

Adaptive Control
Approach for

Software Quality
Improvement

8099 tp.indd 1 5/13/11 11:37 AM

This page intentionally left blankThis page intentionally left blank

N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I

World Scientific

Adaptive Control
Approach for

Software Quality
Improvement

Series on Software Engineering
and Knowledge Engineering Vol. 20

editors

W Eric Wong
University of Texas at Dallas, USA

Bojan Cukic

West Virginia University, USA

8099 tp.indd 2 5/13/11 11:37 AM

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-4340-91-5
ISBN-10 981-4340-91-X

Typeset by Stallion Press
Email: enquiries@stallionpress.com

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

Copyright © 2011 by World Scientific Publishing Co. Pte. Ltd.

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

ADAPTIVE CONTROL APPROACH FOR SOFTWARE QUALITY IMPROVEMENT
Series on Software Engineering and Knowledge Engineering — Vol. 20

Steven - Adaptive Control Approach.pmd 7/6/2011, 4:36 PM2

May 4, 2011 14:8 9in x 6in b968-fm Adaptive Control Approach for Software. . .

PREFACE

The expansion of our reliance on software in many aspects of modern society
has coincided with a number of incidents in aeronautics, astronautics,
transportation, medical devices, energy generation, banking and finance.
Failures caused by software have introduced more than just inconvenience,
but significant property damage, monetary loss, or even fatalities.
Therefore, it is of utmost importance that software systems achieve
their expected level of quality. As systems grow in complexity, building
software free of failure becomes more and more difficult. Some of the
most challenging and promising research topics include self management
and adaptation at run time, responding to changing user needs and
environments, faults, and vulnerabilities. It is critical for researchers and
practitioners to understand how these challenges can be addressed to
produce high quality software more effectively and efficiently. Control
theoretic approaches described in this book represent state-of-the-art
techniques that provide some of the answers to these challenges.

Specialized books on the topic of Software Quality typically emphasize
improvements in various phases of the software development lifecycle,
ranging from requirements, architecture, design, implementation, testing,
debugging, maintenance, etc. The concept of control theory has been
introduced into software engineering recently to analyze online evolution
and adaptation of software behavior, to meet old and new functional and
non-functional objectives in the presence of changes in the environment,
disturbances, faults, or expanded requirements. Due to the novelty of this
subject, books on software engineering or control theory have not covered
it with a sufficient level of detail.

To overcome such a problem, this book focuses on how adaptive control
approach can be applied to improve the quality of software systems. It
addresses the following issues:

(1) The application of control theory principles to software processes and
systems.

v

May 4, 2011 14:8 9in x 6in b968-fm Adaptive Control Approach for Software. . .

vi Preface

(2) Formalization and quantification of feedback and self-adaptive control
mechanisms in software quality assurance.

(3) Integration and the interplay between software engineering and control
engineering theory.

Diverse research topics (such as requirements engineering, software
development processes, service-oriented architectures, online adaptation of
software behavior, testing and QoS control) are woven together into a
coherent whole.

Written by world-renowned experts, this book gives an authoritative
reference for students, researchers and practitioners to better understand
how the adaptive control approach can be applied to improve the quality of
software systems. In addition, each chapter outlines future theoretical and
experimental challenges for researchers in this area.

We would like to thank all the chapter authors for sharing their
ideas and research results with us, and the reviewers for their valuable
feedback on the chapters they reviewed. This book would not be possible
without their contributions. Special thanks go to Professor Shi-Kuo Chang,
Editor-in-Chief of the Book Series on Software Engineering and Knowledge
Engineering, for approving this project as well as his continuous support
and encouragement; Mr. Andrew Restrepo, a PhD student in Computer
Science at the University of Texas at Dallas, for editing earlier drafts of
this book; and Mr. Steven Patt, our production editor, and other staff at
World Scientific Publishing in assisting with all the logistics during the
development of this book.

We are grateful to our families, Nancy Chen, Rachel Wong, Justin
Wong, and Vincent Wong, and April Cukic. Without their love and support
this project could not have been accomplished.

W. Eric Wong & Bojan Cukic
April 15, 2011

May 4, 2011 14:8 9in x 6in b968-fm Adaptive Control Approach for Software. . .

CONTENTS

Preface v

1. Prioritizing Coverage-Oriented Testing Process — An
Adaptive-Learning-Based Approach and Case Study 1

Fevzi Belli, Mubariz Eminov, Nida Gökçe and W. Eric Wong

2. Statistical Evaluation Methods for V&V of
Neuro-Adaptive Systems 23

Y. Liu, J. Schumann and B. Cukic

3. Adaptive Random Testing 57

Dave Towey

4. Transparent Shaping: A Methodology for Adding
Adaptive Behavior to Existing Software Systems
and Applications 77

S. Masoud Sadjadi, Philip K. Mckinley and Betty H.C. Cheng

5. Rule Extraction to Understand Changes in an Adaptive System 115

Marjorie A. Darrah and Brian J. Taylor

6. Requirements Engineering Via Lyapunov Analysis for
Adaptive Flight Control Systems 145

Giampiero Campa, Marco Mammarella, Mario L. Fravolini
and Bojan Cukic

vii

May 4, 2011 14:8 9in x 6in b968-fm Adaptive Control Approach for Software. . .

viii Contents

7. Quantitative Modeling for Incremental Software Process Control 167

Scott D. Miller, Raymond A. Decarlo and Aditya P. Mathur

8. Proactive Monitoring and Control of Workflow Execution
in Adaptive Service-based Systems 239

Stephen S. Yau and Dazhi Huang

9. Accelerated Life Tests and Software Aging 267

Rivalino Matias Jr. and Kishor S. Trivedi

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

Chapter 1

PRIORITIZING COVERAGE-ORIENTED TESTING
PROCESS — AN ADAPTIVE-LEARNING-BASED

APPROACH AND CASE STUDY

FEVZI BELLI

Department of Computer Science, Electrical Engineering and Mathematics
Institute for Electrical Engineering and Information Technology

University of Paderborn
Warburger Straße 100 D-33098 Paderborn, Germany

belli@upb.de

MUBARIZ EMINOV

Halic University, Faculty of Engineering
Department of Computer Engineering, Istanbul. Turkey

mubarizeminli@halic.edu.tr

NIDA GÖKÇE

Department of Statistics, Faculty of Science
Mugla University, 4800 Mugla, Turkey

gnida@mu.edu.tr

W. ERIC WONG

Department of Computer Science, University of Texas at Dallas
Richardson, Texas 75080, USA

ewong@utdallas.edu

This chapter proposes a graph-model-based approach to prioritizing the test
process. Tests are ranked according to their preference degrees which are deter-
mined indirectly, i.e., through classifying the events. For construction of the
groups of events, an unsupervised neural network is trained by adaptive competi-
tivelearningalgorithm.Acasestudydemonstratesandvalidatestheapproach.

1. Introduction and Related Work

Testing is one of the important, traditional analytical techniques of quality
assurance in the software industry. There is no justification, however, for
any assessment of the correctness of system under test (SUT) based on the
success of a single test, because potentially there can be an infinite number
of test cases. To overcome this principal shortcoming of testing concerning

1

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

2 F. Belli, M. Eminov, N. Gökçe, and W. E. Wong

completeness of the validation, formal methods have been proposed. Those
models visualize and represent the relevant, desirable features of the SUT.

For a productive generation of tests, model-based techniques focus
on particular, relevant aspects of the requirements of the SUT and its
environment. Real-life SUTs have, however, numerous features that are
to simultaneously be considered, often leading to a large number of tests.
In many applications where testing is required, the complete set of tests is
not run due to time or budget constraints. In such cases, the entire set of
system features cannot be considered. In these situations, it is essential to
prioritize the test process. It is then essential to model the relevant features
of SUT. The modeled features are either functional behavior or structural
issues of the SUT (as given in its code), leading to specification-oriented
testing or implementation-oriented testing, respectively. Once the model is
established, it “guides” the test process to generate and select test cases,
which form sets of test cases (also called test suites). The test selection is
ruled by an adequacy criterion, which provides a measure of how effective
a given set of test cases is in terms of its potential to reveal faults.1,2 Some
of the existing adequacy criteria are coverage-oriented. They use the ratio
of the portion of the specification or code that is covered by the given test
set in relation to the uncovered portion in order to determine the point in
time at which to stop testing (test termination problem).

Test case prioritization techniques organize the test cases in a test suite
by ordering such that the most beneficial are executed first thus allowing
for an increase in the effectiveness of testing. One of the performance goals,
i.e., the fault detection rate, is a measure of how quickly faults are detected
during the testing process.3

This chapter is on model-based, specification- and coverage-oriented
testing. The underlying model graphically represents the system behavior
interacting with the user’s actions. In this context, event sequence graphs
(ESG)9−11 are favored. ESG approach view the system’s behavior and
user’s actions as events, more precisely, as desirable events, if they are in
accordance with the user expectations, otherwise they are undesirable events.
Mathematically speaking, a complementary view of the behavioral model is
generated from the model given. Thus, the model will be exploited twice, i.e.,
once to validate the system behavior under regular conditions and a second
time to test its robustness under irregular, unexpected conditions.

The costs of testing often tend to run out the limits of the test budget.
In those cases, the tester may request a complete test suite and attempt to
run as many tests as affordable, without running out the budget. Therefore,

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

Prioritizing Coverage-Oriented Testing Process 3

it is important to test the most important items first. This leads to the
Test Case Prioritization Problem (TCPP) a formal definition of which is
represented in5 as follows:

Given: A test suite T ; the set PT of permutations of T ; a function f from
PT to the real numbers which represents the preference of the
tester while testing.

Problem: Find T ′ ∈ PT such that (∀T ′′) (T ′′ �= T ′) [f(T ′) ≥ f(T ′′)]

Existing approaches to solving TCPP usually suggest constructing a
density covering array in which all pair-wise interactions are covered.4,5

Generally speaking, every n-tuple is then qualified by a number n ∈ N (N:
set of natural numbers) of values to each of which a degree of importance is
assigned. In order to capture significant interactions among pairs of choices
the importance of pairs is defined as the “benefit” of the tests. Every pair
covered by the test contributes to the total benefit of a test suite by its
individual benefit. Therefore, the tests given by a test suite are to be
ordered according to the importance of corresponding pairs. However, such
interaction-based, prioritized algorithms are computationally complex and
thus usually less effective.6,7

The ESG approach favored in this chapter generates test suites through
a finite sequence of discrete events. The underlying optimization problem is
a generalization of the Chinese Postman Problem (CPP)8 and algorithms
given in9−11 differ from the well-known ones in that they satisfy not only
the constraint that a minimum total length of test sequences is required, but
also fulfill the coverage criterion with respect to converging of all event pairs
represented graphically. This is substantial to solve the test termination
problem and accounts for a significant difference of this present chapter from
existing approaches. To overcome the problem that an exhaustive testing
might be infeasible, the present chapter develops a prioritized version of
the mentioned test generation and optimization algorithms, in the sense
of “divide and conquer” principle. This is the primary objective and the
kernel of this chapter which is novel and thus, to our knowledge, has not
yet been worked out in previous work.

The required prioritization has to meet the needs and preferences of
test management on how to spend the test budget. However, SUT and
software objects, i.e., components, architecture, etc., usually have a great
variety of features. Therefore, test prioritization entails the determination of
order relation(s) for these features. Generally speaking, we have n objects,
whereby each object has a number (p) of features that we call dimension.

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

4 F. Belli, M. Eminov, N. Gökçe, and W. E. Wong

TCPP then represents the comparison of test objects of different, multiple
dimensions. To our knowledge, none of the existing approaches take the fact
into account that SUT usually has a set of attributes and not a single one
when prioritizing the test process. Being of enormous practical relevance,
this is a tough, NP -complete problem.

Our approach assigns to each of the tests generated a degree of its
preference. This degree is indirectly determined through estimation of
the events qualified by several attributes. We suggest representing those
events as an unstructured multidimensional data set and dividing them
into groups which correspond to their importance. Beforehand, the optimal
number of those groups is determined by using Vsv index-based clustering
validity algorithm.12,13 To derive the groups of events we use a clustering
approach based on unsupervised neural networks (NN) that will be trained
by an adaptive competitive learning (CL) algorithm.14 Different from the
existing approaches, e.g., as described in,12,15,16 input and weight vectors
are normalized, i.e., they have length one. This enables less sensitivity to
initialization and a good classification performance. The effectiveness of the
proposed testing approach is demonstrated and validated by a case study
a non-trivial commercial system.

The chapter is organized as follows. Section 2 explains the background
of the approach, presenting also the definition of neural network-based
clustering. Section 3 explains the CL algorithms. Section 4 describes the
proposed prioritized graph-based testing approach. Section 5 includes the
case study. Section 6 summarizes the results, gives hints to further research
and concludes the chapter.

2. Background

2.1. Event Sequence Graphs

Because the construction of ESG, test generation from ESG and test process
optimization are sufficiently explained in the literature,9−11,17 the present
chapter summarizes ESG concept, as far as it is necessary and sufficient to
understand the test prioritization approach represented in this chapter.

Basically, an event is an externally observable phenomenon, such as
an environmental or a user stimulus, or a system response, punctuating
different stages of the system activity. A simple example of an ESG is given
in Fig. 1. Mathematically, an ESG is a directed, labeled graph and may
be thought of as an ordered pair ESG = (α,E), where α is a finite set of

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

Prioritizing Coverage-Oriented Testing Process 5

Fig. 1. An event sequence graph ESG, its complement ESG.

nodes (vertices) uniquely labeled by some input symbols of the alphabet
Σ, denoting events, and E: α →α, a precedence relation, possibly empty,
on α. The elements of E represent directed arcs (edges) between the nodes
in α. Given two nodes a and b in α, a directed arc ab from a to b signifies
that event b can follow event a, defining an event pair (EP) ab (Fig. 1).
The remaining pairs given by the alphabet Σ, but not in the ESG, form
the set of faulty event pairs (FEP), e.g., ba. As a convention, a dedicated,
start vertex, e.g., [, is the entry of the ESG whereas a final vertex e.g.,]
represents the exit. Note that [and] are not included in Σ; therefore, the arcs
from and to them form neither EP nor FEP. The set of FEPs constitutes
the complement of the given ESG (ESG). Superposition of ESG and ESG
leads to completed ESG (ÊSG) (Fig. 1).

A sequence of n + 1 consecutive events that represents the sequence
of n arcs is called a event sequence (ES) of the length n + 1, e.g., an EP
(event pair) is an ES of length 2. An ES is complete if it starts at the
initial state of the ESG and ends at the final event; in this case it is called a
complete ES (CES). Occasionally, we call CES also walks (or paths) through
the ESG given. A faulty event sequence (FES) of the length n consists of
n− 1 subsequent events that form an ES of length n− 2 plus a concluding,
subsequent FEP. An FES is complete if it starts at the initial state of the
ESG; in this case it is called faulty complete ES, abbreviated as FCES.
A FCES must not necessarily end at the final event.

2.2. Neural Network-Based Clustering

Clustering is a technique to generate an optimal partition of a given,
supposedly unstructured, data set into a predefined number of clusters (or
groups). Homogeneity within the groups and heterogeneity between them
can be settled by means of unsupervised neural network-based clustering
algorithms.13,14 For clustering of an unstructured data set dealing especially
with vector quantization, unsupervised learning based on clustering in a
neural network framework is frequently used. Clustering has to obtain

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

6 F. Belli, M. Eminov, N. Gökçe, and W. E. Wong

partition data vector space

X = {x1, . . . , xi, . . . , xn} ⊂ Rp,

xi = (xi1, . . . , xij , . . . xip) ∈ Rp (1)

into c number clusters or subspaces Sk in the form of hyper spherical
clouds of pattern vectors xi = {x1, x2, . . . , xp} ∈ Rp. Each of these
subspaces is represented by a cluster center (prototype) that corresponds
to weight vector w = (w1, w2, . . . , wp) ∈ Rp. An input (pattern) vector xi
is described by the best-matching or “winning” weight vector wk for which
criterion-distortion error d(xi, wk) = ‖xi − wk‖2that is the squared error of
Euclidean distance is minimum. The procedure divides the input space Rp

into partition subspace

Sk = {X ∈ Rp |‖x− wk‖ ≤ ‖x− wj‖ ∀j �= k } k = 1, . . . , c ∈ N (2)

called Voronoi polygons or Voronoi polyhedra. To determine the optimal
number c of groups, the Vsv index-based cluster validity algorithm13 has
been used.

To provide training of NN, a number of learning algorithms are used.
We deal with the family of competitive learning (CL) algorithms14 that are
a type of self-organizing networking models. According to CL algorithms,
“winning” weight vector (weights of connections between input and output
nodes) or cluster center can be adjusted by applying “winner-takes-all”
strategy in training phase of the NN under consideration. In clustering a
data set which is to be partitioned into c number of clusters each of which
contains a data subset Sk defined as follows:

X =
c⋃

k=1

Sk with Sk ∩ Sj = 0 ∀ k �= j (3)

An optimal partition xi ∈ Rp into subspaces Sk, k = 1, 2, . . . , c, is
obtained through an optimal choice of reference vectors wk which minimize
a cost function-distortion error represented as follows:

E =
c∑

k=1

∫
Sk

d(x,wk)g(x)dx (4)

where g(x) is a probability density function. If probability distribution of
data vectors g(x) is known in advance then gradient descent algorithm can

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

Prioritizing Coverage-Oriented Testing Process 7

be applied on E in order to minimize (4) which leads to well-known k-
means clustering algorithm18 under fixed number of subspaces (clusters).
Thus, optimal weight vectors wk, k = 1, . . . , c, can be precisely determined.
However, in general, g(x) is not given a priori, therefore a number of
neural network clustering algorithms15,16,19,20 were suggested to evaluate
this unknown density function. In the case, when the number of the clusters
c increases, density function g(x) in each cluster becomes approximately
uniform,27 therefore (4) can be rewritten as

E =
c∑

k=1

g(wk)
∫
Sk

d(x,wk)dx (5)

Let Dk be partition error in k-th subspaces Sk, then

E =
c∑

k=1

Dk (6)

whereDk = g(wk)
∫
Sk
d(x,wk)dx. As the sequence of input vectors becomes

stationary and ergodic, it is known that (5) is corresponding to (7) presented
in the mean square error (MSE) as follows16,19

E =
1
n

c∑
k=1

Dk (7)

where

Dk =
1
p

(∑
x∈Sk

d(x,wk)

)
(8)

n is the total number of input vectors and p is the dimension of input vector.
Therefore, the optimal clustering results in obtaining partition subspaces
Sk and weight vectors wk, k = 1, 2, . . . , c that minimize Dk.

3. Competitive Learning

CL is a paradigm in which a structured or unstructured population of
units compete with each other with regard to a stimulus, where the winner
(or winners) of the competition may respond and be adapted. Algorithm
that implements CL is suited to different specific concerns, although it is
generally nonparametric, and suited to the general domains of function
approximation, classification, and regression.21

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

8 F. Belli, M. Eminov, N. Gökçe, and W. E. Wong

CL is a connectionist machine learning paradigm where an input
pattern is matched to the node with the most similar input weights, and
the weights are adjusted to better resemble the input pattern. This is called
the winner-take-all (or maximum activation) unsupervised learning method
where the input pattern is compared to all nodes based on similarity. The
nodes compete for selection (or stimulation) and ultimately adjustment
(or learning).22 Kohonen distinguishes this connectionist learning paradigm
from feed-forward and feed-backward approaches,23,24 as follows:

Signal Transfer Networks : (feed-forward paradigm) Signal transform
circuits where the output signals depend on the input signals received by
the network. Parametric in that the mapping is defined by a basis function
(components of the structure) and fitted using an optimization approach
like gradient decent. Examples include the multilayer Perceptron, back
propagation, and radial basis function.

State-Transfer Networks: (feed-backward paradigm) Based on relax-
ation effects where the feedbacks and nonlinearities cause the activity
state to quickly converge to one of its stable values (attractor). Input
signals provide the initial activity state, and the final state is a result of
recurrent feedbacks and computation. Examples include Hopfield network,
Boltzmann machine, and bidirectional associative memory (BAM).

Competitive Learning : (self-organizing network paradigm) Networks of
cells in simple structures receive identical inputs from which they compete
for activation through positive and negative lateral interactions. One cell
is the winner, and other cells are inhibited or suppressed. Cells become
sensitive to different inputs and act as decoders for the domain. The result
is a globally ordered map created via a self-organizing process. Examples
include the Self-Organizing Map (SOM), and Learning Vector Quantization
(LVQ).21

Fritzke25 uses taxonomy of hard (winner-take-all) and soft (winner-
take-most) CL and further distinguishes soft approaches to those with and
without a fixed network topology.

Hard CL: Winner-take-all (WTA) learning each input signal results
in the adaptation of a single unit of the model. These methods may occur
online or offline in batch. Examples include k-means.

Soft CL: Winner-take-most (WTM) learning where an input signal
results in the adaptation of more than one unit of the model. No fixed model
dimensionality or topology is prescribed with these methods. Examples
include neural gas.

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

Prioritizing Coverage-Oriented Testing Process 9

Soft CL with Fixed Structure: Winner-take-most (WTM) learning
with a fixed model dimensionality and or topology. Examples include the
self-organizing map.

3.1. Distance-Based Competitive Learning Algorithm

CL is closely related to clustering that learns to group input patterns
in clusters. In the input space x ∈ Rp the input pattern xi is defined,
which is generated upon the probability density function g(x), by applying
the winner-take-all strategy. When both input vectors and weight vectors
are not normalized, the Euclidean distance measure, in general, is used to
determine the winner weight vector ww in CL algorithms.

Training: In the training phase the weight vectors of NN are updated
usually according to Standard CL algorithm. Firstly, for a data point xi ∈
Rp selected from X the winner weight vector ww is determined by:

ww = argmin
k
{‖xi − wk‖}

i = 1, . . . , n ∈ N k = 1, . . . , c ∈ N (9)

where ‖.‖ is Euclidean distance measure. Then this vector is adjusted at
step t by

∆ww(t) = η(t)(xi − ww) (10)

where η(t) is a learning rate. Secondly, the adjusted winner vector is
calculated by

ww(t) = ww(t− 1) + ∆ww(t) (11)

Training process iteratively proceeds until the convergence condition for
the all weight vectors is satisfied. Clearly, the CL algorithm actually seeks
for a local minimum (with respect to the predetermined number of clusters)
for squared error criterion by applying gradient descent optimization. As
known, in the Kohonen’s SOFM algorithm not only ww but also the weight
vectors that are placed in its neighborhood are adjusted. The learning rate
for these weight vectors is set to be much smaller than the rate for ww that
is slowly reduced up to the winner weight vector. Thus, the updating rule
of this learning algorithm becomes as

∆wk(t) = η(t)(xi − wk) k ∈ Nc (12)

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

10 F. Belli, M. Eminov, N. Gökçe, and W. E. Wong

where Nc(t) has a set of indexes of neighborhoods for the winner wk at
step t. If Nc(t) has index of the winner only, then Kohonen’s algorithm
becomes the standard CL algorithm presented in above.

3.2. Angle-Based Competitive Learning Algorithm

Now, we consider the updating rule of CL algorithm when both input
vectors and the weight vectors are normalized to a unit length, that is,
all vectors are presented as the unit vectors. For the input patterns x ∈ Rp,
the corresponding normalized vectors x̃ are given by

x̃ =
x

|x| = x.

 p∑
j=1

x2
j

−1/2

(13)

where |x| is the magnitude of input vector x that lies on a unit hyper sphere
in Rp. In this case, as known, the winner weight vector is determined by
the dot product of the presented input vector xi and a weight vector wk,
then (9) can be reformed as the follows

w̃w = arg max
k

p∑
j=1

x̃ijw̃kj

i = 1, . . . , n k = 1, . . . , c (14)

i.e., the winner vector w̃w is chosen by the largest activation level. Since the
dot product is cos θ where θ the angle between is two considered vectors,
then (14) can be expressed as

w̃θw = argmin
k
{θk} k = 1, . . . , c (15)

i.e., the winner vector w̃θw is determined by the smallest angle level between
the presented xi and weight vectors wk, k = 1, . . . , c. The updating rule of
a winner weight vector instead of (10) is based on the adjusting equation
(16) expressed as follows

∆w̃w(t) = η(t)
(
x̃i
p
− w̃w

)
(16)

Then for Kohonen’s SOFM algorithm the updating rule has the following
form:

∆w̃k(t) = η(t) (x̃i−w̃k) k ∈ Nc (17)

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

Prioritizing Coverage-Oriented Testing Process 11

Thus, the winner weight vector at step t will be

w̃w(t) = w̃(t− 1) + ∆w̃w(t) (18)

However, in general, the distribution is not given in advance; hence
the initial values of the weight vectors are randomly allotted. It negatively
influences the clustering performance of the considered CL algorithm.

3.3. Adaptive Competitive Learning

In this section we present the CL algorithm for neural network clustering,
which is able to: have limited dependence on initial values of weight vectors;
reduce partition performance. Similar to the studies in15,16 disclosed above,
it uses the deletion method that eliminates sequentially weight vectors
which are prepared more than their predetermined numbers in advance.
As in9 where this learning algorithm is called the adaptively CL, we use
the simplest standard CL algorithm. However, instead of direct employing
of the input vectors, it utilizes the corresponding vectors normalized to
a unit length. Rummelhart26 introduced such kind of normalization of the
vectors in input space for CL and afterwards it was used in the few versions
of Kohonen’s SOFM algorithm.20 It has been utilized for classification, as
well as shown good performance.27

In the suggested CL algorithm we use a deletion method based on a
criterion of subdistortion or intra-cluster partition error but in this case its
equation will be different from (8) and it becomes as

Dk =
1
p

(∑
x̃∈Sk

x̃w̃w

)
k = 1, . . . , c (19)

The self-elimination procedure carried out according to (19) is shortly
described as the follows. After learning by standard CL algorithm, a weight
vector ws that has a minimum intra-cluster partition error, i.e., Ds ≥ Dk,
for all k, is deleted. Due to the use of the activation-based selection of the
winner vector we call the suggested algorithm as the activation checking
based CL with deletion. In this case, to signify subdistortion error as
minimal we use the angle estimation of Dk presented as the follows

D∗
k =

1
p

(∑
x̃∈Sk

θk

)
k = 1, . . . , c (20)

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

12 F. Belli, M. Eminov, N. Gökçe, and W. E. Wong

Then using (20) and (7), clustering performance can be estimated by
criteria such as the mean angle error and the standard angle deviation
among subdistortions for given data set. Thus, the proposed Adaptive CL
algorithm is presented as follows.

Adaptive Competitive Learning Algorithm:

Step 1. Initialization:
Initial number of output neurons l0, final number of neurons l,
maximum iteration Tmax, initial iteration of deletion t0 = Tmax/3
and partial iteration u = Tmax/3(l0− l+ 1), Set t← 0 and m← l0

Step 2. Angle-Based Competitive Learning:
2.1. Choose an input vector x̃i at random among X
2.2. Select a winner w̃k according to (14)
2.3. Update the winner w̃w vector according to (16)
2.4. Set t← t+ 1
2.5. If m > l and t = t0 + u× q than go to Step 3, otherwise

go to 2.1.
Step 3. Deletion Mechanism:

3.1. Delete w̃k calculating Dk according to (19) and checking
Ds ≥ Dk

3.2. Set m← m− 1
Step 4. Termination Condition:

If t = Tmax then terminate, otherwise go to Step 2.

Classification: After finding a value of weight vectors {w1, . . . , wc} that
correspond to cluster centers, respectively, a data set is divided into c groups
as follows:

Sk =

{
x ∈ Rp

∣∣∣∣∣
p∑
j=1

x̃ij w̃kj ≥
p∑
j=1

x̃ijw̃mj∀ k �= m

}
(21)

i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , c, m = 1, . . . , c ∈ N

Classification performance of the considered clustering algorithm was
estimated by the MSE calculated using (7) and (19). Effectiveness of this
algorithm was verified for different types of data sets in.14 Computational
time for classification depends on the number n of the events and the
number p of the attributes.

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

Prioritizing Coverage-Oriented Testing Process 13

4. Prioritized ESG-Based Testing

We consider the testing process based on the generation of a test suite from
ESG that is a discrete model of a SUT. To generate tests, firstly a set of
ESGs are derived which are input to the generation algorithm to be applied.
We deal with the test generation algorithms9−11 that generates tests for a
given ESG and satisfies the following coverage criteria.

(a) Cover all event pairs in the ESG.
(b) Cover all faulty event pairs derived by the ESG.

Note that a test suite that satisfies the first criterion consists of
CESs while a test suite that satisfies the second consists of FCESs. These
algorithms are able to provide the following constraints:

(a) The sum of the lengths of the generated CESs should be minimal.
(b) The sum of the lengths of the generated FCESs should be minimal.

The constraints on total lengths of the tests generated enable a
considerable reduction in the cost of the test execution and thus the
algorithms mentioned above can be referred to as the relatively efficient
ones. However, as stated in Section 1, an entire test suite generated may
not be executed due to limited project budget. Such circumstances entail
ordering all tests to be checked and exercised as far as they do not exceed
the test budget. To solve the test prioritizing problem, several algorithms
have been introduced.1,4 Usually, during the test process for each n-tuple (in
particular pair-wise) interaction a degree of importance is computationally
determined and assigned to the corresponding test case. However, this kind
of prioritized testing is computationally complex and hence restricted to
deal with short test cases only.

Our prioritized testing approach is based on the ESG-based testing
algorithms mentioned above. Note that our test suite consists of CESs which
start at the entry of the ESG and end of its exit, representing walks (paths)
through the ESG under consideration. This assumption enables to order
the generated tests, i.e., CESs.

The ordering of the CESs is in accordance with their preference degree
which is defined indirectly, i.e., by estimation of events that are the
nodes of ESG and represent objects (modules, components) of SUT. For
this aim, firstly events are presented as a multidimensional event vector
xi = (x1, . . . , xp) where p is the number of attributes.

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

14 F. Belli, M. Eminov, N. Gökçe, and W. E. Wong

4.1. Definition of the Attributes of Events

To qualify an event corresponding to a node in ESG, as a arbitrarily
chosen example, we propose to use following 9 attributes, i.e., p = 9, that
determine the dimension of a data point represented in a data set.28,29

These attributes are given below:

x1: The number of sub-windows to reach an event from the entry [(gives
its distance to the beginning).

x2: The number of incoming and outgoing edges (invokes usage density of
a node, i.e., an event).

x3: The number of nodes (events) which are directly and indirectly
reachable from an event except entry and exit (indicates its “traffic”
significance).

x4: The maximum number of nodes to the entry [(its maximum distance
in terms of events to the entry).

x5: The number of nodes (events) of a sub-node as sub-menus that can be
reached from this node (maximum number of sub-functions that can
be invoked further).

x6: The total number of occurrences of an event (a node) within all CESs,
i.e., walks (significance of an event).

x7: The balancing degree determines balancing a node as the sum of all
incoming edges (as plus (+)) and outgoing edges (as minus (−)) for a
given node.

x8: The averaged frequencies of the usage of events within the CESs
(determines the averaged occurrence of each event within all CESs).

x9: The number of FEPs connected to the node under consideration (takes
the number of all potential faulty events entailed by the event given
into account).

4.2. Definition of Importance Degree and Preference

The CESs are manually ordered, scaling their preference degrees based on
the events which incorporate the importance group(s). Importance (Imp(e))
of eth event is defined as follows28:

Imp(e) = c− ImpD(Sk) + 1 (22)

where c is the optimal number of the groups; ImpD(S k) is defined by means
of the importance degree of the group Sk to which the eth event belongs.

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

Prioritizing Coverage-Oriented Testing Process 15

Finally, choosing the events from the ordered groups, a ranking of CESs
is formed according to their descending preference degrees. The assignment
of preference degrees to CESs is based on the following rule:

(a) The CES under consideration has the highest degree if it contains the
events which belong to the “top” group(s) with utmost importance
degrees, i.e., that is placed within the highest part of group ordering.

(b) The CES under consideration has the lowest degree if it contains the
events which belong to the group(s) that are within the lowest part of
the “bottom” group(s) with least importance degree i.e., that is placed
within the lowest part of group ordering.

Therefore, the preference degree of CES can be defined by taking into
account both the importance of events (22) and the frequency of occurrence
of event(s) within them that is formulated as follows24:

Pref(CESq) =
n∑
e=1

Imp(e)fq(e) q = 1, . . . ,m ∈ N (23)

where m is the number of CESs, n is the number of events, Imp(e) is
importance degree of the eth event (22) andfq(e) is frequency of occurrence
of event e within CESq. This order determines the preference degree
(Pref(CESq)) of CESs as test cases (23).

Indirect Determination of the Preference Degree

Step 1. Construction of a set of events X = {xij} where i = 1, . . . , n ∈ N

is an event index, and j = 1, . . . , p ∈ N is an attribute index.
Step 2. Training the NN using adaptive CL algorithm (see Section 3.2).
Step 3. Classification of the events into c groups ((21), see Section 3.2).
Step 4. Determination of importance degrees of groups according to length

(�) of weight vectors.
Step 5. Determination of importance degrees of event groups ((22), this

present section).
Step 6. An ordering of the CESs for prioritizing the test process.

5. A Case Study

Based on the web-based system ISELTA (Isik’s System for Enterprise-
Level Web-Centric Tourist Applications), we now present a case study to
validate the testing approach presented in the previous sections.15 Both the
construction of ESGs, and generation of test cases from those ESGs, have

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

16 F. Belli, M. Eminov, N. Gökçe, and W. E. Wong

Fig. 2. Room definition/reservation process in ISELTA.

been explained in the previous papers of the first author.9−11 Therefore,
the case study concentrates on the test prioritizing problem.

ISELTA has been developed by our group in cooperation with a
commercial enterprise to market various tourist services for traveling,
recreation and vacation. It can be used by hotel owners, travel agents,
etc., but also by end consumers. A screenshot in Fig. 2 demonstrates how
to define and reserve rooms of different types.

5.1. Derivation of the Test Cases

Figure 3 depicts the completed ESG of the scenario described above and in
Fig. 2. Test cases can now be generated using the algorithms mentioned in
Section 3 and described in10−11 in detail. For the lack of space, reference is
made to these papers and the CESs generated are listed in Table 1.

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

Prioritizing Coverage-Oriented Testing Process 17

Fig. 3. Completed ESG for room definition/selection (solid arcs: event pairs (EP);
dashed.

Legend of Fig. 3:

1: Click on “Starting” 7: Password forgotten
2: Click on “Registering” 8: Click on “Request”
3: Registration carried out 9: Indicate service(s) offered
4: Click on “log in” 10: Indicate administrator
5: Logged in 11: Indicate agent
6: Click on “Password forgotten”

Table 1. CESs of ESG in Fig 3.

CES1: [4 5 4 5 9 1 4 5 10 1 4 5 11 1 4 5 9 2 3 4 5
10 2 3 2 3 1 4 5 11 2 3 4 6 4 6 7 8 1 2 3]

CES2: [1 4 5 9]
CES3: [2 3 4 6 7 8 2 3 4 5 10]
CES4: [4 5 11]
CES5: [4 6 7 8]

5.2. Determination of Attributes of Events

As a follow-on step, each event, i.e., the corresponding node in the ESG,
is represented as a multidimensional data point using the values of all nine
attributes as defined in the previous section. Estimating by means of the

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

18 F. Belli, M. Eminov, N. Gökçe, and W. E. Wong

Table 2. Data set of events.

Event No X1 X2 X3 X4 X5 X6 X7 X8 X9

1 1 8 10 39 0 6 4 0,1860 8
2 1 8 10 40 0 7 6 0,1519 9
3 2 5 10 41 6 7 −3 0,1519 11
4 1 7 10 35 0 14 3 0,2469 7
5 2 5 10 29 0 10 −3 0,2112 9
6 2 3 10 36 0 4 −1 0,2199 7
7 3 2 10 37 0 3 0 0,1218 9
8 4 4 10 38 0 3 −2 0,1218 10
9 3 4 10 17 30 3 −2 0,1494 9
10 3 4 10 22 0 3 −2 0,0698 9
11 3 4 10 30 0 3 −2 0,1911 9

Table 3. Obtained groups of events.

Length of weight Importance
Groups (3) and (13) Events vectors (�) Degree ImpD(Sk)

S1 9 2,07 2
S2 3,6,7,8,11 2,04 3
S3 1,2,4 1,97 4
S4 5 2,25 1
S5 10 1,73 5

ESG and ESG, the values of attributes for all events are determined and
the data set X = {x1, . . . , x11} ⊂ R9 is constructed as in Table 2.

5.3. Construction of the Groups of Events

For the data set gained from the case study (Fig. 2 and 3), the optimal
number c of the groups is determined to be 5 which leads to the groups
Sk, k = 1, . . . , 5. Importance degrees (ImpD(Sk)) of obtained groups are
determined by comparing the length of their weight vectors (�) and all
ImpD(Sk) values that are presented in Table 3.

5.4. Indirect Determination of Preference Degrees

As mentioned in the previous section, the preference degree of the CESs
is determined indirectly by (23) that depend on the importance of events
(22) and frequency of event(s) within CES. The ranking of the CESs is
represented in Table 4.

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

Prioritizing Coverage-Oriented Testing Process 19

Table 4. Ranking of CESs (walks).

Pref
PrefDeg. (CESq)(15) CESs CESs (walks)

1 126 CES1 [4 5 4 5 9 1 4 5 10 1 4 5 11 1 4 5 9 2 3 4 5
10 2 3 2 3 1 4 5 11 2 3 4 6 4 6 7 8 1 2 3]

2 29 CES3 [2 3 4 6 7 8 2 3 4 5 10]
3 13 CES2 [1 4 5 9]
4 11 CES5 [4 6 7 8]
5 10 CES4 [4 5 11]

Exercising the test cases (CESs, or walks) in this order ensure that
the most important tests will be carried out first. Moreover, the achieved
ranking of CESs complies with the tester’s view. Thus, an ordering of the
complete set of CESs (walks) is determined using the test suite generated
by the test process, i.e., we now have a ranking of test cases to make the
decision of which test cases are to be primarily tested. Undesirable events
can be handled in a similar way; therefore, we skip the construction of
ranking of the FCES.

6. Conclusions and Future Work

The model-based, coverage-and specification-oriented approach described
in the previous sections provides a novel and effective algorithm for
ordering the test cases according to their degree of preference. Such
degrees are determined indirectly through the use of the events specified
by several attributes, and not a single one. This is an important issue and
consequently, the approach introduced radically differs from the existing
ones.

The relevant attributes are visualized by means of a graphical
representation (here, given as a set of ESGs). The events (nodes of ESG)
are classified using unsupervised neural network clustering. The approach
is useful when an ordering of the tests due to restricted budget and time
is required. Run-time complexity of this approach is of o(n2), assuming
that the number of events (n) greater than the number of attributes (p),
otherwise it is o(p2).

We plan to apply our prioritization approach to a more general class
of testing problems, e.g., to multiple-metrics-based testing where a family
of software measures is used to generate tests.30 Generally speaking, the

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

20 F. Belli, M. Eminov, N. Gökçe, and W. E. Wong

approach can be applied to prioritize the testing process if the SUT is
modeled by a graph of the nodes which represent events or sub-systems
of various granularities (modules and functions, or objects, methods,
classes, etc.).

References

1. Binder, R.V.: Testing Object-Oriented Systems. Addison-Wesley, 2000.
2. Gerhart, S., Goodenough, J.B.: Toward a Theory of Test Data Selection,

IEEE Trans. On Softw. Eng., 1975, pp. 156–173.
3. Srivastava, P.R.: Test Case Prioritization, Journal of Theoretical and Applied

Information Technology, Vol. 4, No. 3, pp. 178–181.
4. Bryce, R.C., Colbourn, Ch.C.: Prioritized Interaction Testing for Pair-

wise Coverage with Seeding and Constraints, Information and Software
Technology, 48, 2006, pp. 960–970.

5. Elbaum, S., Malishevsky, A., Rothermel, G.: Test Case Prioritization: A
Family of Empirical Studies, IEEE Transactions on Software Engineering,
28(2), 2002, pp. 182–191.

6. Belli, F., Budnik, Ch. J., White, L.: Event-Based Modeling, Analysis and
Testing of User Interactions — Approach and Case Study, J. Software Testing,
Verification & Reliability, John Wiley & Sons, 16(1), 2006, pp. 3–32.

7. Belli, F., Budnik, C.J.: Test Minimization for Human-Computer Interaction,
J. Applied Intelligence, 7(2), Springer, 2007, pp. 161–174.

8. Edmonds, J., Johnson, E.L.: Matching: Euler Tours and the Chinese Postman,
Math. Programming, 1973, pp. 88–124.

9. Belli, F.: Finite-State Testing and analysis of Graphical User Interfaces, Proc.
12th Int’l. Symp. Softw. Reliability Eng. (ISSRE’01), 2001, pp. 43–43.

10. Belli, F., Budnik, Ch. J., White, L.: Event-Based Modeling, Analysis and
Testing of User Interactions — Approach and Case Study, J. Software Testing,
Verification & Reliability, John Wiley & Sons, 16(1), 2006, pp. 3–32.

11. F. Belli, F., Budnik, C.J.: Test Minimization for Human-Computer
Interaction, J. Applied Intelligence, 7(2), Springer, 2007, pp. 161–174.

12. Eminov, M.E.: Fuzzy c-Means Based Adaptive Neural Network Clustering.
Proc. TAINN-2003, Int. J. Computational Intelligence, 2003, pp. 338–343.

13. Kim, D.J., Park, Y.W., Park, D.J.: A Novel Validity Index for Clusters, IEICE
Trans. Inf & System, 2001, pp. 282–285.

14. Eminov, M., Gökçe, N.: Neural Network Clustering Using Competitive
Learning Algorithm, Proc. TAINN 2005, 2005, pp. 161–168.

15. Maeda, M., Miyajima, H., Marashima, S.: An adaptive Learning and
Self-Deleting Neural Network for Vector Quantization, IEICE Trans.
Fundamentals,1996, pp. 1886–1893.

16. Maeda, M., Miyajim, H.: Competitive Learning Algorithm Founded on
Adaptivity and Sensitivity Deletion Method, IEICE Trans. Fundamentals,
2000, pp. 2770–2774.

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

Prioritizing Coverage-Oriented Testing Process 21

17. Belli, F., Budnik, Ch. J., Linschulte, M., Schieferdecker, I.: Testen Web-
basierter Systeme mittels strukturierter, graphischer Modelle-Vergleich
anhand einer Fallstudie, Model-based Testing 2006, LNI, Vol. P-94,
pp. 266–273, GI, Bonn, October.

18. Fu, L.M.: Neural Networks in Computer Intelligence, McGraw-Hill, New York
(1994).

19. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: “Neural-Gas” Network for
Vector Quantization and Its Application to Times-series Prediction, IEEE
Trans. Neural Networks, Vol. 4, No. 4, 1993, 558–569.

20. Kohonen, T.: Self-organization and Associative Memory. Springer-Verlag,
Berlin, 1989.

21. Brownlee, J.: Lazy and Competitive Learning, Technical Report, Australia,
2007.

22. George, F., Luger, William, A.: Stubblefield. Artificial Intelligence: Structures
and Strategies for Complex Problem Solving, USA: Addison Wesley Longman
Inc, 1997.

23. Kohonen, T.: The self-organizing map, Proceedings of the IEEE, Vol. 78, Sep,
1990, pp. 1464–1480.

24. Teuvo Kohonen, Self-Organizing Maps, Berlin Heidelberg:Springer-Verlag,
2001.

25. B. Fritzke, “Some competitive learning methods,” Systems Biophysics,
Institute for Neural Computation, Ruhr-Universitat Bochum, Germany, Apr
1997.

26. Rummelhart, D.E., Zipser, D.: Competitive Learning, J. Cognitive Science,
1985, pp. 75–112.

27. Graf, A.B.A., Smola, A.J., Borer, S.: Classification in a Normalized Feature
Space using Support Vector Machines, IEEE Trans. Neural Networks, Vol.
14, No. 3, 2003, 597–605.

28. Gökçe, N., Eminov, M., Belli, F.: Coverage-Based, Prioritized testing Using
Neural Network Clustering, The 21st International Symposium on Computer
and Information Sciences, ISCIS 2006 Proceedings, LNCS volume 4263,
pp. 1060–1071.

29. Belli, F., Eminov, M., Gökçe, N.: Prioritizing Coverage-Oriented Testing
Process- An Adaptive-Learning-Based Approach and Case Study, The Fourth
IEEE International Workshop on Software Cybernetics, IWSC2007, 24 July,
Beijing, China.

30. Neate, B., Warwick, I., Churcher, N.: CodeRank: A New Family of Software
Metrics, Proc. Australian Software Engineering Conference – ASWEC 2006,
IEEE Comp. Press, 2006, pp. 369–377.

May 4, 2011 14:7 9in x 6in b968-ch01 Adaptive Control Approach for Software. . .

This page intentionally left blankThis page intentionally left blank

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Chapter 2

STATISTICAL EVALUATION METHODS FOR V&V
OF NEURO-ADAPTIVE SYSTEMS

Y. LIU

Motorola Mobility Inc., Libertyville, IL 60048, USA
a60046@motorola.com

J. SCHUMANN

SGT/NASA Ames, Moffett Field, CA 94035, USA
Johann.M.Schumann@nasa.gov

B. CUKIC

Lane Department of Computer Science and Electrical Engineering
West Virginia University

Morgantown, WV 26505, USA
cukic@csee.wvu.edu

Biologically inspired soft computing paradigms such as neural networks are
popular learning models adopted in online adaptive systems for their ability to
cope with the demands of a changing environment. However, the acceptance
of adaptive controllers is limited by the fact that methods and tools for the

analysis and verification of such systems are still in their infancy. Generic
Verification and Validation (V&V) procedures do not exist. The reliability
of learning, performance, convergence or prediction for neural network models
and their applications is hard to guarantee.

In this paper, we present several statistical evaluation methods proposed
for the V&V of neuro-adaptive systems. These methods include support
vector data description based novelty detection, statistical inference based
evaluation of learning, and probabilistic measures of prediction performance.
These evaluation methods are illustrated as dynamic monitoring tools for two
types of neural networks used in the NASA Intelligent Flight Control System
(IFCS) as adaptive learners: the Dynamic Cell Structure (DCS) network and
the Sigma-Pi network.

1. Introduction

In recent years, the use of biologically inspired soft computing models
such as neural networks for online adaptation to accommodate system

23

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

24 Y. Liu, J. Schumann and B. Cukic

failures and recuperate against environmental changes has revolutionized
the operation of real-time automation and control applications. A variety
of approaches for adaptive control, based upon self-learning computational
models such as neural networks and fuzzy logic, have been developed.1,2

The neural network models in these systems play an essential role as they
adapt to the changes and provide a mechanism for accommodation of
system failures. In the case of flight control applications, failure conditions
require prompt reactions. The neural network is expected to adapt to
such failure conditions fast enough to provide accommodation in real-
time. However, the neural network’s learning behavior is subject to the
training data set acquired in flight, i.e., unknown at the system design
phase. Unreliable predictions are likely to occur at poorly fitted regions. It is
possible that abrupt environmental changes or unforeseen failure conditions
beyond the learned domain will cause poor prediction performance.
Such conditions challenge the use of neural network models in online
adaptive systems and pose a serious problem for system verification and
validation.

Applications such as flight control, process control, or robotic vehicles
require adaptation because of the changes in the environment. For
such systems, it is impossible to build a static model that is able to
provide reliable performance in all situations, especially under unforeseen
conditions. The popular approach to employ such systems is to develop
an offline model, usually a pre-trained model for known functional
regions. Then an online adaptive model is constructed in order to
enable and optimize system’s functionality in unknown functional regions.
As an emerging application of online adaptive systems, adaptive flight
control is one of the most promising real-time automation and control
applications. The system achieves adaptability through judicious online
learning, aids the adaptive controller to recover from operational damage
(sensor/actuator failure, changed aircraft dynamics: broken aileron or
stabilator, etc.). Some of these conditions are severe enough to be considered
failure mode conditions that significantly affect system performance.
National Aeronautics and Space Administration (NASA) conducted series
of experiments evaluating adaptive computational paradigms (neural
networks, AI planners) for providing failure accommodation capabilities
in flight control systems following sensor and/or actuator failures.
Experimental success suggests significant potential for further development
and deployment of adaptive controllers.3,4 Nevertheless, the (in)ability
to provide a theoretically sound and practical verification and validation

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 25

method remains one of the critical factors limiting wider use of “intelligent”
flight control.5–7

Because adaptive systems include complex learning algorithms, no
standardized way of performing performance analysis and V&V exists.
Furthermore, certification authorities are reluctant to certify novel
components, architectures, and software algorithms. The related work on
verification and validation of neuro-adaptive system has not caught up with
the advances of the learning techniques for adaptation. Existing approaches
still heavily focus on static analysis using stability theories and empirical
validation by vigorous offline testing. There is limited effort that attempts
to provide a guidance to the V&V of neuro-adaptive systems. In 2002,
NASA developed a software verification process guide7 addressing the V&V
issues of adaptive flight control systems. In addition, there is an increasing
attention on statistical evaluation methods that basically monitor the online
adaptation of the system in order to provide performance assessment. The
use of Bayesian techniques to estimate neural network “quality” is presented
in detail in Ref. 8. Another metric called validity index for Radial Basis
Function (RBF) neural networks has been introduced in Ref. 9. Monitoring
approaches for neuro-adaptive controllers, based on Lyapunov stability are
discussed in Ref. 10.

Neural networks are widely used for function approximation, prediction
and pattern recognition. The requirements on such models are usually
described as satisfying certain criteria of precision and/or accuracy. Typical
metrics used for performance evaluation of neural networks are Mean
Square Error (MSE), Squared Error, etc. They are used to measure
the learning performance of a neural network model. For prediction
performance evaluation, the most popular metrics are prediction/confidence
intervals defined to measure the reliability of network output. In the context
of an neural network based adaptive control system, the online neural
network is expected to promptly respond to (adapt to) environmental
changes. Therefore, within a real time adaptive system, assuring the
performance of the online neural network requires online evaluation of its
adaptation performance. The evaluation should be performed to examine:
(1) how fast the neural network responds to the changes, and (2) how well
it accommodates the changes.

In addition to the nonlinearity and complexity of the neural
network learning, system uncertainties coupled with real-time constraints
make traditional V&V techniques insufficient for neuro-adaptive systems.
Development and implementation of a non-conventional V&V technique

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

26 Y. Liu, J. Schumann and B. Cukic

Output Layer

Input Layer

Controller

Physical
Process

Offline
Model

Online Adaptive
Component

Fig. 1. A typical adaptive flight control application.

is a challenging task. After a thorough examination of discrete formal
analysis on several learning paradigms,11 we understood the impact that
environmental changes (learning data) have on system behavior. For a
safety-critical system such as flight control, these changes must be observed,
detected and well-understood before system deployment. Further, the
adaptation caused by such changes must be monitored in real-time and
the consequences of the adaptation must be measured and controlled.

Figure 1 illustrates a typical neuro-adaptive flight control application
where the online adaptation is carried out by neural network models. Our
research focuses on the learning performance of the neural network models
as well as the two layers of the online adaptive component, referred to
as the input layer and the output layer in Fig. 1. At the input layer, environ-
mental changes are captured through sensor readings. These independent
values are coupled with discrepancies between the response of a reference
model and the output of an parameter identification model as they
react to the current environmental conditions. Together, they are fed
into the adaptive component as learning data. The learner adapts to
the training data and may accommodate certain failure conditions. It is
possible that abrupt/abnormal environmental changes, especially severe
failure conditions, cause dramatic adaptation behavior and transient
unreliable performance of the learner. As the adaptive element learns and
adapts to the environmental changes, it also produces certain parameter
values as corrections in response to the changes. Thus, at the output layer,

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 27

the learner recalls what it has learned and generates derivative corrections
as compensation to the offline model output. The corrected output is then
sent to the next component (e.g., a controller) for further actions. The
validity and correctness of such corrections are crucial to system safety.

At the input layer of a neuro-adaptive system, the failure-prone data
need to be analyzed and potential failures detected. When a failure occurs,
the learner learns the failure conditions and adapts to the corresponding
environmental changes. At the output layer, the system safety relies greatly
on the accommodation performance of the learner. The reliability of the
predictions made by the learner depends on how well and how fast the
learner adapts to failure conditions. In order to evaluate the accommodation
performance of the learner and validate its prediction performance, a
performance index such as confidence level must be measured as an
indication of trustworthiness and reliability of the system output.

We seek for validation methods at all layers. Our investigation suggests
a need for three different techniques: (1) near real-time failure detection at
the system input layer, (2) online monitoring and evaluation of the neural
network’s learning performance, and (3) a feasible validation approach to
validate the prediction performance at the system output layer. Thus,
we propose a novel validation approach that consists of three statistical
evaluation techniques to perform validation. The failure detection at the
input layer relies on robust novelty detection techniques. Such techniques
are used to examine the learning data on which the adaptive component
is trained and detect the failures efficiently and accurately. The online
monitoring estimates the adaptation performance of the neural network
by analyzing the network’s structural and parametric properties. The
validation at the output layer is performed after the adaptation to verify
the correctness of the output and evaluate the accommodation abilities of
the learner.

Accordingly, we developed three statistical evaluation methods as a
part the effort to validate the NASA Intelligent Flight Control System
(IFCS). At the input layer, a real-time failure detection technique is
implemented before the data can propagate into the learner and cause
adaptation. As an independent novelty detector, it detects failures based
on the knowledge collected from the nominal system behavior only. During
learning, we estimate how the quality of each parameter of the network
(e.g., weight) influences the output of the network by calculating parameter
sensitivity and parameters confidence for the neural network. When failure
occurs, the online neural network accommodates the failure in real-time

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

28 Y. Liu, J. Schumann and B. Cukic

and predicts certain parameter values as compensations/corrections to
the offline model output in response to the failure conditions. Hence,
at the output layer, an online reliability measure associated with each
prediction produced by the learner is generated for validity check. At
last, all approaches serve as major components of a validation framework
that can be generalized to extensive online neural network-based adaptive
control systems.

In the rest of this paper, Section 2 presents our findings in related
research in V&V of neuro-adaptive systems as well as the existing
approaches for validating neural networks. Section 3 first introduces a
neuro-adaptive flight control application where two different types of neural
networks are deployed as its online learning component for adaptation
for failure accommodation. Then three different statistical approaches are
described: a failure detection method using a fast support vector data
description algorithm, the sensitivity analysis for both neural networks to
dynamically monitor the networks’ learning performance; and the validity
index (VI) as a reliability measure for the network output of Dynamic Cell
Structures (DCS) and confidence levels for the output of Sigma-Pi network.
Section 4 concludes the paper with a few remarks on how these statistical
methods can be applied to other neuro-adaptive systems.

2. V&V of Neuro-Adaptive Systems

As an emerging paradigm, the neuro-adaptive systems are becoming more
popular. Yet, the research efforts on V&V of such systems are still rare.
Recently, much effort has been dedicated to analyzing theoretical properties
of online learning. Methods that can be applied in an online fashion to
assure the performance are the subject of interest too. Most proposed
approaches address the significant impact of learning data on system
behavior and investigate certain properties of learning in order to ensure
system safety through online monitoring or rule checking. We summarize
the existing approaches into two categories, namely, static V&V approaches
and dynamic V&V approaches.

2.1. Static V&V Approaches

Most static verification and validation methods focus on the inherent
properties of online adaptive learning. These methods are used to
theoretically establish the correctness of the learning behavior with

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 29

respect to the requirement specifications. Researchers often employ
mathematically rigorous theories to prove functional properties and/or
operational properties. Approximation theory is used to prove certain
families of neural networks as universal approximators. Examples are Multi-
Layer Perceptron (MLP) networks and RBF networks. These two types of
neural networks are very popular choices for adaptive learners and have
been proven to be universal approximators.12 It is claimed that an MLP (or
RBF) network with sufficiently large number of neurons can approximate
any real multi-variate continuous function on a compact set. However, the
number of neurons has to be pre-defined before the system deployment.
Usually, the number of neurons an MLP/RBF network requires to map a
complex function may have to be very large. In the instance of an online
adaptive system, the proven theory offers little guidance in validating the
online learning performance of neural network based adaptation.

Empirical methods are also available for testing and verifying the
adaptive learner against certain safety and reliability requirements.13 The
train-test-retrain scheme for validating neural network performance is a
popular V&V approach. Yet, this time-consuming procedure is not suitable
for an online adaptive system due to the fact that the network has to learn
in near real-time. The bias-variance analysis provides guidelines on the
generalization performance of a learning model, but can hardly be applied
to improve the prediction performance of an online learning system.

The static verification methods using formal methods and approx-
imation theories provide an insightful analysis on neural network-based
adaptive systems. For most neural computing systems, empirical methods
are practical for performance validation. However, there is a widespread
agreement that such static approaches are inapplicable to online adaptive
systems, whose function evolves over time and responds differently to
various environmental changes.

2.2. Dynamic V&V Approaches

Instead of statically validating the learning properties of a neuro-adaptive
system, dynamic approaches adopt the online monitoring approach to
cope with the evolving performance of neural networks. These methods
concentrate on two different aspects (phases).

1. For any learning system, training data is always gathered before the
learner is used for prediction. Verification of the training data includes

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

30 Y. Liu, J. Schumann and B. Cukic

the analysis of its appropriateness and comprehensiveness. The strong
emphasis on domain specific knowledge, its formal representation and
mathematical analysis is suggested in Ref. 14. Del Gobbo and Cukic
propose the analysis of the neural network with respect to conditions
implying the existence of the solution (for function approximation) and
the reachability of the solution from any possible initial state. Their
third condition can be interpreted as condition for preservation of the
learned information. This step is not fully applicable to on-line learning
applications since training data are related to the real-time evolution of
the system state, rather than the design choice. However, as proven by
our previous investigation using formal methods,11 the training data has
a very significant impact on system behavior. In a safety-critical system,
the ability of “novelty detection” is crucial to system safety. It helps
to detect suspicious learning data that is potentially hazardous to the
system operation.

2. Online monitoring techniques have been proposed to validate the
learning process. In a recent survey of methods for validating online
learning neural networks, Raz13 acknowledges the online monitoring
techniques as a significant potential tool for the future use. Another
promising research direction, according to Raz, is periodic rule extraction
from an online neural network and partial (incremental) re-verification
of these rules using symbolic model checking. In Ref. 15, Taylor et al.
focus their effort on the Dynamic Cell Structure. They propose a
prototype for real-time rule extraction in order to verify the correctness
of DCS learning performance. In Ref. 16, M. Darrah et al. present rule
extraction from DCS network learning and suggest future examination
of performance based on such rules. Practical hurdles associated with
this approach include determining the frequency of rule extraction and
impracticality of near real-time model checking of complex systems.

Yerramalla et al. develop a monitoring technique for the DCS neural
network embedded in the IFCS17,18 based on Lyapunov stability theory.
The online monitors operate in parallel to the neural network with the goal
of determining whether (or not), under given conditions, the neural network
is convergent, meaning that all state transition trajectories converge to a
stationary state. The online monitor is theoretically founded and supported
by an investigation of mathematical stability proofs that can define the
engagement (or disengagement) of the online monitor.

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 31

We notice that efforts exist to validate the prediction performance,
where the system is in operation after learning for a certain period of
time. In some cases, neural networks are modified to provide support for
testing based (or online) validation of prediction performance. For example,
Leonard et al.9 suggest a new architecture called Validity Index Net. A
Validity Index network is a derivative of Radial Basis Function (RBF)
network with the additional ability to calculate confidence intervals for its
predictions based on the probability density of the “similar” training data
observed in the past.

2.3. V&V of Neural Networks

Because online learning systems are often used in life-critical (e.g., flight
control) and mission-critical (e.g., space) applications, they are subject to
strict certification standards, leaving a wide technological gap between the
requirements of the application domain and the capabilities of available
technologies; the goal of our research is to narrow this gap. Hence, we
survey existing approaches to V&V of neural networks.

Traditional literature describes adaptive computational paradigms,
neural networks in particular, with respect to their use, as function
approximators or data classification tools. Validation on these systems
is usually based on a train-test-re-train empirical procedure. Some
bibliographic references also propose methods as part of the training
algorithm of neural networks for validation.5,19 The ability of interpolating
and/or extrapolating between known function values is measured by certain
parameters through testing. This evaluation paradigm can be reasonably
effective only for pre-trained adaptive systems, which does not require
online learning and adaptation and remain unchanged in use. In Ref. 20,
Fu interprets the verification of a neural network to refer to its correctness
and interprets the validation to refer to its accuracy and efficiency. He
establishes correctness by analyzing the process of designing the neural
network, rather than the functional properties of the final product. Gerald
Peterson presents another similar approach in Ref. 21 by discussing
the software development process of a neural network. He describes the
opportunities for verification and validation of neural networks in terms of
the activities in their development life cycle.

Verification of the training process typically examines the convergence
properties of the learning algorithm, which is usually pre-defined by some

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

32 Y. Liu, J. Schumann and B. Cukic

criteria of error measure. In Ref. 22, Hunt et al. investigate all different
methods for error estimation techniques and make detail comparison
among them. Nonetheless, effective evaluation methods of interpolation and
extrapolation capabilities of the network and domain specific verification
activities are still based on empirical testing.23 Literature addressing the
problem analytically are rare.

Among existing approaches of V&V of dynamic neural networks,
statistical evaluation methods are regarded as practical and effective in
detecting novelties and validating learning and prediction performances.
In an attempt to solve the dilemma of plasticity and stability for
neural networks, Grossberg24,25 derives a new paradigm, referred to as
the Adaptive Resonance Theory (ART-1/2/3). Within such a network,
there are two components charging seen and unseen data respectively.
As interesting as is, it provides better understanding for our problem
other than applicable tools for validation and verification. Another
new architecture which can be extended for our research goal is the
aforementioned Validity Index network presented by Leonard et al.9 The
validity index in a Radial Basis Function neural network is a confidence
interval associated with each network prediction for a given input. It
can be viewed as a reliability measure for the RBF network’s prediction
performance.

3. Statistical Evaluation of Neuro-Adaptive Systems

Based on the investigation results presented in the previous section, it is our
conclusion that dynamic and efficient statistical evaluation methods can
support effective and practical monitoring techniques for V&V of neuro-
adaptive systems. In this chapter, we describe three novel methods that
target different aspects of the neural network based adaptation performance
evaluation, all of which are deployed and tested in a case study for V&V of
the IFCS.

3.1. Neural Network-Based Flight Control

We illustrate our approach with the NASA F-15 IFCS project. Its aim is
to develop and test-fly a neuro-adaptive intelligent flight control system for
a manned F-15 aircraft. Two principal architectures have been developed:
the Gen-I architecture uses a DCS neural network as its online adaptive
component, the Gen-II architecture a Sigma-Pi network. Both network

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 33

architectures and their training algorithms will be described in more details
below. The target aircraft for this controller is a specifically configured
NASA F-15 jet aircraft, which has been highly modified from a standard
F-15 configuration to include canard control surfaces, thrust vectoring
nozzles, and a quad-redundant digital fly-by-wire flight control system. As
visible in Fig. 1, the canards, which are small winglets, are located in front
of the wings. By moving them, the airflow over the wing can be modified
in a wide range. Thus, this aircraft can be used to simulate failures like
damage to the wings during test flights.

Figure 2 shows the basic architecture of the Gen-I and Gen-II
controllers: pilot stick commands Θcmd are mixed with the current
sensor readings Θ (e.g., airspeed, angle of attack, altitude) to form the
desired behavior of the aircraft (measured as roll-rate, pitch-rate, and
yaw-rate). From these data, the PID controller calculates the necessary
movements of the control surfaces (e.g., rudder, ailerons) and commands
the actuators. The controller incorporates a model of the nominal aircraft
dynamics. If the aerodynamics of the aircraft changes (e.g., due to a
damaged wing or a stuck rudder), there is a deviation between desired and
actual state. The neural network is trained during operation to minimize
this deviation. Whereas in the Gen-I architecture, the appropriate control
derivatives are modified with a neural network, Gen-II uses a dynamic
inverse controller with control augmentation, i.e., the neural network
produces a control correction signal. The inputs of the neural network
are typically the current state of the aircraft (i.e., the sensor signals), the
commanded input, and the correction signal of the previous time frame.
For details on the control architecture see Refs. 1, 26.

+

cm
df

ilt
er

pi
lo

t c
om

m
an

ds

Θ

Θ
θcmdC

Controller

Network

Neural

Fig. 2. IFCS Generic Adaptive Control Architecture.

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

34 Y. Liu, J. Schumann and B. Cukic

3.2. The Neural Networks

For safety-critical systems, a “black box” approach to the neural network’s
performance assessment is definitely insufficient. We therefore must
estimate how the quality of each parameter of the network (e.g., weight)
influences the output of the network by calculating parameter sensitivity
and parameters confidence for the neural networks implemented in both
Gen-I and Gen-II IFCS. Such calculations are very specific to the inherent
structural and learning properties of the neural network models. Thus, we
first introduce these two different types of neural networks as follows.

3.2.1. Dynamic Cell Structure Network

The Dynamic Cell Structures network is derived as a dynamically growing
structure in order to achieve better adaptability. DCS can be seen as a
special case of Self-Organizing Map (SOM) structures as introduced by
Kohonen27 and further improved to offer topology-preserving adaptive
learning capabilities that can respond and learn to abstract from a much
wider variety of complex data manifolds.28,29 In the IFCS Gen-I controller,
the DCS provides derivative corrections as control adjustments during
system operation. It has been proven to outperform Radial Basis Function
(RBF) and Multi-Layer Perceptron network models.15,30 As a crucial
component of a safety critical system, DCS network is expected to give
robust and reliable prediction performance in operational domains.

The DCS network adopts the self-organizing structure and dynamically
evolves with respect to the learning data. It approximates the function that
maps the input to the output space. At last, the input space is divided into
different regions, referred to as the Voronoi regions.28,29,31 Each Voronoi
region is represented by its centroid, a neuron associated with its reference
vector known as the “best matching unit” (bmu). Further, a “second best
matching unit” (sbu) is defined as the neuron whose reference vector is
the second closest to a particular input. An Euclidean distance metric is
adopted for finding both units. The set of neurons connected to the bmu
are considered its neighbors and denoted by nbr.

The training algorithm of the DCS network combines the competitive
Hebbian learning rule and the Kohonen learning rule. The Hebbian learning
rule is used to adjust the connection strength Cij between two neurons.
It induces a Delaunay Triangulation into the network by preserving the
neighborhood structure of the feature manifold. Denoted by Cij(t), the
connection between neuron i and neuron j at time t is updated as

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 35

follows:

Cij(t+ 1) =

1 (i = bmu) ∧ (j = sbu)
0 (i = bmu) ∧ (Cij < θ)

∧(j ∈ nbr\{sbu})
αCij(t) (i = bmu) ∧ (Cij ≥ θ)

∧(j ∈ nbr\{sbu})
Cij(t) i, j �= bmu

where α is a pre-defined forgetting constant and θ is a threshold preset for
dropping connections.

The Kohonen learning rule is used to adjust the weight representations
of the neurons (�wi), which are activated based on the best-matching
methods during the learning. If needed, new neurons are inserted. After
learning, when DCS is used for prediction (the recall mode), it will recall
parameter values at any chosen dimension. It should be noted that the
computation of an output is different from that during training. When
DCS is in recall mode, the output is computed based on two neurons for
a particular input. One is the bmu of the input; the other is the closest
neighbor of the bmu other than the sbu of the input. In the absence f
neighboring neurons of the bmu, the output value is calculated using the
bmu only. Since our performance estimation does not depend on the specific
learning algorithm, it will not be discussed in this paper. For details on DCS
and the learning algorithm see Refs. 28, 29, 31, 32.

Over every training cycle, let ∆wi = wi(t + 1) − wi(t) represent
the adjustment of the reference vector needed for neuron i, the Kohonen
learning rule followed in DCS computes ∆�wi as follows.

∆�wi =

εbmu(m− wi(t)) i = bmu

εnbr(m− wi(t)) i ∈ nbr
0 (i �= bmu) ∧ (i /∈ nbr)

where �m is the desired output, and 0 < εbmu, εnbr < 1 are predefined
constants known as the learning rates that define the momentum of the
update process. For every particular input, the DCS learning algorithm
applies the competitive Hebbian rule before any other adjustment to ensure
that the sbu is a member of nbr for further structural updates.

The DCS learning algorithm is briefly described in Fig. 3. According
to the algorithm, N is the number of training examples. Resource values
are computed at each epoch as local error measurements associated with
each neuron. They are used to determine the sum of squared error of the

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

36 Y. Liu, J. Schumann and B. Cukic

Initialization;

Repeat until stopping criterion is satisfied;

{
Repeat N times

{
Determine the bmu and sbu;

Update lateral connections;

Adjust the weights;

Update resource values;

}

If needed, a new neuron is inserted;

Decrement resource values;

}

Fig. 3. A brief description of the DCS learning algorithm.

whole network. Starting initially from two connected neurons randomly
selected from the training set, the DCS learning continues adjusting its
topologically representative structure until the stopping criterion is met.
The adaptation of lateral connections and weights of neurons are updated
by the aforementioned Hebbian learning rule and Kohonen learning rule
respectively. The resource values of the neurons are updated using the
quantization vector. In the final step of an iteration, the local error is
reduced by inserting new neuron(s) in certain area(s) of the input space
where the errors are large. The whole neural network is constructed in a
dynamic way such that in the end of each learning epoch, the insertion or
pruning of a neuron is triggered when necessary.

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 37

Basis fct

xn

x2 o

...
... ...

Σ
Π

x1

w1

wm

0 2 4 6 8 10 12 14 16 18 20
−12

−10

−8

−6

−4

−2

0

2

4

Fig. 4. Architecture of ΣΠ network (left). Development of the NN weights over time
during adaptation (right). The failure occurred at t = 1.5 s.

3.2.2. Sigma-Pi Neural Network

The IFCS Gen-II controller uses a Sigma-Pi (ΣΠ) neural network,33 where
the inputs x are subjected to arbitrary basis functions (e.g., square,
scaling, logistic function). Then Cartesian products of these function values
are calculated. The final output of the network o is a weighted sum of
these products (Fig. 4 (left)). The functionality of a Sigma-Pi network is
defined by

o =
∑
i

wi
∏
j

β(xj)

with weights wi and β(xj) the basis functions. The sequence of the operators
(ΣΠ) gave this network architecture its name. During the training, the
weights wi are modified as to minimize the tracking error of the controller.
The neural network is trained in an online fashion using the e-modification
rule,1 an improved variant of the gradient descent learning rule. As our
approach to confidence and sensitivity analysis does not depend on the
specific training algorithm for the network, it will not be discussed here.

Figure 4 (right) shows how the network weights wi develop over time
during an operational scenario. At t = 1.5 s, a failure occurs, triggering
adaptation of the neural network.

3.3. Failure Detection Using Support Vector Data Description

In a safety-critical system like IFCS, a novelty detector can provide failure
detection capabilities based on the the duration and the degree of the

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

38 Y. Liu, J. Schumann and B. Cukic

novel event. We can also use the novelty detector to observe and help
understand the impact of the failure conditions on the adaptive learning
behavior of the online neural network. An effective and efficient detection
method at the input layer offers not only reliable inference on the learning
data, but also sufficient response time for manual intervention to take place.
For example, when an extremely severe failure occurs, we might have to
discard the learning data and prevent it from impairing the performance of
the learner. Prompt human operations is required. Efficient evaluation and
detection will give the system the freedom to take necessary actions.

Support Vector Data Description (SVDD) has a proven record as a one-
class classification tool for novelty detection.34,35 In particular, it is highly
advantageous in applications whose “abnormal” event/data is extremely
costly or near impossible to obtain. We apply SVDD to realize the novelty
detection as a major step of our validation approach. However, due to space
complexity of matrix operations, the optimization process becomes memory
and time consuming when n, the size of training set increases. Hence,
efficiency needs to be improved for data sets of large size. We present an
algorithm that first reduces the space complexity by breaking the training
data set into subsets at random and apply SVDD to each subset. Then,
based on two lemmas of random sampling and SVDD combining, we merge
the data descriptions into a “common decision boundary”. Provided with
the fact that usually the number of support vectors is relatively few with
respect to n, the search for a common decision boundary for a training data
set of size n in a d-dimension space can be bounded at O(d

3
2n

3
2 logn) steps.

The method of support vector data description originates from the idea
of finding a sphere with the minimal volume to contain all data.36 Given a
data set S consisting of N examples xi, i = 1, . . . , N , the SVDD’s task is to
minimize an error function containing the volume of the sphere. With the
constraint that all data points must be within the sphere, which is defined
by its radius R and its center a, the objective function can be translated
into the following form by applying Lagrangian multipliers:

L(R, a, αi) = R2 −
∑
i

αi{R2 − (xi − a)2},

where αi > 0 is the Lagrange multiplier. L is to be minimized with respect
to R and a and maximized with respect to αi. By solving the partial
derivatives of L, we also have: ∑

i

αi = 1;

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 39

and

a =
∑
i

αixi,

which gives the Lagrangian with respect to αi:

L =
∑
i

αi(xi · xi)−
∑
i,j

αiαj(xi · xj),

where αi ≥ 0 and
∑

i αi = 1. By replacing some kernel functions K(x, y)
with the product of (x, y) in the above equations, in particular, the Gaussian
kernel function K(x, y) = exp(−‖x− y‖2/s2), we have:

L = 1−
∑
i

α2
i −

∑
i�=j

αiαjK(xi, xj).

By applying kernel functions, we can have a better description of the
boundary. The application of kernel functions injects more flexibility to
the data description. According to the solution that maximizes L, a large
portion of αi’s become zero. Some αi’s are greater than zero and their
corresponding objects are those called support objects. Support objects
lie on the boundary that forms a sphere that contains the data. Hence,
object z is accepted by the description (within the boundary of the sphere)
when:

‖z − a‖2 =

(
z −

∑
i

αixi

)(
z −

∑
i

αixi

)
≤ R2.

Similarly, by applying the kernel function, the formula for checking an
object z now becomes:

1− 2
∑
i

αiK(z, xi) +
∑
i,j

αiαjK(xi, xj) ≤ R2.

Since the SVDD is used as a one-class classifier, in practice, there is no
actual outliers well defined other than those we randomly draw from the
rest of the space outside the target class. Hence, by applying the SVDD,
we can only obtain a relatively sound representation of the target class.
To detect outliers, more precise criteria should be inferred from empirical
testings or pre-defined thresholds. In addition, most real-world data are
highly-nonlinear and thus a sphere-like boundary would be almost useless
for novelty detection. In order to obtain a “soft boundary”, Tax et al.
introduces the parameter C, pre-defined as tradeoff between the volume of

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

40 Y. Liu, J. Schumann and B. Cukic

our data description and the errors. In general, C ≤ 1
nf

, where f is the
fraction of outliers that are allowed to fall outside the decision boundary
over the total number of data points in S.36 And the Lagrangian form L is
rewritten as:

L(R, a, ξ) = R2 + C
∑
i

ξi.

And the constraints are:

‖xi − a‖2 ≤ R2 + ξi, ∀ i.
By applying Lagrangian multipliers, the above Lagrangian can be

simplified as follows.
We are to maximize L with respect to α:

L =
∑
i

αi(xi · xi)−
∑
i,j

αiαj(xi · xj)

with 0 ≤ αi ≤ C and
∑
i αi = 1.

There are three objects obtained from the final solution of maximizing
L, which are outliers, support vectors and the rest of the data points that are
confined by the boundary. Outliers are those data points that lie outside the
boundary. They are considered “novelties” in this case. Support vectors are
those data points that sit on the boundary. For support vectors, 0 < αi ≤ C.
A large portion of the data have αi = 0 and these are the data points that
lie inside the boundary. Therefore, the center of the hyper-sphere are in fact
determined by a very small portion of the data, the support vectors. And
the fraction of those data points that are support vectors is a “leave-one-out
estimate of the error on the target data set.”36 Therefore, we have:

E[P (error on the target set)] =
number of support vectors

N
.

Furthermore, SVDD can also produces a “posterior probability-like”
novelty measure for each testing data point that falls outside the boundary.
Based on the assumption that the outliers are distributed uniformly in the
feature space, Tax maps the distance from the outlier object to the defined
decision boundary to a novelty measure. It is a quantified measure that
indicates the degree of novelty of this particular object with respect to the
target class. The mathematical definition of this mapping follows.

p(z|O) = exp(−d(z|T)/s)

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 41

where p(z|T) is the probability that z belongs to the outlier class; d(z|T)
is the distance from object z to the decision boundary in the feature space
and s is the kernel width.

By applying the SVDD method, we can obtain a sound representation
of the target class. To detect outliers (in our case, system failure conditions),
a precise criterion should be inferred from empirical testing or pre-defined
thresholds. The greater the the distance from the bounded region, the
rougher the boundary. Therefore, the sensitivity of outlier detection may be
changed. In practice, a pre-defined threshold can be used as the maximum
distance of a data point from the center, which the system can tolerate.
Such pre-defined thresholds need sufficient testing within each specific data
domain.

SVDD has been successfully applied to different domains34,35,37 and
has many appealing features as a very promising novelty detection tool.
However, SVDD faces the challenge of space and time complexity when
the data size reaches a certain number and the matrix operation becomes
extremely time-consuming. In reality, the control system of FCS runs at the
speed of 20Hz and generates 200 data points within 10 seconds. A large
amount of data is needed to obtain a sound and meaningful data description
for the nominal regions. Hence, we must improve the efficiency of SVDD to
be used as a potential tool for novelty detection to realize a major step of
our validation approach.

Based on two lemmas, the random sampling lemma and the combining
lemma,32 we develop a fast SVDD algorithm as shown in Fig. 5. The
improved SVDD algorithm consists of two major steps, i.e., decomposition
and combination. As an interesting application of the simple random
sampling lemma and the combination lemma, the proposed fast SVDD
algorithm demonstrates improvement of efficiency with respect to run-time
complexity and memory utilization. In the context of previously proposed
V&V approach for online adaptive systems, the fast SVDD algorithm can
be applied to defining boundaries for “nominal” regions and used for real-
time failure detections.

We notice that the improvement of the algorithm relies on the fact
that by choosing m ≈ √dn, the number of violators is bounded at m and
the algorithm will converge to the global solution in a finite number of
iterations. In the worst case scenario where the entire data set has to be
learned, the number of iterations of our algorithm is

√
n
d , and for each step

of decomposition and combination, the common decision boundary is found
at a cost of O(d

3
2n

3
2). Therefore, the expected running complexity in total is

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

42 Y. Liu, J. Schumann and B. Cukic

1. W1 ← arbitrarily select m points from S;

Find the solution to W1, denote it by P1;

X1 ← the support vectors of (W1, P1), x1 ← |X1|;
W2 ← select m points from S \ W1;

2. Find the solution to W2, denote it by P2 ;

X2 ← the support vectors of (W2, P2), x2 ← |X2|;
3. V1 ← the violators of (W1, P1), v1 ← |V1|;

if v1 = 0, return (S, P1) as the final solution.

V2 ← the violators of (W2, P2), v2 ← |V2|;
if v2 = 0, return (S, P2) as the final solution.

4. R ← (X1 ∪X2) ∪ ((V1 ∪ V2) ∩W1 ∪W2);

if |R| < m, add m− |R| points from W1 ∪W2 into R;

find the solution to R, denoted by Q,

X ← support vectors of (R, Q);

5. V ← the violators of (R, Q) in S\(W1 ∪W2);

if |V | = 0

return (S, Q) as the final solution.

if |V | > m

W2 ← randomly sample m points from V ;

else

W2 ← V ∪ {randomly sampled m− |V | pts from S\V };
end

6. W1 ← X ∪ { randomly sampled m− |X| points from all learned
non-SV, non-violator points };

7. Repeat 2− 6 until a global solution is found.

Fig. 5. A decomposing and combining algorithm for SVDD.

O(dn2). However, we can expect the iteration to be ended within logn steps
and thus we can reach a running time of O(d

3
2n

3
2 logn). On the other hand,

since the size of the problem can be reduced into a level that computers can
handle it at a reasonable speed, the memory utilization becomes efficient
and less error-prone. Yet, m is not strictly fixed at

√
dn. Instead, it can be

any number that is larger than the expected number of support vectors but
near “optimally small” in terms of system specifications. The convergence
will be reached in a finite number of steps due to the fact the objective

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 43

Fig. 6. The ROC Curve of the SVDD tool.

function is convex and quadratic. However, the analysis of complexity in
these cases might be slightly different. We first simulate one run of nominal
flight conditions of 40 seconds with a segment of 800 data points saved.
After running the fast SVDD on the nominal data, we obtain a sound data
description of nominal flight conditions. A representative ROC curve is
given in Fig. 6. By varying the value of the classification threshold we
can obtain the differing SVDD classification characteristics in terms of
combining false negatives and false positives. Based on the ROC curve and
in line with system requirements, the specific operating point we choose for
our SVDD tool is to allow 15% of nominal data classified as outliers.

We use the boundary formed by the proposed fast SVDD algorithm
to test the failure mode simulation. Novelty detection results are shown
in Fig. 7(b). Circles in Fig. 7(a) represent failure mode simulation data.
The locked control surface failure results in input data points data falling
outside the SVDD boundary. The novelty measures shown in Fig. 7(b)
are probability-like measures computed for each data point based on the

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

44 Y. Liu, J. Schumann and B. Cukic

−8 −6 −4 −2 0 2 4
−2

−1

0

1

2

3

4

5

6

7

8

α

∆ C
zα

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

time (sec)

N
o

ve
lt

y
m

ea
su

re

(a)

(b)

Fig. 7. Novelty detection. (a): SVDD of nominal flight simulation data is used to detect
novelties. (b): Novelty measures returned by SVDD tool for each testing data point.

distance from the SVDD boundary. In this plot, x-axis represents the time
and y-axis represents the novelty measures calculated by the SVDD tool. We
can see from the plot that, after 5 seconds when the failure occurs, SVDD
detects the abnormal changes and returns high novelty measures. This
demonstrates effective and accurate detection capabilities of our SVDD
detector. For a full set of experimental results, please refer to Ref. 32.

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 45

3.4. Evaluating Network’s Learning Performance

A good knowledge of the neural network’s learning performance is
important in order to obtain information under which a neuro-adaptive
controller might exceed it robustness limits. Any feedback controller can
always handle small deviations between the model and the actual plant
dynamics. However, this robustness is strictly limited by the design of the
controller, so large deviations between model and plant or very noisy signals
can cause severe problems. A close examination of the internal structure
and parameters usually reveals key information of the network’s learning
performance.

For the analysis of any controller’s behavior, it is important to estimate
its sensitivity with respect to input perturbations. A badly designed control
system might amplify the perturbations, which could lead to oscillations
and instability. The higher the robustness of the controller, the less influence
arises from input perturbations. It is obvious that such a metric (i.e., ∂o∂x for
outputs o and inputs x) is also applicable to an adaptive control system.
For an adaptive component, like a neural network, the estimation of the
sensitivity is a “black box” method, i.e., no knowledge about the internal
structure or parameters is necessary.

In our approach, we focus on parameter sensitivity. This means, we
calculate ∂o

∂p for each of the adjustable parameters p ∈ P . For a neural
network, P is comprised of the network weights wi, for the DCS network, it
is the reference vectors of the neurons �wi. During training of the network,
these parameters are adjusted to minimize the error. Depending on the
architecture of the adaptive controller, the network can be pre-trained,
i.e., the parameters are determined during the design phase (“system
identification”), or the parameters are changing while the system is in
operation (“online adaptation”). In both cases, one needs to know, which
influence the actual values of the parameters have on the output of the
neural network: if the influence of a parameter or neuron is negligible,
then this neuron might be removed from the network. On the other hand,
extremely high sensitivity might cause numerical problems. Even more
information can be obtained if we consider each parameter of the neural
network not as a scalar value, but as a probability distribution. Then, we can
formulate the sensitivity problem in a statistical way. The probability of the
output o of the neural network is p(o|P ,x) given parameters P and inputs
x. If we again assume a Gaussian probability distribution, we can define
our parameter confidence as the variance σ2

P . In contrast to calculating the

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

46 Y. Liu, J. Schumann and B. Cukic

network output confidence value, we do not marginalize over the weights,
but over the inputs.

3.4.1. A Sensitivity Metric for DCS Networks

Within the IFCS Gen-I, the DCS networks are employed for online
adaptation/learning. Their parameters (connection strength Cij and
reference vectors �wi) are updated during system operation. It should be
noted that the connection strength C does not contribute to the network
predictions while it is in recall mode. This implies that the sensitivity of the
connection strength is merely a structure related parameter that influences
the reference vectors instead of the network output. We therefore only
measure the sensitivity of the reference vector of the DCS network. Using
the simulation data obtained from the IFCS Gen-I simulator, we calculate
the parameter sensitivity s and its confidence σ2 after each learning epoch
during a flight scenario. The sensitivity analysis has been conducted on
a N -dimension space, where N is the number of dimensions of the input
space.

Figure 8 shows two sensitivity snapshots at different times of the
simulation where the network has been trained with two-dimensional data.
Each neuron is associated with a two-dimensional sensitivity ellipse. At the
beginning of the simulation, the network is initialized with two neurons
whose reference vectors represent two randomly selected training data
points. The network continues learning and adjusts its own structure to
adapt to the data. Figure 8 (left) shows the situation at t = 5.0 s. Figure 8
(right) shows the situation at t = 10.0 s. At t = 5.0 s, most neurons

−1.5 −1 −0.5 0 0.5 1 1.5
−8

−7

−6

−5

−4

−3

−2

−1

−1.5 −1 −0.5 0 0.5 1 1.5
−8

−7

−6

−5

−4

−3

−2

−1

Fig. 8. Sensitivity analysis for DCS networks.

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 47

exhibit relatively large sensitivity, while only a few (31%) neurons have
small sensitivity values. However, at t = 10.0 s, when the network has well
adapted to the data, Fig. 8 (right) clearly indicates that now most (78%)
neurons have small sensitivity values.

3.4.2. A Sensitivity Metric for Sigma-Pi Networks

We also implement the sensitivity analysis for the online adaptive Sigma-
Pi network of the IFCS Gen-II controller. We calculate the parameter
sensitivity s and its confidence σ2 for the network parameters wi at each
point in time during a flight scenario. Figure 9 shows two sensitivity
snapshots at various stages of the scenario (roll axis shown). This network
consists of 60 nodes and 60 weights. At the beginning of the scenario, all
parameters of the network are set to zero, giving (trivially) in the same
sensitivity. At t = 1.5, a failure is induced into the system. In order to
compensate for the failure, the network weights adapt (see Fig. 4 (right)).
Figure 9 (left) shows the situation at t = 5.0 s. A considerable amount
of adaptation and weight changes has taken place already. However, the
confidence for each of the 60 neurons is still relatively small, as indicated
by the large error bars.

After approximately 20 seconds, the neural network is fully trained.
Figure 9 (right) now shows quite different values for the sensitivity. Whereas
the sensitivity for most of the neurons is really small now, a few (here 7)
neurons exhibit high sensitivity. Although their σ2 is somewhat larger than
that for the other neurons, a clear distinction between the different groups
can be made. The weights with low sensitivity are obviously candidates for
pruning the network or improvement of the learning rule.

0 10 20 30 40 50 60
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 10 20 30 40 50 60
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fig. 9. Parameter sensitivity and confidence at t = 5 s (left) and t = 20 s (right).

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

48 Y. Liu, J. Schumann and B. Cukic

Independently from this analysis, the Gen-II network architecture had
been modified several times during the design of the controller and the
number of weights in the network (for roll axis) has been reduced from 60 (as
shown) to 6. Our parameter sensitivity tool provided independent statistical
evidence to support this drastic change in the network architecture.

3.5. Evaluating the Network’s Output Quality

The statistical evaluation of a neural network’s prediction performance
at the output layer of a neuro-adaptive system is equally important
as the evaluation of its learning performance. It verifies the adaptation
performance at the output layer and prevents the unreliable output from
entering the next component, which usually is the controller/actuator of
the system. It measures the “trustworthiness” or “confidence” of the output
and alerts operators when an output is considered potentially hazardous in
terms of “reliability and trustworthiness”.

3.5.1. Validity Index for DCS Networks

Following the definition of Validity Index (VI) in RBF networks by Leonard
et al.,9 we define the validity index in DCS networks as an estimated
confidence measure of a DCS output, given the current input. The VI
can be used to measure the accuracy of the DCS network fitting and thus
provide inferences for future validation activities. Based on the primary
rules of DCS learning and properties of the network structure, we employ
confidence intervals and variances to calculate the validity index in the
DCS. The computation of a validity index for a given input consists of two
steps: (1) compute the local error associated with each neuron, and (2)
estimate the standard error of the DCS output for the given input using
information from step (1). Details can be found in Refs. 32, 38.

In the case of our application of interest, the IFCS Gen-I, a domain
specific threshold can be pre-defined to help verify that the accuracy
indicated by the validity index is acceptable in the system context. This
system performance validation step is enabled by the existence of the
validity index. We have modified the DCS training algorithm to calculate
the validity index. Because all needed information is present at the final
step of each training cycle, we can simply calculate s

′2
i for each neuron after

the learning stops. When the DCS is in recall mode, the validity index is
computed based on the local errors and then associated with every DCS

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 49

output. We have simulated the online learning of the DCS network under
a failure mode condition. Running at 20Hz, the DCS network updates its
learning data buffer (of size 200) at every second and learns on the up-to-
date data set of size 200. We first start the DCS network under nominal
flight conditions with 200 data points. After that, every second, we set the
DCS network in recall mode and calculate the derivative corrections for the
freshly generated 20 data points, as well as their validity index. Then we
set the DCS network back to the learning mode and update the data buffer
to contain the new data points.

Figure 10 shows the experimental results of our simulation on the failure
mode condition. The left plot shows the final form of the DCS network
structure at the end of the simulation. The 200 data points in the data
buffer at the end of the simulation are shown as crosses in the 3-D space.
The network structure is represented by circles (as neurons) connected by
lines as a topological mapping to the learning data. The right plot presents
the validity index, shown as error bars. The x-axis here represents the time
frames. The failure occurs at t = 5.0 s. We compute the validity index for
the data points that are generated five seconds before and five seconds after
the failure occurs.

A trend revealed by the validity index in our simulations is the
increasingly larger error bars after the failure occurs. At t = 6.0 s, the
network has learned these 20 failure data points that have been generated
between 5.0 s and 6.0 s. The network performance became less stable.
After that, the error bars start shrinking while the DCS network adapts
to the new domain and accommodates the failure. After the failure occurs,
the change (increase/decrease) of the validity index varies depending on the
characteristics of the failure as well as the accommodation performance of
the DCS network. Nevertheless, the validity index explicitly indicates how
well and how fast the DCS network accommodates the failure.

3.5.2. Bayesian Confidence Tool for Sigma-Pi Networks

For the Gen-II architecture, the Confidence Tool (CT)39 produces a quality
measure of the neural network output. Our performance measure is the
probability density p(o|x,D) of the network output o given inputs x, when
the network has been trained with training data D. Assuming a Gaussian
distribution, we use the variance σ2 as our performance metric. A small σ2

(a narrow bell-shaped curve) means that, with a high probability, the actual
value is close to the returned value. This indicates a good performance of

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

50 Y. Liu, J. Schumann and B. Cukic

−8
−6

−4
−2

0
2

4

−1

−0.5

0

0.5

1
−1

0

1

2

3

4

5

6

7

8

α

Dynamic Cell Structures

β

∆ C
zα

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time (sec)

Fig. 10. Online operation of DCS VI on failure mode simulation data. Top: The final
form of DCS network structures. Bottom: VI shown as error bars for DCS output.

the network. A large σ2 corresponds to a shallow and wide curve. Here, a
large deviation is probable, indicating poor performance.

We calculate the variance σ2 using a Bayesian approach, following the
derivation in Ref. 8. The desired probability p(o|x,D) can be obtained by

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 51

marginalizing over all possible weights w of the network:

p(o|x,D) =
∫
p(o|x,w)p(w|D)dw

The first term in the integral concerns the recall phase of the trained
network, when it is subjected to input x. The second term p(w|D) describes,
how the weights w of the network are influenced by training it using data
D. This term can be calculated as a posterior using Bayes’ rule

p(w|D) =
p(D|w)p(w)

p(D)

considering the distribution of the weights before and after the training
data D has been seen by the network. Here, we use a simple Gaussian
prior for p(w). The probability of the data p(D) =

∫
p(D|w)p(w)dw is a

normalization factor. For the further calculations, we assume

p(w|D) ∝ exp{−(βED + αEW)}
where ED is the (quadratic) training error, EW =

∑
i w

2
i , and α and β are

hyper-parameters. A quadratic approximation of the exponent around the
most probable weights finally yields (for details see Ref. 8)

σ2
t =

1
β

+∇TwA−1∇w

where ∇w is the gradient of the network output with respect to the weights
at the current input x, and A = βHD + αI is the regularized Hessian with
respect to the network weights w. In order to keep the computationally
effort during monitoring low, we chose a coarse approximation for the hyper-
parameters, namely α = W/2EW and β = N/2ED for N � W , where W
is the number of weights, and N the number of training data in D.

This closed-form solution now enables the efficient calculation of our
desired performance measure. The computational burden, which is mainly
due to calculating the matrix inverse, could be reduced by using a moving
window approach. Our confidence tool has been implemented for Sigma-Pi
and multi-layer perceptron (MLP) networks in Matlab (for a Simulink
environment) and in C. For details see Refs. 39, 40.

Figure 11 shows results of a (Simulink) simulation experiment for
the roll axis. In the lower left panel, the pilot commands are shown
over time in seconds. The pilot issues three doublet commands, which
are fast stick movements from neutral into positive, then negative and

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

52 Y. Liu, J. Schumann and B. Cukic

0 5 10 15 20
0

10

20

30

40

si
gm

a2

0 5 10 15 20

−2

0

2

seconds into flight

pi
lo

t c
om

m
an

d
(r

ol
l a

xi
s)

0 5 10 15
0

10

20

30

40

si
gm

a2

0 5 10 15
−30

−20

−10

0

10

W
ei

gh
ts

seconds into flight

Fig. 11. Confidence value σ2 over time for successful and unsuccessful adaptation (top
panels), pilot commands (bottom left), and diverging network weights (bottom right).

back to neutral position. Shortly after the first doublet (t = 1.5 s), one
control surface of the aircraft, the stabilizer, gets stuck at a fixed angle
(“the failure”). Because the system dynamics and the model behavior
do not match anymore, the neural network has to learn to produce an
augmentation control signal to compensate for this deviation. This means
that the network weights are updated according to the given weight update
rule. Initially, the network confidence is very high, as shown in the top left
panel of Fig. 11. However, as soon as the damage occurs and consequently
weights are updated, the σ2 of the network output increases substantially,
indicating a large momentary uncertainty in the network output. Due to
the online training of the network, this uncertainty decreases very quickly.
A second and third pilot command (identical to the first one) is executed at
t = 11 s and t = 17 s, respectively. During these commands, the network’s
confidence is still reduced, but much less than before. This is a clear
indication that the network has successfully adapted to handle this failure
situation.

The neural network’s behavior in Fig. 11 (right) is in stark contrast to
this successful scenario. Although the network is able to accommodate the
first doublet, where the failure occurred, it is not able to continuously handle
this situation: as soon as the second doublet is commanded, the network
still tries to learn the new situation, but fails. The rapid (and unbounded)
increase of the weight values (lower right panel) is a clear indication of
the network diverging and ultimately causing unstability of the aircraft
(t = 14 s). The confidence value σ2 (top right panel) clearly indicates this
situation: the value of σ2 is growing extremly fast and to very high values.
Since the bad quality of the neural network can be recognized roughly 1–2

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 53

seconds prior to network divergence, the dynamic confidence tool could be
used as a warning device for the pilot.

4. Conclusions

While neuro-adaptive systems hold a great promise in autonomous
systems and control applications, they are problematic for verification and
validation. The reason is that a neuro-adaptive system evolves over time
and thus the validation techniques applied before its online adaptation
are no longer applicable to the changed configuration. Furthermore, the
validation of the neural network models is particularly challenging due to
their complexity and nonlinearity. Reliability of learning, performance of
convergence and prediction is hard to guarantee. The analysis of traditional
controllers, which have been augmented by adaptive components require
technically deep nonlinear analysis methods.

We developed a non-conventional approach for validating the
performance of a neural network-based online adaptive system. The
validation framework consists of:

• Independent failure detections at the input layer and performance
assessment checks at the output layer that provide validation inferences
for verifying the accommodation capabilities of the online adaptive
component in the context of failure accommodation, and

• Runtime learning performance monitors that examine the internal
properties of the neural network adaptation.

We developed validation techniques to examine: (1) the learning data on
which the online adaptive component is trained, (2) the online adaptation
performance, and (3) the neural network predictions after the adaptation.
At the input layer, we have presented SVDD as a novelty detection tool for
defining nominal performance regions for the given application domain and
thus used for failure detection. By improving its computational efficiency,
our fast SVDD algorithm achieves the ability to provide successfully
automated separation between potential failures and normal system events
in real-time operation. We have also presented tools for the estimation
of the learning and prediction performance of two different types of
neural networks used in an adaptive controller. For two, highly disjoint
architectures, Dynamic Cell Structures (DCS), and Sigma-Pi networks, we
have shown how the network prediction performance in form of statistical

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

54 Y. Liu, J. Schumann and B. Cukic

error bars (validity index for DCS, network confidence for Sigma-Pi) can be
calculated. The online estimation is import in control applications, where
the neural network is being trained during operation. The availability of
this information plays an important role for verification and validation of
such a system in a safety-critical application.

Our tools are primarily designed to provide dynamic statistical
evaluation on the performance of the networks. This information is vital
during system verification and validation as well as for in-flight monitoring.
Furthermore, these tools can also be used during the early design phase
of an adaptive controller, when the architecture and size of the network is
determined. Our Bayesian approach allows different models (e.g., networks
with different numbers of hidden units, or different network types such as
MLP, Sigma-Pi, RBF, or DCS) to be compared using only the training data.
More generally, the Bayesian approach provides an objective and principled
framework for dealing with the issues of model complexity.

References

1. Rysdyk, R., Calise, A.: Fault tolerant flight control via adaptive neural
network augmentation. AIAA-98-4483, 1998, pp. 1722–1728.

2. Norgaard, M., Ravn O., Poulsen, N., Hansen, L.K.: Neural Networks for
Modeling and Control of Dynamic Systems. Springer, 2002.

3. Jorgensen, C.C.: Feedback linearized aircraft control using dynamic cell
structures, World Automation Congress (ISSCI), Alaska, 1991, pp. 050.1–
050.6.

4. The Boeing Company, Intelligent flight control: Advanced concept program,
Technical Report, 1999.

5. Boyd, M.A., Schumann, J., Brat, G., Giannakopoulou, D., Cukic, B., Mili,
A.: Validation and verification process guide for software and neural nets.
Technical Report, NASA Ames Research Center, 2001.

6. Schumann, J., Nelson, S.: Towards V&V of neural network based controllers.
Workshop on Self-Healing Systems, 2002.

7. Mackall, D., Nelson, S., Schumann, J.: Verification and validation of neural
networks of aerospace applications. Technical Report CR-211409, NASA,
2002.

8. Bishop, C.M.: Neural networks for pattern recognition, Oxford University
Press, Oxford, UK, 1995.

9. Leonard, J.A., Kramer, M.A., Ungar, L.H.: Using radial basis functions to
approximate a function and its error bounds, IEEE Transactions on Neural
Networks, 3(4), 1992, pp. 624–627.

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems 55

10. Fuller, E., Yerramalla, S., Cukic, B., Gururajan, S.: An approach to predicting
non-deterministic neural network behavior. In: Proc. Intl. Joint Conference
on Neural Networks (IJCNN), 2005.

11. Mili, A., Cukic, B., Liu, Y., Ben Ayed, R.: Towards the verification and
validation of on-line learning adaptive systems, In Computational Methods in
Software Engineering, Kluwer Scientific Publishing, 2003.

12. Hornik, K.M., Stinchcombe, M., White, H.: Multilayer feedforward networks
are universal approximators, Neural Networks, 2, 1989, pp. 359–366.

13. Raz, O.: Validation of online artificial neural networks — an informal
classification of related approaches. Technical report, NASA Ames Research
Center, Moffet Field, CA, 2000.

14. Del Gobbo, D., Cukic, B.: Validating on-line neural networks. Technical
Report, Lane Department of Computer Science and Electrical Engineering,
West Virginia University, December 2001.

15. Institute of Software Reseach, Dynamic cell structure neural network report
for the intelligent flight control system, Technical Report. Document ID: IFC-
DCSR-D002-UNCLASS-010401, January, 2001.

16. Darrah, M., Taylor, B., Skias, S.: Rule extraction from Dynamic Cell
Structure neural networks used in a safety critical application, Proc. of the
17th International Conference of the Florida Artificial Intelligence Research
Society, September, 2004.

17. Yerramalla, S., Fuller, E., Cukic, B.: Lyapunov analysis of neural network
stability in an adaptive flight control system, 6th Symposium on Self-
Stabilizing Systems (SSS-03), San Francisco, CA, June 2003.

18. Yerramalla, S., Cukic, B., Fuller, E.: Lyapunov stability analysis of
quantization error for DCS neural networks, Int’l Joint Conference on Neural
Networks (IJCNN’03), Oregon, July, 2003.

19. Tibshirani, R.: Bias, variance and prediction error for classification rule.
Technical Report, Statistics Department, University of Toronto, 1996.

20. Fu, L.: Neural Networks in Computer Intelligence, McGraw Hill, 1994.
21. Peterson, G. E.: A foundation for neural network verification and validation,

SPIE Science of Artificial Neural Networks II, 1966:196–207, 1993.
22. Hunt, K.J., Sbabaro, D., Zbikowski, R., Gawthrop, P.J.: Neural networks for

control systems — A survey, Automatica, 28(6), 1996, 1707–1712.
23. Lawrence, S., Tsoi, A.C., Back, A.D.: Function approximation with neural

networks and local methods: Bias, variance and smoothness, Australian
Conference on Neural Networks, Peter Bartlett and Anthony Burkitt and
Robert Williamson, 1996, 16–21.

24. Grossberg, S.: Adaptive pattern classification and universal recoding:
I. Parallel development and coding of neural feature detectors. Biological
Cybernetics, 23:121–134, 1976. Reprinted in Anderson and Rosenfeld. (1988).

25. Grossberg, S.: Competitive learning: From interactive activation to adaptive
resonance, Cognitive Science, 11(1), January–March 1987, 23–63.

26. Schumann, J., Gupta, P.: Monitoring the performance of a neuro-adaptive
controller. In: Fischer, R., Preuss, R., von Toussaint, U.: Proc. 24th

May 4, 2011 14:7 9in x 6in b968-ch02 Adaptive Control Approach for Software. . .

56 Y. Liu, J. Schumann and B. Cukic

International Workshop on Bayesian Inference and Maximum Entropy
Methods in Sciences and Engineering (MAXENT), AIP 2004, 289–296

27. Kohonen, T.: Self-Organizing Maps, Springer-Verlag, New York, 1997.
28. Martinez, T., Schulten, K.: Topology representing networks, Neural Networks,

7(3), 1994, pp. 507–522.
29. Bruske, J., Sommer, G.: Dynamic cell structures, In: Proc. Neural Information

Processing Systems, Vol. 7, 1995, pp. 497–504
30. Ahrns, I., Bruske, J., Sommer, G.: On-line learning with dynamic cell

structures. In: Fogelman-Soulié, F., Gallinari, P. (eds.): Proc. Int. Conf.
Artificial Neural Networks, EC2, Nanterre, France, Vol. 2. 1995, 141–146.

31. Fritzke, B.: Growing cell structures — A self-organizing network for
unsupervised and supervised learning, Neural Networks, 7(9), 1993, pp. 1441–
1460.

32. Liu, Y.: Validating a neural network-based online adaptive system. Ph.D.
thesis, West Virginia University, Morgantown, 2005.

33. Rumelhart, McClelland, and the PDP Research Group, Parallel distributed
processing. MIT Press, 1986.

34. Tax, D.M.J., Duin, R.P.W.: Support vector domain description, Pattern
Recognition Letters, 20(11–13), 1999, 1191–1199.

35. Tax, D.M.J., Duin, R.P.W.: Data domain description using support vectors,
Proc. European Symposium on Artificial Neural Networks (Bruges, April 21–
23, 1999), D-Facto, Brussels, 1999, pp. 251–257.

36. Tax, D.M.J.: One-class classification, Dissertation, ISBN: 90-75691-05-x.,
2001.

37. Bennett, K.P., Campbell, C.: Support vector machines: Hype or hallelujah?
SIGKDD Explorations, Vol. 2.2., 2000, pp. 1–13.

38. Liu, Y., Cukic, B., Jiang, M., Xu, Z.: Predicting with confidence — An
improved dynamic cell structure. In: Wang., L, Chen, K., Ong., Y.S. (eds.):
Lecture Notes in Computer Science: Advances in Neural Computation,
Springer-Verlag, Berlin Heidelburg, Vol. 1, 2005, 750–759.

39. Gupta, P., Schumann, J.: A tool for verification and validation of neural
network based adaptive controllers for high assurance systems. In: Proc. High
Assurance Software Engineering, IEEE Press (2004).

40. Schumann, J., Gupta, P., Jacklin, S.: Toward verification and validation of
adaptive aircraft controllers. In: Proc. IEEE Aerospace Conference, IEEE
Press (2005).

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

Chapter 3

ADAPTIVE RANDOM TESTING

DAVE TOWEY

BNU–HKBU United International College
28, Jinfeng Road, Tangjiawan, Zhuhai
Guangdong Province 519085, China

davetowey@uic.edu.hk
http://www.uic.edu.hk/˜davetowey

Computing is everywhere, and software is too, but what about the quality of
this software? As software becomes increasingly pervasive in our society, what
can we do to ensure its quality? One Software Quality Assurance mechanism,
Software Testing, is often omitted from the development and implementation
of computer systems, sometimes because of its perceived inconvenience and
difficulty. A relatively simple way of testing software is to apply test cases
(combinations of input representing a single use of the software) randomly, a
method known as Random Testing. Among the advantages of Random Testing
are its ease of use, the minimal overheads in test case generation, and the
statistical support available. Some research has indicated that more widespread
distributions of test cases throughout the input domain may be more effective
at finding problems in the software. Adaptive Random Testing methods are
Software Testing methods which are based on Random Testing, but which use
additional mechanisms to ensure more even and widespread distributions of
test cases over an input domain. This chapter gives an introduction to some of
the major Adaptive Random Testing implementations.

1. Introduction

Although it has been a long time since Naur first introduced the phrase
“Software Engineering”,47 at a NATO conference in 1968 to address
the then perceived crisis in software production,51 even now Software
Engineering (SE) is often considered by many to be an emerging
discipline.1,50 Indeed, many would argue that little has really changed,
and that there is still a software crisis37 — a recent article estimates that
US$60 billion to $75 billion is wasted each year due to software problems.2

As computing and software become more ubiquitous, it seems that software

57

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

58 D. Towey

problems are also likely to increase. An obvious area of concern therefore,
will be the quality of the software running the computing!

Methods for improving or ensuring Software Quality, referred to as
Software Quality Assurance (SQA) techniques, are often classified into
dynamic and static methods.1,35 The distinction refers to whether the code
is being executed (dynamic methods), or not (static methods). Software
Testing is a dynamic method of SQA.

Although there was a period when almost all literature on Software
Testing included a lament on its position as an under-used, often-omitted,
and poorly understood part of the software process,57 this situation is
changing. Newer approaches to software development now even advocate
writing tests before the code.4–6,8 It has also been said that of the different
disciplines in software development, Software Testing is perhaps the most
mature.3

Possible reasons for the lack of Software Testing, in some situations,
include the difficulty associated with the preparation, or the amount of
time necessary to implement the testing. If the testing process were to be
made simpler, or even automated,27,39 it is probable that it may be more
frequently used.

Fundamental to testing software is the test case,45 a collection of inputs
to the Software Under Test (SUT) which represent a single execution of
the software. Since exhaustive testing of all possible inputs to the SUT
is usually prohibitively difficult or expensive, it is essential for testers to
make the best use of their limited testing resources. To do this, various
testing (test case selection) methods have evolved. Testing methodologies
have often been categorized broadly into two types: those that make use
of information concerning the program’s structure in the preparation of
test cases (called White Box, or Structural Testing); and those that do
not (called Black Box, or Functional Testing).45,49 There has also been a
growing trend to call certain approaches Grey, or Broken-Box techniques,
where some (relatively small) amount of information about the program’s
structure is used.55

A simple Black Box method of testing software is to draw test cases at
random from the input domain and apply them to the Software Under Test,
a method referred to as Random Testing (RT). It seems that few topics
in Software Testing are as controversial as the issue of whether or not RT
should be used.7 Myers called it “the poorest [test case design] methodology
of all”,46 but later studies showed that it may be worthwhile, and even more
cost effective for many programs.25,26 A method with which RT is often

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

Adaptive Random Testing 59

compared is Partition Testing, where the input domain is partitioned into
subdomains prior to selecting test cases from each, randomly or according
to some guidelines.10,30 As Chan et al. state, intuitively speaking, Partition
Testing should be more effective in revealing program errors than Random
Testing,10 yet many studies suggest that this may not be so.22,25,26,29,31,56

There are many reasons why Random Testing is a popular choice:
in addition to its simplicity, and the efficiency of test case generation,38

many reliability estimates and statistical analyses are also easily
performed.26,32–34,54 In spite of some controversy over its effectiveness,
many real-life applications do make use of Random Testing.28,42,43,48,52,58

It has also been suggested that Random Testing may be a good option at
the end of other forms of testing,53 or even instead of them.41

Although in real testing situations, duplication of test cases is
unnecessary, or even undesirable, for testing strategies where the cost of
checking for duplication is higher than the cost of test case execution (as
is usually the case for RT), it is quite common to allow duplication. In
addition to computational simplicity, this replacement of test cases gives
rise to simpler mathematical models, and thus facilitates the analysis of
testing strategies.36

A failure pattern for a program is defined as the collection of all
points within the input domain which, if executed, would reveal a fault
or cause the Software Under Test to fail. Chan et al.9 reported on how
different failure patterns could influence the performance of some testing
strategies. They identified three major categories of failure patterns: point ,
characterized by individual or small groups of failure-causing input regions;
strip, characterized by a narrow strip of failure-causing inputs; and block ,
characterized by the failure-causing inputs being concentrated in either
one or a few regions. Examples of each of these are given in the schematic
diagrams in Figs. 1a to 1c, where the outer boundaries represent the borders

Fig. 1. Examples of Failure Pattern Types.

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

60 D. Towey

int X, Y, Z;

cin >> X >> Y;

if (((X MOD 4) == 0)

AND

((Y MOD 4) == 0))

{

Z = function_1(X, Y);

/* CORRECT CODE IS

Z = function_3(X, Y);

*/

} else {

Z = function_2(X, Y);

}

cout << Z;

Fig. 2. Code fragment producing the Point Failure Pattern Type.

int X, Y, Z;

cin >> X >> Y;

if (X + Y > 12)

/* CORRECT CODE IS

if (X + Y > 10)

*/

{

Z = function_1(X, Y);

} else {

Z = function_2(X, Y);

}

cout << Z;

Fig. 3. Code fragment producing the Strip Failure Pattern Type.

of the input domain, and the shaded areas represent the failure-causing
regions. Some fragments of C++ code producing each of these types of
failure pattern are given in Figs. 2 to 4.

Programs in which the failure-causing region is a large proportion of
the entire input domain usually represent little difficulty in testing when
compared with programs having a small failure region. In fact, it has
been pointed out that detecting failure regions for programs where the
proportion is high is a relatively trivial task, and can be performed by any
reasonable testing strategy.17 Programs where the failure-causing regions
are comparatively small represent a greater challenge to Software Testing.

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

Adaptive Random Testing 61

int X, Y, Z;

cin >> X >> Y;

if ((X > 10) AND (X < 20))

AND

((Y > 30) AND (Y < 40))

{

Z = function_1(X, Y);

/* CORRECT CODE IS

Z = function_3(X, Y);

*/

} else {

Z = function_2(X, Y);

}

cout << Z;

Fig. 4. Code fragment producing the Block Failure Pattern Type.

2. Adaptive Random Testing

Chan et al.9 observed that the performance of some testing strategies
may be influenced by the pattern of the failure-causing inputs in the
input domain (the failure pattern). This prompted investigation into
improving performance of Random Testing by incorporating information
about failure patterns. Methods based on Random Testing, but involving
additional strategies to take advantage of failure pattern insights, have
been named Adaptive Random Testing (ART) methods.19,20,23 These
methods have been identified as a very promising direction for automatic
testing.24

An insight from the ART research is that a more widespread or even
distribution of the test cases over the input domain may be more favorable
for failure-finding. The intuition underlying why this should be so may be
explained by means of a simple example: Consider a two-dimensional input
domain with a circular failure region, the center of which is O, and the
radius of which is r (Fig. 5) Suppose a test case t is randomly generated
to test the program, but does not reveal a failure (that is, t falls outside
the failure region). Although both the location of O and the value of r are
unknown, O is clearly at a distance of at least of r from t. Obviously, any
test case drawn from the circular failure region is sufficient to show that
the program is faulty, but for illustration of the intuition, assume that the
testing objective is to select O as a test case. In view of the absence of the
knowledge of r, intuitively speaking, it is better to choose a test case far

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

62 D. Towey

Fig. 5. Illustration of widespread distribution intuition.

away from t rather one close to t. Since the input domain is bounded, “far
away” will effectively mean “widespread” or “evenly distributed”.

There are many ways by which test case selection can be encouraged to
be more widespread, and hence there are many possible implementations
of ART . In the next sections, some of the major ART methods will be
introduced.

2.1. Distance-Based Adaptive Random Testing

Distance-based ART (DART) is an ART strategy based on maximizing
minimum distances among test cases.20,21 DART makes use of two sets of
test cases: the executed set, a set of test cases which have been executed
but without causing failure; and the candidate set, a set of cases selected
randomly from the input domain. The executed set is initially empty and
the first test case is randomly generated from the input domain. Each time
a test case is required for execution, the element in the candidate set that is
farthest away from all the executed test cases is selected. When examining
the elements to determine which is farthest away, the Euclidean distance is
calculated, then test cases are selected such that those with the maximum
minimum distance from the previously executed test cases are selected.

One version of DART is the Fixed Size Candidate Set (FSCS) version,
in which the candidate set is maintained with a constant number of ele-
ments. Each time an element is selected and executed, the element is added
to the executed set, and the candidate set is completely reconstructed.

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

Adaptive Random Testing 63

Experiments have revealed that the failure finding efficiency of FSCS
improves as the size of the candidate set increases.20,21

2.2. Restriction-Based Adaptive Random Testing

Another version of ART , based on the restriction of eligible regions
for test case selection, is Restricted Random Testing,11,19 also known
as Restriction-based ART (RART). By excluding regions surrounding
previously executed test cases, and restricting subsequent cases to be drawn
from other areas of the input domain, RRT ensures an even distribution,
and guarantees a minimum distance amongst all cases.

When testing according to the RRT method, given a test case that has
not revealed failure, rather than simply select another test case randomly,
the area of the input domain from which subsequent test cases may be
drawn is restricted. In two dimensions, a circular exclusion zone around
each non-failure-causing input is created, and subsequent test cases are
restricted to coming from outside of these regions. By employing a circular
zone, a minimum distance (the radius of the exclusion zone) between all
test cases is ensured.

All exclusion zones are of equal size, and this size decreases with
successive test case executions. The size of each zone is related to both
the size of the entire input domain, and the number of previously executed
test cases. For example, in two dimensions, with a target exclusion region
area of A, if there are n points around which we wish to generate exclusion
zones, then each exclusion zone area will be A/n, and each exclusion zone
radius will be

√
A/(nπ).

Figure 6 shows a graphical representation of the generation of the first
few test cases using the RRT method. As shown, after each test case
is generated (and presumably applied to the program without revealing
failure), exclusion zones are created around all non-failure-causing test
cases, and the next test case is selected from outside these excluded regions.

The size of each exclusion zone is related to both the size of the
entire input domain, and the number of previously executed test cases.
The final (and most important) determinant of exclusion zone size is the
Exclusion Ratio (R).14 This figure, represented as a fraction, is applied to
the total area of the input domain to obtain the desired total exclusion
area. For example, in a two-dimensional input domain of total area D, for
an Exclusion Ratio R, the target exclusion region area A is RD; with n

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

64 D. Towey

Fig. 6. Example of RRT Test Case generation process for first few test cases.

exclusion zones, each exclusion zone area will be RD/n, and each exclusion
zone radius will be

√
RD/(nπ).

Figure 6 showed situations with one, two, and three exclusion regions.
In this example, the total exclusion region area remained constant, that is,
the area for one exclusion region was the same as the sum of the areas of
the two exclusion regions, which was also the same as the sum of the areas
of the three exclusion regions. This is as expected; the Actual Exclusion
Ratio is equal to the Target Exclusion Ratio.

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

Adaptive Random Testing 65

Further research into the RRT method and the Exclusion Ratio (R)
revealed that, many times during the execution of the RRT algorithm, the
Actual Exclusion Ratio is less than the Target Ratio.14 Furthermore, it was
discovered that the RRT method performed best when the value used for
the Target Exclusion Ratio (R) was maximized, a value referred to as the
Maximum Target Exclusion Ratio (Max R).

By varying the size and shape of the input domains in simulations
using RRT , it was discovered that these parameters affect the value of the
Maximum Target Exclusion Ratio (Max R). This led to the development of
a normalizing feature to be added to the Ordinary RRT (ORRT) resulting
in the Normalized version of Restricted Random Testing (NRRT).17,19

NRRT normalized the input domain and made it possible to approximate
the Max R, depending on the dimensionality of the Software Under Test
(SUT).

Both the ORRT and NRRT versions of Restricted Random Testing
performed very well in empirical studies, displaying improvements in
performance as the values for the Target Exclusion Ratio (R) were
increased, and best performance when R was maximized (Max R).11,17,19

Because the distance calculations associated with circular exclusion
zones can become computationally quite expensive, and because of the
complexity of the relationship between the Target and Actual Exclusion
ratios (due, in part, to the circular shape of the exclusion region), an
alternative implementation of RRT with square exclusion shapes was
investigated.12,19

An advantage of the square exclusion shape is the cheaper inequality
operations used to verify if a test case lies within an exclusion region
(compared with the distance calculations necessary for a circular exclusion
shape).

Results of experiments using the square exclusion shape revealed similar
trends to those for the circular exclusion versions of RRT , but poorer overall
results.12,19

2.3. Overheads

The RRT methods incur potentially significant overheads in the generation
of the (m+ 1)th test case. At this instant, when generating the (m+ 1)th
test case, there are already m exclusion regions around m executed test
cases, and the (m + 1)th test case is restricted to coming from outside
these regions. A simple implementation of the exclusion region is to ensure

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

66 D. Towey

that the candidate test case is a greater distance from each executed test
case than the radius of the exclusion region. For two points, P and Q

((p1, p2, . . . , pN) and (q1, q2, . . . , qN)), the Euclidean distance between the
points can be calculated from the following expression:

Distance(P,Q) =

√√√√ N∑
i=1

(pi − qi)
2 (1)

Ignoring possible optimizations, in a best case scenario, where the first
candidate test case is outside all exclusion regions, there are m distance
calculations required to confirm that the (m+ 1)th test case is acceptable.
In practice, it is possible that several attempts at generating an acceptable
test case will be required. For each unacceptable candidate, there will have
been x number of comparisons (and hence x distance calculations) prior to
that comparison revealing the test case to be within an exclusion region.
The value of x will be between 1 and m, the worst case being that the
candidate is found to be within the final exclusion region checked.

2.4. Filtering

Motivated by the lower computation overheads of the square exclusions
(Section 2.2), a hybrid approach, called Filtering, was developed.12 In
this approach, given a candidate test case which is being examined
to verify that it does not lie within any exclusion region, a bounding
square/cube/hypercube is established around this test case, and used to
filter the previously executed test cases, calculating the distance only
for those test cases inside the Bounding Region. The Bounding Region
corresponds to a square/cube/hypercube restriction zone, requiring only
the cheaper inequality operation. The number of test cases that lie inside
the Bounding Region is significantly less than the total number in the entire
input domain. With normal distribution of test cases, the number expected
to fall inside the bounding region is proportional to the relative size of the
bounding region. In the following equations, BRP is the expected Bounding
Region Population, i.e., the number of test cases expected to be in the
Bounding Region; and m is the number of executed test cases, which is
also the number of exclusion regions.

BRP = m× SizeBounding Region

SizeInput Domain
(2)

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

Adaptive Random Testing 67

The magnitude of the Bounding Region side is twice that of the
exclusion region radius.

SizeBounding Region = [2r]N (3)

The value of the exclusion radius (r) depends on the size of each
exclusion region, which in turn depends on the size of the entire input
domain, the Exclusion Ratio (R), and the total number of exclusion
regions (m).

SizeExclusion Region =
R× SizeInput Domain

m
(4)

The formula to calculate the radius changes according to the dimensions
of the input domain. Table 1 summarizes the expected number of test cases
to fall inside a bounding region for 2, 3 and 4 dimensions.

Experiments have verified the filtering method’s speed compared with
the ordinary, circular exclusion implementation of RRT , while maintaining
identical failure-finding results. As Table 1 shows, the (maximum) number
of test cases on which the more expensive circular exclusion method will be
applied is a small constant, determined by the size of the exclusion regions:
for example, with Target Exclusion Ratio (R) of 150%, in two dimensions,
it is expected to be applied to less than two, all other test cases being
filtered.

Obviously, when larger proportions of the input domain are excluded,
it is more difficult to randomly generate a test case lying in a non-excluded
area. In this case, the number of attempts to generate an acceptable test

Table 1. Expected number of test cases falling in Bounding Region, for 2, 3, and 4
dimensions. A is the total input domain area/volume; m is the number of executed
test cases; R is the Exclusion Ratio; and r is the radius of the exclusion regions.

Area/Volume/ Expected number of test
N Hyper Volume cases inside Bounding

(for circle, sphere, etc) Region

E.g., R = 150%

2 πr2 = A× R
m

4R
π

means less than

2 test cases
E.g., R = 270%

3 4
3
πr3 = A ×R

m
6R
π

means less than

6 test cases
E.g., R = 430%

4 1
2
π2r4 = A ×R

m
32R
π2 means less than

14 test cases

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

68 D. Towey

case increases. Approximately, if 99% of the input domain is excluded,
leaving only 1% from which the test case may be drawn, it should take an
average of 100 (1/1%) attempts to generate an acceptable test case.

Filtering enables a significant reduction in the overheads associated
with the generation of an acceptable test case while maintaining the failure-
finding efficiency of the basic methods.12

2.5. Forgetting

Human learning is often characterized by inaccurate retention or recall,
termed forgetting, which as Markovitech and Scott pointed out, “is usually
regarded as an unfortunate failure of the memory system”.40 Markovitech
and Scott explored the potential benefits of such failure in the context
of Machine Learning,44 finding that in addition to the obvious reductions
in overheads, even random deletion of knowledge yielded improvements in
system performance.

In the context of Adaptive Random Testing (ART), Forgetting refers
to modifications to the basic methods which result in the original algorithm
using only some of the available test cases, “forgetting” the rest. For RRT ,
Forgetting15 is motivated mainly by the desire to reduce overheads. A
feature of the RRT method is that as the number of executed test cases
increases, the size of each individual exclusion zone decreases. This allows
the selection of new test cases to be increasingly close to previously executed
test cases, as we want, but it also increases the computational burden;
the exclusion radius decreases in size such that at its extreme, when the
radius is of negligible length, we are effectively performing Random Testing,
but with considerably higher overheads. If Forgetting is applied in such
a way that, for example, only a maximum of k test cases were used in
the RRT algorithm, then the minimum size of exclusion zones would be
known in advance, and some assurance of the cost-benefit trade-off would
be available.

Three implementations of Forgetting were investigated: Random
Forgetting; Consecutive Retention; and Restarting. Random Forgetting
refers to an implementation where, at the time of generating the (m+ 1)th
test case, m−k executed test cases are randomly selected and deleted, and
the RRT algorithm is applied only to the remaining k; the Consecutive
Retention implementation deletes the first m − k test cases, retaining
the last, consecutive, k test cases; the Restarting implementation involves
a complete reset of the algorithm — after k test cases, and exclusion

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

Adaptive Random Testing 69

regions implemented as usual, Restarting entirely forgets everything that
has happened, and restarts the RRT method.

Results from experiments showed that the Forgetting methods could
perform similarly to the basic RRT methods, including yielding better
results as the Target Exclusion Ratio (R) increased.15

2.6. Mirror ART

Chen et al.23 introduced a testing methodology called Mirroring which
can be combined with other testing strategies to reduce computational
overheads. In addition to the reduction of computational costs, Mirroring
offers several other interesting properties.

To apply Mirroring, the input domain of the Software Under Test
(SUT) is partitioned into p disjoint subdomains. The test case generation
algorithm is performed in only one of the subdomains, designated the source
subdomain. After generation, if the test case does not reveal a failure
in the source subdomain, it is mapped (using a mirror function) to the
other subdomains, known as mirror subdomains, and its image applied to
the SUT . If no failure has been revealed after the p − 1 mirror images of
the source test case have been executed, the algorithm is again applied
in the source subdomain to generate the next test case.

The partitioning scheme used when applying Mirroring is referred to as
Mirror Partitioning, and is usually referenced according to the dimensions
of the input domain, and the number of partitions on each dimension. For
example, in three dimensions (X, Y, Z), where there are 2, 3, and 4 equal
partitions on the respective dimensions, the Mirror Partitioning schema
is X2Y3Z4. Figure 7 gives some further examples, in two dimensions, of
Mirror Partitioning.

One obvious potential application of Mirroring is in those cases where
the input domain is not regular. As explained in Section 2.2, the shape

Fig. 7. Examples of Mirror Partitioning.

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

70 D. Towey

of the input domain affects the performance of the ORRT algorithm;
investigations have revealed that applying the optimal parameter values in
less regularly shaped input domains is problematic.14,19 With Mirroring,
it should be possible to partition such input domains so as to create a
relatively homogeneous source subdomain, thus allowing the ORRT method
to be applied with good confidence that the optimal value of R (Max R)
is used.

Because Adaptive Random Testing incorporates additional information
into the test case selection, it incurs additional overheads, particularly in
comparison with ordinary Random Testing (RT). Mirroring, by imposing
the m partitions, alleviates a considerable amount of the computational
overheads of whatever test case generation strategy it is applied to.
An approximation of the cost reductions with Mirroring suggests that
overheads in test case generation can be reduced to a fraction of those
of the original method: for example, with m partitions, Mirroring would
require only 1/m as many test cases to be generated by the original method
to produce the same total number of test cases.

A second attractive feature of Mirroring is, in addition to the reduction
of computational overheads, the possibility of homogenizing, to some
degree, an input domain. As previously explained, for the RRT methods,
the control parameter, the Exclusion Ratio (R), yields best failure detection
rates when the Max R value is used.14 Because the Max R is more easily
estimated in regular input domains, the potential homogenizing effect on
an input domain by Mirror Partitioning is very attractive for the ORRT
method.

In analyses of Mirroring applied to DART and RRT , it was
discovered that similar failure-finding efficiency could be obtained, but with
considerable reduction in the computations involved.16,23

2.7. Probabilistic ART

Probabilistic ART (PART)13 was motivated by the excellent results
obtained with RRT , but also by the suggestion that perhaps exclusion
and restriction is too strong, and that all regions of the input domain
should always be available for test case generation, but with a bias or higher
probability of selection for certain regions.

Based on the desire to generate test cases which result in an even and
widespread distribution throughout the Input Domain, when generating
the ith test case, we would like for it to be as far as possible away from

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

Adaptive Random Testing 71

previous test cases. According to the basic RRT method, this is achieved by
implementing restriction zones around the previously executed test cases,
and ensuring that the ith case is generated from outside of all these regions.
The Probabilistic methods, instead of using strict exclusion, attempt to
generate the ith test case by biasing the probability of selection such that
regions which would be inside the restriction zone are proportionately less
likely to be selected than regions further away.

Two implementations of PART were investigated: Probabilistic
Translation and Probabilistic Generation. The Probabilistic Translation
method is based on the idea of generating a random vector and selecting
a new test case by translating a randomly selected previous one. The
Probabilistic Generation method creates a map of probabilities of selection
throughout the Input Domain, with selection probability close to previously
executed test cases being increasingly less than areas further away.

Although further study is required for the PART methods, initial
results were positive, indicating good improvement over Random Testing.13

2.8. Fuzzy ART

From the insights gained in earlier studies,11,12,17,20,21 it was possible
to distinguish what might make a good test case from a less good one.
In particular, given information about the input domain of the Software
Under Test (SUT), and the current set of executed test cases, it is possible
to evaluate which potential test cases will contribute more to the goal of
having a well-distributed test case selection pattern than others. Fuzzy set
theory offers a succinct methodology within which this can be framed. This
implementation of ART , which uses Fuzzy Set Theory to ensure the even
spread of test case, is called Fuzzy Adaptive Random Testing (FART).18

In order to minimize the number of test cases required to find a failure
in the SUT , it is desirable that the tester be able to select good test
candidates. The definition of good here is restricted by the fact that it is
Black Box Testing being conducted, and hence nothing is known about the
internal workings of the SUT . What is available however, is the information
that, for certain types of failure patterns (non-point type), a widespread,
even distribution of test cases is most efficient at finding failure. Good can
therefore be quantifiable in terms of how much a test case will contribute
to the goal of a widespread and distributed test case pattern.

Fuzzy Set Theory59 permits membership of a set to be defined in
terms of a degree of belonging, and subsumes the crisp approach of discrete

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

72 D. Towey

membership, or non-membership, found in traditional set theory. According
to the theory, elements no longer need be classified as either “in” or “out”,
but can instead be given a grade of membership (usually between 0 and 1)
of the set.

Considering all the potential test cases within an input domain as a
set, effectively an infinite set, then it is possible to conceive of a subset
containing elements that are considered good. The members of this good
subset would change according to the pattern of executed test cases, but
a function giving the degree of membership of this good subset can be
designed. In particular, features that have been shown to encourage a
widespread and even distribution of test cases over the input domain are
evaluated and incorporated into the function.

Investigations into the performance of FART showed it to considerably
outperform Random Testing, and compare well with other ART methods.18

3. Summary

Computing and software have become more and more significant in our
lives, leading to concerns about the quality of both!

One approach to ensuring Software Quality is Software Testing, where
software is executed with the intention of finding problems or errors.
Simplifying ways of conducting Software Testing may increase the amount
of testing done. A simple method of Software Testing, called Random
Testing, requires only that test cases (combinations of input to the program
representing a single execution) be drawn randomly from the input domain.

The collection of test cases, or points in the program’s input domain,
which would cause the failure of, or reveal a fault in, the software when
executed, is called the program’s failure pattern. Research into failure
patterns revealed how certain patterns could influence the performance of
some testing strategies.

Methods based on Random Testing, but involving additional strategies
to take advantage of failure pattern insights, are called Adaptive Random
Testing (ART) methods. This chapter has introduced some of the major
implementations of ART .

Acknowledgements

Thank you to Prof. T. Y. Chen, Dr. K. P. Chan, Dr. R. Merkel, and Dr.
F.-C. Kuo for all the support and lively discussions.

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

Adaptive Random Testing 73

References

1. SWEBOK — Guide to the Software Engineering Body of Knowledge — 2004
Version. http://www.swebok.org/, 2004. [Online; accessed 12-July-2008].

2. Spectral Lines: Learning from Software Failure, Spectrum, IEEE, 42(9), 2005,
p. 8.

3. Phillip, G. Armour.: Not-Defect: The mature discipline of testing, Communi-
cations of the ACM, 47(10), 2004, pp. 15–18.

4. Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

5. Kent Beck. Test Driven Development: By Example. Addison-Wesley Longman
Publishing Co., Inc, Boston, MA, USA, 2002.

6. Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt,
Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken
Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for Agile Software
Development. http://agilemanifesto.org/, 2001. [Online; accessed 12-July-
2008].

7. Boris Beizer: Software Testing Techniques, John Wiley & Sons, Inc., New
York, NY, USA, 1990.

8. Barry Boehm and Richard Turner. Balancing Agility and Discipline:
Evaluating and Integrating Agile and Plan-Driven Methods, 2004,
pp. 718–719.

9. Chan, F.T., Chen, T.Y., Mak, I.K. Yu, Y.T.: Proportional sampling strategy:
Guidelines for software testing practitioners. Information and Software
Technology, 28(12), 1996, pp. 775–782.

10. Chan, F.T., Chen, T.Y., Tse, T.H.: On the effectiveness of test case allocation
schemes in partition testing, Information and Software Technology, 39(10),
1997, 719–726.

11. Kwok Ping Chan, T.Y. Chen, Dave Towey. Restricted Random Testing. In
Jyrki Kontio and Reidar Conradi, editors, ECSQ ’02: Proceedings of the 7th
International Conference on Software Quality, volume 2349 of Lecture Notes
in Computer Science, pages 321–330, London, UK, 2002. Springer-Verlag.

12. Kwok Ping Chan, T.Y. Chen and Dave Towey. Adaptive Random Testing
with Filtering: An Overhead Reduction Technique. In 17th International
Conference on Software Engineering and Knowledge Engineering (SEKE’05),
Taipei, Taiwan, Republic of China, 2005.

13. Kwok Ping Chan, T.Y. Chen and Dave Towey. Probabilistic Adaptive
Random Testing. In QSIC ’06: Proceedings of the Sixth International
Conference on Quality Software, pages 274–280, Washington, DC, USA, 2006.
IEEE Computer Society.

14. Kwok Ping Chan, T. Y. Chen and Dave Towey. Controlling Restricted
Random Testing: An Examination of the Exclusion Ratio Parameter. In
SEKE, pages 163–166. Knowledge Systems Institute Graduate School, 2007.

15. Kwok Ping Chan, T.Y. Chen and Dave Towey. Forgetting Test Cases. In
COMPSAC 2006: Proceedings of the 30th Annual International Computer

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

74 D. Towey

Software and Applications Conference (COMPSAC 2006), Washington, DC,
USA, to appear 2006. IEEE Computer Society.

16. Kwok Ping Chan, Tsong Yueh Chen, Fei-Ching Kuo, Dave Towey: A Revisit
of Adaptive Random Testing by Restriction. In COMPSAC ’04: Proceedings
of the 28th Annual International Computer Software and Applications
Conference (COMPSAC’04), pages 78–85, Washington, DC, USA, 2004.
IEEE Computer Society.

17. Kwok Ping Chan, Tsong Yueh Chen, Dave Towey: Normalized Restricted
Random Testing. In Jean-Pierre Rosen and Alfred Strohmeier, editors, Ada-
Europe, volume 2655 of Lecture Notes in Computer Science, pages 368–381.
Springer, 2003.

18. Kwok Ping Chan, Tsong Yueh Chen, Dave Towey: Good Random Testing.
In Albert Llamośı and Alfred Strohmeier, editors, Ada-Europe, volume 3063
of Lecture Notes in Computer Science, pages 200–212. Springer, 2004.

19. Kwok Ping Chan, Tsong Yueh Chen, Dave Towey: Restricted Random
testing: Adaptive Random Testing by Exclusion. International Journal of
Software Engineering and Knowledge Engineering, 16(4), 2006 pp. 553–584.

20. Chen, T.Y., Leung, H., Mak, I.K.: Adaptive Random Testing. In Michael, J.
Maher, editor, ASIAN, volume 3321 of Lecture Notes in Computer Science,
pages 320–329. Springer, 2004.

21. Chen, T.Y., Leung, H., Mak, I.K., Dave Towey.: Distance-based Adaptive
Random Testing. In Preparation.

22. Chen, T.Y., Yu, Y.T.: On the Relationship between Partition and Random
Testing. IEEE Transactions on Software Engineering, 20(12), Dec 1994,
pp. 977–980.

23. Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, Sebastian P.: Ng. Mirror
Adaptive Random Testing. Information and Software Technology, 46(15),
2004, pp. 1001–1010.

24. Ilinca, Ciupa, Andreas, Leitner, Manuel Oriol, Bertrand Meyer: Object
Distance And Its Application To Adaptive Random Testing Of Object-
Oriented Programs. In Johannes Mayer and Robert, G. Merkel, editors,
Random Testing, 2006, pp. 55–63. ACM.

25. Joe, W., Duran, Simeon Ntafos: A Report on Random Testing. In ICSE ’81:
Proceedings of the 5th international conference on Software engineering, pages
179–183, Piscataway, NJ, USA, 1981. IEEE Press.

26. Joe, W. Duran, Simeon, C.: Ntafos. An Evaluation of Random Testing. IEEE
Transactions on Software Engineering, 10(4), (1984), pp. 438–444.

27. Elfriede, Dustin: Lessons in Test Automation. Software Testing & Quality
Engineering, 1(5), 1999 pp. 16–21.

28. Justin, E., Forrester, Barton, P., Miller: An Empirical Study of the
Robustness of Windows NT Applications Using Random Testing. In 4th
USENIX Windows Systems Symposium, August 2000, 2000, pp. 59–68.

29. Frankl, P.G., Weyuker, E.J.: A Formal Analysis of the Fault-Detecting Ability
of Testing Methods. IEEE Transactions on Software Engineering, 19(3), 1993
pp. 202–213.

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

Adaptive Random Testing 75

30. Walter J. Gutjahr. Partition Testing vs. Random Testing: The Influence
of Uncertainty. IEEE Transactions on Software Engineering, 25(5), 1999,
pp. 661–674.

31. Hamlet, D., and Taylor, R.: Partition Testing Does Not Inspire Confidence.
IEEE Transactions on Software Engineering, 16(12), 1990, pp. 1402–1411.

32. Hamlet, R. Random Testing. In J.Marciniak, editor, Encyclopedia of Software
Engineering, 1994, pp. 970–978. Wiley.

33. Richard, G. Hamlet. Predicting Dependability by Testing. In International
Symposium on Software Testing and Analysis, 1996, pp. 84–91.

34. Richard, G. Hamlet, Dave Mason, and Denise M. Woit. Theory of Software
Reliability Based on Components. In International Conference on Software
Engineering, 2001, pp. 361–370.

35. Søren Lauesen and Houman Younessi. Is Software Quality Visible in the
Code? IEEE Software, 15(4), 1998, pp. 69–73.

36. Leung, H., Tse, T.H., Chan, F.T., and Chen, T.Y.: Test Case Selection
With and Without Replacement. Inf. Sci. Inf. Comput. Sci, 129(1-4), 2000,
pp. 81–103.

37. Henry Lieberman and Christopher Fry. Will Software Ever Work?
Communications of the ACM, 44(3), 2001, pp. 122–124.

38. Loo, P.S., and Tsai, W.K.: Random Testing Revisited. Information and
Software Technology, 30(9), 1988, pp. 402–417.

39. Marick, B.: When Should a Test be Automated. http://www.testing.com/
writings/automate.pdf, 1998. [Online; accessed 11-October-2007].

40. Shaul Markovitch and Paul D. Scott. The Role of Forgetting in Learning.
In Proceedings of The Fifth International Conference on Machine Learning,
pages 459–465, Ann Arbor, MI, 1988. Morgan Kaufmann.

41. Tim Menzies and Bojan Cukic. When to Test Less. IEEE Software, 17(5),
2000, pp. 107–112.

42. Miller, B.P., Fredriksen, L., So, B.: An Empirical Study of the Reliability of
UNIX Utilities. Communications of the ACM, 33(12), Dec 1990 .

43. Miller, B.P., Koski, D., Lee, C., Maganty, V., Murthy, R., Natarajan, A.
and Steidl, J.: Fuzz Revisited: A Re-examination of the Reliability of UNIX
Utilities and Services. Technical Report CS-TR-1995-1268, University of
Wisconsin, 1996.

44. Tom Mitchell. Machine Learning. McGraw Hill, 1997.
45. Glenford, J. Myers. Software Reliability: Principles And Practices. John

Wiley & Sons, Inc, New York, NY, USA, 1976.
46. Glenford J. Myers. Art of Software Testing. John Wiley & Sons, Inc, New

York, NY, USA, 1979.
47. Naur, P., and Randell, B. editors. Software Engineering: Report on a

conference sponsored by the NATO Science Committee, Garmisch, Germany,
7th to 11th October 1968. Scientific Affairs Division, NATO, 1969.

48. David Owen, Tim Menzies, Mats Heimdahl, and Jimin Gao. Finding Faults
Quickly in Formal Models Using Random Search. http://menzies.us/pdf/
04fmdebug.pdf, 2004. [Online; accessed 12-July-2008].

May 4, 2011 14:8 9in x 6in b968-ch03 Adaptive Control Approach for Software. . .

76 D. Towey

49. Roger, S.: Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill Higher Education, 5th edition, 2001.

50. Mary Shaw, David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

51. Simons, C.L., Parmee, I.C., Coward, P.D.: 35 Years On: To What Extent Has
Software Engineering Design Achieved Its Goals? IEE Proceedings–Software,
150(6), 2003, pp. 337–350.

52. Slutz, D.: Massive Stochastic Testing of SQL. In 24th International
Conference on Very Large Databases (VLDB 98), 1998, pp. 618–622.

53. Thayer, R., Lipow, M., Nelson, E.: Software Reliability. 1978.
54. Tsoukalas, M.Z., Duran, J.W., Ntafos, S.C.: On Some Reliability Estimation

Problems in Random and Partition Testing. IEEE Transactions on Software
Engineering, 19(7), 1993, pp. 687–697.

55. Benjamin Tyler, Neelam Soundarajan: Black-Box Testing of Grey-Box
Behavior. In FATES, 2003, pp. 1–14.

56. Elaine, J. Weyuker, Bingchiang Jeng: Analyzing partition testing strategies,
IEEE Transactions on Software Engineering, 17(7), 1991, pp. 703–711.

57. Whittaker, J.A.: What is software testing? And why is it so hard?, IEEE
Software, 17(1), 2000, pp. 70–79.

58. Yoshikawa, T., Shimura, K., and Ozawa, T.: Random program generator for
Java JIT compiler test system. In 3rd International Conference on Quality
Software (QSIC 2003), 2003, pp. 20–24.

59. Zadeh, L.A.: Fuzzy: Information and Control, 3(8), 1965, pp. 338–353.

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Chapter 4

TRANSPARENT SHAPING: A METHODOLOGY
FOR ADDING ADAPTIVE BEHAVIOR TO EXISTING

SOFTWARE SYSTEMS AND APPLICATIONS

S. MASOUD SADJADI

School of Computing and Information Sciences
Florida International University

Miami, Florida 33199, USA
sadjadi@cs.fiu.edu

PHILIP K. MCKINLEY and BETTY H.C. CHENG∗

Department of Computer Science and Engineering
Michigan State University

East Lansing, Michigan 48824, USA
{mckinley,chengb}@cse.msu.edu

The need for adaptability in software is growing, driven in part by the
emergence of pervasive and autonomic computing. In many cases, it is desirable
to enhance existing programs with adaptive behavior, enabling them to
execute effectively in dynamic environments. In this chapter, we introduce an
innovative software engineering methodology called transparent shaping that
enables dynamic addition of adaptive behavior to existing software systems and
applications. We describe an approach to implementing transparent shaping
that combines four key software development techniques: aspect-oriented
programming to realize separation of concerns at development time, behavioral
reflection to support software reconfiguration at run time, component-based
design to facilitate independent development and deployment of adaptive
code, and adaptive middleware to encapsulate the adaptive functionality. After
presenting the general methodology, we discuss two specific realizations of
transparent shaping that we have developed and used to create adaptable
systems and applications from existing ones.

1. Introduction

A software application is adaptable if it can change its behavior
dynamically (at run time) in response to transient changes in its execution

∗Corresponding author.

77

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

78 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

environment or to permanent changes in its requirements. Recent interest
in designing adaptable software is driven in part by the emergence of
pervasive computing and the demand for autonomic computing.1 Pervasive
computing promises anywhere, any time access to data and computing
resources with few limitations and disruptions.2 The need for adaptability
in pervasive computing is particularly evident at the “wireless edge” of the
Internet, where software in mobile devices must balance conflicting concerns
such as quality-of-service (QoS) and energy consumption when responding
to variability of conditions (e.g., wireless network loss rate). Autonomic
computing3 refers to self-managed, and potentially self-healing, systems
that require only high-level human guidance. Autonomic computing is
critical to managing the myriad of sensors and other small devices at
the wireless edge, but also in managing large-scale computing centers and
protecting critical infrastructure (e.g., financial networks, transportation
systems, power grids) from hardware component failures, network outages,
and security attacks.

Developing and maintaining adaptable software are nontrivial tasks.
An adaptable application comprises functional code that implements the
business logic of the application and supports its imperative behavior,
and adaptive code that implements the adaptation logic of the application
and supports its adaptive behavior. The difficulty in developing and
maintaining adaptable applications is largely due to an inherent property
of the adaptive code, that is, the adaptive code tends to crosscut the
functional code. Example crosscutting concerns include QoS, mobility,
fault tolerance, recovery, security, self auditing, and energy consumption.
Even more challenging than developing new adaptable applications is
enhancing existing applications, such that they execute effectively in new,
dynamic environments not envisioned during their design and development.
For example, many non-adaptive applications are being ported to mobile
computing environments, where they require dynamic adaptation.

This chapter describes a new software engineering methodology, called
transparent shaping, that supports the design and development of adaptable
programs from existing programs without the need to modify the existing
programs’ source code directly. We argue that automatic generation
of an adaptable program from a non-adaptable one is important to
maintaining program integrity, not only because it avoids errors introduced
by manual changes, but because it provides traceability for the adaptations
and enables the program to revert back to its original behavior if
necessary. Our approach to implementing transparent shaping combines

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 79

four key technologies: aspect-oriented programming to enable separation
of concerns at development time, behavioral reflection to enable software
reconfiguration at run time, component-based design to enable independent
development and deployment of adaptive code, and adaptive middleware to
help insulate application code from adaptive functionality. To demonstrate
the effectiveness of this approach, we describe two realizations of
transparent shaping that we have developed and used to create adaptable
applications.

The remainder of this chapter is organized as follows. Section 2
discusses the four main components of our approach. Section 3 provides an
overview of transparent shaping and describes its relationship to program
families.4 Sections 4 and 5, respectively, describe two realizations of
transparent shaping; one is middleware-based and the other is language-
based. Section 6 discusses how transparent shaping complements other
research in adaptive software. Section 7 presents conclusions and identifies
several directions for future research.

2. Basic Elements

Transparent shaping integrates four key technologies: separation of
concerns, behavioral reflection, software components, and middleware. In
this section, we briefly review each technology and its role in transparent
shaping.

Separation of concerns5 enables the separate development of the
functional code from the adaptive code of an application. This separation
simplifies development and maintenance, while promoting software reuse.
Moreover, since adaptation often involves crosscutting concerns, this
separation also facilitates transparent shaping. In our approach, we use
aspect-oriented programming (AOP),6,7 an increasingly common approach
to implementing separation of concerns in software. While object-oriented
programming introduces abstractions to capture commonalities among
classes in an inheritance tree, crosscutting concerns are scattered among
different classes, thus complicating the development and maintenance of
applications. Conversely, in AOP the code implementing such crosscutting
concerns, called aspects, is developed separately from other parts of the
system. Later, for example during compilation, an aspect weaver can be
used to weave different aspects of the program together to form a program
with new behavior. Predefined locations in the program where aspect code
can be woven are called pointcuts.

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

80 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

In traditional AOP, after compilation the aspects are tangled (via
weaving) with the functional code. To facilitate dynamic reconfiguration,
transparent shaping needs a way to enable separation of concerns to
persist into run time. This separation can be accomplished using behavioral
reflection,8 the second key technology for transparent shaping. Behavioral
reflection enables a system to “open up” its implementation details at
run time.9 A reflective system has a self representation that deals with
the computational aspects (implementation) of the system, and is causally
connected to the system. The self-representation of a reflective system is
realized by metaobjects residing in the metalevel, which is separated from
the actual system represented by objects in the base level. A metaobject is
an entity that manipulates, creates, describes, or implements other objects,
which in turn called base objects, and might store some information about
these base objects such as their type, interface, class, methods, attributes,
variables, functions, and control structures. By incorporating crosscutting
concerns associated with the system as part of its self-representation,
the resulting code at run time is not tangled and therefore can be
reconfigured dynamically. When combined with AOP, behavioral reflection
enables dynamic weaving of crosscutting concerns into an application at
run time.10

The third major technology that supports transparent shaping is
component-based design. Software components are software units that can
be independently developed, deployed, and composed by third parties.11

Well-defined interface specifications supported in component-based design
enable adaptive code to be developed independently from the functional
code, and potentially by different parties, using the interface as a contract.
Component-based design supports two types of composition. In static
composition, a developer can combine several components at compile time
to produce an application. In dynamic composition, the developer can
add, remove, or reconfigure components within an application at run time.
When combined with behavioral reflection, component-based design enables
a “plug-and-play” capability for adaptive code to be incorporated with
functional code at run time that facilitates development and maintenance
of adaptable software.

Finally, in many cases it is desirable to hide the adaptive behavior from
the application using middleware. Traditionally, middleware is intended to
mask the distribution of resources across a network and hide differences
among computing platforms and networks.12 As observed by several
researchers,13 however, middleware is also an ideal place to incorporate

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 81

adaptive behavior for many different crosscutting concerns. Adaptive
middleware enables dynamic reconfiguration of middleware services while
an application is running, adjusting the middleware behavior to environ-
mental changes dynamically. Our approach to transparent shaping
uses adaptive middleware in two ways. In the first, transparent shaping adds
adaptive behavior to a middleware platform already supporting the
application. In the second, transparent shaping is used to weave calls to
adaptive middleware into an application.

3. General Approach

By generating adaptable programs from existing ones, transparent shaping
is intended to support the reuse of those applications in environments whose
characteristics were not necessarily anticipated during the original design
and development. Therefore, a challenge in transparent shaping is finding
a way to produce adaptable programs that share the business logic of the
original program and differ only in the new adaptive behavior.

As illustrated in Fig. 1, one way to formulate this problem is using
program families, a well-established concept in the software engineering
community. A program family4 is a set of programs whose extensive
commonalities justify the expensive effort required to study and develop
them as a whole, rather than individually. In short, transparent shaping
can be viewed as a methodology that produces a family of adaptable
programs from an existing non-adaptable program. The adaptable program
comprises the original program code that remains fixed during program
execution, and adaptive code that can be replaced with other adaptive

Fig. 1. A transparent shaping design tree illustrating a family of adaptable programs
produced from an existing program, which is the root of this tree. Children of the root
are adapt-ready programs. Other descendants are adaptable programs.

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

82 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

code dynamically. Replacing one piece of adaptive code with another piece
of adaptive code converts an adaptable program into another adaptable
program in the corresponding family. This conversion is possible in this
programming model, because the adaptive code is not tangled with the
functional code. We use the term composer to refer to the entity that
performs this conversion. The composer might be a human — a software
developer or an administrator interacting with a running program through
a graphical user interface — or a piece of software — a dynamic aspect
weaver, a component loader, a run-time system, or a metaobject.

Transparent shaping produces adaptable programs in two steps. In the
first step, an adapt-ready program14 is produced at compile, startup, or
load time using static transformation techniques. An adapt-ready program
is a program whose behavior is initially equivalent to the original program,
but which can be adapted at run time by insertion or removal of adaptive
code at certain points in the execution path of the program, called sensitive
joinpoints. To support such operations, the first step of transparent shaping
weaves interceptors, referred to as hooks, at the sensitive joinpoints, which
may reside inside the program code itself, inside its supporting middleware,
or inside the system platform. Example techniques for implementing hooks
include aspects (compile time), CORBA portable interceptors15 (startup
time), and byte-code rewriting16 (load time).

In the second step, executed at run time, the hooks in the adapt-ready
program are used by the composer to convert the adapt-ready program
into an adaptable program in the corresponding subfamily, as conditions
warrant. Adapt-ready programs derived from the same existing program
differ in their corresponding sensitive joinpoints and hooks. We note that
the available hooks in an adapt-ready program limit its dynamic behavior.
In other words, each adapt-ready program can be converted to a limited
number of adaptable programs in the corresponding family. The adaptable
programs derived from an adapt-ready program form a subfamily (e.g., S1
and S2 in Fig. 1).

We use Fig. 1 to describe a specific example. Consider an existing
distributed program (X0) originally developed for a wired and secure
network. To enable this program to run efficiently in a mobile computing
environment, the first step of transparent shaping can be used to produce
an adapt-ready version of this program (X1), which has hooks intercepting
all the remote interactions. At run time, if the system detects a low
quality wireless connection, the composer can insert adaptive code for
tolerating long periods of disconnection into the adapt-ready program

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 83

Fig. 2. Alternative places to insert hooks.

(producing X4 from X1). Later, if the user enters an insecure wireless
network, the composer can insert adaptive code for encryption/decryption
of the remote interactions into the program (producing X8 from X4).
Finally, when the user returns to an area with a secure and reliable
wireless connection, the composer can remove the adaptive code for both
security and connection-management to avoid unnecessary performance
overhead due to the adaptive code (producing X4 from X8 and X1 from
X4, respectively).

We identify three approaches to realize transparent shaping that differ
according to the placement of hooks (see Fig. 2): (1) hooks can be
incorporated inside an application program itself, (2) inside its supporting
middleware, or (3) inside the system platform (operating system and
network protocols). A number of projects on cross-layer adaptation use the
third approach.17–19 In this paper, we consider only the first two methods,
where the hooks are incorporated either inside the middleware or inside
the application. Next, we describe two concrete realizations of each type of
transparent shaping. The first, described in Section 4, is a middleware-based
approach that uses CORBA portable interceptors15 as hooks. The second,
described in Section 5, uses a combination of aspect weaving and metaobject
protocols to introduce dynamic adaptation to the application code directly.
Both realizations adhere to the general model described above.

4. Middleware-Based Transparent Shaping

The first realization of transparent shaping we describe is the Adaptive
CORBA Template (ACT),20,21 which we developed to enable dynamic

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

84 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

adaptation in existing CORBA programs. CORBA was one of the first
widely used middleware platforms introduced more than 17 years ago. It is
still commonly used in numerous systems.

ACT enhances CORBA to support dynamic reconfiguration of
middleware services transparently, not only to the application code, but
also to the CORBA code itself. As a realization of transparent shaping,
ACT produces an adapt-ready version of an existing CORBA program
by introducing a hook to intercept all CORBA remote interactions.
Specifically, ACT uses CORBA portable interceptors,15 which can be
incorporated into a CORBA program at startup time using a command-line
parameter. Later at run time, these hooks can be used to insert adaptive
code into the adapt-ready program, which in turn can adapt the requests,
replies, and exceptions passing through the CORBA Object Request
Brokers (ORBs). In this manner, ACT enables run-time improvements
to the program in response to unanticipated changes in its execution
environment, effectively producing other members of the adaptable program
family dynamically.

4.1. ACT Architectural Overview

Figure 3 shows the flow of a request/reply sequence in a simple CORBA
application using ACT. For clarity, CORBA ORB details such as stubs
and skeletons are not shown. ACT comprises two main components: a

Fig. 3. ACT configuration in the context of a simple CORBA application.

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 85

generic interceptor and an ACT core. A generic interceptor is a specialized
request interceptor that is registered with the ORB of a CORBA application
at startup time. The client generic interceptor intercepts all outgoing
requests and incoming replies (or exceptions) and forwards them to its ACT
core. Similarly, the server generic interceptor intercepts all the incoming
requests and outgoing replies (or exceptions) and forwards them to its ACT
core. A CORBA application is called adapt-ready if a generic interceptor
is registered with all its ORBs at startup time. If, in addition to the
generic interceptors, all the ACT core components are also loaded into the
application, the application is called ACT-ready. Making the application
ACT-ready can be done either at startup time or at run time.

4.2. ACT Core Components

Figure 4 shows the flow of a request/reply sequence intercepted by the
client ACT core. The components of the core include dynamic interceptors,
a proxy, a decision maker, and an event mediator. Each component is
described in turn.

Fig. 4. ACT core components interacting with the rest of the system.

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

86 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

Dynamic Interceptors. According to the CORBA specification,15 a
request interceptor is required to be registered with an ORB at the
ORB initialization time. The ACT core enables registration of request
interceptors after the ORB initialization time (at run time) by publishing
a CORBA interceptor-registration service. Such request interceptors are
called dynamic interceptors. Dynamic interceptors can be unregistered
with the ORB at run time also. In contrast, a request interceptor that
is registered with the ORB at startup time is called a static interceptor and
cannot be unregistered with the ORB during run time. We note that the
code developed for a static interceptor and that for a dynamic interceptor
can be identical, the difference being the time at which they are registered.
In ACT, only generic interceptors are static.

A rule-based interceptor is a particular type of dynamic interceptor that
uses a set of rules to direct the operations on intercepted requests. The rules
can be inserted, removed, and modified at run time. A rule consists of two
objects: a condition and an action. To determine whether a rule matches
a request, a rule-based interceptor consults its condition object. Once a
match is found, the interceptor sends the request to the action object of
the rule. Since it is part of a CORBA portable interceptor, the action object
cannot itself reply to the request or modify the request parameters.15 The
action object can, however, send new requests, record statistics, or raise a
ForwardRequest exception, causing the request to be forwarded to another
CORBA object such as a proxy.

Proxies. A proxy is a surrogate for a CORBA object that provides the
same set of methods as the CORBA object. Unlike a request interceptor,
a proxy is not prohibited from replying to intercepted requests. A proxy
can reply to the intercepted request by sending a new request (possibly
with modified arguments) to either the target object or to another
object. Alternatively, a proxy can reply to the intercepted requests using
local data (e.g., cached replies). However, to enable dynamic weaving of
adaptive functionality that is common to multiple CORBA objects, ACT
needs to intercept and adapt CORBA requests, replies, and exceptions
in a manner independent of the semantics (the application logic) and
syntax (the CORBA interfaces defined in the application) of specific
applications.

The generic proxy is a particular CORBA object that is able to receive
any CORBA request (hence the label “generic”). To determine how to
handle a particular request, the generic proxy accesses the CORBA interface

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 87

repository,15 which provides all the IDL descriptions for CORBA requests.
The repository executes as a separate process and is usually accessed
through the ORB. Most CORBA ORBs provide a configuration file or
support a command-line argument that enables the user to introduce the
interface repository to the application ORB. Providing IDL information to
the generic proxy in this manner implies no need to modify or recompile the
application source code. The interface repository, however, requires access
to the CORBA IDL files used in the application.

In default operation mode, the generic proxy intercepts CORBA
requests, acquires the request specifications from a CORBA interface
repository, creates similar CORBA requests and sends them to the original
targets, and forwards replies from those targets back to the original clients.
A generic proxy also publishes a CORBA service that can be used to register
a decision maker.

Decision Makers. A decision maker assists proxies in replying to
intercepted requests as depicted in Fig. 4. A decision maker receives requests
from a proxy and, similar to a rule-based interceptor, uses a set of rules
to direct the operation on the intercepted requests. However, unlike a rule-
based interceptor, a decision maker is not prohibited from replying to the
requests.

4.3. ACT Operation

In addition to showing the ACT core components, Fig. 4 also illustrates
the sequence of a request/reply inside the ACT core, which contains a
rule-based interceptor, a generic proxy, and a rule-based decision maker.
First, a request from the client application is intercepted by the rule-based
interceptor, which checks its rules for possible matches. A default rule,
initially inserted in its knowledge base, directs the rule-based interceptor
to raise a ForwardRequest exception, which results in its forwarding the
request to the generic proxy. When the generic proxy receives the request,
it acquires the request interface definition via the application ORB, which
in turn retrieves the information from the interface repository. The proxy
creates a new request and forwards it to the rule-based decision maker. The
rule-based decision maker checks its knowledge base for possible matches
to the request. Depending on the implementation of the rules, the decision
maker may return either a modified request to the generic proxy or a reply
to the request. If the decision maker returns the request (or a modified

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

88 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

request), then the generic proxy will continue its operation by invoking the
request. If the reply to the request is returned by the decision maker, then
the proxy replies to the original request using the reply from the decision
maker. The generic proxy uses the CORBA dynamic skeleton interface
(DSI)15 to receive any type of request. The generic proxy and the rule-
based decision maker use the CORBA dynamic invocation interface (DII)15

to create and invoke a new request dynamically.

4.4. ACT/J Implementation

We have developed an instance of ACT in Java, called ACT/J, to evaluate
ACT in practice. ACT/J was tested over ORBacus,22 a CORBA-compliant
ORB distributed by IONA Technologies. ORBacus,22 like JacORB,23

TAO,24 and many other CORBA ORBs, supports CORBA portable
interceptors,15 which is the only requirement for using ACT.

To make a CORBA application ACT-ready at the application startup
time, we need to resolve the following bootstrapping issues. First, we need
to register a generic interceptor with the application ORB. Like many other
ORBs, ORBacus uses a configuration file that enables an administrator to
register a CORBA portable interceptor with the application ORB. JacORB
and TAO use a similar approach. Second, since the components in the
ACT core are also CORBA objects, they require an ORB to support their
operation (registration of services, and so on). Therefore, we need either to
obtain a reference to the application ORB for this purpose, or to create a
new ORB. ORBacus does provide such a reference, although the CORBA
specification does not support this feature. To implement ACT/J over an
ORB that does not provide such a reference, we simply create a new ORB,
although its use introduces additional overhead.

To test the operation of ACT/J, we developed two administrative
consoles: the Interceptor Registration Console and the Rule Management
Console. Please note that in this study the composer is assumed to be
a human, who performs dynamic adaptation using the administrative
consoles. The Interceptor Registration Console enables a user to manually
register a dynamic interceptor. This console first obtains a generic
interceptor name from the user and checks if the generic interceptor is
registered with the CORBA naming service. Next, the user can register a
dynamic interceptor with the generic interceptor. The Rule Management
Console allows a user to manually insert rules into rule-based interceptors.

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 89

4.5. ACT/J Case Study

To evaluate the effectiveness of ACT/J to support self-management in
existing CORBA applications, without modifying the application code, we
conducted a case study in which self-optimization is enabled in an existing
application. Additional experiments involving IP handoff, are described in
an accompanying technical report.25 We begin with a brief overview of the
application and the experimental environment, followed by the description
of the experiment. The experiment shows how ACT/J could be used to
support autonomic computing in either a generic or application-specific
manner.

For the application, we adopted an existing distributed image retrieval
application developed by BBN Technologies.26 The application has two
parts, a client that requests and displays images, and a server that stores
the images and replies to requests for them. In this study, we treat the
application as though it were used for surveillance, with a mobile user
executing the client code on a laptop and monitoring a physical facility
through continuous still images from multiple camera sources. For the
experiment described later in this section, we executed the server on a
desktop computer connected to a 100 Mbps wired network and the client on
a laptop computer connected to a three-cell 802.11b wireless network. Both
the desktop and laptop systems are running the Linux operating system.

Figure 5 shows the physical configuration of the three access points used
in the experiment. (The wireless cells are drawn as circles for simplicity —
the actual cell shapes are irregular, due to the physical construction of the
building and orientation of antennas.) AP-1 and AP-3 provide 11 Mbps
connections, whereas AP-2 provides only 2 Mbps. The desktop running the
server application is close to AP-1. AP-1 and AP-2 are managed by our
Computer Science and Engineering Department, whereas AP-3 is managed
by the College of Engineering. This difference implies that the IP address
assigned to the client laptop needs to change as the user moves from a CSE
wireless cell to a College cell. The server provides four different versions of
each image, varying in size and quality. Typical comparative file sizes are
90KB, 25KB, 14KB, and 4KB.

To investigate how ACT/J can support self-management, we developed
an application-specific rule that maintains the frame rate of the application
by controlling the image size or inserting inter-frame delays dynamically.
The original image retrieval application operates in a default mode, which
retrieves and plays images as fast as possible. ACT/J enables a developer

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

90 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

Fig. 5. The configuration of the access points used in the experiment.

to weave the rule into the application at run time, thereby providing
new functionality (frame rate control) transparently with respect to the
application. The self-optimization rule maintains the frame rate of the
application in the presence of dynamic changes to the wireless network
loss rate, the network (wired/wireless) traffic, and CPU availability.

We developed a user interface, called the Automatic Adaptation
Console, which displays the application status and also enables the user
to enter quality-of-service preferences (see Fig. 6). The rule uses several
parameters to decide on when and how to adapt the application in order
to maintain the frame rate. These parameters have default values as
shown in the figure, but can be modified at run time by the user. The
Average Frame Rate Period indicates the period during which the average
frame rate should be calculated to be considered for adaptation. The
Stabilizing Period specifies the amount of time that the rule should wait
until the last adaptation stabilizes; also if a sudden change occurs in the
environment such as hand-off from one wireless cell to another one, then
the system should wait for this period before it decides on the stability of
the system. The rule detects a stable situation using the Acceptable Rate

Deviation; when the frame rate deviation goes below this value, the system
is considered stable. Similarly, the rule detects an unstable situation, if
the instantaneous frame rate deviation goes beyond the Unacceptable Rate

Deviation value. The rule also maintains a history of the round-trip delay

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 91

Fig. 6. Automatic Adaptation Console.

associated with each request in each wireless cell. Using this history and the
above parameters, the rule can decide to maintain the frame rate either by
increasing/decreasing the inter-frame delay or by changing the request to
ask for a different version of the image with smaller/larger size. The default
behavior of the rule is to display images that are as large as possible, given
the constraints of the environment.

Figure 7 shows a trace demonstrating automatic adaptation of the
application in the following scenario. In this experiment, the user has
selected a desired frame rate of 2 frames per second, as shown in Fig. 6. For
the first 60 seconds of the experiment, the user stays close to the location
A (Fig. 5). The rule detects that the desired frame rate is lower than the
maximum possible frame rate, based on observed round-trip times. Hence,
it inserts an inter-frame delay of approximately 200 milliseconds to maintain
the frame rate at about 2 frames per second. At point 120 seconds, the user

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

92 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

Frame Rate Using Automatic Adaptation

0

0.5

1

1.5

2

2.5

3

3.5

4

0 60 120 180 240 300 360 420 480 540

Time in seconds

F
ra

m
e

R
at

e

Fig. 7. Maintaining the application frame rate using automatic adaptation.

starts walking from location A to location B for 60 seconds. The automatic
adaptation rule maintains the frame rate by decreasing the inter-frame
delay during this period. At point 180 seconds, the user begins walking
from location B to location C and back again, returning to location B
at 360 seconds. During this period, because the AP-2 access point provides
2 Mbps, the automatic adaptation rule detects that the current frame rate is
lower than that desired. It first removes the inter-frame delay, but the frame
rate does not reach to 2 frames per second. Therefore, it reduces the quality
of the image by asking for a smaller image size. Now the frame increases
beyond that desired, so the automatic adaptation rule inserts an inter-frame
delay of 400 milliseconds to maintain the frame rate at 2 frames per second.
Although there is some oscillation, the rate stabilizes by time 360 seconds.
At this point, the user continues walking from location B to location A,
prompting the rule to reverse the actions. First the inter-frame delay is
increased to maintain the frame rate, followed by an increase in image
size. In this manner, the rule brings the application back to its original
behavior. Again, because the current frame rate is higher than expected,
an inter-frame delay of about 200 milliseconds is inserted to maintain the
frame rate at 2 frames per second.

This result is promising and demonstrates that it is possible to add self-
management behavior to an application transparently to the application
code. Moreover, the use of a generic proxy enables self-optimization
functionality, both application-independent and application-specific, to be
added to the application, even at run time.

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 93

As a middleware-based realization of transparent shaping, ACT can
be used to produce families of adaptable programs from existing CORBA
programs, without the need to modify or recompile their source code. Using
the generic interceptor as a hook inside middleware at startup time, ACT
enables independent development and deployment of adaptive code from
the application code at run time. In ACT, adaptive code are realized as
software components (rules and proxies) that can be deployed inside the
ACT core dynamically. By allowing dynamic insertion and removal of such
adaptive code, ACT enables dynamic conversion of an adapt-ready CORBA
program to different adaptable programs in its corresponding program
subfamily.

5. Language-Based Transparent Shaping

Although transparent shaping can be realized by incorporating hooks inside
middleware, as in ACT, many programs do not use middleware explicitly.
In this section, we introduce TRAP (Transparent Reflective Aspect
Programming),27 a language-based realization of transparent shaping that
supports dynamic adaptation in existing programs developed in class-
based, object-oriented programming languages. TRAP uses generative
techniques to create an adapt-ready application, without requiring any
direct modifications to the existing programs.

With TRAP, the developer selects at compile time a subset of classes
in the existing program that are to be reflective at run time. We say a
class is reflective at run time if its behavior (e.g., the implementation
of its methods) can be inspected and modified dynamically. Since many
object-oriented languages, such as Java and C++, do not support such
functionality inherently, TRAP uses generative techniques to produce an
adapt-ready program with hooks that provide the reflective facilities for the
selected classes. As the adapt-ready program executes, new behavior can
be introduced to the program by insertion and removal of adaptive code
via interfaces to the reflective classes.

5.1. TRAP/J Architectural Overview

We developed TRAP/J, a prototype instantiation of TRAP for Java
programs.27 The operation of the first step, converting an existing Java
program into an adapt-ready program, is depicted in Fig. 8. We assume
that the .java source files of the original application are not available. The

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

94 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

Fig. 8. TRAP/J operation at compile time.

compiled class files (.class files) of the application and a configuration
file containing a list of class names (the ones selected to be reflective)
are input to an Aspect Generator and a Reflective Class Generator. For
each class name in the list, these generators produce one aspect, one
wrapper-level class, and one metalevel class. Next, the generated aspects
and reflective classes, along with the original application compiled class files,
are passed to the AspectJ compiler (ajc),28 which weaves the generated and
original application code together to produce an adapt-ready application.
The second step occurs at run time, when new behavior can be introduced
to the adapt-ready application using the wrapper- and meta-level classes
(also referred to as the adaptation infrastructure). Specifically, the interface
of the metalevel class includes services that enable methods of the wrapper-
level class to be overridden at run time with new implementations, called
delegates.

Figure 9 illustrates the interaction among the Java Virtual Machine
(JVM) and the administrative consoles (GUI). First, the adapt-ready
application is loaded by the JVM. At the time each metaobject is
instantiated, it registers itself with the Java rmiregistry using a unique

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 95

Fig. 9. TRAP/J run-time support.

ID. Next, if an adaptation is required, the composer dynamically adds new
code to the adapt-ready application at run time, using Java RMI to interact
with the metaobjects. As part of the behavioral reflection provided in the
adaptation infrastructure, a metaobject protocol (MOP) is supported in
TRAP/J that allows interception and reification of method invocations
targeted to objects of the classes selected at compile time to be adaptable.

5.2. TRAP/J Run-Time Model

To illustrate the operation of TRAP/J, let us consider a simple application
comprising two classes, Service and Client, and three objects, (client, s1,
and s2). Figure 10 depicts a simple run-time class graph for this application
that is compliant with the run-time architecture of most class-based object-
oriented languages. The class library contains Service and Client classes, and
the heap contains client, s1, and s2 objects. The “instantiates” relationship
among objects and their classes are shown using dashed arrows, and the
“uses” relationships among objects are depicted with solid arrows.

Figure 11 illustrates a layered run-time class graph model for this
application. Please note that the base-level layer depicted in Fig. 11 is
equivalent to the class graph illustrated in Fig. 10. For simplicity, only the
“uses” relationships are represented in Fig. 11. The wrapper level contains
the generated wrapper classes for the selected subset of base-level classes

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

96 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

Fig. 10. A simplified run-time class graph.

Fig. 11. TRAP layered run-time model.

and their corresponding instances. The base-level client objects use these
wrapper-level instances instead of base-level service objects. As shown,
s1 and s2 no longer refer to objects of the type Service, but instead refer to
objects of type ServiceWrapper class. The metalevel contains the generated
metalevel classes corresponding to each selected base-level class and their

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 97

corresponding instances. Each wrapper class has exactly one associated
metalevel class, and associated with each wrapper object can be at most
one metaobject. In this way, the behavior of each object in response to each
message is dynamically programmable, using the generic method execution
MOP provided in TRAP/J.

Finally, the delegate level contains adaptive code that can dynamically
override base-level methods that are wrapped by the wrapper classes.
Adaptive code is introduced into TRAP/J using delegate classes. A delegate
class can contain implementation for an arbitrary collection of base-
level methods of the wrapped classes, enabling the localization of a
crosscutting concern in a delegate class. A composer can program
metaobjects dynamically to redirect messages destined originally to base-
level methods to their corresponding implementations in delegate classes.
Each metaobject can use one or more delegate instances, enabling different
crosscutting concerns to be handled by different delegate instances.
Moreover, delegates can be shared among different metaobjects, effectively
providing a means to support dynamic aspects.

For example, let us assume that we want to adapt the behavior
of a socket object (instantiated from a Java socket class such as the
Java.net.MulticastSocket class) in an existing Java program at run time. First,
at compile time, we use TRAP/J generators to generate the wrapper and
metaobject classes associated with the socket class. Next, at run time, a
composer can program the metaobject associated with the socket object
to support dynamic reconfiguration. Programming the metaobject can be
done by introducing a delegate class to the metaobject at run time. The
metaobject then loads the delegate class, instantiates an object of the
delegate class, intercepts all subsequent messages originally targeted to the
socket object, and forwards the intercepted messages to the delegate object.
Let us assume that the delegate object provides a new implementation
for the send() method of the socket class. In this case, all subsequent
messages to the send() method are handled by the delegate object and the
other messages are handled by the original socket object. Alternatively, the
delegate object could modify the intercepted messages and then forward
them back to the socket object, resulting in a new behavior. TRAP/J allows
the composer to remove delegates at run time, bringing the object behavior
back to its original implementation. Thus, TRAP/J is a non-invasive29

approach to dynamic adaptation.
In an earlier study,27 we developed a delegate that effectively allows

selected Java sockets in an existing program to be replaced with adaptable

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

98 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

communication middleware components called MetaSockets. A MetaSocket
is created from existing Java socket classes, but its structure and behavior
can be adapted at run time in response to external stimuli such as
dynamic wireless channel conditions. Specifically, data sent or received on
the socket is passed through a pipeline of filters. A MetaSocket itself can
be reconfigured dynamically in its filter pipeline. The filter pipeline can be
reconfigured dynamically, that is, filters can be inserted and removed, in
response to changes in changing conditions. Moreover, the filter components
can be developed by third parties and can be independent of the functional
code of an application. Using TRAP/J and MetaSockets, we demonstrated
how to transform existing network applications into adaptive applications
that can better tolerate dynamic conditions on wireless networks.27

5.3. TRAP/J Case Study

To demonstrate how TRAP/J can be used to produce adaptable programs
from an existing program without the need to modify the existing program
source code directly, we use the Audio Streaming Application, called ASA,
that is designed to stream interactive audio from a microphone at one
network node to multiple receiving nodes. The original application was
developed for wired networks. Our goal is to adapt this application to
wireless environments, where the packet loss rate is dynamic and location
dependent.

In this case study, we configured the experiments in an ad hoc wireless
network as illustrated in Fig. 12. A laptop workstation transmits an audio
stream to multiple wireless iPAQs over an 802.11b (11 Mbps) ad hoc
wireless local area network (WLAN). Please note that unlike in wired
networks, in wireless networks factors such as signal strength, interference,

Fig. 12. Audio streaming in a wireless LAN.

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 99

Fig. 13. Adaptation strategy.

and antenna alignment produce dynamic and location-dependent packet
losses. In current WLANs, these problems affect multicast connections more
than unicast connections, since the 802.11b MAC layer does not provide
link-level acknowledgements for multicast frames.

Figure 13 illustrates the strategy we used to enable ASA to adapt to
variable channel conditions in wireless networks. However, we used TRAP/J
to modify ASA transparently such that it uses MetaSockets instead of Java
multicast sockets. The particular MetaSocket adaptation used here is the
dynamic insertion and removal of forward-error correction (FEC) filters.30

Specifically, an FEC encoder filter can be inserted and removed dynamically
at the sending MetaSocket, in synchronization with an FEC decoder being
inserted and removed at each receiving MetaSocket. Use of FEC under
high packet loss conditions reduces the packet loss rate as observed by
the application. Under low packet loss conditions, however, FEC should be
removed so as not to waste bandwidth on redundant data.

Making ASA Adapt-Ready. Figure 14 shows excerpted code for the
original Sender class. The main method creates a new instance of the Sender

class and calls its run method. The run method first creates an instance of
AudioRecorder and MulticastSocket and assigns them to the instance variables,
ar and ms, respectively. The multicast socket (ms) is used to send the
audio datagram packets to the receiver applications. Next, the run method
executes an infinite loop that, for each iteration, reads live audio data and
transmits the data via the multicast socket.

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

100 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

1 public class Sender
2 {
3 AudioRecorder ar;
4 MulticastSocket ms;
5 public void run()
6 { . . .
7 ar = new AudioRecorder(. . .);
8 ms = new MulticastSocket();
9 byte[] buf = new byte[500];

10 DatagramPacket packetToSend =
11 new DatagramPacket(buf, buf.length,
12 target address, target port);
13 while (!EndOfStream)
14 {
15 ar.read(buf, 0, 500);
16 ms.send(packetToSend);
17 } // end while . . .
18 }
19 } // end Sender

Fig. 14. Excerpted code for the Sender class.

Compile-Time Actions. The Sender.java file and a file containing only
the java.net.MulticastSocket class name are input to the TRAP/J aspect
and reflective generators. The TRAP/J class generators produce one
aspect file, named Absorbing MulticastSocket.aj (for base-level), and two
reflective classes, named WrapperLevel MulticastSocket.java (wrapper level)
and MetaLevel MulticastSocket.java (metalevel). Next, the generated files and
the original application code are compiled using the AspectJ compiler (ajc)
to produce the adapt-ready program. We note that if ajc could accept .class

files instead of .java files, then we would not even need the original source
code in order to make the application adapt-ready.

Generated Aspect. The aspect generated by TRAP/J defines an
initialization pointcut and the corresponding around advice for each
public constructor of the MulticastSocket class. An around advice causes
an instance of the generated wrapper class, instead of an instance of
MulticastSocket, to serve the sender. Figure 15 shows excerpted code
for the generated Absorbing MulticastSocket aspect. This figure shows the
“initialization” pointcut (lines 3–4) and its corresponding advice (lines 6–
11) for the MulticastSocket constructor used in the Sender class. Referring
back to the layered class graph in Fig. 11, the sender (client) uses an instance

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 101

1 public aspect Absorbing MulticastSocket
2 {
3 pointcut MulticastSocket() :
4 call(java.net.MulticastSocket.new()) && . . . ;
5
6 java.net.MulticastSocket around()
7 throws java.net.SocketException
8 : MulticastSocket()
9 {

10 return new WrapperLevel MulticastSocket();
11 }
12
13 pointcut MulticastSocket int(int p0) :
14 call(java.net.MulticastSocket.new(int))
15 && args(p0) && . . . ;
16
17 // Pointcuts and advices around the nal public methods
18 pointcut getClass(WrapperLevel MulticastSocket
19 targetObj) :
20 . . . ;
21 }

Fig. 15. Excerpted generated aspect code.

of the wrapper class instead of the base class. In addition to handling public

constructors, TRAP/J also defines a pointcut and an around advice to
intercept all public final and public static methods.

Generated Wrapper-Level Class. Figure 16 shows excerpted code for
the WrapperLevel MulticastSocket class, the generated wrapper class for the
MulticastSocket. This wrapper class extends the MulticastSocket class. All the
public constructors are overridden by passing the parameters to the super
class (base-level class) (lines 4–6). Also, all the public instance methods are
overridden (lines 8–29).

To better explain how the generated code works, we step through
the details of how the send method is overridden, as shown in Fig. 16.
The generated send method first checks whether the metaObject variable,
referring to the metaobject corresponding to this wrapper-level object, is
null (lines 11–12). If so, then the base-level (super) method is called, as if the
base-level method had been invoked directly by another object, such as an
instance of sender. Otherwise, a message containing the context information
is dynamically created using Java reflection and passed to the metaobject
(metaObject) (lines 14–28). It might be the case that a metaobject may need

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

102 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

1 public class WrapperLevel MulticastSocket extends
2 MulticastSocket implements WrapperLevel Interface {
3
4 // Overriding the base-level constructors.
5 public WrapperLevel MulticastSocket()
6 throws SocketException { super(); }
7
8 // Overriding the base-level methods.
9 public void send(java.net.DatagramPacket p0)

10 throws IOException {
11 if(metaObject == null)
12 { super.send(p0); return; }
13 . . .
14 Class[] paramType = new Class[1];
15 paramType[0] = java.net.DatagramPacket.class;
16 Method method = WrapperLevel MulticastSocket.
17 class.getDeclaredMethod(“send”, paramType);
18
19 Object[] tempArgs = new Object[1];
20 tempArgs[0] = p0;
21 ChangeableBoolean isReplyReady =
22 new ChangeableBoolean(false);
23
24 try {
25 metaObject.invokeMetaMethod
26 (method, tempArgs, . . .);
27 } catch (java.io.IOException e) { throw e; }
28 catch (MetaMethodIsNotAvailable e) {}
29 }

Fig. 16. Excerpted generated wrapper code.

to call one or more of the base-level methods. To support such cases, which
we suspect might be very common, the wrapper-level class provides access
to the base-level methods through the special wrapper-level methods whose
names match the base-level method names, but with an “Orig ” prefix.

Generated Metalevel Class. Figure 17 shows excerpted code for
MetaLevel MulticastSocket, the generated metalevel class for Multicast-
Socket. This class keeps an instance variable, delegates, which is of type
Vector and refers to all the delegate objects associated with a metaobject
that implements one or more of the base-level methods. To support
dynamic adaptation of the static methods, a metalevel class provides the
staticDelegates instance variable and its corresponding insertion and removal
methods (not shown). Delegate classes introduce new code to applications

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 103

1 public class MetaLevel MulticastSocket
2 extends UnicastRemoteObject
3 implements MetaLevel Interface,DelegateManagement{
4
5 private Vector delegates = new Vector();
6 public synchronized void insertDelegate
7 (int i, String delegateClassName)
8 throws RemoteException { . . . }
9 public synchronized void removeDelegate(int i)

10 throws RemoteException { . . . }
11
12 public synchronized Object invokeMetaMethod
13 (Method method, Object[] args,
14 ChangeableBoolean isReplyReady) throws Throwable{
15 // Finding a delegate that implements this method
16 . . .
17 if(!delegateFound) // No meta-level method available
18 throw new MetaMethodIsNotAvailable();
19 else
20 return newMethod.invoke(delegates.get(i-1),
21 tempArgs);
22 }

Fig. 17. Excerpted generated metaobject code.

at run time by overriding a collection of base-level methods selected from
one or more of the adaptable base-level classes. An adaptable base-level class
has corresponding wrapper- and metalevel classes, generated by TRAP/J
at compile time. Metaobjects can be programmed dynamically by inserting
or removing delegate objects at run time. To enable a user to change the
behavior of a metaobject dynamically, the metalevel class implements the
DelegateManagement interface, which in turn extends the Java RMI Remote

interface (lines 5–10). A composer can remotely “program” a metaobject
through Java RMI. The insertDelegate and removeDelegate methods are
developed for this purpose.

The metaobject protocol developed for metalevel classes defines only
one method, invokeMetaMethod, which first checks if any delegate is
associated with this metaobject (lines 12–22). If not, then a MetaMethod-

IsNotAvailable exception is thrown, which eventually causes the wrapper
method to call the base-level method as described before. Alternatively,
if one or more delegates is available, then the first delegate that overrides
the method is selected, a new method on the delegate is created using Java
reflection, and the method is invoked.

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

104 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

Adapting to Loss Rate. To evaluate the TRAP/J-enhanced audio
application, we conducted two sets of experiments similar to those in the
previous section. The configuration used in these sets of experiments is
illustrated in Fig. 12.

In the first sets of experiments, a user holding a receiving iPAQ
handheld computer is walking within the wireless cell, receiving and playing
a live audio stream. Figure 18 shows a sample of the results. For the first
120 seconds, the program has no FEC capability. At 120 seconds, the user
walks away from the sender and enters an area with loss rate around 30%.
The adaptable application detects the high loss rate and inserts a (4, 2)
FEC filter, which greatly reduces the packet loss rate as observed by the
application, and improves the quality of the audio as heard by the user. At
240 seconds, the user approaches the sender, where the network loss rate is
again low. The adaptable application detects the improved transmission and
removes the FEC filters, avoiding the waste of bandwidth with redundant
packets. Again at 360 seconds, the user walks away from the sender,
resulting in the insertion of FEC filters. This experiment demonstrates the
utility of TRAP/J to transparently and automatically enhance an existing
application with new adaptive behavior.

Balancing QoS and Energy Consumption. In the second set of
experiments, we used two MetaSocket filters, SendNetLossDetector and
RecvNetLossDetector, which cooperate to monitor the raw loss rate of the

Loss Rate Status

0

10

20

30

40

50

60

70

80

90

100

5 65 125 185 245 305 365 425

Time to the experiment in seconds (Samples per 5 seconds)

L
o

ss
 R

at
e

(%
) Network Loss Rate Application Loss Rate

Fig. 18. The effect of using FEC filters to adapt ASA to high loss rates on a wireless
network.

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 105

wireless channel. Similarly, the SendAppLossDetector and RecvAppLossDetector

filters are used to monitor the packet loss rate as observed by the
application, which may be lower than the raw packet loss rate due to the
use of FEC. At present, a simple state machine is used by a decision maker
(DM) component to govern changes in filter configuration. For example, if
the loss rate observed by the application rises above a specified threshold,
then the DM decides to insert an FEC filter in the pipeline. In case an FEC
filter is already present in the pipeline, DM decides to modify the (n, k)
parameters of the FEC filter to increase improve QoS. On the other hand,
if the raw packet loss rate on the channel drops below a lower threshold,
then the level of redundancy is decreased by modifying the parameters
of the FEC filter, or in case the FEC filter is not required anymore, DM
removes the FEC filter entirely.

Figure 19 shows a trace of an experiment using the ASA described
earlier, running in ad hoc mode. A stationary user speaks into a laptop
microphone, while another user listens on an iPAQ as he changes his
location in the wireless cell over a period of time. In this particular test, the
iPAQ user remains in a low packet loss area for approximately 30 minutes,
moves to a high packet loss area for another 40 minutes, moves back to
the low packet loss location for another 30 minutes, and then re-enters the
high packet loss location. The user remains there until the iPAQ’s external
battery drains and the network is disconnected.

Loss Rate Status

0

10

20

30

40

50

60

70

80

90

100

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

Total Battery Life Time (minutes)

L
o

ss
 R

at
e

(%
)

Network Loss Rate Application Loss Rate

Fig. 19. MetaSocket packet loss behavior with dynamic FEC filter insertion
and removal.

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

106 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

Battery Usage Status

0

200

400

600

800

1000

1200

1400

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

Total Battery Life Time (minutes)

R
em

ai
n

in
g

 B
at

te
ry

 C
ap

ac
it

y
(m

A
h

)

Non-Adaptive Software (FEC is always On)

Adaptive Software

Fig. 20. Trace of energy consumption during experiment using a software measurement
technique.

In this experiment, the upper threshold for the RecvAppLossDetector to
generate an UnAcceptableLossRateEvent is 20%, and the lower threshold for
the RecvNetLossDetector to generate an AcceptableLossRateEvent is 5%. As
shown in Fig. 19, the FEC (4, 2) code is effective in reducing the packet
loss rate as observed by the application. Figure 20 plots the remaining
battery capacity as measured during the above experiment and that for a
non-adaptive trace. The adaptive version extends the battery lifetime by
approximately 27 minutes.

In summary, TRAP enables production of adaptable program
families from existing programs developed in class-based, object-oriented
programming languages. Using the wrapper- and metalevel classes as hooks
instrumented inside the application code at compile time, TRAP enables
separate development and deployment of adaptive code in existing programs
at run time. In TRAP, pieces of adaptive code are realized as delegates
that can be inserted into and removed from an adapt-ready program
dynamically, thereby converting the adapt-ready program to adaptable
programs in its corresponding program subfamily.

6. Discussion

Figure 21 summarizes the current status of transparent shaping realizations.
We have implemented and tested ACT/J and TRAP/J, as described above.

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 107

Fig. 21. Transparent shaping status.

We have also developed several core assets for supporting transparent
shaping, including examples of hooks, adaptive code, and existing
applications. The hooks in TRAP/J are pairs of wrappers and metaclasses,
which are generated by TRAP/J generators automatically. In ACT/J, there
is only one hook, the generic portable interceptor, which can be reused in
any CORBA program. Adaptive code in TRAP/J is realized by delegates.
A reusable delegate using MetaSockets and filters is provided. A generic
proxy was developed for ACT/J that can be used in any existing CORBA
application. The generic proxy can receive any CORBA request and can
adapt it using adaptive code realized by rules.

We are currently addressing several other aspects of transparent
shaping. To support existing programs developed in C++, .NET, and
BPEL, members of our group have already implemented TRAP/C++31

using compile-time metaobject protocols supported by Open C++,32

TRAP.NET33 using a combination of reflective capabilities in C# and
Microsoft common intermediate language (CIL), and TRAP/BPEL34 by
wrapping the invocations and forwarding them to a local generic proxy
developed in Java, respectively. To support CORBA programs developed
using C++ ORBs, we plan to develop ACT/C++. We are also investigating
techniques to support the insertion of hooks for adaptation into the
operating system kernel,19 the third case mentioned earlier.

Transparent shaping complements other work in adaptive software,
particularly adaptive middleware. Figure 22 depicts this relationship,

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

108 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

Fig. 22. Relationship of transparent shaping to other contributions.

according to Schmidt’s four-layer middleware taxonomy.35 Please note
that the frameworks mentioned inside the transparent shaping boundary
can be incorporated into existing applications transparently, while the
ones outside this boundary require explicit calls from the application
source code. As in our work with TRAP/J and MetaSockets, transparent
shaping can enable existing non-adaptive applications to take advantage
of adaptive host-infrastructure middleware services such as MetaSockets.
Also, using our ACT/J framework, transparent shaping can enable existing
CORBA applications to take advantage of adaptive common middleware
services such as QuO. In addition, we note that many adaptive frameworks
developed by other groups can be used to support transparent shaping.
Examples include Composition Filters,36 RNTL ARCAD,10 Interoperable
Replication Logic,37 FTS,38 TAO Load Balancing,39 Iguana/J,40 Prose,41

Guaranà,42 Eternal,43 and Rocks/Racks.44 Previously, we provided a
summary of these and several other techniques.1

Finally, we note that transparent shaping has potential impact
beyond supporting adaptation in individual programs, for example, to
support application integration.45 To integrate two existing heterogeneous

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 109

applications, possibly developed in different programming languages and
targeted to run on different platforms, one needs to convert data and
commands between the two applications on an ongoing basis. Transparent
shaping offers a solution to this problem, without the need to modify
application source code directly. In preliminary studies,45,46 we have
proposed several alternative architectures and showed how transparent
shaping can support interoperability, via Web services, for Java RMI,
CORBA, and .NET applications. As a proof of concept, we have conducted
a case study that demonstrates the use of transparent shaping in the
integration of an image retrieval application developed in CORBA with
a frame grabber application developed in .NET.

7. Conclusions and Future Work

Transparent shaping supports reuse of existing programs in new, dynamic
environments even though the specific characteristics of such new
environments were not necessarily anticipated during the original design
of the programs. In particular, many existing programs, not designed to be
adaptable, are being ported to dynamic wireless environments, or hardened
in other ways to support pervasive and autonomic computing. We have
described an approach to transparent shaping based on the concept of
program families and demonstrated how automated methods can be used to
transform a program into another member of the same family. Our approach
integrates four key technologies: aspect-oriented programming, behavioral
reflection, component-based programming, and adaptive middleware. We
highlighted two different realizations of transparent shaping, ACT and
TRAP, and showed how they realize the general adaptive programming
model. In addition to our work on other realizations of transparent shaping,
as well as application integration, we are also addressing several other
aspects of transparent shaping: coordination of adaptive behavior across
system layers and among different systems, formal techniques to ensure that
adaptations leave the system in a consistent state,47 preventing adaptation
mechanisms from being exploited by would-be attackers, and constructing
“product lines” of adaptable software.

Acknowledgements

We express our gratitude to the faculty and students in the Software
Engineering and Network Systems Laboratory at Michigan State University

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

110 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

for their feedback and their insightful discussions on this work. This
work was supported in part by the US Department of the Navy, Office
of Naval Research under Grant No. N00014-01-1-0744, and in part by
National Science Foundation Grants CCR-9912407, EIA-0000433, EIA-
0130724, ITR-0313142, and CCR-9901017.

References

1. McKinley, P.K., Sadjadi, M., Kasten, E.P., Cheng, B.H.C.: Composing
adaptive software, IEEE Computer, (July, 2004), pp. 56–64.

2. Weiser, M.: Ubiquitous computing, IEEE Computer. 26 (10), (October, 1993),
pp. 71–72. ISSN 0018–9162.

3. Kephart, J.O., Chess, D.M.: The vision of autonomic computing, IEEE
Computer, 36(1), 2003, pp. 41–50, ISSN 0018–9162.

4. Parnas, D.L.: On the design and development of program families, IEEE
Transactions on Software Engineering (March. 1976).

5. Tarr, P., Ossher, H.: Eds. Workshop on Advanced Separation of Concerns in
Software Engineering at ICSE 2001 (W17) (May, 2001).

6. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C.,
Loingtier, J.M., Irwin, J.: Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP). Springer-
Verlag LNCS 1241 (June, 1997).

7. Communications of the ACM, Special Issue on Aspect-Oriented Programming,
(October, 2001), Vol. 44.

8. Maes, P.: Concepts and experiments in computational reflection. In Pro-
ceedings of the ACM Conference on Object-Oriented Languages (OOPSLA),
ACM Press (December, 1987), pp. 147–155, ISBN 0-89791-247-0.

9. Kiczales, G., des Rivières, J., Bobrow, D.G.: The Art of Metaobject Protocols.
(MIT Press, 1991).

10. David, P.C., Ledoux, T., Bouraqadi-Saadani, N.M.N.: Two-step weaving
with reflection using AspectJ. In OOPSLA 2001 Workshop on Advanced
Separation of Concerns in Object-Oriented Systems, Tampa (October, 2001).

11. Szyperski, C.: Component Software: Beyond Object-Oriented Programming,
(Addison-Wesley, 1999).

12. Bakken, D.E.: Middleware (Kluwer Academic Press, 2001).
13. Proceedings of the Middleware’2000 Workshop on Reflective Middleware

(RM2000), New York (April, 2000).
14. Yang, Z., Cheng, B.H.C., Stirewalt, R.E.K., Sowell, J., Sadjadi, S.M.,

McKinley, P.K.: An aspect-oriented approach to dynamic adaptation. In
Proceedings of the ACM SIGSOFT Workshop On Self-healing Software
(WOSS’02) (November, 2002).

15. The Common Object Request Broker: Architecture and Specification Version
3.0. Object Management Group, Framingham, Massachusett (July, 2003).

16. Cohen, G.A., Chase, J.S., Kaminsky, D.: Automatic program transformation
with JOIE. In 1998 Usenix Technical Conference (June, 1998).

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 111

17. Adve, S., Harris, A., Hughes, C., Jones, D., Kravets, R., Nahrstedt, K.,
Sachs, D., Sasanka, R., Srinivasan, J., and Yuan, W.: The Illinois GRACE
project: Global resource adaptation through cooperation, 2002.

18. Distributed extensible open systems (the DEOS project), (2004). Georgia
Institute of Technology — College of Computing.

19. Samimi, F., McKinley, P.K., Sadjadi, S.M., Ge, P.: Kernel-middleware
cooperation in support of adaptive mobile computing. In the Second
International Workshop on Middleware for Pervasive and Ad-Hoc
Computing.

20. Sadjadi, S.M., McKinley, P.K.: ACT: An adaptive CORBA template
to support unanticipated adaptation. In Proceedings of the 24th IEEE
International Conference on Distributed Computing Systems (ICDCS’04),
Tokyo, Japan (March, 2004).

21. Sadjadi, S.M., McKinley, P.K.: Transparent self-optimization in existing
CORBA applications. In Proc. of the International Conference on Autonomic
Computing (ICAC-04), (May, 2004), pp. 88–95, New York, NY.

22. ORBacus for C++ and Java version 4.1.0. IONA Technologies Inc., (2001).
23. Brose, G., Noffke, N.: JacORB 1.4 documentation. Technical report, Freie

Universitt Berlin and Xtradyne Technologies AG (August, 2002).
24. Schmidt, D.C., Levine, D.L., Mungee, S.: The design of the TAO real-

time object request broker, Computer Communications. 21(4) (April, 1998),
pp. 294–324.

25. Sadjadi, S.M., McKinley, P.K.: Supporting transparent and generic
adaptation in pervasive computing environments. Technical Report MSU-
CSE-03-32, Department of Computer Science, Michigan State University,
East Lansing, Michigan (November, 2003).

26. Zinky, J., Loyall, J., Shapiro, R.: Runtime performance modeling and
measurement of adaptive distributed object applications. In Proceedings of
the International Symposium on Distributed Object and Applications (DOA
2002), Irvine, California (October, 2002).

27. Sadjadi, S.M., McKinley, P.K., Cheng, B.H.C., Stirewalt, R.K.: TRAP/J:
Transparent generation of adaptable Java programs. In Proceedings of the
International Symposium on Distributed Objects and Applications (DOA’04),
Agia Napa, Cyprus (October, 2004).

28. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ, Lecture Notes in Computer Science, 2072, 2001,
pp. 327–355.

29. Piveta, E.K., and Zancanella, L.C.: Aspect weaving strategies, Journal of
Universal Computer Science, 9(8), 2003, pp. 970–983.

30. Rizzo, L., and Vicisano, L., RMDP: An FEC-based reliable multicast protocol
for wireless environments, ACM Mobile Computer and Communication
Review. 2(2) (April, 1998).

31. Fleming, S.D., Cheng, B.H.C., Stirewalt, R.K., and McKinley, P.K.: An
approach to implementing dynamic adaptation in C++. In Proceedings of
the first Workshop on the Design and Evolution of Autonomic Application
Software 2005 (DEAS’05), in conjunction with ICSE 2005, St. Louis, Missouri
(May, 2005).

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

112 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

32. Chiba, S., Masuda, T.: Designing an extensible distributed language with a
meta-level architecture, Lecture Notes in Computer Science, 707, 1993.

33. Sadjadi, S.M., Trigoso, F.: TRAP.NET: A realization of transparent shaping
in .net. In Proceedings of The Nineteenth International Conference on
Software Engineering and Knowledge Engineering (SEKE’2007), pp. 19–24,
Boston, USA (July, 2007).

34. Ezenwoye, O., Sadjadi, S.M.: TRAP/BPEL: A framework for dynamic
adaptation of composite services. In Proceedings of the International
Conference on Web Information Systems and Technologies (WEBIST 2007),
Barcelona, Spain (March, 2007).

35. Schmidt, D.C.: Middleware for real-time and embedded systems,
Communications of the ACM, 45(6) (June, 2002).

36. Bergmans, L., Aksit, M.: Composing crosscutting concerns using composition
filters, Communications of ACM. (10) (October, 2001), pp. 51–57.

37. Baldoni, R., Marchetti, C., Termini, A.: Active software replication through
a three-tier approach. In Proceedings of the 22th IEEE International
Symposium on Reliable Distributed Systems (SRDS02), pp. 109–118, Osaka,
Japan (October, 2002).

38. Hadad, E.: Architectures for Fault-Tolerant Object-Oriented Middleware
Services. PhD thesis, Computer Science Department, The Technion — Israel
Institute of Technology, 2001.

39. Othman, O.: The design, optimization, and performance of an adaptive
middleware load balancing service. Master’s thesis, University of California,
Irvine, 2002.

40. Redmond, B., Cahill, V.: Supporting unanticipated dynamic adaptation of
application behaviour. In Proceedings of the 16th European Conference on
Object-Oriented Programming (June, 2002).

41. Popovici, A., Gross, T., Alonso, G.: Dynamic homogeneous AOP with
PROSE. Technical Report, Department of Computer Science, Federal
Institute of Technology, Zurich, 2001.

42. Oliva, A., Buzato, L.E.: The implementation of Guaraná on Java. Technical
Report IC-98-32, Universidade Estadual de Campinas (September, 1998).

43. Moser, L., Melliar-Smith, P., Narasimhan, P., Tewksbury, L., Kalogeraki, V.:
The Eternal system: An architecture for enterprise applications. In
Proceedings of the Third International Enterprise Distributed Object
Computing Conference (EDOC’99) (July, 1999).

44. Zandy, V.C., Miller, B.P.: Reliable network connections. In Proceedings
of the Eighth Annual International Conference on Mobile Computing and
Networking (September, 2002), pp. 95–106.

45. Sadjadi, S.M.: Transparent Shaping for Existing Software to Support
Pervasive and Autonomic Computing. Ph.D. thesis, Department of Computer
Science, Michigan State University, East Lansing, United States (August,
2004).

46. Sadjadi, S.M., McKinley, P.K.: Using transparent shaping and web services
to support self-management of composite systems. In Proceedings of the

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

Transparent Shaping 113

International Conference on Autonomic Computing (ICAC’05), Seattle,
Washington (June, 2005).

47. Zhang, J., Yang, Z., Cheng, B.H.C., McKinley, P.K.: Adding safeness to
dynamic adaptation techniques. In Proceedings of the ICSE 2004 Workshop
on Architecting Dependable Systems, Edinburgh, Scotland (May, 2004).

May 4, 2011 14:8 9in x 6in b968-ch04 Adaptive Control Approach for Software. . .

This page intentionally left blankThis page intentionally left blank

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Chapter 5

RULE EXTRACTION TO UNDERSTAND CHANGES
IN AN ADAPTIVE SYSTEM

MARJORIE A. DARRAH

Department of Mathematics, West Virginia University
Morgantown, WV26505, USA

mdarrah@math.wvu.edu

BRIAN J. TAYLOR

Department of Computer Science, University of Massachusetts
Amherst, MA 01003, USA

btaylor@cs.umass.edu

Rule extraction as a specific technique can support the rigorous development
and assurance needed before using adaptive systems in mission- and safety-
critical applications. The ultimate goal and significant innovation of this
research discussed in this chapter is to demonstrate that neural network
rule extraction technology could be transferred into a practical software tool
for neural network verification and validation and other purposes, such as
monitoring the state of a neural network. Such a tool would accept as input
a formal specification of the trained neural network and use neural network
rule extraction algorithms to translate the neural network into an equivalent
set of rules. These rule-based systems, which represent the neural network’s
knowledge, have a more visible and potentially human-readable decision logic
that supports a robust set of verification techniques. Rule extraction technology
in the form of a usable tool will dramatically increase the ability to verify and
validate high assurance neural network systems.

1. Neural Network Rule Extraction

Neural networks are members of a class of software well suited for
domains of non-linearity and high complexity that are ill defined, unknown,
or just too complex for standard programming practices. Verifying
correct operation of neural networks within projects such as autonomous
mission control agents, vehicle health monitoring systems, adaptive flight
controllers, or nuclear engineering applications requires a rigorous approach.

115

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

116 M. A. Darrah and B. J. Taylor

Testing the neural network with data like that used in training is
one of a few methods used to verify that a network has adequately
learned the input domain. In non-critical applications, such traditional
testing techniques prove adequate for the acceptance of a neural network
system that has been trained using input conditions that do not vary from
operational conditions. However, in more complex, safety- and mission-
critical systems, the standard neural network training-testing approach
alone will not provide a reliable method for their certification.

The verification and validation challenge is further compounded by
adaptive neural network systems that modify themselves, or “learn”, during
operation. Traditional software assurance methods fail to account for
systems that change after deployment.

This chapter outlines the investigation of a technique known as neural
network rule extraction to determine its usefulness toward the verification
and validation of neural networks in safety-critical applications. Rule
extraction, in general, is the process of developing English-like syntax that
describes the internal knowledge of the neural network. Rule extraction can
be used as a method for verifying the neural network knowledge acquisition
processes. It is a technique that translates the decision process of a trained
neural network into an equivalent decision process represented as a set of
rules.

The techniques of rule extraction have been used to model the
knowledge that the neural network has gained while training or adapting.
The rules extracted are generally represented by a set of if-then statements
that may be examined by a human. If the neural network is fixed after
training then the rules should, with some confidence level, model the way
the neural network will handle other data that is processed. If the neural
network is an online adaptive neural network, then rule extraction can
be done for one point of time to establish what the system looks like
at that instance. Repeated application of rule extraction could yield an
understanding of the progression of the network during adaptation.

1.1. Background on Rule Extraction

Much research is ongoing in the area of rule extraction and a literature
survey uncovered many useful algorithms and techniques. The techniques
developed thus far are neural network specific. Nearly 200 recent artifacts
related to neural network rule extraction were identified. These artifacts
include IEEE and other major journal articles, conference proceedings,

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Rule Extraction to Understand Changes in an Adaptive System 117

academic dissertations and theses, and technical reports. The purpose of the
literature survey was to identify rule extraction algorithms and techniques
that could be included in a general rule extraction tool. From the survey
of research, it is clear that this technology has progressed to the point that
it may now be realized in a comprehensive tool for commercial use.

Because of the abundance of approaches to rule extraction, the
techniques were categorized based on three criteria:

1. Translucency of rules

a. Pedagogical (blackbox)
b. Decompositional (whitebox)
c. Eclectic (mixed approach)

2. Neural Network portability
3. Type of rules generated

a. Fuzzy
b. Boolean

A summary of techniques was developed that includes the rule
translucency, the neural network portability, and the rule format. A table
of this information is provided in Appendix A. Many of the techniques are
network specific. The main types of neural networks in use include feed
forward, multilayer perceptrons, radial basis function, and self-organizing
maps.

The focus of this research was to determine how decompositional
(specific to neural network) and pedagogical (applicable to many neural
networks) techniques can be applied to widely used neural network types.
A decompositional technique is a “whitebox” approach that extracts
rules using a neuron-by-neuron series of steps. The advantage of the
decompositional approach is that it offers the prospect of generating a
complete set of rules for the neural network. Future versions of a general
tool for rule extraction should include decompositional techniques related
to the most commonly used neural networks. Two of the most promising
techniques that fit this category are the techniques developed for self-
organizing maps (discussed later) and the techniques for feedforward neural
networks presented by Setiono [2002]. Both of these techniques apply to
neural networks used for function approximation and extract very accurate
rule sets.

In the future, the rule extraction tool should also include at least
one pedagogical approach that applies to all neural network types. A

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

118 M. A. Darrah and B. J. Taylor

pedagogical technique is a “blackbox” approach. In this type of approach
the neural network is trained on the data, and then the pedagogical
algorithm considers the training data and the associated neural network
output to develop a rule structure based only on the data without
consideration of the neural network type. Although the pedagogical
approaches try to mimic the performance of the neural network, they are
somewhat less likely to accurately capture all of the valid rules describing a
network’s knowledge. Their usefulness lies in the fact that these algorithms
apply to most neural network types. The techniques that could be used
for this approach include a genetic algorithm called GREX developed by
Johansson [2004] or the TREPAN algorithm developed by Craven [1994].

2. Rule Extraction for System Verification and Validation

In studies of extraction processes, an inverse relationship exists between
the degree of determinism and the readability of the rules produced. To
be most useful for verification and validation, both readability for domain
expert review and determinism for automated model analysis or execution,
are desirable. Thus the extraction process must accommodate these needs
either through parameter-based means or via separate algorithms.

Rule bases generated for domain expert review should sacrifice
determinism for readability where necessary. It is desirable that the degree
of sacrifice be tunable on either an input or output basis so that important
interfaces may be more thoroughly covered. It is preferred that the
tuning approach provides a target level of coverage or determinism for
the algorithm to seek. If this type of tuning is not possible, a reasonable
alternative would be to report the percentage of coverage or determinism
achieved so that the operator could choose to reanalyze at other levels if
necessary.

Rule bases generated for automated model analysis or for execution
should sacrifice readability for determinism. It is not necessary that the
degree of this sacrifice be tunable. The format of the deterministic rule bases
should be suitable for providing the rule portion of the input to commercial-
off-the-shelf (COTS) automated model analysis tools. A possible target is
the SSL format utilized by the SCRTool, a toolset created by the Naval
Research Laboratories for formal analysis of specification models. This
format is widely used by other automated model analysis tools.

Examination of rule extraction from a verification and validation
perspective led to the following summary of observations for the rule

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Rule Extraction to Understand Changes in an Adaptive System 119

extraction process and requirements for two rule types, readable and
deterministic.

Observations for Rule Extraction Process

• Rule-base consumers include domain expert review, automated model
analysis and rule base execution.

• Rule-base consumers can be classified by need for readable rule bases
vs. deterministic rule bases.

• An inverse relationship may exist between the degree of determinism
and the readability of the rule bases.

• Either separate or tunable rule extraction processes must be developed
to target these classifications.

Readable Rule-Base Requirements

• Should be understandable by domain experts who are not rule base or
neural network experts.

• When a tradeoff is made between determinism and readability, the
degree of tradeoff should be adjustable.

• It is desirable to be able to adjust the tradeoff for targeted I/O domains
as well as the whole neural network.

Deterministic Rule-Base Requirements

• Deterministic rule bases shall be fully deterministic regardless of
whether that determinism fully agrees with the neural network If the
rule bases do not fully agree with the neural network, it is desirable both
to control the degree of the agreement and to report characterization
of the agreement.

• The rule base shall adhere to the format of COTS tools (such as
SCRTool) that consume models that are either rule bases or supersets
of rule bases that will be used for analysis.

2.1. An Example of Rule Extraction for the Dynamic Cell

Structure Neural Network Used in a System

Previous work done at the Institute for Scientific Research, Inc. (ISR)
developed a rule extraction technique for the dynamic cell structure (DCS)
neural network [Darrah 2004]. The DCS is a type of self-organizing map
(SOM) and is a component of the Intelligent Flight Control System (IFCS)
developed by NASA Dryden Flight Research Center, NASA Ames Research

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

120 M. A. Darrah and B. J. Taylor

Center and others.1 The DCS algorithm was originally developed by
Bruske and Sommer [1994] and is a derivative of work by Fritzke [1994]
combined with competitive Hebbian learning by Martinez [1993]. These
neural networks were designed as topology representing networks whose
roles are to learn the topology of an input space.

The DCS neural network partitions the input space into Voronoi
regions.2 The neurons within the neural network represent the reference
vector (centroid) for each of the Voronoi regions. The connections between
the neurons, cij , are then part of the Delaunay triangulation3 connecting
neighboring Voronoi regions through their reference vectors.

Given an input, v, the best matching unit (BMU) is the neuron
whose weight, w, is closest to v. Along with the BMU, the neighbors
of the BMU are found through the Delaunay triangulation. During
adaptation, adjustments are made to the BMU and neurons within the
BMU neighborhood based on the input.

The DCS algorithmconsists of two learning rules, Hebbian and Kohonen.
These two learning rules allow the DCS neural network to change its
structure to adapt to inputs. The ability to adjust neuron positions and add
new neurons into the network gives the DCS neural network the potential
to evolve into many different configurations. Figure 1 shows the first basic
algorithm developed for extracting human readable rules from the DCS.

2.1.1. Refining the Algorithm

The original rule extraction process and the rule type were closely examined
for usability requirements. The objectives for refining the DCS rule
extraction algorithm were to:

• Increase accuracy.
• Maintain human understandability.
• Provide deterministic rule base that could be input to a commercial-

off-the-shelf (COTS) tool or implemented as a rule-based system.

1The Intelligent Flight Control System is being developed by the NASA DFRC, NASA
ARC, Boeing Phantom Works, the Institute for Scientific Research, Inc., and West
Virginia University.
2Given a set of n points in the plane, a Voronoi partition is a collection of n convex
polygons such that each polygon contains exactly one point and every point in a given
polygon is closer to its central point than to any other.
3The Delaunay triangulation is a dual graph of a Voronoi diagram that connects the
centers of the Voronoi regions to their neighbors to form a triangulation of the plane (if
no two points are cocircular).

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Rule Extraction to Understand Changes in an Adaptive System 121

Input:
Weights from a trained DCS (centers of Voronoi region)
Best matching unit for each input

Output:
One rule for each cell of the DCS

Procedure:
Apply input stimulus to DCS from training data
Record BMU for each input
Collect all inputs with common BMU to form cell
For each weight (wi)

For each independent variable
 x lower = min{x | x has BMU = wi}

x upper = max{x | x has BMU = wi}
Build rule by:

Independent variable in [x lower , x upper]
Join antecedent statements with AND
Dependent variable = category
 OR
Dependent variable in [ylower , y upper]
Join conclusion statements with AND

Write Rule

Fig. 1. Human understandable rule extraction algorithms for DCS.

It was determined that two separate algorithms would be necessary
to achieve both human understandability and determinism. A refinement
of the original algorithm was made to improve the human readable rules
and a new algorithm was developed to generate deterministic rules. Both
algorithms utilize the structure of the DCS knowledge by considering the
Voronoi regions that partition the input space.

As explained previously, the DCS partitions the input space into
Voronoi regions. These regions are convex polygons in two dimensions
and convex n-dimensional polyhedra in n dimensions. The original rule
extraction algorithm did not capture the entire polygon or polyhedron
region with the rules. The original algorithm used a “box” to represent
that region and the rules represent the box. (See Fig. 2.)

A new rule extraction algorithm was developed to completely capture
the polygonal regions of the input space that represent the structure of the
trained DCS. The previous rule format was non-deterministic and although
understandable, could not be used as input to COTS tools or implemented.

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

122 M. A. Darrah and B. J. Taylor

Fig. 2. Original rule coverage.

The new rule format is

IF input ∈ region 1 (input satisfies a set of constraints)

THEN output = multivariable linear expression

Below is an example of the new deterministic rules for a two-
dimensional data set.

IF (6*x + 0*y >= 48) AND (2*x + 2*y >= 32)

AND (-1*x + 4*y >= 8.5) AND (-3*x + 2*y >= -25.5)

AND (4*x - 2*y >= 16) AND (-3*x + 2*y >= -23.5)

AND (-5*x + 0*y >= -57.5)

THEN z = 0.75*x + 0.75*y - 7.5

ENDIF

These rules are specifically designed for the DCS structure implemented
by the IFCS project. The first part of the rule (after the IF) gives a set
of constraints that defines a region of the input space based on a possible
BMU and second best matching unit (SEC) pair. The subsequent parts

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Rule Extraction to Understand Changes in an Adaptive System 123

Inputs:
P = Set of all weights (centroids of the Voronoi regions)
A = Adjacency Matrix

Output:
R = Set of rules that describe a partition of the input space with
associated outputs

Procedure:
Use P to define a Voronoi diagram that partitions the input space.
Use A to determine neighboring regions in the Voronoi diagram to find
BMU and SEC pairs.

For each p ∈ P (centroid of Voronoi region and BMU)
Calculate Voronoi region boundaries.
For each q ∈ P − {p} such that p is a neighbor of q (centroid of
neighboring regionand SEC)
Determine boundaries that divide the region with centroid w into
subregions.
Determine antecedent based on boundaries defined by p and q.

Determine consequent equation based on DCS output
determined by p and q.
Write rule.

Fig. 3. Deterministic rule extraction algorithm.

(after the THEN) yield the DCS output based on this region. For the IFCS
DCS implementation, the output is determined based on the BMU and
SEC pair.

The algorithm for the deterministic rule extraction technique for
the DCS is shown in Fig. 3. This algorithm was developed because
no such technique existed for self-organizing maps. However, a similar
rule extraction technique does exist for feedforward neural network. The
techniques used to create the rule extraction process for the DCS align
with the techniques developed by Setiono [2002] and outlined in his paper
“Extraction of rules from artificial neural networks for regression.”

To test the accuracy, deterministic rules were generated for three
different data sets. The rule output and the neural network output had
100% agreement. The rules are constructed to completely cover the input
space and to use the DCS recall function as the output based on the region,
therefore these rule have complete agreement with the neural network.
Figure 4 below shows a two-dimensional example of how the rules partition
the data based on BMU and SEC. The solid lines in the figure indicate
the original Voronoi regions that divide the plane based on the BMU. The
dotted lines show how the original regions are subdivided to account for
the SEC. The lines that define the subregions form the rule antecedent.

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

124 M. A. Darrah and B. J. Taylor

Fig. 4. Deterministic rule coverage.

Note that the entire input space is covered, with each of the subregions
representing one rule.

Once the deterministic rule algorithm was developed it could then be
used to help to improve the accuracy of the human readable rules. The
human readable rules were generated by the original algorithm, which
defined the boundaries of the rules by using the training data and its
associated output. Since the deterministic rules agreed with the DCS
100%, more input/output data could be generated and fed to the original
algorithm. The original algorithm can then generate human understandable
rules that more fully cover the input space. The rules are not completely
accurate and overlap occurs in the rules, but they are improved and still
readable.

3. Applying Rule Extraction in a Tool for Verification
and Validation

In order to make rule extraction usable for the verification and validation
practitioner, there must be a way to facilitate its use with any neural

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Rule Extraction to Understand Changes in an Adaptive System 125

network in a way that does not require a high degree of sophisticated
research for its application. This section outlines the steps that can be
done to facilitate this process.

3.1. Describing a Neural Network

with Metadata Expressions

Several metadata expressions for neural networks were identified. These
include Neural Network Markup Language (NNML), NeuroML, and Matlab
Simulink.

Neural Network Markup Language (NNML) is an XML-based language
for the description of neural network models [Robtsov 2004]. The goal of
NNML is to enable the description of a neural network model completely,
including data dictionary, pre- and post-processing, details of structure and
parameters, as well as other auxiliary information. NNML facilitates the
exchange of neural network models as well as documenting, storing, and
manipulating them independently from the system that produced them.

NeuroML is another XML-based markup language for describing
models of neural systems [Goddard 2001]. It is intended as an interchange
format for software tools in use — to allow different programs to cooperate,
build, simulate, test, and publish models. The NeuroML specification
describes not only the model specifications in NeuroML, but also the
run time interfaces that simulators can implement to expose instantiated
model state. There is a NeuroML development kit including software for
reading and writing NeuroML models. The specification also describes
how to extend the vocabulary of NeuroML to accommodate new modeling
techniques.

Matlab/Simulink offers a graphical programming language that can
describe a neural network design. It provides the neural network
developer the ability to use neural network construction blocks, inter-block
connections and pre-defined mathematical functions (including prominent
neural network learning algorithms, basic statistical functions, and common
computations). While the Matlab/Simulink language would require the
usage of the Matlab application, it appears to be commonly used among
the research community and would provide a ready-to-use development
environment.

These three metadata description methods were studied to determine
which one could best be incorporated in a rule extraction process and
prototype. NeuroML appeared more suited for description of biological

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

126 M. A. Darrah and B. J. Taylor

neural networks. Matlab description requires that developers only use
the Matlab environment. Therefore, NNML was chosen because it dealt
with artificial neural networks and because it was platform and language
independent.

3.2. Building a Tool for Rule Extraction

An overview of the general neural network rule extraction tool process is
depicted in Fig. 5 and described below.

Input File. The file will be accepted in NNML format.
Parse NNML File. The NNML data file will be parsed and the

relevant data needed by the individual rule extraction algorithms will be
retained.

Extract Rules. The parsed NNML file will be input to the rule
extraction algorithm. Each algorithm is specific to the neural network type
and will require various inputs. There may be more than one algorithm for
a specific neural network type.

Display Rule Expression. The rule expression will be presented to
the user in a human readable format and deterministic format.

Analyze Rules. The rules, in a tool understandable format, will
be used as input to an outside tool such as SCRTool to check for rule
consistency. Test vectors will be generated for use in testing the neural
network.

Generate Report. A report on the domain coverage and rule
consistency will be generated.

Display Analysis Report. The analysis report will be displayed to
the user in a graphical format.

Execute Rules. The rules will be input and converted to a form for
execution. Test vectors will be input and used for testing the rules.

Execute Neural Network. Test vectors will be input and used for
testing the NN.

Compare Results. Output from the rules and the neural network
will be compared for agreement and possibly accuracy against a known set.

Generate Report. A report on rule vs. neural network agreement
and possibly accuracy will be generated.

Display Comparison Report. The comparison report will be
displayed.

M
ay

4
,
2
0
1
1

1
4
:8

9
in

x
6
in

b
9
6
8
-ch

0
5

A
d
a
p
tiv

e
C

o
n
tro

l
A

p
p
ro

a
ch

fo
r

S
o
ftw

a
re...

R
u
le

E
xtra

ctio
n

to
U

n
d
ersta

n
d

C
h
a
n
ges

in
a
n

A
d
a
p
tive

S
y
stem

1
2
7

Fig. 5. General neural network rule extraction tool process.

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

128 M. A. Darrah and B. J. Taylor

3.3. An Example of the Process

To test the rule extraction tool process a prototype was developed. Each
step of the process was tested using the example DCS neural network.

3.3.1. Translating DCS into NNML

To test the suitability of using NNML, a version of the DCS neural network
that was trained on a test set (Iris data [Fisher 1936]) was translated into
NNML. Many of the NNML pre-defined functions and existing structure
tags allowed for adequate description of the DCS neural network. These
included basic neural network descriptions and a basic SOM structure.
Some of the NNML description capabilities were not needed, primarily
because the interest was on the rule extraction aspect and not the history
of the neural network training. Sections like the pre-processing and training
process components to the NNML structure were included for compatibility
but contain no information.

While NNML was not a perfect fit for the DCS, it did provide for user-
defined declarations. These declarations must follow a certain structure
giving other applications that can read NNML the ability to parse these
functions. Two user-defined functions were created: a user-defined neuron
combination function called dcs distance function, and a user-defined post-
processing function called dcs winner takes all.

The dcs distance function is a function that operates on each neuron.
It takes as input the independent variables (sepal width, sepal length,
petal width, petal length) and the weights of the DCS neural network. For
this project, the dcs distance function will allow adequate description of
the neuron weights and provide the tool a necessary input.

Similarly, the dcs winner takes all function describes the possible
outputs from the neural network based upon the inputs into the
dcs winner takes all function. NNML already provided a winner takes all
pre-defined function, but this function assumed that the winner was the
input into the function with the highest value. For DCS, the winner neuron
would be the neuron that produced the smallest value. So to avoid possible
confusion with another application that reads NNML, it was decided to
create a specific function for DCS.

3.3.2. Extract Rules

For the implementation of the “Extract Rules” process, two algorithms,
written in Matlab, were employed. The original algorithm (Fig. 1) that

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Rule Extraction to Understand Changes in an Adaptive System 129

generates human readable rules [Darrah 2004] and the second algorithm
(Fig. 3) that generates deterministic rules were implemented and tested.
This second algorithm was also used in a two-step process to help refine
the rules generated by the original algorithm as described in a previous
section.

The new deterministic rule extraction algorithm was first tested
on a general two-dimensional example that could be hand checked
for accuracy. The following points were used as the centroid (weight)
set, C = {(2, 3), (5, 7), (9, 5), (7, 1), (12, 3), (11, 7), (14, 5)}. The connection
matrix was determined by hand. A DCS neural network was set up with
these parameters. The deterministic algorithm was used to develop the rules
that were implemented. Test data was used to generate output from both
the rules and the DCS. The output from the deterministic rule set had
100% agreement with the DCS output on 50,000 randomly generated test
points.

After testing the algorithm on the general example given above, the
DCS neural network was trained on the Iris benchmarking data set. The Iris
data set has four independent variables and is widely used to test different
algorithms. The set is interesting because it is not linearly separable.

After training the DCS on the Iris data, rules were extracted by
applying the algorithm to the weights and connection matrix. At this
time various disagreements were found with the rule output and the
DCS output. Through investigation, it was found that since DCS is a
topology-preserving structure, certain connections are purposely severed
during adaptation if subsets of the input space are disjoint. This caused a
slight discrepancy with the way DCS operates and the way the rules were
developed assuming full connection based on geometric positioning of the
weights. This discrepancy was overcome by using the original connection
matrix generated by the DCS (not the geometric connection matrix created
by a Delaunay triangulation) and breaking the output into four different
cases: (1) weight has no neighbor, (2) weight has one neighbor, (3) weight
has two neighbors, and (4) weight has three or more neighbors. In each case,
the rules must be generated in a slightly different way for those regions
in order to reach complete agreement with the DCS output. After this
modification to the rule extraction code, the rule output and the DCS
output had 100% agreement on the entire Iris original data set and on
50,000 randomly generated points.

The last test of the rule extraction algorithm was on the IFCS flight
data. The flight data used was obtained from an F-15 Flight Simulator

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

130 M. A. Darrah and B. J. Taylor

developed at West Virginia University for the IFCS. The data set used
has independent variables: mach, altitude, alpha, and beta, and dependent
variables cza, czdc, czds. The DCS was trained and the rules were extracted
by applying the algorithm to the weights and connection matrix. The rule
output and the DCS output had 100% agreement on the entire original
data set and on 50,000 randomly generated points.

3.3.3. Analyze Rules

This process block “Analyze Rules” represents the need to implement an
automatic formal analysis of the extracted rules as a representative of the
neural network. Several alternatives for this process have been identified
and are discussed in this section. In addition to the determination of test
vectors previously indicated as output, it is envisioned that this process
will generate a report that contains other information including whether
mathematically expressed assertions representing requirements are true,
false, or not provable.

After the rules are generated, they can be used to help produce test
vectors for each region of the input domain and possible system output.
The rules define the regions of the input space that correspond to a specific
output function. Once the input domain is partitioned into regions by the
rules, test data for each of these regions and on or near the boundaries
between regions can be generated. This will ensure that test sets have
complete coverage of the input domain and can be used to determine if
there will be smooth transitions between neighboring regions.

An effort to identify commercial-off-the-shelf analysis tools needed for
additional analysis of the rules led in several different directions. It was
determined that current model analysis tools such as SCRTool or SPIN are
not able to analyze models that are not fundamentally based on discrete
state machines. Constance Heitmeyer, the head of the Software Engineering
Section of the Naval Research Laboratory’s Center for High Assurance
Computer Systems that develops SCRTool, affirmed this and stated that a
theorem prover would be a more likely candidate for such an analysis stage
[Heitmeyer 2004].

Research into the current state-of-the-art of theorem provers showed
promise that a semi-automated approach to analyzing the rules could
be provided. One such theorem prover, Salsa, also developed by the
Naval Research Laboratory, will likely become part of the SCRTool suite
[Bharadwaj 2000]. The rules extracted from the neural network can be
used to build a model of the system for input to the Salsa theorem prover.

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Rule Extraction to Understand Changes in an Adaptive System 131

Violations can be stated as invariants to be checked against the system
model. Unlike model checkers, Salsa can handle infinite state spaces through
use of induction and symbolic encoding of expressions involving linear
constraints.

Theorem provers are an appropriate long-term solution, however, other
solutions, such as geometric analysis, may be more immediately effective.
Since the DCS deterministic rules give a complete geometric model of the
trained neural network, assertions can be formulated geometrically as a
region or hyperplane of the input space. These assertions could be stated
in the form of “when this condition is met by the inputs, the outputs must
not be in this region”. The assertions can then be checked geometrically
to verify if they will intersect with other regions of the input space to
determine if violations can occur.

Geometric analysis of the neural network rules can also be done
without the guidance of explicit requirements. The antecedents of the rules
geometrically describe the partition of the input domain. These regions can
be inspected for size and percent coverage of the domain. This geometric
approach can take advantage of the vast amount of previous research in
computational geometry and computer graphics algorithms and hardware.

4. Verification and Validation Examples

The following scenarios show how extracted rules can help verify and
validate a neural network. The neural network in the scenarios is a Matlab
implementation of the DCS neural network that was has put together for
testing purposes. This neural network has the same characteristics as the
DCS that was implemented in the IFCS mentioned earlier.

Scenario 1: Human Understandable Rules Led to Identification of Coding
Error.

The original rule extraction algorithm, which generated human
understandable rules, is based on how an input stimulus is matched to
a centroid of the DCS or its best matching unit (BMU). The human
understandable rules support verification inspection methods. Each input
stimulus results in the selection of a BMU internal to the DCS network.
The BMU is considered the centroid of a cell and each input that related
to that BMU is considered to be a member of that cell. The human
understandable rules were generated to describe each cell. The minimum
and maximums of each input variable related to a specific BMU are used in

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

132 M. A. Darrah and B. J. Taylor

the rule antecedents. The minimum and maximum of each output variable
associated with this cell make up the rule consequent. Any BMU that did
not match input stimulus did not generate a rule. (See rule algorithm.)

When the human understandable rule algorithm was applied to a DCS
network that had been trained on the Iris data, a discrepancy was noted
between the number of rules generated and the number of nodes within
the DCS network. There were fewer rules than nodes. This implied that
for the set of input data used to train the neural network, a node was
established that never matched any of the other data, and thus these BMUs
did not have corresponding rules. This led to investigation of the existence
of these nodes by walking through the source code and looking for problems.
Debugging and execution traces pointed to a problem in some of the DCS
code that had been optimized to run within a Matlab environment. The
original IFCS DCS code was developed within the C programming language.
For optimization purposes, when the code was moved into a Matlab script
for experimentation, all usage of “for” loops were removed and replaced
with vectorized math. One of the lines of code used for the optimization
dealt with the identification of BMUs, and incorrectly referenced the BMU
variable.

Instead of only looking across the existing set of nodes within the DCS
network, it made use of the DCS maximum allowed number of nodes. In
effect, when looking for the BMU, the DCS was allowed to consider nodes
which had not yet been assigned, and by default were at zero value and can
be thought of as existing at the origin. At times, these nodes were actually
better at matching the input than any one of the existing nodes, and DCS
manipulated these non-assigned nodes when it should not have. The result
was that nodes that had not been assigned learned and adapted. They
showed up as having non-zero values and appeared to be nodes upon visual
inspection of the DCS structure, but did not actually exist. DCS was losing
some potential learning within these nodes. The rules ignored these nodes
since they were not able to ever become BMUs that led to the discrepancy.
The line of code was modified to ignore non-assigned nodes, and then DCS
nodes correctly matched up with the human understandable rules.

Scenario 2: Machine Understandable Rules Led to Identification of Two
Coding Errors.

The deterministic rule extraction process is designed to have 100%
agreement with the performance of the DCS network. However, testing

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Rule Extraction to Understand Changes in an Adaptive System 133

of some of the first sets of deterministic rules showed that there was a large
disagreement between the rules and DCS.

The rules were re-structured so that the antecedents were broken
into a rule pertaining to each BMU, and then under the BMU rules,
each neighboring SEC rule was present. This allowed comparison to see
if the errors between the rules and DCS were based upon BMU selection,
SEC selection, or within the consequent. By comparing the BMU output
from DCS with the specific BMU rule corresponding to the input, it was
discovered that the BMU selection was consistent between the rules and
the DCS. But the selection of the SEC was not matching between the two.
Further investigation required analysis of the DCS recall function.

In the DCS recall function, two errors within the same line of code
were discovered. One was related to substitution of the “max” for “min”
commands within DCS. For the recall function to perform properly, the
smallest distance is always used to identify the closest node to a stimulus.
This is true also when selecting the second closest node from among a
BMU’s neighbors. But the code showed that the “max” function was being
used in place of the “min” function. This would subsequently show up
within the DCS recall function as the DCS always selected the node furthest
away from the stimulus.

Figure 5 shows how the DCS, trained on the example data, assigned
a BMU to random data. The different colors correspond to the different
centroids of a Voronoi region that could be chosen as a BMU. If a data
point was assigned centroid one as its BMU then the data point would be
plotted with the color of centroid one. Figure 6 below shows that with the
code errors the boundaries were not precise and there was incorrect overlap
of regions. The DCS neural network was assigning the incorrect BMU to
the data points.

Further, this same line of code contained an incorrect reference to
the strengths of the neighborhood for the BMU rather than the distances
of the neighbors from the stimulus. This mistake is quite a large mistake,
but due to the nature of the small DCS networks, and the small values on
which the network was learning, the mistake was masked much of the time.
Normal testing of the DCS showed that it could achieve accuracies above
90%, even with this error present. The robustness of the DCS network made
discovery of this error difficult.

After the coding errors were corrected, random data was again plotted.
Figure 7 shows the data is now partitioned into distinct regions and these

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

134 M. A. Darrah and B. J. Taylor

Fig. 6. Sample data plotted with code error.

Fig. 7. Sample data plotted after code errors were corrected.

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Rule Extraction to Understand Changes in an Adaptive System 135

regions completely match the boundaries in the rule antecedents as pictured
in Fig. 4.

The line of code was changed to consider the distances rather than
the connection strengths and to choose the min instead of max. The rules
and DCS were compared again. This gave the expected results of 100%
agreement. The deterministic rules were deemed a success because they
had allowed for the discovery of two coding errors, which were not readily
apparent during normal testing.

5. Potential Applications

5.1. Certification of Neural Networks

Techniques applied towards the certification of fixed neural networks may
not provide enough confidence to allow their use in a high-assurance
system. One way to remove that concern is the complete replacement of the
neural network with the deterministic rules. The rules become an expert
system. In the case of the DCS neural network, the implemented set of
rules describing the behavior of the neural network system matched with
100% agreement. Verification and Validation of expert systems is a mature
field, and expert systems have been used in high-assurance systems before
including the NASA Deep Space 1 exploration mission as an AI planner.
The rule extraction provides for the translation of a relatively new field,
neural networks, into a relatively experienced field, expert systems.

5.2. Health and Status Monitoring of the Neural Network

Neural network rules can assist in the creation of safety monitors to judge
the correctness of a neural network system.

A safety monitor is a device (software or hardware) that exists external
to the neural network within a safety- or mission-critical system. Its role is
to judge the neural network for stability, convergence, correctness, accuracy,
or any number of other factors to determine in real-time if the system
is operating within acceptable boundaries. For the IFCS systems under
development by NASA DFRC, safety monitors have been developed to
observe both the fixed and the dynamic neural networks.

In both fixed and dynamic neural network cases for the IFCS program,
the design of a safety monitor has been a somewhat complex and difficult
process. For example, the safety monitor used for the pre-trained neural

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

136 M. A. Darrah and B. J. Taylor

network within the first generation of the IFCS program was a set of
error-code like correction equations that were not easily understood or
explainable. The purpose use of these equations was to determine if the
output from the pre-trained neural network was within some allowed
percentage variation. Neural network rules, extracted from the fixed, pre-
trained neural network would have served the same purpose, been far
easier to calculate, and would have had a direct relation to the underlying
knowledge embedded in the neural network.

The same could be said for a dynamic neural network. Rule extraction
conducted in real-time would provide a way to compare against a set of high-
level requirements to determine if the neural network operates correctly.

Consider, for example, the use of extracted human understandable
rules. These rules contain expected input-output ranges. Much of the IFCS
software operates with acceptable range limits, or robustness measures,
which describe system safety limits for input or output values. Human
understandable rules can be used to determine if the network will operate
within these limits. Ranges that exceed these limits can be caught by a
simple comparison against the safety requirements and the neural network
system can be flagged as incorrect.

Another approach would be to use the deterministic rules that provide
the same output as the neural network. For the research conducted within
NNRules, the only information needed to construct these deterministic rules
for the DCS are the weights and the connection matrix. This information is
easily communicated to an external system from the neural network where
the rules can be extracted, and then used to judge the correctness of the
output from the DCS. The rules then become an external representation
of the DCS, independent of the DCS source code and the specific instance
of DCS in memory, and able to replicate the way the DCS would behave.
Careful design of the rules-safety-monitor approach provides a way to judge
if the data output from the DCS was corrupted by the transmission medium,
and a way to judge if the internal knowledge of the DCS violates a safety
requirement.

5.3. Extracted Rules as Basis for Expert Systems

Neural networks can be useful for fault diagnosis. Fault diagnosis using
neural networks has the same structure as model-based methods: a set of
signals, carrying fault information is fed into the neural network which
outputs a vector fault signal indicating normal and faulty system operation

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Rule Extraction to Understand Changes in an Adaptive System 137

[Pouliezos 2002]. Neural network diagnosis is aimed at overcoming the
shortcomings of process model-based techniques that require mathematical
models that represent the real process satisfactorily. These neural network
fault diagnosis techniques can be seen as a Pattern Recognition problem
involving three stages: measurement, feature discovery, and classification.

Although neural networks are powerful data mining tools for analyzing
and finding patterns in data, they represent a class of systems that do not
fit into the traditional paradigms of software development and certification.
Instead of being programmed, a learning algorithm “teaches” a neural
network using a representative set of data. Often, because of the non-
deterministic result of the “learning”, the neural network is considered a
black box and its response may not be predictable. This concern limits
the use of neural networks in high assurance systems, such as safety- or
mission-critical software systems.

Rule extraction enables the knowledge gained by the neural network
during training to be expressed as a deterministic rule set. Neural network
rule extraction techniques translate the decision process of a trained neural
network into an equivalent decision process represented as a set of rules.
The rules can be used to build an equivalent expert system that would have
predictable behavior.

The following steps can be used to create a fault monitor for fault
diagnosis in a safety-critical system in which a neural network could not be
included because of restrictions.

1. Perform data mining using the neural network to obtain failure mode
patterns or failure type classifications.

2. Extract rules from neural network to build knowledge base of potential
failures.

3. Create prognostic algorithms using the results of the rule extraction.
4. Implement prognostic algorithms as an expert system.

6. Conclusion

The NASA, Department of Defense (DOD), and FAA are currently
researching the potential of neural networks and how they can
enhance current technology. Given the adaptive and non-deterministic
characteristics of neural networks, it has been difficult to provide trust in
these systems. These agencies have spent years researching the functionality
of neural networks and have used “brute force” testing to determine if

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

138 M. A. Darrah and B. J. Taylor

these intelligent systems are operating as expected. As neural networks are
becoming more common in critical systems, there is a growing need to verify
and validate them beyond “brute force” testing. The technology developed
under this research enables, through the use of rule extraction, the use
of additional verification and validation methods that contribute toward
achieving the levels of trust needed to deploy neural net based systems.
Extracting the rules and/or knowledge of the neural network may help
provide that necessary level of trust.

NASA’s interest in neural networks stems from their plans for deep
space missions of the future (Mars and beyond). In order for these missions
to be successful, the deployed spacecraft must be able to adapt to unknown
or unforeseeable situations. The learning power of neural networks provides
that adaptability.

The DOD, specifically the Navy, has been researching how to
incorporate neural networks into surface ship and submarine operations.
In 1997, the Navy ran successful tests on a prototype “Smart Ship” (USS
Yorktown) that was designed to use various monitoring systems to assist
in ship operations.4 The technology introduced on the Smart Ship was
designed to minimize the size of the crew and the workload on the remaining
crew while still maintaining the high level of readiness. As an enhancement
to the Smart Ship technology, the Navy is turning towards neural networks.

The FAA’s interest in neural networks is actually a joint effort with
NASA Ames Research Center. They are researching how neural networks
can be used in flight control systems. With the successful tests of neural
networks in critical systems on the Dryden F-15 test plane, the FAA
is interested in seeing how this technology could be used in commercial
carriers. With the recent tragedy of 9/11, neural network technology has
the potential of providing safer flight with intelligent planes. The neural
networks learn what the flight envelopes are and will be trained not to fly
outside of those envelopes. The research in this area is far from hitting the
commercial carriers, but much progress has been made.

Although these research efforts may not be implemented for many
years, the question of verification and validation of neural networks must
be answered now. Extracting the rules and knowledge of a neural network
is one of many steps that can be used to verify and validate the system, as
well as provide a level of trust in the system.

4http://www.fcw.com/fcw/articles/1997/FCW 100697 1131.asp

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Rule Extraction to Understand Changes in an Adaptive System 139

Acknowledgements

This research was sponsored by NASA Ames Research Center, under
Research Grant NAG5-12069.

References

1. Andrews, R., Diederich, J., Tickle, A.B.: A survey and critique of techniques
for extracting rules from trained artificial neural networks, Knowledge Based
Systems 8, 1995a, 373–389.

2. Andrews, R., Geva, S.: RULEX & CEBP networks as the basis for a rule
refinement system. In Hybrid Problems, Hybrid Solutions, ed. John Hallam.
IOS Press, 1995b.

3. Andrews, R., Geva, S.: Rule extraction from local cluster neural nets,
Neurocomputing 47, 2002, 1–20.

4. Bharadwaj, Ramesh, Steve Sims: Salsa: Combining constraint solvers with
BDDs for automatic invariant checking. In Proc. Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2000). Lecture Notes in
Computer Science, Springer, 2000.

5. Bruske, J., Gerald, S.: Dynamic cell structures. In Proceedings of Neural
Information Processing Systems (NIPS), 1994, 497–504.

6. Carpenter, A., Tan, A.H.: Rule extraction: from neural architecture to
symbolic representation, Connection Science 7(1), 1995, 3–27.

7. Craven, M.W., Shavlik, J.W.: Using sampling and queries to extract rules
from trained neural networks’ Machine Learning, Proceedings of the Eleventh
International Conference, San Francisco CA, 1994.

8. Darrah, Marjorie and Brian Taylor: Rule extraction from dynamic cell
structure neural network used in a safety critical application. In Proceeding of
Florida Artificial Intelligence Research Society Conference, Miami FL, May
2004, 17–19.

9. Fisher, A.: Annals of Eugenics 7, 1936, 179–188.
10. Filer, R., Sethi, I., Austin, J.: A comparison between two rule extraction

methods for continuous input data. In Proc. NIPS’97 Rule Extraction from
Trained Artificial Neural Networks Workshop, Queensland Univ. Technology,
1996.

11. Fritzke, B.: Growing cell-structures — A self-organizing network for un-
supervised and supervised learning, Neural Networks, 7(9), 1994, 1441–1460.

12. Fu, L.M.: Rule generation from neural networks, IEEE Transactions on
Systems, Man, and Cybernetics, 28(8), 1994, 1114–1124.

13. Giles C.L., Omlin, C.W.: Extraction, insertion, and refinement of symbolic
rules in dynamically driven recurrent networks, Connection Scientist, 5, 1993,
307–328.

14. Goddard N., Hucka, M., Howell, F., Cornelis, H., Skankar, K., Beeman, D.:
Towards NeuroML: Model description methods for collaborative modeling in
neuroscience, Phil. Trans. Royal Society, Series B, 2001, 356–1412, 1209–1228.

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

140 M. A. Darrah and B. J. Taylor

15. Heitmeyer, C.: Personal communication with Rhett Livingston, 2004.
16. Johansson, Ulf and Rikard Konig: The truth is in there — Rule extraction for

opaque models using genetic programming. In Proceeding of Florida Artificial
Intelligence Research Society Conference, Miami FL, May 2004, 17–19.

17. Krishnan, R.: A systematic method for decompositional rule extraction from
neural networks. In Proc. NIPS’97 Rule Extraction from Trained Artificial
Neural Networks Workshop, Queensland Univ. Technology, 1996.

18. Martinetz, T.M.: Competitive Hebbian learning rule forms perfectly topology
preserving maps. In Proceedings of International Conference on Artificial
Neural Networks (ICANN), 1993, 427–434. Amsterdam: Springer.

19. McMillan, C., Mozer, M.C., Smolensky, P.: The connectionist scientist game:
Rule extraction and refinement in a neural network, Proc. of the Thirteenth
Annual Conference of the Cognitive Science Society, 1991.

20. Optiz, D.W., Shavlik, J.W.: Dynamically adding symbolically meaningful
nodes to knowledge-based neural networks, Knowledge-Based Systems, 8,
1995, 301–311.

21. Robtsov, D.V., Sergey, V.B.: Neural Network Markup Language, NNML
Home Page [online]. [cited June 15, 2004]. Available on the World Wide Web:
(http://www.nnml.alt.ru/index.shtml), 2004.

22. Saito, K., Nakano, R.: Law discovery using neural networks. In Proc.
NIPS’96 Rule Extraction from Trained Artificial Neural Networks Workshop,
Queensland Univ. Technol., 1996.

23. Schellhammer, I., Diederich, J., Towsey, M., Brugman, C.: Knowledge
Extraction and Recurrent Neural Networks: An Analysis of an Elman
Network Trained on a Natural Language Learning Task. QUT-NRC Tech.
Rep. 97-IS1, 1997.

24. Sestito, S., Dillon, T.: The Use of Sub-symbolic Methods for the Automation
of Knowledge Acquisition for expert Systems. In Proc. 11th International
Conference on Expert Systems and their Applications (AVIGNON’91), 1991,
Avignon, France.

25. Sestito, S., Dillon, T.: Automated knowledge acquisition of rules with
continuously valued attributes. In Proc. 12th International Conference on
Expert Systems and their Applications (AVIGNON’92), 1992, Avignon,
France.

26. Sestito, S., Dillon, T.: Automated Knowledge Acquisition, Prentice Hall:
Australia, 1994.

27. Setiono, R.: Extracting rules from neural networks by pruning and hidden
unit splitting, Neural Computing, 9, 1997, 205–225.

28. Tickle, A.B., Orlowski, M., Diederich, J.: DEDEC: Decision Detection by
Rule Extraction from Neural Networks. QUT NRC, 1994.

29. Tan A.W.: Cascade ARTMAP: Integrating Neural Computation and
Symbolic Knowledge Processing. In IEEE Trans. Neural Networks, 8, 1997,
23–250.

30. Tickle, A.B., Andrews, R., Golea, M., Diederich, J.: The truth is in there:
Directions and challenges in extracting rules from trained artificial neural
networks, 1998.

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Rule Extraction to Understand Changes in an Adaptive System 141

31. Towell, G.G., Jude, W.S.: Extracting refined rules from knowledge-based
neural networks. Machine Learning, 13(1), 1993a, 71–101.

32. Towell, G., Shavlik, J.: The extraction of refined rules from knowledge-based
neural networks. Machine Learning, 13(1), 1993b, 71–101.

33. Thrun, S.: Extracting rules from artificial neural networks with distributed
representations. In Advances in Neural Information Processing Systems
(NIPS) 7, eds. Tesauro, G., Touretzky, D., Leen, T. Cambridge, MA: MIT
Press, 1995.

34. Viktor, H.L., Engelbrecht, A.P., Cloete, I.: Reduction of Symbolic Rules for
Artificial Neural Networks Using Sensitivity Analysis. IEEE Conference on
Neural Networks, Perth, Western Australia. November, 1995.

Appendix A

Rule extraction
algorithm Rule translucency NN portability Rule format

DCSRules
[Darrah 2004]

Decompositional Applies only to
DCS networks,
may be
applicable to
SOMs

Propositional
if . . . then . . . else

KT Rule
Extraction
[Fu 1994}

Decompositional Neural Networks
utilizing
standard back-
propagation as
the training
regime.

if 0 ≤ output ≤
threshold 1 ⇒ no;

if threshold 2 ≤
output ≤ 1 ⇒ yes;

threshold 1 <
threshold 2

Subset Algorithm
[Towell 1993a,
1993b]

Decompositional Described as being
“general
purpose”? May
only be for NNs
with neurons
that are binary
output

Propositional
if . . . then . . . else

Validity Interval
Analysis
[Thrun 1994]

Pedagogical Maybe only
feedforward NNs

Propositional
if . . . then . . . else

Rule-Extraction-
As-Learning
[Craven 1994]

Pedagogical Seems to work
outside of the
specified NN by
learning the
training set
according to the
output of
the NN

Propositional
if . . . then . . . else
and M-of-N

(Continued)

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

142 M. A. Darrah and B. J. Taylor

Rule extraction
algorithm Rule translucency NN portability Rule format

DEDEC
[Tickle 1994]

Eclectic/
Pedagogical

The only
constraint on
the ANN is that
it be a
multilayer,
feedforward
ANN trained by
the “back-
propagation”
method.

Symbolic rules akin
to:
if variable in {. . .}

then . . .

KBANN/M-of-N
[Towell 1993a,
1993b]

Decompositional Specific to the
KBANN NN
architecture

(modified) Boolean
[If (M of the
following N
antecedents are
true) then]

BRAINNE [Sestito
1991, 1992,
1994]

Pedagogical Designed to
extract rules
from a NN
trained using
the back-
propagation
technique.

Propositional
if . . . then . . . else

Fuzzy ARTMAP
[Carpenter 1995]

Decompositional Algorithm only
works on Fuzzy
ARTMAPs

Fuzzy rules (no
examples)

Sensitivity
Analysis
Algorithm
[Viktor 1995]

Decompositional Unknown Unknown

COMBO
Algorithm
[Krishnan 1996]

Decompositional Generally
applicable to
feedforward
networks with
Boolean inputs

Propositional with
Boolean input

IF Σwpm+ bias
on neuron >
threshold on
neuron THEN
concept
corresponding to
the neuron is true

(Continued)

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

Rule Extraction to Understand Changes in an Adaptive System 143

Rule extraction
algorithm Rule translucency NN portability Rule format

RULEX [Andrews
1995a, 1995b,
2002]

Decompositional The constrained
error back-
propagation
(CEBP)
multilayer
perceptron
(similar to
radial basis
functions)

Propositional
if . . . then . . . else

RF5 [Saito 1996] Decompositional Specific NN
architecture
where the ANN
uses “product
units” in the
hidden layer
(power units)

Scientific Laws
yt = c0 +Ph

i=1 cix
wi1
t1 · · ·

xwin
tn

Knowledge
Extraction and
Recurrent
Neural Networks
[Schellhammer
1997]

Decompositional Generally
applicable to
recurrent neural
networks with
Boolean input

Deterministic
Finite-State
Automaton
(DFA)/State
Transition rules

TopGen [Opitz
1995]

Decompositional Specialized neural
network
architecture,
specialized
training
algorithm

Propositional/
M-of-N rules

RX
[Setiono 1997]

Decompositional Generally
applicable to
supervised
feedforward
networks

constrained to a
single hidden
layer

Propositional

Interval Analysis

Algorithm [Filer
1996]

Pedagogical Multilayer

perceptrons

Propositional with

continuous or
discrete input

IF ∀ 1 ≤ i ≤ n :
xi ∈ [amin

i , amax
i]

THEN concept
represented by
the unit is true

(Continued)

May 4, 2011 14:8 9in x 6in b968-ch05 Adaptive Control Approach for Software. . .

144 M. A. Darrah and B. J. Taylor

Rule extraction
algorithm Rule translucency NN portability Rule format

Extraction of
Finite-State
Automata from
Recurrent
Network [Giles
1993]

Decompositional Portable (may only
be usable with
recurrent neural
networks)

DFA/State
transition rules

TREPAN [Craven
1994]

Pedagogical Suitable for any
trained/learned
model

Decision Tree with
M-of-N split tests
at the nodes

Cascade ARTMAP
[Tan 1997]

Decompositional Relies on specific
architecture,
cascade
ARTMAP

Propositional with
discrete input

RuleNet & The
Connectionist
Scientist Game
[McMillian 1991]

Decompositional Uses a specific
type of neural
network
architecture:
RuleNet

Propositional
if . . . then . . . else
(the authors use
the term
“condition-
action” rules)

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

Chapter 6

REQUIREMENTS ENGINEERING VIA LYAPUNOV
ANALYSIS FOR ADAPTIVE FLIGHT CONTROL SYSTEMS

GIAMPIERO CAMPA

Mathworks, 400 Continental Blvd, Suite 600,
El Segundo, CA, 90245, USA

Giampiero.Campa@mathworks.com

MARCO MAMMARELLA

Advanced Space System and Technologies Business Unit,
GMV Aerospace and Defence S.A.

Isaac Newton, 11 P.T.M. Tres Cantos, 28760, Madrid
marco mm@hotmail.com

MARIO L. FRAVOLINI

Department of Electronics and Information Engineering,
University of Perugia, 06100 Perugia, Italy.

fravolin@diei.unipg.it

BOJAN CUKIC

Lane Department of Computer Science and Electrical Engineering,
West Virginia University, Morgantown, WV 26506/6106

Bojan.Cukic@mail.wvu.edu

Adaptation creates new challenges for software and system requirements
engineers. If the system is expected to change its operation, how do we
express and ensure the bounds of “desirable” changes, i.e., those that by
some measure improve rather than deteriorate the performance? This paper
introduces a technique for the analysis of boundedness problem for a general
class of dynamical systems subjected to direct adaptive control using Lyapunov
analysis, within an “adaptive augmentation” setting. An accurate formulation
of the bounding set for the overall closed loop system is derived, under the
assumption that the error driving the adaptive element is chosen as a static
function (i.e., a matrix gain) of all the measurable outputs of the system.
Based on this result, we present a simulation example relative to an adaptive
flight control system designed for F/A-18 aircraft. Further, we discuss the
impact that typical design parameters have on the shape and dimensions of
the bounding set.

145

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

146 G. Campa et al.

1. Introduction

Adaptive control systems could allow future aircraft and spacecraft to
cope with different unanticipated component failures, while at the same
time exhibiting improved performance and autonomy under uncertain
environmental conditions. However, a fundamental concern with adaptive
systems is that their evolution may lead to undesirable or unsafe levels of
performance, and ultimately, to unacceptable behavior. This is especially a
problem with safety critical applications, where in fact the control system
must incorporate a rigorous validation and verification process to comply
with certification standards. In particular, the very first phase of the
validation process, the requirements validation, represents novel challenges.
This happens because, due to its intrinsic nature, an adaptive system can
alter its behavior in response to changing environmental conditions, and
it is therefore challenging to place sensible requirements if the system can
substantially evolve itself in the field, following the deployment.

Theoretically, the problem of formulating verifiable requirements for
adaptive systems could be addressed using results from “boundedness”
proofs based on Lyapunov analysis. These proofs typically show that the
evolution of the adaptive system is Uniformly Ultimately Bounded (UUB)
into a certain compact set (also known as the UUB set). Calculating the
UUB set could give the system designer the capability to immediately check
whether such bounding set intersects regions of the state space where the
behavior is not guaranteed to be safe, with implications to software and
system verification and validation goals. In practice however, the evaluation
of the UUB set for an adaptively controlled system is a rather long and
cumbersome process. For this reason, to the best of our knowledge, it has
never been carried out in the literature at the level of completeness which
would satisfy thorough validation of adaptation requirements.

Furthermore, due to the necessity of reducing length and complexity, a
great number of limiting assumptions, simplifications and overestimations
are typically made within the proof, resulting in two main shortcomings.
First, the resulting estimation of the bounding set is overly conservative and
may tend to infinity,1 therefore defeating the validation purpose. Second,
there is a considerable lack of generality due to the simplifying assumptions
that are made on the structure of the system.8 In other words, applications
for which such proofs are derived are significantly simpler than those
that commonly appear in practice. Recent advancements17,20 remove some
limitations by adopting a more general “adaptive augmentation” viewpoint,
in which an adaptive element is added to a (possibly pre-existing) dynamical
system to partially cancel the unwanted effect of an uncertainty term, which

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

Requirements Engineering via Lyapunov Analysis 147

may be due to perturbations, failures and/or poorly modeled dynamics.
Nevertheless, the other shortcomings remain.

In this chapter, the boundedness problem will be considered in the
general framework of static output feedback adaptive augmentation for a
Multiple Input Multiple Output (MIMO) plant. Only a limited number
of assumptions will be made on the system to be augmented, therefore
leading to a general treatment encompassing a wide variety of adaptive
control systems, which will in turn yield more general and less conservative
expressions for the system’s bounding sets. On the basis of the obtained
expressions, the conditions under which boundedness can be guaranteed will
be analyzed in detail, and the interactions between the design parameters
and the shape and dimensions on the bounding sets will be discussed.

The chapter is organized as follows. The framework for the adaptive
augmentation problem is overviewed in the Section 2. Section 3 describes
the Lyapunov analysis, followed by the characterization of the bounding
set. Section 4 is devoted to an illustrating example in which the bounding
set is calculated for the adaptively controlled linear dynamics of the F/A-18
aircraft.

2. The Framework for Adaptive Augmentation

2.1. The Plant, the Closed Loop System and the Error

Dynamics

A nonlinear, uncertain, time-invariant, continuous time, MIMO dynamical
system to be controlled (also referred to, in control engineering parlance,
as “the plant”) can be described by the following equations:

ẋ(t) = Ax(t) +Bu(t) + ∆x(x(t), u(t))

y(t) = Cx(t) +Du(t) + ∆y(x(t), u(t))
(1)

where the matrices A ∈ R
n×n, B ∈ R

n×m, C ∈ R
v×m, D ∈ R

n×m

are known and constant, and the “uncertainty” terms ∆x(x(t), u(t)) ∈
R

n×1 and ∆y(x(t), u(t)) ∈ R
v×1 are continuous globally and uniformly

bounded unknown functions. Equations (1) can accurately model a wide
variety of physical systems and processes whose behavior is governed by
differential equations.8 Examples include mechanical, electrical, electronic,
thermal, fluid-hydraulic,9 as well as chemical,10 biological,17 ecological,18

economical11 and quantum-mechanical12 systems. The vector of output
variables y(t) contains the available measurements collected from the
system at time t, while the vector of input variables u(t) contains the

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

148 G. Campa et al.

commands imposed by the environment (which can include an external
device or a user), on the system. The vector of state variables x(t) contains
the variables describing the internal state of the system, which are typically
not readily measurable. The two uncertainty terms include the unknown
terms that cannot be captured by a simple linear description of the system.

As mentioned earlier, additional assumptions are typically made on the
system described by Eq. (1) with various degrees of generality losses. Earlier
research relied on y(t) and u(t) to be scalars (SISO assumption) or on the
system to be feedback linearizable, while more recent research relied on C
being the identity matrix (state feedback assumption), on C = BTP , (SPR
assumption) or on ∆x belonging to the space generated by the columns of
B. Also, in the majority of cases, both D and ∆y are assumed to be zero.
In this chapter, all the above assumptions, except the boundedness of both
∆x and ∆y and the observability of the system of Eq. (1), will be relaxed.

2.2. The Linear Controller, the Closed Loop System

and the Error Dynamics

The plant is typically connected to a “controller”, which is typically a
microprocessor-based system designed so that the closed loop system —
that is the overall system containing both the physical system Eq. (1) and
the controller — is stable and has an output y(t) that tracks a certain
desired reference signal r(t). Graphically, the closed loop system is as shown
in Fig. 1, where the underscore symbol indicates a subscript notation, and
where uad(t) is the contribution specified by a (yet to be described) adaptive
element.

The derivation of the dynamics of the closed loop system is achieved
following standard rules and definitions. By appropriately defining the
matrices Az, Cz , Bu, By, and Dy, as a function of the previously defined

u

y

u_c y_c y
1Nonlinear PlantLinear Controller

u_ad
2

r
1

Fig. 1. Closed loop system.

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

Requirements Engineering via Lyapunov Analysis 149

matrices from Eq. (1) the “error dynamics” can be written as following:

ż = Azz +Buuad +By∆y +Bx∆x

ey = Czz +Duuad +Dy∆y

(2)

The above dynamical system represents the dynamics of the error (that
is, the difference) between a “reference” system — which models the desired
behavior — and the actual system. Therefore, keeping the actual system
behavior as similar as possible to the desired behavior is equivalent to
keeping the variable z in Eq. (2) as close as possible to zero. It is important
to notice that the error dynamics in Eq. (2) is asymptotically stable, in
the sense that z(t) and ey(t) asymptotically approach zero whenever the
forcing signal Buuad +Bx∆x(x, u)+By∆y(x, u) is zero. Therefore, the goal
of the adaptive system is to learn and compensate for the uncertainties, so
that the forcing signal is kept as small as possible.

2.3. The Uncertainty

The uncertainties can be divided into the sum of two contributions,
specifically the matched and unmatched uncertainty vectors.21 The matched
uncertainty vector ∆ can be interpreted as a disturbance having the same
input matrix as the input command. If this uncertainty was known, it
could be cancelled by an opposite command signal. The remaining parts
of the total uncertainty are the unmatched vectors ∆s, and ∆o, where
the subscripts “s” and “o” indicate the state and the output equation
respectively. Rewriting Eq. (2), in terms of the matched and unmatched
uncertainties yields:

ż = Azz +Bu(∆ + unn) + ∆s

ey = Czz +Du(∆ + unn) + ∆o

(3)

Using standard arguments from finite-difference theory, assuming the
observability of the system in Eq. (2), and appropriately defining the vector
η, which contains all the known information on the overall system, leads to:

∆ = ∆′(η) + ε1(η) (4)

In words, Eq. (4) states that the unknown ∆ can be reconstructed
with an arbitrary small error ε1(η) from a sufficient number of input
and output samples by selecting a sufficiently small sampling time. The

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

150 G. Campa et al.

nonlinear function ∆′(η) can then be approximated (or, in other words,
learned) by the adaptive element in the control loop.

2.4. The Adaptive Element

Due to their simplicity and their approximation capabilities, neural
networks such as Radial Basis Function (RBF) networks,3 Single Hidden
Layer sigmoidal networks,4 and a fully-adaptive growing RBF (GRBF)
networks,5 are frequently used as adaptive elements in a great number of
adaptive control applications. The typical adaptation algorithm for an RBF
network used for control purposes can be expressed as following:

˙̂
W (t) = Proj(Ŵ (t), LΦ(η(t))eT

nn(t)− γLŴ (t)) (5)

uad(t) = −Ŵ (t)T Φ(η(t)) (6)

where Ŵ (t) ∈ R
nnn×m contains the weights of the neural network, adapted

by the learning algorithm in Eq. (5). L is the learning rate, Φ the vector of
basis functions, γ is a forgetting factor, and enn = Key, with K specified
later. The projection operator Proj(p, y(p)) — which was introduced in
Ref. 6 and is now routinely used within adaptive control laws — is a
smooth transformation of a given vector field y(p), which gradually adds
inward-pointing components to y(p) as the variable p approaches — and
surpasses — the limits of a pre-defined compact set.

2.5. The Adaptive Augmentation

The “adaptive augmentation” problem can be defined as the problem of
using an adaptive element, such as a neural network, in order to totally or
partially cancel the unwanted effect of the term ∆. The problem can be also
cast as retrofitting an existing linear controller with an adaptive element
so that the whole system is improved in terms of performance/stability or
robustness.

The adaptive element is tasked to “learn” (and compensate for)
the unknown function ∆. If that happens, the forcing terms in Eq. (2)
disappear, allowing both z(t) and e(t) to approach zero in absence of the
unmatched uncertainties vectors ∆s and ∆o. In turn, this means that the
overall system is acting as desired despite the presence of the unknown
element ∆. Whenever the network cannot cancel exactly the matched

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

Requirements Engineering via Lyapunov Analysis 151

uncertainty ∆ or either vectors ∆s or ∆o are non-zero (but bounded and
continuous), the error e(t) will not approach zero but it will however be
uniformly bounded inside a compact set.

Formally, the vector Ŵ (t) containing the neural network weights has
to converge to a value W ∗ ∈ Πw such that:

∆ = ∆′(η) + ε1(η) = W ∗T Φ(η) + ε2(η) + ε1(η) = W ∗T Φ(η) + ε3(η), (7)

where the reconstruction error ε3 is “as small as possible”, and Πw is the
set of “allowed” weights of the neural network. Appropriately defining We

then yields

∆ + uad = (W ∗ − Ŵ)T Φ(η) + ε3(η) = W T
e Φ(η) + ε3(η) (8)

Substituting Eq. (8) in the previous expressions yields the following
error dynamics, which includes the neural network contribution:

ż = Azz +Bu(WT
e Φ(η) + ε3(η)) + ∆s

ey = Czz +Du(WT
e Φ(η) + ε3(η)) + ∆o

(9)

Therefore, the evolution of the overall system comprehensive of the
adaptive element will be completely determined by the two state vectors z
and We, whose dynamics is specified by Eq. (9) and (5).

3. The Lyapunov Analysis

A system, designed to perform in a steady state, must be stable at times
when sudden disturbances affect its operation. Lyapunov analysis is a
well known offline approach to evaluating whether the system is able
to maintain stability in presence of disturbances. The following general
candidate Lyapunov function will be used, where r is a positive scalar, P
is positive definite, and tr is the trace operator:

V (z,We) =
1
2
zTPz +

1
2
tr(W T

e rL
−1We) (10)

Note that since V is continuous, radially unbounded, and positive, it
can be shown that if its time derivative along the system’s trajectories is
negative outside a certain convex compact set, then the system is uniformly
ultimately bounded (UUB) within that compact set, and any trajectory
approaches the set within a finite time. Such set is therefore indicated as
the “UUB set” or “bounding set” of the closed loop system. Calculating

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

152 G. Campa et al.

the derivative of V with respect to time yields a rather complex quadratic
function of the variables z, and We. Boundedness can then be proved by
showing that this function is negative outside a compact set, and the
interplay between the design parameters (such as γ or Q) and the size,
dimension and existence of such compact set can then be analyzed in detail.

3.1. Typical “Completion of Squares” Bounds Formulation

and its Limitations

Several approximations are typically introduced to simplify the involved
calculations. Specifically, the quadratic expressions involving the vectors z
and We are overestimated using the norms ‖z‖ and ‖We‖, leading to the
following inequality:

V̇ (z,We) ≤ H(‖z‖, ‖We‖) (11)

where the right hand side H is a quadratic function in the two scalar
variables ‖z‖ and ‖We‖. A conceptual representation of both the surface
H and the ellipse H = 0 in the two dimensions ‖z‖ and ‖We‖, is shown
in Fig. 2. Note that Eq. (11) implies that the derivative of the Lyapunov
function is negative outside the ellipse H = 0.

−1 0 1 2 3 4 5

x 105
−3000

−2000

−1000

0

1000

2000

3000

−8

−6

−4

−2

0

2

4
x 1010

norm(z)

Function H(||z||,||W||)

norm(W)

H

H>0

H=0

H<0

Fig. 2. Conceptual representation of the quadratic function H.

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

Requirements Engineering via Lyapunov Analysis 153

Additional overestimations are typically carried out at this point, using
the fact that for any nonnegative couple of scalars α and β, αβ ≤ 2αβ ≤
α2 + β2, (since (α − β)2 ≥ 0). Specifically, the terms in Eq. (11) that
present a linear- or mixed-dependence on the variables ‖z‖ and ‖We‖ can be
overestimated by three other terms, the first one being a positive constant,
the second one featuring ‖z‖2 and the third one featuring ‖We‖2.

Grouping similar terms leads to a quadratic equation having the form

H ′(‖z‖, ‖We‖) = a′‖z‖2 + b′‖We‖2 + g′ (12)

Whenever a′ and b′ are negative, the equation H ′ = 0 describes an
ellipsoid that is centered at the origin and contains the ellipsoid described
by H = 0, because by construction:

V̇ (z,We) ≤ H(‖z‖, ‖We‖) ≤ H ′(‖z‖, ‖We‖) (13)

The return set RE is then defined as the set of points in the space
[z,We] such that H ′ ≥ 0:

RE = {z ∈ R
n+nc ,We ∈ Πw|H ′(‖z‖, ‖We‖) ≥ 0} (14)

Taking into account Eq. (13), the derivative of the Lyapunov function is
negative outside RE . While this guarantees that any trajectories originating
in RE will eventually return in RE , it does not guarantee that the
trajectories will be fully contained in RE . It is however guaranteed that the
evolution of the system will be confined inside the ellipsoid representing the
smallest level surface that fully contains RE . The bounding set can then be
formally defined as:

BE =
{
z ∈ R

n+nc ,We ∈ Πw|V (z,We) < max
{z,We}∈RE

V (z,We)
}

(15)

Therefore if the initial condition is outside BE , the overall state [‖z‖,
‖We‖] asymptotically tends to BE , while if the initial condition is already
within the ellipse, then the system’s trajectory remains within BE . Ideally,
the set BE should be small enough so that ‖z‖ — which represent the
deviation between the desired and the actual states of the system — will
remain small, implying that the system behaves as desired. A small BE

guarantees that the behavior of the system from Eq. (3) is confined near the
origin, which represents the desired performance. In any case, a constructive
method to calculateBE and visualize its projection along chosen dimensions
is crucial, since this allows the requirements and control engineers to quickly
check, in the design phase, whether the bounding set intersects sections

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

154 G. Campa et al.

of the error space — far from the origin — where the behavior of the
system is not guaranteed to be safe. In other words, explicit and verifiable
requirements could be set, before the design phase, on metrics associated
with BE , for example its size or the size of its projections about selected
axis of the error space.

Unfortunately, while Eq. (13) is useful to prove a theoretical point —
that there exists a configuration of parameters for which the error is indeed
bounded — it is clear that the overestimation of the UUB set obtained in
this way is unnecessarily conservative. Furthermore, it has been shown that
such estimation can easily lose significance in very common cases — and
for sensible selections of the design parameters — for which a bounding set
indeed exists. Recent results21 have shown that H ′ is not defined whenever
the forgetting factor γ is less than 1 and the minimum eigenvalue of Q
(defined later) is less than 2, therefore including a majority of practical
cases.

For these reasons, current methods to calculate the bounds are not well
suited to assess the boundedness of a system in the design phase.

3.2. A Better Characterization of the Return Set

By using the following definitions:

a = −1
2
λ(Q)

b = −r(γ − nnn‖KDu‖)
c =

1
2
(‖P‖‖∆s‖+ ‖PBu‖‖ε3(η)‖+ 2nnnwmax

√
m‖M‖) (16)

d =
1
2
r
√
nnn(γwmax

√
m+ (‖K‖‖∆o‖+ ‖KDu‖‖ε3(η)‖))

whereK = 1
2
BT

u PC
+
z and AT

z P+PAz+Q = 0, the termH in the inequality
Eq. (13) can be conveniently expressed as:

H(‖z‖, ‖We‖) =
[‖z‖ ‖We‖ 1

] a 0 c

0 b d

c d 0

 ‖z‖‖We‖

1

 ≥ 0 (17)

Specifically, if a < 0, b < 0, Eq. (16) describes an ellipse such that
H(‖z‖, ‖We‖) < 0 for every point that falls outside the ellipse. The
bounding set BE is then defined as in (14) and (15) but using directly
H instead of H ′.

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

Requirements Engineering via Lyapunov Analysis 155

It should be noticed that while it is convenient to think about Eq. (17)
as a curve defined in R

2, it is only its intersection with the positive semi-
infinite stripe where ‖z‖ ∈ [0,∞) and ‖We‖ ∈ [0, 2wmax

√
nnnm] that

is relevant, since both variables are only definite within their respective
validity intervals.

The Matlab Ellipsoidal Toolbox22 has a collection of functions useful
for the analysis, projection, and visualization of multidimensional quadric
surfaces. However, in order to use the toolbox, the set H(‖z‖, ‖We‖) ≥ 0
must be expressed as:

Γ(ξ, qE , QE) = {ξ ∈ R
(n+nc+1)|(ξ − qE)TQ−1

E (ξ − qE) ≤ 1} (18)

where ξ =
[‖z‖ ‖We‖

]T
, QE is the shape matrix — positive definite for

the set in Eq. (18) to be an ellipsoid — and qE is the vector containing the
coordinates of the center. Finally, it is possible to write Eq. (17) in a form
suited to using the Ellipsoidal Toolbox, in this case, ξ =

[‖z‖ ‖We‖
]T ∈

R
2, qE ∈ R

2, and QE ∈ R
2×2.

3.3. Boundedness Conditions

In this section we present the conditions under which the compact set
BE is closed. A sufficient condition for BE to be closed is that the set
H(‖z‖, ‖We‖) ≥ 0 represents an ellipsoid. Using the ellipsoidal calculus
formulation, an ellipsoid is defined by the vector qE and the matrix QE

whereQE is positive definite, while a positive semi-definiteQE characterizes
a degenerate ellipsoid. Expressing this condition using the terms defined in
Eq. (15) yields the two conditions. The first condition is that the value of
a has to be negative. Since Q is definite positive this condition is always
verified. The second condition, b < 0, guarantees that the ellipsoid does not
become degenerate along the ‖We‖ direction.

Whenever the projection algorithm is applied, the BE set is limited
along the ‖We‖ direction to the segment [0, 2wmax

√
nnnm] because each

weight is limited to the interval [−wmax, wmax]. However, whenever either no
projection algorithm is applied or whenever the limit wmax is selected to be
very large, then the condition b < 0 is the only mechanism for guaranteeing
that BE is limited along the ‖We‖ direction and hence closed.

Following the definition of b the second condition translates to:

γ > nnn‖KDu‖ (19)

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

156 G. Campa et al.

which is — as expected — intrinsically related to the neural network. This
condition implies that the forgetting factor must be larger than a certain
constant depending on the number of neurons, the matrixK, and the matrix
Du. While this condition is always verified in absence of a matrix D in the
original plant, it becomes harder to satisfy whenever the plant has a non-
zero D matrix, especially because either higher values of the forgetting
factor, or a small number of neurons, may prevent an effective learning
process by the neural network. This implies that the matrix K has to be
selected small enough so Eq. (19) can be verified. Note, however, that since
K multiplies the error seen from the network, (enn = Key), a small K
still reduces the effectiveness of the neural network when the other network
parameters are kept constant. This confirms that whenever the plant has
a non-zero D matrix and the projection operator is not used, Condition
(19) implies that the network “freedom” must be kept in check by either
enhancing γ or by reducing nnn, or K.

However, it is perhaps more important to consider that, without the
application of the projection operator, even when Condition (19) is satisfied
no upper bound for ‖W ∗‖ can be selected, therefore leaving the terms
depending on ‖W ∗‖ and ‖ε3(η)‖ in the ellipsoid expression — specifically
the terms c and d in Eq. (15) — undetermined, resulting in an ellipsoid
of undetermined size. In this sense, a considerable number of previous
boundedness results,1,17,20 lack constructiveness.

3.3.1. Extreme Points of the Boundary and Semi-Axes of the Ellipsoid

The definition of ellipsoid formulated in Eq. (18) provides a useful tool in
order to calculate the ellipsoid semi-axes as well as the coordinates of the
extreme points of the ellipsoid projection along each axis.

Specifically, the lengths of the semi-axes are the square roots of the
eigenvalues of the matrix QE , that is:

Ej =
√
λj(QE) (20)

is the length of the jth semi-axis of the ellipse. It should be noticed that
the existence of Ej is guaranteed since QE is semi-positive definite when
the ellipsoids (17) exist.

The coordinates of the extreme points of the projection along the i axis
can instead be expressed as:

max(ξi) = qE(i) +
√
QE(i, i)

min(ξi) = qE(i)−√QE(i, i)
(21)

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

Requirements Engineering via Lyapunov Analysis 157

where ξi represents the ith component of the vector ξ as defined in previous
section, qE(i) is the ith component of the vector qE , and, QE(i, i) is the
component on the diagonal at the position (i, i) of the matrix QE . This
is in turn of key importance to allow for checking that the UUB set not
intersect regions where the behavior is not guaranteed to be safe.

4. Case Study

A simulation study was conducted featuring an adaptive control system for
a linear model of an F/A-18 aircraft:

ẋ = Ax +Bu
(22)

y = Cx +Du

The state is described by the following vector:

x =
[
q α V p r β

]
(23)

where V is the airspeed, α and β are respectively the longitudinal and
lateral aerodynamic flow angles; p, q, r are the components of the angular
velocity in the body reference frame.

The input vector is defined as:

u =
[
ail l ailr stabl stabr rud l rudr tef l tef r lef l lef r

]
(24)

where ail, stab, rud, tef and lef correspond respectively to ailerons,
stabilators, rudders, trailing edge flaps and leading edge flaps, while the
l and r subscripts correspond to the left and right actuator.

The output vector is:

y =
[
ancg axcg ancs aycg aycs q α V p r β

]
(25)

where ancg, axcg, aycg represent the acceleration of the center of gravity
respectively along the normal (opposite to z), x and y body axes, and
ancs and aycs represent the acceleration of the center of pressure along the
normal and y axes respectively. The other outputs are the state variables.

A non-linearity equal to −2∗ cos(100DTCx) was added to the
input to represent a bounded matched uncertainty, while the term
max(min(0.1ATAx, l),−l) was added to the matrix A to represent a
conic-bounded partially matched uncertainty, and where l is the vector
[0.23 0.038 0.02 5.2 0.73 0.03]T . Theoretically, an uncertainty like
max(min(0.1ATAx, l),−l) can be matched or unmatched, depending on

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

158 G. Campa et al.

the linear span of the matrix B. In this particular case the matrix B is full
row rank and consequently — as it will be explained in more detail in next
section — the uncertainty is completely matched. Adding this term causes
the system to respond slightly faster to the input commands compared to
the reference model. The plant inclusive of the uncertainty is:

ẋ = Ax+ Bu+ max(min(0.1ATAx, l),−l)− 2B cos(100DTCx)
(26)

y = Cx +Du

The 10-inputs 6-states 11-outputs plant is controlled by an LQ-servo
controller16, which was designed so that the variables p, q, and r could follow
a step input with zero error. The closed loop system involving plant and
linear controller, is represented in the orange (upper) block in Fig. 3, while
the reference closed loop system is instead represented in the green (lower-
right) block, and the blue (lower-left) block includes the adaptive element.

NEURAL NETWORK

REFERENCE
CLOSED LOOP

CLOSED LOOP
SYSTEM

Pilot input

pilot_cmds

Noise

K*eNN

K*u

Gain

1

GRBF

x

e

LE

ys

X

F18 model

u y

F18 Reference Model

u y

Controller

y

pqr_cmd

u

eta

yt

Controller

y

pqr_cmd

u

yt

Constant

1

NN Contribution

Fig. 3. Simulink scheme of the overall system.

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

Requirements Engineering via Lyapunov Analysis 159

The Neural Network features 80 standard Gaussian Radial Basis
Functions for each of the 10 output channels, with centers chosen randomly
between [−1, 1] since the variables in η(t) were normalized. The standard
deviation of the RBF functions was set to 1, and the matrix W0 containing
the initial conditions of the network weights was set to an initial value
derived from a previous off-line learning phase of the Neural Network.

The learning rate L was set to 0.01, the forgetting factor γ was set to
10−5, each element of the weight matrix was limited by selecting wmax = 5,
and the vector η(t) includes the 6 states variables of the plant. The error
input of the neural network enn(t) is the error between the real and the
reference systems multiplied by K, the constant r was set to 1, and P

results from the solution of AT
z P +PAz +Q = 0 with Q being the identity

matrix multiplied by 10−6.
Figure 4 shows the behavior of the real system (dashed line) and the

reference system (gray solid line) when a step command in the variable p
(black thin line) is provided and the neural network is disconnected. It can
be seen that the initial transitory of the real system is quite different to
the one of the reference system. Specifically, the real system presents an
overshoot of 22% as a response to a positive step and an undershoot of 36%

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5
p command without Neural Network

t (sec)

p
(r

ad
/s

ec
)

Nonlinear system
Reference system
Command

Fig. 4. Reference and real system responses to a command in p (roll rate).

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

160 G. Campa et al.

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

t (sec)

p
(r

ad
/s

ec
)

p command with Neural Network

Nonlinear system
Reference system
Command

Fig. 5. Responses to a command in p (roll rate) with Neural Network.

as a response to a negative step, and its rise time is 0.33 sec against the 0.6
sec of the reference one.

When the Neural Network is connected, after an initial transitory in
which the Neural Network weights undergo an initial adaptation phase, the
behavior of the closed loop system (dashed line in Fig. 5) gets considerably
close to the one of the reference model, (gray line in Fig. 5).

It can be seen that the step command is followed without any overshoot
or undershoot, and the rise time of the non-linear system becomes 0.654
sec. This confirms that the neural network has converged to a satisfactory
approximation of the uncertainty.

4.0.1. 2D Bounds Calculation and Visualization

Now we calculate the return and UUB sets of the whole closed loop system
and visualize them in the 2D norm space of the system error.

Since the plant has a non-zero D matrix, condition Eq. (19) mandates
that the forgetting factor γ has to be larger than nnn‖KDu‖. As discussed
before, this implies that the Q matrix has to be selected sufficiently small,
in this case, Q was chosen to be 10−6*I, where I is the identity matrix, so
that Eq. (19) could be satisfied, even if, since the projection algorithm is

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

Requirements Engineering via Lyapunov Analysis 161

used in the network adaptation laws, satisfying Eq. (19) was not strictly
necessary for BE to be bounded.

In order to calculate the system’s bounds in the space of the absolute
values of the system error, the parameters a, b, c and d have to be calculated
according to Eq. (16). The parameter a is equal to −0.5∗10−6.

An upper bound for the vector of the absolute values of the matched
uncertainty ∆ can be calculated — in this case — by considering that each
element of the vector −2∗ cos(100DTCx) cannot be more than 2, and that
an upper bound for the absolute value of the other uncertainty element is:

|max(min(0.1ATAx, l),−l)| ≤ BB+l (27)

where BB+ is the identity matrix, since in this case B is 6 by 11 and has
rank 6 (that is B is full row rank), and the values in l were chosen because
they are beyond the range of variation of each state variable.

The multiplication of the upper limit by the pseudo-inverse of the
matrix B is used to conduct the uncertainty on the state variable x to
an uncertainty entering as an input of the system, and therefore totally
matched. Of course in applications where B is not full row rank, that
is in the majority of the cases, the non-linearity would be mapped as
a sum between a matched input uncertainty ∆ and an unmatched state
uncertainty ∆s, so that an estimation of ‖∆s‖ would be necessary.

In any case, the selection of the maximum allowed uncertainty is in
general a design choice that is very specific to the application and to the
considered control problem.

An upper bound for the elements of the matched uncertainty ∆ can be
obtained as follows:

‖∆‖ ≤

∥∥∥∥∥∥∥∥∥

2
2
...
2

+ |B+|l

∥∥∥∥∥∥∥∥∥
= 27.11 (28)

In this case being the uncertainty completely matched, the vector |∆s| is
equal to zero. Consequently, knowing that ‖∆y‖ = 0, it can be stated that:

‖∆o‖ = ‖Du∆‖ (29)

and an upper bound for the norm of the best weight matrix is given by:

‖W ∗‖ ≤ wmax
√
nnn

√
m = 5

√
80
√

10 = 141.42 (30)

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

162 G. Campa et al.

−4 −3 −2 −1 0 1 2 3 4
x 105

−400

−300

−200

−100

0

100

200

300

400

norm(z)

no
rm

(W
e)

Bounds in norm space

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8
x 10−4

2*max(norm(W))

Lines belonging to ellipsoid H=0

Bounds

Return Set

Fig. 6. Bounds of the system with and without Neural Network in norm space.

Finally the upper bound for ‖ε3‖ can be calculated as:

‖ε3‖ ≤ 27.11 (31)

Equations (28)–(31) can then be used to calculate the parameters b, c and
d in (15), while the value of a has already been calculated.

Figure 6 shows the 2D representation of the bounding set — the greater
ellipse — of the overall system comprehensive of the adaptive element.
The black rectangle-shaped region contained in the ellipse is the return
set, which is the intersection between the semi infinite stripe due to the
projection algorithm and the ellipse calculated according to (16) and (17).
Note that the curvature of such ellipse is undetectable at the given scale.
The green star near the origin indicates the evolution of the system in
the norm space, which is expanded in the subplot. The bound of the error
‖z‖ without the Neural Network can be calculated by considering that the
matched and unmatched uncertainties are left uncompensated for, yielding:

zb =
‖P‖‖∆s‖+ ‖PBu‖‖∆‖

1
2
λ(Q)

=
2‖PBu‖‖∆‖

λ(Q)
= 2.48 · 103 (32)

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

Requirements Engineering via Lyapunov Analysis 163

−4 −3 −2 −1 0 1 2 3 4
x 105

−400

−300

−200

−100

0

100

200

300

400

norm(z)

no
rm

(W
e)

Bounds in norm space

0 1000 2000 3000 4000 5000 6000
−3

−2

−1

0

1
x 10

−3

2*max(norm)(W)

Lines belonging to ellipsoid H=0

Return Set

Bounds

Fig. 7. Bounds and system evolution during malfunctioning.

Finally, a simulation was performed in which the Neural Network
weights were appositely set to a vector of random values between −5 and
5, and the learning rate matrix L was set to the identity. As expected,
this causes the system to malfunction; the system is actually unstable
in the sense that no convergence seems to take place. Furthermore, the
value of ‖z‖ exceeds zb calculated in (32) indicating that a malfunctioning
network could in theory “cause more damage” than the uncompensated
uncertainties. However, as shown in Fig. 7, the evolution of the norm of the
system error is completely contained within the calculated bounding set.

5. Conclusions

In this chapter, the problem of formulating explicit and verifiable
requirements on the evolution of a dynamical system subject to direct
adaptive control has been addressed from a control theoretic perspective.
Specifically, using methods based on Lyapunov analysis, we developed a
general framework to calculate — in the design phase — the bounding set
into which the state space of the system is confined at runtime.

The conditions guaranteeing the existence of the bounding set were
discussed, and a simulation experiment featuring the adaptive control for

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

164 G. Campa et al.

an F/A-18 aircraft was performed so the actual system’s bounds could be
calculated and plotted against the system’s evolution.

While the presented methods are much less conservative than the ones
considered in the literature, results indicate that the bounding limits still
tend to be large with respect to the actual tracking error, therefore, more
work will be required toward extending the presented methods to yield even
less conservative formulations of the bounding set. Consequently, system
designers and assurance engineers need to understand and explain the safety
risks inherent in this new technology to customers.

References
Periodicals

1. Kim, B.S., Calise, A.J.: Nonlinear flight control using neural networks,
Journal of Guidance, Control and Dynamics, 20(1), 1997, pp. 26–33, 144.

2. Hovakimyan, N., Nardi, F., Calise, A.J.: A novel error observer-based
adaptive output feedback approach for control of uncertain systems, IEEE
Transactions on Automatic Control, 47(8), 2002, pp. 1310–1314.

3. Pomet, J.B., Praly, L.: Adaptive nonlinear regulation: Estimation from the
Lyapunov equation, IEEE Transaction on Automatic Control, 37(6), 1992,
pp. 729–740.

4. Hornik, K., Stinchombe, M., White, H.: Multilayer feedforward networks are
universal approximators, Neural Networks, 2, 1989, pp. 359–366.

5. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function
networks, Neural Computation, 3, 1991, pp. 246–257.

6. Campa, G., Fravolini, M.L., Napolitano, M.R.: A Library of adaptive neural
networks for control purposes, IEEE International Symposium on Computer
Aided Control System Design, September 2002, 18–20.

7. Pomet, J.B., Praly, L.: Adaptive nonlinear regulation: Estimation from the
Lyapunov equation, IEEE Transaction on Automatic Control, 37(6), 1992,
pp. 729–740.

Books

8. Palm, W.: System Dynamics, McGraw-Hill, September 2004.
9. Esfandiari, R., Vu, H.V.: Dynamic Systems: Modeling and Analysis, McGraw-

Hill, 1997.
10. Bequette, B.W.: Process Control: Modeling, Design and Simulation, Prentice

Hall, Upper Saddle River, NJ, 2003.
11. Herbert, R.D.: Observers and Macroeconomic Systems, Springer-Verlag, NY,

1998.
12. D’Alessandro, D.: Introduction to Quantum Control and Dynamics, CRC

Press, Boca Raton, FL, 2007.

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

Requirements Engineering via Lyapunov Analysis 165

13. Narendra, K.S., Annaswamy, A.M.: Stable Adaptive Control, Prentice Hall,
1989.

14. Macejowki, J.M.: Multivariable Feedback Design, Addison-Wesley, 1989.
15. Jordan, C.: Calculus of Finite Differences, Chelsea Publication Company,

New York, N.Y., 1960.
16. Stengel, R.F.: Optimal Control and Estimation, Dover Publication Inc. New

York, 1994.

Proceedings

17. Chang, H., Astolfi, A.: Control of HIV Infection Dynamics, IEEE Control
Systems Magazine, 28, 2008, 28–39,

18. Rinaldi, S., Gragnani, A.: Destabilizing factors in slow-fast systems, Ecological
Modelling, 180(4), 2004, pp. 445–460.

19. Campa, G., Sharma, M., Calise, A.J., Innocenti, M.: Neural network
augmentation of linear controllers with application to underwater vehicles,
American Control Conference 2000, June 2–4, 2000, Chicago, IL.

20. Sharma, M., Calise, A.J.: Neural network augmentation of existing linear
controllers, AIAA Guidance, Navigation, and Control Conference and
Exhibit, Montreal, Canada, Aug. 6–9, 2001.

21. Campa, G., Mammarella, M., Cukic, B., Gu, Y., Napolitano, M.R., Fuller, E.:
Calculation of Bounding Sets for Neural Network Based Adaptive Control
Systems, AIAA Guidance Navigation and Control Conference, August 2008,
Honolulu, USA.

Computer Software

22. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal Toolbox, 2006–2007.

May 4, 2011 14:8 9in x 6in b968-ch06 Adaptive Control Approach for Software. . .

This page intentionally left blankThis page intentionally left blank

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Chapter 7

QUANTITATIVE MODELING FOR INCREMENTAL
SOFTWARE PROCESS CONTROL

SCOTT D. MILLER∗, RAYMOND A. DECARLO† and
ADITYA P. MATHUR∗

∗Department of Computer Science,
Purdue University

millersc@purdue.edu; apm@cs.purdue.edu

†Department of Electrical and Computer Engineering,
Purdue University

decarlo@ecn.purdue.edu

A software development process modeling framework is motivated and
constructed under the formalism of State Modeling. The approach
interconnects instances of general development-activity modeling components
into a composite system that represents the software development process of
the target organization. The composite system is then constrained according
to the interdependencies in the work to be completed. Simulation results are
presented, and implications for control-theoretic decision support (i.e., state-
variable control) are briefly discussed.

1. Introduction

The study of software processes has evolved over the decades from
prescriptive and descriptive modes into recent applications of predictive
modeling/simulation29 and decision support.19,17 Techniques range from
control charts30 and statistical process control,10 where the predictive
component is of the nature, “the process should proceed like similar past
projects”, to system-dynamics models2,18 and “what-if” scenario evaluation
e.g., Ref. 21. Recent work5,9 has blended techniques from the engineering
discipline of control theory into the mix, yielding a contribution to software
cybernetics;4,8 it is this work, and particularly Ref. 9, upon which the
present work builds.

167

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

168 S. D. Miller, R. A. Decarlo and A. P. Mathur

Scacchi partitions the historical development of descriptive and
prescriptive software process models by whether they detail an actual
process that has been executed in the past, or whether they describe
characteristics to be implemented in future software development processes.
The area of system dynamics modeling attempts to capture the causal
relations within a process, and to infer from those relations the evolution of
the process over time. In this sense, system dynamics modeling layers causal
rules over a descriptive model. The system dynamics approach therefore
implies a simulation capability wherein the causal rules are automatically
applied to transform some representation of an initial process state into an
expected future state, proceeding transitively. Where the causal rules are
parameterized, one calibrates to match historical data, and extrapolates
into the future. The calibration process is called parameter identification,
which typically takes the form of a weighted error-minimization in shape-
fitting. (System dynamics purists may note that system dynamics modeling
is also useful for understanding the hidden dynamics captured within the
historical data, through parameter identification and interpolation).

Where successive parameter re-identification is carried out during
the execution of a software development process, the practice is
called quantitative evaluation. Where quantitative evaluation guides the
generation of prescriptive model changes, we identify the practice as
quantitative process control. Under quantitative process control, schemes
which automatically generate prescriptive change suggestions based on a
combination of stated objectives, quantitative process state estimation, and
predictive model dynamics approach the engineering practice of model-
predictive control.6 It is the explicit goal of the work presented herein to
establish a representation of the incremental software development process
amenable to the application of model predictive control as applied in control
theory.

Specifically, the authors wish to establish a mechanism for decision
support within software process control that trades the common stochastic
model evaluation methods for analytic ones — that is, rather than
aggregating many simulation traces from a stochastic model to determine
whether a candidate process change achieves a desired process improvement
goal, we seek to derive the process change that best achieves a stated
process improvement goal according to a cost functional (or, in engineering
parlance, a performance index). We have successfully applied such a model

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 169

predictive control approach24,26 to the software system-test phase model
proposed in Ref. 7; below, we complete the construction of a general
model describing incremental software development processes, as begun in
Refs. 22, 25, 27.

When building predictive models, care must be taken in selecting the
balance between the level of detail captured by the model, the ability
to calibrate the model, and the ability to analyze the model. Bounding
the spectrum of predictive modeling and simulation techniques are the
COCOMO family of models3 and the class of in-house, organization-specific
system dynamics models developed using commercial tools such as Extend.a

In the case of COCOMO, the prediction is a single scalar project effort
estimate. Some detail may be added back into the prediction by use of
statistical/heuristic tables that divide the effort estimate into effort per
phase, but analysis of the impact of a parameter change in the COCOMO
model is still relatively simple given its closed algebraic form. On the other
end of the spectrum, custom system dynamics models offer the temptation
to capture fine-grained process detail at the cost of large data needs (e.g.,
to facilitate the calibration of many probability distributions) and near-
opacity to analysis.

In the modeling approach taken below, we seek to capture only
the dominant dynamics of the software development process under an
incremental lifecycle model. We ignore many of the small expected
interactions in order to preserve the ability to calibrate and analyze the
model; we therefore expect to perform periodic recalibration during
the execution of the software development process in order to prevent
the accumulation of error in the model state, and thereby, the model
predictions.

Broadly, the present work falls under the category of system dynamics
modeling. The state of a software development process is represented in
a manner consistent with the theory of state variables, and the system
dynamics are specified in the form of state-evolution equations. Due to
the wide variation in software development processes across industry, the
present work describes a tailorable framework for model construction,
rather than a single model instance.

aExtend is a registered trademark of Imagine That, Inc.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

170 S. D. Miller, R. A. Decarlo and A. P. Mathur

1.1. Contributions

This work presents the first complete modeling framework for capturing the
constraints and behaviors of incrementally scheduled software development
through a continuous-time state-model approach — i.e., a step toward
applying control theory to the domain of software process control by
formulating the software process control problem within the mathematical
framework upon which control theoretic techniques have been well studied.

It has been noted20 that hybrid models are attractive for software
process modeling because they naturally model scheduling and dependency
satisfaction (i.e., queuing) through discrete-event components, along side
the continuous modeling elements which are more natural for phenomena
such as productivity. The approach we present captures the scheduling and
dependency management within a purely continuous model (as coupled
productivity, scheduling, and accumulation components), yielding a simpler
simulation and analysis process, and thereby facilitating comprehension and
control.

1.2. Related Work

With half a century of literature on software engineering, modeling,
and control in all their forms, there are too many approaches to cover
comprehensively. Two approaches in particular have targeted the goal of
control-theoretic decision support based on state models of aspects of
software development. Madnick and Abdel-Hamid2 are credited with an
early attempt at applying state modeling techniques for modeling software
processes. Their work predicts process behavior from a much higher level
(i.e., the behavior of the waterfall development phases) than both the
present work, and that described next.

Cangussu7 proposes a state-based model of the software System Test
Phase and supplies a quantitative control technique to aid the manager
of a test process in mitigating schedule slippage. The model has been
industrially validated, and the controller has been demonstrated through
simulation. Indeed, the work by Cangussu et al. is considered by the authors
to be the direct predecessor to the current work.

For generally related work, the authors direct the reader to the
voluminous work in system dynamics modeling, discrete event modeling,
and statistical process control as applied to software development processes.
Also relevant is the body of literature in the engineering disciplines

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 171

covering the state-variable modeling approach, state-variable control,
model predictive control, and general mixed logical-dynamical system
modeling.16

2. General Modeling Strategy

Software development can be viewed as a set of seven core development
activities occasionally augmented with organization-specific activities. Each
activity consumes “work items” of one type in order to produce work items
of another type. Such consumer-producer relationships yield the notion of
“workflow”, as illustrated by numbered arrows in the cyclic directed graph
in Fig. 1.

The development activities illustrated in Fig. 1 are defined as follows:
Feature Coding — the creation of product source code from feature
specifications.
Test Case Coding — the creation of executable test cases (i.e., automated
tests, or scripted instructions) specified within a test plan.
New Test Case Execution — the execution of newly created test cases to
exercise the target features, and generation of failure reports as necessary.
Regression Test Case Execution — the execution of previously
executed test cases to exercise previously completed product features, and
generation of failure reports as necessary.

Feature
Coding

Test
Case

Coding

New Test
Case

Execution

Regression
Test Case
Execution

Failure
Analysis

Feature
Correction

Test Case
Correction

1. Est. Feature Defects
2. Completed Features
3. Completed Test Cases
4. Est. Test Case Defects
5. New Test Case Results
6. Regression Test Case Results
7. Failing Test Case Results
8. Analyzed Failure Causes
9. New Test Case Specifications
10.Feature Change Requests
11.Test Case Change Requests
12.Corrected Feature Code
13.Corrected Test Cases

1 2 3

4

5 6

7

8 9

10 11

12 13

Work Item Type

Fig. 1. Activity flow diagram of the SDP. Dotted paths are not explicit in the process
definition.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

172 S. D. Miller, R. A. Decarlo and A. P. Mathur

Failure Analysis — the analysis carried out upon test-failure events in
order to determine the cause of the test failure, and generation of change-
requests as necessary.
Feature Correction — the corrective action taken to remediate a defect
identified in the functionality of a feature.
Test Case Correction — the corrective action taken by the test
developers to remediate a defect identified in the test case coding.

The defect detection process estimates the arrival rate of test failure
reports given the rates of test case execution and the predicted number of
defects present in the software. Note this is an implicit process rather than
an explicit development activity; i.e., it does not have a workforce assigned,
nor a set of work items to complete.

As mentioned earlier, each “activity” or component in Fig. 1, produces
work items. The following list specifies the work items (as numbered in
Fig. 1) that flow between activities:

1. Estimated Defects Produced — during feature coding.
2. Completed Features — for testing.
3. Completed Test Cases — for execution.
4. Estimated Defects Produced — during test case coding.
5. Test Case Results — from new test cases.
6. Test Case Results — from regression test cases.
7. Failing Test Case Results.
8. Failures Analyzed.
9. New Test Case Specifications; i.e., when test strategy deficiencies are

identified.
10. Feature Change Requests.
11. Test Case Change Requests.
12. Corrected Feature Code — for testing.
13. Corrected Test Cases — for re-execution.

Figure 2 shows a decomposition of a single development activity into
three constituent parts and shows the internal data flows that govern
the productivity of the activity’s workforce. The workforce effort model
represents potential worker productivity — hence productive capability
rather than productivity; the project schedule controller regulates the
capability of the workforce according to the constraints imposed by
interdependencies among work items, e.g., test case execution must follow
test case coding; the work item queue tracks the number of work items

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 173

Workforce
Effort Model

Project
Schedule
Controller

Work Item
Queue

Productive capability

Applied productive capability

Outgoing work item delivery rate

Work items remaining

Incoming work item delivery rate

Predecessor progress

Fig. 2. Modeling a development activity: sub-component data dependencies.

remaining for the development activity, i.e., those work items waiting to be
processed.

Note that the project schedule controller receives information about
the progress of other development activities. In some cases, it is necessary
to prevent an activity from proceeding depending on the status of other
activites. For example, test cases may not be executed until the code to
be tested has been produced, that is, until the feature coding activity has
made a sufficient amount of progress.

Figure 2 illustrates that the workforce members assigned to a given
development activity supply a capability for completing work items at a
particular rate, this is termed productive capability. The project schedule
controller then limits the application of this productive capability to work
items whose dependencies (coordination constraints) have been satisfied
(e.g., restricting the productive capability to zero if no work items have their
coordination constraints satisfied). Lastly, the applied productive capability
acts on the pool of work items accumulated in the work item queue to reduce
the queue level. Thus one sees that the queue is particularly dynamic in
that its level is defined by the balance between the incoming work item
arrival rate — supplied by incoming workflows (in-flows), and the rate of
work item processing dictated by the applied productive capability. The

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

174 S. D. Miller, R. A. Decarlo and A. P. Mathur

outgoing work item delivery rate refers to the rate of by-product generation
associated with work item processing, e.g., failure reports are a by-product
of test case execution and the defect detection model; such by-product work
items are carried away — through out-flows — to provide the incoming work
item delivery rates to the queues of other development activities in the
model. Continuing the example, failure reports flow to the failure analysis
task, where their processing generates change requests as a by-product; such
change requests then flow to either the feature correction or test correction
activity.

Any organization-specific development process can then be represented
by an interconnection of these generic activity models of Fig. 2 with
coordination constraints imposed to regulate flow rates. A natural
framework for this interconnection is the “system-of-systems” modeling
approach, shown in Fig. 3. Here, the seven development activity models
are illustrated as independent subsystems (labeled Si for i = 1, 2, . . . , 7);
we assume (and later substantiate) that each development activity model
can be encapsulated into a continuous time state-model representation
characterized by a local input vector (designated ai) supplying the inputs
to each of the three sub-components of the development activity model,
a local output vector (designated bi), and a local state vector (designated
xi). System-of-systems composition allows algebraic subsystems as well;
that is, subsystems that possess no internal state. Figure 3 illustrates one
such algebraic process: the defect detection model, Add.

In Fig. 3, the individual input, output, and state vectors for the
subsystems (i.e., for the development activity models and defect detection

S
1

S
2

S
7

a
1

a
2

a
7

a

b
1

b
2

b
7

bu y

Linear Interconnections
=

u

b

LL

LL

y

a

2221

1211

x
1

x
2

x
7

),(axfx =
),(axgb =

T
ddaaaaa][721=

T
ddbbbbb][721=

Txxxx][721=

Add

a
dd

b
dd

Fig. 3. System-of-systems assemblage of modeling components with linear inter-
connections.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 175

model) are concatenated into the vectors a, b, and x, called the subsystem
input vector, and the subsystem output vector, and subsystem state vector,
respectively. Having a definition for a and b, one may now consider the
mechanism for interconnecting the subsystems: The system-of-systems
framework illustrated in Fig. 3 explicitly assumes that all interconnections
are linear in nature; so-called “nonlinear connections” can be absorbed
into an algebraic subsystem, as is the case with algebraic portions of
the defect detection model. The matrix L and its four partitions Lij (for
i, j ∈ {1, 2}) define a linear combination of elements from the subsystem
output vector and the external input vector (designated u) that generate
the elements of the subsystem input vector, and the external output vector
(designated y); from the definitions one observes that all vectors are time-
dependent.

Examining L, one notes that the partition L11 describes the linear
interconnections from the subsystem outputs to the subsystem inputs;
L12 describes how the external inputs enter linearly into the subsystem
inputs; L21 specifies the linear combination that generates the external
output from the subsystem outputs; and lastly, L22 specifies any linear feed-
through of the external input to the external output. Finally, the dynamics
of the system can be expressed in terms of a, b, and x in the following
vector valued functions:13,14 The time-derivative of the subsystem state
vector is given (using Newton’s notation) as a general non-linear function
of the subsystem state and the subsystem input vector: ẋ = f(x, a); the
subsystem output vector is defined by a general non-linear function of the
subsystem state vector and the subsystem inputs as b = g(x, a). Thus, if a
state model representation of each development activity can be described,
and the interconnections between them are linear, then there exists a
concise and elegant representation of the overall interconnected system-
of-systems.

Under such a framework, it is clear that each modeling component
can be described independently and subsequently be assembled into the
target system by specifying (i) the linear interconnections (feed-forward and
feedback), (ii) the incorporation of external inputs, and (iii) the generation
of the external outputs, through the matrix L. In the development
that follows, we begin by constructing the sub-components of a generic
development activity model (as given in Fig. 2) and then show how the
generic activity models are composed into a model of the form of Fig. 3.
Following the mathematical model development, we present an example
model and simulation results.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

176 S. D. Miller, R. A. Decarlo and A. P. Mathur

Workforce
Productive
Capability

State-Model

Work items remaining

Workforce size (FTE)

Process quality

Productive capability
Cumulative generated capability

Fig. 4. I/O description of the workforce productive capability.

2.1. Mathematical Modeling of Productive Capability

Figure 4 indicates that the level of productive capability produced by the
workforce is dependent on the number of work items remaining, the number
of full-time equivalent employees (FTEs) assigned to the development
activity, and a process metric, called “quality”, that captures the impact of
the organization’s operating procedures on the rate at which the workforce
can process work items.

In the following development, productive capability refers to the
potential for the workforce to complete work items at a given rate. For
example, one may hire twenty qualified developers and achieve a high
potential productivity — but unless one has work for them to perform, they
achieve zero productivity — i.e., the potential over any period of time they
sit idle is wasted; this is the key difference between productive capability
and productivity.

Equation (1) sets forth a method for computing productive capability

ρ̇t = e−(α+θtβ)2F capωt − ξ

γt
ρt (1)

where ρt is productive capability, ωt denotes workforce size, θt is the
remaining number of work items, γt is the process quality, and F cap denotes
the calibrated average amount of productive capability per FTE. The other
variables are data-dependent calibration parameters, addressed later. Note
that the workforce is specified in FTEs — the intent is that a subject-
matter expert can be counted as the equivalent of more than one general
software engineer; this is an explicit solicitation for the use of manager
knowledge regarding the capabilities of the specific workforce assigned to an
activity.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 177

An intuitive motivation for this equation uses an analogy with classical
mechanics, in the style of Ref. 9, as follows: Change within the software
development process (SDP) takes place in a continuous manner by the
application of a “force” until the desired outcome is reached. Let the
term process inertia within the SDP refer to the human tendency to
resist change — that is, the tendency for employees to settle into a
comfortable rhythm. In this analogy, physical mass can be equated to
workload complexity. Let physical position, as an offset from the origin, be
analogous to the count of work items that a team must complete; then
the act of completing a number of work items of a certain complexity
is analogous to displacing an object of a certain mass a certain distance
toward the origin; velocity becomes the rate of work item completion,
and momentum corresponds to the rate of work item completion weighted
for complexity of the work items (and hence is a normalized measure of
productivity).

A macro-description of productive capability is therefore given as the
force-balance equation,

F nett = F actt − F rest (2)

where Fnett is the net force responsible for acceleration, F actt is the actual
force applied by the workforce, and F rest is a momentum-dependent resistive
force, i.e., the difficulty that the workforce encounters in completing work
items of a given complexity at a given rate. It may be useful to consider
the resistive force to be the amount of productive capability consumed in
communication and keeping up with code changes; then it is clear that if
either the complexity of the work items or the rate of their completion
increases, then a larger productive capability must be supplied by the
workforce if the balance is to be maintained. We model this resistive force
as a productivity-dependent damping force opposing the effort provided
by the workforce assigned to an activity; hence the dashpot-like damping
equation,

F rest =
ξ

γt
ρt (3)

where ρt is the instantaneous momentum, ξ is a calibrated measure of
the resistance force encountered per unit of momentum — note that the
effect of ξ is influenced by a process quality variable, 0 < γt ≤ 1. Whereas
ξ is intended to characterize the difficulty encountered by the specific
team working in the application domain of the given development activity,

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

178 S. D. Miller, R. A. Decarlo and A. P. Mathur

γt captures the impact of aspects of the working environment such as
teaming/mentoring, operating procedures, meetings, etc. — those aspects
under the control of project management which can distract, interrupt, or
otherwise cause the workforce to work at less than optimal efficiency (i.e.,
γt < 1).

Additional workforce FTEs are assumed to provide a development
activity with a proportionally larger capability to do work; in particular,
Eq. (2) describes the peak potential force that the workforce can produce

F pott = F capωt (4)

where F pott is the instantaneous potential force supplied by the team; F cap

is a calibrated measure of the average force contributed per FTE, and ωt
is the number of FTEs allocated to the development activity.

Unfortunately, workforce members do not always realize their
peak performance; Czikszementmihalyi12 provides the final piece;
Czikszementmihalyi proposes that human productivity is affected by both
extremes of the “level of challenge”. If the challenge level is too high or
too low, productivity levels fall; the full capability of the workforce is
realized only when the level of challenge is balanced to the capability of the
workforce. The Gaussian function provides a ready match to the anecdotal
description of the phenomenon, and through careful calibration, a segment
of the Gaussian function can be selected to capture the observed (historical)
productive capability of a given development activity’s workforce as a
function of the amount of outstanding work waiting in the queue for the
development activity; Fig. 5 illustrates an example segment of the Gaussian
curve, and gives the parameters that define its shape. Here we make an
explicit assumption that Czikszementmihalyi’s notion of “challenge” applies
to a development activity’s sense of “backlog pressure”; that is, we assume
that the challenge of meeting management demands on clearing the backlog
of work items yields the same sense of “overwhelming” or “underwhelming”
responsibility that drives productivity. Certainly with minima of backlog
length, one expects the workforce to feel less challenged in meeting the
management deadlines; for maxima, there is certainly room for the same
fear of incompleting an extremely complex task; in either case one may
expect procrastination and avoidance behaviors. We therefore build a model
of “applied force” by reducing the potential force supplied by FTEs down
to that portion which is expected to actually be applied to process the work
items rather than performing avoidance behaviors. In Eq. (5), a segment of
the Gaussian function is selected via the calibration parameters to represent

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 179

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Work items outstanding

F
ra

ct
io

n
of

 r
ea

liz
ed

 p
ot

en
tia

l p
ro

du
ct

iv
ity

 Example Gaussian Realization of Czikszementmihalyi's "Flow"

y = e-(α + xβ)2

α = 0.4
β = -0.01

Fig. 5. A segment of the Gaussian curve, shifted and stretched to an x-axis in units of
outstanding work items. For the arbitrarily selected example parameters, an outstanding
workload of approximately 40 work items provides the maximal expected realization of
the workforce potential to do work.

the range of fractions of the workforce’s peak capability that one expects
to be realized given an expected range in the magnitude of the outstanding
workload:

F actt = e−(α+θtβ)2F pott (5)

where F actt is the instantaneous actual force applied, θt enumerates the
remaining work items, and α and β are parameters calibrated to historical
data — α displaces the center of the curve, β controls the width of the
bell shape. That is, the Gaussian curve is shifted and stretched such that,
when evaluated at a point corresponding to the outstanding workload (i.e.,
level of an activity’s queue), the curve height sets the fraction of peak
productive capability expected to be realized as useful work. Equation (5) is
therefore a quantitative approximation of Czikszementmihalyi’s challenge-
based productivity anecdote.

2.2. State Model of Productive Capability

Noting that instantaneous net physical force applied to an object is
equal to the instantaneous derivative of the object’s momentum, i.e.,
Fnett = ρ̇t, one arrives at Eq. (1) via substitution of Eqs. (2)–(5). In

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

180 S. D. Miller, R. A. Decarlo and A. P. Mathur

State Model form, adopting a convention that aprodi defines the input
vector for the productivity modeling sub-component of the ith development
activity model, and by applying a similar convention for bprodi , xprodi , and
ẋprodi , one describes the productive capability of an activity’s allocated
workforce as

aprodi =

a1

a2

a3

 =

Workload size

Workforce size
Process quality

; bprodi =

[
b1
b2

]

=
[
Cumulative generated capability

Productive capability

]
=
[
x1

x2

]
= xprodi

where the state evolution equation for the workforce productivity model
sub-component of the ith development activity is now given in Eq. (6) (and
is equivalent to Eq. (1).)

ẋprodi =
[
ẋ1

ẋ2

]
=

[
x2

e−(α+a1β)2F capa2 − ξ
a3
x2

]
(6)

2.3. State Model of a Queue

To track work item accumulation and to facilitate enforcement of the
coordination constraints, a non-standard queuing semantics is defined below
and illustrated in Fig. 6. The inputs to the queue model are

1. the in-flow rate — the rate at which work items arrive from “up-stream”
development activities, and

Queue
State-Model

In-flow rate

Commanded out-flow rate

Actual out-flow rate
Queue level

Cumulative out-flow

Fig. 6. I/O description of a work item queue.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 181

2. the commanded out-flow rate — the rate of out-flow from the queue
commanded by the scheduling controller (i.e., the requested rate of work
item processing).

The outputs of the queue model are

1. the actual out-flow rate — the rate at which work items are actually
leaving the queue to be processed by the workforce (i.e., the actual rate
of work item processing),

2. the queue level — the number of work items currently in the queue, and
3. the cumulative out-flow — the time-integral of the out-flow rate.

In general, the queue level is computed as the integral of the difference
between the in-flow rate and the actual out-flow rate. The actual out-flow
rate is typically equal to the commanded out-flow rate, so long as the queue
is not empty. As the queue level approaches zero, the actual out-flow rate
approaches the lesser of the commanded out-flow rate and the in-flow rate.
Intuitively, if the commanded rate is non-zero when the queue level is zero,
then the queue input is passed directly to the output. In such scenarios, the
actual out-flow rate is limited to the in-flow rate under high demand from
an empty queue.

In state-model form, the queue for the ith development activity is
described as

aqueuei =
[
a1

a2

]
=
[

In-flow rate
Commanded out-flow rate

]
;

bqueuei =

b1b2
b3

 =

Cumulative generated out-flow

Queue level
Actual out-flow rate

 =

x1

x2

x3

 = xqueuei

with dynamics

ẋqueuei =

ẋ1

ẋ2

ẋ3

 =

 x3

a1 − x3
1
τ (sm(a1, a2) + sat(x2)(a2 − sm(a1, a2))− x3)

 (7)

constrained by xi ≥ 0, i ∈ {1, 2, 3} and aj ≥ 0, j ∈ {1, 2}; where τ is a
time-constant, sm(·) is a smoothed approximation of the min(·) function
built from sat(·), i.e.,

sm(a, b) = a+ sat(b− a)(b− a) (8)

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

182 S. D. Miller, R. A. Decarlo and A. P. Mathur

and sat(·) is a piecewise continuous saturation function,

sat(x) =

0 if x < 0
x if 0 ≤ x ≤ 1
1 if 1 ≤ x

(9)

The state element x2 tracks the queue level, and hence is constrained to be
non-negative. It is computed as the integral of the difference between the
in-flow rate, a1, and the actual out-flow rate of the queue, x3. Because it
is likely that an empty queue will be supplied with a positive commanded
out-flow rate, the RHS of the second equation in Eq. (7) cannot simply
integrate the difference between the in-flow and commanded out-flow
rate, (i.e., a1 − a2). For this reason, x3 is introduced as a slack variable
to allow the out-flow rate to satisfy the physical constraints of queue
behavior.

The third equation in the RHS of Eq. (7) regulates x3 — and
correspondingly, the actual out-flow rate of the queue — so that tracking
of the commanded rate, a2, occurs when possible, i.e., when sat(x2) > 0.
Howeever, on the occasion that the queue is empty, i.e., sat(x2) = 0,
the regulator causes x3 to track the minimum of the in-flow rate and the
commanded out-flow rate in order to preserve the constraints.

2.4. Normalization of Work Items

The mapping from work items within the model to the things they represent
in the software development process has not yet been rendered explicit.
Recall the physical analogy developed in Section 2.1, by which the number
and complexity of work items are related to the concepts of distance and
mass. Recalling the definition of work from classical mechanics as force
times distance, or equivalently, mass times acceleration times distance, we
see that for a given acceleration, mass and distance are interchangeable.
That is, to accelerate a mass m over a distance d with acceleration a

requires an equal amount of work to accelerating a mass k × m over a
distance d

k
with the same acceleration a. This observation motivates the

normalization of work items to a fixed unit of complexity. That is, a single
work item with complexity 5.3 is instead treated as if it were 5.3 work
items of unit complexity. Because this conversion does not affect the notion
of work within our physical analogy, it has no effect on the model, other
than allowing the equations to track momentum (complexity-normalized

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 183

productivity), rather than a separate velocity (work item completion rate)
and mass (complexity).

The resulting notion of unit complexity may aid the modeler in
specifying conversion factors for by-product generation (e.g., how many
test case execution work items are produced upon the completion of a
test case authoring work item?). Such conversion factors appear when
specifying the workflows between development activities; for simplicity, and
without loss of generality, we present the model construction under the
assumption that the processing of one work item generates one by-product
work item; in practical applications, conversion factors are applied in the
linear interconnection matrix.

2.5. Managing Dependencies and Scheduling

Constraints within the Model

As mentioned earlier, the execution of a given development activity may be
dependent on the progress of another development activity. For example,
test execution may be dependent on the progress of feature coding;
that is, testing activities may only proceed over the set of test cases
that can be meaningfully executed given the state of completion of the
features that the tests are intended to exercise. The ability to capture and
incorporate such constraints into the model becomes particularly relevant
when considering incremental software development processes, in which
each development activity may have a sequence of scheduled internal
milestones. If circumstances allow the development activities to proceed
asynchronously, then one could be modeling a development effort where
the developers are coding features for internal release 2, while the testers
are running tests on release 1 features, and while the test case coders are
writing tests for the third internal release.

In the typical free-form system dynamics modeling approaches, one
would simply replicate the development activity models for each release,
and switch them on or off by reallocating the workforce to “power”
them as deemed appropriate. Such workforce reallocation may be scripted,
depending on certain conditions being satisfied by the state of the
model, or implemented via manual observation and intervention. In either
case, the model becomes significantly larger, and in many cases, more
opaque to analysis. Consider, for example the seven development activities
described above: Considering only the queue and productivity models,
each development activity model has 5 inputs and 5 state elements, for

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

184 S. D. Miller, R. A. Decarlo and A. P. Mathur

a total of 35 state elements over the 7 processes. If one were to replicate
each activity for three internal releases, the system would need to manage
105 inputs and state elements. Because our long term goal is to develop
a reasonably accurate model with properties amenable to analysis and
parameter identification, we have chosen a different approach.

We have taken the view from the workforce member’s perspective: there
is not a clear-cut time instant at which the workers stop all release 1 work
items and switch solely to release 2 work items; rather, we assume that
developers are assigned a set of tasks among which the individual workforce
members manage their own time. Under this model, work items from release
2 begin to enter the development process at the same time that release 1
work items are being completed. Indeed, if there were a strict boundary
between the two releases, the entire workforce assigned to a development
activity would need to sit idle while the last work item from release 1
was being completed by a single developer; it is also unlikely that a fixed
fraction of workforce time is walled off and dedicated solely to release 2 tasks
once they become available, as would be the interpretation of the scheme
using workforce reallocation across replicated development activity models.
In avoiding these undesirable assumptions about the target development
process, our scheme sacrifices the detail about which specific tasks are being
completed. For developers managing their own time among a collection
of tasks, it is unlikely that any model can accurately reflect which work
items are receiving effort at a given time. We track only the amount of
normalized work items completed; the modeler must determine, based on
history, practice, operating procedure, etc., the amount of progress that a
development activity must achieve to signify that a particular milestone
has been reached.

For example, consider a project with two incremental releases, R1 and
R2, to be implemented serially. Assume that R1 has 10 features and 70
test cases and R2 has 20 new features and 130 more test cases. Recall the
earlier discussion that test execution requires a completed set of features
to test; a modeler may specify that once the feature coding development
activity has completed the number of work items corresponding to the
first 10 features, then the first 70 test cases become available to the test
case execution activity. Alternatively, the modeler may opt to make the R2
feature coding work items available slightly sooner to represent a less strict
implementation of serial releases. Correspondingly, delays in the transition
between internal releases can be modeled by postponing the availability of

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 185

work items to an activity; e.g., the release of R1 test execution work items
can be delayed until feature coding completes a few R2 work items.

We now introduce the notion of coordination constraints into the model;
intuitively, coordination constraints specify a threshold on the amount of
progress (i.e., cumulative out-flow) that a development activity is allowed
to make.

2.6. An Algebraic Model of Activity Coordination

Coordination constraints are implemented by synthesizing a controller,
illustrated in Fig. 7, that causes the cumulative out-flow of the dependent
queue to honor a user-specified threshold function — essentially placing
a regulator on the flow of work items from the dependent queue. For
simplicity, the threshold function must satisfy the following conditions to
be permissible:

1. The threshold may be constant, or it a may be a function of the
cumulative out-flow outputs of other queues in the interconnected
system.

2. The threshold must be monotonically increasing with time, and must be
defined everywhere in the state space.

3. The threshold must be time-differentiable everywhere in the state space.

The first condition is placed to ensure that the threshold can be evaluated
in the presence of interconnections; it is otherwise conceivable, though
meaningless, to define the threshold as a non-linear function of its
own output. In such a case, zero or perhaps multiple solutions could
result, and the task of determining a solution could become arbitrarily
hard. By placing the first condition, the threshold is constrained to

Threshold parameter derivative

Scheduling
Controller

Available productive capability

Regulated productive capability

Threshold parameter magnitude

Dependent cumulative out-flow

Fig. 7. I/O description of the project schedule controller.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

186 S. D. Miller, R. A. Decarlo and A. P. Mathur

the intended purpose of coordinating work item interdependencies in
an environment of asynchronous progress among development activities.
The second condition ensures that invalid states cannot result from
the choice of threshold; without such a condition, one may produce a
threshold function that, at some point, lowers the threshold below the
monotonically increasing cumulative output of the queue — this would yield
an invalid state. The third condition arises from a consideration similar
to the behavior of an empty queue under a non-zero commanded out-
flow rate, as described in the queue model development above: When the
progress of a development activity has reached the threshold specified by
a coordination constraint, then the regulated productive capability (i.e., the
amount of productive capability passed from the workforce productivity
model through the project schedule controller) is reduced to the lesser of
the productive capability generated by the workforce productivity model,
and the rate of change (i.e., time-derivative) of the threshold imposed by
the coordination constraint. Recall that the threshold may be a function of
time-dependent outputs from other development activities, hence one must
allow progress commensurate with the rise of the coordination constraint
threshold.

Considering the example two-release incremental process described
above, one could specify the threshold for the test case execution task as a
function of the feature coding progress (assuming 1 feature = 1 work item
and 1 test case = 1 work item, for simplicity) as

c(x) =

0 if x < 9
−140x3 + 210x2 if 9 ≤ x < 10
70 if 10 ≤ x < 29
260x3 + 390x2 + 70 if 29 ≤ x < 30
200 if x ≥ 30

Here, the threshold function, c(x), is given as a step function with the step
transitions smoothed by cubic splines. Using such a threshold function, it
is trivial to see that the threshold rises to 70 once the cumulative feature
coding progress reaches 10 work items; the next transition occurs after the
additional 20 R2 features are completed (i.e., a cumulative progress of 30
features), raising the threshold by 130 to a total of 200. The time-derivative
of such a threshold function can be computed using the chain rule, i.e.,
d
dxc(x)

dx
dt , thus, so long as a measurement of dx

dt is available, computation
of the time-derivative to satisfy the third condition is trivial. Consider
now that the first condition only allows the threshold to be constructed

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 187

from constants and interconnections to the “cumulative out-flow” output
elements of other queues — the time derivatives of these terms are always
available, either as 0 for the constants, or as the “actual out-flow rate”
output elements from the same queues.

In synthesizing the controller, there are a few cases to consider:
(i) the dependent queue’s cumulative output is below the threshold — no
regulation is required; or (ii) the controlled queue’s cumulative output is at
the threshold — if the threshold has a non-zero time derivative, then the
controlled queue’s actual output rate may take a value between zero and
the time-derivative of the threshold. Again, the preceding cases should be
reminiscent of the controller embedded into the queuing equations; in fact
the controllers are of the same form.

The algebraic control law implementing the scheduling controller for
the ith development activity is given by

actrli =

a1

a2

a3

a4

 =

Productive capability
Dependent cumulative out-flow
Threshold parameter magnitude
Threshold parameter derivative

bctrli = [b1] = [Controlled capability]

where

b1 = sm

(
d
dz

c(z)
∣∣∣∣
a3

a4, a1

)
+ sat(c(a3)− a2)

(
a1 − sm

(
d
dz

c(z)
∣∣∣∣
a3

a4, a1

))

for the user specified threshold function c(·).

2.7. Defect Modeling and the Failure Analysis Activity

A careful distinction must be made about the role of the failure analysis
activity: In the SDP, failure analysis is the process of determining the
source of a test case failure (a feature defect, or a test case defect?) —
yet the generic activity model developed thus far is only responsible for
estimating the effort and/or duration encountered in a given activity. To
adequately represent the failure analysis activity, the generic development
activity model must be augmented with a system for estimating the rate
of test case failure, and for sorting failures by their respective causes —

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

188 S. D. Miller, R. A. Decarlo and A. P. Mathur

Defect Encounter
Model

Test case execution rate
Estimated test-target defect count

Estimated test failure rate

Fig. 8. Description of the general defect detection model.

i.e., a defect detection model. Such a defect detection model is illustrated
in Fig. 1, encapsulating the failure analysis activity.

We define a defect encounter model as a non-linear algebraic component
with inputs and outputs as shown in Fig. 8. Its general form is adapted from
Ref. 7, which builds upon the Lotka–Volterra predator–prey population
dynamics model.31 The analogy proposed in Ref. 7 asserts that the
defects present in a software target form a population of prey; the
test cases executing against the software give a population of predators.
By enumerating the possible encounters and assigning a probability of
occurrence, one can construct a model for predicting average defect
detection rates (as validated in Ref. 9). Because test execution is temporal,
the rate of test execution is analogous to the number of predators hunting in
the territory of the prey per unit time; hence defect detection is computed
in the present model as an expected rate of encounter between defect/test
case pairs. The general form of the algebraic defect detection equation is
given in Eq. (10).

r = µ e d (10)

where e is the test execution rate, d is the estimated number of defects
presently in the test target; hence, their product gives the potential
encounters per unit time. The calibrated parameter µ gives the probability
that a potential encounter actualizes; that is, µ gives the probability that
any given test case will reveal any given defect. This generalization is
only applicable when considering the interaction of a collection of tests
against a collection of defects, which is the present use. The value r, on
the left-hand side, gives the expected test case failure rate. It is clear that
every term in Eq. (10) is time-dependent, however it may be sufficient to
treat µ as a piecewise constant parameter, adjusted periodically through
re-calibration — an approach validated empirically in Ref. 9.

The appearance of the variable d implies a defect estimation component
in the model. The estimated number of defects present in the test target

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 189

may be determined by analysis of defect detection data,7 predicted from
process factors — with their impact calibrated from past projects,11 or
modeled through defect introduction/removal dynamics. Any of these
approaches, and indeed hybrids of them, fit well within the system of
systems composition framework. Without loss of generality, we shall assume
that defect introduction is modeled as per the nonlinear defect introduction
component of COQUALMO11 (details in Section 2.8). Defect detection
is modeled per Eq. (10) and defect removal is tracked by the cumulative
out-flows from the feature and test correction activities, respectively, with
appropriate scaling (per Section 2.4). The difference between the estimated
defects introduced and the estimated defects removed therefore provides an
estimate of the number of defects remaining, d.

In Fig. 1, two instances of the general defect encounter model are
implied: one that encounters defects in the feature code, and another that
encounters defects in the test case code. The separation of these cases is
important; the ratio of these cases present in the workload of the failure
analysis activity precisely defines the ratio of each case evident in the out-
flow — that is, this ratio defines how to split workflow 8 (in Fig. 1) into
workflows 10 and 11.

To model this split, we construct an algebraic proportional splitting
component, illustrated in Fig. 9, satisfying:

|Source| = |O1|+ |O2|
|R1| : |R2| = |O1| : |O2| (11)

To capture the distinction between test case failures due to feature
defects and test case failures due to test case defects, the input queue of the
failure analysis process is split into two queues, each fed by its respective

Proportional
Splitter

Source

R1

R2

O1

O2

Fig. 9. I/O description of the algebraic splitting component required to separate the
out-flows of the failure analysis activity into the in-flows for the correction activities.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

190 S. D. Miller, R. A. Decarlo and A. P. Mathur

defect encounter model. The queue levels can then provide the reference
inputs to the splitting component, with the source input supplied as the
commanded out-flow rate from the failure analysis schedule controller. Note
that a project manager has no visibility into the particular queue from
which a given failure analysis work item is drawn; indeed, it is the explicit
purpose of the failure analysis activity to make this determination. We
therefore assume that the work items in each queue have equal probability
of being drawn — that is, the out-flow rate, as regulated by the project
schedule controller, is split proportionally — according to the relative
queue levels — before being applied to the respective queues. To represent
the size of the outstanding workload required by the workforce effort
model within the failure analysis activity, the two queue levels are simply
added. Figure 10 illustrates the failure analysis activity model described
above. Note particularly the summation of the queue levels to provide
the number of remaining work items to the workforce effort model, and

Workforce
Effort
Model

Proportional
Splitter

Queue levelQueue level

Project
Schedule
Controller

Wor

Σ

k Item
Queue
(Feature
Defects)

Work Item
Queue

(Test Case
Defects)

Productive capability

Source

Commanded out-flow rateCommanded out-flow rate

Work items remaining

Reference R1 Reference R2

Commanded out-flow rate

Outgoing work
Item delivery rate

Outgoing work
Item delivery rate

Predecessor progress

Defect
Encounter

Model

Defect
Encounter

Model
Total test case execution rate

Estimated feature defects

New test case execution rate

Estimated test case defects

In-flow
rate

In-flow
rate

Fig. 10. Modeling the failure analysis development activity: Data dependencies among
sub-components.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 191

the embedded usage of the proportional splitting component to divide
the commanded out-flow rate between the queues in proportion with their
relative queue levels.

2.8. An Algebraic Model for the Example Defect Population

Estimation Component

The form of the defect introduction sub-model of COQUALMO11 is given
in Eq. (12),

3∑
j=1

Aj ∗ (Size)Bj ∗
21∏
i=1

(DI drivers)ij (12)

where j iterates over the three defined categories of development artifact
types, and i over the impact of 21 different process factors describing
the process used to create each type of artifact (called DI drivers, or
defect introduction drivers). The DI drivers affect the amount of defect
introduction expected per unit adjusted artifact size. Here, Aj is a scalar
calibration constant defined for each artifact type, andBj is the COCOMO-
like constant scale-factor capturing the artifact-type dependent economies
or diseconomies of scale with respect to defect introduction. Size in Eq. (12)
refers to the size of the artifacts as captured through theoretical metrics
(e.g., function points1) or through direct measurement (e.g., kSLOC28).

In our model, we examine only the coding artifacts, and assume that
the impact of the cost drivers and the scale factor have been pre-computed.
We therefore simplify Eq. (12) to the form AsbD before including it in the
development.

Given inputs defined as

adp =

a1

a2

a3

a4

 =

Features produced
Feature defects removed

Test cases produced
Test case defects removed

The count of defects in the feature code and test case code is therefore
modeled as

bdp =
[
b1
b2

]
=
[

Estimated Feature Defects Present
Estimated Test Case Defects Present

]

=
[
Afc(a1)bfcDfc − a2

Atc(a3)btcDtc − a4

]

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

192 S. D. Miller, R. A. Decarlo and A. P. Mathur

where subscripts of fc and tc call out calibration parameters from CO-
QUALMO, tailored to the feature coding and test case coding artifacts/
team/process, respectively.

Analyzing the derivative of bdp with respect to changes in artifact size,
we find non-linear growth in the number of estimated defects introduced
as a function of total size; this finding is in accord with conventional
wisdom in defect modeling. Hence, by driving inputs a1 and a3 from the
(appropriately scaled) cumulative out-flows of the feature coding and test
case coding activities, respectively, one achieves a COQUALMO-compatible
defect introduction estimate that evolves over time. Correspondingly, if a2

and a4 are driven from the (appropriately scaled) cumulative out-flows of
the feature correction and test case correction activities, then one achieves
a dynamic estimate of the instantaneous number of defects present in the
features and/or test cases.

2.9. An Algebraic Model of the Defect Detection Component

The following algebraic defect detection model estimates the arrival rate
of test case failures for both categories of cause defined above (i.e., feature
defect or test case defect). We define the local input vector of the defect
detection component as

add =

a1

a2

a3

a4

 =

Estimated feature defects present
Regression test case execution rate
Estimated test case defects present

New test case execution rate

with its local output vector given as

bdd =
[
b1
b2

]
=
[

Estimated failures due to feature defects
Estimated failures due to test case defects

]

=
[
µfa1(a2 + a4)

µta3a4

]

where µf gives the probability that a test case will discover a defect and µt
gives the probability that a test case will reveal its own internal defect. Note
the appearance here of two copies of the defect encounter model of Eq. (10).
For simplicity, we assume that regression tests are generally correct, having
been successfully executed on a previous release of version of the product;
hence, only new test execution provides the “predator” for finding test case

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 193

defects. This simplification is not necessary, but the alternative requires
another means for estimating the defects present in the currently active
subset of the regression test suite (i.e., perhaps another queue on the failure
analysis activity, or an external input.) Note that the defect estimation
model of Section 2.8 embeds naturally into the above to provide a single
algebraic defect detection component with six inputs and two outputs.

2.10. An Algebraic Model of the Proportional

Splitting Component

The conditions given in Eq. (11) yield the following equations for the
proportional splitting component. The piecewise form is chosen to maximize
numerical stability and to avoid requiring a regularizing term in the
denominator for cases where the references are near (or at) zero. For an
input vector defined as

aps =

a1

a2

a3

 =

Reference R1
Reference R2

Source

the algebraic form of the proportional splitting component is given as

bps =
[
b1
b2

]
=
[
O1 (Fraction of Source)
O2 (Fraction of Source)

]

=

[
((a3a1)/(a1 + a2))

a3 − ((a3a1)/(a1 + a2))

]
if a1 > a2

[
a3 − ((a3a2)/(a1 + a2))

((a3a2)/(a1 + a2))

]
if a2 > a1

[
(a3/2)

a3 − (a3/2)

]
if a1 = a2

3. Assembling the Model

In the preceding sections, we have defined each component of the modeling
framework; we now consider the process of composing them to represent a
specific software development process. We begin with the specification of
the workflows illustrated in Fig. 1. Recall from Fig. 3 that the partition L11

of the interconnection matrix specifies the linear feedback from subsystem

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

194 S. D. Miller, R. A. Decarlo and A. P. Mathur

outputs to the subsystem inputs. The partition L12 defines how the external
inputs enter into the subsystem inputs. Given that the inputs and outputs of
each subsystem are vectors, let us further partition L11 into subpartitions
L11ij , and L12 into subpartitions L12i satisfying ai =

(∑N
j=1 L11ij bj

)
+

L12iu; ∀ i ∈ {1, 2, . . . , N}. That is, given N subsystems, let L11ij specify
the linear feedback from the output of the jth subsystem to the input to
the ith subsystem for all pairs of subsystems, 〈i, j〉. Hence, the subpartition
L11ij is an m× n matrix, given that ai is m× 1, and bi is n× 1. Likewise,
the L12 partition is divided into subpartitions of size m×p, where u is p×1,
representing the contribution of the external input, u, to the local subsystem
input of any component. With this interpretation of the subpartitions of
the matrix L, it is clear that the placement of a nonzero element into
a subpartition L11ij specifies a scaled flow from an element of the local
output vector of subsystem j, to an element of the local input vector of
subsystem i. For clarity, we recall that the scale factors selected for insertion
into the interconnection matrix specify the translation from the work items
completed, as evident in the output vector, to the number of by-product
work items created as a result.

To compose a model of a particular development process and/or
project, one must first identify the subsystems that compose the process,
and then specify workflows that connect them. Appendix A details the
development of a full interconnection matrix corresponding to Fig. 1.

4. A Simulation Study

The purpose of this study is to examine the behavior of the model under
a typical software development scenario. The simulation method is briefly
described, and then the example software development scenario is detailed;
a summary of the simulation results follows.

4.1. Simulation Method

Interconnected system-of-systems models, as illustrated in Fig. 3, can be
simulated by the following modification of the improved Euler method.

Let h be the size of a simulation time-step. Given an initial state xt and
external inputs, ut, taken as constant over the interval [t, t + h], compute
mt = f(xt, at) as an estimate of the time derivative of the system state at
time t, i.e., ẋt = f(xt, at) (if at is not available, one can solve for it using

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 195

xt and ut). Then x̂t+h = xt + hmt is an estimate of the future state at
time t + h as generated by the first-order truncation of the Taylor series
expansion of x.

One may then solve for the subsystem input and output vectors
consistent with the estimated future state, and expected external input
at time t + h. That is, one may solve for at+h satisfying at+h =
L11g(x̂t+h, at+h) + L12ut+h. In the general case, such a solution may not
exist, or may not be unique. The Implicit Function Theorem provides a test
to establish the existence of a solution. As will be shown below, an implicit
solution is not necessary for the special case of models built within the
framework developed above; an explicit calculation of the unique solution
is possible.

Upon obtaining at+h, mt+h = f(x̂t+h, at+h) can be computed as an
estimate of the time derivative of the system state expected at time t+ h.
Here, the function f is again applied to generate the time derivative, in
the manner specified by the state evolution equations, given the estimate
of the future state, x̂t+h, and the estimated future subsystem inputs, at+h.
An estimate of the time derivative at each end of the simulation step is now
available, as required by the improved Euler method; hence, one computes
the improved Euler step by averaging the two derivative estimates, and
applying the average over a time-step to move from the current state to
the next state, i.e., xt+h = xt+ h

2
(mt +mt+h), classically referred to as the

trapezoidal rule.

Listing 1. Improved-Euler Step Adapted for
System-of-Systems Composed Models

01. Compute mt = f(xt, at)
02. Compute x̂t+h = xt + hmt

03. Solve at+h = L11g(x̂t+h, at+h) + L12ut+h
04. Compute mt+h = f(x̂t+h, at+h)
05. Compute xt+h = xt + h

2
(mt +mt+h)

06. Update t = t+ h

As mentioned for Step 03, Listing 1, the implicit solution to find
the at+h and bt+h vectors consistent with a given x̂t+h and ut+h is not
necessary when working with models built within the current framework.
Figure 11 shows the categories of data flow present among the various
data vectors computed during the modified Improved Euler step described
above. All upward connections pass through integration operations — hence

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

196 S. D. Miller, R. A. Decarlo and A. P. Mathur

queue inputs

queue outputs

productivity inputs

productivity outputs

controller inputs

controller outputs

defect detection inputs

defect detection outputs

queue states

productivity states

∫

∫

queue derivative

productivity derivative

Fig. 11. Allowed data flow relations among the classes of sub-component data vectors.

no amount of change in a vector in the lower category can induce a
change in any vector of the upper, at the current time instant. Given the
absence of direct cycles in the data flow graph, there is an explicit solution
to the problem of finding the subsystem inputs and subsystem outputs
given the system state and global system inputs. Specifically, most of the
component outputs, bt+h, are identified with system states — from this set
of outputs, direct computation of the subsystem inputs needed to determine
the remaining subsystem outputs, and thus the entire vector, bt+h, is
possible. Therefore one can directly compute ât+h = L11b̂t+h + L12ut+h
without having to solve implicitly defined non-linear/linear equations.

4.2. Simulation Results

In order to demonstrate the behavior of the model, nominal parameter
values have been chosen to generate an arbitrary instance of the model. The
resulting simulation traces are described below. The choice of parameters is
guided by the following hypothetical software development project executed
under an incremental development process: the project entails two serial
increments; the first increment is composed of 10 work items for feature

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 197

coding, 70 work items for test case creation, and 70 work items for regression
test execution; the second increment will add 20 work items for feature
coding, 130 work items for test case creation, and 130 more work items for
regression testing. There are 29 (workforce) FTEs allocated to the project;
five are assigned to each development activity, except for the feature and
test case correction activities, to each of which only two are allocated. As
above, it is assumed that the test cases for a given increment cannot be
executed until the feature coding work on the increment is complete.

Simulation of this scenario yields 79 input and output traces from
the various modeling components. The remainder of this section details
the interesting features of the simulation traces and relates them to the
earlier model development. By convention, the legend lists inputs before
outputs; also two sets of y-axes are used throughout: the left for work
item counts, and the right for work item rates. Whether a given trace is
plotted with respect to the left or the right axis is readily discernable from
the legend; the reader should note that accumulations of rates over time
(e.g., the cumulative sub-model outputs) become counts. The parameters
of the simulation, and a discussion of their selection, can be found in
Appendix B.

4.2.1. Feature Coding

Figure 12 shows the inputs and outputs of the productivity model for the
feature coding activity. Initially, the workforce ramps up to process work
items, reaching a peak of productive capability at week 4. As the remaining
work items (i.e., workload size) reduce to zero, and the interesting challenges
wane, the productive capability (as distinct from productivity) declines to a
steady state value around week 13.

Recall that cumulative productive capability is the integral of
productive capability over time. Consequently, by the non-zero steady-state
productive capability after week 13, the cumulative capability increases at
a constant rate, despite there being no actual work items to process. By
taking the difference between this capability, and the cumulative out-flow
of the feature coding queue (see Fig. 13), we obtain a metric for cumulative
wasted effort, as detailed in Fig. 14.

Figure 13 shows the I/O traces for the queue simulation of the
feature coding activity. Note near week 6 that the cumulative out-flow
and the queue level traces cross at a value of 15 work items. This is a
natural consequence of the zero in-flow rate, which leads to queue-level and
cumulative out-flow traces that are mirror images; the crossing at a level of

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

198 S. D. Miller, R. A. Decarlo and A. P. Mathur

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30
 0

 1

 2

 3

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Feature Coding Productivity Model

Workload size
Cumulative productive capability

Productive capability

Fig. 12. Simulation trace of I/O for the feature coding productivity model.

15 work items is therefore logical, being the half-way point of completing
the 30 initial work items. The out-flow rate closely tracks the commanded
out-flow rate until near week 12. At this point the queue level has dropped
sufficiently to cause the saturation function embedded within the queue
equations to begin its transition from 1 to 0. Recall that the saturation
function acts as a switch; in this case moving the queue from a mode that
honors the commanded out-flow rate, into a mode that tracks the minimum
of the in-flow rate (which is zero in this instance) and the commanded
rate. The queue level in Fig. 13 and the workload size in Fig. 12 are quite
similar, as are the productive capability of the productivity model, and the
commanded out-flow rate of the queue. They are similar because, for each
pair, one is the source of the other. This is precisely the data dependency
illustrated in Fig. 2.

Given the simulation’s hypothetical development scenario, it may seem
questionable that the queue level for the feature coding activity begins
with 30 work items, rather than just the 10 to be completed for the first
release. This method of tracking the future work for the feature coding team
allows the impending future tasks to influence the workload-dependent

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 199

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30
 0

 1

 2

 3

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Feature Coding Queue

In-flow rate
Commanded out-flow rate

Cumulative out-flow
Queue level

Out-flow rate

Fig. 13. Simulation trace of I/O for the feature coding queue.

productivity equations. For a short project, this may be a relevant choice.
If such is undesirable, an algebraic component can be added to control
the in-flow to the feature coding queue as a function of the feature coding
cumulative out-flow. Such a control could, for example, inject new work
items as the completion of the features for the first release nears.

4.2.2. Test Case Coding

The discussion of the test case coding activity largely follows that of the
feature coding activity. Figures 15 and 16 reveal the same data dependency
between the inputs and output of the productivity and queue sub-models
as discussed in Section 4.2.1. The productivity model quickly ramps up
to a peak at 5 weeks, and decreases until a steady state is reached near
week 26. Again, all 200 work items are initially present, rather than just
the 70 that correspond to the first increment. The crossing of the queue
level and the cumulative out-flow at week 11 is slightly offset from the 100
work item midpoint due to the small, but non-zero, in-flow rate (driven by
the failure analysis activity, as illustrated by workflow 9 in Fig. 1). The
non-zero in-flow rate is also the reason that the cumulative out-flow at

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

200 S. D. Miller, R. A. Decarlo and A. P. Mathur

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

W
or

k
Ite

m
s

Time

Wasted Effort as Cumulative Productivity less Cumulative Outflow

Wasted Feature Coding Effort

Fig. 14. The “wasted effort” metric corresponding to the feature coding activity traces
in Figs. 12 and 13, computed as the difference between the cumulative productive
capability of the feature coding productivity model, and the cumulative outflow of the
feature coding queue.

week 30 (Fig. 16) is larger than the initial 200 work-items (due to rework).
As with the previous activity, the queue level vanishes sufficiently near
time 26 to cause the saturation function within the queue to switch modes
(i.e., to track the minimum of the commanded out-flow rate and the in-
flow rate, rather than simply to track the commanded out-flow rate), as
is seen in Fig. 16 by the rapid reduction of the out-flow rate beginning at
that time.

As mentioned above, the failure analysis activity contributes a non-
negligible in-flow rate to the test case coding activity. In constructing the
simulation, we have hypothesized (as per Fig. 1) a learning process during
the failure analysis activity. That is, during the course of uncovering the
cause of initial test failures, various shortcomings may be identified in the
general testing strategy, leading to augmentations of the test strategy, and
the definition of new test case specifications for the test case coding activity.
The two “humps” in the in-flow rate trace correspond to the processing

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 201

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Test Case Coding Productivity Model

Workload size
Cumulative productive capability

Productive capability

Fig. 15. I/O Simulation trace for the test case coding productivity model.

of the two increments in the hypothetical development scenario — in
particular, the rising edge of each hump can be shown to correspond to
the commencement of testing on each increment.

4.2.3. New Test Case Execution

The new test execution activity differs significantly from the previous
simulation traces. In Fig. 18, note the contrast between the slow build-up of
the productive capability exhibited by the new test execution productivity
model when compared to the ramp-up of feature coding productivity
(Fig. 12) or test case coding productivity (Fig. 15). To understand the
evolution of the productive capability, recall the state evolution equation
for the productivity model, given in Eq. (1). Figure 17 plots the field
defined by Eq. (1) in conjunction with the model parameters used in the
simulation study. This field describes the time derivative of the productive
capability for the new test execution activity as a function of the current
productive capability and the current workload size. Any portion of the

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

202 S. D. Miller, R. A. Decarlo and A. P. Mathur

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Test Case Coding Queue

In-flow rate
Commanded out-flow rate

Cumulative out-flow
Queue level

Out-flow rate

Fig. 16. I/O Simulation trace for the test case coding queue.

field above the zero plane represents an acceleration of the productive
capability; correspondingly, any point below the zero plane represents a
deceleration.

Because the value of the field at a given coordinate is the time
derivative of the productive capability, and one of its parameters is
productive capability itself, the intersection between the field and the
zero plane indicates the natural equilibrium point of the productivity
model corresponding to a given workload size, holding all other parameters
constant. While sub-figure (a) indicates that an increase in the current
workload size will increase the productive capability at which the
equilibrium point is reached, sub-figure (b) indicates that there is a limit
to the potential productivity increase achievable by this method.

The productive capability derivative values encountered during the
simulation are plotted on the field; each point on the trace corresponds
to one week of the simulation. The trace in Fig. 17, sub-figure (a) begins
with zero workload, and zero productive capability. Note that an increase
in the initial workload would significantly increase the initial rate of growth

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 203

Fig. 17. (a) Trace of the productive capability derivative for the new test case execution
activity, plotted on the field defined by the state evolution equation for the same (Eq. (1)),
using the example simulation parameters. The zero plane is plotted for reference, and
each point on the trace represents one simulation week. (b) The same plot from a wider
view of the field. Note the clear maximum sustainable productive capability given the
current parameters.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

204 S. D. Miller, R. A. Decarlo and A. P. Mathur

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

New Test Case Execution Productivity Model

Workload size
Cumulative productive capability

Productive capability

Fig. 18. Simulation trace of I/O for the new test case execution productivity model.

of productive capability — this is part of the explanation for the slow initial
ramp up of productive capability for the new test execution activity when
compared to the coding activities: the coding activities begin with a non-
zero workload. The other factor is the lack of a sufficient in-flow rate to
drive the workload size into the range required for peak productivity. From
approximately week 13 through week 17, the derivative trace lingers near
the zero plane; this corresponds to the peak region of the productivity curve
in Fig. 18. The preceding discussion illustrates that the work item in-flow
rate to a development activity has a significant impact on the activity’s
ability to maintain peak productivity. In fact, the in-flow rate must match
the peak productive capability if the peak productive capability is to be
sustained over a duration, ignoring the potential complicating factor of
coordination constraints.

Figure 19 shows a large in-flow rate to the new test execution activity,
peaking at 10.5 work items per unit time near week 6. Figure 20 decomposes
the peculiar shape of the in-flow rate trace into its constituent contributions;
the summation of these components occurs in the linear feedback within

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 205

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

New Test Case Execution Queue

In-flow rate
Commanded out-flow rate

Cumulative out-flow
Queue level

Out-flow rate

Fig. 19. Simulation trace of I/O for the new test case execution queue.

the system of systems framework. The in-flow vanishes near week 27, as the
outflows from its “upstream” activities cease.

The entire body of work items to be completed by the new test
execution activity arrives through the in-flows; from weeks 0–4, work items
simply accumulate because the commanded out-flow rate of the queue is
held at zero, preventing any work item processing. After week 4, work-
item processing begins, causing a visible knee in the queue level plot, and
beginning the ascent of the cumulative out-flow trace. The queue level for
the remainder of the simulation reflects the balance between the active in-
flow and out-flow of the queue: The queue level reaches a maximum just
after week 10; i.e., the derivative of the curve is zero precisely when the
in-flow rate and the out-flow rate traces are equal. Unlike the preceding
analyses, and due to the initially empty status of the work item queue,
there does not appear to be a meaningful interpretation of the intersection
of the cumulative outflow, and the queue level traces.

Near time 12, there is an unusual downward spike in the trace of
the commanded out-flow rate, and consequently, the actual out-flow rate.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

206 S. D. Miller, R. A. Decarlo and A. P. Mathur

0 5 10 15 20 25 30
 0

 2.5

 5

 7.5

 10

 12.5

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Input Composition for the New Test Execution Queue

Out-flow rate from Test Case Coding Queue
Out-flow rate from Feature Correction Queue

Out-flow rate from Test Case Correction Queue

Fig. 20. Area graph of the test case execution activity’s in-flow rate composition.

This is the first time in the analysis of the example simulation that
the commanded out-flow rate supplied to the queue deviates from the
productive capability of the activity’s productivity model; this is due to
the action of the scheduling controller regulating the cumulative progress
of the new test case execution activity (by lowering the commanded
rate) as the new test case execution progress (i.e., cumulative out-flow)
approaches the allowed threshold. Two factors prevent the scheduling
controller from stopping new test case execution entirely (i.e., driving the
out-flow rate to zero) in this instance: (i) feedback from the correction
activities (described below) provides an in-flow of work items that are
not subject to coordination constraint being enforced by the controller,
and (ii) the feature coding team completes the second increment just
after week 12, thereby satisfying the coordination constraint and allowing
new test execution activity to continue (i.e., raising the threshold on the
maximum allowed progress). Figure 21 shows the threshold that is being
enforced on the progress of the new test case execution activity by the
scheduling controller. Near time 12, the controlled cumulative out-flow

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 207

 0

 50

 100

 150

 200

0 5 10 15 20 25 30
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

New Test Case Execution Controller

Controlled cumulative out-flow
Threshold on controlled cumulative outflow

Commanded out-flow rate from controller

Fig. 21. Relation between threshold, controlled cumulative outflow, and the com-
manded rate regulated by the controller.

nears the threshold, hence the scheduling controller’s action to reduce
the commanded out-flow rate; shortly thereafter, the threshold rises, and
execution continues.

Returning to Fig. 19, shortly after week 26, one observes the now-
familiar transition from tracking the commanded out-flow rate, to tracking
the minimum of the in-flow rate (zero, at that time) and the commanded
rate as observed above. At the end of the simulation, the cumulative out-
flow of the activity queue levels off near 213 work items — a value higher
than even the cumulative out-flow of the test case coding activity. This is
due to the feedback loops providing “re-work” from the correction activities
(described below).

4.2.4. Regression Test Case Execution

In Fig. 23, the productive capability of the regression test execution activity
peaks near week 10. While this peak is reached more quickly than the
productivity ramp-up for the new test execution activity (Fig. 18), it is

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

208 S. D. Miller, R. A. Decarlo and A. P. Mathur

Fig. 22. Trace of the productive capability derivative for the regression test case
execution activity, plotted on the field defined by the state evolution equation for the
same (Eq. (1)), using the example simulation parameters. The zero plane is plotted for

reference, and each point on the trace represents one simulation week.

slower than for either the feature or test case coding activities (Fig. 12
or Fig. 15, respectively.) Figure 22 shows the derivative of the productive
capability for the regression test case execution activity, in the context of
the field defined by its state evolution equation in Eq. (1), using the same
parameters as the example simulation. The first four weeks of the simulation
drive the productive capability upward with no impact on the workload
size. This is due to a coordination constraint requiring the progress of the
regression test execution activity to remain at zero until the first release is
complete; that is, the workforce prepares for the upcoming work, but cannot
actually start. The first release is ready at week 4, and hence the normal
evolution of the productive capability begins, depleting the workload
size, and sweeping the derivative trace rightward, again as illustrated
in Fig. 22.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 209

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Regression Test Case Execution Productivity Model

Workload size
Cumulative productive capability

Productive capability

Fig. 23. Simulation trace of I/O for the regression test productivity model.

Returning to Fig. 23, the shape of the “workload size” trajectory for the
regression test execution activity exhibits two horizontal segments, one over
weeks 0 through 4 and the other over weeks 10.5 through 12. As mentioned
in the preceding discussion, these horizontal segments are due to the action
of the scheduling controller for the regression testing activity. Particularly,
the horizontal region starting a 10.5 weeks demonstrates the full operation
of the scheduling controller to halt the ongoing progress of a development
activity in order to preserve a coordination constraint. Note that this later
halting of progress is not detectable in Fig. 22 because both the productive
capability and workload size remain nearly constant; hence, the points on
the trace during the period simply overlap.

As with the new test execution activity (i.e., Fig. 19), Fig. 24 shows
that there is no progress made by the regression test execution activity
until time unit 4, despite the fact the activity has a significant workload
size. This delayed start is due to the scheduling controller, as can be verified
by noting the rising edge of the commanded out-flow rate at time 4 — recall

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

210 S. D. Miller, R. A. Decarlo and A. P. Mathur

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Regression Test Case Execution Queue

In-flow rate
Commanded out-flow rate

Cumulative out-flow
Queue level

Out-flow rate

Fig. 24. Simulation trace of I/O for the regression test activity queue. The inflow rate
remains at zero.

that regulating the commanded rate is the schedule controller’s actuation
mechanism for controlling a development activity’s ability to make
progress.

Figure 24 also shows that the commanded out-flow rate is reduced
to zero between time units 10.5 and 12, with the actual out-flow rate
quickly tracking zero in response. The explanation is that near time 10.5
the regression test execution activity exhausts its initial first increment
workload of 70 test cases. Hence the scheduling controller forces the
regression testing activity to wait for the availability of the next increment,
which occurs near week 12. Consequently, at week 12, the commanded
output (closely tracked by the output rate) rises again to the full productive
capability given by the productivity model. Looking back to Fig. 13, one
may verify that this is indeed the time of completion for the second
increment.

Because the in-flow rate to the regression test execution activity is zero,
the queue level and cumulative out-flow traces are mirror images, crossing
at week 15, with a level of 100 work items — the midpoint of the initial 200

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 211

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30

D
ef

ec
ts

Time

Feature Defect Detection

Estimated feature defects introduced
Estimated feature defects present

Estimated cumulative feature defects detected
Estimated feature defects removed

Fig. 25. Simulation traces for the feature defect introduction and detection models.

work items. Lastly, at approximately time 27, the regression test activity
removes the last work items from its queue, and the out-flow rate falls to
zero (as the minimum of the commanded rate and the in-flow rate).

4.2.5. Defect Introduction, Defect Detection, and Failure Analysis

Defect introduction and detection are the implicit activities that drive the
failure analysis activity. For the example simulation, Fig. 25 shows the
tracking of estimated feature defects within the model. The estimated
number of feature defects introduced into the code is given by the
COQUALMO-based defect introduction model described in Section 2.8.
The introduction of feature defects begins at week zero, corresponding with
the commencement of feature coding, and continues as long as feature
coding progresses, reaching a steady state value of 6.8 feature defects
introduced as feature coding comes to a completion near week 14. Note
that the parameters chosen for the defect introduction model are quite
optimistic; any non-example scenario will likely expect orders of magnitude
higher defect introduction behavior.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

212 S. D. Miller, R. A. Decarlo and A. P. Mathur

At week 4 the trace recording the instantaneous estimate of defects
present in the software departs from the total number of defects introduced.
This departure is due to the commencement of testing, hence failure
analysis, and ultimately, defect correction (discussed later), which acts to
reduce the population of defects in the software. Literally, the number of
defects estimated to be present in the feature code is the difference between
the output of the cumulative defect introduction model, and the cumulative
out-flow of the defect correction activity. Hence, the defect introduction
model must predict the number of defect correction work items, rather than
a literal count of defects, and can therefore take advantage of the literature
on the occurrence rates for defects in the various severity classes, if desired.
The upward turn in the estimated defects trace at week 11 corresponds
with the pause of the regression testing activity that occurs with the
completion of the increment 1 regression tests. The feature coding activity
pushes defect introduction higher while producing increment 2 features,
but the test execution rate is reduced (i.e., only new tests being executed)
so defects accumulate. The downward turn at week 12.5 corresponds to
the completion of feature coding for the second increment of the example
scenario, which allows regression testing to resume, leading to defect
discoveries and, in turn, feature corrections. The remaining traces in Fig. 25
plot the cumulative defects detected and the cumulative defects removed.
Examining the slope of the trace of cumulative defects detected, one may
confirm that the upward turn in the estimate of remaining defects is a
consequence of the slowdown in testing, and consequent slowdown in defect
detection.

The parameters selected for the failure analysis activity and the feature
correction activity in this example simulation yield an extremely short
duration between defect detection and removal. Through calibration, the
development activity models can represent development processes with a
significant failure analysis and/or correction phases — this has simply
not been done in this example. Note, lastly, that the detection of defects
is asymptotic to zero, as seen in the trace of estimated defects in the
feature code after week 12.5, where the detection, analysis and correction
steps are the only active activities. This asymptotic behavior matches the
conventional wisdom that testing will never reveal all defects.

Figure 26 shows the simulation traces related to tracking the estimated
defects in the set of test cases that have been produced. The total number
of defects introduced increases steadily until just after week 26, which
corresponds to the completion of the test case coding for the second

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 213

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

D
ef

ec
ts

Time

Test Defect Detection

Estimated test case defects introduced
Estimated test case defects present

Estimated cumulative test defects detected
Estimated test defects removed

Fig. 26. Simulation traces for the test case defect introduction and detection models.

increment, as shown in Fig. 16. Figure 19 and Fig. 24 show that the
completion of test case execution also occurs in weeks 26–27, hence the
cumulative number of defects detected levels off. One unusual feature
of Fig. 26 is the extreme proximity of the cumulative test case defect
detection trace, and the cumulative removal trace; in the plot, they are
indistinguishable. Interpreted in the context of a software process, such
would imply that the correction of test case defects is instantaneous; in
this case it simply implies that the parameters chosen for this example
simulation represent an unrealistic case. As with Fig. 25, the estimated
defects present in the new test cases is given as the estimated defects
introduced, less the number removed and hence the trace levels off shortly
after week 26 as well.

Figure 27 gives the simulation traces for the productivity model of
the failure analysis activity. Again, the example parameters configure the
failure analysis activity model to process work items very quickly, yielding
a sustained near-zero workload size, and a correspondingly near-constant
productive capability. The simulation traces for the failure analysis queue

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

214 S. D. Miller, R. A. Decarlo and A. P. Mathur

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30
 0

 1

 2

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Failure Analysis Productivity Model

Workload size
Cumulative productive capability

Productive capability

Fig. 27. Simulation traces for I/O of the productivity model of the failure analysis
activity.

model in Fig. 28 illustrates the unusual case where the out-flow rate
predominantly tracks the in-flow rate (as the minima of the in-flow rate
and the commanded rate, given the empty queue), i.e., passing all in-flow
straight through to the out-flow, as expected to best satisfy the demand
under insufficient supply. Near week 11, there is a sharp downward turn
in the in-flow rate to the failure analysis queue; this corresponds to the
regression testing activity reaching its threshold of work items to be run
on the first increment of the example scenario. Hence, there are fewer tests
being executed to drive defect detection, and the in-flow rate to failure
analysis falls to just the defect detection rate from the new test case
execution activity. Just after week 12, there is another downward spike,
which immediately turns upward; this corresponds to the new test case
execution activity reaching it’s first increment threshold just as the feature
coding activity completes the second increment, as described Section 4.2.3.
Thus the in-flow rate rises to a new peak, near 13 weeks, driven by
the defects detected by both regression and new test case execution on
the second increment features and tests. The slight deviation between the

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 215

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30
 0

 1

 2

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Failure Analysis Queue

In-flow rate
Commanded out-flow rate

Cumulative out-flow
Queue level

Out-flow rate

Fig. 28. Simulation traces for I/O of the queue model for the failure analysis activity.
This plot shows the sum of the inputs to the two queues (§2.7) maintained for the failure
analysis activity; i.e., the view of the project manager, who cannot know a priori which

failures originate from feature defects, and which from test defects.

in-flow rate and the out-flow rate is due to the gain of the control logic
embedded within the queue model (as configured through the time constant,
τ , in Eq. (7)) in conjunction with the relatively large time-step used in the
simulation. Near week 27, the last test cases are executed, and hence defect
detection (and the in- flow rate it generates for failure analysis) vanishes,
leaving nearly 22 test case defects undiscovered (see Fig. 26).

Figure 29 shows the inputs to the proportional splitting component
(see Section 2.7). In the configuration used for this simulation example,
these inputs are driven directly from the queue levels of the two queues of
the failure analysis activity (see Fig. 10). The high rate of progress made
by the failure analysis activity yields very small values for the levels of
the failure analysis queues; this in turn leads to a high volatility in the
output of the proportional splitting component in Fig. 30. The splitting
component is sensitive to the ratio of the inputs, which changes rapidly
for small input magnitudes. Note that Fig. 30, plotting the outputs of the

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

216 S. D. Miller, R. A. Decarlo and A. P. Mathur

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 5 10 15 20 25 30
 0

 0.25

 0.5

 0.75

 1

 1.25

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Proportional Splitting Inputs

Reference R1 (est. feature-based failures)
Reference R2 (est. test-based failures)
Source rate (commanded out-flow rate)

Fig. 29. Inputs to the proportional splitting component of the failure analysis activity.

proportional splitting component, shows how the source rate is divided into
two channels, congruent to the magnitude of the inputs, R1 and R2. Hence,
the sum of the proportional splitting outputs is equal to the source rate. The
symmetry in Fig. 30 is a consequence of the relatively constant source rate:
As one proportion grows, the other must shrink proportionally. Between
weeks 0 through 4, the proportions are evenly split at 50%, however the
symmetry is broken by the rising source rate.

In Fig. 31, it is clear that the volatility of the commanded rates
generated by the proportional splitting component is damped by the failure
analysis queues (indeed, the queues track the commanded rate rather than
honor it precisely). Note in Fig. 31, that the cumulative failure analysis
out-flow matches that shown in Fig. 28, and that it is simply the sum of
the cumulative out-flows from the activity’s two queues.

4.2.6. Feature Correction

In Fig. 32, one sees that the feature correction productivity model is
configured to generate a productive capability of just over 0.5 work items

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 217

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30

(U
ni

ts
 o

f S
ou

rc
e

R
at

e)

Time

Proportional Splitting Outputs

Portion of source rate corresponding to reference R1
Portion of source rate corresponding to reference R2

Fig. 30. Output traces from simulation of the proportional splitting component of the
failure analysis model.

per week when its workload size is approximately zero work items (which is
the present case). Because the example scenario for this simulation places no
coordination constraints on the feature correction activity, this productive
capability passes, unmodified, through the scheduling controller and enters
as the commanded rate to the feature correction queue in Fig. 33. Recall
that the in-flow rate to the feature correction queue is driven (through
workflow 10 in Fig. 1) by the rate of feature change request work items
produced by the failure analysis activity in response to determining that
the cause of a failure is a defect in the feature code. The in-flow rate trace
in Fig. 33 exhibits some low amplitude jitter in weeks 16 through 22 due
to the volatility in the proportional splitting component that apportions
productive capability to the failure analysis queues (Fig. 30). As described
in Section 4.2.5, this jitter is too small to be visible in the cumulative
out-flow (i.e., the integral of the out-flow rate) plotted in Fig. 31, but is
sufficiently large to be visible in the in-flow to the feature correction activity.

In Fig. 33, the out-flow trace generally tracks the in-flow rate, except
during weeks 13–14, where it trends toward the commanded rate. This trace

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

218 S. D. Miller, R. A. Decarlo and A. P. Mathur

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30

W
or

k
Ite

m
s

Time

Failure Analysis Out-Flow Division

Failure analysis cumulative out-flow
Cumulative failure analysis out-flow determined as feature defects

Cumulative failure analsis out-flow determined as test case defects

Fig. 31. Simulation trace of the cumulative out-flows from the two failure analysis
activity queues, whose commanded rates are driven by splitting the failure analysis
productive capability into the same relative proportions as the queue levels.

illustrates the tolerance introduced through the smoothed min function,
embedded into the tracking logic of the queue state evolution equation
(Eq. (7)). Per Eq. (8), the smoothed min prefers its first parameter,
returning the second parameter only if it is larger than the first by a
difference of at least 1. Over the unit-width interval where the second
parameter is larger, but with a difference less than 1, the smoothed min
returns a linear combination of its parameters. Returning to the out-
flow rate trace in Fig. 33, because the queue level is nearly zero, we
expect the out-flow rate to track the minimum of the in-flow rate and
the commanded rate; but from weeks 7–11 and 13–14, the out-flow rate
tracks the in-flow rate. Note that these traces are rates, and are therefore
measured on the right-hand axis; the difference between the in-flow rate
and the commanded rate is less than 1/10 of the difference that would
be required to cause the smoothed min to transition completely to the
commanded rate.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 219

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30
 0

 1

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Feature Correction Productivity Model

Workload size
Cumulative productive capability

Productive capability

Fig. 32. Simulation traces of I/O for the feature correction productivity model.

Near week 10.5 the out-flow rate deviates from the in-flow rate due to
the combination of the simulation time step size, the gain of the control
logic that tracks the smoothed minimum of the in-flow and commanded
rates, and the steep descent of the in-flow rate that is being tracked (the
gain is configured through time-constant τ in Eq. (7)). A curious aspect of
Fig. 33 is that the out-flow rate does not track the in-flow rate as closely
over weeks 12–13 as it does over weeks 7–11 (both are cases where it should
instead be tracking the commanded rate). It seems that three factors are
responsible: (i) the in-flow rate quickly falls off again, leaving little time
for the out-flow rate to track it; (ii) the peak at week 11 is nearly twice
as far above the commanded rate as that at week 9, hence, the rate being
tracked will contain a larger proportion of the commanded rate in the linear
combination produced by the smoothed min function; and (iii) the modified
Improved Euler simulation method (see Section 4.1) averages between the
current derivative, and the derivative expected at the state resulting from
a Newton step based on the current derivative. Therefore the sharp decline

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

220 S. D. Miller, R. A. Decarlo and A. P. Mathur

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30
 0

 1

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Feature Correction Queue

In-flow rate
Commanded out-flow rate

Cumulative out-flow
Queue level

Out-flow rate

Fig. 33. Simulation traces of I/O for the feature correction queue model.

of the in-flow rate may have dampened the tracking indirectly through the
simulation method.

4.2.7. Test Case Correction

In this example simulation, the productivity model for the test case
correction activity is configured identically to the feature correction
activity’s productivity model. Hence, Fig. 34 is nearly identical to Fig. 32
(save for small variation in the workload size).

Figure 35 shows another case where the workload size remains at zero
largely due to the small in-flow rate. The out-flow rate therefore tracks the
in-flow rate rather than the commanded rate, as described in Section 2.3.
The small dip in the in-flow rate seen at week 12 directly corresponds with
the evanescent pause in the new test execution activity (Fig. 19) because
only the execution of new tests can reveal the defects introduced in the new
tests, thereby providing work items to failure analysis, which eventually
passes the change request to test case correction.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 221

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30
 0

 1

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Test Case Correction Productivity Model

Workload size
Cumulative productive capability

Productive capability

Fig. 34. Simulation trace of I/O for the test case correction productivity model.

The small bump in the out-flow rate at week 27 seems to be another
artifact of the simulation method generated by a tiny rise in the in-flow
rate at that time.

5. Model Calibration

In this section, a distinction is made between ratio and interval scale data
to call out that calibration can still be performed even under an unknown
uniform translation of the calibration data (e.g., a constant measurement
error). In an informal sense, if one assumes one has ratio scale data, it
implies that one has accurate (but perhaps noisy) measurements.

In defining the calibration routines, we have generally assumed that
the matrix L in Fig. 3 has a partition L21 that is an identity matrix whose
dimensions match the length of the subsystem output vector, and that the
partition L22 consists entirely of zeros. That is, the subsystem outputs are
the external outputs of the system.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

222 S. D. Miller, R. A. Decarlo and A. P. Mathur

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30
 0

 1

W
or

k
Ite

m
s

W
or

k
Ite

m
s

pe
r

un
it

T
im

e

Time

Test Case Correction Queue

In-flow rate
Commanded out-flow rate

Cumulative out-flow
Queue level

Out-flow rate

Fig. 35. Simulation trace of I/O for the test case correction queue model.

While the calibration routine for ratio scale data is consistent with
traditional practice, the routine for interval scale data explores alternatives
for constructing novel calibration routines.

5.1. Calibrating with Ratio Scale Data

Empirical observations are assumed to be spaced sparsely over a regular
time grid, G = {t0 + kh : k = 0, 1, . . .}, and hence will not capture the
external inputs for every point on the grid. Because it is necessary to know
the value of the external inputs at each point on G, we assume that the
external inputs are piecewise constant, and that the grid points at which
they are updated are recorded, hence the external inputs present at any grid
point can be reconstructed. As a natural consequence, a zero-order hold
constraint on the external inputs is satisfied. Recall that, for the modeling
components described in Section 2, the general subsystem outputs, b, can be
explicitly computed given only the system state vector, x, and the external
input vector, u (see Section 4.1). One can therefore state that, for models
built within the preceding framework, there exists an explicit function b =
g̃(x, u). For general composed models, this result requires certain conditions
to be satisfied according to the implicit function theorem.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 223

Given a set of N empirical observations of the outputs from the actual
process, o = {o1, o2, . . . , oN}, taken at times ψ = {ψ1, ψ2, . . . , ψN}, the
parameter calibration algorithm can be stated as: Solve

argmin
{xm},{pj}

N∑
i=1

‖oi − g̃(xψi , uψi)‖22

where {pj} is the set of calibrated parameters embedded within the
functions f and g; and subject to an equality constraint on all pairs of
adjacent states, given as

(xk+1 − xk) = hf(x̂k+1/2, âk+1/2)

where

x̂k+1/2 =
(xk+1 + xk)

2

and

âk+1/2 = L11g̃(x̂k+1/2, uk) + L12uk

Hence, a constrained minimization is specified, wherein the given equality
constraints require that the choices for consecutive state vectors must
be compatible with an approximate numerical integration of the state
evolution equations as performed by the Midpoint Rule. In general, the
minimization seeks to eliminate the error between the predicted output
and the observed output at the points where the observations were made.
It is likely that certain elements of the output are either more important,
or are better indicators of a correct calibration, hence the 2-norm will likely
be replaced in practice by a weighted vector norm, e.g., ‖a‖2Q = aTQa for
some positive definite Q.

5.2. Calibrating with Interval Scale Data

Measurement of the state of software development processes is notoriously
difficult. It is often far easier to characterize the differences in the state
over time. For example, Ref. 9 notes that one has no mechanism to know
the number of undetected defects remaining in a test target, but one can
certainly collect data about how many defects are detected per unit time.
In Ref. 9 the authors develop and validate a calibration technique that
refines a guess at the internal state given successive measurements of the
observable changes to that hidden state.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

224 S. D. Miller, R. A. Decarlo and A. P. Mathur

By treating measurement of the actual process as interval scale data, we
restrict our consideration to only differences between observations. Because
there is no meaning assigned to zero on an interval scale, the calibration
data can be translated by an arbitrary error vector with no consequence.
That is, a calibration mechanism built to use interval scale data is tolerant
to uniform constant measurement error.

Given the adapted Improved Euler numerical differential equation
solver above, and recalling that for the modeling components described
in Section 2, the general subsystem outputs, b, can be explicitly computed
given only the system state vector, x, and the external input vector, u
(Section 4.1), one can state that there exists an explicit function b = g̃(x, u).
In light of this observation, the discrete simulation step formula can be re-
written as a function of the state and external inputs by substitution as
follows:

mt(xt, ut) = f(xt, L11g̃(xt, ut) + L12ut)

x̂t+h(xt, ut) = xt + hmt(xt, ut)

at+h(xt, ut, ut+h) = L11g̃ (x̂t+h(xt, ut), ut+h) + L12ut+h

mt+h(xt, ut, ut+h) = f(x̂t+h(xt, ut), at+h(xt, ut, ut+h))

x̄t+h(xt, ut, ut+h) = xt +
h

2
(mt(xt, ut) +mt+h(xt, ut, ut+h))

It is apparent that this step function can be composed recursively into a
φ-step state-update function of the form

x̄t+φh(xt, ut, ut+h, ut+2h, . . . , ut+φh)

Note that this multi-step state update function can be interpreted as
an approximate discretization of the model equations using the adapted
Improved Euler method of Section 4.1 as a numerical quadrature for
integrating the non-linear state-derivative equations over each time-step
under a Zero-Order Hold (ZOH) constraint on the external inputs, u.

For any pair of model states separated by φ time-steps, as generated by
the adapted Improved Euler solution of the initial value problem specified
by the initial state, xt0 , the ZOH-constrained external inputs {ui} for i ∈
{t0 + kh : k = 0, 1, . . .}, and the model equations, the following function
gives their difference:

dφ(xt0 , ut0 , ut0+h, . . . , ut0+φh) := x̄t+φh(xt0 , ut0 , ut0+h, . . . , ut0+φh)− xt0

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 225

This function can then be converted to a function of output difference rather
than the state difference:

d̃φ(xt0 , ut0 , ut0+h, . . . , ut0+φh) := g̃(x̄t+φh(xt0 , ut0 , ut0+h, . . . , ut0+φh),

ut0+φh)− g̃(xt0 , ut0)

Given a set of interval scale measurements taken on the output of the actual
process, one now has a mechanism for scoring a guess at the parameters and
internal state of the model: First, one identifies the earliest measurement
and notes its time as tS. By taking the difference of all pairs (the approach
of using all pairs rather than just adjacent pairs is developed and evaluated
in Ref. 26) of observations, one generates a table of 3-tuples, where the
columns are: (i) offset (in time) from tS to the earliest observation in the
pair; (ii) the magnitude of the offset in time between the two observations
in the pair; and (iii) the difference in the observations taken by subtracting
the earlier observation from the later. That is,

Time Offset from tS to Pair (θ) Duration Spanned (σ) Output Delta (δ)

(integer multiples of h) (integer multiples of h) (Real vector)

To calibrate the model parameters and estimate the state of the model
at time tS in order to best match the interval scale empirical data captured
from the actual process, one solves the unconstrained minimization:

argmin
xtS

,{pj}

N∑
i=1

‖δi − d̃σi

× (xtS + dθi(xtS , utS , . . . , utS+θi), utS+θi
, . . . , utS+θi+σi)‖22

where {pj} is the set of model parameters to be calibrated, and N is the
number of entries in the table of calibration data. Again, it is likely that
certain elements of the output are either more important, or are better
indicators of a correct calibration, hence the 2-norm will likely be replaced
in practice by a weighted vector norm, e.g., ‖a‖2Q = aTQa for some positive
definite Q.

As above, empirical observations are assumed to be spaced sparsely over
a regular time grid, G = {t0 + kh : k = 0, 1, . . .} — note as a consequence,
that the empirical measurements do not necessarily capture the external
inputs at the time-step granularity required by the functions d(·) and d̃(·).
We therefore assume that the external inputs are piecewise constant, and

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

226 S. D. Miller, R. A. Decarlo and A. P. Mathur

that the grid points at which they are updated are recorded, hence the
external inputs present at any grid point can be reconstructed. As a natural
consequence, a zero-order hold constraint on the external inputs is satisfied.

The authors note that the choice of constructing the state difference
function from the adapted Improved Euler method versus, say, the Midpoint
Rule, was arbitrary. Intuitively, however, it seems that the parameters
generated under this choice are more likely to produce a simulation that
matches the empirical observations when using the adapted Improved Euler
method to solve the initial value problem that defines the simulation. Also,
the choice to embed the state estimation directly into the minimization
problem rather than performing a constrained minimization (as was done
for the other calibration routine), was made to evaluate the option.
Depending on the minimization algorithm, one option may present more
amenable properties. For example, if the minimization technique does not
support equality constraints, one would embed the equations. Alternatively,
if the minimization routine builds a numerical approximation of the Hessian
matrix of the function to be minimized, then it will be a better choice to
expose the state vectors as explicit arguments in the minimization in order
to reduce the complexity of the function being minimized (and to improve
the chance that it is convex in the arguments over which it is minimized).

6. Discussion

The preceding model exposition and simulation has demonstrated that the
complex behavior of schedule-constrained software development activities
can be captured through the formalism of state modeling. Furthermore, the
simulation process for such a model is relatively simple, opening the way
for iterative as well as deterministic decision-support applications.

For example, Section 4.2.1 notes that an idle workforce is recognizable
as a discrepancy between the productive capability of the workforce, and
the out-flow rate of the associated queue. One can capture this with a
performance index; e.g.,

J(x, χ, u,∆u) =
1
2

∑
a∈A

(
qa
∫ tf

t0

‖cat − rat ‖22 + ‖uat + ∆uat ‖2R dt
)

+‖χ− xtf ‖2Q

where A is the set of development activities, qa is the weight given to
activity a to specify the cost of its workforce members sitting idle, cat ∈ x
is the productive capability of the team for activity a at time t, rat ∈ x

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 227

is the out-flow rate of the queue of activity a at time t, uat ∈ u is the
vector of externally controlled inputs for activity a at time t, ∆uat ∈ ∆u
is the set of control inputs supplied to activity a at time t, and R is
positive definite matrix assigning relative cost to the element of the input
vector. For the process duration spanning [t0 tf], xtf ∈ x gives the final
state of the process. χ gives the desired final state of the process, and Q is
a positive definite matrix assigning the cost of deviation between the actual
final state and the expected final state (Q should be sufficiently large that
the cost of allocating workforce to the process is much smaller than the cost
of failing to meet the deadline). Given such a setup, one can quantitatively
evaluate alternatives for eliminating idle workforce scenarios. For example,
one could take a step toward optimal workforce allocation by solving

arg min J(x, χ, u,∆u)
x,∆u

subject to the initial state, x0, and the model equations. This yields the
optimal control inputs, ∆ut, that best allocate and reallocate the minimum
number of workforce members required to complete the project by the
deadline. Note that this specification of the performance index ignores many
practical problems, such as the fact that the minimization may choose to
reallocate the workforce continually, or that there are limits on the process
quality control parameter. Hence additional constraints would be necessary
to successfully perform decision support.

The ultimate goal of this work is to develop the capability to optimize
software development processes through the techniques of modern control
theory. By developing a framework for building general software process
models within the formalism of State Modeling, this work has taken a step
toward that end. We hope to open the door to interesting control approaches
for the various decision support needs in software project management,
though we suspect that the modeling framework we have proposed herein
is sufficiently general to apply outside the domain of software development
(indeed, there are no aspects of the modeling work that are specific to
software development).

References

1. Function Point Counting Practices Manual, International Function Point
Users Group (IFPUG), Release 4.0, 1994.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

228 S. D. Miller, R. A. Decarlo and A. P. Mathur

2. Abdel-Hamid, T., Madnick, S.E.: Software Project Dynamics, Prentice Hall,
1991.

3. Boehm, B.W.: Software Cost Estimation with COCOMO II, Prentice Hall,
2000.

4. Cai, K.Y., Cangussu, J.W., DeCarlo, R.A., Mathur, A.P.: An overview
of software cybernetics, Proceedings of the Eleventh Annual International
Workshop on Software Technology and Engineering Practice, September 19–
21, 2003, pp. 77–86.

5. Cai, K.-Y., Jing, T., Bai, C.-G.: Partition Testing with Dynamic Partitioning,
COMPSAC, Proceeding of, Edinburgh, Scotland, July 2005.

6. Camacho, E.F., Bordons, C.: Model Predictive Control, Springer Publications,
January 31, 2004.

7. Cangussu, J.W., Decarlo, R.A., Mathur, A.P.: A formal model for the software
test process, IEEE Transaction on Software Engineering, 2002, Number 28,
pp. 782–796.

8. João W. Cangussu, Kai-Yuan Cai, Scott D. Miller, Aditya P. Mathur:
Software Cybernetics, Standard Article in Encyclopedia of Computer Science
and Engineering, John Wiley and Sons, December 2007.

9. Cangussu, J.W., Karcich, R.M., Mathur, A.P., DeCarlo, R.A.: Software
Release Control Using Defect-Based Quality Estimation, ISSRE, Proceedings
of, pp. 440–450, November 2004.

10. Card, D.: Statistical Process Control for Software, IEEE Software, 11,
pp. 1995–1997.

11. Chulani, S., Boehm, B.: Modeling software defect introduction and removal:
COQUALMO (COnstructive QUAlity MOdel), Jan 1999.

12. Cśıkszentmihályi, M.: Flow: The Psychology of Optimal Experience, Harper
and Row, New York, 1990.

13. DeCarlo, R.A.: The component connection model for interconnected systems:
Philosophy, problem formulations, and solutions, Large Scale Systems: Theory
and Applications, 7, 1984, pp. 123-138.

14. DeCarlo, R.A., Saeks, R.: Interconnected Dynamical Systems, New York:
Marcel-Dekker, 1981.

15. DeCarlo, R.A.: Linear Systems: A State Variable Approach with Numerical
Implementation, Upper Saddle River, New York: Prentice Hall, 1989.

16. De Schutter, B., van den Boom, T.: Model predictive control for discrete-event
and hybrid systems. Workshop on Nonlinear Predictive Control (Workshop
S-5) at the 42nd IEEE Conference on Decision and Control, Maui, Hawaii,
Dec. 2003.

17. Donzelli, P.: Decision support system for software project management, IEEE
Software, 23(4), 2006, pp. 67–75.

18. Forrester, Jay W.: Industrial dynamics. Pegasus communications, 1961.
19. Marakas, G.M., Decision Support Systems in the 21st Century, Prentice Hall,

2003.
20. Martin, R.H., Raffo, D.M.: A model of the software development process

using both continuous and discrete models, International Journal of Software
Process Improvement and Practice, 5, 2000, pp. 147–157.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 229

21. Martin, R., Raffo, D.: Application of a Hybrid Process Simulation Model to
a Software Development Project, PROCEED, Proceedings of, 2006, pp. 237–
246.

22. Miller, S.D., DeCarlo, R.A., Mathur, A.P.: Modeling and control of the
incremental software test process, In Proceedings of the 28th Annual
International Computer Software and Applications Conference, COMPSAC
2004, Vol. 2, 2004, pp. 156–159.

23. Miller, S.D., Mathur, A.P., DeCarlo, R.A.: DIG: A tool for software
process data extraction and grooming, In Proceedings of the 29th Annual
International Computer Software and Applications Conference, COMPSAC
2005, Vol. 1, July 26–28, 2005, pp. 35 – 40.

24. Miller, S.D., DeCarlo, R.A., Mathur, A.P.: A software cybernetic approach to
control of the software system test phase, In Proceedings of the 29th Annual
International Computer Software and Applications Conference, COMPSAC
2005, Vol. 2, July 26–28, 2005, pp. 103–108.

25. Miller, S.D., DeCarlo, R.A., Mathur, A.P.: A control-theoretic aid to
managing the construction phase in incremental software development,
In Proceedings of the 30th Annual International Computer Software and
Applications Conference, COMPSAC 2006, Vol. 2, September 17–21, 2006,
pp. 341–343.

26. Miller, S.D., DeCarlo, R.A., Mathur, A.P., Cangussu, J.W.: A control-
theoretic approach to the management of the software system test phase.
Special section on Software Cybernetics, Journal of Systems and Software,
(79)11, 2006, pp. 1486–1503.

27. Miller, S.D., DeCarlo, R.A., Mathur, A.P.: A quantitative modeling for
incremental software process control, In Proceedings of the 32nd Annual
International Computer Software and Applications Conference, COMPSAC
2008, July 28–August 1, 2008, pp. 830–835.

28. Park, R.: Software size measurement: A framework for counting source
statements, CMU-SEI-92-TR-20, 1992, Software Engineering Institute,
Pittsburg, PA.

29. Scacchi, W.: Process models in software engineering, in Marciniak, J.J. (ed.),
Encyclopedia of Software Engineering, 2nd Edition, John Wiley and Sons,
Inc, New York, December 2001.

30. Shewhart, W.A.: Statistical Method from the Viewpoint of Quality Control,
Dover Publication, 1986.

31. Volterra, V.: Variations and fluctuations of the number of individuals
in animal species living together. In Animal Ecology. McGraw-Hill, 1931.
Translated from 1928 edition by R. N. Chapman.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

230 S. D. Miller, R. A. Decarlo and A. P. Mathur

Appendix A: Modeling the Example Process

Figure A.1 refines Fig. 2 in light of the preceding mathematical
development. A typical development activity model requires six inputs, and
generates five outputs. Notice the facility for subtracting the amount of
rework from the cumulative out-flow before feeding back to the dependent
cumulative out-flow input of the controller. This mechanism allows re-
work work items to flow into the queue without having them influence
the enforcement of the coordination constraint. In Table A.1 below,
which details the interconnections used in the simulation example, such
subtraction of re-work from the dependent cumulative out-flow can be seen
in lines 17 and 18.

To reduce clutter and improve readability, the model components are
given short names. Component names are constructed by the following
scheme,

〈type〉〈id〉
where type is one of

P = Workforce Productive Capability Model
C = Project Schedule Controller

Fig. A.1 Typical development activity schematic.

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 231

Table A.1. Interconnections made for the example simulation.

Destination Source

Component Input Component Output Scale

Interconnections feeding Feature Coding inputs
∗1 PFC Workload Size QFC Queue Level 1
∗2 CFC Dependent Cumulative

Out-Flow
QFC Cumulative Out-Flow 1

∗3 CFC Available Productive
Capability

PFC Productive Capability 1

∗4 QFC Commanded Out-Flow
Rate

CFC Regulated Productive
Capability

1

Interconnections feeding Test Case Coding inputs
∗5 PTC Workload Size QTC Queue Level 1
∗6 CTC Dependent Cumulative

Out-Flow
QTC Cumulative Out-Flow 1

∗7 CTC Available Productive
Capability

PTC Productive Capability 1

∗8 QTC Commanded Out-Flow
Rate

CTC Regulated Productive
Capability

1

9 QTC In-flow Rate QFAF Out-Flow Rate 1

Interconnections feeding Test Case Execution inputs
∗10 PTE Workload Size QTE Queue Level 1
∗11 CTE Dependent Cumulative

Out-Flow
QTE Cumulative Out-Flow 1

∗12 CTE Available Productive
Capability

PTE Productive Capability 1

∗13 QTE Commanded Out-Flow
Rate

CTE Regulated Productive
Capability

1

14 QTE In-Flow Rate QTC Out-Flow Rate 1
15 QTE In-Flow Rate QFCR Out-Flow Rate 1
16 QTE In-Flow Rate QTCR Out-Flow Rate 1
17 CTE Dependent Cumulative

Out-Flow
QFCR Cumulative Out-Flow −1

18 CTE Dependent Cumulative
Out-Flow

QTCR Cumulative Out-Flow −1

19 CTE Threshold Parameter
Magnitude

QFC Cumulative Out-Flow 1

20 CTE Threshold Parameter
Derivative

QFC Out-Flow Rate 1

Interconnections feeding Regression Testing inputs
∗21 PRT Workload Size QRT Queue Level 1
∗22 CRT Dependent Cumulative

Out-Flow
QRT Cumulative Out-Flow 1

(Continued)

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

232 S. D. Miller, R. A. Decarlo and A. P. Mathur

Table A.1. (Continued)

Destination Source

Component Input Component Output Scale

∗23 CRT Available Productive
Capability

PRT Productive Capability 1

∗24 QRT Commanded Out-Flow
Rate

CRT Regulated Productive
Capability

1

25 CRT Threshold Parameter
Magnitude

QFC Cumulative Out-Flow 1

26 CRT Threshold Parameter
Derivative

QFC Out-Flow Rate 1

Interconnections feeding Failure Analysis inputs
27 PFA Workload Size QFAF Queue Level 1
28 PFA Workload Size QFAT Queue Level 1
29 CFA Dependent Cumulative

Out-Flow
QFAF Cumulative Out-Flow 1

30 CFA Dependent Cumulative
Out-Flow

QFAT Cumulative Out-Flow 1

∗31 CFA Available Productive
Capability

PFA Productive Capability 1

32 QFAF In-Flow Rate ADD Feature Defect Detection
Rate

1

33 QFAT In-Flow Rate ADD Test Case Defect
Detection Rate

1

34 QFAF Commanded Out-Flow
Rate

ASPL O1 1

35 QFAT Commanded Out-Flow
Rate

ASPL O2 1

Interconnections feeding Feature Correction inputs
∗36 PFCR Workload Size QFCR Queue Level 1
∗37 CFCR Dependent Cumulative

Out-Flow
QFCR Cumulative Out-Flow 1

∗38 CFCR Available Productive
Capability

PFCR Productive Capability 1

∗39 QFCR Commanded Out-Flow
Rate

CFCR Regulated Productive
Capability

1

40 QFCR In-Flow Rate QFAF Out-Flow Rate 1

Interconnections feeding Test Case Correction inputs
∗41 PTCR Workload Size QTCR Queue Level 1
∗42 CTCR Dependent Cumulative

Out-Flow
QTCR Cumulative Out-Flow 1

∗43 CTCR Available Productive
Capability

PTCR Productive Capability 1

(Continued)

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 233

Table A.1. (Continued)

Destination Source

Component Input Component Output Scale

∗44 QTCR Commanded Out-Flow
Rate

CTCR Regulated Productive
Capability

1

45 QTCR In-Flow Rate QFAT Out-Flow Rate 1

Interconnections feeding Defect Estimation inputs
46 ADE Features Produced QFC Cumulative Out-Flow 1
47 ADE Feature Defects Removed QFCR Cumulative Out-Flow 1
48 ADE Test Cases Produced QTC Cumulative Out-Flow 1
49 ADE Test Case Defects

Removed
QTCR Cumulative Out-Flow 1

Interconnections feeding Defect Detection inputs
50 ADD Estimated Feature

Defects
ADE Feature Defects Present 1

51 ADD Regression Test
Execution Rate

QTE Out-Flow Rate 1

52 ADD Estimated Test Case
Defects

ADE Test Case Defects Present 1

53 ADD New Test Execution Rate QTE Out-Flow Rate 1

Interconnections feeding Proportional Splitter inputs
54 ASPL Reference R1 QFAF Queue Level 1
55 ASPL Reference R2 QFAT Queue Level 1
56 ASPL Source CFA Regulated Productive

Capability
1

Q = Queue Model
A = Other Algebraic Model

and id is from

FC = Feature Coding
TC = Test Case Coding
TE = New Test Case Execution
RT = Regression Test Case Execution
FA = Failure Analysis (Suffixed with T or F to indicate the individual

queues.)
FCR = Feature Correction
TCR = Test Case Correction
DE = Defect Estimation Model
DD = Defect Detection Model
SPL = Proportional Splitting Component

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

234 S. D. Miller, R. A. Decarlo and A. P. Mathur

Table A.1 gives a description of each interconnection by specifying the
source and destination of each interconnection, and the scale factor that
was used when specifying the connection. As mentioned in Section 2.4, the
simulation was constructed with scale factors of unit magnitude (though
sometimes negative) in order to focus on the model construction and
behavior. In Table A.1, entries with an asterisk in the left-most column are
inherent in the composition of the three modeling elements (productivity
model, queue, and scheduling controller) into a standard development
activity model; other entries define flows between activities. Entries in the
table are grouped according to the development activity on the receiving
end of the interconnection. Lastly, lines in the table are most easily read
from right to left. For example, line 1 reads: “A direct connection (scale =
1) feeds the queue level element of the output vector of the feature coding
queue into the workload size element of the input vector to the feature
coding productive capability model.”

Because this table specifies the entries of a sparse matrix as per Fig. 3,
multiple interconnections to a single destination are summed to provide the
total value of the destination element. There are 56 connections defined to
implement the model shown in Fig. 1; a brief description of the interesting
features of Table A.1 is given below.

Line 9 above specifies that failures traced to feature defects will, with
some frequency, generate new test case specifications. This is shown as
workflow 9 in Fig. 1. Line 14 specifies that the new test case coding activity
passes its completed test cases to the new test case execution activity
(workflow 3), and lines 15–16 specify that test cases must be re-executed
upon correcting a defect (workflows 12 and 13). As mentioned above, lines
17 and 18 subtract this test re-execution re-work from the cumulative out-
flow before feeding it as the dependent cumulative out-flow input to the
scheduling controller. Lines 19 and 20 configure the new test case execution
scheduling controller to regulate test execution as a function of the progress
of the feature coding activity (exactly what function of the feature coding
progress will depend on the parameters given in Appendix B.) Lines 25 and
26 configure the regression test execution activity’s scheduling controller for
regulation as a function of feature coding progress as well. Recalling that
the example scenario consists of two increments, with specific test cases
for each, it is clear that the scheduling controllers are being configured to
enforce the incremental nature of the example scenario.

At line 27, the construction of the failure analysis activity begins,
as shown in Fig. 10. Lines 27 and 28 add the queue levels of the two

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 235

failure analysis queues to provide the “blinded” workload size that the
actual development process will see (as opposed to a priori visibility into
which failure reports correspond to feature defects vs. test case defects.)
Lines 29 and 30 sum the cumulative out-flow to give the proper blinded
view of cumulative progress to the scheduling controller. Lines 32 and 33
connect the in-flow rates of the failure analysis queues to the corresponding
defect detection rate outputs of the defect detection component. This is
represented by workflows 5 and 6 merging into workflow 7 in Fig. 1. Lines 34
and 35 connect the commanded out-flow rate inputs of the failure analysis
queues to the outputs of the proportional splitting component, which is
part of the implementation of workflows 8, 10, and 11; line 40 completes
the specification of workflow 10, and line 45 completes the specification of
workflow 11.

Lines 46–53 are easily readable, and connect the defect estimation
and defect detection models to the appropriate sources of data. In
Section 2.9, it was mentioned that the defect estimation component could
be embedded into the defect detection component; this approach has
not been taken here. Lastly, lines 54 and 55 connect the failure analysis
queue levels to the reference inputs on the proportional splitter, and line
56 connects the regulated productive capability from the failure analysis
scheduling controller to the source input of the proportional splitting
component.

Appendix B: Simulation Study Parameters

In setting up the example simulation, all of the queues use the time
constant, τ = 7/100. The productive capability model parameters are given
in Table A.2.

Table A.2. Productivity model parameters for the example simulation.

Activity α β F cap ξ

Feature Coding −0.83 −0.043 4 5.6
Test Case Coding −0.83 −0.02 4 1.6
New Test Case Execution −0.83 −0.02 1 0.26
Regression Test Case Execution −0.83 −0.02 1 0.36
Failure Analysis −0.83 −0.02 1 1.87
Feature Correction −0.83 −0.02 1 1.6
Test Case Correction −0.83 −0.02 1 1.6

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

236 S. D. Miller, R. A. Decarlo and A. P. Mathur

Except for the new test case and regression test case execution
activities, all scheduling controller components are configured with a
constant threshold function of 10,000 work items (i.e., practically no
threshold). The threshold function configured for both the new test case
execution activity and the refression test case execution activity is

c(x) =

0 if 0 ≤ x < 9
−140x3 + 210x2 if 9 ≤ x < 10
70 if 10 ≤ x < 29
−2260x3 + 3390x2 + 70 if 29 ≤ x < 30
1200 if 30 ≤ x

This function is a step function whose transitions have been smoothed
with cubic splines. The steps rise to levels at 70 and 1200 work items at
approximately x = 10, and x = 30, respectively. The values of x at which
the level transitions occur corresponds to the number of work items within
the two feature coding increments in the example scenario. The function is
trivially (and continuously) differentiable.

The defect introduction model and defect detection model have
parameters as well, as given in Table A.3.

The initial states for the state models are given in Table A.4.
Lastly, the external inputs were held constant at the values in Table A.5.

Table A.3. Parameters for the defect introduction and detection components.

µf µt bfc btc Afc = Atc Dfc Dtc

0.01 0.001 1.12 1 1 0.15 0.125

Table A.4. Initial state vectors for the state-based components in the example
simulation.

Initial Initial Productive
Development Activity Queue State Capability Model State

Feature Coding [0 30 0]T [0 0]T

Test Case Coding [0 200 0]T [0 0]T

New Test Case Execution [0 0 0]T [0 0]T

Regression Test Case Execution [0 200 0]T [0 0]T

Failure Analysis (F) [0 0 0]T [0 0]T

(T) [0 0 0]T

Feature Correction [0 0 0]T [0 0]T

Test Case Correction [0 0 0]T [0 0]T

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

Quantitative Modeling for Incremental Software Process Control 237

Table A.5. Constant control inputs
supplied during the example simulation.

Development Activity ωt γt

Feature Coding 5 0.8
Test Case Coding 5 0.8
New Test Case Execution 5 0.8
Regression Test Case Execution 5 0.8
Failure Analysis 5 0.8
Feature Correction 2 0.8
Test Case Correction 2 0.8

May 4, 2011 14:8 9in x 6in b968-ch07 Adaptive Control Approach for Software. . .

This page intentionally left blankThis page intentionally left blank

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Chapter 8

PROACTIVE MONITORING AND CONTROL
OF WORKFLOW EXECUTION IN ADAPTIVE

SERVICE-BASED SYSTEMS

STEPHEN S. YAU and DAZHI HUANG

School of Computing, Informatics,
and Decision Systems Engineering, Arizona State University,

Tempe, AZ 85287-8809, USA
{yau,dazhi.huang}@asu.edu

Systems based on service-oriented architecture are called service-based systems
(SBS), and comprise of computing services offered by various organizations.
Users of SBS often require these services to be composed into workflows to
perform their high-level tasks. The users usually have certain expectations
on the overall QoS (quality of service) of their workflows. Due to the
highly dynamic environments of applications of SBS, in which temporary
unavailability or quality degradation of services may occur frequently and
unexpectedly, monitoring and controlling the execution of workflows adaptively
in SBS are needed and should be done in distributed and proactive manner.
In this chapter, important research issues and the current state-of-the-art
will first be discussed. Then, a virtual machine-based architecture for the
execution, monitoring and control of workflows in SBS, and a process calculus

for modeling distributed monitoring and control modules are introduced. Using
the virtual machine-based architecture and the process calculus, our approach
to synthesizing software modules for proactive monitoring and control of
workflow execution in SBS is presented.

1. Introduction

Recent development of service-oriented computing and grid computing has
led to rapid adoption of service-oriented architecture (SOA) in distributed
computing systems, such as enterprise computing infrastructures, grid-
enabled applications, and global information systems. One of the
most important advantages of SOA is the capability that enables
rapid composition of the needed services provided by various service
providers through networks for distributed applications. Software systems
based on SOA are called service-based systems (SBS), and often
comprise of computing services offered by various organizations. These

239

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

240 S. S. Yau and D. Huang

computing services provide well-defined interfaces for users to access
certain capabilities offered by various providers, and are often hosted
on geographically-dispersed computer systems. Due to different system
capacities, active workloads or service contracts with users, such services
usually provide various QoS, such as timeliness, throughput, accuracy,
security, dependability, and survivability. Users of SBS will discover and
access the most suitable services, which not only provide the required
functionalities, but also meet the expected QoS of users.

Besides direct access to individual services, users often want to carry
out workflows composing of various services in SBS to perform high-level
tasks that cannot be done by an individual service. The composition of
services can be automated based on the required functionality, referred as
the goal, of the entire workflow.1−3 However, the user of a workflow often
has certain QoS expectations on the entire workflow, such as a deadline for
completing certain tasks of the workflow.

A major problem for the development of high-quality SBS is how
to satisfy users’ multiple QoS requirements simultaneously in highly
dynamic operating environments. Although certain QoS aspects in service
composition can be incorporated,4,5 the execution of workflows in SBS may
not satisfy users’ requirements due to the highly dynamic environments
of SBS, in which temporary unavailability or quality-degradation of
services may occur unexpectedly. Furthermore, because the satisfaction
of requirements in an aspect of QoS often requires certain sacrifice in
other QoS aspects, it is necessary to adaptively control the tradeoffs of
requirements among multiple QoS aspects in SBS.

From software cybernetics perspective,6,7 such a problem can be
tackled by constructing a close-loop control-based SBS, which is capable
of monitoring the workflow executions, and dynamically controlling the
selection and configuration of services in the workflows to meet users’
requirements. Such an SBS is referred as an adaptive SBS (ASBS). The
concept of ASBS is depicted in Fig. 1, in which functional services used
to compose the ASBS and the modules for monitoring and controlling
QoS form a closed control loop.8 The QoS monitoring modules collect the
measurements of various QoS aspects as well as system status concerning
the QoS aspects used to determine the QoS adaptation for adjusting
the configurations and service operations of ASBS to satisfy various QoS
requirements simultaneously. However, the distributed and loosely-coupled
nature of SBS has imposed many challenges for developing such an SBS.
First, it requires proactive monitoring and control of workflow execution

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Proactive Monitoring and Control of Workflow Execution 241

Functional Services

 ASBS

S0

S1

Sm

Sk

… …

Produce
events

Extraneous
events

QoS Monitoring

QoS Adaptation

Consume
resources Affect

QoS

S2

…

Resources

Users

Measure changes of resource states

Have QoS expectations

Adaptation
commands

Request
services

Situations & QoS
measurements

Fig. 1. A conceptual view of ASBS.

because various problems affecting workflow execution in ASBS need to
be detected and workflows in ASBS need to be adapted accordingly in a
timely manner. Proactive monitoring and control of workflow execution
will greatly increase the chances of completing the workflows satisfactorily.
For example, if a service to be used in a workflow fails, it will allow
more time to find a replacement for the failed service and reconfigure the
workflow if the failure can be detected before the failed service needs to be
invoked.

Second, it requires distributed execution monitoring and control to
overcome the inefficiency and potential security or dependability problems
of centralized monitoring and control approaches.

In this chapter, we will first introduce a virtual machine-based
architecture for executing, monitoring and controlling workflows in ASBS,
and a process calculus for modeling distributed monitoring and control
modules. Then, we will present our approach to synthesizing software
modules for proactive monitoring and control of workflow execution in
ASBS. In our approach, proactive distributed execution monitoring and
control modules will be generated based on the specifications of both

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

242 S. S. Yau and D. Huang

functional and QoS requirements of workflows, and will be coordinated
in runtime through the underlying virtual machines to monitor and control
workflow execution adaptively to satisfy users’ QoS requirements.

2. Current State of the Art

Substantial research has been done in workflow and web service
research communities on workflow planning and web service composition
to construct and execute workflows to satisfy users’ functional
requirements.1−3,9,10 Recently, how to design and adapt systems to
satisfy various QoS requirements has also been considered.11−15 QoS-
aware service composition11−13 aims at finding optimal or sub-optimal
service composition satisfying various QoS constraints, such as cost and
deadline, within a reasonable amount of time. Various techniques have been
developed for QoS-aware service composition, such as service routing11

and genetic algorithms.12,13 However, the QoS models considered in
existing QoS-aware service composition methods are usually very simple,
and runtime adaptation of service composition cannot be efficiently
handled by existing QoS-aware service composition methods. Self-tuning
techniques14 and autonomic middleware15 were developed for providing
support for service adaptation and configuration management. In Ref. 14,
an online control approach was presented to automatically minimizing
power consumption of CPU while providing satisfactory response time. In
Ref. 15, an architecture for an autonomic computing environment, called
AUTONOMIA, was presented, including various middleware services for
fault detection, fault handling and performance optimization. However,
these techniques and middleware are not designed for SBS, which is more
loosely-coupled and difficult to control since SBS is often composed by
multiple service providers.

Execution monitoring of workflows has been considered as an
integral part of workflow management systems. Recently, grid workflow
systems,16−20 which operate in dynamic environments requiring execution
monitoring and control similar to SBS, have been presented. DAGMan16

provides a limited query capability for checking job status, which requires
additional programming effort if some application-specific monitoring
needs to be done. Gridbus17 monitors workflow execution status based
on event notification, and uses tuple spaces to exchange various event
tuples indicating the execution status of distributed jobs. GridFlow18

provides workflow execution and monitoring capabilities based on a

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Proactive Monitoring and Control of Workflow Execution 243

hierarchical agent-based resource management system (ARMS)21 for
Grid, in which the agents serve as representatives of resources and are
able to record performance data of the resources. Kepler19 provides
an easy-to-use environment for the design, execution and monitoring of
scientific workflows. It relies upon specialized actors, which are interfaces
to services on Grid, to provide job submission, execution and monitoring
capabilities. Pegasus20 has a Concrete Workflow Generator to automate the
creation of a workflow in the form of DAG (Directed Acyclic Graph), and
uses systems like DAGMan to execute and monitor workflows. However,
the workflow monitoring capabilities in these Grid workflow systems as
well as in many other workflow systems have a similar characteristic:
They only focus on the status of the current workflow execution, and not
proactively acquiring and analyzing status information related to future
workflow execution.

3. Background

Our research on proactive monitoring and control of workflows in
ASBS is based on α-Calculus27,28 and our Workflow Virtual Machine
(WVM).30 The α-Calculus provides a high-level, platform-independent
programming model for distributed software modules in SBS. WVM
provides a platform-independent environment for executing, monitoring and
controlling workflows in SBS. Hence, before describing our approach (see
Section 4), we will first give an overview of the α-Calculus and WVM in
this section.

3.1. Workflow Virtual Machine

Since a SBS often spans across heterogeneous networks consisting of
various platforms, it is difficult for developers to handle the differences in
hardware and software in these platforms. A virtual machine can mask such
differences among various platforms, and provide a platform-independent
environment for developing and executing application software. We have
developed a virtual machine-based architecture to provide the essential
functionalities for executing, monitoring and controlling workflows in
SBS.30 Figure 2 shows our virtual machine-based architecture, called
workflow virtual machine (WVM). In WVM, workflow (WF) agents,
monitors, and controllers are responsible for executing, monitoring, and
controlling the adaptation of workflows in SBS, respectively.

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

244 S. S. Yau and D. Huang

Remote
WVM

Workflow Virtual Machine (WVM)

WF
Controller

WF Agent
WF

Monitor

Various types of interactions

In
p

u
t

ch
an

n
e

ls
O

u
tp

u
t

ch
an

n
e

ls
Data

Remote
WVM

Data

Data

Data

Data

Data

Remote
WVM

Remote
WVM

Persistent Data
Repository

WVM Core

ServiceProxy

From WVM Core to agents
- Initializing an agent
- Load/Unload an agent
- Migrate an agent to another WVM
- Reconfiguring an agent
- Notifying agents of new input data
 received

From agents to WVM Core :
- Announcing output to be
 generated
- Subscribing input to be received
- Making service calls
- Notifying WVM Core of output
 data generated

Services in
SBS

Functional
services in

SBS

Services in
SBS

System
M/C

services

Fig. 2. Our virtual machine-based architecture for executing, monitoring and
controlling workflows in SBS.

Our WVM is an extension of the SINS (Secure Infrastructure
for Networked Systems) virtual machine.22 Each of our WVMs has a
set of input/output channels, uniquely identified by their names, and
communicates with each other through these named channels to exchange
data for coordinating activities of agents running on the WVMs. The
communication over these named channels is supported by SPREAD,23

which is a reliable group communication package. Each agent running on
a WVM will take certain input data received by the WVM, and send the
generated data, if any, through the WVM. Some specific named channels
are reserved for exchanging control messages generated by virtual machines,
such as load/unload messages for an agent.

Like SINS, our WVM provides the capabilities for loading and
unloading agents, accepting an agent’s subscriptions on the input data
required by the agent as well as announcements on the output data that
will be generated by the agent, sending and receiving the data through the
named channels, and notifying the agents when new input data is available.
In addition, our WVM has the following capabilities:

• Parametrized initialization of agents, which subsequently enables
runtime reconfiguration of agents when workflows need to be adapted
due to user requirements or environment changes.

• Invocation of functional services in SBS and system monitoring
and control (M/C) services, such as system performance monitoring
packages, network management and migration, to support workflow
execution, monitoring and control in SBS.

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Proactive Monitoring and Control of Workflow Execution 245

• Event logging into a persistent data repository for recording workflow
execution history.

The WVM Core shown in Fig. 2 is mainly responsible for these capabilities.
The ServiceProxy in the WVM provides an interface for each functional
service or system M/C service in SBS. When an agent (a WF agent, WF
monitor or WF controller) evaluates its input data and makes a decision to
invoke a certain service, the WVM handles the service invocation as follows:

i. The agent generates a service invocation request with the necessary
information, including the name of the service to be invoked, the identity
of the user invoking this service if access control for the service is
required, and the name of the input channel, where the agent expects
to receive the result of this service invocation.

ii. The agent puts the request into an output channel named ServiceInvoke.
iii. The WVM Core parses the service request, performs security

checking, if necessary, and invokes the corresponding interface in the
ServiceProxy.

iv. Once invoked, the corresponding interface in the ServiceProxy
constructs an appropriate service request or API call, depending on
whether the service to be invoked is a Web Service or other local
system services. The constructed service request or API call will then
be executed by the corresponding services.

v. When the ServiceProxy receives the result of the service invocation, it
puts the result in the input channel specified by the agent in (i).

The above service invocation process in the WVM not only provides agents
the capability to make asynchronous service invocations and perform other
tasks in parallel, but also provides richer information regarding service
invocations, which will be very useful in our monitoring approach for
workflow execution. For example, service delay can be easily measured in
the ServiceProxy to capture more semantic-rich events, such as unexpected
delay due to network failure and insufficient computing resources or
other causes not just the information on the success or failure of service
invocations. Our virtual machine-based architecture provides the necessary
capabilities for WF monitors to perform execution monitoring, subscribe to
important events, such as the status of service invocations, receive events
notifications from WVMs when such events occur, and invoke necessary
system M/C services without knowing the low-level details of such services.

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

246 S. S. Yau and D. Huang

3.2. α-Calculus

The α-calculus is used in our approach to proactive monitoring and
control of workflows in ASBS for modeling distributed monitoring
and control modules. Process calculi have been used as programming
models for concurrent and distributed systems.24,25 We have developed
the α-calculus, based on the classical process calculus,26 to provide a
formal programming model for SBS.27,28 The α-calculus has well-defined
operational semantics involving interactions of external actions and internal
computations for assessing the current situation and responding to it for
system adaptation.27,28 The external actions include communication among
processes, logging in and out of groups/domains. The internal computations
include invocation of services as well as internal control flow.

For the sake of completeness, we summarize in Table 1 the part of the
syntax of the α-calculus which will be used in this chapter. Similar to a
classical process calculus, a system in the α-calculus can be the parallel
composition of two other systems, or a recursive or non-recursive process.
A recursive or non-recursive process can be an inactive process, a nominal
identifying a process, a process performing external actions, a process
performing internal computations, a service exporting a set of methods,
for users to invoke or the parallel composition of two other processes. The
methods are described by their preconditions and postconditions specifying
the constraints on the inputs accepted and outputs provided by the methods,
respectively. In Table 1, I : li(y) denotes the invocation of the method li
exported by a service I using parameter y. External actions involve the input
andoutput actions onnamed channelswith types as in the ambient calculus.29

Internal computation involves beta reduction, conditional evaluation for logic
control, and invocation of public methods exported by a named service or
private methods exported by the process itself.

4. Synthesizing Software Modules for Proactive Monitoring
and Control of Workflow Execution in ASBS

In this section, we will present our approach to synthesizing software
modules for proactive monitoring and control of workflow execution in
ASBS.

Our approach to synthesizing software modules for proactive
monitoring and control of workflow execution in ASBS consists of the
following three steps:

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Proactive Monitoring and Control of Workflow Execution 247

Table 1. A partial syntax of the α-calculus to be used in our approach.

(System)
S ::= N ::=

fix I=P (recursive or non-recursive process) x (name variable)
S||S (parallel composition of two systems) n (name)

(Processes) (External actions)
P ::= E ::=

0 (inactive process) K (Communication actions)
P ||P (parallel composition)
I (identifier) K ::=
E.P (external action) Ch(x) (input)
C.P (internal computation) Ch<Str> (output)
P{l1(x1), . . .lk(xk); . . .ln(xn)} (method export)
l1, . . .lk are private methods that can
be invoked by P itself only while
lk+1, . . .ln are public methods that can
be invoked by other processes.

Ch ::=

N (named channel with type)

(Internal computations)
C ::= pre ::= σ[y] ∧ ρ[y]

let x = D instantiate P (beta reduction)
if C(x) then P else P′ (conditional evaluation) post ::= (σ[x] ∧ ρ[x])x
ρ (constraint)
ε (no-computation) σ ::=
tt (constant true) b (base type)
ff (constant false) σ → σ (function type)

D ::= ρ ::=
I : li(y) (method invocation) x ≥ y + c

x > y + c
I : li ::= prei :: posti[y] (method definition) x ≤ y + c

x < y + c

S-1) Construction of performance models for services to be used in the
workflows in ASBS to support the estimation of QoS.

S-2) Synthesis of α-calculus descriptions of distributed processes for
proactive monitoring and control of workflow execution.

S-3) Translation of process descriptions generated in S-2) to platform-
specific code and compilation of the generated code to generate
monitor and controller modules.

In this section, we will focus on S-2) of our approach. For S-1), we
have presented an approach to constructing service performance models
in,8,34 and will provide a brief overview of this modeling approach in Section
4.2. For S-3), we have developed an α-calculus compiler to generate Java

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

248 S. S. Yau and D. Huang

code,27,28 and we are currently developing another α-calculus compiler to
generate C# code. The rest of this section will be organized as follows: We
will first discuss how WF agents, monitors, and controllers shown in Fig. 2
are coordinated to execute workflows, and monitor and control workflow
execution in ASBS in Section 4.1. Then, we will present how to synthesize
WF monitors and controllers in Sections 4.2 and 4.3, respectively.

4.1. Workflow Execution, Monitoring and Control in ASBS

• WF agents in ASBS

In Ref. 28, we have presented an approach to composing workflows and
synthesizing WF agents from the composed workflows. Regardless of the
complexity of the composed workflows, each synthesized WF agent has the
internal control structure shown in Fig. 3.

A WF agent will first receive inputs, including service parameters and
situation information, through named channels in WVM (see Section 3.1).
Then, the WF agent will check certain conditions extracted from the
synthesized workflow and invoke one or more services based on the
conditions. The WF agent may receive additional inputs, check more
conditions and invoke more services as illustrated by the dotted arrows
and boxes in Fig. 3. Finally, the WF agent will send out results through
named channels in WVM. For each composed workflow, one or more WF
agents may be synthesized. These WF agents may invoke services in parallel
if the composed workflow contains parallel sub-processes, or sequentially if
a WF agent takes the results of other WF agents as inputs.

• Coordination among WF agents, monitors and controllers

To monitor and control the execution of a workflow in ASBS, we have
defined a coordination protocol among WF agents, monitors and controllers
for the workflow. This protocol consists of two phases: Phase 1) before
service invocation, and Phase 2) during service invocation. In these two
phases, the WF monitor M , the WF agent A, and the WF controller C

Receive
inputs

Call
service(s)

Check
condition(s)

Call
service(s)

 ...

Check
condition(s)

Check
condition(s)

 ...

 ...

Call
service(s)

Call
service(s)

Send
results

Send
results

Receive
inputs

Receive
inputs

Fig. 3. The internal control structure of a WF agent.

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Proactive Monitoring and Control of Workflow Execution 249

responsible for monitoring, invoking and controlling a service S used in the
workflow interact with each other as follows:

Phase1) Before S is invoked, M , A, and C perform the following
activities in parallel:

• Activities of M in Phase1): M executes the process shown in
Fig. 4(a) periodically with a time interval t until S is invoked or a
TERMINATION message from C is received. The process is described
as follows:

M-1.1) Collect the data related to the status of S as well as the status
of the host H and network N, where S resides by invoking
certain system monitoring services.

M-1.2) If S, H or N becomes unavailable, notify all the related WF
controllers to find replacements for the unavailable services
used in the workflow. Then, go to M-1.6). Otherwise,
continue with M-1.3).

M-1.3) If the parameters for invoking S are not ready, go back to
M-1.1). Otherwise, continue with M-1.4).

M-1.4) Estimate the QoS that can be achieved based on the service
parameters (see Ref. 8 and 34, and also the explanations
in Section 4.2) and the current status of S, H and N , and
compare the estimated QoS EQ with the QoS requirements
QR for S in this workflow. If EQ does not satisfy QR, go to
M1.5). Otherwise, M sends out a CHECKPOINT CLEAR
message with a timeout t for S. Then, go back to M1.1).

M-1.5) M notifies C to reconfigure S or to find a replacement for S.
Then, go to M-1.6).

M-1.6) M waits for a message from C. If the message is
a SERVICE REPLACEMENT message, M changes the
monitoring target from S to the new service in the SERVICE
REPLACEMENT message. Go back to M-1.1). If the
message is a TERMINATION message, M terminates.

• Activities of C in Phase1): As shown in Fig. 4(b), C processes
the notifications received from M and other WF controllers until S is
invoked or a TERMINATION message from another WF controller is
received. There are the following two cases:

Case C-1.1) If S, H , or N becomes unavailable, C finds a
replacement for S. If the replacement for S is found,
C sends a SERVICE REPLACEMENT message to M

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

250 S. S. Yau and D. Huang

Collect data on the
status of service S,

host H and network N

Are S, H and N
available?

Notify related controllers
to find replacements for

unavailable services

No

Are the
parameters for

invoking S
ready?

No

Yes

Can the estimated
QoS EQ satisfy QoS
requirements for S?

Yes

Send out a
CHECKPOINT_CLEAR

message for S with a
timeout t

No
Notify the corresponding

controller C to reconfigure
S or find a replacement

Wait for message from
the corresponding

controller C

Estimate the possible
QoS based on the service
parameters and the status

of S, H and N

Yes

Is the received
message a

SERVICE_REPLACEMENT
message?

Change the
monitoring target
from S to the new

service specified in
the message

Yes

No

Fig. 4(a). Process executed by a Monitor M in Phase1).

and A. If a replacement for S is not found, C sends a
TERMINATION message to M and A as well as other
WF controllers.

Case C-1.2) If EQ does not satisfy QR (or there is unexpected
delay in the execution of a service invoked before S

in the workflow), C finds a new service configuration
for S, which makes the new EQ to satisfy QR
(or reduce the expected delay for executing S).

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Proactive Monitoring and Control of Workflow Execution 251

Wait for notifications from
M or other workflow

controllers

Received
notification on

unavailable
S, H or N?

Received
notification on unsatisfied

QoS requirements or
unexpected delay?

No

Yes

Found a
replacement?

Yes

Send out a
SERVICE_REPLACE

MENT message

Yes

Found a new
configuration?

Find a new
configuration for S

No

Yes

Send out a
SERVICE_RECONFIGU

RATION message

Find a replacement
for S

Send out a
TERMINATION

message

No

Yes

Fig. 4(b). Process executed by a Controller C in Phase1).

If a new service configuration is found, C sends
a SERVICE RECONFIGURATION message to M

and A. If such a new service configuration is not
found, C finds a replacement for S that can satisfy
QR (or reduce the expected delay for executing
S). If such a replacement is found, C sends a
SERVICE REPLACEMENT message to M and A.

Otherwise, C sends out a TERMINATION message.

• Activities of A in Phase1): As shown in Fig. 4(c), A waits for the
parameters for invoking S, and processes control messages from M and
C until S is invoked or a TERMINATION message from C is received.
There are the following three cases:

Case A-1.1) If the parameters for invoking S are ready (either
received from users or generated as the results of other
services), A notifies M that the parameters are ready.
Continue to wait for control messages from M and C.

Case A-1.2) If a CHECKPOINT CLEAR message from M is
received, A checks whether all the services that must
finish before S starts have finished. If yes, A will
invoke S immediately. Otherwise, A will wait until those
services finish before invoking S. After invoking S, A
notifies M and C that S is invoked, and enters the
execution phase.

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

252 S. S. Yau and D. Huang

Wait for parameters for
invoking S

Parameters
of S ready?

Yes

No

Notify M that the
parameters for
invoking S are

ready

Received a
CHECKPOINT_CLEAR

message?

Yes

No

Received a
SERVICE_REPLACEMENT or

SERVICE_RECONFIGURATION
message?

Wait for control
messages from

M and C

Reconfigure A to
use the new

service (or the
new service

configuration)

Yes

Invoke S, and
notify M and C that

S has been
invoked

Wait until the
preconditions for
invoking S are

satisfied

No

Fig. 4(c). Process executed by a WF agent A in Phase1).

Case A-1.3) If a SERVICE REPLACEMENT or a SERVICE
RECONFIGURATION message from C is received,
A will reconfigure itself to use the new service
in the SERVICE REPLACEMENT message or the
new service configuration in the SERVICE RECON-
FIGURATION message.

Phase2) M , A, and C perform the following activities in parallel
during the execution of S:

• Activities of M in Phase2): M executes the process shown in
Fig. 5(a) periodically with a time interval t until the execution of S
is complete or TERMINATION message from C is received:

M-2.1) M collects the data related to the performance of S and the
status of H and N .

M-2.2) M records the elapsed time delay for executing S, and
measures the current QoS CQ of S.

M-2.3) If S,H or N becomes unavailable, M notifies all the related
WF controllers to find replacements for the unavailable
services. Then go to M-2.8). Otherwise, continue with
M-2.4).

M-2.4) If the delay is greater than MAX DELAY, go to M-2.6).
Otherwise, continue with M-2.5).

M-2.5) If CQ satisfies QR, go to M-2.1). Otherwise, go to M-2.7).

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Proactive Monitoring and Control of Workflow Execution 253

Collect data on the
performance of service S,

and the status of
host H and network N

Are S, H and N
available?

Notify related controllers
to find replacements for

unavailable services

No

Is delay <
MAX_DELAY?

Yes

Yes

Can the current
QoS of S satisfy QoS
requirements for S?

Yes No
Notify the corresponding

controller C about the
unsatisfied QoS

requirements of S

Wait for message from
the corresponding

controller C

Notify related controllers
about the unexpected
delay in executing S

No

Is the received
message a

SERVICE_REPLACEMENT
message?

Change the
monitoring target
from S to the new

service specified in
the message

Yes

No

Record the elapsed time
delay for executing S, and

measure the QoS of S

Fig. 5(a). Process executed by a monitor M in Phase2).

M-2.6) M notifies the WF controllers of the unexpected delay in the
execution of S. These WF controllers are responsible for the
services to be invoked after S in the workflow. Then, go to
M-2.8).

M-2.7) M notifies C of the unsatisfied QoS requirements for S. Then,
go to M-2.8).

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

254 S. S. Yau and D. Huang

Wait for notifications from
M

Received
notification on

unavailable
S, H or N?

Received
notification on unsatisfied

QoS requirements?

No

Yes

Found a
replacement?

Yes

Send out a
SERVICE_REPLACE

MENT message

Yes

Found a new
configuration?

Notify the corresponding WF
agent A to suspend the

execution of S, and find a
new configuration for S

No

Yes

Send out a
SERVICE_RECONFIGU

RATION message

Find a replacement
for S

Send out a
TERMINATION

message

No

Yes

Fig. 5(b). Process executed by a controller C in Phase2).

M-2.8) M waits for a message from C. If the message is a SERVICE
REPLACEMENT message M changes the monitoring target
from S to the new service in the SERVICE REPLACEMENT
message. Go back to M-2.1). If the message is a
TERMINATION message, M terminates.

• Activities of C in Phase2): As shown in Fig. 5(b), C processes
the notifications from M until the execution of S is complete or
a TERMINATION message from another WF controller is received.
There are the following two cases:

Case C-2.1) If S, H , or N becomes unavailable, C finds a replace-
ment for S, and sends a SERVICE REPLACEMENT
message to M and A if the replacement for S is
found. If a replacement for S is not found, C sends a
TERMINATION message to M and A as well as other
WF controllers.

Case C-2.2) If CQ does not satisfy QR, C first notifies A

to suspend the execution of S. Then, C finds a
new service configuration for S, which satisfies QR.
If a new service configuration is found, C sends
a SERVICE RECONFIGURATION message to M

and A. If such a new service configuration is not

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Proactive Monitoring and Control of Workflow Execution 255

Suspend the execution
of S

Suspend
S?

Yes

No

Wait for control
messages from C

Received a
SERVICE_REPLACE

MENT message?

Yes

Received a
SERVICE_RECONFIGURATION

message?

Resume the execution of
S using the new service

configuration

Start executing the
new service

Yes

No

No

Fig. 5(c). Process executed by a WF agent A in Phase2).

found, C finds a replacement for S that satisfies
QR. If such a replacement is found, C sends a
SERVICE REPLACEMENT message to M and A.

Otherwise, C sends out a TERMINATION message.

• Activities of A in Phase2): As shown in Fig. 5(c), A waits for
control messages from C until the execution of S is complete or a
TERMINATION message from C is received. There are the following
three cases:

Case A-2.1) If C notifies A to suspend the execution of S,A suspends
the execution of S and waits for further control messages
from C.

Case A-2.2) If a SERVICE REPLACEMENT message from C is
received, A reconfigures itself to use the new service
in the message, and starts executing the new service.

Case A-2.3) If a SERVICE RECONFIGURATION message from C

is received, A reconfigures itself to use the new service
configuration in the message, and resumes the execution
of the reconfigured service.

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

256 S. S. Yau and D. Huang

4.2. Synthesizing WF Monitors

Our coordination protocol in Section 4.1 shows an important difference
between our approach to workflow execution monitoring and those in
Ref. 16–20: the WF monitors in our approach proactively monitor the
services as well as computing and communication resources to be used in
future workflow execution, so that the problems which may affect future
workflow execution can be captured earlier. However, the following two
issues need to be addressed for developing WF monitors with such proactive
monitoring capability:

1. The proactive monitoring will have larger overhead since more services
and resources need to be monitored at the same time. Such overhead, if
not carefully handled, may negate the possible benefits in terms of the
higher success rate of workflow execution.

2. A method to accurately estimate QoS before service invocations is
needed. Without such a method, WF monitors cannot generate the EQ
in Phase1) of our coordination protocol, and hence will not be able to
notify WF controllers to adapt the workflow before invoking the services.

To address the first issue, we have presented an approach30 to adaptive and
proactive execution monitoring based on the philosophy similar to that of
adaptive sampling designs of experiments,31 in which experimental designs
will be changed based on the data collected from previous experiments to
improve the quality of experiments. The WF monitors synthesized using
this approach will first monitor a subset of services and resources, and
reconfigure themselves or load new monitors to acquire more information
to create a clearer view of system status when any problem affecting
WF QoS occurs. Many problems in networked computing systems have
subtle logical connections among them. For example, a sudden slowdown
of downloading a large file from a remote host may indicate a problem
with the network connection to the remote host, or a problem with the
remote host itself. Either problem may lead to failures for accessing other
services and resources at the same host or using the same connection.
Hence, for workflow execution monitoring, it is possible to select a subset of
services and resources to be used in the workflow as the indicators, whose
problems often lead to or co-occur with the problems of other services
and resources. When problems with the indicators occur, WF monitors
should proactively check the status of those services and resources related
to the indicators. Hence, our approach in Ref. 30 can reduce the overhead of

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Proactive Monitoring and Control of Workflow Execution 257

User
(Activity)

Call

Service Process
(QoS)

Input Output

Resource
(State)

Fig. 6. The cause-effect chain of activity-state-QoS in SBS.

proactive execution monitoring while still being able to detect the problems
occurred in workflow execution accurately and quickly.

In this subsection, we will focus on how to synthesize WF monitors to
address the second issue.

• Performance models for estimating service QoS

In Ref. 8, we have presented an approach to constructing Activity-State-
QoS (ASQ) models for the cause-effect dynamics in ASBS. Figure 6 depicts
the cause-effect chain of user activities, system resource states, and QoS
performance. A service request from a user calls for a system process, which
will utilize certain resources and change the states of the resources in the
system environment. The changes of the resource state in turn affect the
QoS of the process. Hence, an ASQ model is a 6-tuple

〈 , S0, S,Q,RS, RQ〉,
where is a set of possible user activities that can be performed on a
particular service, S0 is a set of initial system resource states, S is the
set of all possible system resource states, Q is the set of possible value
for a particular aspect of QoS, RS is a relation defined on × S0 → S

representing how user activities and initial system resource states affect
future system resource states, and RQ is a relation defined on ×S0 → Q

representing how user activities and initial system resource states affect
QoS aspects.

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

258 S. S. Yau and D. Huang

In our approach in Ref. 8, ASQ models are constructed through the
analysis of the data related to user activities, system resource states and the
QoS aspects, and collected from controlled experiments in SBS. The final
result from the data analysis is a set of Classification And Regression Trees
(CART) for each service in SBS. The set of CART trees are at two levels:
Activity-State (A-S) and State-QoS (S-Q) levels. The A-S level CART trees
reveal how activity variables (i.e. service parameters) drive the changes of
state variables reflecting system resource states. The S-Q level CART trees
reveal how state variables affect the QoS variables, which can be used as the
measurement of service QoS. Hence, the QoS of a service can be estimated
based on the service parameters and current system status using A-S level
and S-Q level CART trees for the service. Our experimental results have
shown that CART trees have a high accuracy for estimating QoS.8

The ASQ models generated through our data analysis can be
incorporated in our WF monitors using the following two processes:

P-1) Automated transformation of a CART tree to the α-calculus
terms in WF monitors. Each CART tree represents a decision process
for determining the value of the dependent variable based on the observed
values of the independent variables. For example, Fig. 7 shows the graphical
and text forms of the CART tree for the variable “Pool Paged Bytes”
against the experimental control variables.

Each CART tree generated in our data analysis has a similar form as
that shown in Fig. 7, and can be automatically transformed to an executable
decision process embedded in our WF monitors using the following process:

T-1) Replace the variables in the tree with their names.
T-2) Store each line in the text form as a node in a tree data structure.

(a) Graph form

Decision tree for regression
1 if x2<66150 then node 2 else node 3
2 if x1<1.5 then node 4 else node 5
3 if x1<2.5 then node 6 else node 7
4 fit = 1.34943e+008
5 fit = 1.34617e+008
6 fit = 5.23535e+007
7 fit = 5.24339e+007

(b) Text form

Fig. 7. The CART tree for “Pool Paged Bytes” against the experimental control
variables, where ×1 denotes the client number, and ×2 denotes the sampling rate.

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Proactive Monitoring and Control of Workflow Execution 259

T-3) Link the nodes based on their line numbers and the references to
other lines in the text form.

T-4) Perform an in-order print of the tree data structure.

Following T-1)–T-4), the CART tree in Fig. 7 can be transformed to the
following decision process for estimating the value of “Pool Page Bytes”
based on the client number and sampling rate:

0 tuple inputs<‘sampling rate’, ‘client number’> //Retrieve inputs
1 if ‘sampling rate’ < 66150 then
2 if ‘client number’ < 1.5 then
4 tuple result<‘Pool Paged Bytes’, 1.34943e+008> //Output the

estimation result
5 else tuple result<‘Pool Paged Bytes’, 1.34617e+008>
3 else if ‘client number’ < 2.5 then
6 tuple result<‘Pool Paged Bytes’, 5.23535e+007>
7 else tuple result<‘Pool Paged Bytes’, 5.24339e+007>

P-2) Simplifying and merging multiple CART trees for efficient,
adaptive execution monitoring. For each service, multiple CART trees
at A-S and S-Q levels will be generated for estimating the QoS aspects
and system resource states. All these CART trees can be converted to
executable decision processes as discussed in P-1). However, if these
decision processes are all embedded in our WF monitors separately, there
will be large processing overhead because many branches in these CART
trees correspond to normal operation conditions, in which the system
resources are sufficient for the service to satisfy the QoS requirements of
users. Furthermore, through the analysis of our experimental results, we
have found that there is a small subset of independent variables used in all
A-S (or S-Q) level CART trees for a service.

A process to simplify and merge multiple CART trees for a service,
and generate executable code for more efficient and adaptive monitoring is
presented as follows:

S-1) Follow T-1)–T-3) in P-1) to store all the CART trees for a service
into tree data structures.

S-2) Traverse the leaf nodes of all the S-Q level CART trees to compare
the estimated values of QoS counters with users’ QoS requirements
to identify all the leaf nodes corresponding to the conditions when
the system does not satisfy users’ QoS requirements.

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

260 S. S. Yau and D. Huang

S-3) Remove all the leaf nodes not identified in S-2) and all the non-leaf
nodes not on any paths from the root node to the leaf nodes identified
in S-2) to find the simplified S-Q level CART trees.

S-4) Extract the conditions associated with the remaining non-leaf nodes
in each simplified S-Q level CART tree and consolidate the conditions
into a list of 2-tuples <var, range>, where var is an independent
variable (state counter) in at least one of the conditions, and range is
the minimum value range of this independent variable satisfying all
the conditions related to this variable.

S-5) Merge the lists of 2-tuples <var, range> generated in S-4) for all S-Q
level CART trees to a list of 2-tuples <varM , rangeM>, such that a
variable varM only appears once in the merged list, and the rangeM

of varM is the minimum range covering all the ranges of varM in all
the lists containing varM .

S-6) Generate decision processes following T-4) for the simplified S-Q
level CART trees generated in S-3).

S-7) For the merged list generated in S-5).

S-7.1) Generate a conditional evaluation statement (if-statement) as
follows:

if varM0 ∈ rangeM0 ∧ . . . ∧ varMn ∈ rangeMn then
Generate a “QoS requirement unsatisfied” event
Call the dynamicLoadDecisionProcess procedure.
else
Wait to get the next observation

where <varM0, rangeM0>, . . . , and<varMn, rangeMn> are
all the 2-tuples in the merged list.

S-7.2) Generate the dynamicLoadDecisionProcess procedure based on the
lists generated in S-4) as follows:

For each list L generated in M4), generate the following conditional
evaluation statement:

if var0 ∈ range0 ∧ . . . ∧ varn ∈ rangen then
Load the decision process generated in M8) for the S-Q level CART
tree corresponding to L

where <var0, range0>, . . . , and <varn, rangen> are all the 2-tuples
in L.

The conditional evaluation statements generated in S-7) will then be
embedded in our QoS monitoring modules. Similarly, the A-S level CART

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Proactive Monitoring and Control of Workflow Execution 261

trees can also be simplified and merged. Hence, in runtime, the more
detailed decision process generated in S-6) will only be loaded when a
“QoS requirement not satisfied” event is generated and the corresponding
condition for loading this decision process is met.

4.3. Synthesizing WF Controllers

The WF controllers in our approach mainly perform two tasks: (1)
discovering replacement services when there are service, system or network
failures, and (2) finding new service configurations to satisfy QoS
requirements. Based on our coordination protocol presented in Section 4.1,
the WF controllers to be synthesized should have the general form described
in α-calculus as shown in Fig. 8.

In the α-calculus descriptions in Fig. 8, the strings started and ended
with “$” are the placeholders for the names of WF controllers and communi-
cation channels among WF controllers, monitors and agents, and will
be replaced by the actual names after all WF controllers, monitors and
agents are synthesized.

A WF controller takes the service name s, host name h, network
name n, QoS requirements qr, and the initial system state state as the
initial parameters. It first waits for messages from WF monitors and
other controllers (line 2). Failure and controlMessage are the named
channels for WF monitors and other controllers to send notifications
of service/host/network failures, unexpected delays, and unsatisfied QoS
requirements. $STATUS$ is the named channels for the WF monitor
responsible for s to send relevant system status information to the WF
controller responsible for s. Lines 3–9 define how the WF controller handles
service/host/network failures [see Case C-1.1) and Case C-2.1) in our
coordination protocol presented in Section 4.1]. Lines 10–12 define how
the WF controller handles unexpected delay caused by services invoked
before s. In particular, in line 12, a reconfiguration handling sub-process
is initiated with new QoS requirements, in which the maximum allowable
delay for s is reduced. Lines 13–17 specify how the WF controllers handle
unsatisfied QoS requirements of s, which are detected by the WF monitor
for s.

In the WF controllers and their associated reconfiguration handlers
(see Fig. 8), two system control services are used: serviceDiscovery and
findServiceConf. The serviceDiscovery service takes four inputs: the failure
detected (the name of the failed service/host/network or an empty string

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

262 S. S. Yau and D. Huang

Fig. 8. The general form of WF controllers.

if no failure has been detected), the service s to be replaced, the QoS
requirements qr that need to be satisfied by the newly discovered service,
and the current system status state. The serviceDiscovery service will find
a new service rs to replace s, which has the same functionality as s and
can satisfy qr under state. The failure detected will be used to reduce the
search space since the serviceDiscovery service will exclude the services
in the failed host or network. If rs is found, the serviceDiscovery service
will return the name of rs, and the names of the host and network,
where rs is deployed. The serviceDiscovery service can be implemented

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Proactive Monitoring and Control of Workflow Execution 263

based on existing standards for service discovery, such as UDDI
(http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm) and
WS-Discovery (http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-
discovery-1.1-spec-os.pdf), or other advanced service discovery mechanisms,
such as our work presented in Ref. 32. Our current implementation is based
on UDDI.

The findServiceConf service takes five inputs: the name of the service
(s), the name of the host for s(h), the name of the network used by
s(n), the QoS requirements qr that need to be satisfied by s, and the
current system status state. In our current approach, we assume that a
service s has finite number of configurations. The ASQ models for s are
used in the findServiceConf service to estimate the possible QoS under
different configurations. Based on the ASQ models, the findServiceConf
service performs a search on all configurations of s to find a configuration
conf that satisfies qr under state.

5. Conclusions and Future Work

In this chapter, we have presented a virtual machine-based architecture,
called WVM, for workflow execution, monitoring and control in SBS, and
a coordination protocol defining how distributed WF agents, monitors and
controllers coordinate to execute, monitor and control the adaptation of
workflows in SBS based on WVM. We have also presented our approach
to synthesizing WF monitors and controllers for proactive monitoring
and control of workflow execution in SBS. Our approach is expected to
greatly reduce the effort of developing high-quality SBS, especially for large-
scale SBS with many long-running services and workflows that need to
satisfy multiple QoS requirements simultaneously. The WF monitors and
controllers developed using our approach will provide proactive, autonomic,
and efficient workflow monitoring and control in highly dynamic operation
environments. Future work in this area includes the incorporation of task
migration, development of new methods for finding service configurations
to achieve better QoS, integrating our virtual machine-based architecture
with our three-layered intelligent control architecture for ASBS33 to provide
better support for system adaptation, and performing simulations and
experiments to examine the overhead and benefits of our approach and
compare our approach with other existing approaches.

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

264 S. S. Yau and D. Huang

Acknowledgement

The work reported here was supported by the DoD/ONR under the
Multidisciplinary Research Program of the University Research Initiative,
Contract No. N00014-04-1-0723, and National Science Foundation under
grant numbers CNS-0524736 and CCF-0725340.

References

1. Ponnekanti, S., Fox, A.: Sword: A developer toolkit for web service
composition, 11th Int’l World Wide Web Conf. (WWW 2002) Web
Engineering Track, 2002. Available at: http://www2002.org/CDROM/
alternate/786/.

2. Rao, J., Kungas, P., Matskin, M.: Application of linear logic to web service
composition, Proc. 1st Int’l Conf. on Web Services, 2003, pp. 3–9.

3. Sirin, E., Hendler, J.A., Parsia, B.: Semi-automatic composition of
web services using semantic descriptions, Proc. Web Services: Modeling,
Architecture and Infrastructure (WSMAI) Workshop in conjunction with
the 5th Int’l Conf. on Enterprise Information Systems (ICEIS 2003), 2003,
pp. 17–24.

4. Nguyen, X.T., Kowalczyk, R., Phan, M.T.: Modeling and solving QoS
composition problem using fuzzy DisCSP, Proc. 2006 IEEE Int’l Conf. on
Web Services (ICWS 2006), 2006, pp. 55–62.

5. Berbner, R., et al., Heuristics for QoS-aware web service composition, Proc.
2006 IEEE Int’l Conf. on Web Services (ICWS 2006), 2006, pp. 72–82.

6. Cai, K.-Y., Chen, T.Y. and Tse, T.H.: Towards research on software
cybernetics, Proc. 7th IEEE Int’l Symp. on High Assurance Systems
Engineering (HASE’02), 2002, pp 240–241.

7. Cai, K.-Y., Cangussu, J.W., DeCarlo, R.A. and Mathur, A.P.: An overview of
software cybernetics, Proc. 11th Ann. Int’l Workshop on Software Technology
and Engineering Practice, 2004, pp. 77–86.

8. Yau, S.S., Ye, N., Sarjoughian, H., Huang, D.: Developing service-based
software systems with QoS monitoring and adaptation, Proc. 12th IEEE
Int’l Workshop on Future Trends of Distributed Computing Systems (FTDCS
2008), October 2008, pp. 74–80.

9. Bacchus, F., Kabanza, F.: Using temporal logic to control search in a forward
chaining planner, in New Directions in Planning, Ghallab M. and Milani A.
(eds.), IOS Press, 1996, pp. 141–153.

10. Woodman, S.J., Palmer, D.J., Shrivastava, S.K., Wheater, S.M.: Notations
for the specification and verification of composite web services, in Proc. the
8th IEEE International Enterprise Distributed Object Computing Conference
(EDOC’04), September 2004, pp. 35–46.

11. Jin, J., Nahrstedt, K.: On exploring performance optimization in web service
composition, in Proc. ACM/IFIP/USENIX Int’l Middleware Conf., October
2004, pp. 115–134.

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

Proactive Monitoring and Control of Workflow Execution 265

12. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-
Aware service composition based on genetic algorithms, in Proc. 2005 Conf.
on Genetic and Evolutionary Computation, 2005, pp. 1069–1075.

13. Guo, C., Cai, M., Chen, H.: QoS-Aware service composition based on tree-
coded genetic algorithm, in Proc. 31st IEEE Ann. Int’l Computer Software
and Applications Conf. (COMPSAC 2007), July 2007, pp. 361–367.

14. Kandasamy, N., Abdelwahed, S., Hayes, J.P.: Self-optimization in computer
systems via on-line control: Application to power management, in Proc. 1st
Int’l Conf. on Autonomic Computing, May 2004, pp. 54–61.

15. Dong, X., Hariri, S., Xue, L., et al., AUTONOMIA: An autonomic computing
environment, in Proc. IEEE Int’l Conf. on Performance, Computing, and
Communications, April 2003, pp. 61–68.

16. Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor — A distributed
job scheduler, in Beowulf Cluster Computing with Linux, T. Sterling (eds.),
MIT press, 2002. Available at: http://www.cs.wisc.edu/condor/doc/beowulf-
chapter-rev1.pdf.

17. Yu, J., Buyya, R.: A novel architecture for realizing Grid workflow using tuple
spaces, Proc. 5th IEEE/ACM Int’l Workshop on Grid Computing (GRID
2004), 2004, pp. 119–128.

18. Cao, J., Jarvis, S.A., Saini, S., Nudd, G.R.: GridFlow: Workflow management
for Grid computing, Proc. 3rd Int’l Symp. on Cluster Computing and the Grid
(CCGrid 2003), 2003, pp. 198–205.

19. Ludäscher, B., et al., “Scientific workflow management and the Kepler
system”, Concurrency and Computation: Practice & Experience, 18(10), 2006,
pp. 1039–1065.

20. Deelman, E., et al., Mapping abstract complex workflows onto Grid
environments, J. Grid Computing, 1(1), 2003, pp. 25–39.

21. Cao, J., et al., ARMS: An agent-based resource management system for Grid
computing, Scientific Programming, 10(2), 2002, pp. 135–148.

22. Bharadwaj, R.: Secure middleware for situation-aware naval C2 and combat
systems, Proc. 9th IEEE Int’l Workshop on Future Trends of Distributed
Computing System (FTDCS’03), 2003, pp. 233–240.

23. Amir, Y., Nita-Rotaru, C., Stanton, J., Tsudik, G.: Secure spread: An
integrated architecture for secure group communication, IEEE Trans. on
Dependable and Secure Computing, 2(3), 2005, pp. 248–261.

24. May, D., Shepherd, R.: The transputer implementation of occam, Proc. Int’l
Conf. on Fifth Generation Computer Systems, 1984.

25. Caromel, D., Henrio, L.: A Theory of Distributed Objects, Springer Verlag,
2005.

26. Milner, R.: Communicating and Mobile Systems: The π-Calculus, Cambridge
University Press, 1999.

27. Yau, S.S., et al., Automated agent synthesis for situation-aware service
coordination in service-based systems, Technical Report, Arizona State
University, 2005, available at: http://dpse.eas.asu.edu/as3/papers/ASU-CSE-
TR-05-009.pdf.

May 4, 2011 14:8 9in x 6in b968-ch08 Adaptive Control Approach for Software. . .

266 S. S. Yau and D. Huang

28. Yau, S.S., et al., Automated situation-aware service composition in service-
oriented computing, Int’l Jour. on Web Services Research (IJWSR), 4(4),
2007, pp. 59–82.

29. Cardelli, L., Gordon, A.D.: Mobile ambients, Theoretical Computer Science,
240(1), 2000, pp. 177–213.

30. Yau, S.S., Huang, D., Zhu, L.: An approach to adaptive distributed execution
monitoring for workflows in service-based systems, Proc. 4th IEEE Int’l
Workshop on Software Cybernetics (IWSC), July 2007, pp. 211–216.

31. Hardwick, J., and Stout, Q.F.: Flexible algorithms for creating and analyzing
adaptive sampling procedures, New Developments and Applications in
Experimental Design, 34, 1998, pp. 91–105.

32. Yau, S.S., Liu, J.: Functionality-based service matchmaking for service-
oriented architecture, Proc. 8th Int’l Symp. on Autonomous Decentralized
Systems (ISADS), 2007, pp. 147–154.

33. Chang-Hai Jiang, Hai Hu, Kai-Yuan Cai, Dazhi Huang, and Stephen S.
Yau, An Intelligent Control Architecture for Adaptive Service-based Software
Systems with Workflow Patterns, in Proc. 32nd IEEE Ann. Int’l Computer
Software and Applications Conf. (COMPSAC’2008), July 2008, pp. 824–829.

34. Yau, S.S., Ye, N., Sarjoughian, H., Huang, D., Roontiva, A., Baydogan, M.,
Muqsith, M.: Toward development of adaptive service-based software systems,
IEEE Transactions on Services Computing, 2(3), 2009, pp. 247–260.

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Chapter 9

ACCELERATED LIFE TESTS AND SOFTWARE AGING

RIVALINO MATIAS JR.

School of Computer Science
Federal University of Uberlândia, Brazil

rivalino@facom.ufu.br

KISHOR S. TRIVEDI

Department of Electrical and Computer Engineering
Duke University, USA

kst@ee.duke.edu

Accelerated life test (ALT) methods are successfully applied in many industries
to reduce the test period of highly dependable products. Software industry
is not different, having the same demand to reduce the period of test for
software products with very low failure rates. Since software is now part of
many important processes of modern life, increasingly software-based products
are expected to be highly dependable, which requires sophisticated techniques
to test them within acceptable time frames.

The use of ALT assumes that the system under test has its life
reduced when it is exposed to some stress load. Many software products
show a systematic performability and dependability degradation under certain
circumstances, mainly when varying workload and long execution time are
present. These software system degradations have been investigated over the
last decade and now they are well explained through the software aging theory.
In this chapter, we discuss how to apply accelerated life test techniques to
software systems that suffer from software aging. We show how the software
aging theory enables the usage of ALT methods to estimate the time to failure
of a software system. We show a real case study, related to a widely adopted
web server software system, to illustrate how to systematically apply ALT
in software experimental studies. In this experimental study, ALT offers a
reduction of approximately seven times the time required to obtain the same

amount of failure data in use condition (without acceleration).

1. Introduction

Accelerated life test (ALT) methods are successfully applied in many
industries to reduce the test period of highly dependable products. Software
industry is not different, having the same demand to reduce the period

267

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

268 R. Matias Jr. and K. S. Trivedi

of test for software products with very low failure rates. Since software
is now part of many important processes of modern life, increasingly
software-based products are becoming highly dependable, which require
sophisticated techniques to test them within acceptable time frames.

The use of ALT implies that the system under test has its life reduced
when it is exposed to some stress load. Its failure rate increases when the
system is submitted to higher stress loading than it usually experiences in
its use condition workload. Controlling the levels of stress loading reflects
on the system’s failure rate. ALT was originally created to be applied to
products that have their lifetime governed by physical or chemistry laws.
For these products, the stress is directly related to product’s physical-
chemical properties that degrade under certain circumstances, such as
varying temperature, humidity, vibration, etc.

Similarly to the physical/chemistry-based products, many software
systems show a systematic performability and dependability degradation
under certain conditions, mainly when varying workload and long
execution time are present. These software system degradations have been
investigated over the last decade and now they are well explained through
the software aging theory.11 Due to the cumulative property of the software
aging phenomenon, it occurs more intensively in continuously running
processes1 that are executed over a long period of time. Typically, aging-
related failures are very difficult to observe because the accumulation of
aging effects usually requires a long-term execution. Thus, collecting a
significant sample of aging-related failure times in order to be used to
estimate the system’s lifetime distribution is a very hard task. This is
an important problem that prevents many studies focused on analytical
modeling of software aging aspects of using representative parameter values.

Due to the degenerative nature of the software aging phenomenon, in
this chapter we discuss how to use accelerated life test techniques applied to
software systems suffering from software aging. We present how the software
aging theory enables the application of ALT methods to estimate the time
to failure of a software system. This chapter is organized as follows.

Section 2 presents the most important aspects of the software aging
theory, linking its main concepts with the fundamentals of software
reliability engineering. Section 3 revisits the ALT methods, emphasizing
how it can be applied to software systems with symptoms of software aging.

1An instance of a computer program being executed by the operating system kernel.

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 269

A detailed discussion is presented in this section in order to provide the
necessary background for the rest of the chapter. Subsequently, in Section 4
we present a complete real case study, applying accelerated life tests to
estimate the MTTF of a real software system during controlled tests. We
evaluate the accuracy of the estimates against the observed failure times.
We also present the reduction factor of the experimentation time when
using accelerating life tests in comparison with controlled tests without life
acceleration. Finally, a conclusion section will close the chapter bringing to
the readers a few suggestions and insights about how to apply the above-
mentioned discussions on industry and research projects.

2. Software Aging Theory

Since the notion of software aging was introduced fifteen years ago,12

the interest in this phenomenon has been increasing from both academia
and industry. The occurrence of software aging in real systems has been
documented in the literature.2,5,8 Many approaches have been used to study
this phenomenon. The majority of these research efforts have concentrated
on understanding its effects theoretically3,23 and empirically.15,24 Moreover,
the search for mitigation resulted in the so-called software rejuvenation
techniques.12,27 This section discusses the foundations of the software aging
phenomenon. We focus on conceptual and practical aspects involved, and
present a set of definitions that we consider essential to understand the
taxonomy for the software aging research.

Classical Software Failure Mechanics

In Ref. 1, the causal relationship between software’s fault, error and
failure is presented. A software system failure is observed when an internal
error is propagated to the system interface and causes the service (output)
delivered by the system to deviate from its specification. Typically, the
system is considered failed only at the delivery time, that is, when its output
(e.g., a numerical result) is received by the system’s user and the unexpected
(erroneous) output is detected. It is important to note that although the
perception of error occurs at the output delivery time, the system may be
in a failed state long before that. Thus, a failure is the perception of an
error in the service provided by the system. An error is that part of the
internal system state which may lead to a failure occurrence. If internal
errors are not propagated to the system interface, the system is considered
to be working correctly. Note that it is not necessary for multiple internal

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

270 R. Matias Jr. and K. S. Trivedi

errors to occur to have a system failure; even a single error occurrence
may be sufficient to lead to system failure. Errors can be transformed into
other errors. For example, an error in component 1 can reach the service
interface of this component, used by component 2, thus causing an error
in this second component. This transformation of errors is referred to as
error propagation. The error propagation leads to a system failure if
the error is propagated to the service interface of the system, causing the
service provided to deviate from its specification. Note that the term error
propagation is used for the transformation of an error into another error
both with and without the causation of a failure occurrence.

The cause of an error is the activation of a software fault. A software
fault is also known as a defect or a bug. There are several types of
faults, ranging from incorrectly coded instructions to high-level system
misconfiguration. A fault is considered dormant until its activation. For
example, an incorrect definition (e.g., int instead long int) of an accumulator
variable will lead to an internal error occurrence only when the variable
assumes long int values which overflows the storage capacity of an int type.
When such an event occurs, we have the fault activation. The activation of
a fault causes an internal error that may or not reach the system interface.
If it does, we have a system failure. The rate with which a dormant fault
will become active therefore depends heavily on the intensity and the way in
which a system is used; a quantitative characterization of the latter aspect
is the operational profile.19

Considering the fault-error-failure chain described above, we
conclude that the root cause of a software failure is a software fault.
However, if the fault is not activated, the chained effects that lead the
system to fail will not happen. Thus, the activation of a fault is the primary
event that leads to a software failure. Fault activation is the application
of an input (the activation pattern) to a code segment that causes a
dormant fault to become active. Most internal faults cycle between their
dormant and active states. Not all fault activations will cause a system
failure instantly thru the chain reaction explained above. The time between
the fault activation and the failure observation is mainly influenced by
the error propagation and the failure manifestation delays. The error
propagation delay is mainly caused by the computation process whereby
an error is successively transformed into other errors. As a result of the
computation process flow, the error state may move from its creation
point to the system interface in a slow manner. Related to the failure
manifestation delay, because of output buffers or similar mechanisms an

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 271

fault error failure
propagationactivation causation

fault… …

Fig. 1. General fault-error-failure chain.1

erroneous result may not immediately be seen by system’s users. Figure 1
presents the chain reaction cycles discussed above.

Avižienis et al.1 present a scheme for classifying faults according
to eight criteria, e.g., the system boundaries (internal or external),
the phenomenological cause (natural or human-made), the objective
(malicious or non-malicious), the persistence (permanent or transient),
the dimension (hardware or software), and the phase of creation or
occurrence (development or operation). Based on this classification scheme,
faults in the software code, referred to as software flaws by Avižienis
et al. and often simply called software faults or (software) bugs, can
be described as internal human-made non-malicious permanent software
development faults. Furthermore, Avižienis et al. mention a classification
of faults according to their activation/propagation reproducibility: Faults
whose activation and error propagation is reproducible are called solid,
or hard, faults, whereas faults whose activation/propagation is not
systematically reproducible are called elusive, or soft, faults. Especially for
software bugs that permanently reside in the code (until they are detected
and removed) it seems counter-intuitive that repeating the actions (like user
inputs) that previously caused a failure will not lead to another failure when
repeated. It is therefore of interest to study the properties that a software
fault needs to feature in order to have the potential to be non-reproducible.
However, the classification into solid and elusive faults is subjective, because
it also depends on the knowledge of the respective user about the fault
activation and error propagation mechanism of the fault in question, as
well as on the operational behavior of the user. A specific fault could be
considered “solid” by one user, but “elusive” by another one.

The definitions of Mandelbug and Bohrbug9,10 classify the fault types
using more objective criteria related to properties of the fault itself.
A Mandelbug has the potential to be difficult to isolate and to cause
failures that are not systematically reproducible. As an example, consider
the code of an application in which the initialization of a variable is missing.
If a debugger initializing all variables by default can prevent the fault
from causing a failure, then this fault is Mandelbug, because the debugger,
a part of the system-internal environment of the application, can affect

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

272 R. Matias Jr. and K. S. Trivedi

fault activation. A Bohrbug, on the other hand, is an easily isolated fault
that always manifests consistently under a well-defined set of conditions,
because its activation and error propagation lack “complexity” as defined
in Refs. 9 and 10. Bohrbug is the complementary antonym of Mandelbug.
The Mandelbug definition uses the concept of the (software-) system-
internal environment of an application. While the environment of an
application consists of all the entities outside the system boundaries of
the application (e.g., operating system, hardware, users, power supply
network, office building), its system-internal environment only includes
those entities outside the application that are located within the boundaries
of the computer system. In particular, users and office infrastructure are
excluded. The system-internal environment of an application thus contains
the hardware, the OS, the other applications, etc.

Fundamentals of Software Aging

Aging-related (AR) failures are a specific type of software failure, so
the concept of chain fault-error-failure discussed previously applies to it.
Software aging is the name given to a phenomenon empirically observed
in many software systems. It can be defined as a growing degradation of
software’s internal state during its operational life. A general characteristic
of this phenomenon is the fact that, as the runtime period of the system
or process increases, its failure rate also increases. Again, a failure can take
the form of incorrect service (e.g., erroneous outcomes), no service (e.g.,
halt and/or crash of the system), or partial failure (e.g., gradual increase
in response time). For physical systems, aging is well known to occur in the
wear-out phase. In the classical bathtub curve25 this behavior is illustrated
by an increasing failure rate after a certain stable period of life. However,
while hardware faults can come into existence due to wear and tear, it
seems impossible, at first sight, that software bugs, which are permanent
development faults, can be responsible for software aging.

Software aging is the practical consequence of software errors accu-
mulation. What makes AR failure different from other software failure types
is the concept of error accumulation in addition to error propagation.
The notion of error accumulation is essential for characterizing the software
aging phenomenon. Aging in a software system, similarly to hardware,
or even in human beings, is an accumulative process. Accumulating the
effects of successive error occurrences influences directly the AR failure
manifestation time. Software aging effects are consequences of errors caused
by aging-related fault activations. They work by gradually leading the

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 273

AR fault AR error AR failure
propagationactivation

aging factor
system-internal

environment

error accumulation

Fig. 2. Chain reaction for aging-related failures.11

system’s erroneous state towards the failure occurrence. This gradual
shifting as a consequence of aging effects accumulation is the fundamental
nature of the software aging phenomenon. Figure 2 shows a modified version
of the general fault-error-failure chain specific to the aging-related (AR)
failures.

It is important to highlight that a system fails due to the consequences
of aging effects accumulated over the time. For example, a database server
system may fail due to insufficiency of available physical memory, which is
caused by the accumulation of memory leaks caused by a software fault.
In this case, the AR fault is a defect in the code (e.g., unbalanced use
of malloc() and free() routines) that causes memory leaks; the memory
leak is the observed effect of aging fault; the aging factors are those input
patterns that exercise the code region where the AR fault is located, causing
its activation. Based on the amount of leakage per AR error occurrence, and
the availability of main memory (system-internal environment), a server
system failure, due to the unavailability of memory, could manifest only
after a long running time. Thus, the accumulation of AR error effects is
the essential marker that indicates the presence of software aging in a given
running system.

Different types of aging effects have been observed. Table 1 shows an
initial set of aging effect classes based on their common characteristics.

Table 1 presents the four classes of aging effects that are the most
cited in the literature. Resource leakage may occur in different ways. The
important aspect about this class is the lack of de-allocation of previously
allocated system resources, a well-known programming defect in large
and complex system developing. Also, partial de-allocation contributes for
leaking system resources. Memory leaking is the most recurrent and harmful
type of aging effects observed so far. Important to note that, aging effects
are present not only in user-level applications, but also inside the operating
system kernel. Both software levels are prone to suffer from software aging.
In terms of OS kernel, the device driver subsystem is the most vulnerable

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

274 R. Matias Jr. and K. S. Trivedi

Table 1. Classes of aging effects.11

Basic class Extension Examples

Resource leakage (1) OS-specific

(2) App-specific

— Unreleased

• Memory (1, 2)
• File handlers (1)
• Sockets (1)

— Unterminated

• Processes (1)
• Threads (1, 2)

Fragmentation (1) OS-specific

(2) App-specific

— Phys. memory (1)

— File system (1)

— Database files (2)

Numerical error accrual (1) OS-specific

(2) App-specific

— Round-off (1, 2)

Data corruption accrual (1) OS-specific

(2) App-specific

— File system (1)

— Database files (2)

to resource leak-based aging effects. This subsystem usually encompasses
code produced by many third-party programmers, not being under the same
quality control than other parts of OS subsystems.

In addition to the resource leak, fragmentation is the second largest
cause of software aging. Fragmentation may also occur in both application
and OS kernel levels. In application level, fragmentation, like resource leak,
is restricted to the process’s address space, affecting only the defective
process. However, in kernel level, fragmentation will affect all running
process under the OS. Fragmentation of database index files is a common
example in application level. File system and main memory fragmentation
are common cases in OS level, each one affecting the system’s performance
and availability in some extent. Section 4 presents a case study of aging
caused by memory leaks in an application process (user-level). In terms of
kernel-level aging research, Section 5 discusses some ongoing projects.

Aging effects can also be classified into volatile and non-volatile effects.
They are considered volatile if they are removed by re-initialization of the
system or process affected, for example via a system reboot. In contrast,
non-volatile aging effects still exist after reinitializing of the system/process.

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 275

Physical memory fragmentation and OS resource leakage are examples for
volatile aging effects. File system and database metadata fragmentation are
examples for non-volatile aging effects. Another example of a non-volatile
aging effect is numerical error accrual preserved between system reboots via
checkpoint mechanism. Note that hibernation and similar mechanisms (e.g.,
standby), which preserve the system memory (and thus the aging effects
present in it) between system reboot, allow the majority of intrinsically
volatile aging effects to persist even after system/process re-initialization.

Aging effects in a system can be detected by monitoring aging
indicators. Aging indicators are markers for aging detection, like antigens
are markers to detect cancer disease. In the simplest approach, system
health is considered a latent binary variable distinguishing between a stable
internal state on the one hand and a failure probable state on the other.11

Aging indicators are then explanatory variables that individually or in
combination can suggest whether or not the system is healthy. They can
be considered at several levels, such as OS, application process, application
component, middle-ware, virtual machine (VM), and VM monitor (VMM).
We can classify aging indicators in two general classes according to
their granularity: system-wide or application-specific. System-wide
indicators provide information related to subsystems shared by several
running applications. Examples of shared subsystems are OS, middleware,
VM and VMM, among others. Indicators in this category are often used
to evaluate the aging effects on the system as a whole and not for a
specific application, since the shared nature of their environment may cause
noise in the captured data. Examples of aging indicators in this category
are free physical memory, used swap space, file table size, and system
load. Application-specific indicators provide specific information about an
individual application process, thus giving more accurate information about
it than system-wide indicators. When the application process is running
under a VM (e.g., Java programs), then aging indicators applied to the
VM can also be used as a reference for the application being executed
under the VM. Examples of aging indicators in this category are resident
set size of the process, Java VM heap size, and response time.

While in many cases software aging is due to AR bugs, even in
the absence of such faults in the code aging effects can occur as a
consequence of the natural dynamics of a system’s behavior. This kind
of aging is thus referred to as natural aging. Among the examples for
natural aging are the fragmentation problems experienced by file systems,
database index files, and main physical memory. For example, in database

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

276 R. Matias Jr. and K. S. Trivedi

servers the fragmentation class of aging effects can be captured via aging
indicators such as the degree of index-related metadata fragmentation (e.g.,
Tablespace fragmentation value in the Oracle DBMS). Considering not only
the software system itself, but the higher-level system including its users,
one could argue that natural aging is due to faults, namely to mistakes on
the part of the operators; e.g., in the case of fragmentation problems the
operator has made the mistake of not executing defragmentation routines.
However, as such measures only mitigate the effects of natural aging, even
“correct” behavior of the operators would not have solved the underlying
problem. This is in contrast with software aging caused by AR bugs,
discussed above, where fixing the software fault permanently removes the
aging effect. The notion of natural aging without existence of a fault should
not give the impression that any service degradation or any increase in the
failure rate of a software system is considered software aging. Otherwise,
this concept would also include increases in the failure rate that are merely
due to changes in the operational profile or due to an increase in the
intensity with which the system is being used.

In summary, we can conclude that the aging effect is not reversible
without external intervention. For example, the accumulated internal error
states caused by successive activations of aging-related faults do not
disappear without external intervention; at the very best, no further errors
may accumulate in the future, during periods in which the system is not
exposed to any aging factors. Based on this characterization, an increasing
failure rate due to the queuing of jobs in an overloaded system is not
considered software aging, since the accumulated set of jobs not yet served
will be reduced (and will finally disappear) once the workload falls below a
certain threshold.

The time to aging-related failure (TTARF) is an important metric for
reliability and availability studies of systems suffering from software aging.
Based on the AR failure mechanisms explained above, we conclude that the
probability distribution of TTARF is mainly influenced by the intensity
with which the system gets exposed to aging factors; it is therefore
influenced mainly by the system workload (and thus by the operational
profile and the usage intensity of the system). Typically, aging-related
failures are very difficult to observe because the aging effects accumulation
process usually requires a long-term execution to expose the error to
the system interface. Thus, collecting a significant sample of TTARF
observations in order to be used to estimate the system’s lifetime

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 277

distribution is a very hard task. The rest of this chapter discusses how to use
accelerated life tests to reduce the time to obtain the lifetime distribution
of systems that fail due to software aging.

3. Accelerated Life Tests

Quantitative accelerated life tests (or simply ALT) are used in several
engineering fields to significantly reduce the experimentation time.21 ALT is
designed to quantify the life characteristics (e.g., mean time to failure) of a
system under test (SUT), by applying controlled stresses in order to reduce
the SUT’s lifetime and, consequently, the test period. Since the SUT is
tested in an accelerated mode, and not in its normal operational condition,
results have to be properly adjusted. ALT uses the lifetime data obtained
under stress to estimate the lifetime distribution of the SUT for its normal
use condition.

A fundamental element during the test planning is the definition of
accelerating stress variable and its levels of utilization (load). Typical
accelerating stresses are temperature, vibration, humidity, voltage, and
thermal cycling.21 These are appropriate for many engineering applications,
where tests are applied to physical or chemical components that are
governed by well-known physical laws. However, for software components
we cannot adopt the above-mentioned accelerating stresses.

In order to apply ALT to software systems, we recall the discussion
of Section 2. We assume that an AR failure will be observed as soon as
the aging effects sufficiently accumulate for the delivered service to deviate
from its specification. We also know that an error occurrence that produces
the aging effects is caused by the activation of AR faults. Thus, we see that
accelerating the activation of AR faults will reduce the time to AR failure
being observed at the system interface. In order to accelerate the AR fault
activations, we first need to identify the AR fault activation patterns and
then increase their intensities. We assume that once we know the AR fault
activation pattern(s) for the SUT, we can manipulate the SUT’s workload to
increase the rate of AR fault activations. Given the nature of AR faults, we
need to determine suitable accelerating stresses based on pilot experiments.
To date, software reliability engineering literature does not have standards,
related to software accelerating stresses for ALT, such as those that exist
in other engineering fields, so it is recommended an experimental approach
to determine these stress factors.

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

278 R. Matias Jr. and K. S. Trivedi

In addition to the identification of accelerating stresses, a stress-
loading scheme is also required. A stress-loading scheme defines how to
apply the stress to the system under test. Two possible stress-loading
schemes are: constant stress (time-independent), and varying stress (time-
dependent).16,21 According to Ref. 21, theories for the effect of time-varying
stress on product life are in development, and mostly unverified. Thus,
employing constant stress is recommended.

Once the SUT is tested at the selected stress levels, the observed
failure times are for SUT operating under stress and not under its normal
use condition — this is what reduces significantly the test time. Hence,
the experimenter needs a model that relates the failure times observed
at the tested stress levels to the underlying lifetime distribution of the
SUT operating in its normal use condition. This model is called life-
stress relationship.16,17,21 Figure 3 illustrates this relationship. It shows
two lifetime densities (shaded) built using failure times obtained with
SUT under two higher stress levels as well as the estimated density for
the SUT in its normal use condition. The normal-use-condition lifetime
density (striped) is estimated through the life-stress relationship model,
which relates a life characteristic of the SUT (e.g., mean life or MTTF) in
high stress levels to its normal use condition level.

Several life-stress relationship models have been developed for different
engineering fields. Examples of such well-known models are Arrhenius,
Eyiring, Coffin-Manson, Peck, and Zhurkov.16,17,21 Based on the SUT’s
physical/chemical properties, the underlying theories used to build these
models assume specific stress types, for example, temperature for Arrhenius,

Estr
ess

e (
Uso)

Estr
ess

e (
Alto

)

stress levels

str
ess

 (le
vel 1

)

str
ess

 (le
vel 2

)

f(t
)

use
(no str

ess
)

L
if

e(
t)

Fig. 3. Estimated lifetime densities through a life-stress accelerated model.

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 279

humidity for Peck, and thermal cycles for Coffin-Manson. For this reason,
traditional models applied to physical systems cannot justifiably be
employed to build life-stress relationship models for software components.
An exception is the Inverse Power Law (IPL) relationship model,21 which
has been successfully used in several ALT studies. The IPL is applicable
to any type of positive stress, unlike the above-mentioned models that are
used for specific types of stress variables. IPL is generally considered to
be an empirical model for the relationship between life and the level of
certain accelerating stress variable, especially those that are pressure-like
stresses.17 Equation (1) below is the IPL model.

L(s) =
1

k · sw , (1)

where L represents a SUT life characteristic (e.g., mean time to failure), s
is the stress level, k (k > 0) and w are model parameters to be determined
from the observed sample of failure times.

The main property of this model is the scale invariance, that is, scaling
s by a constant k simply causes the proportionate scaling of the function
L(s). It leads to a linear relationship when life and stress are plotted on a
log-log scale:

ln(L) = − ln(k)− w ln(s). (2)

Figure 4 illustrates the fitting of the IPL model to sample of failure
times, where 4(a) shows the original lifetime dataset for each stress level,
and 4(b) the log-log plot of the dataset with a fitted linearized IPL model.

ti
m

e
to

 f
ai

lu
re

ln
(t

im
e

to
 f

ai
lu

re
)

stress level ln(stress level)

(a) (b)

Fig. 4. (a) Life-stress relationship curve; (b) Linearized IPL model fitted to the lifetime
logarithmized dataset.

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

280 R. Matias Jr. and K. S. Trivedi

Once (2) is fitted to the logarithmized lifetime dataset, we are able
to estimate the values for parameters k and w, which are the straight-
line’s y-intercept and slope, respectively. These values are obtained in the
logarithm scale, so we need to transform them before handling them off to
(1). Given k and w in the correct scale, we use (1) to estimate the mean
time to failure of the SUT for any value of s. Assuming that the s value
equals to the SUT’s use condition, (1) yields a point estimate of the MTTF
for the SUT under normal operating regime.

In addition to the point estimate given by the life-stress model,
experimenters are interested in confidence intervals26 for the mean life of
the SUT under normal use condition. Therefore, we need to combine the
life-stress relationship with a probabilistic component in order to capture
the variability of the dataset. This component follows a probability density
function (pdf) and is independent of the stress variable. Once the pdf for
the time to failure dataset is obtained, its parameters are estimated for each
stress level.

The integration of the chosen life-stress relationship (e.g., IPL) with the
fitted density function is necessary to relate them across the stress levels.
Figure 3 illustrates this relationship. Essentially, after selecting the lifetime
distribution and the stress-life relationship model, we make the distribution
function parameter that characterizes the SUT’s mean life (or also called
characteristic life) dependent on the stress variable. For example, assuming
that the SUT follows an exponential failure law, and the life-stress
relationship used is IPL, we have an IPL-Exponential relationship model.
The combination of both models is possible making SUT’s mean time to
failure, in this case 1/λ, equal to L(s) (see Eq. 1). As a result, we have λ =
ksw, which allows us to estimate the exponential pdf ’s lambda parameter
as a function of s. Consequently, we are able to estimate the MTTF (1/λ̂)
and its confidence interval for the SUT at normal use condition.

Based on this parameter estimation approach, that is, by fitting the
linearized IPL relationship model, ln(λ(s)) = − ln(k) − w ln(s), to a log-
transformed lifetime dataset, we obtain the point estimates of constants
(k and w) to use into the IPL-Exponential pdf, f(t, s) = kswe−ks

wt.
According to Ref. 17, the most used probability distributions in ALT

experiments are from the location-scale family. Examples of distributions
from this family are Normal, Weibull, Lognormal, Logistic, LogLogistic,
and Extreme Value distributions.17,26

Location-scale distributions have an important property in analyzing
data from accelerated life tests, which is related to their cumulative

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 281

distribution function (cdf). A random variable, Y , belongs to a location-
scale family of distributions if its cdf can be written as:

Pr(Y ≤ y) = F (y;µ, σ) = Φ
(
y − µ
σ

)
, (3)

where−∞ < µ <∞ is a location parameter, σ > 0 is a scale parameter, and
Φ does not depend on any unknown parameters. Appropriate substitution
in Ref. 17 shows that Φ is the cdf of (Y −µ)/σ when µ = 0 and σ = 1. The
importance of this family of distributions for ALT is due to the assumption
that the location parameter, in (3), depends on the stress variable, s, that
is µ(s), and the scale parameter, σ, is independent of s. This relationship
is shown in (4),

Y = log(T) = µ(s) + σε, (4)

where ε is a probabilistic component modeling the time to failure sample
variability. Essentially, we have a location-scale regression model to describe
the effect that the explanatory variable, s, has on the time (to failure).
Examples of ALT models for more than one explanatory variables and
non-constant scale parameter may be found in Refs. 17 and 21. In the case
study (Section 4) we evaluate density functions from location-scale family
of distributions, and assume their scale parameter approximately constant
(within the same confidence interval) across the stress levels.

Once the experimenter has identified the appropriate accelerating
stress, the stress-loading strategy, and an approach to obtain the pdf
combined with a stress-life relationship model, it is necessary to plan the
accelerated tests in order to measure the failure times in the selected
stress levels. The ALT experimental planning requires the definition of
the following aspects: number of stress levels, levels of the stress variable,
sample size, and the allocation proportions.

The number of stress levels is defined based on the ALT goals and
restrictions. At least, two levels are necessary for ALT.16 There is no
theoretical limit on the number of stress levels but could be restricted by
the experiment constraints (e.g., time, cost, etc.). The ALT literature (e.g.,
Refs. 16, 17 and 21) usually mentions three or four levels.

Clearly, the levels of stress variables should not be outside the SUT
design limits. Using levels of stress surpassing these limits may introduce
failure modes that are not present in SUT’s normal operation. The main
idea is to have the SUT operating under stress, thus outside the SUT’s
normal operating specification, but inside its design limits.

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

282 R. Matias Jr. and K. S. Trivedi

The sample size is related to the total number of tests, n, over all the
stress levels. It is calculated based on the desired confidence intervals for
the estimates.

The specification of the number of stress levels, the amount of stress
applied at each level, the allocation proportion in each level, and the sample
size follows one of the three most commonly used test plans17: traditional,
optimal, and compromise plans. The traditional plans usually consist of
three or four levels, equispaced, with the same number of replications (test
units) allocated per level. The optimal plans specify only two levels of
stress: high (SH), and low (SL). Meeker and Escobar17 stated that the
SH value should be the maximal allowed within the design limits; and
the SL value, and its allocation proportion, πL, should be selected to
minimize the variance of the estimators of interest. Nelson21 suggests that
this allocation be based on the fraction p that minimizes the variance of
the estimator at the use level of the stress variable. Assuming a sample size
n, the number of allocated replications in SL is the closest integer value of
(n×p), where the remaining tests are then allocated to SH . The compromise
plans usually work with three or four stress levels, non-equispaced, and use
an unequal allocation proportion. An example of a well-known compromise
plan is the Meeker–Hahn plan,21 which considers three stress levels, and
follows an allocation proportion rule of 4:2:1. This allocation specifies, for
a sample of n units, 4n/7, 2n/7, and n/7 test units allocated, respectively,
to SL, SI , and SH , where SI is an intermediate stress level. In general, the
compromise plans adopt a value of SH based on practical aspects of the
SUT, mainly the design limits. The SI is equal to (SL + SH)/2, assuring
that the levels are equidistant. Thus, the SL value has to be specified to
calculate the SI , which according to Ref. 21 should be chosen taking into
account the required accuracy for the estimates studied, at use level. A more
detailed description of the three plans can be found in Refs. 17 and 21. In
the case study of Section 4 we use a traditional plan, because in addition
to decrease the SUT’s lifetime we also want to know if the aging behavior
is the same for different stress levels, thus using the same number of tests
per level is necessary.

Accelerated Degradation Tests

Accelerated degradation tests (ADT) are a specific class of accelerated
tests and extend ALT incorporating concepts from degradation tests.17

The design of high-reliability systems implies failures are rare events,
even during long periods of execution under high workload. For such

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 283

highly reliable systems, an alternative approach to ALT are accelerated
degradation tests, which do not look for failure times, but instead for a
degradation measure of a product’s performance characteristic taken over
time, and under specific stress conditions.22 In software aging research,
the current difficulty to experimentally or empirically observe times to
failure caused by software aging is similar to the highly reliable systems
case mentioned above. Because ADT techniques were designed for physical
systems, like in ALT, it is necessary to establish a mapping between core
concepts in software aging theory and ADT methods to make it applicable
to software aging studies. Basically, this mapping considers the same
elements discussed previously for ALT, however including the measurement
of the degradation caused by the software aging effects as part of the ADT
model.

ADT has some advantages over ALT because performance degradation
data can be analyzed sooner, even before any experimental units fail.21 Also,
performance degradation can yield better insights into the degradation
process. However, such advantages can be achieved only if one has a
suitable degradation model that establishes the relationship between the
system degradation, and the accelerated stress variables.17 According to
Ref. 21, four common assumptions are adopted by the current degradation
models: (a) degradation is not reversible, and performance always gets
monotonically worse; (b) usually, the model applies to a single degradation
process; and in case of simultaneous degradation processes, each one
requires its own model; (c) degradation of a unit’s performance before
the test starts is insignificant; and (d) performance is measured with
negligible random error.

In Ref. 17, the degradation path of a particular unit over time is
denoted by D(t), t > 0. A random sample of n test units are observed
at pre-specified times t1, t2, . . . , ts. For each inspection, a performance
measurement is registered for each test unit, and referred to as y. The
inspection times are not required to be the same for all units, or even
equidistant. Consider tij as the jth time measurement or inspection of
the ith unit. The observed degradation measurement in unit i at time tij
is represented by yij ; and at the end of the test, the degradation path
is registered as pairs (ti1, yi1), (ti2, yi2), . . . , (timi , yimi), for i = 1, 2, . . . , n.
The observed sample degradation yij of unit i at time tij is the unit’s actual
degradation, plus measurement error, and is given by

yij = Dij + εij , i = 1, 2, . . . , n and j = 1, . . . ,mi (5)

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

284 R. Matias Jr. and K. S. Trivedi

where β=(β1i, . . . , βqi) is a vector of model parameters which has
dimension q, and εij ≈N(0, σε) is a residual deviation of the ith unit
at time tj . The deterministic form of D(t) is usually based on empirical
analysis of the degradation process under study. The vector β corresponds
to q unknown effects which determine the degradation path of unit i

in the tij measures. Typically, a path model will have q= 1, 2, 3, or 4
parameters.17 Some of these parameters can vary from unit to unit, and
others could be modeled as constant across all units.22 It is reasonable
to assume that the random effects of the vector β are s-independent of
the εij deviations. Also, it is assumed that the εij deviations are i.i.d. for
i = 1, . . . , n, and j = 1, . . . ,mi. Due to the fact that the yij are measured
sequentially in time, there is, however, a potential for autocorrelation among
the εij , j = 1, . . . ,mi values, especially when there are many closely spaced
observations. As stated in Ref. 17, in many practical situations involving
inference on the degradation of units, if the model fit is good, and if the
testing and measurement processes are in control, the autocorrelation is
typically weak. It is dominated by the unit-to-unit variability in the β

values, and thus autocorrelation can be ignored. In the general degradation
path model, the proportion of failures at time t is equivalent to the
proportion of degradation paths that exceed the critical level Df at time t.
Thus, it is possible to define the distribution F (t) of time-to-failure T

from (5) as

F (t) = Pr{T ≤ t} = Pr{D(t, β1, . . . , βq) ≥ Df}. (6)

For fixed Df , the distribution of T depends on the distribution of
β1, . . . , βq. F (t) can be expressed in closed form for simple degradation
models. For complex models, specially when D(t) is nonlinear, and more
than one of the parameters is random, it is necessary to evaluate F (t) with
numerical methods.

In Ref. 3, the software aging phenomenon is defined as the continuous,
increasing deterioration of the process’ internal state, or as the degradation
of system resources. In the former case, because the phenomenon is
confined to the process memory (internal state), measuring its progress
is difficult. For example, consider the accumulation of round-off errors in
a global numeric variable inside a process memory image. In this case, the
monitoring of aging should be possible if the program code is instrumented.
When this cannot be easily implemented (e.g., software system is composed
of closed third-party software components), the monitoring of aging

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 285

alternatively could be possible through the individual process’ performance
measures, and resource consumption observable externally. For the later
case of degradation system resources, one can follow the software aging
evolution through the monitoring of operating system resources. Usually,
ADT can be applied to any scenario where significant measures of the
process/system degradation are observable. The experimenter can consider
the degradation path D(t) the progress of the aging effects on the system
under test (SUT).

As discussed before, the main differences between applying ALT/ADT
techniques to software aging experiments in comparison with other research
fields (e.g., materials science) are the definition of degradation mechanisms,
and how to accelerate such mechanisms. In other areas, the degradation
mechanisms (e.g., wear) are usually related to physical-chemical properties
of the SUT, which are used for failure/degradation acceleration purpose. In
the case of software aging, the degradation mechanisms can be understood
as the degenerative effects caused by the activation of software faults related
to software aging. Hence, in systems that display software aging effects, it
is possible to accelerate the degradation by use-rate, and by overstressing.
The first can be achieved by increasing the frequency of the system usage
to reduce the aging factors (AF) latency. A similar technique was adopted
in Refs. 4 and 7. In some cases, increasing the usage rate is not sufficient
due to the low probability of the occurrence that the AF has in relation
to the remaining operations from the SUT operational profile.20 Hence,
in addition to increasing the AF use-rate with respect to the SUT use
condition, another option is to consider the accelerated degradation by
overstressing. The AF should be defined to allow different levels of influence
in the SUT degradation acceleration. If it is necessary, the AF could also
be combined with other secondary factors (e.g., environmental factors11)
to provide multiples stress levels. Individually or combined, the control of
the frequency (use-rate), and intensity (stress level) of the AF is achieved
through the system workload. Therefore, we consider the AF as one of the
synthetic workload parameters used during the ADT.

Unlike the other areas that usually are based on physical laws for
the accelerating stress definition, the selection of the AF should be
based on a sensitivity analysis of the aging phenomenon with respect
to workload parameters at use condition. Given the chosen method of
workload characterization, a practical approach is to use the statistical
design of experiment (DOE)13,18 for the AF selection. In this case, the
experimenter should consider as the DOE response variable (y) a measure

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

286 R. Matias Jr. and K. S. Trivedi

that indicates the level of system aging during each run execution.13 In
Ref. 18, Montgomery suggests several experimentation strategies such as
best-guess, one-factor-at-a-time, and factorial. The correct approach in
dealing with several factors is to conduct a factorial design because all
factors are varied together instead of one at a time, this being an efficient
method to study the effects of two or more factors on the response variable.
This strategy is thus chosen for the AF identification. Among its variants
(two-factor, fractional, 2k, mixed-levels, etc.), the 2k factorial design is
particularly useful in factor screening experiments,18 and thus is suited for
studies focused on the aging characterization to identify the AF . Thus, the
AF could be considered the workload parameter that contributes the most
to the increase in the SUT aging effects. When more than one parameter,
individually or through interactions, have significant influence over aging,
the AF will be their combination. In a combined form, the AF can be seen
as the operational mode20 that causes greater influence on the system’s
aging effects.

Using this approach, the experimenter is able to maximize the aging
acceleration through the AF control inside the workload. This control is
important because, in many practical situations, a high workload does
not guarantee the aging acceleration, because the operational mode used
could not create the necessary conditions for the activation of aging-related
faults. For this reason, the workload characterization, and the sensitivity
analysis of its parameters on the aging effects, are fundamental for the
correct AF selection. In Ref. 13, several techniques are presented to support
the workload characterization, such as principal component analysis, multi-
parameter histograms, clustering analysis, and Markov models. Each one
of these techniques deals with specific requirements, and based on the
experimenter’s objectives they are appropriately selected.

In addition to the aforementioned ADT elements, another important
quantity to be specified is the Df threshold (see Eq. 6). This value depends
on the specific characteristics of the SUT, as well as on the experimenter’s
goals. The instrumentation adopted to measure the degradation evolution
until Df usually depends on the type of aging effects is being monitored.
For example, if the aging effects are application-specific (see Section 2), so a
user-level monitor is sufficient. However, if it is system-wide, then a kernel-
level monitor may be necessary. In any case, the inspection of yij is taken
in several repetitions during the ADT, and not just at the end of the test
as in ALT. The number of repetitions (mi) of these measurements should
be separated in time to minimize possible autocorrelations among εij for

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 287

j = 1, . . . ,mi values.17 If the measured degradation crosses theDf threshold
even though the SUT still up and running, then it is declared failed and the
failure time is called pseudo-failure time. The SUT also can fail before its
degradation level reaches theDf . In both cases, the sample of pseudo-failure
times and failure times are analyzed as a single sample of failure times.

As in ALT, ADT requires a model that relates the system’s degradation
observed in the evaluated stress levels to estimate a proper underlying lifetime
distribution for the SUT’s use condition. This model is called the stress-
accelerateddegradation relationship,21 which in the context of software aging
it translates into the term stress-accelerated aging (SAA). Such a model is
usually based on traditional ALT models, such as Arrhenius, Eyiring, Coffin
Manson, Inverse Power, etc. As in ALT, due to the lack of equivalent models
established for ADT applied to software experiments, a natural candidate is
the Inverse Power Law (IPL) as discussed earlier in this section.

Once the SAA is established, the next step is to estimate the underlying
lifetime distribution for each stress level, and then to use them to estimate
the F (t) for the use condition. First, the experimenter needs a sample
of failure times or pseudo-failure times for each stress level. For those
degradation paths whose failure times are observed (D(t)≥Df) within
the test period, the failure times sample is taken directly. Otherwise, it
is used the accelerated degradation data set from each degradation path
to establish an accelerated degradation model, D(t), and then to estimate
pseudo-failure times. The D(t) model can be (but need not be) the same for
each degradation path. In ADT, steps to estimate the lifetime distribution,
called the approximation method,17,22 are as follows.

i. For the chosen stress levels, fit the model y = D(t) + ε for each unit
i. The model effects are considered as fixed for each unit, and random
across them.

ii. Estimate the vector β̂i = (β̂i1, . . . , β̂iq) for the unit i by means of the
least-squares method.

iii. Solve the equation D(t, β̂i) = Df for t, and call the solution t̂i.
iv. Repeat the procedure for each sample’s path to obtain the pseudo-

failure times t̂1, . . . , t̂n for that stress level.
v. To the samples of failure or pseudo-failure times, apply the usual lifetime

data analysis17 to determine the F̂ (t) for each stress level.

Through the SAA relationship previously established, and the F (t)
estimated for each stress level, the experimenter obtains the F̂ (t) for the

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

288 R. Matias Jr. and K. S. Trivedi

use condition. Several dependability metrics can be estimated for the system
under test, once we have estimated the F (t) for its use condition level. In
addition, based on the F̂ (t) for the use condition, software rejuvenation27

mechanisms can be applied proactively to prevent system failure due to
software aging effects. For example Ref. 6 discusses algorithms to obtain the
optimal software rejuvenation schedule based on the closed form for F (t).

4. Case Study

In this section we present a practical use of ALT in an experimental
study of software aging. The system under test is the Apache web server,
henceforth called httpd, a largely adopted web server system.28 Software
aging effects on the httpd have been previously investigated and reported
in the literature.

In Ref. 8, the aging effects in httpd were measured and modeled as
the degradation of SUT’s main memory. By contrast, Ref. 15 measured
the increase in httpd process size (httpd’s resident set size − RSS)
and verified that it was a consequence of memory leaks in the httpd
processes. The effects of successive memory leaks in application processes
can cause problems ranging from unaccepted response time (due to virtual
memory thrashing) to system hang/crash caused by memory exhaustion.
Particularly on httpd, both the above problems were experimentally
observed in Ref. 15. On httpd-based web server systems, the accumulated
effects of memory leaks are especially intensified because the same faulty
program (httpd) is executed by many processes at the same time. It is
not uncommon for such systems to run more than 300 httpd processes
simultaneously. Figure 5 shows a memory snapshot (top command output),
taken from our test bed, during a preliminary accelerated test with httpd.

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
21566 daemon 9 0 40368 40M 2684 S 0.0 3.2 0:25 httpd
21563 daemon 9 0 30924 26M 5144 S 0.0 2.6 0:04 httpd
21826 daemon 9 0 30616 25M 4180 S 2.1 2.5 0:04 httpd
21565 daemon 9 0 31640 24M 2092 S 0.3 2.4 0:04 httpd
21564 daemon 9 0 30728 22M 844 S 0.0 2.2 0:07 httpd
21567 daemon 9 0 12236 10M 2132 S 0.0 1.0 0:05 httpd
21917 daemon 9 0 6256 7088 2668 S 0.0 0.6 0:00 httpd
21713 daemon 9 0 6200 7034 2668 S 0.0 0.6 0:00 httpd

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
21566 daemon 9 0 40368 40M 2684 S 0.0 3.2 0:25 httpd
21563 daemon 9 0 30924 26M 5144 S 0.0 2.6 0:04 httpd
21826 daemon 9 0 30616 25M 4180 S 2.1 2.5 0:04 httpd
21565 daemon 9 0 31640 24M 2092 S 0.3 2.4 0:04 httpd
21564 daemon 9 0 30728 22M 844 S 0.0 2.2 0:07 httpd
21567 daemon 9 0 12236 10M 2132 S 0.0 1.0 0:05 httpd
21917 daemon 9 0 6256 7088 2668 S 0.0 0.6 0:00 httpd
21713 daemon 9 0 6200 7034 2668 S 0.0 0.6 0:00 httpd

Fig. 5. Aging effects on httpd processes.

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 289

Figure 5 lists just a few httpd processes, sorted by their resident set
sizes (RSS) (in descending order). Initially, all httpd processes started with
approximately 6000KB. Process 21566 showed a significant increase in its
memory size (RSS) in comparison with the other httpd processes. In this
test, we controlled the exposition of httpd processes to the factor that
causes memory leaks, and intentionally exposed process (21566) more than
others. If we assume that in a web server system all 300 httpd processes
are exposed to the same aging factor and each httpd reaches 40 megabytes
of RSS, then it is necessary to have at least 11 gigabytes of RAM to keep
them all running. In fact, much more memory is required considering OS
kernel and other administrative processes loaded in the same system, and
that swapping httpd’s pages is strongly discouraged due to its high negative
impact on the httpd’s response time.15

The rest of this section applies the procedures discussed in Section 3 to
set up the experimental plan. First, we define the stress variable. We use
the results presented in Ref. 15, which experimentally demonstrated that
the HTTP request type, specially requests addressing dynamic content, and
the page size were the most important factors in causing memory leaks in
the SUT. Hence, the SUT’s AR fault activation pattern is considered to
be the arrival rate of requests addressing dynamic content. Increasing or
decreasing the size of dynamically generated pages, in the SUT’s workload,
is how we control the stress loading on the SUT. Different from many
physical systems under accelerated tests, which are influenced not only
by the stress variable but also by the test time (e.g., lithium battery), in
software components suffering from aging the runtime is not relevant since
their failure mechanisms are not governed by physical/chemical laws. For
example, in our preliminary acceleration experiment (see Figure 5), one
could erroneously infer that process 21566 is bigger because of its higher
CPU time (column TIME). CPU time or even runtime (process’ uptime) is
not necessarily correlated to the amount of process aging. If a process runs
for a long period of time, but it is not exposed to aging factors (AR fault
activation patterns), then it will not manifest any sign of aging effects.
For example, process 21567 has higher CPU time than processes 21563,
21826 and 21564, however it has half the resident set size. As discussed in
Section 2, what makes aging effects accumulate in a process is the degree
of exposition of that process to aging factors.

In terms of stress loading strategy, based on the explained in Section 3,
we use constant stress. We control it by handling the SUT’s workload.
It is possible to set the workload generator tool to issue HTTP requests

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

290 R. Matias Jr. and K. S. Trivedi

addressing specific sizes of dynamic pages. This control is done in each stress
level. For the life-stress relationship, we use the IPL model. We choose IPL
based on its flexibility to model any type of pressure-like positive stress,
that is compatible with our workload-based stress loading strategy and
stress variable.

We employ three stress levels derived from the average page size of the
SUT in its normal operating regime (use rate). In Ref. 15, this page size
value is approximately 200 kB. Therefore, we adopted two, three, and four
times this reference value as the ALT stress levels. For short, we call them
S1 (400 kB), S2 (600 kB), and S3 (800 kB), respectively.

This experimental plan follows a traditional arrangement, so each
stress level is tested equally resulting in an allocation proportion of n/3.
The number of tests, n, is not defined in terms of test units, such as in
accelerated tests applied to physical systems, but in number of replications.
For software components, there is no difference among test units, given
that the code tested is the same (httpd binary file). The difference among
test replications is the system environment. Although each replication
executes the same code (the httpd program), the environmental aspects
(e.g., operating system, networking, and hardware) influence the test results
for each replication. Even though the workload is accurately controlled, the
randomness coming from the system environment has to be considered to
estimate the mean life for the SUT at use rate. For this reason, it is more
appropriate to refer to the number of test replications than the sample size.
The number of replications is calculated using the algorithm proposed in
Ref. 21. This algorithm is applicable when the accelerated lifetime dataset is
used to estimate the mean and/or median of the failure times. For different
estimates appropriate algorithm modifications are discussed in Ref. 21. The
steps of the algorithm are described below.

First, a pilot sample of at least 21 failure times is required. Our
experimental plan is based on three stress levels, thus it requires 7 failure
times per level. After obtaining the pilot sample, we determine the best-
fit pdf for the sample. Assuming that the fitted random variable will be
one of the three most common density functions used in ALT (lognormal,
Weibull, or exponential), the dataset must be transformed with log10 (for
Weibull and lognormal), or loge (for exponential). Subsequently, the number
of replications (sample size) is calculated solving Eqs. (7) to (11).

x̄ = (n1x1 + · · ·+ njxj)/np, (7)

where xj is the value of the stress level transformed (log10 or loge) according
to the above cited rule; nj is the number of tests (replications) executed in

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 291

the jth level of stress, and np is the total number of tests conducted for the
pilot sample (np = n1 + · · ·+ nj).

ȳj = (y1j + y2j + · · ·+ ynjj)/nj, (8)

where ynjj is the transformed (log10 or loge) value of jth failure time
obtained in the level of stress j.

sj =
{

[(y1j − ȳj)2 + · · ·+ (ynjj − ȳj)2]
vj

}1/2

, (9)

where vj (vj = nj−1) is the degrees of freedom of sj , and sj is the standard
deviation of failure times obtained at jth stress level.

s =

[
(v1s21 + · · ·+ vjs

2
j)

v

]1/2

, (10)

where v is the number of degrees of freedom calculated as v = v1 + · · ·+ vj ,
and s is the pooled estimate of the log-transformed (log10 or loge) standard
deviation (σ) in (11).

nALT =
{

1 + (x0 − x̄)2
[

np∑
(x− x̄)2

]}(
zα/2σ

ζ

)2

, (11)

where x0 is the log transformation (log10 or loge) of the stress value assumed
at normal use rate, and z is the tabulated value for the standard normal
distribution at a given significance level (α); ζ is the precision of the
estimate, which depends on the fitted pdf and the metric of interest for
the accelerated failure times, where ζ = r (for mean) or ζ = { log10(r) or
loge(r)} (for median); r is the precision for the estimator of interest. When
ζ = r, r is the half-width of the interval used to calculate the confidence
interval for the mean. Alternatively, r = (1 + m), where m × 100% is
the tolerated error for the estimator of the median. Finally, nALT can be
computed and if its value is greater than the size of the pilot sample, then
it is necessary to run more (nALT −np) replications, rounded up to be able
to equally distribute the additional tests among the three stress levels.

Numerical Results

Before analyzing the numerical results, it is important to define the notion of
failure adopted in this study. In Ref. 15, tests containing dynamic requests
lead the amount of memory used by httpd processes to reach the limit of the
total main memory available. It forced the Linux kernel (virtual memory
subsystem) to aggressively do swapping for more than thirty minutes. This

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

292 R. Matias Jr. and K. S. Trivedi

unstable condition caused a dramatic increase of SUT’s response time with
many timeout failures observed on the client side. The accuracy of the
monitoring instrumentation is negatively impacted by high swapping rate,
which reduces the sample quality. To avoid the above-mentioned problems,
we test an individual httpd process. It is similar to the test showed in
Figure 5, where process 21566 was exposed to aging effects to a larger
extent. In this case, the target httpd process is under different levels of
stress, which means receiving requests for dynamic content at different
arrival rates. The SUT is considered failed when the size of the httpd
process crosses 100 megabytes. The rationale is that our SUT has 3GB
of RAM, so assuming a typical deployment of 200 httpd processes,15 where
about 15% of these processes are equally exposed to aging effects (e.g.,
requests for dynamic content of similar size), a total of 30 aged processes
with 100MB each is sufficient to cause a system failure due to memory
saturation.

In addition to the failure definition, we also introduce our notion of
time to failure. We measure the size of the httpd process after every 100
requests. Hence, we consider the time to failure not the wall-clock time,
but the number of bunches of 100 requests processed before the httpd size
crosses the specified threshold. In this case, the wall-clock time may be
easily estimated from the total number of requests until failure and the
average request rate.

After introducing preliminary definitions, next step is to obtain the
pilot sample as discussed in Section 3. Table 2 summarizes the traditional
plan adopted for this case study. The number of replications is related to
the pilot sample.

As experimentally verified in Ref. 15, the request rate has no influence
on the httpd aging, hence, we use the highest rate supported by the SUT
in each stress level. We stop a test only when the size of the httpd crosses

Table 2. Experimental plan.

Stress loading Allocation

Level Page size (kB) Proportion π Replications nALT

Use 200
S1 400 1/3 7
S2 600 1/3 7
S3 800 1/3 7

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 293

the 100-megabyte threshold. Table 3 shows the pilot sample of accelerated
failure times (TTF).

From the samples of failure times (TTF), we tested the relevant
probability distributions (see Section 3). The criteria used to build the
best-fit ranking were the log-likelihood function (Lk), and the Pearson’s
linear correlation coefficient (ρ), whose parameter estimation methods were
MLE, and LSE, respectively. The goodness-of-fit (GOF) test results for the
considered models are shown in Table 4.

The Weibull probability distribution showed the best fit for the three
accelerated lifetime data sets as demonstrated by the numerical assessment
(Lk, and ρ). According to the algorithm described in Section 3, the data
set must be transformed using the natural logarithm (loge). Table 5 shows
the natural logarithms of pilot sample.

From the transformed dataset, we calculate the number of replications
solving Eqs. (7) to (11). As a result, we obtained nALT = 11, which means

Table 3. Sample of time to failure.

TTF (S1) TTF (S2) TTF (S3)

84 34 20
86 36 21
88 37 22
93 38 23

95 38 23
95 39 23
97 40 24

Table 4. Model fitting for accelerated failure times.

GOF

Stress level Model Lk ρ (%) Best-fit ranking

S1 Weibull −20.5086 96.75 1st

Lognormal −20.8627 95.98 2nd

Exponential −38.5870 −74.38 3rd

S2 Weibull −13.9211 99.31 1st

Lognormal −14.3368 97.60 2nd

Exponential −32.3570 −74.53 3rd

S3 Weibull −11.2420 97.65 1st

Lognormal −11.8037 95.33 2nd

Exponential −28.7276 −73.96 3rd

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

294 R. Matias Jr. and K. S. Trivedi

Table 5. Transformed pilot sample.

TTF (S1) TTF (S2) TTF (S3)

1.9243 1.5315 1.3010
1.9345 1.5563 1.3222
1.9445 1.5682 1.3424
1.9685 1.5798 1.3617
1.9777 1.5798 1.3617
1.9777 1.5911 1.3617
1.9868 1.6021 1.3802

eleven replications for the ALT experiment. Because the size of pilot sample
is bigger than nALT , we decide to use the pilot sample to estimate the
metrics of interest. The Weibull distribution also showed the best fit for
the transformed sample of failure times, therefore we use it in conjunction
with the IPL model to create our life-stress relationship model.

According to Ref. 17, the Weibull distribution may adopt the same
parameterization structure shown in (3), where σ= 1/β is the scale
parameter, and µ = log(η) is the location parameter. Hence, the assumption
of same scale parameter across the stress levels must be evaluated on the
estimated values of β after fitting the Weibull model to the three samples of
failure times. We verified that the three beta values are inside the confidence
interval calculated for each sample, thus satisfying the assumption of scale
invariance. Table 6 presents the estimates for Weibull parameters, obtained
through the maximum likelihood (ML) parameter estimation method.

In order to have the IPL-Weibull relationship model, we make η = L(s)
(see Eq. (1)). As a result we obtain (11), which is the IPL-Weibull pdf

f(t, s) = βksw(kswt)β−1e−(kswt)β

. (12)

Table 6. Estimated Weibull parameters.

CI (90%)

Stress Parameter ML Estimate Lower Upper

S1 β1 24.0889 14.3941 40.3134
η1 93.3175 90.8149 95.8891

S2 β2 25.0000 15.2671 40.9377
η2 38.2697 37.2791 39.2865

S3 β3 22.0825 13.3316 36.5775
η3 22.8595 22.1925 23.5465

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 295

Thus, (12) can be directly derived from (11) and used to estimate the
mean time to failure, MTTF, of the SUT for any use rate:

MTTF =
1
ksw

· Γ
(

1
β

+ 1
)
, (13)

where Γ is the Gamma function.26

Table 7 shows the estimates for the IPL-Weibull model parameters.
Using the estimated parameters for the IPL-Weibull model, we

calculate the mean life of the SUT for its use condition. Figure 6 presents
the stress-life relationship projected for all stress levels with the abscissa
values beginning at the use condition level. The ordinate values correspond
to the time-to-failure in batches of 100 requests targeting pages dynamically
created (aging factor). The intersection point between the y-axis, and the

Table 7. Estimated IPL-Weibull parameters.

CI (90%)

Parameter ML Estimate Lower Upper

k 5.7869E-8 3.7257E-8 8.9885E-8
w 2.0340 1.9646 2.1034
β 18.9434 13.5270 26.5286

200 1000
10

500

100

stress = page size

Li
fe

Fig. 6. IPL-Weibull model fitted to the accelerated lifetime dataset.

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

296 R. Matias Jr. and K. S. Trivedi

line obtained by linearizing the IPL-Weibull model is the MTTF estimated
for the use rate condition level.

In order to evaluate the accuracy of the estimates, we run one
experiment with seven replications using the page size equals to 200kB.
This setup refers to the SUT operating in its normal regime. High accuracy
of our fitted IPL-Weibull model is confirmed with the observed MTTF
(343.57) falling within the estimated 90% confidence intervals (337.92–
395.28).

As stated in Section 1, the main goal of using ALT in software aging
experiments is to reduce the observation time required to collect aging-
related failure times. We calculate the reduction factor obtained with the
aging acceleration method for the total experimentation time. First, we
compute the total time spent to execute all tests (replications) for all
stress levels. As explained before, we collected the aging-related failure
times in terms of bunches of 100 requests. Thus, based on the sample
presented in Table 3, the experimentation time, in number of requests,
is 105,600 requests. The mean time to aging-related failures observed for
the experiment in use condition (non-accelerated aging) was 343.57, then
resulting in 34,357 requests. Considering the same number of replications
(twenty one) used in the case study, we have a total experimentation time
of 7,214.97 bunches of 100 requests, or 721,497 requests. Therefore, in this
experimental study, ALT offers a reduction of approximately 7 (seven) times
the time required to obtain a sample of twenty-one failure times in use
condition (w/o acceleration).

5. Final Remarks

In this chapter we present the theoretical and practical aspects of using
accelerated life tests applied to software aging experiments. We discuss how
the occurrence of software aging effects can be accelerated, in a controlled
way, to reduce the time to aging-related failures. Important concepts
such as the modified fault-error-failure chain for aging-related events, as
well as the aging factor concept are discussed in details. We present a
design-of-experiment approach that allows experimenters to identify the
significant aging-related fault activation patterns. These patterns can be
individual operations of the software operational profile, as well as system’s
operational modes. When appropriately applied, this approach allows fine
control of the software aging rate through the handling of the aging factors
into the workload, or even through environmental variables. The case study

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 297

section provide a complete example of how to apply the ALT method in
studies related to the reliability analysis of systems suffering from software
aging. This approach offers a reduction in the time to observe aging-related
failures, as verified in the case study where we obtained a reduction of seven
times the time required to get a sample of twenty-one failure times.

Several recent studies in experimental software aging and rejuvenation
research are being conducted to investigate the aging effects not only in
different application architectures but also in operating system kernel level.
Specially, this second line of investigation is very important, since aging
effects inside the OS kernel affect significantly the entire system, differently
than in application level that usually is confined to the affected application
address space. Initial studies in OS aging are mainly investigating the aging
effects in the virtual memory (e.g., fragmentation), device driver subsystems
(e.g., memory leaks), and file system metadata (e.g., fragmentation). In
these cases, advanced kernel instrumentations are required to monitor and
log kernel events in real time. Specially in embedded systems,14 the impact
of OS aging effects are very significant, since the system’s resource such as
main memory, storage space, etc., are very limited.

References

1. Avižienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts
and taxonomy of dependable and secure computing, IEEE Transactions on
Dependable and Secure Computing, 1(1), 2004, pp. 11–33.

2. Avritzer, A., Weyuker, E.J.: Monitoring smoothly degrading systems
for increased dependability, Empirical Software Engineering, 2(1), 1997,
pp. 59–77.

3. Bao, Y., Sun, X., Trivedi, K.S.: A workload-based analysis of software aging
and rejuvenation, IEEE Transactions on Reliability, 55(3), 2005, pp. 541–548.

4. Chillarege, R., Goswani, K., Devarakonda, M.: Experiment illustrating failure
acceleration and error propagation in fault-injection, in Proc. International
Symposium on Software Reliability Engineering, 2002.

5. Cisco Systems, Inc., Cisco security advisory: Cisco Catalyst memory leak
vulnerability, Document ID: 13618, 2001. URL = http://www.cisco.com/
warp/public/707/cisco-sa-20001206-catalyst-memleak.shtml.

6. Dohi, T., Goševa-Popstojanova, K., Trivedi, K.S.: Estimating software
rejuvenation schedules in high assurance systems, Computer Journal, 44(6),
2001, pp. 473–482.

7. Ehrlich, W., Nair, V.N., Alam, M.S., Chen, W.H., Engel, M.: Software
reliability assessment using accelerated testing methods, Journal of the Royal
Statistical Society, 47(1), 1998, pp. 15–30.

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

298 R. Matias Jr. and K. S. Trivedi

8. Grottke, M., Li, L., Vaidyanathan, K., Trivedi, K.S.: Analysis of software
aging in a web server, IEEE Transactions on Reliability, 55(3), 2006,
pp. 411–420.

9. Grottke, M., Trivedi, K.S.: Software faults, software aging, and software
rejuvenation, Journal of the Reliability Association of Japan, 27(7), 2005,
pp. 425–438.

10. Grottke, M., Trivedi, K.S.: Fighting bugs: Remove, retry, replicate and
rejuvenate, IEEE Computer, 40(2), 2007, pp. 107–109.

11. Grottke, M., Matias, R., Trivedi, K.: The fundamentals of software aging, In
Proc of Workshop on Software Aging and Rejuvenation, in conjunction with
IEEE International Symposium on Software Reliability Engineering. 2008.

12. Huang, Y., Kintala, C., Kolettis, N., Fulton, N.: Software rejuvenation:
analysis, module and applications, In Proc. Twenty-Fifth International
Symposium on Fault-Tolerant Computing, pp. 381–390, 1995.

13. Jain, R.: The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation, and modeling. John Wiley
and Sons, 1991.

14. Kintala, C.: Software rejuvenation in embedded systems, Journal of
Automata, Languages and Combinatorics, 14(1), 2009, pp. 63–73.

15. Matias, R., Freitas, P.J.: An experimental study on software aging and
rejuvenation in web servers, In Proc. 30th Annual International Computer
Software and Applications Conference, Vol. 1, 2006, pp. 189–196.

16. Mettas, A.: Understanding accelerated life testing analysis, In Proc. of
International Reliability Symposium, 2003, 1–16.

17. Meeker, W.Q., Escobar, L.A.: Statistical methods for reliability data. New
York: Wiley, 1998.

18. Montgomery, D.C.: Design and analysis of experiments, 6th ed. John Wiley
and Sons, 2005.

19. Musa, J.D.: Operational profiles in software reliability engineering, IEEE
Software, 10(2), 1993, pp. 14–32.

20. Musa, J.D.: Software Reliability Engineering, McGraw-Hill, 1999.
21. Nelson, B.N.: Accelerated testing: statistical method, test plans, and data

analysis, New Jersey: Wiley, 2004.
22. Oliveira, V.R.B., Colosimo, E.A.: Comparison of methods to estimate the

time-to-failure distribution in degradation tests, Quality and Reliability
Engineering International, 20(4), 2004, pp. 363–373.

23. Shereshevsky, M., Crowell, J., Cukic, B., Gandikota, V., Liu, Y.: Software
aging and multifractality of memory re-sources, In Proc. IEEE International
Conference on Dependable Systems and Networks, 2003, pp. 721–730.

24. Silva, L., Madeira, H., Silva, J.G.: Software aging and rejuvenation in
a SOAP-based server, In Proc. Fifth IEEE International Symposium on
Network Computing and Ap-plications, 2006, pp. 56–65.

25. Tobias, P., Trindade, D.: Applied Reliability, 2nd ed. Kluwer Academic
Publishers, Boston, 1995.

May 4, 2011 14:8 9in x 6in b968-ch09 Adaptive Control Approach for Software. . .

Accelerated Life Tests and Software Aging 299

26. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing, and
Computer Science Applications, John Wiley and Sons, New York, 2001.

27. Vaidyanathan, K., Trivedi, K.S.: A comprehensive model for software
rejuvenation, IEEE Transactions on Dependable and Secure Computing, 2(2),
2005, pp. 124–137.

28. “http server project”, Apache Software Foundation [Online]. Available at:
http://httpd.apache.org.

	CONTENTS
	Preface
	1. Prioritizing Coverage-Oriented Testing Process — An Adaptive-Learning-Based Approach and Case Study Fevzi Belli, Mubariz Eminov, Nida G ok ce and W. Eric Wong
	1. Introduction and Related Work
	2. Background
	2.1. Event Sequence Graphs
	2.2. Neural Network-Based Clustering

	3. Competitive Learning
	3.1. Distance-Based Competitive Learning Algorithm
	3.2. Angle-Based Competitive Learning Algorithm
	3.3. Adaptive Competitive Learning
	Adaptive Competitive Learning Algorithm

	4. Prioritized ESG-Based Testing
	4.1. Definition of the Attributes of Events
	4.2. Definition of Importance Degree and Preference
	Indirect Determination of the Preference Degree

	5. A Case Study
	5.1. Derivation of the Test Cases
	5.2. Determination of Attributes of Events
	5.3. Construction of the Groups of Events
	5.4. Indirect Determination of Preference Degrees

	6. Conclusions and Future Work
	References

	2. Statistical Evaluation Methods for V&V of Neuro-Adaptive Systems Y. Liu, J. Schumann and B. Cukic
	1. Introduction
	2. V&V of Neuro-Adaptive Systems
	2.1. Static V&V Approaches
	2.2. Dynamic V&V Approaches
	2.3. V&V of Neural Networks

	3. Statistical Evaluation of Neuro-Adaptive Systems
	3.1. Neural Network-Based Flight Control
	3.2. The Neural Networks
	3.2.1. Dynamic Cell Structure Network
	3.2.2. Sigma-Pi Neural Network

	3.3. Failure Detection Using Support Vector Data Description
	3.4. Evaluating Network’s Learning Performance
	3.4.1. A Sensitivity Metric for DCS Networks
	3.4.2. A Sensitivity Metric for Sigma-Pi Networks

	3.5. Evaluating the Network’s Output Quality
	3.5.1. Validity Index for DCS Networks
	3.5.2. Bayesian Confidence Tool for Sigma-Pi Networks

	4. Conclusions
	References

	3. Adaptive Random Testing Dave Towey
	1. Introduction
	2. Adaptive Random Testing
	2.1. Distance-Based Adaptive Random Testing
	2.2. Restriction-Based Adaptive Random Testing
	2.3. Overheads
	2.4. Filtering
	2.5. Forgetting
	2.6. Mirror ART
	2.7. Probabilistic ART
	2.8. Fuzzy ART

	3. Summary
	Acknowledgements
	References

	4. Transparent Shaping: A Methodology for Adding Adaptive Behavior to Existing Software Systems and Applications S. Masoud Sadjadi, Philip K. Mckinley and Betty H.C. Cheng
	1. Introduction
	2. Basic Elements
	3. General Approach
	4. Middleware-Based Transparent Shaping
	4.1. ACT Architectural Overview
	4.2. ACT Core Components
	Dynamic Interceptors
	Proxies
	Decision Makers

	4.3. ACT Operation
	4.4. ACT/J Implementation
	4.5. ACT/J Case Study

	5. Language-Based Transparent Shaping
	5.1. TRAP/J Architectural Overview
	5.2. TRAP/J Run-Time Model
	5.3. TRAP/J Case Study
	Making ASA Adapt-Ready
	Compile-Time Actions
	Generated Aspect
	Generated Wrapper-Level Class
	Generated Metalevel Class
	Adapting to Loss Rate
	Balancing QoS and Energy Consumption

	6. Discussion
	7. Conclusions and Future Work
	Acknowledgements
	References

	5. Rule Extraction to Understand Changes in an Adaptive System Marjorie A. Darrah and Brian J. Taylor
	1. Neural Network Rule Extraction
	1.1. Background on Rule Extraction

	2. Rule Extraction for System Verification and Validation
	2.1. An Example of Rule Extraction for the Dynamic Cell Structure Neural Network Used in a System
	2.1.1. Refining the Algorithm

	3. Applying Rule Extraction in a Tool for Verification and Validation
	3.1. Describing a Neural Network with Metadata Expressions
	3.2. Building a Tool for Rule Extraction
	3.3. An Example of the Process
	3.3.1. Translating DCS into NNML
	3.3.2. Extract Rules
	3.3.3. Analyze Rules

	4. Verification and Validation Examples
	Scenario 1: Human Understandable Rules Led to Identi.cation of Coding Error.
	Scenario 2: Machine Understandable Rules Led to Identi.cation of Two Coding Errors.

	5. Potential Applications
	5.1. Certification of Neural Networks
	5.2. Health and Status Monitoring of the Neural Network
	5.3. Extracted Rules as Basis for Expert Systems

	6. Conclusion
	Acknowledgements
	References
	Appendix A

	6. Requirements Engineering Via Lyapunov Analysis for Adaptive Flight Control Systems Giampiero Campa, Marco Mammarella, Mario L. Fravolini and Bojan Cukic
	1. Introduction
	2. The Framework for Adaptive Augmentation
	2.1. The Plant, the Closed Loop System and the Error Dynamics
	2.2. The Linear Controller, the Closed Loop System and the Error Dynamics
	2.3. The Uncertainty
	2.4. The Adaptive Element
	2.5. The Adaptive Augmentation

	3. The Lyapunov Analysis
	3.1. Typical “Completion of Squares” Bounds Formulation and its Limitations
	3.2. A Better Characterization of the Return Set
	3.3. Boundedness Conditions
	3.3.1. Extreme Points of the Boundary and Semi-Axes of the Ellipsoid

	4. Case Study
	4.0.1. 2D Bounds Calculation and Visualization

	5. Conclusions
	References
	Periodicals
	Books
	Proceedings
	Computer Software

	7. Quantitative Modeling for Incremental Software Process Control Scott D. Miller, Raymond A. Decarlo and Aditya P. Mathur
	1. Introduction
	1.1. Contributions
	1.2. Related Work

	2. General Modeling Strategy
	2.1. Mathematical Modeling of Productive Capability
	2.2. State Model of Productive Capability
	2.3. State Model of a Queue
	2.4. Normalization of Work Items
	2.5. Managing Dependencies and Scheduling Constraints within the Model
	2.6. An Algebraic Model of Activity Coordination
	2.7. Defect Modeling and the Failure Analysis Activity
	2.8. An Algebraic Model for the Example Defect Population Estimation Component
	2.9. An Algebraic Model of the Defect Detection Component
	2.10. An Algebraic Model of the Proportional Splitting Component

	3. Assembling the Model
	4. A Simulation Study
	4.1. Simulation Method
	4.2. Simulation Results
	4.2.1. Feature Coding
	4.2.2. Test Case Coding
	4.2.3. New Test Case Execution
	4.2.4. Regression Test Case Execution
	4.2.5. Defect Introduction, Defect Detection, and Failure Analysis
	4.2.6. Feature Correction
	4.2.7. Test Case Correction

	5. Model Calibration
	5.1. Calibrating with Ratio Scale Data
	5.2. Calibrating with Interval Scale Data

	6. Discussion
	References
	Appendix A: Modeling the Example Process
	Appendix B: Simulation Study Parameters

	8. Proactive Monitoring and Control of Workflow Execution in Adaptive Service-based Systems Stephen S. Yau and Dazhi Huang
	1. Introduction
	2. Current State of the Art
	3. Background
	3.1. Workflow Virtual Machine
	3.2. α-Calculus

	4. Synthesizing Software Modules for Proactive Monitoring and Control of Workflow Execution in ASBS
	4.1. Workflow Execution, Monitoring and Control in ASBS
	4.2. Synthesizing WF Monitors
	4.3. Synthesizing WF Controllers

	5. Conclusions and Future Work
	Acknowledgement
	References

	9. Accelerated Life Tests and Software Aging Rivalino Matias Jr. and Kishor S. Trivedi
	1. Introduction
	2. Software Aging Theory
	Classical Software Failure Mechanics
	Fundamentals of Software Aging

	3. Accelerated Life Tests
	Accelerated Degradation Tests

	4. Case Study
	Numerical Results

	5. Final Remarks
	References

