence protein (gfp) gene, can be measured 
by visual scoring of GFP expression under a fluorescence ste-
reomicroscope. T-DNA delivery can be assessed by counting 
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immature or calli that had at least one gus or gfp focus. 
Genomic DNA can be isolated from the leaf of transgenic 
plants 10 days after transfer to soil. By designing specific 
primers for gene(s) of interest, PCR can be performed to find 
out whether regenerated plants are transgenic or not.

 9. It is important to culture only 5–6 resistant calli on regenera-
tion medium because overcrowding at this stage tends to 
influence neoformation, especially with recalcitrant varieties.

 10. Do not keep the regenerated plantlets in the magenta jars for 
long period of time because this will results in reduced growth 
of plants in the greenhouse and precocious flowering of small 
size panicles. After transferring into soil, transgenic plants need 
to be covered with transplant plastic container to maximize the 
humidity during acclimatization of transgenic plants into soil.
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