
Mathematics
for

Computer Science

Eric Lehman
F Thomson Leighton

Albert R Meyer

September,2010

“mcs-ftl” — 2010/9/8 — 0:40 — page i — #1

Mathematics for Computer Science
revised Wednesday 8th September, 2010, 00:40

Eric Lehman
Google Inc.

F Thomson Leighton
Department of Mathematics and CSAIL, MIT

Akamai Technologies

Albert R Meyer
Massachusets Institute of Technology

Copyright © 2010, Eric Lehman, F Tom Leighton, Albert R Meyer . All rights reserved.

http://people.csail.mit.edu/meyer

“mcs-ftl” — 2010/9/8 — 0:40 — page ii — #2

“mcs-ftl” — 2010/9/8 — 0:40 — page iii — #3

Contents

I Proofs
1 Propositions 5

1.1 Compound Propositions 6
1.2 Propositional Logic in Computer Programs 10
1.3 Predicates and Quantifiers 11
1.4 Validity 19
1.5 Satisfiability 21

2 Patterns of Proof 23
2.1 The Axiomatic Method 23
2.2 Proof by Cases 26
2.3 Proving an Implication 27
2.4 Proving an “If and Only If” 30
2.5 Proof by Contradiction 32
2.6 Proofs about Sets 33
2.7 Good Proofs in Practice 40

3 Induction 43
3.1 The Well Ordering Principle 43
3.2 Ordinary Induction 46
3.3 Invariants 56
3.4 Strong Induction 64
3.5 Structural Induction 69

4 Number Theory 81
4.1 Divisibility 81
4.2 The Greatest Common Divisor 87
4.3 The Fundamental Theorem of Arithmetic 94
4.4 Alan Turing 96
4.5 Modular Arithmetic 100
4.6 Arithmetic with a Prime Modulus 103
4.7 Arithmetic with an Arbitrary Modulus 108
4.8 The RSA Algorithm 113

“mcs-ftl” — 2010/9/8 — 0:40 — page iv — #4

Contentsiv

II Structures
5 Graph Theory 121

5.1 Definitions 121
5.2 Matching Problems 128
5.3 Coloring 143
5.4 Getting from A to B in a Graph 147
5.5 Connectivity 151
5.6 Around and Around We Go 156
5.7 Trees 162
5.8 Planar Graphs 170

6 Directed Graphs 189
6.1 Definitions 189
6.2 Tournament Graphs 192
6.3 Communication Networks 196

7 Relations and Partial Orders 213
7.1 Binary Relations 213
7.2 Relations and Cardinality 217
7.3 Relations on One Set 220
7.4 Equivalence Relations 222
7.5 Partial Orders 225
7.6 Posets and DAGs 226
7.7 Topological Sort 229
7.8 Parallel Task Scheduling 232
7.9 Dilworth’s Lemma 235

8 State Machines 237

III Counting
9 Sums and Asymptotics 243

9.1 The Value of an Annuity 244
9.2 Power Sums 250
9.3 Approximating Sums 252
9.4 Hanging Out Over the Edge 257
9.5 Double Trouble 269
9.6 Products 272

“mcs-ftl” — 2010/9/8 — 0:40 — page v — #5

Contentsv

9.7 Asymptotic Notation 275

10 Recurrences 283
10.1 The Towers of Hanoi 284
10.2 Merge Sort 291
10.3 Linear Recurrences 294
10.4 Divide-and-Conquer Recurrences 302
10.5 A Feel for Recurrences 309

11 Cardinality Rules 313
11.1 Counting One Thing by Counting Another 313
11.2 Counting Sequences 314
11.3 The Generalized Product Rule 317
11.4 The Division Rule 321
11.5 Counting Subsets 324
11.6 Sequences with Repetitions 326
11.7 Counting Practice: Poker Hands 329
11.8 Inclusion-Exclusion 334
11.9 Combinatorial Proofs 339
11.10 The Pigeonhole Principle 342
11.11 A Magic Trick 346

12 Generating Functions 355
12.1 Definitions and Examples 355
12.2 Operations on Generating Functions 356
12.3 Evaluating Sums 361
12.4 Extracting Coefficients 363
12.5 Solving Linear Recurrences 370
12.6 Counting with Generating Functions 374

13 Infinite Sets 379
13.1 Injections, Surjections, and Bijections 379
13.2 Countable Sets 381
13.3 Power Sets Are Strictly Bigger 384
13.4 Infinities in Computer Science 386

IV Probability
14 Events and Probability Spaces 391

14.1 Let’s Make a Deal 391
14.2 The Four Step Method 392

“mcs-ftl” — 2010/9/8 — 0:40 — page vi — #6

Contentsvi

14.3 Strange Dice 402
14.4 Set Theory and Probability 411
14.5 Infinite Probability Spaces 413

15 Conditional Probability 417
15.1 Definition 417
15.2 Using the Four-Step Method to Determine Conditional Probability 418
15.3 A Posteriori Probabilities 424
15.4 Conditional Identities 427

16 Independence 431
16.1 Definitions 431
16.2 Independence Is an Assumption 432
16.3 Mutual Independence 433
16.4 Pairwise Independence 435
16.5 The Birthday Paradox 438

17 Random Variables and Distributions 445
17.1 Definitions and Examples 445
17.2 Distribution Functions 450
17.3 Bernoulli Distributions 452
17.4 Uniform Distributions 453
17.5 Binomial Distributions 456

18 Expectation 467
18.1 Definitions and Examples 467
18.2 Expected Returns in Gambling Games 477
18.3 Expectations of Sums 483
18.4 Expectations of Products 490
18.5 Expectations of Quotients 492

19 Deviations 497
19.1 Variance 497
19.2 Markov’s Theorem 507
19.3 Chebyshev’s Theorem 513
19.4 Bounds for Sums of Random Variables 516
19.5 Mutually Independent Events 523

20 Random Walks 533
20.1 Unbiased Random Walks 533
20.2 Gambler’s Ruin 542
20.3 Walking in Circles 549

“mcs-ftl” — 2010/9/8 — 0:40 — page 1 — #7

I Proofs

“mcs-ftl” — 2010/9/8 — 0:40 — page 2 — #8

“mcs-ftl” — 2010/9/8 — 0:40 — page 3 — #9

Introduction

This text explains how to use mathematical models and methods to analyze prob-
lems that arise in computer science. The notion of a proof plays a central role in
this work.

Simply put, a proof is a method of establishing truth. Like beauty, “truth” some-
times depends on the eye of the beholder, and it should not be surprising that what
constitutes a proof differs among fields. For example, in the judicial system, legal
truth is decided by a jury based on the allowable evidence presented at trial. In the
business world, authoritative truth is specified by a trusted person or organization,
or maybe just your boss. In fields such as physics and biology, scientific truth1 is
confirmed by experiment. In statistics, probable truth is established by statistical
analysis of sample data.

Philosophical proof involves careful exposition and persuasion typically based
on a series of small, plausible arguments. The best example begins with “Cogito
ergo sum,” a Latin sentence that translates as “I think, therefore I am.” It comes
from the beginning of a 17th century essay by the mathematician/philosopher, René
Descartes, and it is one of the most famous quotes in the world: do a web search
on the phrase and you will be flooded with hits.

Deducing your existence from the fact that you’re thinking about your existence
is a pretty cool and persuasive-sounding idea. However, with just a few more lines
of argument in this vein, Descartes goes on to conclude that there is an infinitely
beneficent God. Whether or not you believe in a beneficent God, you’ll probably
agree that any very short proof of God’s existence is bound to be far-fetched. So

1Actually, only scientific falsehood can be demonstrated by an experiment—when the experiment
fails to behave as predicted. But no amount of experiment can confirm that the next experiment won’t
fail. For this reason, scientists rarely speak of truth, but rather of theories that accurately predict past,
and anticipated future, experiments.

http://www.btinternet.com/~glynhughes/squashed/descartes.htm

“mcs-ftl” — 2010/9/8 — 0:40 — page 4 — #10

Part I Proofs4

even in masterful hands, this approach is not reliable.
Mathematics has its own specific notion of “proof.”

Definition. A mathematical proof of a proposition is a chain of logical deductions
leading to the proposition from a base set of axioms.

The three key ideas in this definition are highlighted: proposition, logical de-
duction, and axiom. These three ideas are explained in the following chapters,
beginning with propositions in Chapter 1. We will then provide lots of examples of
proofs and even some examples of “false proofs” (that is, arguments that look like
a proof but that contain missteps, or deductions that aren’t so logical when exam-
ined closely). False proofs are often even more important as examples than correct
proofs, because they are uniquely helpful with honing your skills at making sure
each step of a proof follows logically from prior steps.

Creating a good proof is a lot like creating a beautiful work of art. In fact,
mathematicians often refer to really good proofs as being “elegant” or “beautiful.”
As with any endeavor, it will probably take a little practice before your fellow
students use such praise when referring to your proofs, but to get you started in
the right direction, we will provide templates for the most useful proof techniques
in Chapters 2 and 3. We then apply these techniques in Chapter 4 to establish
some important facts about numbers; facts that form the underpinning of one of the
world’s most widely-used cryptosystems.

“mcs-ftl” — 2010/9/8 — 0:40 — page 5 — #11

1 Propositions
Definition. A proposition is a statement that is either true or false.

For example, both of the following statements are propositions. The first is true
and the second is false.

Proposition 1.0.1. 2 + 3 = 5.

Proposition 1.0.2. 1 + 1 = 3.

Being true or false doesn’t sound like much of a limitation, but it does exclude
statements such as, “Wherefore art thou Romeo?” and “Give me an A!”.

Unfortunately, it is not always easy to decide if a proposition is true or false, or
even what the proposition means. In part, this is because the English language is
riddled with ambiguities. For example, consider the following statements:

1. “You may have cake, or you may have ice cream.”

2. “If pigs can fly, then you can understand the Chebyshev bound.”

3. “If you can solve any problem we come up with, then you get an A for the
course.”

4. “Every American has a dream.”

What precisely do these sentences mean? Can you have both cake and ice cream
or must you choose just one dessert? If the second sentence is true, then is the
Chebyshev bound incomprehensible? If you can solve some problems we come up
with but not all, then do you get an A for the course? And can you still get an A
even if you can’t solve any of the problems? Does the last sentence imply that all
Americans have the same dream or might some of them have different dreams?

Some uncertainty is tolerable in normal conversation. But when we need to
formulate ideas precisely—as in mathematics and programming—the ambiguities
inherent in everyday language can be a real problem. We can’t hope to make an
exact argument if we’re not sure exactly what the statements mean. So before we
start into mathematics, we need to investigate the problem of how to talk about
mathematics.

To get around the ambiguity of English, mathematicians have devised a special
mini-language for talking about logical relationships. This language mostly uses
ordinary English words and phrases such as “or”, “implies”, and “for all”. But

“mcs-ftl” — 2010/9/8 — 0:40 — page 6 — #12

Chapter 1 Propositions6

mathematicians endow these words with definitions more precise than those found
in an ordinary dictionary. Without knowing these definitions, you might sometimes
get the gist of statements in this language, but you would regularly get misled about
what they really meant.

Surprisingly, in the midst of learning the language of mathematics, we’ll come
across the most important open problem in computer science—a problem whose
solution could change the world.

1.1 Compound Propositions

In English, we can modify, combine, and relate propositions with words such as
“not”, “and”, “or”, “implies”, and “if-then”. For example, we can combine three
propositions into one like this:

If all humans are mortal and all Greeks are human, then all Greeks are mortal.

For the next while, we won’t be much concerned with the internals of propositions—
whether they involve mathematics or Greek mortality—but rather with how propo-
sitions are combined and related. So we’ll frequently use variables such as P and
Q in place of specific propositions such as “All humans are mortal” and “2C 3 D
5”. The understanding is that these variables, like propositions, can take on only
the values T (true) and F (false). Such true/false variables are sometimes called
Boolean variables after their inventor, George—you guessed it—Boole.

1.1.1 NOT, AND, and OR

We can precisely define these special words using truth tables. For example, if
P denotes an arbitrary proposition, then the truth of the proposition “NOT.P /” is
defined by the following truth table:

P NOT.P /

T F
F T

The first row of the table indicates that when proposition P is true, the proposition
“NOT.P /” is false. The second line indicates that when P is false, “NOT.P /” is
true. This is probably what you would expect.

In general, a truth table indicates the true/false value of a proposition for each
possible setting of the variables. For example, the truth table for the proposition

“mcs-ftl” — 2010/9/8 — 0:40 — page 7 — #13

1.1. Compound Propositions 7

“P ANDQ” has four lines, since the two variables can be set in four different ways:

P Q P AND Q

T T T
T F F
F T F
F F F

According to this table, the proposition “P ANDQ” is true only when P andQ are
both true. This is probably the way you think about the word “and.”

There is a subtlety in the truth table for “P OR Q”:

P Q P OR Q

T T T
T F T
F T T
F F F

The third row of this table says that “P OR Q” is true even if both P and Q are
true. This isn’t always the intended meaning of “or” in everyday speech, but this is
the standard definition in mathematical writing. So if a mathematician says, “You
may have cake, or you may have ice cream,” he means that you could have both.

If you want to exclude the possibility of both having and eating, you should use
“exclusive-or” (XOR):

P Q P XOR Q

T T F
T F T
F T T
F F F

1.1.2 IMPLIES

The least intuitive connecting word is “implies.” Here is its truth table, with the
lines labeled so we can refer to them later.

P Q P IMPLIES Q

T T T (tt)
T F F (tf)
F T T (ft)
F F T (ff)

Let’s experiment with this definition. For example, is the following proposition
true or false?

“mcs-ftl” — 2010/9/8 — 0:40 — page 8 — #14

Chapter 1 Propositions8

“If the Riemann Hypothesis is true, then x2 � 0 for every real number x.”

The Riemann Hypothesis is a famous unresolved conjecture in mathematics —no
one knows if it is true or false. But that doesn’t prevent you from answering the
question! This proposition has the form P IMPLIES Q where the hypothesis, P , is
“the Riemann Hypothesis is true” and the conclusion, Q, is “x2 � 0 for every real
number x”. Since the conclusion is definitely true, we’re on either line (tt) or line
(ft) of the truth table. Either way, the proposition as a while is true!

One of our original examples demonstrates an even stranger side of implications.

“If pigs can fly, then you can understand the Chebyshev bound.”

Don’t take this as an insult; we just need to figure out whether this proposition is
true or false. Curiously, the answer has nothing to do with whether or not you can
understand the Chebyshev bound. Pigs cannot fly, so we’re on either line (ft) or
line (ff) of the truth table. In both cases, the proposition is true!

In contrast, here’s an example of a false implication:

“If the moon shines white, then the moon is made of white cheddar.”

Yes, the moon shines white. But, no, the moon is not made of white cheddar cheese.
So we’re on line (tf) of the truth table, and the proposition is false.

The truth table for implications can be summarized in words as follows:

An implication is true exactly when the if-part is false or the then-part is true.

This sentence is worth remembering; a large fraction of all mathematical statements
are of the if-then form!

1.1.3 IFF

Mathematicians commonly join propositions in one additional way that doesn’t
arise in ordinary speech. The proposition “P if and only if Q” asserts that P and
Q are logically equivalent; that is, either both are true or both are false.

P Q P IFF Q

T T T
T F F
F T F
F F T

For example, the following if-and-only-if statement is true for every real number
x:

x2 � 4 � 0 iff jxj � 2

For some values of x, both inequalities are true. For other values of x, neither
inequality is true . In every case, however, the proposition as a whole is true.

“mcs-ftl” — 2010/9/8 — 0:40 — page 9 — #15

1.1. Compound Propositions 9

1.1.4 Notation

Mathematicians have devised symbols to represent words like “AND” and “NOT”.
The most commonly-used symbols are summarized in the table below.

English Symbolic Notation

NOT.P / :P (alternatively, P)
P AND Q P ^Q

P OR Q P _Q

P IMPLIES Q P �! Q

if P then Q P �! Q

P IFF Q P ! Q

For example, using this notation, “If P AND NOT.Q/, then R” would be written:

.P ^Q/ �! R

This symbolic language is helpful for writing complicated logical expressions com-
pactly. But words such as “OR” and “IMPLIES” generally serve just as well as the
symbols _ and �!, and their meaning is easy to remember. We will use the prior
notation for the most part in this text, but you can feel free to use whichever con-
vention is easiest for you.

1.1.5 Logically Equivalent Implications

Do these two sentences say the same thing?

If I am hungry, then I am grumpy.
If I am not grumpy, then I am not hungry.

We can settle the issue by recasting both sentences in terms of propositional logic.
Let P be the proposition “I am hungry”, and let Q be “I am grumpy”. The first
sentence says “P IMPLIES Q” and the second says “NOT.Q/ IMPLIES NOT.P /”.
We can compare these two statements in a truth table:

P Q P IMPLIES Q NOT.Q/ IMPLIES NOT.P /

T T T T
T F F F
F T T T
F F T T

Sure enough, the columns of truth values under these two statements are the same,
which precisely means they are equivalent. In general, “NOT.Q/ IMPLIES NOT.P /”

“mcs-ftl” — 2010/9/8 — 0:40 — page 10 — #16

Chapter 1 Propositions10

is called the contrapositive of the implication “P IMPLIES Q.” And, as we’ve just
shown, the two are just different ways of saying the same thing.

In contrast, the converse of “P IMPLIES Q” is the statement “Q IMPLIES P ”.
In terms of our example, the converse is:

If I am grumpy, then I am hungry.

This sounds like a rather different contention, and a truth table confirms this suspi-
cion:

P Q P IMPLIES Q Q IMPLIES P

T T T T
T F F T
F T T F
F F T T

Thus, an implication is logically equivalent to its contrapositive but is not equiva-
lent to its converse.

One final relationship: an implication and its converse together are equivalent to
an iff statement. For example,

If I am grumpy, then I am hungry, AND

if I am hungry, then I am grumpy.

are equivalent to the single statement:

I am grumpy IFF I am hungry.

Once again, we can verify this with a truth table:

P Q .P IMPLIES Q/ .Q IMPLIES P / .P IMPLIES Q/ AND .Q IMPLIES P / P IFF Q

T T T T T T
T F F T F F
F T T F F F
F F T T T T

1.2 Propositional Logic in Computer Programs

Propositions and logical connectives arise all the time in computer programs. For
example, consider the following snippet, which could be either C, C++, or Java:

if (x > 0 || (x <= 0 && y > 100))
:::

(further instructions)

“mcs-ftl” — 2010/9/8 — 0:40 — page 11 — #17

1.3. Predicates and Quantifiers 11

The symbol || denotes “OR”, and the symbol && denotes “AND”. The further
instructions are carried out only if the proposition following the word if is true.
On closer inspection, this big expression is built from two simpler propositions.
Let A be the proposition that x > 0, and let B be the proposition that y > 100.
Then we can rewrite the condition “A OR .NOT.A/ AND B/”. A truth table reveals
that this complicated expression is logically equivalent to “A OR B”.

A B A OR .NOT.A/ AND B/ A OR B

T T T T
T F T T
F T T T
F F F F

This means that we can simplify the code snippet without changing the program’s
behavior:

if (x > 0 || y > 100)
:::

(further instructions)

Rewriting a logical expression involving many variables in the simplest form
is both difficult and important. Simplifying expressions in software can increase
the speed of your program. Chip designers face a similar challenge—instead of
minimizing && and || symbols in a program, their job is to minimize the number
of analogous physical devices on a chip. The payoff is potentially enormous: a chip
with fewer devices is smaller, consumes less power, has a lower defect rate, and is
cheaper to manufacture.

1.3 Predicates and Quantifiers

1.3.1 Propositions with Infinitely Many Cases

Most of the examples of propositions that we have considered thus far have been
straightforward in the sense that it has been relatively easy to determine if they
are true or false. At worse, there were only a few cases to check in a truth table.
Unfortunately, not all propositions are so easy to check. That is because some
propositions may involve a large or infinite number of possible cases. For example,
consider the following proposition involving prime numbers. (A prime is an integer
greater than 1 that is divisible only by itself and 1. For example, 2, 3, 5, 7, and 11

“mcs-ftl” — 2010/9/8 — 0:40 — page 12 — #18

Chapter 1 Propositions12

are primes, but 4, 6, and 9 are not. A number greater than 1 that is not prime is said
to be composite.)

Proposition 1.3.1. For every nonnegative integer, n, the value of n2 C n C 41 is
prime.

It is not immediately clear whether this proposition is true or false. In such
circumstances, it is tempting to try to determine its veracity by computing the value
of1

p.n/ WWD n2 C nC 41: (1.1)

for several values of n and then checking to see if they are prime. If any of the
computed values is not prime, then we will know that the proposition is false. If all
the computed values are indeed prime, then we might be tempted to conclude that
the proposition is true.

We begin the checking by evaluating p.0/ D 41, which is prime. p.1/ D 43 is
also prime. So is p.2/ D 47, p.3/ D 53, . . . , and p.20/ D 461, all of which are
prime. Hmmm. . . It is starting to look like p.n/ is a prime for every nonnegative
integer n. In fact, continued checking reveals that p.n/ is prime for all n � 39.
The proposition certainly does seem to be true.

But p.40/ D 402 C 40 C 41 D 41 � 41, which is not prime. So it’s not true
that the expression is prime for all nonnegative integers, and thus the proposition is
false!

Although surprising, this example is not as contrived or rare as you might sus-
pect. As we will soon see, there are many examples of propositions that seem to be
true when you check a few cases (or even many), but which turn out to be false. The
key to remember is that you can’t check a claim about an infinite set by checking a
finite set of its elements, no matter how large the finite set.

Propositions that involve all numbers are so common that there is a special no-
tation for them. For example, Proposition 1.3.1 can also be written as

8n 2 N: p.n/ is prime: (1.2)

Here the symbol 8 is read “for all”. The symbol N stands for the set of nonnegative
integers, namely, 0, 1, 2, 3, . . . (ask your instructor for the complete list). The
symbol “2” is read as “is a member of,” or “belongs to,” or simply as “is in”. The
period after the N is just a separator between phrases.

Here is another example of a proposition that, at first, seems to be true but which
turns out to be false.

1The symbol WWD means “equal by definition.” It’s always ok to simply write “=” instead of WWD,
but reminding the reader that an equality holds by definition can be helpful.

“mcs-ftl” — 2010/9/8 — 0:40 — page 13 — #19

1.3. Predicates and Quantifiers 13

Proposition 1.3.2. a4Cb4C c4 D d4 has no solution when a; b; c; d are positive
integers.

Euler (pronounced “oiler”) conjectured this proposition to be true in 1769. It
was checked by humans and then by computers for many values of a, b, c, and d
over the next two centuries. Ultimately the proposition was proven false in 1987
by Noam Elkies. The solution he found was a D 95800; b D 217519; c D

414560; d D 422481. No wonder it took 218 years to show the proposition is
false!

In logical notation, Proposition 1.3.2 could be written,

8a 2 ZC 8b 2 ZC 8c 2 ZC 8d 2 ZC: a4 C b4 C c4 ¤ d4:

Here, ZC is a symbol for the positive integers. Strings of 8’s are usually abbrevi-
ated for easier reading, as follows:

8a; b; c; d 2 ZC: a4 C b4 C c4 ¤ d4:

The following proposition is even nastier.

Proposition 1.3.3. 313.x3 C y3/ D z3 has no solution when x; y; z 2 ZC.

This proposition is also false, but the smallest counterexample values for x, y,
and z have more than 1000 digits! Even the world’s largest computers would not be
able to get that far with brute force. Of course, you may be wondering why anyone
would care whether or not there is a solution to 313.x3 C y3/ D z3 where x, y,
and z are positive integers. It turns out that finding solutions to such equations is
important in the field of elliptic curves, which turns out to be important to the study
of factoring large integers, which turns out (as we will see in Chapter 4) to be im-
portant in cracking commonly-used cryptosystems, which is why mathematicians
went to the effort to find the solution with thousands of digits.

Of course, not all propositions that have infinitely many cases to check turn out
to be false. The following proposition (known as the “Four-Color Theorem”) turns
out to be true.

Proposition 1.3.4. Every map can be colored with 4 colors so that adjacent2 re-
gions have different colors.

The proof of this proposition is difficult and took over a century to perfect. Along
the way, many incorrect proofs were proposed, including one that stood for 10 years

2Two regions are adjacent only when they share a boundary segment of positive length. They are
not considered to be adjacent if their boundaries meet only at a few points.

“mcs-ftl” — 2010/9/8 — 0:40 — page 14 — #20

Chapter 1 Propositions14

in the late 19th century before the mistake was found. An extremely laborious
proof was finally found in 1976 by mathematicians Appel and Haken, who used a
complex computer program to categorize the four-colorable maps; the program left
a few thousand maps uncategorized, and these were checked by hand by Haken and
his assistants—including his 15-year-old daughter. There was a lot of debate about
whether this was a legitimate proof: the proof was too big to be checked without a
computer, and no one could guarantee that the computer calculated correctly, nor
did anyone have the energy to recheck the four-colorings of the thousands of maps
that were done by hand. Within the past decade, a mostly intelligible proof of the
Four-Color Theorem was found, though a computer is still needed to check the
colorability of several hundred special maps.3

In some cases, we do not know whether or not a proposition is true. For exam-
ple, the following simple proposition (known as Goldbach’s Conjecture) has been
heavily studied since 1742 but we still do not know if it is true. Of course, it has
been checked by computer for many values of n, but as we have seen, that is not
sufficient to conclude that it is true.

Proposition 1.3.5 (Goldbach). Every even integer n greater than 2 is the sum of
two primes.

While the preceding propositions are important in mathematics, computer scien-
tists are often interested in propositions concerning the “correctness” of programs
and systems, to determine whether a program or system does what it’s supposed
to do. Programs are notoriously buggy, and there’s a growing community of re-
searchers and practitioners trying to find ways to prove program correctness. These
efforts have been successful enough in the case of CPU chips that they are now
routinely used by leading chip manufacturers to prove chip correctness and avoid
mistakes like the notorious Intel division bug in the 1990’s.

Developing mathematical methods to verify programs and systems remains an
active research area. We’ll consider some of these methods later in the text.

1.3.2 Predicates

A predicate is a proposition whose truth depends on the value of one or more vari-
ables. Most of the propositions above were defined in terms of predicates. For
example,

“n is a perfect square”

3See http://www.math.gatech.edu/˜thomas/FC/fourcolor.html
The story of the Four-Color Proof is told in a well-reviewed popular (non-technical) book: “Four

Colors Suffice. How the Map Problem was Solved.” Robin Wilson. Princeton Univ. Press, 2003,
276pp. ISBN 0-691-11533-8.

http://www.math.gatech.edu/~thomas/FC/fourcolor.html

“mcs-ftl” — 2010/9/8 — 0:40 — page 15 — #21

1.3. Predicates and Quantifiers 15

is a predicate whose truth depends on the value of n. The predicate is true for n D 4
since four is a perfect square, but false for n D 5 since five is not a perfect square.

Like other propositions, predicates are often named with a letter. Furthermore, a
function-like notation is used to denote a predicate supplied with specific variable
values. For example, we might name our earlier predicate P :

P.n/ WWD “n is a perfect square”

Now P.4/ is true, and P.5/ is false.
This notation for predicates is confusingly similar to ordinary function notation.

If P is a predicate, then P.n/ is either true or false, depending on the value of n.
On the other hand, if p is an ordinary function, like n2Cn, then p.n/ is a numerical
quantity. Don’t confuse these two!

1.3.3 Quantifiers

There are a couple of assertions commonly made about a predicate: that it is some-
times true and that it is always true. For example, the predicate

“x2 � 0”

is always true when x is a real number. On the other hand, the predicate

“5x2 � 7 D 0”

is only sometimes true; specifically, when x D ˙
p
7=5.

There are several ways to express the notions of “always true” and “sometimes
true” in English. The table below gives some general formats on the left and specific
examples using those formats on the right. You can expect to see such phrases
hundreds of times in mathematical writing!

Always True

For all n, P.n/ is true. For all x 2 R, x2 � 0.
P.n/ is true for every n. x2 � 0 for every x 2 R.

Sometimes True

There exists an n such that P.n/ is true. There exists an x 2 R such that 5x2 � 7 D 0.
P.n/ is true for some n. 5x2 � 7 D 0 for some x 2 R.
P.n/ is true for at least one n. 5x2 � 7 D 0 for at least one x 2 R.

All these sentences quantify how often the predicate is true. Specifically, an
assertion that a predicate is always true, is called a universally quantified statement.

“mcs-ftl” — 2010/9/8 — 0:40 — page 16 — #22

Chapter 1 Propositions16

An assertion that a predicate is sometimes true, is called an existentially quantified
statement.

Sometimes English sentences are unclear about quantification:

“If you can solve any problem we come up with, then you get an A for the course.”

The phrase “you can solve any problem we can come up with” could reasonably be
interpreted as either a universal or existential statement. It might mean:

“You can solve every problem we come up with,”

or maybe

“You can solve at least one problem we come up with.”

In the preceding example, the quantified phrase appears inside a larger if-then
statement. This is quite normal; quantified statements are themselves propositions
and can be combined with AND, OR, IMPLIES, etc., just like any other proposition.

1.3.4 More Notation

There are symbols to represent universal and existential quantification, just as there
are symbols for “AND” (^), “IMPLIES” (�!), and so forth. In particular, to say
that a predicate, P.x/, is true for all values of x in some set, D, we write:

8x 2 D: P.x/ (1.3)

The universal quantifier symbol 8 is read “for all,” so this whole expression (1.3)
is read “For all x in D, P.x/ is true.” Remember that upside-down “A” stands for
“All.”

To say that a predicate P.x/ is true for at least one value of x in D, we write:

9x 2 D: P.x/ (1.4)

The existential quantifier symbol 9, is read “there exists.” So expression (1.4) is
read, “There exists an x in D such that P.x/ is true.” Remember that backward
“E” stands for “Exists.”

The symbols 8 and 9 are always followed by a variable—typically with an in-
dication of the set the variable ranges over—and then a predicate, as in the two
examples above.

As an example, let Probs be the set of problems we come up with, Solves.x/ be
the predicate “You can solve problem x”, and G be the proposition, “You get an A
for the course.” Then the two different interpretations of

“mcs-ftl” — 2010/9/8 — 0:40 — page 17 — #23

1.3. Predicates and Quantifiers 17

“If you can solve any problem we come up with, then you get an A for
the course.”

can be written as follows:

.8x 2 Probs: Solves.x// IMPLIES G;

or maybe
.9x 2 Probs: Solves.x// IMPLIES G:

1.3.5 Mixing Quantifiers

Many mathematical statements involve several quantifiers. For example, Gold-
bach’s Conjecture states:

“Every even integer greater than 2 is the sum of two primes.”

Let’s write this more verbosely to make the use of quantification clearer:

For every even integer n greater than 2, there exist primes p and q such
that n D p C q.

Let Evens be the set of even integers greater than 2, and let Primes be the set of
primes. Then we can write Goldbach’s Conjecture in logic notation as follows:

8n 2 Evens:„ ƒ‚ …
for every even
integer n > 2

9p 2 Primes 9q 2 Primes:„ ƒ‚ …
there exist primes
p and q such that

n D p C q:

The proposition can also be written more simply as

8n 2 Evens: 9p; q 2 Primes: p C q D n:

1.3.6 Order of Quantifiers

Swapping the order of different kinds of quantifiers (existential or universal) usually
changes the meaning of a proposition. For example, let’s return to one of our initial,
confusing statements:

“Every American has a dream.”

This sentence is ambiguous because the order of quantifiers is unclear. Let A be
the set of Americans, let D be the set of dreams, and define the predicate H.a; d/
to be “American a has dream d .” Now the sentence could mean that there is a
single dream that every American shares:

9 d 2 D:8a 2 A: H.a; d/

“mcs-ftl” — 2010/9/8 — 0:40 — page 18 — #24

Chapter 1 Propositions18

For example, it might be that every American shares the dream of owning their own
home.

Or it could mean that every American has a personal dream:

8a 2 A: 9 d 2 D: H.a; d/

For example, some Americans may dream of a peaceful retirement, while others
dream of continuing practicing their profession as long as they live, and still others
may dream of being so rich they needn’t think at all about work.

Swapping quantifiers in Goldbach’s Conjecture creates a patently false state-
ment; namely that every even number � 2 is the sum of the same two primes:

9p; q 2 Primes:„ ƒ‚ …
there exist primes
p and q such that

8n 2 Evens:„ ƒ‚ …
for every even
integer n > 2

n D p C q:

1.3.7 Variables Over One Domain

When all the variables in a formula are understood to take values from the same
nonempty set, D, it’s conventional to omit mention of D. For example, instead of
8x 2 D 9y 2 D: Q.x; y/ we’d write 8x9y: Q.x; y/. The unnamed nonempty
set that x and y range over is called the domain of discourse, or just plain domain,
of the formula.

It’s easy to arrange for all the variables to range over one domain. For exam-
ple, Goldbach’s Conjecture could be expressed with all variables ranging over the
domain N as

8n: .n 2 Evens/ IMPLIES .9p 9q: p 2 Primes AND q 2 Primes AND n D pC q/:

1.3.8 Negating Quantifiers

There is a simple relationship between the two kinds of quantifiers. The following
two sentences mean the same thing:

It is not the case that everyone likes to snowboard.

There exists someone who does not like to snowboard.

In terms of logic notation, this follows from a general property of predicate formu-
las:

NOT .8x: P.x// is equivalent to 9x: NOT.P.x//:

Similarly, these sentences mean the same thing:

“mcs-ftl” — 2010/9/8 — 0:40 — page 19 — #25

1.4. Validity 19

There does not exist anyone who likes skiing over magma.

Everyone dislikes skiing over magma.

We can express the equivalence in logic notation this way:

NOT .9x: P.x// IFF 8x: NOT.P.x//: (1.5)

The general principle is that moving a “not” across a quantifier changes the kind
of quantifier.

1.4 Validity

A propositional formula is called valid when it evaluates to T no matter what truth
values are assigned to the individual propositional variables. For example, the
propositional version of the Distributive Law is that P AND .Q OR R/ is equiv-
alent to .P AND Q/ OR .P AND R/. This is the same as saying that

ŒP AND .Q OR R/� IFF Œ.P AND Q/ OR .P AND R/� (1.6)

is valid. This can be verified by checking the truth table for P AND .Q OR R/ and
.P AND Q/ OR .P AND R/:

P Q R P AND .Q OR R/ .P AND Q/ OR .P AND R/

T T T T T
T T F T T
T F T T T
T F F F F
F T T F F
F T F F F
F F T F F
F F F F F

The same idea extends to predicate formulas, but to be valid, a formula now must
evaluate to true no matter what values its variables may take over any unspecified
domain, and no matter what interpretation a predicate variable may be given. For
example, we already observed that the rule for negating a quantifier is captured by
the valid assertion (1.5).

Another useful example of a valid assertion is

9x8y: P.x; y/ IMPLIES 8y9x: P.x; y/: (1.7)

Here’s an explanation why this is valid:

“mcs-ftl” — 2010/9/8 — 0:40 — page 20 — #26

Chapter 1 Propositions20

Let D be the domain for the variables and P0 be some binary predi-
cate4 on D. We need to show that if

9x 2 D 8y 2 D: P0.x; y/ (1.8)

holds under this interpretation, then so does

8y 2 D 9x 2 D: P0.x; y/: (1.9)

So suppose (1.8) is true. Then by definition of 9, this means that some
element d0 2 D has the property that

8y 2 D:P0.d0; y/:

By definition of 8, this means that

P0.d0; d /

is true for all d 2 D. So given any d 2 D, there is an element in D,
namely, d0, such that P0.d0; d / is true. But that’s exactly what (1.9)
means, so we’ve proved that (1.9) holds under this interpretation, as
required.

We hope this is helpful as an explanation, although purists would not really want
to call it a “proof.” The problem is that with something as basic as (1.7), it’s hard to
see what more elementary axioms are ok to use in proving it. What the explanation
above did was translate the logical formula (1.7) into English and then appeal to
the meaning, in English, of “for all” and “there exists” as justification.

In contrast to (1.7), the formula

8y9x: P.x; y/ IMPLIES 9x8y: P.x; y/: (1.10)

is not valid. We can prove this by describing an interpretation where the hypoth-
esis, 8y9x: P.x; y/, is true but the conclusion, 9x8y: P.x; y/, is not true. For
example, let the domain be the integers and P.x; y/mean x > y. Then the hypoth-
esis would be true because, given a value, n, for y we could, for example, choose
the value of x to be n C 1. But under this interpretation the conclusion asserts
that there is an integer that is bigger than all integers, which is certainly false. An
interpretation like this which falsifies an assertion is called a counter model to the
assertion.

4That is, a predicate that depends on two variables.

“mcs-ftl” — 2010/9/8 — 0:40 — page 21 — #27

1.5. Satisfiability 21

1.5 Satisfiability

A proposition is satisfiable if some setting of the variables makes the proposition
true. For example, P ANDQ is satisfiable because the expression is true if P is true
orQ is false. On the other hand, P ANDP is not satisfiable because the expression
as a whole is false for both settings of P . But determining whether or not a more
complicated proposition is satisfiable is not so easy. How about this one?

.P OR Q OR R/ AND .P OR Q/ AND .P OR R/ AND .R OR Q/

The general problem of deciding whether a proposition is satisfiable is called
SAT. One approach to SAT is to construct a truth table and check whether or not
a T ever appears. But this approach is not very efficient; a proposition with n
variables has a truth table with 2n lines, so the effort required to decide about a
proposition grows exponentially with the number of variables. For a proposition
with just 30 variables, that’s already over a billion lines to check!

Is there a more efficient solution to SAT? In particular, is there some, presum-
ably very ingenious, procedure that determines in a number of steps that grows
polynomially—like n2 or n14—instead of exponentially, whether any given propo-
sition is satisfiable or not? No one knows. And an awful lot hangs on the answer.
An efficient solution to SAT would immediately imply efficient solutions to many,
many other important problems involving packing, scheduling, routing, and cir-
cuit verification, among other things. This would be wonderful, but there would
also be worldwide chaos. Decrypting coded messages would also become an easy
task (for most codes). Online financial transactions would be insecure and secret
communications could be read by everyone.

Recently there has been exciting progress on sat-solvers for practical applica-
tions like digital circuit verification. These programs find satisfying assignments
with amazing efficiency even for formulas with millions of variables. Unfortu-
nately, it’s hard to predict which kind of formulas are amenable to sat-solver meth-
ods, and for formulas that are NOT satisfiable, sat-solvers generally take exponen-
tial time to verify that.

So no one has a good idea how to solve SAT in polynomial time, or how to
prove that it can’t be done—researchers are completely stuck. The problem of
determining whether or not SAT has a polynomial time solution is known as the “P
vs. NP” problem. It is the outstanding unanswered question in theoretical computer
science. It is also one of the seven Millenium Problems: the Clay Institute will
award you $1,000,000 if you solve the P vs. NP problem.

http://www.claymath.org/millennium/

“mcs-ftl” — 2010/9/8 — 0:40 — page 22 — #28

“mcs-ftl” — 2010/9/8 — 0:40 — page 23 — #29

2 Patterns of Proof

2.1 The Axiomatic Method

The standard procedure for establishing truth in mathematics was invented by Eu-
clid, a mathematician working in Alexandria, Egypt around 300 BC. His idea was
to begin with five assumptions about geometry, which seemed undeniable based on
direct experience. For example, one of the assumptions was “There is a straight
line segment between every pair of points.” Propositions like these that are simply
accepted as true are called axioms.

Starting from these axioms, Euclid established the truth of many additional propo-
sitions by providing “proofs”. A proof is a sequence of logical deductions from
axioms and previously-proved statements that concludes with the proposition in
question. You probably wrote many proofs in high school geometry class, and
you’ll see a lot more in this course.

There are several common terms for a proposition that has been proved. The
different terms hint at the role of the proposition within a larger body of work.

� Important propositions are called theorems.

� A lemma is a preliminary proposition useful for proving later propositions.

� A corollary is a proposition that follows in just a few logical steps from a
lemma or a theorem.

The definitions are not precise. In fact, sometimes a good lemma turns out to be far
more important than the theorem it was originally used to prove.

Euclid’s axiom-and-proof approach, now called the axiomatic method, is the
foundation for mathematics today. In fact, just a handful of axioms, collectively
called Zermelo-Frankel Set Theory with Choice (ZFC), together with a few logical
deduction rules, appear to be sufficient to derive essentially all of mathematics.

2.1.1 Our Axioms

The ZFC axioms are important in studying and justifying the foundations of math-
ematics, but for practical purposes, they are much too primitive. Proving theorems
in ZFC is a little like writing programs in byte code instead of a full-fledged pro-
gramming language—by one reckoning, a formal proof in ZFC that 2 C 2 D 4

requires more than 20,000 steps! So instead of starting with ZFC, we’re going to

“mcs-ftl” — 2010/9/8 — 0:40 — page 24 — #30

Chapter 2 Patterns of Proof24

take a huge set of axioms as our foundation: we’ll accept all familiar facts from
high school math!

This will give us a quick launch, but you may find this imprecise specification of
the axioms troubling at times. For example, in the midst of a proof, you may find
yourself wondering, “Must I prove this little fact or can I take it as an axiom?” Feel
free to ask for guidance, but really there is no absolute answer. Just be up front
about what you’re assuming, and don’t try to evade homework and exam problems
by declaring everything an axiom!

2.1.2 Logical Deductions

Logical deductions or inference rules are used to prove new propositions using
previously proved ones.

A fundamental inference rule is modus ponens. This rule says that a proof of P
together with a proof that P IMPLIES Q is a proof of Q.

Inference rules are sometimes written in a funny notation. For example, modus
ponens is written:

Rule 2.1.1.
P; P IMPLIES Q

Q

When the statements above the line, called the antecedents, are proved, then we
can consider the statement below the line, called the conclusion or consequent, to
also be proved.

A key requirement of an inference rule is that it must be sound: any assignment
of truth values that makes all the antecedents true must also make the consequent
true. So if we start off with true axioms and apply sound inference rules, everything
we prove will also be true.

You can see why modus ponens is a sound inference rule by checking the truth
table of P IMPLIES Q. There is only one case where P and P IMPLIES Q are
both true, and in that case Q is also true.

P Q P �! Q

F F T
F T T
T F F
T T T

There are many other natural, sound inference rules, for example:

“mcs-ftl” — 2010/9/8 — 0:40 — page 25 — #31

2.1. The Axiomatic Method 25

Rule 2.1.2.
P IMPLIES Q; Q IMPLIES R

P IMPLIES R

Rule 2.1.3.
P IMPLIES Q; NOT.Q/

NOT.P /

Rule 2.1.4.
NOT.P / IMPLIES NOT.Q/

Q IMPLIES P

On the other hand,

Non-Rule.
NOT.P / IMPLIES NOT.Q/

P IMPLIES Q

is not sound: if P is assigned T and Q is assigned F, then the antecedent is true
and the consequent is not.

Note that a propositional inference rule is sound precisely when the conjunction
(AND) of all its antecedents implies its consequent.

As with axioms, we will not be too formal about the set of legal inference rules.
Each step in a proof should be clear and “logical”; in particular, you should state
what previously proved facts are used to derive each new conclusion.

2.1.3 Proof Templates

In principle, a proof can be any sequence of logical deductions from axioms and
previously proved statements that concludes with the proposition in question. This
freedom in constructing a proof can seem overwhelming at first. How do you even
start a proof?

Here’s the good news: many proofs follow one of a handful of standard tem-
plates. Each proof has it own details, of course, but these templates at least provide
you with an outline to fill in. In the remainder of this chapter, we’ll go through
several of these standard patterns, pointing out the basic idea and common pitfalls
and giving some examples. Many of these templates fit together; one may give you
a top-level outline while others help you at the next level of detail. And we’ll show
you other, more sophisticated proof techniques in Chapter 3.

The recipes that follow are very specific at times, telling you exactly which words
to write down on your piece of paper. You’re certainly free to say things your own
way instead; we’re just giving you something you could say so that you’re never at
a complete loss.

“mcs-ftl” — 2010/9/8 — 0:40 — page 26 — #32

Chapter 2 Patterns of Proof26

2.2 Proof by Cases

Breaking a complicated proof into cases and proving each case separately is a use-
ful and common proof strategy. In fact, we have already implicitly used this strategy
when we used truth tables to show that certain propositions were true or valid. For
example, in section 1.1.5, we showed that an implication P IMPLIES Q is equiv-
alent to its contrapositive NOT.Q/ IMPLIES NOT.P / by considering all 4 possible
assignments of T or F to P and Q. In each of the four cases, we showed that
P IMPLIES Q is true if and only if NOT.Q/ IMPLIES NOT.P / is true. For exam-
ple, if P D T andQ D F, then both P IMPLIES Q and NOT.Q/ IMPLIES NOT.P /

are false, thereby establishing that .P IMPLIES Q/IFF.NOT.Q/ IMPLIES NOT.P //

is true for this case. If a proposition is true in every possible case, then it is true.
Proof by cases works in much more general environments than propositions in-

volving Boolean variables. In what follows, we will use this approach to prove a
simple fact about acquaintances. As background, we will assume that for any pair
of people, either they have met or not. If every pair of people in a group has met,
we’ll call the group a club. If every pair of people in a group has not met, we’ll call
it a group of strangers.

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3
strangers.

Proof. The proof is by case analysis1. Let x denote one of the six people. There
are two cases:

1. Among the other 5 people besides x, at least 3 have met x.

2. Among the other 5 people, at least 3 have not met x.

Now we have to be sure that at least one of these two cases must hold,2 but that’s
easy: we’ve split the 5 people into two groups, those who have shaken hands with
x and those who have not, so one of the groups must have at least half the people.

Case 1: Suppose that at least 3 people have met x.
This case splits into two subcases:

1Describing your approach at the outset helps orient the reader. Try to remember to always do
this.

2Part of a case analysis argument is showing that you’ve covered all the cases. Often this is
obvious, because the two cases are of the form “P ” and “not P ”. However, the situation above is not
stated quite so simply.

“mcs-ftl” — 2010/9/8 — 0:40 — page 27 — #33

2.3. Proving an Implication 27

Case 1.1: Among the people who have met x, none have met each
other. Then the people who have met x are a group of at least 3
strangers. So the Theorem holds in this subcase.

Case 1.2: Among the people who have met x, some pair have met
each other. Then that pair, together with x, form a club of 3 people.
So the Theorem holds in this subcase.

This implies that the Theorem holds in Case 1.
Case 2: Suppose that at least 3 people have not met x.
This case also splits into two subcases:

Case 2.1: Among the people who have not met x, every pair has met
each other. Then the people who have not met x are a club of at least
3 people. So the Theorem holds in this subcase.

Case 2.2: Among the people who have not met x, some pair have not
met each other. Then that pair, together with x, form a group of at least
3 strangers. So the Theorem holds in this subcase.

This implies that the Theorem also holds in Case 2, and therefore holds in all cases.
�

2.3 Proving an Implication

Propositions of the form “If P , then Q” are called implications. This implication
is often rephrased as “P IMPLIES Q” or “P �! Q”.

Here are some examples of implications:

� (Quadratic Formula) If ax2 C bx C c D 0 and a ¤ 0, then

x D
�b ˙

p
b2 � 4ac

2a
:

� (Goldbach’s Conjecture) If n is an even integer greater than 2, then n is a
sum of two primes.

� If 0 � x � 2, then �x3 C 4x C 1 > 0.

There are a couple of standard methods for proving an implication.

“mcs-ftl” — 2010/9/8 — 0:40 — page 28 — #34

Chapter 2 Patterns of Proof28

2.3.1 Method #1: Assume P is true

When proving P IMPLIES Q, there are two cases to consider: P is true and P is
false. The case when P is false is easy since, by definition, F IMPLIES Q is true
no matter what Q is. This case is so easy that we usually just forget about it and
start right off by assuming that P is true when proving an implication, since this is
the only case that is interesting. Hence, in order to prove that P IMPLIES Q:

1. Write, “Assume P .”

2. Show that Q logically follows.

For example, we will use this method to prove

Theorem 2.3.1. If 0 � x � 2, then �x3 C 4x C 1 > 0.

Before we write a proof of this theorem, we have to do some scratchwork to
figure out why it is true.

The inequality certainly holds for x D 0; then the left side is equal to 1 and
1 > 0. As x grows, the 4x term (which is positive) initially seems to have greater
magnitude than �x3 (which is negative). For example, when x D 1, we have
4x D 4, but �x3 D �1. In fact, it looks like �x3 doesn’t begin to dominate 4x
until x > 2. So it seems the �x3C4x part should be nonnegative for all x between
0 and 2, which would imply that �x3 C 4x C 1 is positive.

So far, so good. But we still have to replace all those “seems like” phrases with
solid, logical arguments. We can get a better handle on the critical �x3 C 4x part
by factoring it, which is not too hard:

�x3 C 4x D x.2 � x/.2C x/

Aha! For x between 0 and 2, all of the terms on the right side are nonnegative. And
a product of nonnegative terms is also nonnegative. Let’s organize this blizzard of
observations into a clean proof.

Proof. Assume 0 � x � 2. Then x, 2�x, and 2Cx are all nonnegative. Therefore,
the product of these terms is also nonnegative. Adding 1 to this product gives a
positive number, so:

x.2 � x/.2C x/C 1 > 0

Multiplying out on the left side proves that

�x3 C 4x C 1 > 0

as claimed. �

“mcs-ftl” — 2010/9/8 — 0:40 — page 29 — #35

2.3. Proving an Implication 29

There are a couple points here that apply to all proofs:

� You’ll often need to do some scratchwork while you’re trying to figure out
the logical steps of a proof. Your scratchwork can be as disorganized as you
like—full of dead-ends, strange diagrams, obscene words, whatever. But
keep your scratchwork separate from your final proof, which should be clear
and concise.

� Proofs typically begin with the word “Proof” and end with some sort of
doohickey like� or� or “q.e.d”. The only purpose for these conventions is
to clarify where proofs begin and end.

Potential Pitfall

For the purpose of proving an implication P IMPLIES Q, it’s OK, and typical, to
begin by assuming P . But when the proof is over, it’s no longer OK to assume that
P holds! For example, Theorem 2.3.1 has the form “if P , then Q” with P being
“0 � x � 2” and Q being “�x3 C 4x C 1 > 0,” and its proof began by assuming
that 0 � x � 2. But of course this assumption does not always hold. Indeed, if
you were going to prove another result using the variable x, it could be disastrous
to have a step where you assume that 0 � x � 2 just because you assumed it as
part of the proof of Theorem 2.3.1.

2.3.2 Method #2: Prove the Contrapositive

We have already seen that an implication “P IMPLIES Q” is logically equivalent
to its contrapositive

NOT.Q/ IMPLIES NOT.P /:

Proving one is as good as proving the other, and proving the contrapositive is some-
times easier than proving the original statement. Hence, you can proceed as fol-
lows:

1. Write, “We prove the contrapositive:” and then state the contrapositive.

2. Proceed as in Method #1.

For example, we can use this approach to prove

Theorem 2.3.2. If r is irrational, then
p
r is also irrational.

Recall that rational numbers are equal to a ratio of integers and irrational num-
bers are not. So we must show that if r is not a ratio of integers, then

p
r is also

not a ratio of integers. That’s pretty convoluted! We can eliminate both not’s and
make the proof straightforward by considering the contrapositive instead.

“mcs-ftl” — 2010/9/8 — 0:40 — page 30 — #36

Chapter 2 Patterns of Proof30

Proof. We prove the contrapositive: if
p
r is rational, then r is rational.

Assume that
p
r is rational. Then there exist integers a and b such that:

p
r D

a

b

Squaring both sides gives:

r D
a2

b2

Since a2 and b2 are integers, r is also rational. �

2.4 Proving an “If and Only If”

Many mathematical theorems assert that two statements are logically equivalent;
that is, one holds if and only if the other does. Here is an example that has been
known for several thousand years:

Two triangles have the same side lengths if and only if two side lengths
and the angle between those sides are the same in each triangle.

The phrase “if and only if” comes up so often that it is often abbreviated “iff”.

2.4.1 Method #1: Prove Each Statement Implies the Other

The statement “P IFF Q” is equivalent to the two statements “P IMPLIES Q” and
“Q IMPLIES P ”. So you can prove an “iff” by proving two implications:

1. Write, “We prove P implies Q and vice-versa.”

2. Write, “First, we show P implies Q.” Do this by one of the methods in
Section 2.3.

3. Write, “Now, we show Q implies P .” Again, do this by one of the methods
in Section 2.3.

2.4.2 Method #2: Construct a Chain of IFFs

In order to prove that P is true iff Q is true:

1. Write, “We construct a chain of if-and-only-if implications.”

2. Prove P is equivalent to a second statement which is equivalent to a third
statement and so forth until you reach Q.

“mcs-ftl” — 2010/9/8 — 0:40 — page 31 — #37

2.4. Proving an “If and Only If” 31

This method sometimes requires more ingenuity than the first, but the result can be
a short, elegant proof, as we see in the following example.

Theorem 2.4.1. The standard deviation of a sequence of values x1; : : : ; xn is zero
iff all the values are equal to the mean.

Definition. The standard deviation of a sequence of values x1; x2; : : : ; xn is de-
fined to be: s

.x1 � �/2 C .x2 � �/2 C � � � C .xn � �/2

n
(2.1)

where � is the mean of the values:

� WWD
x1 C x2 C � � � C xn

n

As an example, Theorem 2.4.1 says that the standard deviation of test scores is
zero if and only if everyone scored exactly the class average. (We will talk a lot
more about means and standard deviations in Part IV of the book.)

Proof. We construct a chain of “iff” implications, starting with the statement that
the standard deviation (2.1) is zero:s

.x1 � �/2 C .x2 � �/2 C � � � C .xn � �/2

n
D 0: (2.2)

Since zero is the only number whose square root is zero, equation (2.2) holds iff

.x1 � �/
2
C .x2 � �/

2
C � � � C .xn � �/

2
D 0: (2.3)

Squares of real numbers are always nonnegative, and so every term on the left hand
side of equation (2.3) is nonnegative. This means that (2.3) holds iff

Every term on the left hand side of (2.3) is zero. (2.4)

But a term .xi � �/
2 is zero iff xi D �, so (2.4) is true iff

Every xi equals the mean.

�

“mcs-ftl” — 2010/9/8 — 0:40 — page 32 — #38

Chapter 2 Patterns of Proof32

2.5 Proof by Contradiction

In a proof by contradiction or indirect proof, you show that if a proposition were
false, then some false fact would be true. Since a false fact can’t be true, the propo-
sition had better not be false. That is, the proposition really must be true.

Proof by contradiction is always a viable approach. However, as the name sug-
gests, indirect proofs can be a little convoluted. So direct proofs are generally
preferable as a matter of clarity.

Method: In order to prove a proposition P by contradiction:

1. Write, “We use proof by contradiction.”

2. Write, “Suppose P is false.”

3. Deduce something known to be false (a logical contradiction).

4. Write, “This is a contradiction. Therefore, P must be true.”

As an example, we will use proof by contradiction to prove that
p
2 is irrational.

Recall that a number is rational if it is equal to a ratio of integers. For example,
3:5 D 7=2 and 0:1111 � � � D 1=9 are rational numbers.

Theorem 2.5.1.
p
2 is irrational.

Proof. We use proof by contradiction. Suppose the claim is false; that is,
p
2 is

rational. Then we can write
p
2 as a fraction n=d where n and d are positive

integers. Furthermore, let’s take n and d so that n=d is in lowest terms (that is, so
that there is no number greater than 1 that divides both n and d).

Squaring both sides gives 2 D n2=d2 and so 2d2 D n2. This implies that n is a
multiple of 2. Therefore n2 must be a multiple of 4. But since 2d2 D n2, we know
2d2 is a multiple of 4 and so d2 is a multiple of 2. This implies that d is a multiple
of 2.

So the numerator and denominator have 2 as a common factor, which contradicts
the fact that n=d is in lowest terms. So

p
2 must be irrational. �

Potential Pitfall

A proof of a proposition P by contradiction is really the same as proving the impli-
cation T IMPLIES P by contrapositive. Indeed, the contrapositive of T IMPLIES P

is NOT.P / IMPLIES F. As we saw in Section 2.3.2, such a proof would be begin
by assuming NOT.P / in an effort to derive a falsehood, just as you do in a proof by
contradiction.

“mcs-ftl” — 2010/9/8 — 0:40 — page 33 — #39

2.6. Proofs about Sets 33

No matter how you think about it, it is important to remember that when you
start by assuming NOT.P /, you will derive conclusions along the way that are not
necessarily true. (Indeed, the whole point of the method is to derive a falsehood.)
This means that you cannot rely on intermediate results after a proof by contradic-
tion is completed (for example, that n is even after the proof of Theorem 2.5.1).
There was not much risk of that happening in the proof of Theorem 2.5.1, but when
you are doing more complicated proofs that build up from several lemmas, some of
which utilize a proof by contradiction, it will be important to keep track of which
propositions only follow from a (false) assumption in a proof by contradiction.

2.6 Proofs about Sets

Sets are simple, flexible, and everywhere. You will find some set mentioned in
nearly every section of this text. In fact, we have already talked about a lot of sets:
the set of integers, the set of real numbers, and the set of positive even numbers, to
name a few.

In this section, we’ll see how to prove basic facts about sets. We’ll start with
some definitions just to make sure that you know the terminology and that you are
comfortable working with sets.

2.6.1 Definitions

Informally, a set is a bunch of objects, which are called the elements of the set.
The elements of a set can be just about anything: numbers, points in space, or even
other sets. The conventional way to write down a set is to list the elements inside
curly-braces. For example, here are some sets:

A D fAlex;Tippy;Shells;Shadowg dead pets
B D fred; blue; yellowg primary colors
C D ffa; bg; fa; cg; fb; cgg a set of sets

This works fine for small finite sets. Other sets might be defined by indicating how
to generate a list of them:

D D f1; 2; 4; 8; 16; : : : g the powers of 2

The order of elements is not significant, so fx; yg and fy; xg are the same set
written two different ways. Also, any object is, or is not, an element of a given

“mcs-ftl” — 2010/9/8 — 0:40 — page 34 — #40

Chapter 2 Patterns of Proof34

set—there is no notion of an element appearing more than once in a set.3 So writ-
ing fx; xg is just indicating the same thing twice, namely, that x is in the set. In
particular, fx; xg D fxg.

The expression e 2 S asserts that e is an element of set S . For example, 32 2 D
and blue 2 B , but Tailspin 62 A—yet.

Some Popular Sets

Mathematicians have devised special symbols to represent some common sets.

symbol set elements
; the empty set none
N nonnegative integers f0; 1; 2; 3; : : :g

Z integers f: : : ;�3;�2;�1; 0; 1; 2; 3; : : :g

Q rational numbers 1
2
; �5

3
; 16; etc.

R real numbers �; e; �9;
p
2; etc.

C complex numbers i; 19
2
;
p
2 � 2i; etc.

A superscript “C” restricts a set to its positive elements; for example, RC denotes
the set of positive real numbers. Similarly, R� denotes the set of negative reals.

Comparing and Combining Sets

The expression S � T indicates that set S is a subset of set T , which means that
every element of S is also an element of T (it could be that S D T). For example,
N � Z and Q � R (every rational number is a real number), but C 6� Z (not every
complex number is an integer).

As a memory trick, notice that the � points to the smaller set, just like a � sign
points to the smaller number. Actually, this connection goes a little further: there
is a symbol � analogous to <. Thus, S � T means that S is a subset of T , but the
two are not equal. So A � A, but A 6� A, for every set A.

There are several ways to combine sets. Let’s define a couple of sets for use in
examples:

X WWD f1; 2; 3g

Y WWD f2; 3; 4g

� The union of sets X and Y (denoted X [Y) contains all elements appearing
in X or Y or both. Thus, X [Y D f1; 2; 3; 4g.

3It’s not hard to develop a notion of multisets in which elements can occur more than once, but
multisets are not ordinary sets.

“mcs-ftl” — 2010/9/8 — 0:40 — page 35 — #41

2.6. Proofs about Sets 35

� The intersection of X and Y (denoted X \ Y) consists of all elements that
appear in both X and Y . So X \ Y D f2; 3g.

� The set difference of X and Y (denoted X � Y) consists of all elements that
are in X , but not in Y . Therefore, X � Y D f1g and Y �X D f4g.

The Complement of a Set

Sometimes we are focused on a particular domain, D. Then for any subset, A, of
D, we define A to be the set of all elements of D not in A. That is, A WWDD � A.
The set A is called the complement of A.

For example, when the domain we’re working with is the real numbers, the com-
plement of the positive real numbers is the set of negative real numbers together
with zero. That is,

RC D R� [f0g:

It can be helpful to rephrase properties of sets using complements. For example,
two sets, A and B , are said to be disjoint iff they have no elements in common, that
is, A \ B D ;. This is the same as saying that A is a subset of the complement of
B , that is, A � B .

Cardinality

The cardinality of a set A is the number of elements in A and is denoted by jAj.
For example,

j;j D 0;

jf1; 2; 4gj D 3, and

jNj is infinite.

The Power Set

The set of all the subsets of a set, A, is called the power set, P.A/, of A. So
B 2 P.A/ iff B � A. For example, the elements of P.f1; 2g/ are ;; f1g; f2g and
f1; 2g.

More generally, if A has n elements, then there are 2n sets in P.A/. In other
words, if A is finite, then jP.A/j D 2jAj. For this reason, some authors use the
notation 2A instead of P.A/ to denote the power set of A.

Sequences

Sets provide one way to group a collection of objects. Another way is in a se-
quence, which is a list of objects called terms or components. Short sequences

“mcs-ftl” — 2010/9/8 — 0:40 — page 36 — #42

Chapter 2 Patterns of Proof36

are commonly described by listing the elements between parentheses; for example,
.a; b; c/ is a sequence with three terms.

While both sets and sequences perform a gathering role, there are several differ-
ences.

� The elements of a set are required to be distinct, but terms in a sequence can
be the same. Thus, .a; b; a/ is a valid sequence of length three, but fa; b; ag
is a set with two elements—not three.

� The terms in a sequence have a specified order, but the elements of a set do
not. For example, .a; b; c/ and .a; c; b/ are different sequences, but fa; b; cg
and fa; c; bg are the same set.

� Texts differ on notation for the empty sequence; we use � for the empty
sequence and ; for the empty set.

Cross Products

The product operation is one link between sets and sequences. A product of sets,
S1�S2�� � ��Sn, is a new set consisting of all sequences where the first component
is drawn from S1, the second from S2, and so forth. For example, N � fa; bg is
the set of all pairs whose first element is a nonnegative integer and whose second
element is an a or a b:

N � fa; bg D f.0; a/; .0; b/; .1; a/; .1; b/; .2; a/; .2; b/; : : : g

A product of n copies of a set S is denoted Sn. For example, f0; 1g3 is the set of
all 3-bit sequences:

f0; 1g3 D f.0; 0; 0/; .0; 0; 1/; .0; 1; 0/; .0; 1; 1/; .1; 0; 0/; .1; 0; 1/; .1; 1; 0/; .1; 1; 1/g

2.6.2 Set Builder Notation

An important use of predicates is in set builder notation. We’ll often want to talk
about sets that cannot be described very well by listing the elements explicitly or
by taking unions, intersections, etc., of easily-described sets. Set builder notation
often comes to the rescue. The idea is to define a set using a predicate; in particular,
the set consists of all values that make the predicate true. Here are some examples
of set builder notation:

A WWD fn 2 N j n is a prime and n D 4k C 1 for some integer kg

B WWD fx 2 R j x3 � 3x C 1 > 0g
C WWD faC bi 2 C j a2 C 2b2 � 1g

The set A consists of all nonnegative integers n for which the predicate

“mcs-ftl” — 2010/9/8 — 0:40 — page 37 — #43

2.6. Proofs about Sets 37

“n is a prime and n D 4k C 1 for some integer k”

is true. Thus, the smallest elements of A are:

5; 13; 17; 29; 37; 41; 53; 57; 61; 73; : : : :

Trying to indicate the set A by listing these first few elements wouldn’t work very
well; even after ten terms, the pattern is not obvious! Similarly, the set B consists
of all real numbers x for which the predicate

x3 � 3x C 1 > 0

is true. In this case, an explicit description of the set B in terms of intervals would
require solving a cubic equation. Finally, set C consists of all complex numbers
aC bi such that:

a2 C 2b2 � 1

This is an oval-shaped region around the origin in the complex plane.

2.6.3 Proving Set Equalities

Two sets are defined to be equal if they contain the same elements. That is, X D Y
means that z 2 X if and only if z 2 Y , for all elements, z. (This is actually the first
of the ZFC axioms.) So set equalities can often be formulated and proved as “iff”
theorems. For example:

Theorem 2.6.1 (Distributive Law for Sets). Let A, B , and C be sets. Then:

A \ .B [C/ D .A \ B/ [.A \ C/ (2.5)

Proof. The equality (2.5) is equivalent to the assertion that

z 2 A \ .B [C/ iff z 2 .A \ B/ [.A \ C/ (2.6)

for all z. This assertion looks very similar to the Distributive Law for AND and
OR that we proved in Section 1.4 (equation 1.6). Namely, if P , Q, and R are
propositions, then

ŒP AND .Q OR R/� IFF Œ.P AND Q/ OR .P AND R/� (2.7)

Using this fact, we can now prove (2.6) by a chain of iff’s:

z 2 A \ .B [C/

iff .z 2 A/ AND .z 2 B [C/ (def of \)

iff .z 2 A/ AND .z 2 B OR z 2 C/ (def of [)

iff .z 2 A AND z 2 B/ OR .z 2 A AND z 2 C/ (equation 2.7)

iff .z 2 A \ B/ OR .z 2 A \ C/ (def of \)

iff z 2 .A \ B/ [.A \ C/ (def of [) �

“mcs-ftl” — 2010/9/8 — 0:40 — page 38 — #44

Chapter 2 Patterns of Proof38

Many other set equalities can be derived from other valid propositions and proved
in an analogous manner. In particular, propositions such as P , Q and R are re-
placed with sets such as A, B , and C , AND (^) is replaced with intersection (\),
OR (_) is replaced with union ([), NOT is replaced with complement (for example,
P would become A), and IFF becomes set equality (D). Of course, you should
always check that any alleged set equality derived in this manner is indeed true.

2.6.4 Russell’s Paradox and the Logic of Sets

Reasoning naively about sets can sometimes be tricky. In fact, one of the earliest at-
tempts to come up with precise axioms for sets by a late nineteenth century logician
named Gotlob Frege was shot down by a three line argument known as Russell’s
Paradox:4 This was an astonishing blow to efforts to provide an axiomatic founda-
tion for mathematics.

Russell’s Paradox

Let S be a variable ranging over all sets, and define

W WWD fS j S 62 Sg:

So by definition, for any set S ,

S 2 W iff S 62 S:

In particular, we can let S be W , and obtain the contradictory result that

W 2 W iff W 62 W:

A way out of the paradox was clear to Russell and others at the time: it’s unjus-
tified to assume that W is a set. So the step in the proof where we let S be W has
no justification, because S ranges over sets, and W may not be a set. In fact, the
paradox implies that W had better not be a set!

But denying that W is a set means we must reject the very natural axiom that
every mathematically well-defined collection of elements is actually a set. So the
problem faced by Frege, Russell and their colleagues was how to specify which

4Bertrand Russell was a mathematician/logician at Cambridge University at the turn of the Twen-
tieth Century. He reported that when he felt too old to do mathematics, he began to study and write
about philosophy, and when he was no longer smart enough to do philosophy, he began writing about
politics. He was jailed as a conscientious objector during World War I. For his extensive philosophical
and political writing, he won a Nobel Prize for Literature.

“mcs-ftl” — 2010/9/8 — 0:40 — page 39 — #45

2.6. Proofs about Sets 39

well-defined collections are sets. Russell and his fellow Cambridge University col-
league Whitehead immediately went to work on this problem. They spent a dozen
years developing a huge new axiom system in an even huger monograph called
Principia Mathematica.

Over time, more efficient axiom systems were developed and today, it is gen-
erally agreed that, using some simple logical deduction rules, essentially all of
mathematics can be derived from the Axioms of Zermelo-Frankel Set Theory with
Choice (ZFC). We are not going to be working with these axioms in this course,
but just in case you are interested, we have included them as a sidebar below.

The ZFC axioms avoid Russell’s Paradox because they imply that no set is ever
a member of itself. Unfortunately, this does not necessarily mean that there are not
other paradoxes lurking around out there, just waiting to be uncovered by future
mathematicians.

ZFC Axioms

Extensionality. Two sets are equal if they have the same members. In formal log-
ical notation, this would be stated as:

.8z: .z 2 x IFF z 2 y// IMPLIES x D y:

Pairing. For any two sets x and y, there is a set, fx; yg, with x and y as its only
elements:

8x; y: 9u: 8z: Œz 2 u IFF .z D x OR z D y/�

Union. The union, u, of a collection, z, of sets is also a set:

8z: 9u8x: .9y: x 2 y AND y 2 z/ IFF x 2 u:

Infinity. There is an infinite set. Specifically, there is a nonempty set, x, such that
for any set y 2 x, the set fyg is also a member of x.

Subset. Given any set, x, and any proposition P.y/, there is a set containing pre-
cisely those elements y 2 x for which P.y/ holds.

Power Set. All the subsets of a set form another set:

8x: 9p: 8u: u � x IFF u 2 p:

Replacement. Suppose a formula, �, of set theory defines the graph of a function,
that is,

8x; y; z: Œ�.x; y/ AND �.x; z/� IMPLIES y D z:

“mcs-ftl” — 2010/9/8 — 0:40 — page 40 — #46

Chapter 2 Patterns of Proof40

Then the image of any set, s, under that function is also a set, t . Namely,

8s 9t 8y: Œ9x: �.x; y/ IFF y 2 t �:

Foundation. There cannot be an infinite sequence

� � � 2 xn 2 � � � 2 x1 2 x0

of sets each of which is a member of the previous one. This is equivalent
to saying every nonempty set has a “member-minimal” element. Namely,
define

member-minimal.m; x/ WWD Œm 2 x AND 8y 2 x: y … m�:

Then the Foundation axiom is

8x: x ¤ ; IMPLIES 9m:member-minimal.m; x/:

Choice. Given a set, s, whose members are nonempty sets no two of which have
any element in common, then there is a set, c, consisting of exactly one
element from each set in s.

9y8z8w ..z 2 w AND w 2 x/ IMPLIES

9v9u.9t ..u 2 wAND w 2 t / AND.u 2 t AND t 2 y//

IFFu D v//

2.7 Good Proofs in Practice

One purpose of a proof is to establish the truth of an assertion with absolute cer-
tainty. Mechanically checkable proofs of enormous length or complexity can ac-
complish this. But humanly intelligible proofs are the only ones that help someone
understand the subject. Mathematicians generally agree that important mathemati-
cal results can’t be fully understood until their proofs are understood. That is why
proofs are an important part of the curriculum.

To be understandable and helpful, more is required of a proof than just logical
correctness: a good proof must also be clear. Correctness and clarity usually go
together; a well-written proof is more likely to be a correct proof, since mistakes
are harder to hide.

“mcs-ftl” — 2010/9/8 — 0:40 — page 41 — #47

2.7. Good Proofs in Practice 41

In practice, the notion of proof is a moving target. Proofs in a professional
research journal are generally unintelligible to all but a few experts who know all
the terminology and prior results used in the proof. Conversely, proofs in the first
weeks of an introductory course like Mathematics for Computer Science would be
regarded as tediously long-winded by a professional mathematician. In fact, what
we accept as a good proof later in the term will be different than what we consider
to be a good proof in the first couple of weeks of this course. But even so, we can
offer some general tips on writing good proofs:

State your game plan. A good proof begins by explaining the general line of rea-
soning. For example, “We use case analysis” or “We argue by contradiction.”

Keep a linear flow. Sometimes proofs are written like mathematical mosaics, with
juicy tidbits of independent reasoning sprinkled throughout. This is not good.
The steps of an argument should follow one another in an intelligible order.

A proof is an essay, not a calculation. Many students initially write proofs the way
they compute integrals. The result is a long sequence of expressions without
explanation, making it very hard to follow. This is bad. A good proof usually
looks like an essay with some equations thrown in. Use complete sentences.

Avoid excessive symbolism. Your reader is probably good at understanding words,
but much less skilled at reading arcane mathematical symbols. So use words
where you reasonably can.

Revise and simplify. Your readers will be grateful.

Introduce notation thoughtfully. Sometimes an argument can be greatly simpli-
fied by introducing a variable, devising a special notation, or defining a new
term. But do this sparingly since you’re requiring the reader to remember
all that new stuff. And remember to actually define the meanings of new
variables, terms, or notations; don’t just start using them!

Structure long proofs. Long programs are usually broken into a hierarchy of smaller
procedures. Long proofs are much the same. Facts needed in your proof that
are easily stated, but not readily proved are best pulled out and proved in pre-
liminary lemmas. Also, if you are repeating essentially the same argument
over and over, try to capture that argument in a general lemma, which you
can cite repeatedly instead.

Be wary of the “obvious”. When familiar or truly obvious facts are needed in a
proof, it’s OK to label them as such and to not prove them. But remember

“mcs-ftl” — 2010/9/8 — 0:40 — page 42 — #48

Chapter 2 Patterns of Proof42

that what’s obvious to you, may not be—and typically is not—obvious to
your reader.

Most especially, don’t use phrases like “clearly” or “obviously” in an attempt
to bully the reader into accepting something you’re having trouble proving.
Also, go on the alert whenever you see one of these phrases in someone else’s
proof.

Finish. At some point in a proof, you’ll have established all the essential facts
you need. Resist the temptation to quit and leave the reader to draw the
“obvious” conclusion. Instead, tie everything together yourself and explain
why the original claim follows.

The analogy between good proofs and good programs extends beyond structure.
The same rigorous thinking needed for proofs is essential in the design of criti-
cal computer systems. When algorithms and protocols only “mostly work” due
to reliance on hand-waving arguments, the results can range from problematic to
catastrophic. An early example was the Therac 25, a machine that provided radia-
tion therapy to cancer victims, but occasionally killed them with massive overdoses
due to a software race condition. A more recent (August 2004) example involved a
single faulty command to a computer system used by United and American Airlines
that grounded the entire fleet of both companies—and all their passengers!

It is a certainty that we’ll all one day be at the mercy of critical computer systems
designed by you and your classmates. So we really hope that you’ll develop the
ability to formulate rock-solid logical arguments that a system actually does what
you think it does!

“mcs-ftl” — 2010/9/8 — 0:40 — page 43 — #49

3 Induction
Now that you understand the basics of how to prove that a proposition is true,
it is time to equip you with the most powerful methods we have for establishing
truth: the Well Ordering Principle, the Induction Rule, and Strong Induction. These
methods are especially useful when you need to prove that a predicate is true for all
natural numbers.

Although the three methods look and feel different, it turns out that they are
equivalent in the sense that a proof using any one of the methods can be automat-
ically reformatted so that it becomes a proof using any of the other methods. The
choice of which method to use is up to you and typically depends on whichever
seems to be the easiest or most natural for the problem at hand.

3.1 The Well Ordering Principle

Every nonempty set of nonnegative integers has a smallest element.

This statement is known as The Well Ordering Principle. Do you believe it?
Seems sort of obvious, right? But notice how tight it is: it requires a nonempty
set—it’s false for the empty set which has no smallest element because it has no
elements at all! And it requires a set of nonnegative integers—it’s false for the
set of negative integers and also false for some sets of nonnegative rationals—for
example, the set of positive rationals. So, the Well Ordering Principle captures
something special about the nonnegative integers.

3.1.1 Well Ordering Proofs

While the Well Ordering Principle may seem obvious, it’s hard to see offhand why
it is useful. But in fact, it provides one of the most important proof rules in discrete
mathematics.

In fact, looking back, we took the Well Ordering Principle for granted in proving
that
p
2 is irrational. That proof assumed that for any positive integers m and n,

the fraction m=n can be written in lowest terms, that is, in the form m0=n0 where
m0 and n0 are positive integers with no common factors. How do we know this is
always possible?

“mcs-ftl” — 2010/9/8 — 0:40 — page 44 — #50

Chapter 3 Induction44

Suppose to the contrary1 that there were m; n 2 ZC such that the fraction m=n
cannot be written in lowest terms. Now let C be the set of positive integers that are
numerators of such fractions. Then m 2 C , so C is nonempty. Therefore, by Well
Ordering, there must be a smallest integer, m0 2 C . So by definition of C , there is
an integer n0 > 0 such that

the fraction
m0

n0
cannot be written in lowest terms.

This means that m0 and n0 must have a common factor, p > 1. But

m0=p

n0=p
D
m0

n0
;

so any way of expressing the left hand fraction in lowest terms would also work for
m0=n0, which implies

the fraction
m0=p

n0=p
cannot be in written in lowest terms either.

So by definition of C , the numerator, m0=p, is in C . But m0=p < m0, which
contradicts the fact that m0 is the smallest element of C .

Since the assumption that C is nonempty leads to a contradiction, it follows that
C must be empty. That is, that there are no numerators of fractions that can’t be
written in lowest terms, and hence there are no such fractions at all.

We’ve been using the Well Ordering Principle on the sly from early on!

3.1.2 Template for Well Ordering Proofs

More generally, to prove that “P.n/ is true for all n 2 N” using the Well Ordering
Principle, you can take the following steps:

� Define the set, C , of counterexamples to P being true. Namely, define2

C WWD fn 2 N j P.n/ is falseg:

� Use a proof by contradiction and assume that C is nonempty.

� By the Well Ordering Principle, there will be a smallest element, n, in C .

� Reach a contradiction (somehow)—often by showing how to use n to find
another member of C that is smaller than n. (This is the open-ended part of
the proof task.)

� Conclude that C must be empty, that is, no counterexamples exist. QED
1This means that you are about to see an informal proof by contradiction.
2As we learned in Section 2.6.2, the notation fn j P.n/ is false g means “the set of all elements

n, for which P.n/ is false.

“mcs-ftl” — 2010/9/8 — 0:40 — page 45 — #51

3.1. The Well Ordering Principle 45

3.1.3 Examples

Let’s use this this template to prove

Theorem 3.1.1.
1C 2C 3C � � � C n D n.nC 1/=2 (3.1)

for all nonnegative integers, n.

First, we better address of a couple of ambiguous special cases before they trip
us up:

� If n D 1, then there is only one term in the summation, and so 1C 2C 3C
� � � C n is just the term 1. Don’t be misled by the appearance of 2 and 3 and
the suggestion that 1 and n are distinct terms!

� If n � 0, then there are no terms at all in the summation. By convention, the
sum in this case is 0.

So while the dots notation is convenient, you have to watch out for these special
cases where the notation is misleading! (In fact, whenever you see the dots, you
should be on the lookout to be sure you understand the pattern, watching out for
the beginning and the end.)

We could have eliminated the need for guessing by rewriting the left side of (3.1)
with summation notation:

nX
iD1

i or
X
1�i�n

i:

Both of these expressions denote the sum of all values taken by the expression to
the right of the sigma as the variable, i , ranges from 1 to n. Both expressions make
it clear what (3.1) means when n D 1. The second expression makes it clear that
when n D 0, there are no terms in the sum, though you still have to know the
convention that a sum of no numbers equals 0 (the product of no numbers is 1, by
the way).

OK, back to the proof:

Proof. By contradiction and use of the Well Ordering Principle. Assume that the
theorem is false. Then, some nonnegative integers serve as counterexamples to it.
Let’s collect them in a set:

C WWD fn 2 N j 1C 2C 3C � � � C n ¤
n.nC 1/

2
g:

“mcs-ftl” — 2010/9/8 — 0:40 — page 46 — #52

Chapter 3 Induction46

By our assumption that the theorem admits counterexamples, C is a nonempty set
of nonnegative integers. So, by the Well Ordering Principle, C has a minimum
element, call it c. That is, c is the smallest counterexample to the theorem.

Since c is the smallest counterexample, we know that (3.1) is false for n D c but
true for all nonnegative integers n < c. But (3.1) is true for n D 0, so c > 0. This
means c � 1 is a nonnegative integer, and since it is less than c, equation (3.1) is
true for c � 1. That is,

1C 2C 3C � � � C .c � 1/ D
.c � 1/c

2
:

But then, adding c to both sides we get

1C 2C 3C � � � C .c � 1/C c D
.c � 1/c

2
C c D

c2 � c C 2c

2
D
c.c C 1/

2
;

which means that (3.1) does hold for c, after all! This is a contradiction, and we
are done. �

Here is another result that can be proved using Well Ordering. It will be useful
in Chapter 4 when we study number theory and cryptography.

Theorem 3.1.2. Every natural number can be factored as a product of primes.

Proof. By contradiction and Well Ordering. Assume that the theorem is false and
let C be the set of all integers greater than one that cannot be factored as a product
of primes. We assume that C is not empty and derive a contradiction.

If C is not empty, there is a least element, n 2 C , by Well Ordering. The n can’t
be prime, because a prime by itself is considered a (length one) product of primes
and no such products are in C .

So n must be a product of two integers a and b where 1 < a; b < n. Since a
and b are smaller than the smallest element in C , we know that a; b … C . In other
words, a can be written as a product of primes p1p2 � � �pk and b as a product of
primes q1 � � � ql . Therefore, n D p1 � � �pkq1 � � � ql can be written as a product of
primes, contradicting the claim that n 2 C . Our assumption that C is not empty
must therefore be false. �

3.2 Ordinary Induction

Induction is by far the most powerful and commonly-used proof technique in dis-
crete mathematics and computer science. In fact, the use of induction is a defining

“mcs-ftl” — 2010/9/8 — 0:40 — page 47 — #53

3.2. Ordinary Induction 47

characteristic of discrete—as opposed to continuous—mathematics. To understand
how it works, suppose there is a professor who brings to class a bottomless bag of
assorted miniature candy bars. She offers to share the candy in the following way.
First, she lines the students up in order. Next she states two rules:

1. The student at the beginning of the line gets a candy bar.

2. If a student gets a candy bar, then the following student in line also gets a
candy bar.

Let’s number the students by their order in line, starting the count with 0, as usual
in computer science. Now we can understand the second rule as a short description
of a whole sequence of statements:

� If student 0 gets a candy bar, then student 1 also gets one.

� If student 1 gets a candy bar, then student 2 also gets one.

� If student 2 gets a candy bar, then student 3 also gets one.
:::

Of course this sequence has a more concise mathematical description:

If student n gets a candy bar, then student nC 1 gets a candy bar, for
all nonnegative integers n.

So suppose you are student 17. By these rules, are you entitled to a miniature candy
bar? Well, student 0 gets a candy bar by the first rule. Therefore, by the second
rule, student 1 also gets one, which means student 2 gets one, which means student
3 gets one as well, and so on. By 17 applications of the professor’s second rule,
you get your candy bar! Of course the rules actually guarantee a candy bar to every
student, no matter how far back in line they may be.

3.2.1 A Rule for Ordinary Induction

The reasoning that led us to conclude that every student gets a candy bar is essen-
tially all there is to induction.

“mcs-ftl” — 2010/9/8 — 0:40 — page 48 — #54

Chapter 3 Induction48

The Principle of Induction.

Let P.n/ be a predicate. If

� P.0/ is true, and

� P.n/ IMPLIES P.nC 1/ for all nonnegative integers, n,

then

� P.m/ is true for all nonnegative integers, m.

Since we’re going to consider several useful variants of induction in later sec-
tions, we’ll refer to the induction method described above as ordinary induction
when we need to distinguish it. Formulated as a proof rule, this would be

Rule. Induction Rule

P.0/; 8n 2 N: P.n/ IMPLIES P.nC 1/

8m 2 N: P.m/

This general induction rule works for the same intuitive reason that all the stu-
dents get candy bars, and we hope the explanation using candy bars makes it clear
why the soundness of the ordinary induction can be taken for granted. In fact, the
rule is so obvious that it’s hard to see what more basic principle could be used to
justify it.3 What’s not so obvious is how much mileage we get by using it.

3.2.2 A Familiar Example

Ordinary induction often works directly in proving that some statement about non-
negative integers holds for all of them. For example, here is the formula for the
sum of the nonnegative integers that we already proved (equation (3.1)) using the
Well Ordering Principle:

Theorem 3.2.1. For all n 2 N,

1C 2C 3C � � � C n D
n.nC 1/

2
(3.2)

This time, let’s use the Induction Principle to prove Theorem 3.2.1.
Suppose that we define predicate P.n/ to be the equation (3.2). Recast in terms

of this predicate, the theorem claims that P.n/ is true for all n 2 N. This is great,
because the induction principle lets us reach precisely that conclusion, provided we
establish two simpler facts:

3But see section 3.2.7.

“mcs-ftl” — 2010/9/8 — 0:40 — page 49 — #55

3.2. Ordinary Induction 49

� P.0/ is true.

� For all n 2 N, P.n/ IMPLIES P.nC 1/.

So now our job is reduced to proving these two statements. The first is true
because P.0/ asserts that a sum of zero terms is equal to 0.0 C 1/=2 D 0, which
is true by definition. The second statement is more complicated. But remember
the basic plan for proving the validity of any implication from Section 2.3: assume
the statement on the left and then prove the statement on the right. In this case, we
assume P.n/ in order to prove P.nC 1/, which is the equation

1C 2C 3C � � � C nC .nC 1/ D
.nC 1/.nC 2/

2
: (3.3)

These two equations are quite similar; in fact, adding .n C 1/ to both sides of
equation (3.2) and simplifying the right side gives the equation (3.3):

1C 2C 3C � � � C nC .nC 1/ D
n.nC 1/

2
C .nC 1/

D
.nC 2/.nC 1/

2

Thus, if P.n/ is true, then so is P.n C 1/. This argument is valid for every non-
negative integer n, so this establishes the second fact required by the induction
principle. Therefore, the induction principle says that the predicate P.m/ is true
for all nonnegative integers, m, so the theorem is proved.

3.2.3 A Template for Induction Proofs

The proof of Theorem 3.2.1 was relatively simple, but even the most complicated
induction proof follows exactly the same template. There are five components:

1. State that the proof uses induction. This immediately conveys the overall
structure of the proof, which helps the reader understand your argument.

2. Define an appropriate predicate P.n/. The eventual conclusion of the in-
duction argument will be that P.n/ is true for all nonnegative n. Thus, you
should define the predicate P.n/ so that your theorem is equivalent to (or
follows from) this conclusion. Often the predicate can be lifted straight from
the proposition that you are trying to prove, as in the example above. The
predicate P.n/ is called the induction hypothesis. Sometimes the induction
hypothesis will involve several variables, in which case you should indicate
which variable serves as n.

“mcs-ftl” — 2010/9/8 — 0:40 — page 50 — #56

Chapter 3 Induction50

3. Prove that P.0/ is true. This is usually easy, as in the example above. This
part of the proof is called the base case or basis step.

4. Prove that P.n/ implies P.nC 1/ for every nonnegative integer n. This
is called the inductive step. The basic plan is always the same: assume that
P.n/ is true and then use this assumption to prove thatP.nC1/ is true. These
two statements should be fairly similar, but bridging the gap may require
some ingenuity. Whatever argument you give must be valid for every non-
negative integer n, since the goal is to prove the implications P.0/! P.1/,
P.1/! P.2/, P.2/! P.3/, etc. all at once.

5. Invoke induction. Given these facts, the induction principle allows you to
conclude that P.n/ is true for all nonnegative n. This is the logical capstone
to the whole argument, but it is so standard that it’s usual not to mention it
explicitly.

Always be sure to explicitly label the base case and the inductive step. It will make
your proofs clearer, and it will decrease the chance that you forget a key step (such
as checking the base case).

3.2.4 A Clean Writeup

The proof of Theorem 3.2.1 given above is perfectly valid; however, it contains a
lot of extraneous explanation that you won’t usually see in induction proofs. The
writeup below is closer to what you might see in print and should be prepared to
produce yourself.

Proof of Theorem 3.2.1. We use induction. The induction hypothesis, P.n/, will
be equation (3.2).

Base case: P.0/ is true, because both sides of equation (3.2) equal zero when
n D 0.

Inductive step: Assume that P.n/ is true, where n is any nonnegative integer.
Then

1C 2C 3C � � � C nC .nC 1/ D
n.nC 1/

2
C .nC 1/ (by induction hypothesis)

D
.nC 1/.nC 2/

2
(by simple algebra)

which proves P.nC 1/.
So it follows by induction that P.n/ is true for all nonnegative n. �

“mcs-ftl” — 2010/9/8 — 0:40 — page 51 — #57

3.2. Ordinary Induction 51

2n

2n

Figure 3.1 A 2n � 2n courtyard for n D 3.

Induction was helpful for proving the correctness of this summation formula, but
not helpful for discovering it in the first place. Tricks and methods for finding such
formulas will be covered in Part III of the text.

3.2.5 A More Challenging Example

During the development of MIT’s famous Stata Center, as costs rose further and
further beyond budget, there were some radical fundraising ideas. One rumored
plan was to install a big courtyard with dimensions 2n�2n (as shown in Figure 3.1
for the case where n D 3) and to have one of the central squares4 be occupied by a
statue of a wealthy potential donor (who we will refer to as “Bill”, for the purposes
of preserving anonymity). A complication was that the building’s unconventional
architect, Frank Gehry, was alleged to require that only special L-shaped tiles (show
in Figure 3.2) be used for the courtyard. It was quickly determined that a courtyard
meeting these constraints exists, at least for n D 2. (See Figure 3.3.) But what
about for larger values of n? Is there a way to tile a 2n � 2n courtyard with L-
shaped tiles around a statue in the center? Let’s try to prove that this is so.

Theorem 3.2.2. For all n � 0 there exists a tiling of a 2n � 2n courtyard with Bill
in a central square.

Proof. (doomed attempt) The proof is by induction. Let P.n/ be the proposition
that there exists a tiling of a 2n � 2n courtyard with Bill in the center.

4In the special case n D 0, the whole courtyard consists of a single central square; otherwise,
there are four central squares.

“mcs-ftl” — 2010/9/8 — 0:40 — page 52 — #58

Chapter 3 Induction52

Figure 3.2 The special L-shaped tile.

B

Figure 3.3 A tiling using L-shaped tiles for n D 2 with Bill in a center square.

“mcs-ftl” — 2010/9/8 — 0:40 — page 53 — #59

3.2. Ordinary Induction 53

Base case: P.0/ is true because Bill fills the whole courtyard.
Inductive step: Assume that there is a tiling of a 2n � 2n courtyard with Bill in

the center for some n � 0. We must prove that there is a way to tile a 2nC1 � 2nC1

courtyard with Bill in the center �

Now we’re in trouble! The ability to tile a smaller courtyard with Bill in the
center isn’t much help in tiling a larger courtyard with Bill in the center. We haven’t
figured out how to bridge the gap between P.n/ and P.nC 1/.

So if we’re going to prove Theorem 3.2.2 by induction, we’re going to need some
other induction hypothesis than simply the statement about n that we’re trying to
prove.

When this happens, your first fallback should be to look for a stronger induction
hypothesis; that is, one which implies your previous hypothesis. For example,
we could make P.n/ the proposition that for every location of Bill in a 2n � 2n

courtyard, there exists a tiling of the remainder.
This advice may sound bizarre: “If you can’t prove something, try to prove some-

thing grander!” But for induction arguments, this makes sense. In the inductive
step, where you have to prove P.n/ IMPLIES P.n C 1/, you’re in better shape
because you can assume P.n/, which is now a more powerful statement. Let’s see
how this plays out in the case of courtyard tiling.

Proof (successful attempt). The proof is by induction. Let P.n/ be the proposition
that for every location of Bill in a 2n � 2n courtyard, there exists a tiling of the
remainder.

Base case: P.0/ is true because Bill fills the whole courtyard.
Inductive step: Assume that P.n/ is true for some n � 0; that is, for every

location of Bill in a 2n� 2n courtyard, there exists a tiling of the remainder. Divide
the 2nC1�2nC1 courtyard into four quadrants, each 2n�2n. One quadrant contains
Bill (B in the diagram below). Place a temporary Bill (X in the diagram) in each of
the three central squares lying outside this quadrant as shown in Figure 3.4.

Now we can tile each of the four quadrants by the induction assumption. Replac-
ing the three temporary Bills with a single L-shaped tile completes the job. This
proves that P.n/ implies P.nC 1/ for all n � 0. Thus P.m/ is true for all n 2 N,
and the theorem follows as a special case where we put Bill in a central square. �

This proof has two nice properties. First, not only does the argument guarantee
that a tiling exists, but also it gives an algorithm for finding such a tiling. Second,
we have a stronger result: if Bill wanted a statue on the edge of the courtyard, away
from the pigeons, we could accommodate him!

Strengthening the induction hypothesis is often a good move when an induction
proof won’t go through. But keep in mind that the stronger assertion must actually

“mcs-ftl” — 2010/9/8 — 0:40 — page 54 — #60

Chapter 3 Induction54

X
X

B

X

2n 2n

2n

2n

Figure 3.4 Using a stronger inductive hypothesis to prove Theorem 3.2.2.

be true; otherwise, there isn’t much hope of constructing a valid proof! Sometimes
finding just the right induction hypothesis requires trial, error, and insight. For
example, mathematicians spent almost twenty years trying to prove or disprove
the conjecture that “Every planar graph is 5-choosable”5. Then, in 1994, Carsten
Thomassen gave an induction proof simple enough to explain on a napkin. The
key turned out to be finding an extremely clever induction hypothesis; with that in
hand, completing the argument was easy!

3.2.6 A Faulty Induction Proof

If we have done a good job in writing this text, right about now you should be
thinking, “Hey, this induction stuff isn’t so hard after all—just show P.0/ is true
and that P.n/ implies P.n C 1/ for any number n.” And, you would be right,
although sometimes when you start doing induction proofs on your own, you can
run into trouble. For example, we will now attempt to ruin your day by using
induction to “prove” that all horses are the same color. And just when you thought
it was safe to skip class and work on your robot program instead. Bummer!

False Theorem. All horses are the same color.

Notice that no n is mentioned in this assertion, so we’re going to have to re-
formulate it in a way that makes an n explicit. In particular, we’ll (falsely) prove
that

55-choosability is a slight generalization of 5-colorability. Although every planar graph is 4-
colorable and therefore 5-colorable, not every planar graph is 4-choosable. If this all sounds like
nonsense, don’t panic. We’ll discuss graphs, planarity, and coloring in Part II of the text.

“mcs-ftl” — 2010/9/8 — 0:40 — page 55 — #61

3.2. Ordinary Induction 55

False Theorem 3.2.3. In every set of n � 1 horses, all the horses are the same
color.

This a statement about all integers n � 1 rather � 0, so it’s natural to use a
slight variation on induction: prove P.1/ in the base case and then prove that P.n/
implies P.nC1/ for all n � 1 in the inductive step. This is a perfectly valid variant
of induction and is not the problem with the proof below.

Bogus proof. The proof is by induction on n. The induction hypothesis, P.n/, will
be

In every set of n horses, all are the same color. (3.4)

Base case: (n D 1). P.1/ is true, because in a set of horses of size 1, there’s
only one horse, and this horse is definitely the same color as itself.

Inductive step: Assume that P.n/ is true for some n � 1. That is, assume that
in every set of n horses, all are the same color. Now consider a set of nC 1 horses:

h1; h2; : : : ; hn; hnC1

By our assumption, the first n horses are the same color:

h1; h2; : : : ; hn;„ ƒ‚ …
same color

hnC1

Also by our assumption, the last n horses are the same color:

h1; h2; : : : ; hn; hnC1„ ƒ‚ …
same color

So h1 is the same color as the remaining horses besides hnC1—that is, h2, . . . ,
hn)—and likewise hnC1 is the same color as the remaining horses besides h1–h2,
. . . , hn. Since h1 and hnC1 are the same color as h2, . . . , hn, horses h1, h2, . . . ,
hnC1 must all be the same color, and so P.n C 1/ is true. Thus, P.n/ implies
P.nC 1/.

By the principle of induction, P.n/ is true for all n � 1. �

We’ve proved something false! Is math broken? Should we all become poets?
No, this proof has a mistake.

The first error in this argument is in the sentence that begins “So h1 is the same
color as the remaining horses besides hnC1—h2, . . . , hn). . . ”

The “: : : ” notation in the expression “h1, h2, . . . , hn, hnC1” creates the im-
pression that there are some remaining horses (namely h2, . . . , hn) besides h1 and
hnC1. However, this is not true when n D 1. In that case, h1, h2, . . . , hn, hnC1 =

“mcs-ftl” — 2010/9/8 — 0:40 — page 56 — #62

Chapter 3 Induction56

h1, h2 and there are no remaining horses besides h1 and hnC1. So h1 and h2 need
not be the same color!

This mistake knocks a critical link out of our induction argument. We proved
P.1/ and we correctly proved P.2/ �! P.3/, P.3/ �! P.4/, etc. But we failed
to prove P.1/ �! P.2/, and so everything falls apart: we can not conclude that
P.2/, P.3/, etc., are true. And, of course, these propositions are all false; there are
sets of n non-uniformly-colored horses for all n � 2.

Students sometimes claim that the mistake in the proof is because P.n/ is false
for n � 2, and the proof assumes something false, namely, P.n/, in order to prove
P.nC 1/. You should think about how to explain to such a student why this claim
would get no credit on a Math for Computer Science exam.

3.2.7 Induction versus Well Ordering

The Induction Rule looks nothing like the Well Ordering Principle, but these two
proof methods are closely related. In fact, as the examples above suggest, we can
take any Well Ordering proof and reformat it into an Induction proof. Conversely,
it’s equally easy to take any Induction proof and reformat it into a Well Ordering
proof.

So what’s the difference? Well, sometimes induction proofs are clearer because
they resemble recursive procedures that reduce handling an input of size nC 1 to
handling one of size n. On the other hand, Well Ordering proofs sometimes seem
more natural, and also come out slightly shorter. The choice of method is really a
matter of style and is up to you.

3.3 Invariants

One of the most important uses of induction in computer science involves proving
that a program or process preserves one or more desirable properties as it proceeds.
A property that is preserved through a series of operations or steps is known as an
invariant. Examples of desirable invariants include properties such as a variable
never exceeding a certain value, the altitude of a plane never dropping below 1,000
feet without the wingflaps and landing gear being deployed, and the temperature of
a nuclear reactor never exceeding the threshold for a meltdown.

We typically use induction to prove that a proposition is an invariant. In particu-
lar, we show that the proposition is true at the beginning (this is the base case) and
that if it is true after t steps have been taken, it will also be true after step tC1 (this
is the inductive step). We can then use the induction principle to conclude that the

“mcs-ftl” — 2010/9/8 — 0:40 — page 57 — #63

3.3. Invariants 57

proposition is indeed an invariant, namely, that it will always hold.

3.3.1 A Simple Example: The Diagonally-Moving Robot

Invariants are useful in systems that have a start state (or starting configuration)
and a well-defined series of steps during which the system can change state.6 For
example, suppose that you have a robot that can walk across diagonals on an infinite
2-dimensional grid. The robot starts at position .0; 0/ and at each step it moves up
or down by 1 unit vertically and left or right by 1 unit horizontally. To be clear, the
robot must move by exactly 1 unit in each dimension during each step, since it can
only traverse diagonals.

In this example, the state of the robot at any time can be specified by a coordinate
pair .x; y/ that denotes the robot’s position. The start state is .0; 0/ since it is given
that the robot starts at that position. After the first step, the robot could be in states
.1; 1/, .1;�1/, .�1; 1/, or .�1;�1/. After two steps, there are 9 possible states for
the robot, including .0; 0/.

Can the robot ever reach position .1; 0/?
After playing around with the robot for a bit, it will become apparent that the

robot will never be able to reach position .1; 0/. This is because the robot can only
reach positions .x; y/ for which x C y is even. This crucial observation quickly
leads to the formulation of a predicate

P.t/ WW if the robot is in state .x; y/ after t steps, then x C y is even

which we can prove to be an invariant by induction.

Theorem 3.3.1. The sum of robot’s coordinates is always even.

Proof. We will prove that P is an invariant by induction.
P.0/ is true since the robot starts at .0; 0/ and 0C 0 is even.
Assume that P.t/ is true for the inductive step. Let .x; y/ be the position of the

robot after t steps. Since P.t/ is assumed to be true, we know that x C y is even.
There are four cases to consider for step t C 1, depending on which direction the
robot moves.

Case 1 The robot moves to .x C 1; y C 1/. Then the sum of the coordinates is
x C y C 2, which is even, and so P.t C 1/ is true.

Case 2 The robot moves to .xC1; y�1/. The the sum of the coordinates is xCy,
which is even, and so P.t C 1/ is true.

6Such systems are known as state machines and we will study them in greater detail in Chapter 8.

“mcs-ftl” — 2010/9/8 — 0:40 — page 58 — #64

Chapter 3 Induction58

Case 3 The robot moves to .x�1; yC1/. The the sum of the coordinates is xCy,
as with Case 2, and so P.t C 1/ is true.

Case 4 The robot moves to .x � 1; y � 1/. The the sum of the coordinates is
x C y � 2, which is even, and so P.t C 1/ is true.

In every case, P.t C 1/ is true and so we have proved P.t/ IMPLIES P.t C 1/ and
so, by induction, we know that P.t/ is true for all t � 0. �

Corollary 3.3.2. The robot can never reach position .1; 0/.

Proof. By Theorem 3.3.1, we know the robot can only reach positions with coor-
dinates that sum to an even number, and thus it cannot reach position .1; 0/. �

Since this was the first time we proved that a predicate was an invariant, we were
careful to go through all four cases in gory detail. As you become more experienced
with such proofs, you will likely become more brief as well. Indeed, if we were
going through the proof again at a later point in the text, we might simply note that
the sum of the coordinates after step tC1 can be only xCy, xCyC2 or xCy�2
and therefore that the sum is even.

3.3.2 The Invariant Method

In summary, if you would like to prove that some property NICE holds for every
step of a process, then it is often helpful to use the following method:

� Define P.t/ to be the predicate that NICE holds immediately after step t .

� Show that P.0/ is true, namely that NICE holds for the start state.

� Show that
8t 2 N: P.t/ IMPLIES P.t C 1/;

namely, that for any t � 0, if NICE holds immediately after step t , it must
also hold after the following step.

3.3.3 A More Challenging Example: The 15-Puzzle

In the late 19th century, Noyes Chapman, a postmaster in Canastota, New York,
invented the 15-puzzle7, which consisted of a 4 � 4 grid containing 15 numbered
blocks in which the 14-block and the 15-block were out of order. The objective was
to move the blocks one at a time into an adjacent hole in the grid so as to eventually

7Actually, there is a dispute about who really invented the 15-puzzle. Sam Lloyd, a well-known
puzzle designer, claimed to be the inventor, but this claim has since been discounted.

“mcs-ftl” — 2010/9/8 — 0:40 — page 59 — #65

3.3. Invariants 59

141513

11109 12

765 8

321 4

(a)

141513

11109

12

765 8

321 4

(b)

Figure 3.5 The 15-puzzle in its starting configuration (a) and after the 12-block
is moved into the hole below (b).

151413

11109 12

765 8

321 4

Figure 3.6 The desired final configuration for the 15-puzzle. Can it be achieved
by only moving one block at a time into an adjacent hole?

get all 15 blocks into their natural order. A picture of the 15-puzzle is shown in
Figure 3.5 along with the configuration after the 12-block is moved into the hole
below. The desired final configuration is shown in Figure 3.6.

The 15-puzzle became very popular in North America and Europe and is still
sold in game and puzzle shops today. Prizes were offered for its solution, but
it is doubtful that they were ever awarded, since it is impossible to get from the
configuration in Figure 3.5(a) to the configuration in Figure 3.6 by only moving
one block at a time into an adjacent hole. The proof of this fact is a little tricky so
we have left it for you to figure out on your own! Instead, we will prove that the
analogous task for the much easier 8-puzzle cannot be performed. Both proofs, of
course, make use of the Invariant Method.

“mcs-ftl” — 2010/9/8 — 0:40 — page 60 — #66

Chapter 3 Induction60

GH

FED

CBA

(a)

GH

FED

CBA

(b)

GEH

FD

CBA

(c)

Figure 3.7 The 8-Puzzle in its initial configuration (a) and after one (b) and
two (c) possible moves.

3.3.4 The 8-Puzzle

In the 8-Puzzle, there are 8 lettered tiles (A–H) and a blank square arranged in a
3 � 3 grid. Any lettered tile adjacent to the blank square can be slid into the blank.
For example, a sequence of two moves is illustrated in Figure 3.7.

In the initial configuration shown in Figure 3.7(a), the G and H tiles are out of
order. We can find a way of swapping G and H so that they are in the right order,
but then other letters may be out of order. Can you find a sequence of moves that
puts these two letters in correct order, but returns every other tile to its original
position? Some experimentation suggests that the answer is probably “no,” and we
will prove that is so by finding an invariant, namely, a property of the puzzle that is
always maintained, no matter how you move the tiles around. If we can then show
that putting all the tiles in the correct order would violate the invariant, then we can
conclude that the puzzle cannot be solved.

Theorem 3.3.3. No sequence of legal moves transforms the configuration in Fig-
ure 3.7(a) into the configuration in Figure 3.8.

We’ll build up a sequence of observations, stated as lemmas. Once we achieve
a critical mass, we’ll assemble these observations into a complete proof of Theo-
rem 3.3.3.

Define a row move as a move in which a tile slides horizontally and a column
move as one in which the tile slides vertically. Assume that tiles are read top-
to-bottom and left-to-right like English text, that is, the natural order, defined as
follows: So when we say that two tiles are “out of order”, we mean that the larger
letter precedes the smaller letter in this natural order.

Our difficulty is that one pair of tiles (the G and H) is out of order initially. An
immediate observation is that row moves alone are of little value in addressing this

“mcs-ftl” — 2010/9/8 — 0:40 — page 61 — #67

3.3. Invariants 61

HG

FED

CBA

Figure 3.8 The desired final configuration of the 8-puzzle.

87 9

654

321

problem:

Lemma 3.3.4. A row move does not change the order of the tiles.

Proof. A row move moves a tile from cell i to cell i C 1 or vice versa. This tile
does not change its order with respect to any other tile. Since no other tile moves,
there is no change in the order of any of the other pairs of tiles. �

Let’s turn to column moves. This is the more interesting case, since here the
order can change. For example, the column move in Figure 3.9 changes the relative
order of the pairs .G;H/ and .G;E/.

Lemma 3.3.5. A column move changes the relative order of exactly two pairs of
tiles.

Proof. Sliding a tile down moves it after the next two tiles in the order. Sliding a
tile up moves it before the previous two tiles in the order. Either way, the relative
order changes between the moved tile and each of the two tiles it crosses. The
relative order between any other pair of tiles does not change. �

These observations suggest that there are limitations on how tiles can be swapped.
Some such limitation may lead to the invariant we need. In order to reason about
swaps more precisely, let’s define a term referring to a pair of items that are out of
order:

“mcs-ftl” — 2010/9/8 — 0:40 — page 62 — #68

Chapter 3 Induction62

EH G

FD

CBA

(a)

EH

GFD

CBA

(b)

Figure 3.9 An example of a column move in which the G-tile is moved into the
adjacent hole above. In this case, G changes order with E and H .

Definition 3.3.6. A pair of letters L1 and L2 is an inversion if L1 precedes L2 in
the alphabet, but L1 appears after L2 in the puzzle order.

For example, in the puzzle below, there are three inversions: .D; F /, .E; F /,
.E;G/.

HE

GDF

CBA

There is exactly one inversion .G;H/ in the start state:

GH

FED

CBA

“mcs-ftl” — 2010/9/8 — 0:40 — page 63 — #69

3.3. Invariants 63

There are no inversions in the end state:

HG

FED

CBA

Let’s work out the effects of row and column moves in terms of inversions.

Lemma 3.3.7. During a move, the number of inversions can only increase by 2,
decrease by 2, or remain the same.

Proof. By Lemma 3.3.4, a row move does not change the order of the tiles, and so
a row move does not change the number of inversions.

By Lemma 3.3.5, a column move changes the relative order of exactly 2 pairs
of tiles. There are three cases: If both pairs were originally in order, then the
number of inversions after the move goes up by 2. If both pairs were originally
inverted, then the number of inversions after the move goes down by 2. If one
pair was originally inverted and the other was originally in order, then the number
of inversions stays the same (since changing the former pair makes the number of
inversions smaller by 1, and changing the latter pair makes the number of inversions
larger by 1). �

We are almost there. If the number of inversions only changes by 2, then what
about the parity of the number of inversions? (The “parity” of a number refers to
whether the number is even or odd. For example, 7 and 5 have odd parity, and 18
and 0 have even parity.)

Since adding or subtracting 2 from a number does not change its parity, we have
the following corollary to Lemma 3.3.7:

Corollary 3.3.8. Neither a row move nor a column move ever changes the parity
of the number of inversions.

Now we can bundle up all these observations and state an invariant, that is, a
property of the puzzle that never changes, no matter how you slide the tiles around.

Lemma 3.3.9. In every configuration reachable from the configuration shown in
Figure 3.7(a), the parity of the number of inversions is odd.

“mcs-ftl” — 2010/9/8 — 0:40 — page 64 — #70

Chapter 3 Induction64

Proof. We use induction. Let P.n/ be the proposition that after n moves from the
above configuration, the parity of the number of inversions is odd.

Base case: After zero moves, exactly one pair of tiles is inverted (G and H),
which is an odd number. Therefore P.0/ is true.

Inductive step: Now we must prove that P.n/ implies P.n C 1/ for all n � 0.
So assume that P.n/ is true; that is, after n moves the parity of the number of
inversions is odd. Consider any sequence of nC 1 moves m1, . . . , mnC1. By the
induction hypothesis P.n/, we know that the parity after moves m1, . . . , mn is
odd. By Corollary 3.3.8, we know that the parity does not change during mnC1.
Therefore, the parity of the number of inversions after movesm1, . . . ,mnC1 is odd,
so we have that P.nC 1/ is true.

By the principle of induction, P.n/ is true for all n � 0. �

The theorem we originally set out to prove is restated below. With our invariant
in hand, the proof is simple.

Theorem. No sequence of legal moves transforms the board below on the left into
the board below on the right.

GH

FED

CBA

HG

FED

CBA

Proof. In the target configuration on the right, the total number of inversions is
zero, which is even. Therefore, by Lemma 3.3.9, the target configuration is un-
reachable. �

3.4 Strong Induction

Strong induction is a variation of ordinary induction that is useful when the pred-
icate P.n C 1/ naturally depends on P.a/ for values of a < n. As with ordinary
induction, strong induction is useful to prove that a predicate P.n/ is true for all
n 2 N.

“mcs-ftl” — 2010/9/8 — 0:40 — page 65 — #71

3.4. Strong Induction 65

3.4.1 A Rule for Strong Induction

Principle of Strong Induction. Let P.n/ be a predicate. If

� P.0/ is true, and

� for all n 2 N, P.0/, P.1/, . . . , P.n/ together imply P.nC 1/,

then P.n/ is true for all n 2 N.

The only change from the ordinary induction principle is that strong induction
allows you to assume more stuff in the inductive step of your proof! In an ordinary
induction argument, you assume that P.n/ is true and try to prove that P.n C 1/
is also true. In a strong induction argument, you may assume that P.0/, P.1/, . . . ,
and P.n/ are all true when you go to prove P.nC1/. These extra assumptions can
only make your job easier. Hence the name: strong induction.

Formulated as a proof rule, strong induction is

Rule. Strong Induction Rule

P.0/; 8n 2 N:
�
P.0/ AND P.1/ AND : : : AND P.m/

�
IMPLIES P.nC 1/�

8m 2 N: P.m/

The template for strong induction proofs is identical to the template given in
Section 3.2.3 for ordinary induction except for two things:

� you should state that your proof is by strong induction, and

� you can assume that P.0/, P.1/, . . . , P.n/ are all true instead of only P.n/
during the inductive step.

3.4.2 Some Examples

Products of Primes

As a first example, we’ll use strong induction to re-prove Theorem 3.1.2 which we
previously proved using Well Ordering.

Lemma 3.4.1. Every integer greater than 1 is a product of primes.

Proof. We will prove Lemma 3.4.1 by strong induction, letting the induction hy-
pothesis, P.n/, be

n is a product of primes:

So Lemma 3.4.1 will follow if we prove that P.n/ holds for all n � 2.

“mcs-ftl” — 2010/9/8 — 0:40 — page 66 — #72

Chapter 3 Induction66

Base Case: (n D 2) P.2/ is true because 2 is prime, and so it is a length one
product of primes by convention.

Inductive step: Suppose that n � 2 and that i is a product of primes for every
integer i where 2 � i < nC 1. We must show that P.nC 1/ holds, namely, that
nC 1 is also a product of primes. We argue by cases:

If nC 1 is itself prime, then it is a length one product of primes by convention,
and so P.nC 1/ holds in this case.

Otherwise, nC 1 is not prime, which by definition means nC 1 D km for some
integers k;m such that 2 � k;m < nC 1. Now by the strong induction hypothesis,
we know that k is a product of primes. Likewise, m is a product of primes. It
follows immediately that km D n is also a product of primes. Therefore, P.nC 1/
holds in this case as well.

So P.n C 1/ holds in any case, which completes the proof by strong induction
that P.n/ holds for all n � 2.

�

Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg
(3 Strongs) and 5Sg. Although the Inductians have some trouble making small
change like 4Sg or 7Sg, it turns out that they can collect coins to make change for
any number that is at least 8 Strongs.

Strong induction makes this easy to prove for n C 1 � 11, because then .n C
1/ � 3 � 8, so by strong induction the Inductians can make change for exactly
.nC1/�3 Strongs, and then they can add a 3Sg coin to get .nC1/Sg. So the only
thing to do is check that they can make change for all the amounts from 8 to 10Sg,
which is not too hard to do.

Here’s a detailed writeup using the official format:

Proof. We prove by strong induction that the Inductians can make change for any
amount of at least 8Sg. The induction hypothesis, P.n/ will be:

There is a collection of coins whose value is nC 8 Strongs.

Base case: P.0/ is true because a 3Sg coin together with a 5Sg coin makes 8Sg.
Inductive step: We assume P.m/ holds for all m � n, and prove that P.nC 1/

holds. We argue by cases:
Case (nC 1 = 1): We have to make .nC 1/C 8 D 9Sg. We can do this using

three 3Sg coins.
Case (nC 1 = 2): We have to make .nC 1/C 8 D 10Sg. Use two 5Sg coins.

“mcs-ftl” — 2010/9/8 — 0:40 — page 67 — #73

3.4. Strong Induction 67

Stack Heights Score
10

5 5 25 points
5 3 2 6

4 3 2 1 4

2 3 2 1 2 4

2 2 2 1 2 1 2

1 2 2 1 2 1 1 1

1 1 2 1 2 1 1 1 1

1 1 1 1 2 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

Total Score D 45 points

Figure 3.10 An example of the stacking game with n D 10 boxes. On each line,
the underlined stack is divided in the next step.

Case (nC 1 � 3): Then 0 � n � 2 � n, so by the strong induction hypothesis,
the Inductians can make change for n � 2 Strong. Now by adding a 3Sg coin, they
can make change for .nC 1/Sg.

Since n � 0, we know that n C 1 � 1 and thus that the three cases cover
every possibility. Since P.nC 1/ is true in every case, we can conclude by strong
induction that for all n � 0, the Inductians can make change for nC8 Strong. That
is, they can make change for any number of eight or more Strong.

�

The Stacking Game

Here is another exciting game that’s surely about to sweep the nation!
You begin with a stack of n boxes. Then you make a sequence of moves. In each

move, you divide one stack of boxes into two nonempty stacks. The game ends
when you have n stacks, each containing a single box. You earn points for each
move; in particular, if you divide one stack of height a C b into two stacks with
heights a and b, then you score ab points for that move. Your overall score is the
sum of the points that you earn for each move. What strategy should you use to
maximize your total score?

As an example, suppose that we begin with a stack of n D 10 boxes. Then the
game might proceed as shown in Figure 3.10. Can you find a better strategy?

Let’s use strong induction to analyze the unstacking game. We’ll prove that your
score is determined entirely by the number of boxes—your strategy is irrelevant!

“mcs-ftl” — 2010/9/8 — 0:40 — page 68 — #74

Chapter 3 Induction68

Theorem 3.4.2. Every way of unstacking n blocks gives a score of n.n � 1/=2
points.

There are a couple technical points to notice in the proof:

� The template for a strong induction proof mirrors the template for ordinary
induction.

� As with ordinary induction, we have some freedom to adjust indices. In this
case, we prove P.1/ in the base case and prove that P.1/; : : : ; P.n/ imply
P.nC 1/ for all n � 1 in the inductive step.

Proof. The proof is by strong induction. Let P.n/ be the proposition that every
way of unstacking n blocks gives a score of n.n � 1/=2.

Base case: If n D 1, then there is only one block. No moves are possible, and
so the total score for the game is 1.1 � 1/=2 D 0. Therefore, P.1/ is true.

Inductive step: Now we must show that P.1/, . . . , P.n/ imply P.n C 1/ for
all n � 1. So assume that P.1/, . . . , P.n/ are all true and that we have a stack of
nC 1 blocks. The first move must split this stack into substacks with positive sizes
a and b where aC b D nC 1 and 0 < a; b � n. Now the total score for the game
is the sum of points for this first move plus points obtained by unstacking the two
resulting substacks:

total score D (score for 1st move)

C (score for unstacking a blocks)

C (score for unstacking b blocks)

D ab C
a.a � 1/

2
C
b.b � 1/

2
by P.a/ and P.b/

D
.aC b/2 � .aC b/

2
D
.aC b/..aC b/ � 1/

2

D
.nC 1/n

2

This shows that P.1/, P.2/, . . . , P.n/ imply P.nC 1/.
Therefore, the claim is true by strong induction. �

3.4.3 Strong Induction versus Induction

Is strong induction really “stronger” than ordinary induction? It certainly looks that
way. After all, you can assume a lot more when proving the induction step. But
actually, any proof using strong induction can be reformatted into a proof using
ordinary induction—you just need to use a “stronger” induction hypothesis.

“mcs-ftl” — 2010/9/8 — 0:40 — page 69 — #75

3.5. Structural Induction 69

Which method should you use? Whichever you find easier. But whichever
method you choose, be sure to state the method up front so that the reader can
understand and more easily verify your proof.

3.5 Structural Induction

Up to now, we have focussed on induction over the natural numbers. But the idea
of induction is far more general—it can be applied to a much richer class of sets.
In particular, it is especially useful in connection with sets or data types that are
defined recursively.

3.5.1 Recursive Data Types

Recursive data types play a central role in programming. They are specified by
recursive definitions that say how to build something from its parts. Recursive
definitions have two parts:

� Base case(s) that don’t depend on anything else.

� Constructor case(s) that depend on previous cases.

Let’s see how this works in a couple of examples: Strings of brackets and expres-
sion evaluation.

Example 1: Strings of Brackets

Let brkts be the set of all sequences (or strings) of square brackets. For example,
the following two strings are in brkts:

[]] [[[[[]] and [[[]] []] [] (3.5)

Definition 3.5.1. The set brkts of strings of brackets can be defined recursively
as follows:

� Base case: The empty string, �, is in brkts.

� Constructor case: If s 2 brkts, then s] and s[are in brkts.

Here, we’re writing s] to indicate the string that is the sequence of brackets (if
any) in the string s, followed by a right bracket; similarly for s[.

A string s 2 brkts is called a matched string if its brackets can be “matched
up” in the usual way. For example, the left hand string in 3.5 is not matched because
its second right bracket does not have a matching left bracket. The string on the
right is matched. The set of matched strings can be defined recursively as follows.

“mcs-ftl” — 2010/9/8 — 0:40 — page 70 — #76

Chapter 3 Induction70

Definition 3.5.2. Recursively define the set, RecMatch, of strings as follows:

� Base case: � 2 RecMatch.

� Constructor case: If s; t 2 RecMatch, then

[s] t 2 RecMatch:

Here we’re writing [s] t to indicate the string that starts with a left bracket,
followed by the sequence of brackets (if any) in the string s, followed by a right
bracket, and ending with the sequence of brackets in the string t .

Using this definition, we can see that � 2 RecMatch by the Base case, so

[�] � D [] 2 RecMatch

by the Constructor case. So now,

[�] [] D [] [] 2 RecMatch (letting s D �; t D [])

[[]] � D [[]] 2 RecMatch (letting s D [] ; t D �)

[[]] [] 2 RecMatch (letting s D [] ; t D [])

are also strings in RecMatch by repeated applications of the Constructor case.
In general, RecMatch will contain precisely the strings with matching brack-

ets. This is because the constructor case is, in effect, identifying the bracket that
matches the leftmost bracket in any string. Since that matching bracket is unique,
this method of constructing RecMatch gives a unique way of constructing any string
with matched brackets. This will turn out to be important later when we talk about
ambiguity.

Strings with matched brackets arise in the area of expression parsing. A brief
history of the advances in this field is provided in the box on the next page.

Example 2: Arithmetic Expressions

Expression evaluation is a key feature of programming languages, and recognition
of expressions as a recursive data type is a key to understanding how they can be
processed.

To illustrate this approach we’ll work with a toy example: arithmetic expressions
like 3x2 C 2x C 1 involving only one variable, “x.” We’ll refer to the data type of
such expressions as Aexp. Here is its definition:

Definition 3.5.3. The set Aexp is defined recursively as follows:

� Base cases:

“mcs-ftl” — 2010/9/8 — 0:40 — page 71 — #77

3.5. Structural Induction 71

Expression Parsing

During the early development of computer science in the 1950’s and 60’s, creation
of effective programming language compilers was a central concern. A key aspect
in processing a program for compilation was expression parsing. The problem
was to take in an expression like

x C y � z2 � y C 7

and put in the brackets that determined how it should be evaluated—should it be

ŒŒx C y� � z2 � y�C 7; or;

x C Œy � z2 � Œy C 7��; or;

Œx C Œy � z2��� Œy C 7�;

or . . . ?
The Turing award (the “Nobel Prize” of computer science) was ultimately be-
stowed on Robert Floyd, for, among other things, being discoverer of a simple
program that would insert the brackets properly.
In the 70’s and 80’s, this parsing technology was packaged into high-level
compiler-compilers that automatically generated parsers from expression gram-
mars. This automation of parsing was so effective that the subject stopped de-
manding attention and largely disappeared from the computer science curriculum
by the 1990’s.

“mcs-ftl” — 2010/9/8 — 0:40 — page 72 — #78

Chapter 3 Induction72

1. The variable, x, is in Aexp.

2. The arabic numeral, k, for any nonnegative integer, k, is in Aexp.

� Constructor cases: If e; f 2 Aexp, then

3. .e C f / 2 Aexp. The expression .e C f / is called a sum. The Aexp’s
e and f are called the components of the sum; they’re also called the
summands.

4. .e�f / 2 Aexp. The expression .e�f / is called a product. The Aexp’s
e and f are called the components of the product; they’re also called
the multiplier and multiplicand.

5. �.e/ 2 Aexp. The expression �.e/ is called a negative.

Notice that Aexp’s are fully parenthesized, and exponents aren’t allowed. So the
Aexp version of the polynomial expression 3x2C2xC1would officially be written
as

..3 � .x � x//C ..2 � x/C 1//: (3.6)

These parentheses and �’s clutter up examples, so we’ll often use simpler expres-
sions like “3x2 C 2x C 1” instead of (3.6). But it’s important to recognize that
3x2 C 2x C 1 is not an Aexp; it’s an abbreviation for an Aexp.

3.5.2 Structural Induction on Recursive Data Types

Structural induction is a method for proving that some property, P , holds for all the
elements of a recursively-defined data type. The proof consists of two steps:

� Prove P for the base cases of the definition.

� Prove P for the constructor cases of the definition, assuming that it is true
for the component data items.

A very simple application of structural induction proves that (recursively-defined)
matched strings always have an equal number of left and right brackets. To do this,
define a predicate, P , on strings s 2 brkts:

P.s/ WWD s has an equal number of left and right brackets:

Theorem 3.5.4. P.s/ holds for all s 2 RecMatch.

Proof. By structural induction on the definition that s 2 RecMatch, using P.s/ as
the induction hypothesis.

“mcs-ftl” — 2010/9/8 — 0:40 — page 73 — #79

3.5. Structural Induction 73

Base case: P.�/ holds because the empty string has zero left and zero right
brackets.

Constructor case: For r D [s] t , we must show that P.r/ holds, given that
P.s/ and P.t/ holds. So let ns , nt be, respectively, the number of left brackets in
s and t . So the number of left brackets in r is 1C ns C nt .

Now from the respective hypotheses P.s/ and P.t/, we know that the number
of right brackets in s is ns , and likewise, the number of right brackets in t is nt . So
the number of right brackets in r is 1C ns C nt , which is the same as the number
of left brackets. This proves P.r/. We conclude by structural induction that P.s/
holds for all s 2 RecMatch. �

3.5.3 Functions on Recursively-defined Data Types

A Quick Review of Functions

A function assigns an element of one set, called the domain, to elements of another
set, called the codomain. The notation

f W A! B

indicates that f is a function with domain, A, and codomain, B . The familiar
notation “f .a/ D b” indicates that f assigns the element b 2 B to a. Here b
would be called the value of f at argument a.

Functions are often defined by formulas as in:

f1.x/ WWD
1

x2

where x is a real-valued variable, or

f2.y; z/ WWD y10yz

where y and z range over binary strings, or

f3.x; n/ WWD the pair .n; x/

where n ranges over the nonnegative integers.
A function with a finite domain could be specified by a table that shows the value

of the function at each element of the domain. For example, a function f4.P;Q/
where P and Q are propositional variables is specified by:

P Q f4.P;Q/

T T T
T F F
F T T
F F T

“mcs-ftl” — 2010/9/8 — 0:40 — page 74 — #80

Chapter 3 Induction74

Notice that f4 could also have been described by a formula:

f4.P;Q/ WWD ŒP IMPLIES Q�:

A function might also be defined by a procedure for computing its value at any
element of its domain, or by some other kind of specification. For example, define
f5.y/ to be the length of a left to right search of the bits in the binary string y until
a 1 appears, so

f5.0010/ D 3;

f5.100/ D 1;

f5.0000/ is undefined:

Notice that f5 does not assign a value to a string of just 0’s. This illustrates an
important fact about functions: they need not assign a value to every element in the
domain. In fact this came up in our first example f1.x/ D 1=x2, which does not
assign a value to 0. So in general, functions may be partial functions, meaning that
there may be domain elements for which the function is not defined. If a function
is defined on every element of its domain, it is called a total function.

It’s often useful to find the set of values a function takes when applied to the
elements in a set of arguments. So if f W A! B , and S is a subset of A, we define
f .S/ to be the set of all the values that f takes when it is applied to elements of S .
That is,

f .S/ WWD fb 2 B j f .s/ D b for some s 2 Sg:

For example, if we let Œr; s� denote the interval from r to s on the real line, then
f1.Œ1; 2�/ D Œ1=4; 1�.

For another example, let’s take the “search for a 1” function, f5. If we let X be
the set of binary words which start with an even number of 0’s followed by a 1,
then f5.X/ would be the odd nonnegative integers.

Applying f to a set, S , of arguments is referred to as “applying f pointwise to
S”, and the set f .S/ is referred to as the image of S under f .8 The set of values
that arise from applying f to all possible arguments is called the range of f . That
is,

range.f / WWD f .domain.f //:

8There is a picky distinction between the function f which applies to elements of A and the
function which applies f pointwise to subsets of A, because the domain of f is A, while the domain
of pointwise-f is P.A/. It is usually clear from context whether f or pointwise-f is meant, so there
is no harm in overloading the symbol f in this way.

“mcs-ftl” — 2010/9/8 — 0:40 — page 75 — #81

3.5. Structural Induction 75

Recursively-Defined Functions

Functions on recursively-defined data types can be defined recursively using the
same cases as the data type definition. Namely, to define a function, f , on a recur-
sive data type, define the value of f for the base cases of the data type definition,
and then define the value of f in each constructor case in terms of the values of f
on the component data items.

For example, consider the function

eval W Aexp � Z! Z;

which evaluates any expression in Aexp using the value n for x. It is useful to
express this function with a recursive definition as follows:

Definition 3.5.5. The evaluation function, eval W Aexp � Z! Z, is defined recur-
sively on expressions, e 2 Aexp, as follows. Let n be any integer.

� Base cases:

1. Case[e is x]
eval.x; n/ WWD n:

(The value of the variable, x, is given to be n.)

2. Case[e is k]
eval.k; n/ WWD k:

(The value of the numeral k is the integer k, no matter what value x
has.)

� Constructor cases:

3. Case[e is .e1 C e2/]

eval..e1 C e2/; n/ WWD eval.e1; n/C eval.e2; n/:

4. Case[e is .e1 � e2/]

eval..e1 � e2/; n/ WWD eval.e1; n/ � eval.e2; n/:

5. Case[e is �.e1/]

eval.�.e1/; n/ WWD � eval.e1; n/:

“mcs-ftl” — 2010/9/8 — 0:40 — page 76 — #82

Chapter 3 Induction76

For example, here’s how the recursive definition of eval would arrive at the value
of 3C x2 when x is 2:

eval..3C .x � x//; 2/ D eval.3; 2/C eval..x � x/; 2/ (by Def 3.5.5.3)

D 3C eval..x � x/; 2/ (by Def 3.5.5.2)

D 3C .eval.x; 2/ � eval.x; 2// (by Def 3.5.5.4)

D 3C .2 � 2/ (by Def 3.5.5.1)

D 3C 4 D 7:

A Second Example

We next consider the function on matched strings that specifies the depth of the
matched brackets in any string. This function can be specified recursively as fol-
lows:

Definition 3.5.6. The depth d.s/ of a string s 2 RecMatch is defined recursively
by the rules:

� d.�/ WWD 0:

� d.[s] t / WWDmaxfd.s/C 1; d.t/g

Ambiguity

When a recursive definition of a data type allows the same element to be constructed
in more than one way, the definition is said to be ambiguous. A function defined
recursively from an ambiguous definition of a data type will not be well-defined
unless the values specified for the different ways of constructing the element agree.

We were careful to choose an unambiguous definition of RecMatch to ensure that
functions defined recursively on the definition would always be well-defined. As
an example of the trouble an ambiguous definition can cause, let’s consider another
definition of the matched strings.

Definition 3.5.7. Define the set, M � brkts recursively as follows:

� Base case: � 2M ,

� Constructor cases: if s; t 2M , then the strings [s] and st are also in M .

By using structural induction, it is possible to prove that M D RecMatch. In-
deed, the definition ofM might even seem like a more natural way to define the set

“mcs-ftl” — 2010/9/8 — 0:40 — page 77 — #83

3.5. Structural Induction 77

of matched strings than the definition of RecMatch. But the definition of M is am-
biguous, while the (perhaps less natural) definition of RecMatch is unambiguous.
Does this ambiguity matter? Yes, it can. For example, suppose we defined

f .�/ WWD 1;

f . [s] / WWD 1C f .s/;
f .st/ WWD .f .s/C 1/ � .f .t/C 1/ for st ¤ �:

Let a be the string [[]] 2M built by two successive applications of the firstM
constructor starting with �. Next let

b WWD aa

D [[]] [[]]

and

c WWD bb

D [[]] [[]] [[]] [[]]

each be built by successive applications of the second M constructor starting with
a.

Alternatively, we can build ba from the second constructor with s D b and
t D a, and then get to c using the second constructor with s D ba and t D a.

By applying these rules to the first way of constructing c, f .a/ D 2, f .b/ D
.2 C 1/.2 C 1/ D 9, and f .c/ D f .bb/ D .9 C 1/.9 C 1/ D 100. Using the
second way of constructing c, we find that f .ba/ D .9 C 1/.2 C 1/ D 27 and
f .c/ D f .ba a/ D .27C 1/.2C 1/ D 84. The outcome is that f .c/ is defined to
be both 100 and 84, which shows that the rules defining f are inconsistent.

Note that structural induction remains a sound proof method even for ambiguous
recursive definitions, which is why it is easy to prove that M D RecMatch.

3.5.4 Recursive Functions on N—Structural Induction versus
Ordinary Induction

The nonnegative integers can be understood as a recursive data type.

Definition 3.5.8. The set, N, is a data type defined recursivly as:

� Base Case: 0 2 N.

� Constructor Case: If n 2 N, then the successor, nC 1, of n is in N.

“mcs-ftl” — 2010/9/8 — 0:40 — page 78 — #84

Chapter 3 Induction78

This means that ordinary induction is a special case of structural induction on the
recursive Definition 3.5.8. Conversely, most proofs based on structural induction
that you will encounter in computer science can also be reformatted into proofs that
use only ordinary induction. The decision as to which technique to use is up to you,
but it will often be the case that structural induction provides the easiest approach
when you are dealing with recursive data structures or functions.

Definition 3.5.8 also justifies the familiar recursive definitions of functions on
the nonnegative integers. Here are some examples.

The Factorial Function

The factorial function is often written “nŠ.” You will be seeing it a lot in Parts III
and IV of this text. For now, we’ll use the notation fac.n/ and define it recursively
as follows:

� Base Case: fac.0/ WWD 1.

� Constructor Case: fac.nC 1/ WWD .nC 1/ � fac.n/ for n � 0.

The Fibonacci numbers.

Fibonacci numbers arose out of an effort 800 years ago to model population growth.
We will study them at some length in Part III. The nth Fibonacci number, fib.n/,
can be defined recursively by:

� Base Cases: fib.0/ WWD 0 and fib.1/ WWD 1

� Constructor Case: fib.n/ WWD fib.n � 1/C fib.n � 2/ for n � 2.

Here the recursive step starts at n D 2 with base cases for n D 0 and n D 1. This
is needed since the recursion relies on two previous values.

What is fib.4/? Well, fib.2/ D fib.1/Cfib.0/ D 1, fib.3/ D fib.2/Cfib.1/ D 2,
so fib.4/ D 3. The sequence starts out 0; 1; 1; 2; 3; 5; 8; 13; 21; : : : .

Sum-notation

Let “S.n/” abbreviate the expression “
Pn
iD1 f .i/.” We can recursively define S.n/

with the rules

� Base Case: S.0/ WWD 0.

� Constructor Case: S.nC 1/ WWD f .nC 1/C S.n/ for n � 0.

“mcs-ftl” — 2010/9/8 — 0:40 — page 79 — #85

3.5. Structural Induction 79

Ill-formed Function Definitions

There are some blunders to watch out for when defining functions recursively. Be-
low are some function specifications that resemble good definitions of functions on
the nonnegative integers, but they aren’t.

Definition 3.5.9.
f1.n/ WWD 2C f1.n � 1/: (3.7)

This “definition” has no base case. If some function, f1, satisfied (3.7), so would
a function obtained by adding a constant to the value of f1. So equation (3.7) does
not uniquely define an f1.

Definition 3.5.10.

f2.n/ WWD

(
0; if n D 0;
f2.nC 1/ otherwise:

(3.8)

This “definition” has a base case, but still doesn’t uniquely determine f2. Any
function that is 0 at 0 and constant everywhere else would satisfy the specification,
so (3.8) also does not uniquely define anything.

In a typical programming language, evaluation of f2.1/ would begin with a re-
cursive call of f2.2/, which would lead to a recursive call of f2.3/, . . . with recur-
sive calls continuing without end. This “operational” approach interprets (3.8) as
defining a partial function, f2, that is undefined everywhere but 0.

Definition 3.5.11.

f3.n/ WWD

8̂<̂
:
0; if n is divisible by 2,
1; if n is divisible by 3,
2; otherwise.

(3.9)

This “definition” is inconsistent: it requires f3.6/ D 0 and f3.6/ D 1, so (3.9)
doesn’t define anything.

A Mysterious Function

Mathematicians have been wondering about the following function specification
for many years:

f4.n/ WWD

8̂<̂
:
1; if n � 1;
f4.n=2/ if n > 1 is even;
f4.3nC 1/ if n > 1 is odd:

(3.10)

“mcs-ftl” — 2010/9/8 — 0:40 — page 80 — #86

Chapter 3 Induction80

For example, f4.3/ D 1 because

f4.3/ WWDf4.10/ WWDf4.5/ WWDf4.16/ WWDf4.8/ WWDf4.4/ WWDf4.2/ WWDf4.1/ WWD1:

The constant function equal to 1 will satisfy (3.10), but it’s not known if another
function does too. The problem is that the third case specifies f4.n/ in terms of f4
at arguments larger than n, and so cannot be justified by induction on N. It’s known
that any f4 satisfying (3.10) equals 1 for all n up to over a billion.

“mcs-ftl” — 2010/9/8 — 0:40 — page 81 — #87

4 Number Theory
Number theory is the study of the integers. Why anyone would want to study the
integers is not immediately obvious. First of all, what’s to know? There’s 0, there’s
1, 2, 3, and so on, and, oh yeah, -1, -2, Which one don’t you understand? Sec-
ond, what practical value is there in it? The mathematician G. H. Hardy expressed
pleasure in its impracticality when he wrote:

[Number theorists] may be justified in rejoicing that there is one sci-
ence, at any rate, and that their own, whose very remoteness from or-
dinary human activities should keep it gentle and clean.

Hardy was specially concerned that number theory not be used in warfare; he was
a pacifist. You may applaud his sentiments, but he got it wrong: Number Theory
underlies modern cryptography, which is what makes secure online communication
possible. Secure communication is of course crucial in war—which may leave poor
Hardy spinning in his grave. It’s also central to online commerce. Every time you
buy a book from Amazon, check your grades on WebSIS, or use a PayPal account,
you are relying on number theoretic algorithms.

Number theory also provides an excellent environment for us to practice and
apply the proof techniques that we developed in Chapters 2 and 3.

Since we’ll be focusing on properties of the integers, we’ll adopt the default
convention in this chapter that variables range over the set of integers, Z.

4.1 Divisibility

The nature of number theory emerges as soon as we consider the divides relation

a divides b iff ak D b for some k:

The notation, a j b, is an abbreviation for “a divides b.” If a j b, then we also
say that b is a multiple of a. A consequence of this definition is that every number
divides zero.

This seems simple enough, but let’s play with this definition. The Pythagoreans,
an ancient sect of mathematical mystics, said that a number is perfect if it equals the
sum of its positive integral divisors, excluding itself. For example, 6 D 1C 2C 3

and 28 D 1 C 2 C 4 C 7 C 14 are perfect numbers. On the other hand, 10 is not
perfect because 1C2C5 D 8, and 12 is not perfect because 1C2C3C4C6 D 16.

“mcs-ftl” — 2010/9/8 — 0:40 — page 82 — #88

Chapter 4 Number Theory82

Euclid characterized all the even perfect numbers around 300 BC. But is there an
odd perfect number? More than two thousand years later, we still don’t know! All
numbers up to about 10300 have been ruled out, but no one has proved that there
isn’t an odd perfect number waiting just over the horizon.

So a half-page into number theory, we’ve strayed past the outer limits of human
knowledge! This is pretty typical; number theory is full of questions that are easy
to pose, but incredibly difficult to answer.1 For example, several such problems
are shown in the box on the following page. Interestingly, we’ll see that computer
scientists have found ways to turn some of these difficulties to their advantage.

4.1.1 Facts about Divisibility

The lemma below states some basic facts about divisibility that are not difficult to
prove:

Lemma 4.1.1. The following statements about divisibility hold.

1. If a j b, then a j bc for all c.

2. If a j b and b j c, then a j c.

3. If a j b and a j c, then a j sb C tc for all s and t .

4. For all c ¤ 0, a j b if and only if ca j cb.

Proof. We’ll prove only part 2.; the other proofs are similar.
Proof of 2: Assume a j b and b j c. Since a j b, there exists an integer k1

such that ak1 D b. Since b j c, there exists an integer k2 such that bk2 D c.
Substituting ak1 for b in the second equation gives .ak1/k2 D c. So a.k1k2/ D c,
which implies that a j c. �

4.1.2 When Divisibility Goes Bad

As you learned in elementary school, if one number does not evenly divide another,
you get a “quotient” and a “remainder” left over. More precisely:

Theorem 4.1.2 (Division Theorem). 3 Let n and d be integers such that d > 0.
Then there exists a unique pair of integers q and r , such that

n D q � d C r AND 0 � r < d: (4.1)
1Don’t Panic—we’re going to stick to some relatively benign parts of number theory. These

super-hard unsolved problems rarely get put on problem sets.
3This theorem is often called the “Division Algorithm,” even though it is not what we would call

an algorithm. We will take this familiar result for granted without proof.

“mcs-ftl” — 2010/9/8 — 0:40 — page 83 — #89

4.1. Divisibility 83

Famous Conjectures in Number Theory
Fermat’s Last Theorem There are no positive integers x, y, and z such that

xn C yn D zn

for some integer n > 2. In a book he was reading around 1630, Fermat
claimed to have a proof but not enough space in the margin to write it
down. Wiles finally gave a proof of the theorem in 1994, after seven years
of working in secrecy and isolation in his attic. His proof did not fit in any
margin.

Goldbach Conjecture Every even integer greater than two is equal to the sum of
two primes2. For example, 4 D 2 C 2, 6 D 3 C 3, 8 D 3 C 5, etc. The
conjecture holds for all numbers up to 1016. In 1939 Schnirelman proved
that every even number can be written as the sum of not more than 300,000
primes, which was a start. Today, we know that every even number is the
sum of at most 6 primes.

Twin Prime Conjecture There are infinitely many primes p such that p C 2 is
also a prime. In 1966 Chen showed that there are infinitely many primes p
such that p C 2 is the product of at most two primes. So the conjecture is
known to be almost true!

Primality Testing There is an efficient way to determine whether a number is
prime. A naive search for factors of an integer n takes a number of steps
proportional to

p
n, which is exponential in the size of n in decimal or bi-

nary notation. All known procedures for prime checking blew up like this
on various inputs. Finally in 2002, an amazingly simple, new method was
discovered by Agrawal, Kayal, and Saxena, which showed that prime test-
ing only required a polynomial number of steps. Their paper began with a
quote from Gauss emphasizing the importance and antiquity of the prob-
lem even in his time—two centuries ago. So prime testing is definitely not
in the category of infeasible problems requiring an exponentially growing
number of steps in bad cases.

Factoring Given the product of two large primes n D pq, there is no efficient
way to recover the primes p and q. The best known algorithm is the “num-
ber field sieve”, which runs in time proportional to:

e1:9.lnn/
1=3.ln lnn/2=3

This is infeasible when n has 300 digits or more.

“mcs-ftl” — 2010/9/8 — 0:40 — page 84 — #90

Chapter 4 Number Theory84

The number q is called the quotient and the number r is called the remainder of
n divided by d . We use the notation qcnt.n; d/ for the quotient and rem.n; d/ for
the remainder.

For example, qcnt.2716; 10/ D 271 and rem.2716; 10/ D 6, since 2716 D
271 � 10 C 6. Similarly, rem.�11; 7/ D 3, since �11 D .�2/ � 7 C 3. There
is a remainder operator built into many programming languages. For example,
the expression “32 % 5” evaluates to 2 in Java, C, and C++. However, all these
languages treat negative numbers strangely.

4.1.3 Die Hard

Simon: On the fountain, there should be 2 jugs, do you see them? A 5-gallon and
a 3-gallon. Fill one of the jugs with exactly 4 gallons of water and place it on
the scale and the timer will stop. You must be precise; one ounce more or less
will result in detonation. If you’re still alive in 5 minutes, we’ll speak.

Bruce: Wait, wait a second. I don’t get it. Do you get it?
Samuel: No.
Bruce: Get the jugs. Obviously, we can’t fill the 3-gallon jug with 4 gallons of

water.
Samuel: Obviously.
Bruce: All right. I know, here we go. We fill the 3-gallon jug exactly to the top,

right?
Samuel: Uh-huh.
Bruce: Okay, now we pour this 3 gallons into the 5-gallon jug, giving us exactly

3 gallons in the 5-gallon jug, right?
Samuel: Right, then what?
Bruce: All right. We take the 3-gallon jug and fill it a third of the way. . .
Samuel: No! He said, “Be precise.” Exactly 4 gallons.
Bruce: Sh—. Every cop within 50 miles is running his a— off and I’m out here

playing kids’ games in the park.
Samuel: Hey, you want to focus on the problem at hand?

The preceding script is from the movie Die Hard 3: With a Vengeance. In the
movie, Samuel L. Jackson and Bruce Willis have to disarm a bomb planted by the
diabolical Simon Gruber. Fortunately, they find a solution in the nick of time. (No
doubt reading the script helped.) On the surface, Die Hard 3 is just a B-grade
action movie; however, we think the inner message of the film is that everyone
should learn at least a little number theory.

Unfortunately, Hollywood never lets go of a gimmick. Although there were no
water jug tests in Die Hard 4: Live Free or Die Hard, rumor has it that the jugs will

“mcs-ftl” — 2010/9/8 — 0:40 — page 85 — #91

4.1. Divisibility 85

return in future sequels:

Die Hard 5: Die Hardest Bruce goes on vacation and—shockingly—happens into
a terrorist plot. To save the day, he must make 3 gallons using 21- and 26-
gallon jugs.

Die Hard 6: Die of Old Age Bruce must save his assisted living facility from a
criminal mastermind by forming 2 gallons with 899- and 1147-gallon jugs.

Die Hard 7: Die Once and For All Bruce has to make 4 gallons using 3- and 6-
gallon jugs.

It would be nice if we could solve all these silly water jug questions at once. In
particular, how can one form g gallons using jugs with capacities a and b?

That’s where number theory comes in handy.

Finding an Invariant Property

Suppose that we have water jugs with capacities a and b with b � a. The state of
the system is described below with a pair of numbers .x; y/, where x is the amount
of water in the jug with capacity a and y is the amount in the jug with capacity b.
Let’s carry out sample operations and see what happens, assuming the b-jug is big
enough:

.0; 0/! .a; 0/ fill first jug

! .0; a/ pour first into second

! .a; a/ fill first jug

! .2a � b; b/ pour first into second (assuming 2a � b)

! .2a � b; 0/ empty second jug

! .0; 2a � b/ pour first into second

! .a; 2a � b/ fill first

! .3a � 2b; b/ pour first into second (assuming 3a � 2b)

What leaps out is that at every step, the amount of water in each jug is of the form

s � aC t � b (4.2)

for some integers s and t . An expression of the form (4.2) is called an integer linear
combination of a and b, but in this chapter we’ll just call it a linear combination,
since we’re only talking integers. So we’re suggesting:

Lemma 4.1.3. Suppose that we have water jugs with capacities a and b. Then the
amount of water in each jug is always a linear combination of a and b.

“mcs-ftl” — 2010/9/8 — 0:40 — page 86 — #92

Chapter 4 Number Theory86

Lemma 4.1.3 is easy to prove by induction on the number of pourings.

Proof. The induction hypothesis, P.n/, is the proposition that after n steps, the
amount of water in each jug is a linear combination of a and b.
Base case: (n D 0). P.0/ is true, because both jugs are initially empty, and
0 � aC 0 � b D 0.
Inductive step. We assume by induction hypothesis that after n steps the amount
of water in each jug is a linear combination of a and b. There are two cases:

� If we fill a jug from the fountain or empty a jug into the fountain, then that jug
is empty or full. The amount in the other jug remains a linear combination
of a and b. So P.nC 1/ holds.

� Otherwise, we pour water from one jug to another until one is empty or the
other is full. By our assumption, the amount in each jug is a linear combina-
tion of a and b before we begin pouring:

j1 D s1 � aC t1 � b

j2 D s2 � aC t2 � b

After pouring, one jug is either empty (contains 0 gallons) or full (contains a
or b gallons). Thus, the other jug contains either j1Cj2 gallons, j1Cj2�a,
or j1 C j2 � b gallons, all of which are linear combinations of a and b. So
P.nC 1/ holds in this case as well.

So in any case, P.nC 1/ follows, completing the proof by induction. �

So we have established that the jug problem has an invariant property, namely
that the amount of water in every jug is always a linear combination of the capacities
of the jugs. This lemma has an important corollary:

Corollary 4.1.4. Bruce dies.

Proof. In Die Hard 7, Bruce has water jugs with capacities 3 and 6 and must form
4 gallons of water. However, the amount in each jug is always of the form 3s C 6t

by Lemma 4.1.3. This is always a multiple of 3 by part 3 of Lemma 4.1.1, so he
cannot measure out 4 gallons. �

But Lemma 4.1.3 isn’t very satisfying. We’ve just managed to recast a pretty
understandable question about water jugs into a complicated question about linear
combinations. This might not seem like a lot of progress. Fortunately, linear com-
binations are closely related to something more familiar, namely greatest common
divisors, and these will help us solve the water jug problem.

“mcs-ftl” — 2010/9/8 — 0:40 — page 87 — #93

4.2. The Greatest Common Divisor 87

4.2 The Greatest Common Divisor

The greatest common divisor of a and b is exactly what you’d guess: the largest
number that is a divisor of both a and b. It is denoted by gcd.a; b/. For example,
gcd.18; 24/ D 6. The greatest common divisor turns out to be a very valuable
piece of information about the relationship between a and b and for reasoning about
integers in general. So we’ll be making lots of arguments about greatest common
divisors in what follows.

4.2.1 Linear Combinations and the GCD

The theorem below relates the greatest common divisor to linear combinations.
This theorem is very useful; take the time to understand it and then remember it!

Theorem 4.2.1. The greatest common divisor of a and b is equal to the smallest
positive linear combination of a and b.

For example, the greatest common divisor of 52 and 44 is 4. And, sure enough,
4 is a linear combination of 52 and 44:

6 � 52C .�7/ � 44 D 4

Furthermore, no linear combination of 52 and 44 is equal to a smaller positive
integer.

Proof of Theorem 4.2.1. By the Well Ordering Principle, there is a smallest positive
linear combination of a and b; call itm. We’ll prove thatm D gcd.a; b/ by showing
both gcd.a; b/ � m and m � gcd.a; b/.

First, we show that gcd.a; b/ � m. Now any common divisor of a and b—that
is, any c such that c j a and c j b—will divide both sa and tb, and therefore also
sa C tb for any s and t . The gcd.a; b/ is by definition a common divisor of a and
b, so

gcd.a; b/ j saC tb (4.3)

for every s and t . In particular, gcd.a; b/ j m, which implies that gcd.a; b/ � m.
Now, we show that m � gcd.a; b/. We do this by showing that m j a. A

symmetric argument shows that m j b, which means thatm is a common divisor of
a and b. Thus, m must be less than or equal to the greatest common divisor of a
and b.

All that remains is to show that m j a. By the Division Algorithm, there exists a
quotient q and remainder r such that:

a D q �mC r (where 0 � r < m)

“mcs-ftl” — 2010/9/8 — 0:40 — page 88 — #94

Chapter 4 Number Theory88

Recall that m D saC tb for some integers s and t . Substituting in for m gives:

a D q � .saC tb/C r; so

r D .1 � qs/aC .�qt/b:

We’ve just expressed r as a linear combination of a and b. However, m is the
smallest positive linear combination and 0 � r < m. The only possibility is that
the remainder r is not positive; that is, r D 0. This implies m j a. �

Corollary 4.2.2. An integer is linear combination of a and b iff it is a multiple of
gcd.a; b/.

Proof. By (4.3), every linear combination of a and b is a multiple of gcd.a; b/.
Conversely, since gcd.a; b/ is a linear combination of a and b, every multiple of
gcd.a; b/ is as well. �

Now we can restate the water jugs lemma in terms of the greatest common divi-
sor:

Corollary 4.2.3. Suppose that we have water jugs with capacities a and b. Then
the amount of water in each jug is always a multiple of gcd.a; b/.

For example, there is no way to form 4 gallons using 3- and 6-gallon jugs, be-
cause 4 is not a multiple of gcd.3; 6/ D 3.

4.2.2 Properties of the Greatest Common Divisor

We’ll often make use of some basic gcd facts:

Lemma 4.2.4. The following statements about the greatest common divisor hold:

1. Every common divisor of a and b divides gcd.a; b/.

2. gcd.ka; kb/ D k � gcd.a; b/ for all k > 0.

3. If gcd.a; b/ D 1 and gcd.a; c/ D 1, then gcd.a; bc/ D 1.

4. If a j bc and gcd.a; b/ D 1, then a j c.

5. gcd.a; b/ D gcd.b; rem.a; b//.

Here’s the trick to proving these statements: translate the gcd world to the linear
combination world using Theorem 4.2.1, argue about linear combinations, and then
translate back using Theorem 4.2.1 again.

“mcs-ftl” — 2010/9/8 — 0:40 — page 89 — #95

4.2. The Greatest Common Divisor 89

Proof. We prove only parts 3. and 4.
Proof of 3. The assumptions together with Theorem 4.2.1 imply that there exist

integers s, t , u, and v such that:

saC tb D 1

uaC vc D 1

Multiplying these two equations gives:

.saC tb/.uaC vc/ D 1

The left side can be rewritten as a � .asuC btuC csv/C bc.tv/. This is a linear
combination of a and bc that is equal to 1, so gcd.a; bc/ D 1 by Theorem 4.2.1.

Proof of 4. Theorem 4.2.1 says that gcd.ac; bc/ is equal to a linear combination
of ac and bc. Now a j ac trivially and a j bc by assumption. Therefore, a divides
every linear combination of ac and bc. In particular, a divides gcd.ac; bc/ D
c � gcd.a; b/ D c � 1 D c. The first equality uses part 2. of this lemma, and the
second uses the assumption that gcd.a; b/ D 1. �

4.2.3 Euclid’s Algorithm

Part (5) of Lemma 4.2.4 is useful for quickly computing the greatest common divi-
sor of two numbers. For example, we could compute the greatest common divisor
of 1147 and 899 by repeatedly applying part (5):

gcd.1147; 899/ D gcd
�
899; rem.1147; 899/„ ƒ‚ …

D248

�
D gcd

�
248; rem.899; 248/„ ƒ‚ …

D155

�
D gcd

�
155; rem.248; 155/„ ƒ‚ …

D93

�
D gcd

�
93; rem.155; 93/„ ƒ‚ …

D62

�
D gcd

�
62; rem.93; 62/„ ƒ‚ …

D31

�
D gcd

�
31; rem.62; 31/„ ƒ‚ …

D0

�
D gcd.31; 0/

D 31

“mcs-ftl” — 2010/9/8 — 0:40 — page 90 — #96

Chapter 4 Number Theory90

The last equation might look wrong, but 31 is a divisor of both 31 and 0 since every
integer divides 0.

This process is called Euclid’s algorithm and it was discovered by the Greeks
over 3000 years ago. You can prove that the algorithm always eventually terminates
by using induction and the fact that the numbers in each step keep getting smaller
until the remainder is 0, whereupon you have computed the GCD. In fact, the
numbers are getting smaller quickly (by at least a factor of 2 every two steps) and so
Euler’s Algorithm is quite fast. The fact that Euclid’s Algorithm actually produces
the GCD (and not something different) can also be proved by an inductive invariant
argument.

The calculation that gcd.1147; 899/ D 31 together with Corollary 4.2.3 implies
that there is no way to measure out 2 gallons of water using jugs with capacities
1147 and 899, since we can only obtain multiples of 31 gallons with these jugs.
This is good news—Bruce won’t even survive Die Hard 6!

But what about Die Hard 5? Is it possible for Bruce to make 3 gallons using 21-
and 26-gallon jugs? Using Euclid’s algorithm:

gcd.26; 21/ D gcd.21; 5/ D gcd.5; 1/ D 1:

Since 3 is a multiple of 1, so we can’t rule out the possibility that 3 gallons can be
formed. On the other hand, we don’t know if it can be done either. To resolve the
matter, we will need more number theory.

4.2.4 One Solution for All Water Jug Problems

Corollary 4.2.2 says that 3 can be written as a linear combination of 21 and 26,
since 3 is a multiple of gcd.21; 26/ D 1. In other words, there exist integers s and
t such that:

3 D s � 21C t � 26

We don’t know what the coefficients s and t are, but we do know that they exist.
Now the coefficient s could be either positive or negative. However, we can

readily transform this linear combination into an equivalent linear combination

3 D s0 � 21C t 0 � 26 (4.4)

where the coefficient s0 is positive. The trick is to notice that if we increase s by
26 in the original equation and decrease t by 21, then the value of the expression
s � 21C t � 26 is unchanged overall. Thus, by repeatedly increasing the value of s
(by 26 at a time) and decreasing the value of t (by 21 at a time), we get a linear
combination s0 � 21 C t 0 � 26 D 3 where the coefficient s0 is positive. Notice that
then t 0 must be negative; otherwise, this expression would be much greater than 3.

“mcs-ftl” — 2010/9/8 — 0:40 — page 91 — #97

4.2. The Greatest Common Divisor 91

Now we can form 3 gallons using jugs with capacities 21 and 26: We simply
repeat the following steps s0 times:

1. Fill the 21-gallon jug.

2. Pour all the water in the 21-gallon jug into the 26-gallon jug. If at any time
the 26-gallon jug becomes full, empty it out, and continue pouring the 21-
gallon jug into the 26-gallon jug.

At the end of this process, we must have have emptied the 26-gallon jug exactly
jt 0j times. Here’s why: we’ve taken s0 � 21 gallons of water from the fountain, and
we’ve poured out some multiple of 26 gallons. If we emptied fewer than jt 0j times,
then by (4.4), the big jug would be left with at least 3C 26 gallons, which is more
than it can hold; if we emptied it more times, the big jug would be left containing
at most 3�26 gallons, which is nonsense. But once we have emptied the 26-gallon
jug exactly jt 0j times, equation (4.4) implies that there are exactly 3 gallons left.

Remarkably, we don’t even need to know the coefficients s0 and t 0 in order to
use this strategy! Instead of repeating the outer loop s0 times, we could just repeat
until we obtain 3 gallons, since that must happen eventually. Of course, we have to
keep track of the amounts in the two jugs so we know when we’re done. Here’s the

“mcs-ftl” — 2010/9/8 — 0:40 — page 92 — #98

Chapter 4 Number Theory92

solution that approach gives:

.0; 0/
fill 21
���! .21; 0/

pour 21 into 26
���������! .0; 21/

fill 21
���! .21; 21/

pour 21 into 26
���������! .16; 26/

empty 26
�����! .16; 0/

pour 21 into 26
���������! .0; 16/

fill 21
���! .21; 16/

pour 21 into 26
���������! .11; 26/

empty 26
�����! .11; 0/

pour 21 into 26
���������! .0; 11/

fill 21
���! .21; 11/

pour 21 into 26
���������! .6; 26/

empty 26
�����! .6; 0/

pour 21 into 26
���������! .0; 6/

fill 21
���! .21; 6/

pour 21 into 26
���������! .1; 26/

empty 26
�����! .1; 0/

pour 21 into 26
���������! .0; 1/

fill 21
���! .21; 1/

pour 21 into 26
���������! .0; 22/

fill 21
���! .21; 22/

pour 21 into 26
���������! .17; 26/

empty 26
�����! .17; 0/

pour 21 into 26
���������! .0; 17/

fill 21
���! .21; 17/

pour 21 into 26
���������! .12; 26/

empty 26
�����! .12; 0/

pour 21 into 26
���������! .0; 12/

fill 21
���! .21; 12/

pour 21 into 26
���������! .7; 26/

empty 26
�����! .7; 0/

pour 21 into 26
���������! .0; 7/

fill 21
���! .21; 7/

pour 21 into 26
���������! .2; 26/

empty 26
�����! .2; 0/

pour 21 into 26
���������! .0; 2/

fill 21
���! .21; 2/

pour 21 into 26
���������! .0; 23/

fill 21
���! .21; 23/

pour 21 into 26
���������! .18; 26/

empty 26
�����! .18; 0/

pour 21 into 26
���������! .0; 18/

fill 21
���! .21; 18/

pour 21 into 26
���������! .13; 26/

empty 26
�����! .13; 0/

pour 21 into 26
���������! .0; 13/

fill 21
���! .21; 13/

pour 21 into 26
���������! .8; 26/

empty 26
�����! .8; 0/

pour 21 into 26
���������! .0; 8/

fill 21
���! .21; 8/

pour 21 into 26
���������! .3; 26/

empty 26
�����! .3; 0/

pour 21 into 26
���������! .0; 3/

The same approach works regardless of the jug capacities and even regardless
the amount we’re trying to produce! Simply repeat these two steps until the desired
amount of water is obtained:

1. Fill the smaller jug.

2. Pour all the water in the smaller jug into the larger jug. If at any time the
larger jug becomes full, empty it out, and continue pouring the smaller jug
into the larger jug.

By the same reasoning as before, this method eventually generates every multiple
of the greatest common divisor of the jug capacities—all the quantities we can
possibly produce. No ingenuity is needed at all!

4.2.5 The Pulverizer

We have shown that no matter which pair of numbers a and b we are given, there
is always a pair of integer coefficients s and t such that

gcd.a; b/ D saC tb:

“mcs-ftl” — 2010/9/8 — 0:40 — page 93 — #99

4.2. The Greatest Common Divisor 93

Unfortunately, the proof was nonconstructive: it didn’t suggest a way for finding
such s and t . That job is tackled by a mathematical tool that dates to sixth-century
India, where it was called kuttak, which means “The Pulverizer”. Today, the Pul-
verizer is more commonly known as “the extended Euclidean GCD algorithm”,
because it is so close to Euclid’s Algorithm.

Euclid’s Algorithm for finding the GCD of two numbers relies on repeated ap-
plication of the equation:

gcd.a; b/ D gcd.b; rem.a; b; //:

For example, we can compute the GCD of 259 and 70 as follows:

gcd.259; 70/ D gcd.70; 49/ since rem.259; 70/ D 49

D gcd.49; 21/ since rem.70; 49/ D 21

D gcd.21; 7/ since rem.49; 21/ D 7

D gcd.7; 0/ since rem.21; 7/ D 0

D 7:

The Pulverizer goes through the same steps, but requires some extra bookkeeping
along the way: as we compute gcd.a; b/, we keep track of how to write each of
the remainders (49, 21, and 7, in the example) as a linear combination of a and b
(this is worthwhile, because our objective is to write the last nonzero remainder,
which is the GCD, as such a linear combination). For our example, here is this
extra bookkeeping:

x y .rem.x; y// D x � q � y

259 70 49 D 259 � 3 � 70

70 49 21 D 70 � 1 � 49

D 70 � 1 � .259 � 3 � 70/

D �1 � 259C 4 � 70

49 21 7 D 49 � 2 � 21

D .259 � 3 � 70/ � 2 � .�1 � 259C 4 � 70/

D 3 � 259 � 11 � 70

21 7 0

We began by initializing two variables, x D a and y D b. In the first two columns
above, we carried out Euclid’s algorithm. At each step, we computed rem.x; y/,
which can be written in the form x�q �y. (Remember that the Division Algorithm
says x D q � y C r , where r is the remainder. We get r D x � q � y by rearranging
terms.) Then we replaced x and y in this equation with equivalent linear combina-
tions of a and b, which we already had computed. After simplifying, we were left

“mcs-ftl” — 2010/9/8 — 0:40 — page 94 — #100

Chapter 4 Number Theory94

with a linear combination of a and b that was equal to the remainder as desired.
The final solution is boxed.

You can prove that the Pulverizer always works and that it terminates by using
induction. Indeed, you can “pulverize” very large numbers very quickly by using
this algorithm. As we will soon see, its speed makes the Pulverizer a very useful
tool in the field of cryptography.

4.3 The Fundamental Theorem of Arithmetic

We now have almost enough tools to prove something that you probably already
know.

Theorem 4.3.1 (Fundamental Theorem of Arithmetic). Every positive integer n
can be written in a unique way as a product of primes:

n D p1 � p2 � � �pj .p1 � p2 � � � � � pj /

Notice that the theorem would be false if 1 were considered a prime; for example,
15 could be written as 3 � 5 or 1 � 3 � 5 or 12 � 3 � 5. Also, we’re relying on a standard
convention: the product of an empty set of numbers is defined to be 1, much as the
sum of an empty set of numbers is defined to be 0. Without this convention, the
theorem would be false for n D 1.

There is a certain wonder in the Fundamental Theorem, even if you’ve known it
since you were in a crib. Primes show up erratically in the sequence of integers. In
fact, their distribution seems almost random:

2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; : : :

Basic questions about this sequence have stumped humanity for centuries. And yet
we know that every natural number can be built up from primes in exactly one way.
These quirky numbers are the building blocks for the integers.

The Fundamental Theorem is not hard to prove, but we’ll need a couple of pre-
liminary facts.

Lemma 4.3.2. If p is a prime and p j ab, then p j a or p j b.

Proof. The greatest common divisor of a and p must be either 1 or p, since these
are the only positive divisors of p. If gcd.a; p/ D p, then the claim holds, be-
cause a is a multiple of p. Otherwise, gcd.a; p/ D 1 and so p j b by part (4) of
Lemma 4.2.4. �

“mcs-ftl” — 2010/9/8 — 0:40 — page 95 — #101

4.3. The Fundamental Theorem of Arithmetic 95

The Prime Number Theorem
Let �.x/ denote the number of primes less than or equal to x. For example,
�.10/ D 4 because 2, 3, 5, and 7 are the primes less than or equal to 10. Primes
are very irregularly distributed, so the growth of � is similarly erratic. However,
the Prime Number Theorem gives an approximate answer:

lim
x!1

�.x/

x= ln x
D 1

Thus, primes gradually taper off. As a rule of thumb, about 1 integer out of every
ln x in the vicinity of x is a prime.
The Prime Number Theorem was conjectured by Legendre in 1798 and proved a
century later by de la Vallee Poussin and Hadamard in 1896. However, after his
death, a notebook of Gauss was found to contain the same conjecture, which he
apparently made in 1791 at age 15. (You sort of have to feel sorry for all the oth-
erwise “great” mathematicians who had the misfortune of being contemporaries
of Gauss.)

In late 2004 a billboard appeared in various locations around the country:�
first 10-digit prime found
in consecutive digits of e

�
. com

Substituting the correct number for the expression in curly-braces produced the
URL for a Google employment page. The idea was that Google was interested in
hiring the sort of people that could and would solve such a problem.
How hard is this problem? Would you have to look through thousands or millions
or billions of digits of e to find a 10-digit prime? The rule of thumb derived from
the Prime Number Theorem says that among 10-digit numbers, about 1 in

ln 1010 � 23

is prime. This suggests that the problem isn’t really so hard! Sure enough, the
first 10-digit prime in consecutive digits of e appears quite early:

e D2:718281828459045235360287471352662497757247093699959574966

9676277240766303535475945713821785251664274274663919320030
599218174135966290435729003342952605956307381323286279434 : : :

“mcs-ftl” — 2010/9/8 — 0:40 — page 96 — #102

Chapter 4 Number Theory96

A routine induction argument extends this statement to:

Lemma 4.3.3. Let p be a prime. If p j a1a2 � � � an, then p divides some ai .

Now we’re ready to prove the Fundamental Theorem of Arithmetic.

Proof. Theorem 3.1.2 showed, using the Well Ordering Principle, that every posi-
tive integer can be expressed as a product of primes. So we just have to prove this
expression is unique. We will use Well Ordering to prove this too.

The proof is by contradiction: assume, contrary to the claim, that there exist
positive integers that can be written as products of primes in more than one way.
By the Well Ordering Principle, there is a smallest integer with this property. Call
this integer n, and let

n D p1 � p2 � � �pj

D q1 � q2 � � � qk

be two of the (possibly many) ways to write n as a product of primes. Then p1 j n
and so p1 j q1q2 � � � qk . Lemma 4.3.3 implies that p1 divides one of the primes qi .
But since qi is a prime, it must be that p1 D qi . Deleting p1 from the first product
and qi from the second, we find that n=p1 is a positive integer smaller than n that
can also be written as a product of primes in two distinct ways. But this contradicts
the definition of n as the smallest such positive integer. �

4.4 Alan Turing

The man pictured in Figure 4.1 is Alan Turing, the most important figure in the
history of computer science. For decades, his fascinating life story was shrouded
by government secrecy, societal taboo, and even his own deceptions.

At age 24, Turing wrote a paper entitled On Computable Numbers, with an Ap-
plication to the Entscheidungsproblem. The crux of the paper was an elegant way
to model a computer in mathematical terms. This was a breakthrough, because it
allowed the tools of mathematics to be brought to bear on questions of computation.
For example, with his model in hand, Turing immediately proved that there exist
problems that no computer can solve—no matter how ingenious the programmer.
Turing’s paper is all the more remarkable because he wrote it in 1936, a full decade
before any electronic computer actually existed.

The word “Entscheidungsproblem” in the title refers to one of the 28 mathemat-
ical problems posed by David Hilbert in 1900 as challenges to mathematicians of

“mcs-ftl” — 2010/9/8 — 0:40 — page 97 — #103

4.4. Alan Turing 97

Figure 4.1 Alan Turing

the 20th century. Turing knocked that one off in the same paper. And perhaps
you’ve heard of the “Church-Turing thesis”? Same paper. So Turing was obviously
a brilliant guy who generated lots of amazing ideas. But this lecture is about one of
Turing’s less-amazing ideas. It involved codes. It involved number theory. And it
was sort of stupid.

Let’s look back to the fall of 1937. Nazi Germany was rearming under Adolf
Hitler, world-shattering war looked imminent, and—like us—Alan Turing was pon-
dering the usefulness of number theory. He foresaw that preserving military secrets
would be vital in the coming conflict and proposed a way to encrypt communica-
tions using number theory. This is an idea that has ricocheted up to our own time.
Today, number theory is the basis for numerous public-key cryptosystems, digital
signature schemes, cryptographic hash functions, and electronic payment systems.
Furthermore, military funding agencies are among the biggest investors in crypto-
graphic research. Sorry Hardy!

Soon after devising his code, Turing disappeared from public view, and half a
century would pass before the world learned the full story of where he’d gone and
what he did there. We’ll come back to Turing’s life in a little while; for now, let’s
investigate the code Turing left behind. The details are uncertain, since he never
formally published the idea, so we’ll consider a couple of possibilities.

“mcs-ftl” — 2010/9/8 — 0:40 — page 98 — #104

Chapter 4 Number Theory98

4.4.1 Turing’s Code (Version 1.0)

The first challenge is to translate a text message into an integer so we can perform
mathematical operations on it. This step is not intended to make a message harder
to read, so the details are not too important. Here is one approach: replace each
letter of the message with two digits (A D 01, B D 02, C D 03, etc.) and string all
the digits together to form one huge number. For example, the message “victory”
could be translated this way:

“v i c t o r y”
! 22 09 03 20 15 18 25

Turing’s code requires the message to be a prime number, so we may need to pad
the result with a few more digits to make a prime. In this case, appending the digits
13 gives the number 2209032015182513, which is prime.

Here is how the encryption process works. In the description below, m is the
unencoded message (which we want to keep secret), m� is the encrypted message
(which the Nazis may intercept), and k is the key.

Beforehand The sender and receiver agree on a secret key, which is a large prime
k.

Encryption The sender encrypts the message m by computing:

m� D m � k

Decryption The receiver decrypts m� by computing:

m�

k
D
m � k

k
D m

For example, suppose that the secret key is the prime number k D 22801763489
and the message m is “victory”. Then the encrypted message is:

m� D m � k

D 2209032015182513 � 22801763489

D 50369825549820718594667857

There are a couple of questions that one might naturally ask about Turing’s code.

1. How can the sender and receiver ensure that m and k are prime numbers, as
required?

“mcs-ftl” — 2010/9/8 — 0:40 — page 99 — #105

4.4. Alan Turing 99

The general problem of determining whether a large number is prime or com-
posite has been studied for centuries, and reasonably good primality tests
were known even in Turing’s time. In 2002, Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena announced a primality test that is guaranteed to
work on a number n in about .logn/12 steps, that is, a number of steps
bounded by a twelfth degree polynomial in the length (in bits) of the in-
put, n. This definitively places primality testing way below the problems
of exponential difficulty. Amazingly, the description of their breakthrough
algorithm was only thirteen lines long!

Of course, a twelfth degree polynomial grows pretty fast, so the Agrawal, et
al. procedure is of no practical use. Still, good ideas have a way of breeding
more good ideas, so there’s certainly hope that further improvements will
lead to a procedure that is useful in practice. But the truth is, there’s no
practical need to improve it, since very efficient probabilistic procedures for
prime-testing have been known since the early 1970’s. These procedures
have some probability of giving a wrong answer, but their probability of
being wrong is so tiny that relying on their answers is the best bet you’ll ever
make.

2. Is Turing’s code secure?

The Nazis see only the encrypted message m� D m � k, so recovering the
original message m requires factoring m�. Despite immense efforts, no re-
ally efficient factoring algorithm has ever been found. It appears to be a
fundamentally difficult problem, though a breakthrough someday is not im-
possible. In effect, Turing’s code puts to practical use his discovery that
there are limits to the power of computation. Thus, provided m and k are
sufficiently large, the Nazis seem to be out of luck!

This all sounds promising, but there is a major flaw in Turing’s code.

4.4.2 Breaking Turing’s Code

Let’s consider what happens when the sender transmits a second message using
Turing’s code and the same key. This gives the Nazis two encrypted messages to
look at:

m�1 D m1 � k and m�2 D m2 � k

The greatest common divisor of the two encrypted messages, m�1 and m�2 , is the
secret key k. And, as we’ve seen, the GCD of two numbers can be computed very
efficiently. So after the second message is sent, the Nazis can recover the secret key
and read every message!

“mcs-ftl” — 2010/9/8 — 0:40 — page 100 — #106

Chapter 4 Number Theory100

It is difficult to believe a mathematician as brilliant as Turing could overlook
such a glaring problem. One possible explanation is that he had a slightly different
system in mind, one based on modular arithmetic.

4.5 Modular Arithmetic

On page 1 of his masterpiece on number theory, Disquisitiones Arithmeticae, Gauss
introduced the notion of “congruence”. Now, Gauss is another guy who managed
to cough up a half-decent idea every now and then, so let’s take a look at this one.
Gauss said that a is congruent to b modulo n iff n j .a � b/. This is written

a � b .mod n/:

For example:
29 � 15 .mod 7/ because 7 j .29 � 15/:

There is a close connection between congruences and remainders:

Lemma 4.5.1 (Congruences and Remainders).

a � b .mod n/ iff rem.a; n/ D rem.b; n/:

Proof. By the Division Theorem, there exist unique pairs of integers q1; r1 and
q2; r2 such that:

a D q1nC r1 where 0 � r1 < n;

b D q2nC r2 where 0 � r2 < n:

Subtracting the second equation from the first gives:

a � b D .q1 � q2/nC .r1 � r2/ where �n < r1 � r2 < n:

Now a � b .mod n/ if and only if n divides the left side. This is true if and only
if n divides the right side, which holds if and only if r1 � r2 is a multiple of n.
Given the bounds on r1 � r2, this happens precisely when r1 D r2, that is, when
rem.a; n/ D rem.b; n/. �

So we can also see that

29 � 15 .mod 7/ because rem.29; 7/ D 1 D rem.15; 7/:

“mcs-ftl” — 2010/9/8 — 0:40 — page 101 — #107

4.5. Modular Arithmetic 101

This formulation explains why the congruence relation has properties like an equal-
ity relation. Notice that even though (mod 7) appears over on the right side, the �
symbol, it isn’t any more strongly associated with the 15 than with the 29. It would
really be clearer to write 29 � mod 7 15 for example, but the notation with the
modulus at the end is firmly entrenched and we’ll stick to it.

We’ll make frequent use of the following immediate Corollary of Lemma 4.5.1:

Corollary 4.5.2.
a � rem.a; n/ .mod n/

Still another way to think about congruence modulo n is that it defines a partition
of the integers into n sets so that congruent numbers are all in the same set. For
example, suppose that we’re working modulo 3. Then we can partition the integers
into 3 sets as follows:

f : : : ; �6; �3; 0; 3; 6; 9; : : : g

f : : : ; �5; �2; 1; 4; 7; 10; : : : g

f : : : ; �4; �1; 2; 5; 8; 11; : : : g

according to whether their remainders on division by 3 are 0, 1, or 2. The upshot
is that when arithmetic is done modulo n there are really only n different kinds
of numbers to worry about, because there are only n possible remainders. In this
sense, modular arithmetic is a simplification of ordinary arithmetic and thus is a
good reasoning tool.

There are many useful facts about congruences, some of which are listed in the
lemma below. The overall theme is that congruences work a lot like equations,
though there are a couple of exceptions.

Lemma 4.5.3 (Facts About Congruences). The following hold for n � 1:

1. a � a .mod n/

2. a � b .mod n/ implies b � a .mod n/

3. a � b .mod n/ and b � c .mod n/ implies a � c .mod n/

4. a � b .mod n/ implies aC c � b C c .mod n/

5. a � b .mod n/ implies ac � bc .mod n/

6. a � b .mod n/ and c � d .mod n/ imply aC c � b C d .mod n/

7. a � b .mod n/ and c � d .mod n/ imply ac � bd .mod n/

“mcs-ftl” — 2010/9/8 — 0:40 — page 102 — #108

Chapter 4 Number Theory102

Proof. Parts 1–3. follow immediately from Lemma 4.5.1. Part 4. follows imme-
diately from the definition that a � b .mod n/ iff n j .a � b/. Likewise, part 5.
follows because if n j .a� b/ then it divides .a� b/c D ac � bc. To prove part 6.,
assume

a � b .mod n/ (4.5)

and
c � d .mod n/: (4.6)

Then

aC c � b C c .mod n/ (by part 4. and (4.5)/;

c C b � d C b .mod n/ (by part 4. and (4.6)), so

b C c � b C d .mod n/ and therefore

aC c � b C d .mod n/ (by part 3.)

Part 7 has a similar proof. �

4.5.1 Turing’s Code (Version 2.0)

In 1940, France had fallen before Hitler’s army, and Britain stood alone against
the Nazis in western Europe. British resistance depended on a steady flow of sup-
plies brought across the north Atlantic from the United States by convoys of ships.
These convoys were engaged in a cat-and-mouse game with German “U-boats”—
submarines—which prowled the Atlantic, trying to sink supply ships and starve
Britain into submission. The outcome of this struggle pivoted on a balance of in-
formation: could the Germans locate convoys better than the Allies could locate
U-boats or vice versa?

Germany lost.
But a critical reason behind Germany’s loss was made public only in 1974: Ger-

many’s naval code, Enigma, had been broken by the Polish Cipher Bureau (see
http://en.wikipedia.org/wiki/Polish_Cipher_Bureau) and the
secret had been turned over to the British a few weeks before the Nazi invasion of
Poland in 1939. Throughout much of the war, the Allies were able to route con-
voys around German submarines by listening in to German communications. The
British government didn’t explain how Enigma was broken until 1996. When it
was finally released (by the US), the story revealed that Alan Turing had joined the
secret British codebreaking effort at Bletchley Park in 1939, where he became the
lead developer of methods for rapid, bulk decryption of German Enigma messages.
Turing’s Enigma deciphering was an invaluable contribution to the Allied victory
over Hitler.

http://en.wikipedia.org/wiki/Polish_Cipher_Bureau
http://en.wikipedia.org/wiki/Polish_Cipher_Bureau

“mcs-ftl” — 2010/9/8 — 0:40 — page 103 — #109

4.6. Arithmetic with a Prime Modulus 103

Governments are always tight-lipped about cryptography, but the half-century of
official silence about Turing’s role in breaking Enigma and saving Britain may be
related to some disturbing events after the war. More on that later. Let’s get back to
number theory and consider an alternative interpretation of Turing’s code. Perhaps
we had the basic idea right (multiply the message by the key), but erred in using
conventional arithmetic instead of modular arithmetic. Maybe this is what Turing
meant:

Beforehand The sender and receiver agree on a large prime p, which may be made
public. (This will be the modulus for all our arithmetic.) They also agree on
a secret key k 2 f1; 2; : : : ; p � 1g.

Encryption The message m can be any integer in the set f0; 1; 2; : : : ; p � 1g; in
particular, the message is no longer required to be a prime. The sender en-
crypts the message m to produce m� by computing:

m� D rem.mk; p/ (4.7)

Decryption (Uh-oh.)

The decryption step is a problem. We might hope to decrypt in the same way as
before: by dividing the encrypted message m� by the key k. The difficulty is that
m� is the remainder whenmk is divided by p. So dividingm� by k might not even
give us an integer!

This decoding difficulty can be overcome with a better understanding of arith-
metic modulo a prime.

4.6 Arithmetic with a Prime Modulus

4.6.1 Multiplicative Inverses

The multiplicative inverse of a number x is another number x�1 such that:

x � x�1 D 1

Generally, multiplicative inverses exist over the real numbers. For example, the
multiplicative inverse of 3 is 1=3 since:

3 �
1

3
D 1

The sole exception is that 0 does not have an inverse.

“mcs-ftl” — 2010/9/8 — 0:40 — page 104 — #110

Chapter 4 Number Theory104

On the other hand, inverses generally do not exist over the integers. For example,
7 can not be multiplied by another integer to give 1.

Surprisingly, multiplicative inverses do exist when we’re working modulo a prime
number. For example, if we’re working modulo 5, then 3 is a multiplicative inverse
of 7, since:

7 � 3 � 1 .mod 5/

(All numbers congruent to 3 modulo 5 are also multiplicative inverses of 7; for
example, 7 �8 � 1 .mod 5/ as well.) The only exception is that numbers congruent
to 0 modulo 5 (that is, the multiples of 5) do not have inverses, much as 0 does not
have an inverse over the real numbers. Let’s prove this.

Lemma 4.6.1. If p is prime and k is not a multiple of p, then k has a multiplicative
inverse modulo p.

Proof. Since p is prime, it has only two divisors: 1 and p. And since k is not a mul-
tiple of p, we must have gcd.p; k/ D 1. Therefore, there is a linear combination of
p and k equal to 1:

sp C tk D 1

Rearranging terms gives:
sp D 1 � tk

This implies that p j .1 � tk/ by the definition of divisibility, and therefore tk � 1
.mod p/ by the definition of congruence. Thus, t is a multiplicative inverse of
k. �

Multiplicative inverses are the key to decryption in Turing’s code. Specifically,
we can recover the original message by multiplying the encoded message by the
inverse of the key:

m� � k�1 D rem.mk; p/ � k�1 (the def. (4.7) of m�)

� .mk/k�1 .mod p/ (by Cor. 4.5.2)

� m .mod p/:

This shows that m�k�1 is congruent to the original message m. Since m was in
the range 0; 1; : : : ; p � 1, we can recover it exactly by taking a remainder:

m D rem.m�k�1; p/:

So all we need to decrypt the message is to find a value of k�1. From the proof of
Lemma 4.6.1, we know that t is such a value, where spC tk D 1. Finding t is easy
using the Pulverizer.

“mcs-ftl” — 2010/9/8 — 0:40 — page 105 — #111

4.6. Arithmetic with a Prime Modulus 105

4.6.2 Cancellation

Another sense in which real numbers are nice is that one can cancel multiplicative
terms. In other words, if we know that m1k D m2k, then we can cancel the k’s
and conclude that m1 D m2, provided k ¤ 0. In general, cancellation is not valid
in modular arithmetic. For example,

2 � 3 � 4 � 3 .mod 6/;

but canceling the 3’s leads to the false conclusion that 2 � 4 .mod 6/. The fact
that multiplicative terms can not be canceled is the most significant sense in which
congruences differ from ordinary equations. However, this difference goes away if
we’re working modulo a prime; then cancellation is valid.

Lemma 4.6.2. Suppose p is a prime and k is not a multiple of p. Then

ak � bk .mod p/ IMPLIES a � b .mod p/:

Proof. Multiply both sides of the congruence by k�1. �

We can use this lemma to get a bit more insight into how Turing’s code works.
In particular, the encryption operation in Turing’s code permutes the set of possible
messages. This is stated more precisely in the following corollary.

Corollary 4.6.3. Suppose p is a prime and k is not a multiple of p. Then the
sequence:

rem..1 � k/; p/; rem..2 � k/; p/; : : : ; rem...p � 1/ � k/ ; p/

is a permutation4 of the sequence:

1; 2; : : : ; .p � 1/:

Proof. The sequence of remainders contains p � 1 numbers. Since i � k is not
divisible by p for i D 1; : : : p � 1, all these remainders are in the range 1 to p � 1
by the definition of remainder. Furthermore, the remainders are all different: no
two numbers in the range 1 to p�1 are congruent modulo p, and by Lemma 4.6.2,
i � k � j � k .mod p/ if and only if i � j .mod p/. Thus, the sequence of
remainders must contain all of the numbers from 1 to p � 1 in some order. �

4A permutation of a sequence of elements is a reordering of the elements.

“mcs-ftl” — 2010/9/8 — 0:40 — page 106 — #112

Chapter 4 Number Theory106

For example, suppose p D 5 and k D 3. Then the sequence:

rem..1 � 3/; 5/„ ƒ‚ …
D3

; rem..2 � 3/; 5/„ ƒ‚ …
D1

; rem..3 � 3/; 5/„ ƒ‚ …
D4

; rem..4 � 3/; 5/„ ƒ‚ …
D2

is a permutation of 1, 2, 3, 4. As long as the Nazis don’t know the secret key k,
they don’t know how the set of possible messages are permuted by the process of
encryption and thus they can’t read encoded messages.

4.6.3 Fermat’s Little Theorem

An alternative approach to finding the inverse of the secret key k in Turing’s code
(about equally efficient and probably more memorable) is to rely on Fermat’s Little
Theorem, which is much easier than his famous Last Theorem.

Theorem 4.6.4 (Fermat’s Little Theorem). Suppose p is a prime and k is not a
multiple of p. Then:

kp�1 � 1 .mod p/

Proof. We reason as follows:

.p � 1/Š WWD 1 � 2 � � � .p � 1/

D rem.k; p/ � rem.2k; p/ � � � rem..p � 1/k; p/ (by Cor 4.6.3)

� k � 2k � � � .p � 1/k .mod p/ (by Cor 4.5.2)

� .p � 1/Š � kp�1 .mod p/ (rearranging terms)

Now .p� 1/Š is not a multiple of p because the prime factorizations of 1; 2; : : : ,
.p � 1/ contain only primes smaller than p. So by Lemma 4.6.2, we can cancel
.p � 1/Š from the first and last expressions, which proves the claim. �

Here is how we can find inverses using Fermat’s Theorem. Suppose p is a prime
and k is not a multiple of p. Then, by Fermat’s Theorem, we know that:

kp�2 � k � 1 .mod p/

Therefore, kp�2 must be a multiplicative inverse of k. For example, suppose that
we want the multiplicative inverse of 6 modulo 17. Then we need to compute
rem.615; 17/, which we can do by successive squaring. All the congruences below

“mcs-ftl” — 2010/9/8 — 0:40 — page 107 — #113

4.6. Arithmetic with a Prime Modulus 107

hold modulo 17.

62 � 36 � 2

64 � .62/2 � 22 � 4

68 � .64/2 � 42 � 16

615 � 68 � 64 � 62 � 6 � 16 � 4 � 2 � 6 � 3

Therefore, rem.615; 17/ D 3. Sure enough, 3 is the multiplicative inverse of 6
modulo 17, since:

3 � 6 � 1 .mod 17/

In general, if we were working modulo a prime p, finding a multiplicative in-
verse by trying every value between 1 and p� 1 would require about p operations.
However, the approach above requires only about 2 logp operations, which is far
better when p is large.

4.6.4 Breaking Turing’s Code—Again

The Germans didn’t bother to encrypt their weather reports with the highly-secure
Enigma system. After all, so what if the Allies learned that there was rain off the
south coast of Iceland? But, amazingly, this practice provided the British with a
critical edge in the Atlantic naval battle during 1941.

The problem was that some of those weather reports had originally been trans-
mitted using Enigma from U-boats out in the Atlantic. Thus, the British obtained
both unencrypted reports and the same reports encrypted with Enigma. By com-
paring the two, the British were able to determine which key the Germans were
using that day and could read all other Enigma-encoded traffic. Today, this would
be called a known-plaintext attack.

Let’s see how a known-plaintext attack would work against Turing’s code. Sup-
pose that the Nazis know both m and m� where:

m� � mk .mod p/

Now they can compute:

mp�2 �m� D mp�2 � rem.mk; p/ (def. (4.7) of m�)

� mp�2 �mk .mod p/ (by Cor 4.5.2)

� mp�1 � k .mod p/

� k .mod p/ (Fermat’s Theorem)

Now the Nazis have the secret key k and can decrypt any message!

“mcs-ftl” — 2010/9/8 — 0:40 — page 108 — #114

Chapter 4 Number Theory108

This is a huge vulnerability, so Turing’s code has no practical value. Fortunately,
Turing got better at cryptography after devising this code; his subsequent decipher-
ing of Enigma messages surely saved thousands of lives, if not the whole of Britain.

4.6.5 Turing Postscript

A few years after the war, Turing’s home was robbed. Detectives soon determined
that a former homosexual lover of Turing’s had conspired in the robbery. So they
arrested him—that is, they arrested Alan Turing—because homosexuality was a
British crime punishable by up to two years in prison at that time. Turing was
sentenced to a hormonal “treatment” for his homosexuality: he was given estrogen
injections. He began to develop breasts.

Three years later, Alan Turing, the founder of computer science, was dead. His
mother explained what happened in a biography of her own son. Despite her re-
peated warnings, Turing carried out chemistry experiments in his own home. Ap-
parently, her worst fear was realized: by working with potassium cyanide while
eating an apple, he poisoned himself.

However, Turing remained a puzzle to the very end. His mother was a devoutly
religious woman who considered suicide a sin. And, other biographers have pointed
out, Turing had previously discussed committing suicide by eating a poisoned ap-
ple. Evidently, Alan Turing, who founded computer science and saved his country,
took his own life in the end, and in just such a way that his mother could believe it
was an accident.

Turing’s last project before he disappeared from public view in 1939 involved the
construction of an elaborate mechanical device to test a mathematical conjecture
called the Riemann Hypothesis. This conjecture first appeared in a sketchy paper
by Bernhard Riemann in 1859 and is now one of the most famous unsolved problem
in mathematics.

4.7 Arithmetic with an Arbitrary Modulus

Turing’s code did not work as he hoped. However, his essential idea—using num-
ber theory as the basis for cryptography—succeeded spectacularly in the decades
after his death.

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman at MIT proposed a
highly secure cryptosystem (called RSA) based on number theory. Despite decades
of attack, no significant weakness has been found. Moreover, RSA has a major
advantage over traditional codes: the sender and receiver of an encrypted mes-

“mcs-ftl” — 2010/9/8 — 0:40 — page 109 — #115

4.7. Arithmetic with an Arbitrary Modulus 109

The Riemann Hypothesis
The formula for the sum of an infinite geometric series says:

1C x C x2 C x3 C � � � D
1

1 � x

Substituting x D 1
2s

, x D 1
3s

, x D 1
5s

, and so on for each prime number gives a
sequence of equations:

1C
1

2s
C

1

22s
C

1

23s
C � � � D

1

1 � 1=2s

1C
1

3s
C

1

32s
C

1

33s
C � � � D

1

1 � 1=3s

1C
1

5s
C

1

52s
C

1

53s
C � � � D

1

1 � 1=5s

etc.

Multiplying together all the left sides and all the right sides gives:

1X
nD1

1

ns
D

Y
p2primes

�
1

1 � 1=ps

�
The sum on the left is obtained by multiplying out all the infinite series and ap-
plying the Fundamental Theorem of Arithmetic. For example, the term 1=300s

in the sum is obtained by multiplying 1=22s from the first equation by 1=3s in
the second and 1=52s in the third. Riemann noted that every prime appears in the
expression on the right. So he proposed to learn about the primes by studying
the equivalent, but simpler expression on the left. In particular, he regarded s as
a complex number and the left side as a function, �.s/. Riemann found that the
distribution of primes is related to values of s for which �.s/ D 0, which led to
his famous conjecture:

Definition 4.6.5. The Riemann Hypothesis: Every nontrivial zero of the zeta func-
tion �.s/ lies on the line s D 1=2C ci in the complex plane.

A proof would immediately imply, among other things, a strong form of the Prime
Number Theorem.
Researchers continue to work intensely to settle this conjecture, as they have for
over a century. It is another of the Millennium Problems whose solver will earn
$1,000,000 from the Clay Institute.

http://www.claymath.org/millennium/

“mcs-ftl” — 2010/9/8 — 0:40 — page 110 — #116

Chapter 4 Number Theory110

sage need not meet beforehand to agree on a secret key. Rather, the receiver has
both a secret key, which she guards closely, and a public key, which she distributes
as widely as possible. The sender then encrypts his message using her widely-
distributed public key. Then she decrypts the received message using her closely-
held private key. The use of such a public key cryptography system allows you
and Amazon, for example, to engage in a secure transaction without meeting up
beforehand in a dark alley to exchange a key.

Interestingly, RSA does not operate modulo a prime, as Turing’s scheme may
have, but rather modulo the product of two large primes. Thus, we’ll need to know a
bit about how arithmetic works modulo a composite number in order to understand
RSA. Arithmetic modulo an arbitrary positive integer is really only a little more
painful than working modulo a prime—though you may think this is like the doctor
saying, “This is only going to hurt a little,” before he jams a big needle in your arm.

4.7.1 Relative Primality

First, we need a new definition. Integers a and b are relatively prime iff gcd.a; b/ D
1. For example, 8 and 15 are relatively prime, since gcd.8; 15/ D 1. Note that,
except for multiples of p, every integer is relatively prime to a prime number p.

Next we’ll need to generalize what we know about arithmetic modulo a prime
to work modulo an arbitrary positive integer n. The basic theme is that arithmetic
modulo n may be complicated, but the integers relatively prime to n remain fairly
well-behaved. For example, the proof of Lemma 4.6.1 of an inverse for k modulo
p extends to an inverse for k relatively prime to n:

Lemma 4.7.1. Let n be a positive integer. If k is relatively prime to n, then there
exists an integer k�1 such that:

k � k�1 � 1 .mod n/

As a consequence of this lemma, we can cancel a multiplicative term from both
sides of a congruence if that term is relatively prime to the modulus:

Corollary 4.7.2. Suppose n is a positive integer and k is relatively prime to n. If

ak � bk .mod n/

then
a � b .mod n/

This holds because we can multiply both sides of the first congruence by k�1

and simplify to obtain the second.
The following lemma is the natural generalization of Corollary 4.6.3.

“mcs-ftl” — 2010/9/8 — 0:40 — page 111 — #117

4.7. Arithmetic with an Arbitrary Modulus 111

Lemma 4.7.3. Suppose n is a positive integer and k is relatively prime to n. Let
k1; : : : ; kr denote all the integers relatively prime to n in the range 1 to n�1. Then
the sequence:

rem.k1 � k; n/; rem.k2 � k; n/; rem.k3 � k; n/; : : : ; rem.kr � k; n/

is a permutation of the sequence:

k1; k2; : : : ; kr :

Proof. We will show that the remainders in the first sequence are all distinct and
are equal to some member of the sequence of kj ’s. Since the two sequences have
the same length, the first must be a permutation of the second.

First, we show that the remainders in the first sequence are all distinct. Suppose
that rem.kik; n/ D rem.kjk; n/. This is equivalent to kik � kjk .mod n/, which
implies ki � kj .mod n/ by Corollary 4.7.2. This, in turn, means that ki D kj
since both are between 1 and n � 1. Thus, none of the remainder terms in the first
sequence is equal to any other remainder term.

Next, we show that each remainder in the first sequence equals one of the ki . By
assumption, gcd.ki ; n/ D 1 and gcd.k; n/ D 1, which means that

gcd.n; rem.kik; n// D gcd.kik; n/ (by part (5) of Lemma 4.2.4)

D 1 (by part (3) of Lemma 4.2.4):

Since rem.kik; n/ is in the range from 0 to n � 1 by the definition of remainder,
and since it is relatively prime to n, it must (by definition of the kj ’s) be equal to
some kj . �

4.7.2 Euler’s Theorem

RSA relies heavily on a generalization of Fermat’s Theorem known as Euler’s The-
orem. For both theorems, the exponent of k needed to produce an inverse of k mod-
ulo n depends on the number of integers in the set f1; 2; : : : ; ng (denoted Œ1; n�) that
are relatively prime to n. This value is known as Euler’s � function (a.k.a. Euler’s
totient function) and it is denoted as �.n/. For example, �.7/ D 6 since 1, 2, 3, 4,
5, and 6 are all relatively prime to 7. Similarly, �.12/ D 4 since 1, 5, 7, and 11 are
the only numbers in Œ1; 12� that are relatively prime to 12.5

If n is prime, then �.n/ D n � 1 since every number less than a prime number
is relatively prime to that prime. When n is composite, however, the � function
gets a little complicated. The following theorem characterizes the � function for

5Recall that gcd.n; n/ D n and so n is never relatively prime to itself.

“mcs-ftl” — 2010/9/8 — 0:40 — page 112 — #118

Chapter 4 Number Theory112

composite n. We won’t prove the theorem in its full generality, although we will
give a proof for the special case when n is the product of two primes since that is
the case that matters for RSA.

Theorem 4.7.4. For any number n, if p1, p2, . . . , pj are the (distinct) prime factors
of n, then

�.n/ D n

�
1 �

1

p1

��
1 �

1

p2

�
: : :

�
1 �

1

pj

�
:

For example,

�.300/ D �.22 � 3 � 52/

D 300

�
1 �

1

2

��
1 �

1

3

��
1 �

1

5

�
D 300

�
1

2

��
2

3

��
4

5

�
D 80:

Corollary 4.7.5. Let n D pq where p and q are different primes. Then �.n/ D
.p � 1/.q � 1/.

Corollary 4.7.5 follows easily from Theorem 4.7.4, but since Corollary 4.7.5 is
important to RSA and we have not provided a proof of Theorem 4.7.4, we will give
a direct proof of Corollary 4.7.5 in what follows.

Proof of Corollary 4.7.5. Since p and q are prime, any number that is not relatively
prime to n D pq must be a multiple of p or a multiple of q. Among the numbers 1,
2, . . . , pq, there are precisely q multiples of p and p multiples of q. Since p and q
are relatively prime, the only number in Œ1; pq� that is a multiple of both p and q
is pq. Hence, there are p C q � 1 numbers in Œ1; pq� that are not relatively prime
to n. This means that

�.n/ D pq � p � q C 1

D .p � 1/.q � 1/;

as claimed.6 �

We can now prove Euler’s Theorem:

6This proof provides a brief preview of the kinds of counting arguments that we will explore more
fully in Part III.

“mcs-ftl” — 2010/9/8 — 0:40 — page 113 — #119

4.8. The RSA Algorithm 113

Theorem 4.7.6 (Euler’s Theorem). Suppose n is a positive integer and k is rela-
tively prime to n. Then

k�.n/ � 1 .mod n/

Proof. Let k1; : : : ; kr denote all integers relatively prime to n such that 0 � ki < n.
Then r D �.n/, by the definition of the function �. The remainder of the proof
mirrors the proof of Fermat’s Theorem. In particular,

k1 � k2 � � � kr

D rem.k1 � k; n/ � rem.k2 � k; n/ � � � rem.kr � k; n/ (by Lemma 4.7.3)

� .k1 � k/ � .k2 � k/ � � � � .kr � k/ .mod n/ (by Cor 4.5.2)

� .k1 � k2 � � � kr/ � k
r .mod n/ (rearranging terms)

Part (3) of Lemma 4.2.4. implies that k1 � k2 � � � kr is relatively prime to n. So by
Corollary 4.7.2, we can cancel this product from the first and last expressions. This
proves the claim. �

We can find multiplicative inverses using Euler’s theorem as we did with Fer-
mat’s theorem: if k is relatively prime to n, then k�.n/�1 is a multiplicative inverse
of k modulo n. However, this approach requires computing �.n/. Computing
�.n/ is easy (using Theorem 4.7.4) if we know the prime factorization of n. Un-
fortunately, finding the factors of n can be hard to do when n is large and so the
Pulverizer is often the best approach to computing inverses modulo n.

4.8 The RSA Algorithm

Finally, we are ready to see how the RSA public key encryption scheme works. The
details are in the box on the next page.

It is not immediately clear from the description of the RSA cryptosystem that
the decoding of the encrypted message is, in fact, the original unencrypted mes-
sage. In order to check that this is the case, we need to show that the decryption
rem..m0/d ; n/ is indeed equal to the sender’s message m. Since m0 D rem.me; n/,
m0 is congruent to me modulo n by Corollary 4.5.2. That is,

m0 � me .mod n/:

By raising both sides to the power d , we obtain the congruence

.m0/d � med .mod n/: (4.8)

“mcs-ftl” — 2010/9/8 — 0:40 — page 114 — #120

Chapter 4 Number Theory114

The RSA Cryptosystem

Beforehand The receiver creates a public key and a secret key as follows.

1. Generate two distinct primes, p and q. Since they can be used to
generate the secret key, they must be kept hidden.

2. Let n D pq.

3. Select an integer e such that gcd.e; .p � 1/.q � 1// D 1.
The public key is the pair .e; n/. This should be distributed widely.

4. Compute d such that de � 1 .mod .p�1/.q�1//. This can be done
using the Pulverizer.
The secret key is the pair .d; n/. This should be kept hidden!

Encoding Given a message m, the sender first checks that gcd.m; n/ D 1.a The
sender then encrypts message m to produce m0 using the public key:

m0 D rem.me; n/:

Decoding The receiver decrypts message m0 back to message m using the secret
key:

m D rem..m0/d ; n/:

aIt would be very bad if gcd.m; n/ equals p or q since then it would be easy for someone to use
the encoded message to compute the secret key If gcd.m; n/ D n, then the encoded message would
be 0, which is fairly useless. For very large values of n, it is extremely unlikely that gcd.m; n/ ¤ 1.
If this does happen, you should get a new set of keys or, at the very least, add some bits tom so that
the resulting message is relatively prime to n.

“mcs-ftl” — 2010/9/8 — 0:40 — page 115 — #121

4.8. The RSA Algorithm 115

The encryption exponent e and the decryption exponent d are chosen such that
de � 1 .mod .p � 1/.q � 1//. So, there exists an integer r such that ed D
1C r.p � 1/.q � 1/. By substituting 1C r.p � 1/.q � 1/ for ed in Equation 4.8,
we obtain

.m0/d � m �mr.p�1/.q�1/ .mod n/: (4.9)

By Euler’s Theorem and the assumption that gcd.m; n/ D 1, we know that

m�.n/ � 1 .mod n/:

From Corollary 4.7.5, we know that �.n/ D .p � 1/.q � 1/. Hence,

.m0/d D m �mr.p�1/.q�1/ .mod n/

D m � 1r .mod n/

D m .mod n/:

Hence, the decryption process indeed reproduces the original message m.
Is it hard for someone without the secret key to decrypt the message? No one

knows for sure but it is generally believed that if n is a very large number (say, with
a thousand digits), then it is difficult to reverse engineer d from e and n. Of course,
it is easy to compute d if you know p and q (by using the Pulverizer) but it is not
known how to quickly factor n into p and q when n is very large. Maybe with a
little more studying of number theory, you will be the first to figure out how to do
it. Although, we should warn you that Gauss worked on it for years without a lot to
show for his efforts. And if you do figure it out, you might wind up meeting some
serious-looking fellows in black suits. . . .

“mcs-ftl” — 2010/9/8 — 0:40 — page 116 — #122

“mcs-ftl” — 2010/9/8 — 0:40 — page 117 — #123

II Structures

“mcs-ftl” — 2010/9/8 — 0:40 — page 118 — #124

“mcs-ftl” — 2010/9/8 — 0:40 — page 119 — #125

Introduction

Structure is fundamental in computer science. Whether you are writing code, solv-
ing an optimization problem, or designing a network, you will be dealing with
structure. The better you can understand the structure, the better your results will
be. And if you can reason about structure, then you will be in a good position to
convince others (and yourself) that your results are worthy.

The most important structure in computer science is a graph, also known as a net-
work). Graphs provide an excellent mechanism for modeling associations between
pairs of objects; for example, two exams that cannot be given at the same time, two
people that like each other, or two subroutines that can be run independently. In
Chapter 5, we study graphs that represent symmetric relationships, like those just
mentioned. In Chapter 6, we consider graphs where the relationship is one-way;
that is, a situation where you can go from x to y but not necessarily vice-versa.

In Chapter 7, we consider the more general notion of a relation and we examine
important classes of relations such as partially ordered sets. Partially ordered sets
arise frequently in scheduling problems.

We conclude in Chapter 8 with a discussion of state machines. State machines
can be used to model a variety of processes and are a fundamental tool in proving
that an algorithm terminates and that it produces the correct output.

“mcs-ftl” — 2010/9/8 — 0:40 — page 120 — #126

“mcs-ftl” — 2010/9/8 — 0:40 — page 121 — #127

5 Graph Theory
Informally, a graph is a bunch of dots and lines where the lines connect some pairs
of dots. An example is shown in Figure 5.1. The dots are called nodes (or vertices)
and the lines are called edges.

b

g

h

i

df

c e

a

Figure 5.1 An example of a graph with 9 nodes and 8 edges.

Graphs are ubiquitous in computer science because they provide a handy way
to represent a relationship between pairs of objects. The objects represent items
of interest such as programs, people, cities, or web pages, and we place an edge
between a pair of nodes if they are related in a certain way. For example, an edge
between a pair of people might indicate that they like (or, in alternate scenarios,
that they don’t like) each other. An edge between a pair of courses might indicate
that one needs to be taken before the other.

In this chapter, we will focus our attention on simple graphs where the relation-
ship denoted by an edge is symmetric. Afterward, in Chapter 6, we consider the
situation where the edge denotes a one-way relationship, for example, where one
web page points to the other.1

5.1 Definitions

5.1.1 Simple Graphs

Definition 5.1.1. A simple graph G consists of a nonempty set V , called the ver-
tices (aka nodes2) of G, and a set E of two-element subsets of V . The members
of E are called the edges of G, and we write G D .V;E/.

1Two Stanford students analyzed such a graph to become multibillionaires. So, pay attention to
graph theory, and who knows what might happen!

2We will use the terms vertex and node interchangeably.

“mcs-ftl” — 2010/9/8 — 0:40 — page 122 — #128

Chapter 5 Graph Theory122

The vertices correspond to the dots in Figure 5.1, and the edges correspond to the
lines. The graph in Figure 5.1 is expressed mathematically as G D .V;E/, where:

V D fa; b; c; d; e; f; g; h; ig

E D f fa; bg; fa; cg; fb; dg; fc; dg; fc; eg; fe; f g; fe; gg; fh; ig g:

Note that fa; bg and fb; ag are different descriptions of the same edge, since sets
are unordered. In this case, the graph G D .V;E/ has 9 nodes and 8 edges.

Definition 5.1.2. Two vertices in a simple graph are said to be adjacent if they
are joined by an edge, and an edge is said to be incident to the vertices it joins.
The number of edges incident to a vertex v is called the degree of the vertex and
is denoted by deg.v/; equivalently, the degree of a vertex is equals the number of
vertices adjacent to it.

For example, in the simple graph shown in Figure 5.1, vertex a is adjacent to b
and b is adjacent to d , and the edge fa; cg is incident to vertices a and c. Vertex h
has degree 1, d has degree 2, and deg.e/ D 3. It is possible for a vertex to have
degree 0, in which case it is not adjacent to any other vertices. A simple graph does
not need to have any edges at all —in which case, the degree of every vertex is zero
and jEj D 03 —but it does need to have at least one vertex, that is, jV j � 1.

Note that simple graphs do not have any self-loops (that is, an edge of the form
fa; ag) since an edge is defined to be a set of two vertices. In addition, there is at
most one edge between any pair of vertices in a simple graph. In other words, a
simple graph does not contain multiedges or multiple edges. That is because E is a
set. Lastly, and most importantly, simple graphs do not contain directed edges (that
is, edges of the form .a; b/ instead of fa; bg).

There’s no harm in relaxing these conditions, and some authors do, but we don’t
need self-loops, multiple edges between the same two vertices, or graphs with no
vertices, and it’s simpler not to have them around. We will consider graphs with di-
rected edges (called directed graphs or digraphs) at length in Chapter 6. Since we’ll
only be considering simple graphs in this chapter, we’ll just call them “graphs”
from now on.

5.1.2 Some Common Graphs

Some graphs come up so frequently that they have names. The complete graph
on n vertices, denoted Kn, has an edge between every two vertices, for a total of
n.n � 1/=2 edges. For example, K5 is shown in Figure 5.2.

The empty graph has no edges at all. For example, the empty graph with 5 nodes
is shown in Figure 5.3.

3The cardinality, jEj, of the set E is the number of elements in E.

“mcs-ftl” — 2010/9/8 — 0:40 — page 123 — #129

5.1. Definitions 123

Figure 5.2 The complete graph on 5 nodes, K5.

Figure 5.3 The empty graph with 5 nodes.

The n-node graph containing n � 1 edges in sequence is known as the line
graph Ln. More formally, Ln D .V;E/ where

V D fv1; v2; : : : ; vng

and
E D f fv1; v2g; fv2; v3g; : : : ; fvn�1; vng g

For example, L5 is displayed in Figure 5.4.
If we add the edge fvn; v1g to the line graph Ln, we get the graph Cn consisting

of a simple cycle. For example, C5 is illustrated in Figure 5.5.

Figure 5.4 The 5-node line graph L5.

“mcs-ftl” — 2010/9/8 — 0:40 — page 124 — #130

Chapter 5 Graph Theory124

Figure 5.5 The 5-node cycle graph C5.

b

c

a

d
(a)

2

3

1

4
(b)

Figure 5.6 Two graphs that are isomorphic to C4.

5.1.3 Isomorphism

Two graphs that look the same might actually be different in a formal sense. For
example, the two graphs in Figure 5.6 are both simple cycles with 4 vertices, but one
graph has vertex set fa; b; c; dg while the other has vertex set f1; 2; 3; 4g. Strictly
speaking, these graphs are different mathematical objects, but this is a frustrating
distinction since the graphs look the same!

Fortunately, we can neatly capture the idea of “looks the same” through the no-
tion of graph isomorphism.

Definition 5.1.3. If G1 D .V1; E1/ and G2 D .V2; E2/ are two graphs, then we
say that G1 is isomorphic to G2 iff there exists a bijection4 f W V1 ! V2 such that
for every pair of vertices u; v 2 V1:

fu; vg 2 E1 iff ff .u/; f .v/g 2 E2:

The function f is called an isomorphism between G1 and G2.

In other words, two graphs are isomorphic if they are the same up to a relabeling
of their vertices. For example, here is an isomorphism between vertices in the two

4A bijection f W V1 ! V2 is a function that associates every node in V1 with a unique node in V2
and vice-versa. We will study bijections more deeply in Part III.

“mcs-ftl” — 2010/9/8 — 0:40 — page 125 — #131

5.1. Definitions 125

Figure 5.7 Two ways of drawing C5.

graphs shown in Figure 5.6:

a corresponds to 1 b corresponds to 2
d corresponds to 4 c corresponds to 3:

You can check that there is an edge between two vertices in the graph on the left if
and only if there is an edge between the two corresponding vertices in the graph on
the right.

Two isomorphic graphs may be drawn very differently. For example, we have
shown two different ways of drawing C5 in Figure 5.7.

Isomorphism preserves the connection properties of a graph, abstracting out what
the vertices are called, what they are made out of, or where they appear in a drawing
of the graph. More precisely, a property of a graph is said to be preserved under
isomorphism if whenever G has that property, every graph isomorphic to G also
has that property. For example, isomorphic graphs must have the same number of
vertices. What’s more, if f is a graph isomorphism that maps a vertex, v, of one
graph to the vertex, f .v/, of an isomorphic graph, then by definition of isomor-
phism, every vertex adjacent to v in the first graph will be mapped by f to a vertex
adjacent to f .v/ in the isomorphic graph. This means that v and f .v/ will have the
same degree. So if one graph has a vertex of degree 4 and another does not, then
they can’t be isomorphic. In fact, they can’t be isomorphic if the number of degree
4 vertices in each of the graphs is not the same.

Looking for preserved properties can make it easy to determine that two graphs
are not isomorphic, or to actually find an isomorphism between them if there is
one. In practice, it’s frequently easy to decide whether two graphs are isomorphic.
However, no one has yet found a general procedure for determining whether two
graphs are isomorphic that is guaranteed to run in polynomial time5 in jV j.

Having such a procedure would be useful. For example, it would make it easy
to search for a particular molecule in a database given the molecular bonds. On

5I.e., in an amount of time that is upper-bounded by jV jc where c is a fixed number independent
of jV j.

“mcs-ftl” — 2010/9/8 — 0:40 — page 126 — #132

Chapter 5 Graph Theory126

the other hand, knowing there is no such efficient procedure would also be valu-
able: secure protocols for encryption and remote authentication can be built on the
hypothesis that graph isomorphism is computationally exhausting.

5.1.4 Subgraphs

Definition 5.1.4. A graph G1 D .V1; E1/ is said to be a subgraph of a graph
G2 D .V2; E2/ if V1 � V2 and E1 � E2.

For example, the empty graph on n nodes is a subgraph of Ln, Ln is a subgraph
of Cn, and Cn is a subgraph of Kn. Also, the graph G D .V;E/ where

V D fg; h; ig and E D f fh; ig g

is a subgraph of the graph in Figure 5.1. On the other hand, any graph containing an
edge fg; hg would not be a subgraph of the graph in Figure 5.1 because the graph
in Figure 5.1 does not contain this edge.

Note that since a subgraph is itself a graph, the endpoints of any edge in a sub-
graph must also be in the subgraph. In other words if G0 D .V 0; E 0/ is a subgraph
of some graph G, and fvi ; vj g 2 E 0, then it must be the case that vi 2 V 0 and
vj 2 V

0.

5.1.5 Weighted Graphs

Sometimes, we will use edges to denote a connection between a pair of nodes where
the connection has a capacity or weight. For example, we might be interested in the
capacity of an Internet fiber between a pair of computers, the resistance of a wire
between a pair of terminals, the tension of a spring connecting a pair of devices in
a dynamical system, the tension of a bond between a pair of atoms in a molecule,
or the distance of a highway between a pair of cities.

In such cases, it is useful to represent the system with an edge-weighted graph
(aka a weighted graph). A weighted graph is the same as a simple graph except
that we associate a real number (that is, the weight) with each edge in the graph.
Mathematically speaking, a weighted graph consists of a graph G D .V;E/ and
a weight function w W E ! R. For example, Figure 5.8 shows a weighted graph
where the weight of edge fa; bg is 5.

5.1.6 Adjacency Matrices

There are many ways to represent a graph. We have already seen two ways: you
can draw it, as in Figure 5.8 for example, or you can represent it with sets —as in
G D .V;E/. Another common representation is with an adjacency matrix.

“mcs-ftl” — 2010/9/8 — 0:40 — page 127 — #133

5.1. Definitions 127

6

�3

5

0

d

c

b

a

Figure 5.8 A 4-node weighted graph where the edge fa; bg has weight 5.

0BB@
0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

1CCA
(a)

0BB@
0 5 0 0

5 0 6 0

0 6 0 �3

0 0 �3 0

1CCA
(b)

Figure 5.9 Examples of adjacency matrices. (a) shows the adjacency matrix for
the graph in Figure 5.6(a) and (b) shows the adjacency matrix for the weighted
graph in Figure 5.8. In each case, we set v1 D a, v2 D b, v3 D c, and v4 D d to
construct the matrix.

Definition 5.1.5. Given an n-node graphG D .V;E/where V D fv1; v2; : : : ; vng,
the adjacency matrix for G is the n � n matrix AG D faij g where

aij D

(
1 if fvi ; vj g 2 E
0 otherwise.

If G is a weighted graph with edge weights given by w W E ! R, then the adja-
cency matrix for G is AG D faij g where

aij D

(
w.fvi ; vj g/ if fvi ; vj g 2 E
0 otherwise.

For example, Figure 5.9 displays the adjacency matrices for the graphs shown in
Figures 5.6(a) and 5.8 where v1 D a, v2 D b, v3 D c, and v4 D d .

“mcs-ftl” — 2010/9/8 — 0:40 — page 128 — #134

Chapter 5 Graph Theory128

5.2 Matching Problems

We begin our study of graph theory by considering the scenario where the nodes
in a graph represent people and the edges represent a relationship between pairs
of people such as “likes”, “marries”, and so on. Now, you may be wondering
what marriage has to do with computer science, and with good reason. It turns out
that the techniques we will develop apply to much more general scenarios where
instead of matching men to women, we need to match packets to paths in a network,
applicants to jobs, or Internet traffic to web servers. And, as we will describe later,
these techniques are widely used in practice.

In our first example, we will show how graph theory can be used to debunk an
urban legend about sexual practices in America. Yes, you read correctly. So, fasten
your seat belt—who knew that math might actually be interesting!

5.2.1 Sex in America

On average, who has more opposite-gender partners: men or women?
Sexual demographics have been the subject of many studies. In one of the largest,

researchers from the University of Chicago interviewed a random sample of 2500
Americans over several years to try to get an answer to this question. Their study,
published in 1994, and entitled The Social Organization of Sexuality found that, on
average, men have 74% more opposite-gender partners than women.

Other studies have found that the disparity is even larger. In particular, ABC
News claimed that the average man has 20 partners over his lifetime, and the aver-
age woman has 6, for a percentage disparity of 233%. The ABC News study, aired
on Primetime Live in 2004, purported to be one of the most scientific ever done,
with only a 2.5% margin of error. It was called “American Sex Survey: A peek
between the sheets.” The promotion for the study is even better:

A ground breaking ABC News “Primetime Live” survey finds a range
of eye-popping sexual activities, fantasies and attitudes in this country,
confirming some conventional wisdom, exploding some myths—and
venturing where few scientific surveys have gone before.

Probably that last part about going where few scientific surveys have gone before
is pretty accurate!

Yet again, in August, 2007, the N.Y. Times reported on a study by the National
Center for Health Statistics of the U.S. Government showing that men had seven
partners while women had four.

“mcs-ftl” — 2010/9/8 — 0:40 — page 129 — #135

5.2. Matching Problems 129

Anyway, whose numbers do you think are more accurate, the University of
Chicago, ABC News, or the National Center for Health Statistics?—don’t answer;
this is a setup question like “When did you stop beating your wife?” Using a little
graph theory, we will now explain why none of these findings can be anywhere near
the truth.

Let’s model the question of heterosexual partners in graph theoretic terms. To
do this, we’ll let G be the graph whose vertices, V , are all the people in America.
Then we split V into two separate subsets: M , which contains all the males, and
F , which contains all the females.6 We’ll put an edge between a male and a female
iff they have been sexual partners. A possible subgraph of this graph is illustrated
in Figure 5.10 with males on the left and females on the right.

WM

Figure 5.10 A possible subgraph of the sex partners graph.

Actually, G is a pretty hard graph to figure out, let alone draw. The graph is
enormous: the US population is about 300 million, so jV j � 300M . In the United
States, approximately 50.8% of the populatin is female and 49.2% is male, and
so jM j � 147:6M , and jF j � 152:4M . And we don’t even have trustworthy
estimates of how many edges there are, let alone exactly which couples are adja-
cent. But it turns out that we don’t need to know any of this to debunk the sex
surveys—we just need to figure out the relationship between the average number
of partners per male and partners per female. To do this, we note that every edge
is incident to exactly one M vertex and one F vertex (remember, we’re only con-
sidering male-female relationships); so the sum of the degrees of the M vertices
equals the number of edges, and the sum of the degrees of the F vertices equals the

6For simplicity, we’ll ignore the possibility of someone being both, or neither, a man and a woman.

“mcs-ftl” — 2010/9/8 — 0:40 — page 130 — #136

Chapter 5 Graph Theory130

number of edges. So these sums are equal:X
x2M

deg.x/ D
X
y2F

deg.y/:

If we divide both sides of this equation by the product of the sizes of the two sets,
jM j � jF j, we obtain�P

x2M deg.x/
jM j

�
�
1

jF j
D

 P
y2F deg.y/

jF j

!
�
1

jM j
(5.1)

Notice that P
x2M deg.x/
jM j

is simply the average degree of a node in M . This is the average number of
opposite-gender partners for a male in America. Similarly,P

x2F deg.x/
jF j

is the average degree of a node in F , which is the average number of opposite-
gender partners for a female in America. Hence, Equation 5.1 implies that on
average, an American male has jF j=jM j times as many opposite-gender partners
as the average American female.

From the Census Bureau reports, we know that there are slightly more females
than males in America; in particular jF j=jM j is about 1.035. So we know that on
average, males have 3.5% more opposite-gender partners than females. Of course,
this statistic really says nothing about any sex’s promiscuity or selectivity. Remark-
ably, promiscuity is completely irrelevant in this analysis. That is because the ratio
of the average number of partners is completely determined by the relative number
of males and females. Collectively, males and females have the same number of
opposite gender partners, since it takes one of each set for every partnership, but
there are fewer males, so they have a higher ratio. This means that the University
of Chicago, ABC, and the Federal Government studies are way off. After a huge
effort, they gave a totally wrong answer.

There’s no definite explanation for why such surveys are consistently wrong.
One hypothesis is that males exaggerate their number of partners—or maybe fe-
males downplay theirs—but these explanations are speculative. Interestingly, the
principal author of the National Center for Health Statistics study reported that she
knew the results had to be wrong, but that was the data collected, and her job was
to report it.

“mcs-ftl” — 2010/9/8 — 0:40 — page 131 — #137

5.2. Matching Problems 131

The same underlying issue has led to serious misinterpretations of other survey
data. For example, a few years ago, the Boston Globe ran a story on a survey of
the study habits of students on Boston area campuses. Their survey showed that on
average, minority students tended to study with non-minority students more than
the other way around. They went on at great length to explain why this “remarkable
phenomenon” might be true. But it’s not remarkable at all—using our graph theory
formulation, we can see that all it says is that there are fewer minority students than
non-minority students, which is, of course what “minority” means.

The Handshaking Lemma

The previous argument hinged on the connection between a sum of degrees and the
number edges. There is a simple connection between these quantities in any graph:

Lemma 5.2.1 (The Handshaking Lemma). The sum of the degrees of the vertices
in a graph equals twice the number of edges.

Proof. Every edge contributes two to the sum of the degrees, one for each of its
endpoints. �

Lemma 5.2.1 is called the Handshake Lemma because if we total up the number
of people each person at a party shakes hands with, the total will be twice the
number of handshakes that occurred.

5.2.2 Bipartite Matchings

There were two kinds of vertices in the “Sex in America” graph—males and fe-
males, and edges only went between the two kinds. Graphs like this come up so
frequently that they have earned a special name—they are called bipartite graphs.

Definition 5.2.2. A bipartite graph is a graph together with a partition of its vertices
into two sets, L and R, such that every edge is incident to a vertex in L and to a
vertex in R.

The bipartite matching problem is related to the sex-in-America problem that we
just studied; only now the goal is to get everyone happily married. As you might
imagine, this is not possible for a variety of reasons, not the least of which is the
fact that there are more women in America than men. So, it is simply not possible
to marry every woman to a man so that every man is married only once.

But what about getting a mate for every man so that every woman is married
only once? Is it possible to do this so that each man is paired with a woman that
he likes? The answer, of course, depends on the bipartite graph that represents who

“mcs-ftl” — 2010/9/8 — 0:40 — page 132 — #138

Chapter 5 Graph Theory132

Chuck

Tom

Michael

John

Alice

Martha

Sara

Jane

Mergatroid

Figure 5.11 A graph where an edge between a man and woman denotes that the
man likes the woman.

likes who, but the good news is that it is possible to find natural properties of the
who-likes-who graph that completely determine the answer to this question.

In general, suppose that we have a set of men and an equal-sized or larger set
of women, and there is a graph with an edge between a man and a woman if the
man likes the woman. Note that in this scenario, the “likes” relationship need not
be symmetric, since for the time being, we will only worry about finding a mate for
each man that he likes.7 (Later, we will consider the “likes” relationship from the
female perspective as well.) For example, we might obtain the graph in Figure 5.11.

In this problem, a matching will mean a way of assigning every man to a woman
so that different men are assigned to different women, and a man is always assigned
to a woman that he likes. For example, one possible matching for the men is shown
in Figure 5.12.

The Matching Condition

A famous result known as Hall’s Matching Theorem gives necessary and sufficient
conditions for the existence of a matching in a bipartite graph. It turns out to be a
remarkably useful mathematical tool.

We’ll state and prove Hall’s Theorem using man-likes-woman terminology. De-
fine the set of women liked by a given set of men to consist of all women liked by
at least one of those men. For example, the set of women liked by Tom and John in

7By the way, we do not mean to imply that marriage should or should not be of a heterosexual
nature. Nor do we mean to imply that men should get their choice instead of women. It’s just that
with bipartite graphs, the edges only connected male nodes to female nodes and there are fewer men
in America. So please don’t take offense.

“mcs-ftl” — 2010/9/8 — 0:40 — page 133 — #139

5.2. Matching Problems 133

Chuck

Tom

Michael

John

Alice

Martha

Sara

Jane

Mergatroid

Figure 5.12 One possible matching for the men is shown with bold edges. For
example, John is matched with Jane.

Figure 5.11 consists of Martha, Sarah, and Mergatroid. For us to have any chance
at all of matching up the men, the following matching condition must hold:

Every subset of men likes at least as large a set of women.

For example, we can not find a matching if some set of 4 men like only 3 women.
Hall’s Theorem says that this necessary condition is actually sufficient; if the match-
ing condition holds, then a matching exists.

Theorem 5.2.3. A matching for a set of men M with a set of women W can be
found if and only if the matching condition holds.

Proof. First, let’s suppose that a matching exists and show that the matching condi-
tion holds. Consider an arbitrary subset of men. Each man likes at least the woman
he is matched with. Therefore, every subset of men likes at least as large a set of
women. Thus, the matching condition holds.

Next, let’s suppose that the matching condition holds and show that a matching
exists. We use strong induction on jM j, the number of men, on the predicate:

P.m/ WWD for any set of m men M , if the matching condition holds

for M , then there is a matching for M .

Base Case (jM j D 1): If jM j D 1, then the matching condition implies that the
lone man likes at least one woman, and so a matching exists.

Inductive Step: We need to show that P.m/ IMPLIES P.m C 1/. Suppose that
jM j D mC 1 � 2.

“mcs-ftl” — 2010/9/8 — 0:40 — page 134 — #140

Chapter 5 Graph Theory134

Case 1: Every proper subset8 of men likes a strictly larger set of women. In this
case, we have some latitude: we pair an arbitrary man with a woman he
likes and send them both away. The matching condition still holds for the
remaining men and women since we have removed only one woman, so we
can match the rest of the men by induction.

Case 2: Some proper subset of men X � M likes an equal-size set of women
Y � W . We match the men in X with the women in Y by induction and
send them all away. We can also match the rest of the men by induction
if we show that the matching condition holds for the remaining men and
women. To check the matching condition for the remaining people, consider
an arbitrary subset of the remaining men X 0 � .M � X/, and let Y 0 be
the set of remaining women that they like. We must show that jX 0j � jY 0j.
Originally, the combined set of men X [X 0 liked the set of women Y [Y 0.
So, by the matching condition, we know:

jX [X 0j � jY [Y 0j

We sent away jX jmen from the set on the left (leaving X 0) and sent away an
equal number of women from the set on the right (leaving Y 0). Therefore, it
must be that jX 0j � jY 0j as claimed.

So in both cases, there is a matching for the men, which completes the proof of
the Inductive step. The theorem follows by induction. �

The proof of Theorem 5.2.3 gives an algorithm for finding a matching in a bipar-
tite graph, albeit not a very efficient one. However, efficient algorithms for finding a
matching in a bipartite graph do exist. Thus, if a problem can be reduced to finding
a matching, the problem can be solved from a computational perspective.

A Formal Statement

Let’s restate Theorem 5.2.3 in abstract terms so that you’ll not always be con-
demned to saying, “Now this group of men likes at least as many women. . . ”

Definition 5.2.4. A matching in a graph, G, is a set of edges such that no two
edges in the set share a vertex. A matching is said to cover a set, L, of vertices iff
each vertex in L has an edge of the matching incident to it. A matching is said to
be perfect if every node in the graph is incident to an edge in the matching. In any
graph, the setN.S/, of neighbors of some set, S , of vertices is the set of all vertices
adjacent to some vertex in S . That is,

N.S/ WWD f r j fs; rg is an edge for some s 2 S g:
8Recall that a subset A of B is proper if A ¤ B .

“mcs-ftl” — 2010/9/8 — 0:40 — page 135 — #141

5.2. Matching Problems 135

S is called a bottleneck if
jS j > jN.S/j:

Theorem 5.2.5 (Hall’s Theorem). Let G be a bipartite graph with vertex partition
L;R. There is matching in G that covers L iff no subset of L is a bottleneck.

An Easy Matching Condition

The bipartite matching condition requires that every subset of men has a certain
property. In general, verifying that every subset has some property, even if it’s easy
to check any particular subset for the property, quickly becomes overwhelming
because the number of subsets of even relatively small sets is enormous—over a
billion subsets for a set of size 30. However, there is a simple property of vertex
degrees in a bipartite graph that guarantees the existence of a matching. Namely,
call a bipartite graph degree-constrained if vertex degrees on the left are at least as
large as those on the right. More precisely,

Definition 5.2.6. A bipartite graph G with vertex partition L, R where jLj � jRj
is degree-constrained if deg.l/ � deg.r/ for every l 2 L and r 2 R.

For example, the graph in Figure 5.11 is degree constrained since every node on
the left is adjacent to at least two nodes on the right while every node on the right
is incident to at most two nodes on the left.

Theorem 5.2.7. LetG be a bipartite graph with vertex partition L, R where jLj �
jRj. If G is degree-constrained, then there is a matching that covers L.

Proof. The proof is by contradiction. Suppose thatG is degree constrained but that
there is no matching that covers L. By Theorem 5.2.5, this means that there must
be a bottleneck S � L.

Let d be a value such that deg.l/ � x � deg.r/ for every l 2 L and r 2 R.
Since every edge incident to a node in S is incident to a node in N.S/, we know
that

jN.S/jx � jS jx

and thus that
jN.S/j � jS j:

This means that S is not a bottleneck, which is a contradiction. Hence G has a
matching that covers L. �

Regular graphs provide a large class of graphs that often arise in practice that are
degree constrained. Hence, we can use Theorem 5.2.7 to prove that every regular
bipartite graph has a perfect matching. This turns out to be a surprisingly useful
result in computer science

“mcs-ftl” — 2010/9/8 — 0:40 — page 136 — #142

Chapter 5 Graph Theory136

Definition 5.2.8. A graph is said to be regular if every node has the same degree.

Theorem 5.2.9. Every regular bipartite graph has a perfect matching.

Proof. Let G be a regular bipartite graph with vertex partition L, R where jLj �
jRj. Since regular graphs are degree-constrained, we know by Theorem 5.2.7 that
there must be a matching in G that covers L. Since G is regular, we also know that
jLj D jRj and thus the matching must also cover R. This means that every node
in G is incident to an edge in the matching and thus G has a perfect matching. �

5.2.3 The Stable Marriage Problem

We next consider a version of the bipartite matching problem where there are an
equal number of men and women, and where each person has preferences about
who they would like to marry. In fact, we assume that each man has a complete list
of all the women ranked according to his preferences, with no ties. Likewise, each
woman has a ranked list of all of the men.

The preferences don’t have to be symmetric. That is, Jennifer might like Brad
best, but Brad doesn’t necessarily like Jennifer best. The goal is to marry everyone:
every man must marry exactly one woman and vice-versa—no polygamy. More-
over, we would like to find a matching between men and women that is stable in
the sense that there is no pair of people that prefer each other to their spouses.

For example, suppose every man likes Angelina best, and every woman likes
Brad best, but Brad and Angelina are married to other people, say Jennifer and Billy
Bob. Now Brad and Angelina prefer each other to their spouses, which puts their
marriages at risk: pretty soon, they’re likely to start spending late nights together
working on problem sets!

This unfortunate situation is illustrated in Figure 5.13, where the digits “1” and
“2” near a man shows which of the two women he ranks first second, respectively,
and similarly for the women.

More generally, in any matching, a man and woman who are not married to each
other and who like each other better than their spouses, is called a rogue couple. In
the situation shown in Figure 5.13, Brad and Angelina would be a rogue couple.

Having a rogue couple is not a good thing, since it threatens the stability of the
marriages. On the other hand, if there are no rogue couples, then for any man and
woman who are not married to each other, at least one likes their spouse better than
the other, and so they won’t be tempted to start an affair.

Definition 5.2.10. A stable matching is a matching with no rogue couples.

The question is, given everybody’s preferences, how do you find a stable set of
marriages? In the example consisting solely of the four people in Figure 5.13, we

“mcs-ftl” — 2010/9/8 — 0:40 — page 137 — #143

5.2. Matching Problems 137

Brad

Billy Bob

Jennifer

Angelina

1

2

2

1

1

2

2

1

Figure 5.13 Preferences for four people. Both men like Angelina best and both
women like Brad best.

could let Brad and Angelina both have their first choices by marrying each other.
Now neither Brad nor Angelina prefers anybody else to their spouse, so neither
will be in a rogue couple. This leaves Jen not-so-happily married to Billy Bob, but
neither Jen nor Billy Bob can entice somebody else to marry them, and so there is
a stable matching.

Surprisingly, there is always a stable matching among a group of men and women.
The surprise springs in part from considering the apparently similar “buddy” match-
ing problem. That is, if people can be paired off as buddies, regardless of gender,
then a stable matching may not be possible. For example, Figure 5.14 shows a situ-
ation with a love triangle and a fourth person who is everyone’s last choice. In this
figure Mergatroid’s preferences aren’t shown because they don’t even matter. Let’s
see why there is no stable matching.

Robin Bobby Joe

Alex

Mergatroid

3

3

2

1

1

2

312

Figure 5.14 Some preferences with no stable buddy matching.

Lemma 5.2.11. There is no stable buddy matching among the four people in Fig-
ure 5.14.

“mcs-ftl” — 2010/9/8 — 0:40 — page 138 — #144

Chapter 5 Graph Theory138

Proof. We’ll prove this by contradiction.
Assume, for the purposes of contradiction, that there is a stable matching. Then

there are two members of the love triangle that are matched. Since preferences in
the triangle are symmetric, we may assume in particular, that Robin and Alex are
matched. Then the other pair must be Bobby-Joe matched with Mergatroid.

But then there is a rogue couple: Alex likes Bobby-Joe best, and Bobby-Joe
prefers Alex to his buddy Mergatroid. That is, Alex and Bobby-Joe are a rogue
couple, contradicting the assumed stability of the matching. �

So getting a stable buddy matching may not only be hard, it may be impossible.
But when mens are only allowed to marry women, and vice versa, then it turns out
that a stable matching can always be found.9

The Mating Ritual

The procedure for finding a stable matching involves a Mating Ritual that takes
place over several days. The following events happen each day:

Morning: Each woman stands on her balcony. Each man stands under the bal-
cony of his favorite among the women on his list, and he serenades her. If a man
has no women left on his list, he stays home and does his math homework.

Afternoon: Each woman who has one or more suitors serenading her, says to
her favorite among them, “We might get engaged. Come back tomorrow.” To the
other suitors, she says, “No. I will never marry you! Take a hike!”

Evening: Any man who is told by a woman to take a hike, crosses that woman
off his list.

Termination condition: When a day arrives in which every woman has at most
one suitor, the ritual ends with each woman marrying her suitor, if she has one.

There are a number of facts about this Mating Ritual that we would like to prove:

� The Ritual eventually reaches the termination condition.

� Everybody ends up married.

� The resulting marriages are stable.

There is a Marriage Day

It’s easy to see why the Mating Ritual has a terminal day when people finally get
married. Every day on which the ritual hasn’t terminated, at least one man crosses
a woman off his list. (If the ritual hasn’t terminated, there must be some woman
serenaded by at least two men, and at least one of them will have to cross her off his

9Once again, we disclaim any political statement here—its just the way that the math works out.

“mcs-ftl” — 2010/9/8 — 0:40 — page 139 — #145

5.2. Matching Problems 139

list). If we start with n men and n women, then each of the n men’s lists initially
has n women on it, for a total of n2 list entries. Since no women ever gets added
to a list, the total number of entries on the lists decreases every day that the Ritual
continues, and so the Ritual can continue for at most n2 days.

They All Live Happily Every After. . .

We still have to prove that the Mating Ritual leaves everyone in a stable marriage.
To do this, we note one very useful fact about the Ritual: if a woman has a favorite
suitor on some morning of the Ritual, then that favorite suitor will still be serenad-
ing her the next morning—because his list won’t have changed. So she is sure to
have today’s favorite man among her suitors tomorrow. That means she will be able
to choose a favorite suitor tomorrow who is at least as desirable to her as today’s
favorite. So day by day, her favorite suitor can stay the same or get better, never
worse. This sounds like an invariant, and it is.

Definition 5.2.12. Let P be the predicate: For every woman, w, and every man,
m, if w is crossed off m’s list, then w has a suitor whom she prefers over m.

Lemma 5.2.13. P is an invariant for The Mating Ritual.

Proof. By induction on the number of days.

Base Case: In the beginning (that is, at the end of day 0), every woman is on every
list—no one has been crossed off and so P is vacuously true.

Inductive Step: Assume P is true at the end of day d and let w be a woman that
has been crossed off a man m’s list by the end of day d C 1.

Case 1: w was crossed off m’s list on day d C 1. Then, w must have a suitor she
prefers on day d C 1.

Case 2: w was crossed offm’s list prior to day d C1. Since P is true at the end of
day d , this means thatw has a suitor she prefers tom on day d . She therefore
has the same suitor or someone she prefers better at the end of day d C 1.

In both cases, P is true at the end of day d C 1 and so P must be an invariant. �

With Lemma 5.2.13 in hand, we can now prove:

Theorem 5.2.14. Everyone is married by the Mating Ritual.

Proof. By contradiction. Assume that it is the last day of the Mating Ritual and
someone does not get married. Since there are an equal number of men and women,

“mcs-ftl” — 2010/9/8 — 0:40 — page 140 — #146

Chapter 5 Graph Theory140

and since bigamy is not allowed, this means that at least one man (call him Bob)
and at least one woman do not get married.

Since Bob is not married, he can’t be serenading anybody and so his list must
be empty. This means that Bob has crossed every woman off his list and so, by
invariant P , every woman has a suitor whom she prefers to Bob. Since it is the last
day and every woman still has a suitor, this means that every woman gets married.
This is a contradiction since we already argued that at least one woman is not
married. Hence our assumption must be false and so everyone must be married. �

Theorem 5.2.15. The Mating Ritual produces a stable matching.

Proof. Let Brad and Jen be any man and woman, respectively, that are not married
to each other on the last day of the Mating Ritual. We will prove that Brad and Jen
are not a rogue couple, and thus that all marriages on the last day are stable. There
are two cases to consider.

Case 1: Jen is not on Brad’s list by the end. Then by invariant P , we know that
Jen has a suitor (and hence a husband) that she prefers to Brad. So she’s not
going to run off with Brad—Brad and Jen cannot be a rogue couple.

Case 2: Jen is on Brad’s list. But since Brad is not married to Jen, he must be
choosing to serenade his wife instead of Jen, so he must prefer his wife. So
he’s not going to run off with Jen—once again, Brad and Jenn are not a rogue
couple. �

. . . Especially the Men

Who is favored by the Mating Ritual, the men or the women? The women seem
to have all the power: they stand on their balconies choosing the finest among
their suitors and spurning the rest. What’s more, we know their suitors can only
change for the better as the Ritual progresses. Similarly, a man keeps serenading
the woman he most prefers among those on his list until he must cross her off,
at which point he serenades the next most preferred woman on his list. So from
the man’s perspective, the woman he is serenading can only change for the worse.
Sounds like a good deal for the women.

But it’s not! The fact is that from the beginning, the men are serenading their
first choice woman, and the desirability of the woman being serenaded decreases
only enough to ensure overall stability. The Mating Ritual actually does as well as
possible for all the men and does the worst possible job for the women.

To explain all this we need some definitions. Let’s begin by observing that while
The Mating Ritual produces one stable matching, there may be other stable match-
ings among the same set of men and women. For example, reversing the roles of
men and women will often yield a different stable matching among them.

“mcs-ftl” — 2010/9/8 — 0:40 — page 141 — #147

5.2. Matching Problems 141

But some spouses might be out of the question in all possible stable matchings.
For example, given the preferences shown in Figure 5.13, Brad is just not in the
realm of possibility for Jennifer, since if you ever pair them, Brad and Angelina
will form a rogue couple.

Definition 5.2.16. Given a set of preference lists for all men and women, one per-
son is in another person’s realm of possible spouses if there is a stable matching
in which the two people are married. A person’s optimal spouse is their most pre-
ferred person within their realm of possibility. A person’s pessimal spouse is their
least preferred person in their realm of possibility.

Everybody has an optimal and a pessimal spouse, since we know there is at least
one stable matching, namely, the one produced by the Mating Ritual. Now here is
the shocking truth about the Mating Ritual:

Theorem 5.2.17. The Mating Ritual marries every man to his optimal spouse.

Proof. By contradiction. Assume for the purpose of contradiction that some man
does not get his optimal spouse. Then there must have been a day when he crossed
off his optimal spouse—otherwise he would still be serenading (and would ulti-
mately marry) her or some even more desirable woman.

By the Well Ordering Principle, there must be a first day when a man (call him
“Keith”) crosses off his optimal spouse (call her Nicole). According to the rules of
the Ritual, Keith crosses off Nicole because Nicole has a preferred suitor (call him
Tom), so

Nicole prefers Tom to Keith. (�)

Since this is the first day an optimal woman gets crossed off, we know that Tom
had not previously crossed off his optimal spouse, and so

Tom ranks Nicole at least as high as his optimal spouse. (��)

By the definition of an optimal spouse, there must be some stable set of marriages in
which Keith gets his optimal spouse, Nicole. But then the preferences given in (�)
and (��) imply that Nicole and Tom are a rogue couple within this supposedly
stable set of marriages (think about it). This is a contradiction. �

Theorem 5.2.18. The Mating Ritual marries every woman to her pessimal spouse.

Proof. By contradiction. Assume that the theorem is not true. Hence there must
be a stable set of marriages M where some woman (call her Nicole) is married to
a man (call him Tom) that she likes less than her spouse in The Mating Ritual (call
him Keith). This means that

Nicole prefers Keith to Tom. (+)

“mcs-ftl” — 2010/9/8 — 0:40 — page 142 — #148

Chapter 5 Graph Theory142

By Theorem 5.2.17 and the fact that Nicole and Keith are married in the Mating
Ritual, we know that

Keith prefers Nicole to his spouse in M. (++)

This means that Keith and Nicole form a rogue couple inM, which contradicts the
stability of M. �

Applications

The Mating Ritual was first announced in a paper by D. Gale and L.S. Shapley in
1962, but ten years before the Gale-Shapley paper was published, and unknown
by them, a similar algorithm was being used to assign residents to hospitals by the
National Resident Matching Program (NRMP)10. The NRMP has, since the turn
of the twentieth century, assigned each year’s pool of medical school graduates to
hospital residencies (formerly called “internships”) with hospitals and graduates
playing the roles of men and women. (In this case, there may be multiple women
married to one man, a scenario we consider in the problem section at the end of the
chapter.). Before the Ritual-like algorithm was adopted, there were chronic disrup-
tions and awkward countermeasures taken to preserve assignments of graduates to
residencies. The Ritual resolved these problems so successfully, that it was used
essentially without change at least through 1989.11

The Internet infrastructure company, Akamai, also uses a variation of the Mating
Ritual to assign web traffic to its servers. In the early days, Akamai used other com-
binatorial optimization algorithms that got to be too slow as the number of servers
(over 65,000 in 2010) and requests (over 800 billion per day) increased. Akamai
switched to a Ritual-like approach since it is fast and can be run in a distributed
manner. In this case, web requests correspond to women and web servers corre-
spond to men. The web requests have preferences based on latency and packet loss,
and the web servers have preferences based on cost of bandwidth and collocation.

Not surprisingly, the Mating Ritual is also used by at least one large online dating
agency. Even here, there is no serenading going on—everything is handled by
computer.

10Of course, there is no serenading going on in the hospitals—the preferences are submitted to a
program and the whole process is carried out by a computer.

11Much more about the Stable Marriage Problem can be found in the very readable mathematical
monograph by Dan Gusfield and Robert W. Irving, The Stable Marriage Problem: Structure and
Algorithms, MIT Press, Cambridge, Massachusetts, 1989, 240 pp.

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7676
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7676

“mcs-ftl” — 2010/9/8 — 0:40 — page 143 — #149

5.3. Coloring 143

6:002

6:170

6:003

6:0426:041

Figure 5.15 A scheduling graph for five exams. Exams connected by an edge
cannot be given at the same time.

5.3 Coloring

In Section 5.2, we used edges to indicate an affinity between a pair of nodes. We
now consider situations where it is useful to use edges to represent a conflict be-
tween a pair of nodes. For example, consider the following exam scheduling prob-
lem.

5.3.1 An Exam Scheduling Problem

Each term, the MIT Schedules Office must assign a time slot for each final exam.
This is not easy, because some students are taking several classes with finals, and
(even at MIT) a student can take only one test during a particular time slot. The
Schedules Office wants to avoid all conflicts. Of course, you can make such a
schedule by having every exam in a different slot, but then you would need hun-
dreds of slots for the hundreds of courses, and the exam period would run all year!
So, the Schedules Office would also like to keep exam period short.

The Schedules Office’s problem is easy to describe as a graph. There will be a
vertex for each course with a final exam, and two vertices will be adjacent exactly
when some student is taking both courses. For example, suppose we need to sched-
ule exams for 6.041, 6.042, 6.002, 6.003 and 6.170. The scheduling graph might
appear as in Figure 5.15.

6.002 and 6.042 cannot have an exam at the same time since there are students in
both courses, so there is an edge between their nodes. On the other hand, 6.042 and
6.170 can have an exam at the same time if they’re taught at the same time (which
they sometimes are), since no student can be enrolled in both (that is, no student
should be enrolled in both when they have a timing conflict).

“mcs-ftl” — 2010/9/8 — 0:40 — page 144 — #150

Chapter 5 Graph Theory144

red

blue

green

bluegreen

Figure 5.16 A 3-coloring of the exam graph from Figure 5.15.

We next identify each time slot with a color. For example, Monday morning
is red, Monday afternoon is blue, Tuesday morning is green, etc. Assigning an
exam to a time slot is then equivalent to coloring the corresponding vertex. The
main constraint is that adjacent vertices must get different colors—otherwise, some
student has two exams at the same time. Furthermore, in order to keep the exam
period short, we should try to color all the vertices using as few different colors as
possible. As shown in Figure 5.16, three colors suffice for our example.

The coloring in Figure 5.16 corresponds to giving one final on Monday morning
(red), two Monday afternoon (blue), and two Tuesday morning (green). Can we use
fewer than three colors? No! We can’t use only two colors since there is a triangle
in the graph, and three vertices in a triangle must all have different colors.

This is an example of a graph coloring problem: given a graph G, assign colors
to each node such that adjacent nodes have different colors. A color assignment
with this property is called a valid coloring of the graph—a “coloring,” for short.
A graph G is k-colorable if it has a coloring that uses at most k colors.

Definition 5.3.1. The minimum value of k for which a graph G has a valid k-
coloring is called its chromatic number, �.G/.

In general, trying to figure out if you can color a graph with a fixed number of
colors can take a long time. It’s a classic example of a problem for which no fast
algorithms are known. It is easy to check if a coloring works, but it seems really
hard to find it. (If you figure out how, then you can get a $1 million Clay prize.)

5.3.2 Degree-Bounded Coloring

There are some simple graph properties that give useful upper bounds on the chro-
matic number. For example, if the graph is bipartite, then we can color it with 2
colors (one color for the nodes in the “left” set and a second color for the nodes

“mcs-ftl” — 2010/9/8 — 0:40 — page 145 — #151

5.3. Coloring 145

in the “right” set). In fact, if the graph has any edges at all, then being bipartite is
equivalent to being 2-colorable.

Alternatively, if the graph is planar, then the famous 4-Color Theorem says that
the graph is 4-colorable. This is a hard result to prove, but we will come close in
Section 5.8 where we define planar graphs and prove that they are 5-colorable.

The chromatic number of a graph can also be shown to be small if the vertex
degrees of the graph are small. In particular, if we have an upper bound on the
degrees of all the vertices in a graph, then we can easily find a coloring with only
one more color than the degree bound.

Theorem 5.3.2. A graph with maximum degree at most k is .k C 1/-colorable.

The natural way to try to prove this theorem is to use induction on k. Unfor-
tunately, this approach leads to disaster. It is not that it is impossible, just that it
is extremely painful and would ruin your week if you tried it on an exam. When
you encounter such a disaster when using induction on graphs, it is usually best to
change what you are inducting on. In graphs, typical good choices for the induction
parameter are n, the number of nodes, or e, the number of edges.

Proof of Theorem 5.3.2. We use induction on the number of vertices in the graph,
which we denote by n. Let P.n/ be the proposition that an n-vertex graph with
maximum degree at most k is .k C 1/-colorable.

Base case (n D 1): A 1-vertex graph has maximum degree 0 and is 1-colorable, so
P.1/ is true.

Inductive step: Now assume that P.n/ is true, and letG be an .nC1/-vertex graph
with maximum degree at most k. Remove a vertex v (and all edges incident to it),
leaving an n-vertex subgraph, H . The maximum degree of H is at most k, and so
H is .k C 1/-colorable by our assumption P.n/. Now add back vertex v. We can
assign v a color (from the set of k C 1 colors) that is different from all its adjacent
vertices, since there are at most k vertices adjacent to v and so at least one of the
k C 1 colors is still available. Therefore, G is .k C 1/-colorable. This completes
the inductive step, and the theorem follows by induction. �

Sometimes k C 1 colors is the best you can do. For example, in the complete
graph, Kn, every one of its n vertices is adjacent to all the others, so all n must be
assigned different colors. Of course n colors is also enough, so �.Kn/ D n. In
this case, every node has degree k D n � 1 and so this is an example where Theo-
rem 5.3.2 gives the best possible bound. By a similar argument, we can show that
Theorem 5.3.2 gives the best possible bound for any graph with degree bounded by
k that has KkC1 as a subgraph.

“mcs-ftl” — 2010/9/8 — 0:40 — page 146 — #152

Chapter 5 Graph Theory146

Figure 5.17 A 7-node star graph.

But sometimes k C 1 colors is far from the best that you can do. For example,
the n-node star graph shown in Figure 5.17 has maximum degree n� 1 but can be
colored using just 2 colors.

5.3.3 Why coloring?

One reason coloring problems frequently arise in practice is because scheduling
conflicts are so common. For example, at Akamai, a new version of software is
deployed over each of 75,000 servers every few days. The updates cannot be done
at the same time since the servers need to be taken down in order to deploy the
software. Also, the servers cannot be handled one at a time, since it would take
forever to update them all (each one takes about an hour). Moreover, certain pairs
of servers cannot be taken down at the same time since they have common critical
functions. This problem was eventually solved by making a 75,000-node conflict
graph and coloring it with 8 colors—so only 8 waves of install are needed!

Another example comes from the need to assign frequencies to radio stations. If
two stations have an overlap in their broadcast area, they can’t be given the same
frequency. Frequencies are precious and expensive, so you want to minimize the
number handed out. This amounts to finding the minimum coloring for a graph
whose vertices are the stations and whose edges connect stations with overlapping
areas.

Coloring also comes up in allocating registers for program variables. While a
variable is in use, its value needs to be saved in a register. Registers can be reused
for different variables but two variables need different registers if they are refer-
enced during overlapping intervals of program execution. So register allocation is
the coloring problem for a graph whose vertices are the variables; vertices are ad-
jacent if their intervals overlap, and the colors are registers. Once again, the goal is
to minimize the number of colors needed to color the graph.

Finally, there’s the famous map coloring problem stated in Proposition 1.3.4.
The question is how many colors are needed to color a map so that adjacent ter-

“mcs-ftl” — 2010/9/8 — 0:40 — page 147 — #153

5.4. Getting from A to B in a Graph 147

ritories get different colors? This is the same as the number of colors needed to
color a graph that can be drawn in the plane without edges crossing. A proof that
four colors are enough for planar graphs was acclaimed when it was discovered
about thirty years ago. Implicit in that proof was a 4-coloring procedure that takes
time proportional to the number of vertices in the graph (countries in the map).
Surprisingly, it’s another of those million dollar prize questions to find an efficient
procedure to tell if a planar graph really needs four colors or if three will actually
do the job. (It’s always easy to tell if an arbitrary graph is 2-colorable.) In Sec-
tion 5.8, we’ll develop enough planar graph theory to present an easy proof that all
planar graphs are 5-colorable.

5.4 Getting from A to B in a Graph

5.4.1 Paths and Walks

Definition 5.4.1. A walk12 in a graph, G, is a sequence of vertices

v0; v1; : : : ; vk

and edges
fv0; v1g; fv1; v2g; : : : ; fvk�1; vkg

such that fvi ; viC1g is an edge of G for all i where 0 � i < k . The walk is said to
start at v0 and to end at vk , and the length of the walk is defined to be k. An edge,
fu; vg, is traversed n times by the walk if there are n different values of i such that
fvi ; viC1g D fu; vg. A path is a walk where all the vi ’s are different, that is, i ¤ j
implies vi ¤ vj . For simplicity, we will refer to paths and walks by the sequence
of vertices.13

For example, the graph in Figure 5.18 has a length 6 path a, b, c, d , e, f , g.
This is the longest path in the graph. Of course, the graph has walks with arbitrarily
large lengths; for example, a, b, a, b, a, b,

The length of a walk or path is the total number of times it traverses edges, which
is one less than its length as a sequence of vertices. For example, the length 6 path
a, b, c, d , e, f , g contains a sequence of 7 vertices.

12Some texts use the word path for our definition of walk and the term simple path for our definition
of path.

13This works fine for simple graphs since the edges in a walk are completely determined by the
sequence of vertices and there is no ambiguity. For graphs with multiple edges, we would need to
specify the edges as well as the nodes.

“mcs-ftl” — 2010/9/8 — 0:40 — page 148 — #154

Chapter 5 Graph Theory148

a

b

c

d e

f

g h

Figure 5.18 A graph containing a path a, b, c, d , e, f , g of length 6.

5.4.2 Finding a Path

Where there’s a walk, there’s a path. This is sort of obvious, but it’s easy enough to
prove rigorously using the Well Ordering Principle.

Lemma 5.4.2. If there is a walk from a vertex u to a vertex v in a graph, then there
is a path from u to v.

Proof. Since there is a walk from u to v, there must, by the Well-ordering Principle,
be a minimum length walk from u to v. If the minimum length is zero or one, this
minimum length walk is itself a path from u to v. Otherwise, there is a minimum
length walk

v0; v1; : : : ; vk

from u D v0 to v D vk where k � 2. We claim this walk must be a path. To
prove the claim, suppose to the contrary that the walk is not a path; that is, some
vertex on the walk occurs twice. This means that there are integers i; j such that
0 � i < j � k with vi D vj . Then deleting the subsequence

viC1; : : : ; vj

yields a strictly shorter walk

v0; v1; : : : ; vi ; vjC1; vjC2; : : : ; vk

from u to v, contradicting the minimality of the given walk. �

Actually, we proved something stronger:

Corollary 5.4.3. For any walk of length k in a graph, there is a path of length at
most k with the same endpoints. Moreover, the shortest walk between a pair of
vertices is, in fact, a path.

“mcs-ftl” — 2010/9/8 — 0:40 — page 149 — #155

5.4. Getting from A to B in a Graph 149

v2

v3

v1

v4

Figure 5.19 A graph for which there are 5 walks of length 3 from v1 to v4.
The walks are .v1; v2; v1; v4/, .v1; v3; v1; v4/, .v1; v4; v1; v4/, .v1; v2; v3; v4/, and
.v1; v4; v3; v4/.

5.4.3 Numbers of Walks

Given a pair of nodes that are connected by a walk of length k in a graph, there are
often many walks that can be used to get from one node to the other. For example,
there are 5 walks of length 3 that start at v1 and end at v4 in the graph shown in
Figure 5.19.

There is a surprising relationship between the number of walks of length k be-
tween a pair of nodes in a graph G and the kth power of the adjacency matrix AG
for G. The relationship is captured in the following theorem.

Theorem 5.4.4. Let G D .V;E/ be an n-node graph with V D fv1; v2; : : : ; vng
and let AG D faij g denote the adjacency matrix for G. Let a.k/ij denote the .i; j /-
entry of the kth power of AG . Then the number of walks of length k between vi
and vj is a.k/ij .

In other words, we can determine the number of walks of length k between any
pair of nodes simply by computing the kth power of the adjacency matrix! That’s
pretty amazing.

For example, the first three powers of the adjacency matrix for the graph in Fig-
ure 5.19 are:

A D

0BB@
0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

1CCA A2 D

0BB@
3 1 2 1

1 2 1 2

2 1 3 1

1 2 1 2

1CCA A3 D

0BB@
4 5 5 5

5 2 5 2

5 5 4 5

5 2 5 2

1CCA
Sure enough, the .1; 4/ coordinate of A3 is a.3/14 D 5, which is the number of

length 3 walks from v1 to v4. And a.3/24 D 2, which is the number of length 3 walks
from v2 to v4. By proving the theorem, we’ll discover why it is true and thereby
uncover the relationship between matrix multiplication and numbers of walks.

“mcs-ftl” — 2010/9/8 — 0:40 — page 150 — #156

Chapter 5 Graph Theory150

Proof of Theorem 5.4.4. The proof is by induction on k. We will let P.k/ be the
predicate that the theorem is true for k. Let P .k/ij denote the number of walks of
length k between vi and vj . Then P.k/ is the predicate

8i; j 2 Œ1; n�: P
.k/
ij D a

.k/
ij : (5.2)

Base Case (k D 1): There are two cases to consider:

Case 1: fvi ; vj g 2 E. Then P .1/ij D 1 since there is precisely one walk of length 1

between vi and vj . Moreover, fvi ; vj g 2 E means that a.1/ij D aij D 1. So,

P
.1/
ij D a

.1/
ij in this case.

Case 2: fvi ; vj g … E. Then P .1/ij D 0 since there cannot be any walks of length 1

between vi and vj . Moreover, fvi ; vj g … E means that aij D 0. So, P .1/ij D

a
.1/
ij in this case as well.

Hence, P.1/ must be true.

Inductive Step: Assume P.k/ is true. In other words, assume that equation 5.2
holds.

We can group (and thus count the number of) walks of length kC1 from vi to vj
according to the first edge in the walk (call it fvi ; vtg). This means that

P
.kC1/
ij D

t Wfvi ;vt g2EX
P
.k/
tj (5.3)

where the sum is over all t such that fvi ; vtg is an edge. Using the fact that aij D 1
if fvi ; vtg 2 E and ait D 0 otherwise, we can rewrite Equation 5.3 as follows:

P
.kC1/
ij D

nX
tD1

aitP
.k/
tj :

By the inductive hypothesis, P .k/tj D a
.k/
tj and thus

P
.kC1/
ij D

nX
tD1

aita
.k/
tj :

But the formula for matrix multiplication gives that

a
.kC1/
ij D

nX
tD1

aita
.k/
tj :

and so we must have P .kC1/ij D a
.kC1/
ij for all i; j 2 Œ1; n�. Hence P.kC 1/ is true

and the induction is complete. �

“mcs-ftl” — 2010/9/8 — 0:40 — page 151 — #157

5.5. Connectivity 151

5.4.4 Shortest Paths

Although the connection between the power of the adjacency matrix and the num-
ber of walks is cool (at least if you are a mathematician), the problem of counting
walks does not come up very often in practice. Much more important is the problem
of finding the shortest path between a pair of nodes in a graph.

There is good news and bad news to report on this front. The good news is that
it is not very hard to find a shortest path. The bad news is that you can’t win one of
those million dollar prizes for doing it.

In fact, there are several good algorithms known for finding a Shortest Path be-
tween a pair of nodes. The simplest to explain (but not the fastest) is to compute the
powers of the adjacency matrix one by one until the value of a.k/ij exceeds 0. That’s
because Theorem 5.4.4 and Corollary 5.4.3 imply that the length of the shortest
path between vi and vj will be the smallest value of k for which a.k/ij > 0.

Paths in Weighted Graphs

The problem of computing shortest paths in a weighted graph frequently arises in
practice. For example, when you drive home for vacation, you usually would like
to take the shortest route.

Definition 5.4.5. Given a weighted graph, the length of a path in the graph is the
sum of the weights of the edges in the path.

Finding shortest paths in weighted graphs is not a lot harder than finding shortest
paths in unweighted graphs. We won’t show you how to do it here, but you will
study algorithms for finding shortest paths if you take an algorithms course. Not
surprisingly, the proof of correctness will use induction.

5.5 Connectivity

Definition 5.5.1. Two vertices in a graph are said to be connected if there is a path
that begins at one and ends at the other. By convention, every vertex is considered
to be connected to itself by a path of length zero.

Definition 5.5.2. A graph is said to be connected when every pair of vertices are
connected.

5.5.1 Connected Components

Being connected is usually a good property for a graph to have. For example, it
could mean that it is possible to get from any node to any other node, or that it is

“mcs-ftl” — 2010/9/8 — 0:40 — page 152 — #158

Chapter 5 Graph Theory152

possible to communicate between any pair of nodes, depending on the application.
But not all graphs are connected. For example, the graph where nodes represent

cities and edges represent highways might be connected for North American cities,
but would surely not be connected if you also included cities in Australia. The
same is true for communication networks like the Internet—in order to be protected
from viruses that spread on the Internet, some government networks are completely
isolated from the Internet.

Figure 5.20 One graph with 3 connected components.

For example, the diagram in Figure 5.20 looks like a picture of three graphs,
but is intended to be a picture of one graph. This graph consists of three pieces
(subgraphs). Each piece by itself is connected, but there are no paths between ver-
tices in different pieces. These connected pieces of a graph are called its connected
components.

Definition 5.5.3. A connected component is a subgraph of a graph consisting of
some vertex and every node and edge that is connected to that vertex.

So a graph is connected iff it has exactly one connected component. At the other
extreme, the empty graph on n vertices has n connected components.

5.5.2 k-Connected Graphs

If we think of a graph as modeling cables in a telephone network, or oil pipelines, or
electrical power lines, then we not only want connectivity, but we want connectivity
that survives component failure. A graph is called k-edge connected if it takes at
least k “edge-failures” to disconnect it. More precisely:

Definition 5.5.4. Two vertices in a graph are k-edge connected if they remain con-
nected in every subgraph obtained by deleting k � 1 edges. A graph with at least
two vertices is k-edge connected14 if every two of its vertices are k-edge connected.

14The corresponding definition of connectedness based on deleting vertices rather than edges is
common in Graph Theory texts and is usually simply called “k-connected” rather than “k-vertex
connected.”

“mcs-ftl” — 2010/9/8 — 0:40 — page 153 — #159

5.5. Connectivity 153

So 1-edge connected is the same as connected for both vertices and graphs. An-
other way to say that a graph is k-edge connected is that every subgraph obtained
from it by deleting at most k � 1 edges is connected. For example, in the graph in
Figure 5.18, vertices c and e are 3-edge connected, b and e are 2-edge connected,
g and e are 1-edge connected, and no vertices are 4-edge connected. The graph
as a whole is only 1-edge connected. The complete graph, Kn, is .n � 1/-edge
connected.

If two vertices are connected by k edge-disjoint paths (that is, no two paths
traverse the same edge), then they are obviously k-edge connected. A fundamental
fact, whose ingenious proof we omit, is Menger’s theorem which confirms that the
converse is also true: if two vertices are k-edge connected, then there are k edge-
disjoint paths connecting them. It even takes some ingenuity to prove this for the
case k D 2.

5.5.3 The Minimum Number of Edges in a Connected Graph

The following theorem says that a graph with few edges must have many connected
components.

Theorem 5.5.5. Every graph with v vertices and e edges has at least v � e con-
nected components.

Of course for Theorem 5.5.5 to be of any use, there must be fewer edges than
vertices.

Proof. We use induction on the number of edges, e. Let P.e/ be the proposition
that

for every v, every graph with v vertices and e edges has at least v � e
connected components.

Base case:(e D 0). In a graph with 0 edges and v vertices, each vertex is itself a
connected component, and so there are exactly v D v � 0 connected components.
So P.e/ holds.

Inductive step: Now we assume that the induction hypothesis holds for every e-
edge graph in order to prove that it holds for every .eC1/-edge graph, where e � 0.
Consider a graph, G, with eC 1 edges and v vertices. We want to prove that G has
at least v � .e C 1/ connected components. To do this, remove an arbitrary edge
fa; bg and call the resulting graph G0. By the induction assumption, G0 has at least
v � e connected components. Now add back the edge fa; bg to obtain the original
graph G. If a and b were in the same connected component of G0, then G has the
same connected components asG0, soG has at least v�e > v�.eC1/ components.

“mcs-ftl” — 2010/9/8 — 0:40 — page 154 — #160

Chapter 5 Graph Theory154

Figure 5.21 A counterexample graph to the False Claim.

Otherwise, if a and b were in different connected components ofG0, then these two
components are merged into one component in G, but all other components remain
unchanged, reducing the number of components by 1. Therefore, G has at least
.v�e/�1 D v� .eC1/ connected components. So in either case, P.eC1/ holds.
This completes the Inductive step. The theorem now follows by induction. �

Corollary 5.5.6. Every connected graph with v vertices has at least v � 1 edges.

A couple of points about the proof of Theorem 5.5.5 are worth noticing. First,
we used induction on the number of edges in the graph. This is very common in
proofs involving graphs, as is induction on the number of vertices. When you’re
presented with a graph problem, these two approaches should be among the first
you consider.

The second point is more subtle. Notice that in the inductive step, we took an
arbitrary .nC1/-edge graph, threw out an edge so that we could apply the induction
assumption, and then put the edge back. You’ll see this shrink-down, grow-back
process very often in the inductive steps of proofs related to graphs. This might
seem like needless effort; why not start with an n-edge graph and add one more to
get an .nC 1/-edge graph? That would work fine in this case, but opens the door
to a nasty logical error called buildup error.

5.5.4 Build-Up Error

False Claim. If every vertex in a graph has degree at least 1, then the graph is
connected.

There are many counterexamples; for example, see Figure 5.21.

False proof. We use induction. Let P.n/ be the proposition that if every vertex in
an n-vertex graph has degree at least 1, then the graph is connected.

Base case: There is only one graph with a single vertex and has degree 0. There-
fore, P.1/ is vacuously true, since the if-part is false.

“mcs-ftl” — 2010/9/8 — 0:40 — page 155 — #161

5.5. Connectivity 155

x

y

z

n-node
connected
graph

Figure 5.22 Adding a vertex x with degree at least 1 to a connected n-node graph.

Inductive step: We must show that P.n/ implies P.nC 1/ for all n � 1. Consider
an n-vertex graph in which every vertex has degree at least 1. By the assump-
tion P.n/, this graph is connected; that is, there is a path between every pair of
vertices. Now we add one more vertex x to obtain an .n C 1/-vertex graph as
shown in Figure 5.22.

All that remains is to check that there is a path from x to every other vertex z.
Since x has degree at least one, there is an edge from x to some other vertex; call
it y. Thus, we can obtain a path from x to z by adjoining the edge fx; yg to the
path from y to z. This proves P.nC 1/.

By the principle of induction, P.n/ is true for all n � 1, which proves the
theorem �

Uh-oh. . . this proof looks fine! Where is the bug? It turns out that the faulty as-
sumption underlying this argument is that every .nC1/-vertex graph with minimum
degree 1 can be obtained from an n-vertex graph with minimum degree 1 by adding
1 more vertex. Instead of starting by considering an arbitrary .nC 1/-node graph,
this proof only considered .nC 1/-node graphs that you can make by starting with
an n-node graph with minimum degree 1.

The counterexample in Figure 5.21 shows that this assumption is false; there
is no way to build the 4-vertex graph in Figure 5.21 from a 3-vertex graph with
minimum degree 1. Thus the first error in the proof is the statement “This proves
P.nC 1/.”

This kind of flaw is known as “build-up error.” Usually, build-up error arises
from a faulty assumption that every size n C 1 graph with some property can be
“built up” from a size n graph with the same property. (This assumption is cor-
rect for some properties, but incorrect for others—such as the one in the argument
above.)

“mcs-ftl” — 2010/9/8 — 0:40 — page 156 — #162

Chapter 5 Graph Theory156

One way to avoid an accidental build-up error is to use a “shrink down, grow
back” process in the inductive step; that is, start with a size n C 1 graph, remove
a vertex (or edge), apply the inductive hypothesis P.n/ to the smaller graph, and
then add back the vertex (or edge) and argue that P.nC 1/ holds. Let’s see what
would have happened if we’d tried to prove the claim above by this method:

Revised inductive step: We must show that P.n/ implies P.nC 1/ for all n � 1.
Consider an .n C 1/-vertex graph G in which every vertex has degree at least 1.
Remove an arbitrary vertex v, leaving an n-vertex graph G0 in which every vertex
has degree. . . uh oh!

The reduced graph G0 might contain a vertex of degree 0, making the inductive
hypothesis P.n/ inapplicable! We are stuck—and properly so, since the claim is
false!

Always use shrink-down, grow-back arguments and you’ll never fall into this
trap.

5.6 Around and Around We Go

5.6.1 Cycles and Closed Walks

Definition 5.6.1. A closed walk15 in a graph G is a sequence of vertices

v0; v1; : : : ; vk

and edges
fv0; v1g; fv1; v2g; : : : ; fvk�1; vkg

where v0 is the same node as vk and fvi ; viC1g is an edge of G for all i where
0 � i < k. The length of the closed walk is k. A closed walk is said to be a cycle
if k � 3 and v0, v1, . . . , vk�1 are all different.

For example, b, c, d , e, c, b is a closed walk of length 5 in the graph shown in
Figure 5.18. It is not a cycle since it contains node c twice. On the other hand, c,
d , e, c is a cycle of length 3 in this graph since every node appears just once.

There are many ways to represent the same closed walk or cycle. For example,
b, c, d , e, c, b is the same as c, d , e, c, b, c (just starting at node c instead of
node b) and the same as b, c, e, d , c, b (just reversing the direction).

15Some texts use the word cycle for our definition of closed walk and simple cycle for our definition
of cycle.

“mcs-ftl” — 2010/9/8 — 0:40 — page 157 — #163

5.6. Around and Around We Go 157

Cycles are similar to paths, except that the last node is the first node and the
notion of first and last does not matter. Indeed, there are many possible vertex
orders that can be used to describe cycles and closed walks, whereas walks and
paths have a prescribed beginning, end, and ordering.

5.6.2 Odd Cycles and 2-Colorability

We have already seen that determining the chromatic number of a graph is a chal-
lenging problem. There is a special case where this problem is very easy; namely,
the case where every cycle in the graph has even length. In this case, the graph
is 2-colorable! Of course, this is optimal if the graph has any edges at all. More
generally, we will prove

Theorem 5.6.2. The following properties of a graph are equivalent (that is, if the
graph has any one of the properties, then it has all of the properties):

1. The graph is bipartite.

2. The graph is 2-colorable.

3. The graph does not contain any cycles with odd length.

4. The graph does not contain any closed walks with odd length.

Proof. We will show that property 1 IMPLIES property 2, property 2 IMPLIES prop-
erty 3, property 3 IMPLIES property 4, and property 4 IMPLIES property 1. This will
show that all four properties are equivalent by repeated application of Rule 2.1.2 in
Section 2.1.2.

1 IMPLIES 2 Assume that G D .V;E/ is a bipartite graph. Then V can be parti-
tioned into two sets L and R so that no edge connects a pair of nodes in L
nor a pair of nodes in R. Hence, we can use one color for all the nodes in L

and a second color for all the nodes in R. Hence �.G/ D 2.

2 IMPLIES 3 Let G D .V;E/ be a 2-colorable graph and

C WWD v0; v1; : : : ; vk

be any cycle in G. Consider any 2-coloring for the nodes of G. Since
fvi ; viC1g 2 E, vi and viC1 must be differently colored for 0 � i < k.
Hence v0, v2, v4, . . . , have one color and v1, v3, v5, . . . , have the other
color. Since C is a cycle, vk is the same node as v0, which means they must
have the same color, and so k must be an even number. This means that
C has even length.

“mcs-ftl” — 2010/9/8 — 0:40 — page 158 — #164

Chapter 5 Graph Theory158

3 IMPLIES 4 The proof is by contradiction. Assume for the purposes of contradic-
tion that G is a graph that does not contain any cycles with odd length (that
is, G satisfies Property 3) but that G does contain a closed walk with odd
length (that is, G does not satisfy Property 4).

Let
w WWD v0; v1; v2; : : : ; vk

be the shortest closed walk with odd length in G. Since G has no odd-length
cycles, w cannot be a cycle. Hence vi D vj for some 0 � i < j < k. This
means that w is the union of two closed walks:

v0; v1; : : : ; vi ; vjC1; vjC2; : : : ; vk

and
vi ; viC1; : : : ; vj :

Since w has odd length, one of these two closed walks must also have odd
length and be shorter than w. This contradicts the minimality of w. Hence 3
IMPLIES 4.

4 IMPLIES 1 Once again, the proof is by contradiction. Assume for the purposes
of contradictin that G is a graph without any closed walks with odd length
(that is, G satisfies Property 4) but that G is not bipartite (that is, G does not
satisfy Property 1).

SinceG is not bipartite, it must contain a connected componentG0 D .V 0; E 0/
that is not bipartite. Let v be some node in V 0. For every node u 2 V 0, define

dist.u/ WWD the length of the shortest path from u to v in G0.

If u D v, the distance is zero.

Partition V 0 into sets L and R so that

L D fu j dist.u/ is even g;

R D fu j dist.u/ is odd g:

Since G0 is not bipartite, there must be a pair of adjacent nodes u1 and u2
that are both in L or both in R. Let e denote the edge incident to u1 and u2.

Let Pi denote a shortest path in G0 from ui to v for i D 1; 2. Because u1
and u2 are both in L or both in R, it must be the case that P1 and P2 both
have even length or they both have odd length. In either case, the union of
P1, P2, and e forms a closed walk with odd length, which is a contradiction.
Hence 4 IMPLIES 1. �

“mcs-ftl” — 2010/9/8 — 0:40 — page 159 — #165

5.6. Around and Around We Go 159

Figure 5.23 A possible floor plan for a museum. Can you find a walk that tra-
verses every edge exactly once?

Theorem 5.6.2 turns out to be useful since bipartite graphs come up fairly often
in practice. We’ll see examples when we talk about planar graphs in Section 5.8
and when we talk about packet routing in communication networks in Chapter 6.

5.6.3 Euler Tours

Can you walk every hallway in the Museum of Fine Arts exactly once? If we
represent hallways and intersections with edges and vertices, then this reduces to a
question about graphs. For example, could you visit every hallway exactly once in
a museum with the floor plan in Figure 5.23?

The entire field of graph theory began when Euler asked whether the seven
bridges of Königsberg could all be traversed exactly once—essentially the same
question we asked about the Museum of Fine Arts. In his honor, an Euler walk is
a defined to be a walk that traverses every edge in a graph exactly once. Similarly,
an Euler tour is an Euler walk that starts and finishes at the same vertex. Graphs
with Euler tours and Euler walks both have simple characterizations.

Theorem 5.6.3. A connected graph has an Euler tour if and only if every vertex
has even degree.

Proof. We first show that if a graph has an Euler tour, then every vertex has even
degree. Assume that a graph G D .V;E/ has an Euler tour v0, v1, . . . , vk where
vk D v0. Since every edge is traversed once in the tour, k D jEj and the degree of
a node u in G is the number of times that node appears in the sequence v0, v1, . . . ,
vk�1 times two. We multiply by two since if u D vi for some i where 0 < i < k,
then both fvi�1; vig and fvi ; viC1g are edges incident to u in G. If u D v0 D vk ,

“mcs-ftl” — 2010/9/8 — 0:40 — page 160 — #166

Chapter 5 Graph Theory160

then both fvk�1; vkg and fv0; v1g are edges incident to u in G. Hence, the degree
of every node is even.

We next show that if the degree of every node is even in a graph G D .V;E/,
then there is an Euler tour. Let

W WWD v0; v1; : : : ; vk

be the longest walk in G that traverses no edge more than once16. W must traverse
every edge incident to vk; otherwise the walk could be extended and W would not
be the longest walk that traverses all edges at most once. Moreover, it must be that
vk D v0 and that W is a closed walk, since otherwise vk would have odd degree
in W (and hence in G), which is not possible by assumption.

We conclude the argument with a proof by contradiction. Suppose that W is not
an Euler tour. Because G is a connected graph, we can find an edge not in W but
incident to some vertex in W . Call this edge fu; vig. But then we can construct a
walk W 0 that is longer than W but that still uses no edge more than once:

W 0 WWD u; vi ; viC1; : : : ; vk; v1; v2; : : : ; vi :

This contradicts the definition of W , so W must be an Euler tour after all. �

It is not difficult to extend Theorem 5.6.3 to prove that a connected graph G has
an Euler walk if and only if precisely 0 or 2 nodes in G have odd degree. Hence,
we can conclude that the graph shown in Figure 5.23 has an Euler walk but not an
Euler tour since the graph has precisely two nodes with odd degree.

Although the proof of Theorem 5.6.3 does not explicitly define a method for
finding an Euler tour when one exists, it is not hard to modify the proof to produce
such a method. The idea is to grow a tour by continually splicing in closed walks
until all the edges are consumed.

5.6.4 Hamiltonian Cycles

Hamiltonian cycles are the unruly cousins of Euler tours.

Definition 5.6.4. A Hamiltonian cycle in a graphG is a cycle that visits every node
in G exactly once. Similarly, a Hamiltonian path is a path in G that visits every
node exactly once.

16Did you notice that we are using a variation of the Well Ordering Principle here when we im-
plicitly assume that a longest walk exists? This is ok since the length of a walk where no edge is used
more than once is at most jEj.

“mcs-ftl” — 2010/9/8 — 0:40 — page 161 — #167

5.6. Around and Around We Go 161

v3

v4

v5

v2

v6

v1

5 2

3 1

2 4

3

3

4

6

Figure 5.24 A weighted graph. Can you find a cycle with weight 15 that visits
every node exactly once?

Although Hamiltonian cycles sound similar to Euler tours—one visits every node
once while the other visits every edge once—finding a Hamiltonian cycle can be
a lot harder than finding an Euler tour. The same is true for Hamiltonian paths.
This is because no one has discovered a simple characterization of all graphs with a
Hamiltonian cycle. In fact, determining whether a graph has a Hamiltonian cycle is
the same category of problem as the SAT problem of Section 1.5 and the coloring
problem in Section 5.3; you get a million dollars for finding an efficient way to
determine when a graph has a Hamiltonian cycle—or proving that no procedure
works efficiently on all graphs.

5.6.5 The Traveling Salesperson Problem

As if the problem of finding a Hamiltonian cycle is not hard enough, when the
graph is weighted, we often want to find a Hamiltonian cycle that has least pos-
sible weight. This is a very famous optimization problem known as the Traveling
Salesperson Problem.

Definition 5.6.5. Given a weighted graph G, the weight of a cycle in G is defined
as the sum of the weights of the edges in the cycle.

For example, consider the graph shown in Figure 5.24 and suppose that you
would like to visit every node once and finish at the node where you started. Can
you find way to do this by traversing a cycle with weight 15?

Needless to say, if you can figure out a fast procedure that finds the optimal cycle
for the traveling salesperson, let us know so that we can win a million dollars.

“mcs-ftl” — 2010/9/8 — 0:40 — page 162 — #168

Chapter 5 Graph Theory162

a

b d

c
e h

i

f

g

Figure 5.25 A 9-node tree.

Figure 5.26 A 6-node forest consisting of 2 component trees. Note that this 6-
node graph is not itself a tree since it is not connected.

5.7 Trees

As we have just seen, finding good cycles in a graph can be trickier than you might
first think. But what if a graph has no cycles at all? Sounds pretty dull. But graphs
without cycles (called acyclic graphs) are probably the most important graphs of
all when it comes to computer science.

5.7.1 Definitions

Definition 5.7.1. A connected acyclic graph is called a tree.

For example, Figure 5.25 shows an example of a 9-node tree.
The graph shown in Figure 5.26 is not a tree since it is not connected, but it is a

forest. That’s because, of course, it consists of a collection of trees.

Definition 5.7.2. If every connected component of a graph G is a tree, then G is a
forest.

One of the first things you will notice about trees is that they tend to have a lot
of nodes with degree one. Such nodes are called leaves.

Definition 5.7.3. A leaf is a node with degree 1 in a tree (or forest).

For example, the tree in Figure 5.25 has 5 leaves and the forest in Figure 5.26
has 4 leaves.

“mcs-ftl” — 2010/9/8 — 0:40 — page 163 — #169

5.7. Trees 163

a

b c f h i

e

d g

Figure 5.27 The tree from Figure 5.25 redrawn in a leveled fashion, with node E
as the root.

Trees are a fundamental data structure in computer science. For example, in-
formation is often stored in tree-like data structures and the execution of many
recursive programs can be modeled as the traversal of a tree. In such cases, it is
often useful to draw the tree in a leveled fashion where the node in the top level is
identified as the root, and where every edge joins a parent to a child. For example,
we have redrawn the tree from Figure 5.25 in this fashion in Figure 5.27. In this
example, node d is a child of node e and a parent of nodes b and c.

In the special case of ordered binary trees, every node is the parent of at most 2
children and the children are labeled as being a left-child or a right-child.

5.7.2 Properties

Trees have many unique properties. We have listed some of them in the following
theorem.

Theorem 5.7.4. Every tree has the following properties:

1. Any connected subgraph is a tree.

2. There is a unique simple path between every pair of vertices.

3. Adding an edge between nonadjacent nodes in a tree creates a graph with a
cycle.

4. Removing any edge disconnects the graph.

5. If the tree has at least two vertices, then it has at least two leaves.

6. The number of vertices in a tree is one larger than the number of edges.

“mcs-ftl” — 2010/9/8 — 0:40 — page 164 — #170

Chapter 5 Graph Theory164

u yx v

Figure 5.28 If there are two paths between u and v, the graph must contain a
cycle.

Proof. 1. A cycle in a subgraph is also a cycle in the whole graph, so any sub-
graph of an acyclic graph must also be acyclic. If the subgraph is also con-
nected, then by definition, it is a tree.

2. Since a tree is connected, there is at least one path between every pair of ver-
tices. Suppose for the purposes of contradiction, that there are two different
paths between some pair of vertices u and v. Beginning at u, let x be the
first vertex where the paths diverge, and let y be the next vertex they share.
(For example, see Figure 5.28.) Then there are two paths from x to y with no
common edges, which defines a cycle. This is a contradiction, since trees are
acyclic. Therefore, there is exactly one path between every pair of vertices.

3. An additional edge fu; vg together with the unique path between u and v
forms a cycle.

4. Suppose that we remove edge fu; vg. Since the tree contained a unique path
between u and v, that path must have been fu; vg. Therefore, when that edge
is removed, no path remains, and so the graph is not connected.

5. Let v1; : : : ; vm be the sequence of vertices on a longest path in the tree. Then
m � 2, since a tree with two vertices must contain at least one edge. There
cannot be an edge fv1; vig for 2 < i � m; otherwise, vertices v1; : : : ; vi
would from a cycle. Furthermore, there cannot be an edge fu; v1g where u
is not on the path; otherwise, we could make the path longer. Therefore, the
only edge incident to v1 is fv1; v2g, which means that v1 is a leaf. By a
symmetric argument, vm is a second leaf.

6. We use induction on the proposition P.n/ WWD there are n � 1 edges in any
n-vertex tree.

Base Case (n D 1): P.1/ is true since a tree with 1 node has 0 edges and
1 � 1 D 0.

“mcs-ftl” — 2010/9/8 — 0:40 — page 165 — #171

5.7. Trees 165

Figure 5.29 A graph where the edges of a spanning tree have been thickened.

Inductive step: Now suppose that P.n/ is true and consider an .n C 1/-
vertex tree, T . Let v be a leaf of the tree. You can verify that deleting a
vertex of degree 1 (and its incident edge) from any connected graph leaves
a connected subgraph. So by part 1 of Theorem 5.7.4, deleting v and its
incident edge gives a smaller tree, and this smaller tree has n � 1 edges by
induction. If we re-attach the vertex v and its incident edge, then we find that
T has n D .n C 1/ � 1 edges. Hence, P.n C 1/ is true, and the induction
proof is complete. �

Various subsets of properties in Theorem 5.7.4 provide alternative characteriza-
tions of trees, though we won’t prove this. For example, a connected graph with a
number of vertices one larger than the number of edges is necessarily a tree. Also,
a graph with unique paths between every pair of vertices is necessarily a tree.

5.7.3 Spanning Trees

Trees are everywhere. In fact, every connected graph contains a subgraph that is
a tree with the same vertices as the graph. This is a called a spanning tree for
the graph. For example, Figure 5.29 is a connected graph with a spanning tree
highlighted.

Theorem 5.7.5. Every connected graph contains a spanning tree.

Proof. By contradiction. Assume there is some connected graph G that has no
spanning tree and let T be a connected subgraph of G, with the same vertices as
G, and with the smallest number of edges possible for such a subgraph. By the
assumption, T is not a spanning tree and so it contains some cycle:

fv0; v1g; fv1; v2g; : : : ; fvk; v0g

Suppose that we remove the last edge, fvk; v0g. If a pair of vertices x and y was
joined by a path not containing fvk; v0g, then they remain joined by that path. On
the other hand, if x and y were joined by a path containing fvk; v0g, then they

“mcs-ftl” — 2010/9/8 — 0:40 — page 166 — #172

Chapter 5 Graph Theory166

2
3

3

7

1

2

1

(a)

2
3

3

7

1

2

1

14

1

3

(b)

Figure 5.30 A spanning tree (a) with weight 19 for a graph (b).

remain joined by a walk containing the remainder of the cycle. By Lemma 5.4.2,
they must also then be joined by a path. So all the vertices of G are still connected
after we remove an edge from T . This is a contradiction, since T was defined to
be a minimum size connected subgraph with all the vertices of G. So the theorem
must be true. �

5.7.4 Minimum Weight Spanning Trees

Spanning trees are interesting because they connect all the nodes of a graph using
the smallest possible number of edges. For example the spanning tree for the 6-
node graph shown in Figure 5.29 has 5 edges.

Spanning trees are very useful in practice, but in the real world, not all span-
ning trees are equally desirable. That’s because, in practice, there are often costs
associated with the edges of the graph.

For example, suppose the nodes of a graph represent buildings or towns and
edges represent connections between buildings or towns. The cost to actually make
a connection may vary a lot from one pair of buildings or towns to another. The
cost might depend on distance or topography. For example, the cost to connect LA
to NY might be much higher than that to connect NY to Boston. Or the cost of a
pipe through Manhattan might be more than the cost of a pipe through a cornfield.

In any case, we typically represent the cost to connect pairs of nodes with a
weighted edge, where the weight of the edge is its cost. The weight of a spanning
tree is then just the sum of the weights of the edges in the tree. For example, the
weight of the spanning tree shown in Figure 5.30 is 19.

The goal, of course, is to find the spanning tree with minimum weight, called the
min-weight spanning tree (MST for short).

“mcs-ftl” — 2010/9/8 — 0:40 — page 167 — #173

5.7. Trees 167

2

3

7

1

2

1

1

Figure 5.31 An MST with weight 17 for the graph in Figure 5.30(b).

Definition 5.7.6. The min-weight spanning tree (MST) of an edge-weighted graphG
is the spanning tree of G with the smallest possible sum of edge weights.

Is the spanning tree shown in Figure 5.30(a) an MST of the weighted graph
shown in Figure 5.30(b)? Actually, it is not, since the tree shown in Figure 5.31 is
also a spanning tree of the graph shown in Figure 5.30(b), and this spanning tree
has weight 17.

What about the tree shown in Figure 5.31? Is it an MST? It seems to be, but
how do we prove it? In general, how do we find an MST? We could, of course,
enumerate all trees, but this could take forever for very large graphs.

Here are two possible algorithms:

Algorithm 1. Grow a tree one edge at a time by adding the minimum weight edge
possible to the tree, making sure that you have a tree at each step.

Algorithm 2. Grow a subgraph one edge at a time by adding the minimum-weight
edge possible to the subgraph, making sure that you have an acyclic subgraph at
each step.

For example, in the weighted graph we have been considering, we might run
Algorithm 1 as follows. We would start by choosing one of the weight 1 edges,
since this is the smallest weight in the graph. Suppose we chose the weight 1 edge
on the bottom of the triangle of weight 1 edges in our graph. This edge is incident
to two weight 1 edges, a weight 4 edge, a weight 7 edge, and a weight 3 edge. We
would then choose the incident edge of minimum weight. In this case, one of the
two weight 1 edges. At this point, we cannot choose the third weight 1 edge since
this would form a cycle, but we can continue by choosing a weight 2 edge. We
might end up with the spanning tree shown in Figure 5.32, which has weight 17,
the smallest we’ve seen so far.

“mcs-ftl” — 2010/9/8 — 0:40 — page 168 — #174

Chapter 5 Graph Theory168

2

7

1

2

1

1

3

Figure 5.32 A spanning tree found by Algorithm 1.

Now suppose we instead ran Algorithm 2 on our graph. We might again choose
the weight 1 edge on the bottom of the triangle of weight 1 edges in our graph.
Now, instead of choosing one of the weight 1 edges it touches, we might choose
the weight 1 edge on the top of the graph. Note that this edge still has minimum
weight, and does not cause us to form a cycle, so Algorithm 2 can choose it. We
would then choose one of the remaining weight 1 edges. Note that neither causes us
to form a cycle. Continuing the algorithm, we may end up with the same spanning
tree in Figure 5.32, though this need not always be the case.

It turns out that both algorithms work, but they might end up with different
MSTs. The MST is not necessarily unique—indeed, if all edges of an n-node graph
have the same weight (D 1), then all spanning trees have weight n � 1.

These are examples of greedy approaches to optimization. Sometimes it works
and sometimes it doesn’t. The good news is that it works to find the MST. In fact,
both variations work. It’s a little easier to prove it for Algorithm 2, so we’ll do that
one here.

Theorem 5.7.7. For any connected, weighted graph G, Algorithm 2 produces an
MST for G.

Proof. The proof is a bit tricky. We need to show the algorithm terminates, that is,
that if we have selected fewer than n� 1 edges, then we can always find an edge to
add that does not create a cycle. We also need to show the algorithm creates a tree
of minimum weight.

The key to doing all of this is to show that the algorithm never gets stuck or goes
in a bad direction by adding an edge that will keep us from ultimately producing
an MST. The natural way to prove this is to show that the set of edges selected at
any point is contained in some MST—that is, we can always get to where we need
to be. We’ll state this as a lemma.

“mcs-ftl” — 2010/9/8 — 0:40 — page 169 — #175

5.7. Trees 169

Lemma 5.7.8. For any m � 0, let S consist of the first m edges selected by Algo-
rithm 2. Then there exists some MST T D .V;E/ for G such that S � E, that is,
the set of edges that we are growing is always contained in some MST.

We’ll prove this momentarily, but first let’s see why it helps to prove the theorem.
Assume the lemma is true. Then how do we know Algorithm 2 can always find an
edge to add without creating a cycle? Well, as long as there are fewer than n � 1
edges picked, there exists some edge in E � S and so there is an edge that we can
add to S without forming a cycle. Next, how do we know that we get an MST at
the end? Well, once m D n � 1, we know that S is an MST.

Ok, so the theorem is an easy corollary of the lemma. To prove the lemma, we’ll
use induction on the number of edges chosen by the algorithm so far. This is very
typical in proving that an algorithm preserves some kind of invariant condition—
induct on the number of steps taken, that is, the number of edges added.

Our inductive hypothesis P.m/ is the following: for any G and any set S of m
edges initially selected by Algorithm 2, there exists an MST T D .V;E/ ofG such
that S � E.

For the base case, we need to show P.0/. In this case, S D ;, so S � E trivially
holds for any MST T D .V;E/.

For the inductive step, we assume P.m/ holds and show that it implies P.mC1/.
Let e denote the .mC1/st edge selected by Algorithm 2, and let S denote the firstm
edges selected by Algorithm 2. Let T � D .V �; E�/ be the MST such that S � E�,
which exists by the inductive hypothesis. There are now two cases:

Case 1: e 2 E�, in which case S [feg � E�, and thus P.mC 1/ holds.

Case 2: e … E�, as illustrated in Figure 5.33. Now we need to find a different
MST that contains S and e.

What happens when we add e to T �? Since T � is a tree, we get a cycle. (Here
we used part 3 of Theorem 5.7.4.) Moreover, the cycle cannot only contains edges
in S , since e was chosen so that together with the edges in S , it does not form
a cycle. This implies that feg [T � contains a cycle that contains an edge e0 of
E� � S . For example, such an e0 is shown in Figure 5.33.

Note that the weight of e is at most that of e0. This is because Algorithm 2 picks
the minimum weight edge that does not make a cycle with S . Since e0 2 T �, e0

cannot make a cycle with S and if the weight of e were greater than the weight
of e0, Algorithm 2 would not have selected e ahead of e0.

Okay, we’re almost done. Now we’ll make an MST that contains S [feg. Let
T �� D .V;E��/ where E�� D .E� � fe0g/[feg, that is, we swap e and e0 in T �.

Claim 5.7.9. T �� is an MST.

“mcs-ftl” — 2010/9/8 — 0:40 — page 170 — #176

Chapter 5 Graph Theory170

e

e0

Figure 5.33 The graph formed by adding e to T �. Edges of S are denoted with
solid lines and edges of E� � S are denoted with dashed lines.

Proof of claim. We first show that T �� is a spanning tree. T �� is acyclic because
it was produced by removing an edge from the only cycle in T � [feg. T �� is
connected since the edge we deleted from T � [feg was on a cycle. Since T ��

contains all the nodes of G, it must be a spanning tree for G.
Now let’s look at the weight of T ��. Well, since the weight of e was at most that

of e0, the weight of T �� is at most that of T �, and thus T �� is an MST for G. �

Since S [feg � E��, P.m C 1/ holds. Thus, Algorithm 2 must eventually
produce an MST. This will happens when it adds n � 1 edges to the subgraph it
builds. �

So now we know for sure that the MST for our example graph has weight 17
since it was produced by Algorithm 2. And we have a fast algorithm for finding a
minimum-weight spanning tree for any graph.

5.8 Planar Graphs

5.8.1 Drawing Graphs in the Plane

Suppose there are three dog houses and three human houses, as shown in Fig-
ure 5.34. Can you find a route from each dog house to each human house such that
no route crosses any other route?

A quadrapus is a little-known animal similar to an octopus, but with four arms.
Suppose there are five quadrapi resting on the sea floor, as shown in Figure 5.35.

“mcs-ftl” — 2010/9/8 — 0:40 — page 171 — #177

5.8. Planar Graphs 171

Figure 5.34 Three dog houses and and three human houses. Is there a route from
each dog house to each human house so that no pair of routes cross each other?

“mcs-ftl” — 2010/9/8 — 0:40 — page 172 — #178

Chapter 5 Graph Theory172

Figure 5.35 Five quadrapi (4-armed creatures).

Can each quadrapus simultaneously shake hands with every other in such a way
that no arms cross?

Definition 5.8.1. A drawing of a graph in the plane consists of an assignment of
vertices to distinct points in the plane and an assignment of edges to smooth, non-
self-intersecting curves in the plane (whose endpoints are the nodes incident to the
edge). The drawing is planar (that is, it is a planar drawing) if none of the curves
“cross”—that is, if the only points that appear on more than one curve are the vertex
points. A planar graph is a graph that has a planar drawing.

Thus, these two puzzles are asking whether the graphs in Figure 5.36 are planar;
that is, whether they can be redrawn so that no edges cross. The first graph is called
the complete bipartite graph, K3;3, and the second is K5.

In each case, the answer is, “No—but almost!” In fact, if you remove an edge
from either of them, then the resulting graphs can be redrawn in the plane so that no
edges cross. For example, we have illustrated the planar drawings for each resulting
graph in Figure 5.37.

“mcs-ftl” — 2010/9/8 — 0:40 — page 173 — #179

5.8. Planar Graphs 173

(a) (b)

Figure 5.36 K3;3 (a) and K5 (b). Can you redraw these graphs so that no pairs
of edges cross?

v

u

(a)

u

v

(b)

Figure 5.37 Planar drawings of K3;3 � fu; vg (a) and K5 � fu; vg (b).

“mcs-ftl” — 2010/9/8 — 0:40 — page 174 — #180

Chapter 5 Graph Theory174

Planar drawings have applications in circuit layout and are helpful in displaying
graphical data such as program flow charts, organizational charts, and scheduling
conflicts. For these applications, the goal is to draw the graph in the plane with as
few edge crossings as possible. (See the box on the following page for one such
example.)

5.8.2 A Recursive Definition for Planar Graphs

Definition 5.8.1 is perfectly precise but has the challenge that it requires us to work
with concepts such as a “smooth curve” when trying to prove results about planar
graphs. The trouble is that we have not really laid the groundwork from geometry
and topology to be able to reason carefully about such concepts. For example, we
haven’t really defined what it means for a curve to be smooth—we just drew a
simple picture (for example, Figure 5.37) and hoped you would get the idea.

Relying on pictures to convey new concepts is generally not a good idea and
can sometimes lead to disaster (or, at least, false proofs). Indeed, it is because of
this issue that there have been so many false proofs relating to planar graphs over
time.18 Such proofs usually rely way too heavily on pictures and have way too
many statements like,

As you can see from Figure ABC, it must be that property XYZ holds
for all planar graphs.

The good news is that there is another way to define planar graphs that uses only
discrete mathematics. In particular, we can define the class of planar graphs as a
recursive data type. In order to understand how it works, we first need to understand
the concept of a face in a planar drawing.

Faces

In a planar drawing of a graph. the curves corresponding to the edges divide up
the plane into connected regions. These regions are called the continuous faces19

of the drawing. For example, the drawing in Figure 5.38 has four continuous faces.
Face IV, which extends off to infinity in all directions, is called the outside face.

Notice that the vertices along the boundary of each of the faces in Figure 5.38
form a cycle. For example, labeling the vertices as in Figure 5.39, the cycles for
the face boundaries are

abca abda bcdb acda: (5.4)
18The false proof of the 4-Color Theorem for planar graphs is not the only example.
19Most texts drop the word continuous from the definition of a face. We need it to differentiate the

connected region in the plane from the closed walk in the graph that bounds the region, which we
will call a discrete face.

“mcs-ftl” — 2010/9/8 — 0:40 — page 175 — #181

5.8. Planar Graphs 175

When wires are arranged on a surface, like a circuit board or microchip, crossings
require troublesome three-dimensional structures. When Steve Wozniak designed
the disk drive for the early Apple II computer, he struggled mightily to achieve a
nearly planar design:

For two weeks, he worked late each night to make a satisfactory de-
sign. When he was finished, he found that if he moved a connector
he could cut down on feedthroughs, making the board more reliable.
To make that move, however, he had to start over in his design. This
time it only took twenty hours. He then saw another feedthrough
that could be eliminated, and again started over on his design. “The
final design was generally recognized by computer engineers as bril-
liant and was by engineering aesthetics beautiful. Woz later said, ’It’s
something you can only do if you’re the engineer and the PC board
layout person yourself. That was an artistic layout. The board has
virtually no feedthroughs.’ ”17

II I

III

IV

Figure 5.38 A planar drawing with four faces.

“mcs-ftl” — 2010/9/8 — 0:40 — page 176 — #182

Chapter 5 Graph Theory176

d

c

b

a II I

III

IV

Figure 5.39 The drawing with labeled vertices.

b

e

f

g

c

d

a

Figure 5.40 A planar drawing with a bridge, namely the edge fc; eg.

These four cycles correspond nicely to the four continuous faces in Figure 5.39. So
nicely, in fact, that we can identify each of the faces in Figure 5.39 by its cycle.
For example, the cycle abca identifies face III. Hence, we say that the cycles in
Equation 5.4 are the discrete faces of the graph in Figure 5.39. We use the term
“discrete” since cycles in a graph are a discrete data type (as opposed to a region in
the plane, which is a continuous data type).

Unfortunately, continuous faces in planar drawings are not always bounded by
cycles in the graph—things can get a little more complicated. For example, con-
sider the planar drawing in Figure 5.40. This graph has what we will call a bridge
(namely, the edge fc; eg) and the outer face is

abcefgecda:

This is not a cycle, since it has to traverse the bridge fc; eg twice, but it is a closed
walk.

As another example, consider the planar drawing in Figure 5.41. This graph has
what we will call a dongle (namely, the nodes v, x, y, andw, and the edges incident

“mcs-ftl” — 2010/9/8 — 0:40 — page 177 — #183

5.8. Planar Graphs 177

s

t

u

r
v

x

y

w

Figure 5.41 A planar drawing with a dongle, namely the subgraph with nodes v,
w, x, y.

to them) and the inner face is

rstvxyxvwvtur:

This is not a cycle because it has to traverse every edge of the dongle twice—once
“coming” and once “going,” but once again, it is a closed walk.

It turns out that bridges and dongles are the only complications, at least for con-
nected graphs. In particular, every continuous face in a planar drawing corresponds
to a closed walk in the graph. We refer to such closed walks as the discrete faces
of the drawing.

A Recursive Definition for Planar Embeddings

The association between the continuous faces of a planar drawing and closed walks
will allow us to characterize a planar drawing in terms of the closed walks that
bound the continuous faces. In particular, it leads us to the discrete data type of pla-
nar embeddings that we can use in place of continuous planar drawings. Namely,
we’ll define a planar embedding recursively to be the set of boundary-tracing closed
walks that we could get by drawing one edge after another.

Definition 5.8.2. A planar embedding of a connected graph consists of a nonempty
set of closed walks of the graph called the discrete faces of the embedding. Planar
embeddings are defined recursively as follows:

Base case: If G is a graph consisting of a single vertex v, then a planar embedding
of G has one discrete face, namely the length zero closed walk v.

“mcs-ftl” — 2010/9/8 — 0:40 — page 178 — #184

Chapter 5 Graph Theory178

y

w

a

z

b

x

Figure 5.42 The “split a face” case.

Constructor Case (split a face): Suppose G is a connected graph with a planar
embedding, and suppose a and b are distinct, nonadjacent vertices ofG that appear
on some discrete face of the planar embedding. That is, is a closed walk of the
form

a : : : b : : : a:

Then the graph obtained by adding the edge fa; bg to the edges of G has a planar
embedding with the same discrete faces as G, except that face is replaced by the
two discrete faces20

a : : : ba and ab : : : a;

as illustrated in Figure 5.42.

Constructor Case (add a bridge): Suppose G and H are connected graphs with
planar embeddings and disjoint sets of vertices. Let a be a vertex on a discrete face,
 , in the embedding of G. That is, is of the form

a : : : a:

Similarly, let b be a vertex on a discrete face, ı, in the embedding of H . So ı is of
the form

b � � � b:

Then the graph obtained by connecting G and H with a new edge, fa; bg, has a
planar embedding whose discrete faces are the union of the discrete faces of G and

20 There is a special case of this rule. If G is a line graph beginning with a and ending with b,
then the cycles into which splits are actually the same. That’s because adding edge fa; bg creates
a simple cycle graph, Cn, that divides the plane into an “inner” and an “outer” region with the same
border. In order to maintain the correspondence between continuous faces and discrete faces, we
have to allow two “copies” of this same cycle to count as discrete faces.

“mcs-ftl” — 2010/9/8 — 0:40 — page 179 — #185

5.8. Planar Graphs 179

z

b

t

v

a

x

y

u

w

Figure 5.43 The “add a bridge” case.

H , except that faces and ı are replaced by one new face

a : : : ab � � � ba:

This is illustrated in Figure 5.43, where the faces of G and H are:

G W faxyza; axya; ayzag H W fbtuvwb; btvwb; tuvtg;

and after adding the bridge fa; bg, there is a single connected graph with faces

faxyzabtuvwba; axya; ayza; btvwb; tuvtg:

Does It Work?

Yes! In general, a graph is planar if and only if each of its connected components
has a planar embedding as defined in Definition 5.8.2. Unfortunately, proving this
fact requires a bunch of mathematics that we don’t cover in this text—stuff like
geometry and topology. Of course, that is why we went to the trouble of including
Definition 5.8.2—we don’t want to deal with that stuff in this text and now that we
have a recursive definition for planar graphs, we won’t need to. That’s the good
news.

The bad news is that Definition 5.8.2 looks a lot more complicated than the
intuitively simple notion of a drawing where edges don’t cross. It seems like it
would be easier to stick to the simple notion and give proofs using pictures. Perhaps
so, but your proofs are more likely to be complete and correct if you work from the
discrete Definition 5.8.2 instead of the continuous Definition 5.8.1.

Where Did the Outer Face Go?

Every planar drawing has an immediately-recognizable outer face—its the one that
goes to infinity in all directions. But where is the outer face in a planar embedding?

“mcs-ftl” — 2010/9/8 — 0:40 — page 180 — #186

Chapter 5 Graph Theory180

s

t

r

u u

t

r

s

Figure 5.44 Two illustrations of the same embedding.

There isn’t one! That’s because there really isn’t any need to distinguish one.
In fact, a planar embedding could be drawn with any given face on the outside.
An intuitive explanation of this is to think of drawing the embedding on a sphere
instead of the plane. Then any face can be made the outside face by “puncturing”
that face of the sphere, stretching the puncture hole to a circle around the rest of the
faces, and flattening the circular drawing onto the plane.

So pictures that show different “outside” boundaries may actually be illustra-
tions of the same planar embedding. For example, the two embeddings shown in
Figure 5.44 are really the same.

This is what justifies the “add a bridge” case in Definition 5.8.2: whatever face
is chosen in the embeddings of each of the disjoint planar graphs, we can draw
a bridge between them without needing to cross any other edges in the drawing,
because we can assume the bridge connects two “outer” faces.

5.8.3 Euler’s Formula

The value of the recursive definition is that it provides a powerful technique for
proving properties of planar graphs, namely, structural induction. For example, we
will now use Definition 5.8.2 and structural induction to establish one of the most
basic properties of a connected planar graph; namely, the number of vertices and
edges completely determines the number of faces in every possible planar embed-
ding of the graph.

Theorem 5.8.3 (Euler’s Formula). If a connected graph has a planar embedding,
then

v � e C f D 2

where v is the number of vertices, e is the number of edges, and f is the number of
faces.

For example, in Figure 5.38, jV j D 4, jEj D 6, and f D 4. Sure enough,
4 � 6C 4 D 2, as Euler’s Formula claims.

“mcs-ftl” — 2010/9/8 — 0:40 — page 181 — #187

5.8. Planar Graphs 181

Proof. The proof is by structural induction on the definition of planar embeddings.
Let P.E/ be the proposition that v � e C f D 2 for an embedding, E .

Base case: (E is the one-vertex planar embedding). By definition, v D 1, e D 0,
and f D 1, so P.E/ indeed holds.

Constructor case (split a face): Suppose G is a connected graph with a planar
embedding, and suppose a and b are distinct, nonadjacent vertices ofG that appear
on some discrete face, D a : : : b � � � a, of the planar embedding.

Then the graph obtained by adding the edge fa; bg to the edges ofG has a planar
embedding with one more face and one more edge thanG. So the quantity v�eCf
will remain the same for both graphs, and since by structural induction this quantity
is 2 for G’s embedding, it’s also 2 for the embedding of G with the added edge. So
P holds for the constructed embedding.

Constructor case (add bridge): Suppose G and H are connected graphs with pla-
nar embeddings and disjoint sets of vertices. Then connecting these two graphs
with a bridge merges the two bridged faces into a single face, and leaves all other
faces unchanged. So the bridge operation yields a planar embedding of a connected
graph with vG C vH vertices, eG C eH C 1 edges, and fG C fH � 1 faces. Since

.vG C vH / � .eG C eH C 1/C .fG C fH � 1/

D .vG � eG C fG/C .vH � eH C fH / � 2

D .2/C .2/ � 2 (by structural induction hypothesis)

D 2;

v � e C f remains equal to 2 for the constructed embedding. That is, P.E/ also
holds in this case.

This completes the proof of the constructor cases, and the theorem follows by
structural induction. �

5.8.4 Bounding the Number of Edges in a Planar Graph

Like Euler’s formula, the following lemmas follow by structural induction from
Definition 5.8.2.

Lemma 5.8.4. In a planar embedding of a connected graph, each edge is traversed
once by each of two different faces, or is traversed exactly twice by one face.

Lemma 5.8.5. In a planar embedding of a connected graph with at least three
vertices, each face is of length at least three.

Combining Lemmas 5.8.4 and 5.8.5 with Euler’s Formula, we can now prove
that planar graphs have a limited number of edges:

“mcs-ftl” — 2010/9/8 — 0:40 — page 182 — #188

Chapter 5 Graph Theory182

Theorem 5.8.6. Suppose a connected planar graph has v � 3 vertices and e edges.
Then

e � 3v � 6:

Proof. By definition, a connected graph is planar iff it has a planar embedding. So
suppose a connected graph with v vertices and e edges has a planar embedding
with f faces. By Lemma 5.8.4, every edge is traversed exactly twice by the face
boundaries. So the sum of the lengths of the face boundaries is exactly 2e. Also by
Lemma 5.8.5, when v � 3, each face boundary is of length at least three, so this
sum is at least 3f . This implies that

3f � 2e: (5.5)

But f D e � v C 2 by Euler’s formula, and substituting into (5.5) gives

3.e � v C 2/ � 2e

e � 3v C 6 � 0

e � 3v � 6 �

5.8.5 Returning to K5 and K3;3

Theorem 5.8.6 lets us prove that the quadrapi can’t all shake hands without cross-
ing. Representing quadrapi by vertices and the necessary handshakes by edges, we
get the complete graph, K5. Shaking hands without crossing amounts to show-
ing that K5 is planar. But K5 is connected, has 5 vertices and 10 edges, and
10 > 3 � 5 � 6. This violates the condition of Theorem 5.8.6 required for K5
to be planar, which proves

Corollary 5.8.7. K5 is not planar.

We can also use Euler’s Formula to show that K3;3 is not planar. The proof is
similar to that of Theorem 5.8.6 except that we use the additional fact that K3;3 is
a bipartite graph.

Theorem 5.8.8. K3;3 is not planar.

Proof. By contradiction. Assume K3;3 is planar and consider any planar embed-
ding of K3;3 with f faces. Since K3;3 is bipartite, we know by Theorem 5.6.2 that
K3;3 does not contain any closed walks of odd length. By Lemma 5.8.5, every face
has length at least 3. This means that every face in any embedding of K3;3 must
have length at least 4. Plugging this fact into the proof of Theorem 5.8.6, we find
that the sum of the lengths of the face boundaries is exactly 2e and at least 4f .
Hence,

4f � 2e

“mcs-ftl” — 2010/9/8 — 0:40 — page 183 — #189

5.8. Planar Graphs 183

for any bipartite graph.
Plugging in e D 9 and v D 6 for K3;3 in Euler’s Formula, we find that

f D 2C e � v D 5:

But
4 � 5 — 2 � 9;

and so we have a contradiction. Hence K3;3 must not be planar. �

5.8.6 Another Characterization for Planar Graphs

We did not choose to pick on K5 and K3;3 because of their application to dog
houses or quadrapi shaking hands. Rather, we selected these graphs as examples
because they provide another way to characterize the set of planar graphs.

Theorem 5.8.9 (Kuratowski). A graph is not planar if and only if it contains K5
or K3;3 as a minor.

Definition 5.8.10. A minor of a graph G is a graph that can be obtained by re-
peatedly21 deleting vertices, deleting edges, and merging adjacent vertices of G.
Merging two adjacent vertices, n1 and n2 of a graph means deleting the two ver-
tices and then replacing them by a new “merged” vertex, m, adjacent to all the
vertices that were adjacent to either of n1 or n2, as illustrated in Figure 5.45.

For example, Figure 5.46 illustrates why C3 is a minor of the graph in Fig-
ure 5.46(a). In fact C3 is a minor of a connected graph G if and only if G is not a
tree.

We will not prove Theorem 5.8.9 here, nor will we prove the following handy
facts, which are obvious given the continuous Definition 5.8.1, and which can be
proved using the recursive Definition 5.8.2.

Lemma 5.8.11. Deleting an edge from a planar graph leaves another planar graph.

Corollary 5.8.12. Deleting a vertex from a planar graph, along with all its incident
edges, leaves another planar graph.

Theorem 5.8.13. Any subgraph of a planar graph is planar.

Theorem 5.8.14. Merging two adjacent vertices of a planar graph leaves another
planar graph.

21The three operations can be performed in any order and in any quantities, or not at all.

“mcs-ftl” — 2010/9/8 — 0:40 — page 184 — #190

Chapter 5 Graph Theory184

n2

n1

n2

n1
m! !

Figure 5.45 Merging adjacent vertices n1 and n2 into new vertex, m.

5.8.7 Coloring Planar Graphs

We’ve covered a lot of ground with planar graphs, but not nearly enough to prove
the famous 4-color theorem. But we can get awfully close. Indeed, we have done
almost enough work to prove that every planar graph can be colored using only 5
colors. We need only one more lemma:

Lemma 5.8.15. Every planar graph has a vertex of degree at most five.

Proof. By contradiction. If every vertex had degree at least 6, then the sum of the
vertex degrees is at least 6v, but since the sum of the vertex degrees equals 2e, by
the Handshake Lemma (Lemma 5.2.1), we have e � 3v contradicting the fact that
e � 3v � 6 < 3v by Theorem 5.8.6. �

Theorem 5.8.16. Every planar graph is five-colorable.

Proof. The proof will be by strong induction on the number, v, of vertices, with
induction hypothesis:

Every planar graph with v vertices is five-colorable.

Base cases (v � 5): immediate.

Inductive case: Suppose G is a planar graph with vC 1 vertices. We will describe
a five-coloring of G.

“mcs-ftl” — 2010/9/8 — 0:40 — page 185 — #191

5.8. Planar Graphs 185

(a) (b) (c)

(d) (e) (f)

e1

v1

v2

e2

v3

Figure 5.46 One method by which the graph in (a) can be reduced to C3 (f),
thereby showing that C3 is a minor of the graph. The steps are: merging the nodes
incident to e1 (b), deleting v1 and all edges incident to it (c), deleting v2 (d), delet-
ing e2, and deleting v3 (f).

“mcs-ftl” — 2010/9/8 — 0:40 — page 186 — #192

Chapter 5 Graph Theory186

First, choose a vertex, g, of G with degree at most 5; Lemma 5.8.15 guarantees
there will be such a vertex.

Case 1: (deg.g/ < 5): Deleting g from G leaves a graph, H , that is planar by
Corollary 5.8.12, and, sinceH has v vertices, it is five-colorable by induction
hypothesis. Now define a five coloring of G as follows: use the five-coloring
of H for all the vertices besides g, and assign one of the five colors to g that
is not the same as the color assigned to any of its neighbors. Since there are
fewer than 5 neighbors, there will always be such a color available for g.

Case 2: (deg.g/ D 5): If the five neighbors of g in G were all adjacent to each
other, then these five vertices would form a nonplanar subgraph isomorphic
to K5, contradicting Theorem 5.8.13 (since K5 is not planar). So there must
be two neighbors, n1 and n2, of g that are not adjacent. Now merge n1 and
g into a new vertex, m. In this new graph, n2 is adjacent to m, and the graph
is planar by Theorem 5.8.14. So we can then merge m and n2 into a another
new vertex, m0, resulting in a new graph, G0, which by Theorem 5.8.14 is
also planar. Since G0 has v � 1 vertices, it is five-colorable by the induction
hypothesis.

Define a five coloring of G as follows: use the five-coloring of G0 for all the
vertices besides g, n1 and n2. Next assign the color of m0 in G0 to be the color
of the neighbors n1 and n2. Since n1 and n2 are not adjacent in G, this defines a
proper five-coloring of G except for vertex g. But since these two neighbors of g
have the same color, the neighbors of g have been colored using fewer than five
colors altogether. So complete the five-coloring of G by assigning one of the five
colors to g that is not the same as any of the colors assigned to its neighbors.

�

5.8.8 Classifying Polyhedra

The Pythagoreans had two great mathematical secrets, the irrationality of
p
2 and

a geometric construct that we’re about to rediscover!
A polyhedron is a convex, three-dimensional region bounded by a finite number

of polygonal faces. If the faces are identical regular polygons and an equal number
of polygons meet at each corner, then the polyhedron is regular. Three examples
of regular polyhedra are shown in Figure 5.34: the tetrahedron, the cube, and the
octahedron.

We can determine how many more regular polyhedra there are by thinking about
planarity. Suppose we took any polyhedron and placed a sphere inside it. Then we
could project the polyhedron face boundaries onto the sphere, which would give
an image that was a planar graph embedded on the sphere, with the images of the

“mcs-ftl” — 2010/9/8 — 0:40 — page 187 — #193

5.8. Planar Graphs 187

(a) (b) (c)

Figure 5.47 The tetrahedron (a), cube (b), and octahedron (c).

(a) (b) (c)

Figure 5.48 Planar embeddings of the tetrahedron (a), cube (b, and octahe-
dron (c).

corners of the polyhedron corresponding to vertices of the graph. We’ve already
observed that embeddings on a sphere are the same as embeddings on the plane, so
Euler’s formula for planar graphs can help guide our search for regular polyhedra.

For example, planar embeddings of the three polyhedra in Figure 5.34 are shown
in Figure 5.48.

Let m be the number of faces that meet at each corner of a polyhedron, and let
n be the number of edges on each face. In the corresponding planar graph, there
arem edges incident to each of the v vertices. By the Handshake Lemma 5.2.1, we
know:

mv D 2e:

Also, each face is bounded by n edges. Since each edge is on the boundary of two
faces, we have:

nf D 2e

Solving for v and f in these equations and then substituting into Euler’s formula

“mcs-ftl” — 2010/9/8 — 0:40 — page 188 — #194

Chapter 5 Graph Theory188

n m v e f polyhedron
3 3 4 6 4 tetrahedron
4 3 8 12 6 cube
3 4 6 12 8 octahedron
3 5 12 30 20 icosahedron
5 3 20 30 12 dodecahedron

Figure 5.49 The only possible regular polyhedra.

gives:
2e

m
� e C

2e

n
D 2

which simplifies to
1

m
C
1

n
D
1

e
C
1

2
(5.6)

Equation 5.6 places strong restrictions on the structure of a polyhedron. Every
nondegenerate polygon has at least 3 sides, so n � 3. And at least 3 polygons must
meet to form a corner, som � 3. On the other hand, if either n ormwere 6 or more,
then the left side of the equation could be at most 1=3C 1=6 D 1=2, which is less
than the right side. Checking the finitely-many cases that remain turns up only five
solutions, as shown in Figure 5.49. For each valid combination of n and m, we can
compute the associated number of vertices v, edges e, and faces f . And polyhedra
with these properties do actually exist. The largest polyhedron, the dodecahedron,
was the other great mathematical secret of the Pythagorean sect.

The 5 polyhedra in Figure 5.49 are the only possible regular polyhedra. So if
you want to put more than 20 geocentric satellites in orbit so that they uniformly
blanket the globe—tough luck!

“mcs-ftl” — 2010/9/8 — 0:40 — page 189 — #195

6 Directed Graphs

6.1 Definitions

So far, we have been working with graphs with undirected edges. A directed edge
is an edge where the endpoints are distinguished—one is the head and one is the
tail. In particular, a directed edge is specified as an ordered pair of vertices u, v
and is denoted by .u; v/ or u! v. In this case, u is the tail of the edge and v is the
head. For example, see Figure 6.1.

A graph with directed edges is called a directed graph or digraph.

Definition 6.1.1. A directed graph G D .V;E/ consists of a nonempty set of
nodes V and a set of directed edges E. Each edge e of E is specified by an ordered
pair of vertices u; v 2 V . A directed graph is simple if it has no loops (that is, edges
of the form u! u) and no multiple edges.

Since we will focus on the case of simple directed graphs in this chapter, we will
generally omit the word simple when referring to them. Note that such a graph can
contain an edge u ! v as well as the edge v ! u since these are different edges
(for example, they have a different tail).

Directed graphs arise in applications where the relationship represented by an
edge is 1-way or asymmetric. Examples include: a 1-way street, one person likes
another but the feeling is not necessarily reciprocated, a communication channel
such as a cable modem that has more capacity for downloading than uploading,
one entity is larger than another, and one job needs to be completed before another
job can begin. We’ll see several such examples in this chapter and also in Chapter 7.

Most all of the definitions for undirected graphs from Chapter 5 carry over in a
natural way for directed graphs. For example, two directed graphs G1 D .V1; E1/
and G2 D .V2; E2/ are isomorphic if there exists a bijection f W V1 ! V2 such
that for every pair of vertices u; v 2 V1,

u! v 2 E1 IFF f .u/! f .v/ 2 E2:

u v

e headtail

Figure 6.1 A directed edge e D .u; v/. u is the tail of e and v is the head of e.

“mcs-ftl” — 2010/9/8 — 0:40 — page 190 — #196

Chapter 6 Directed Graphs190

a c

b

d

Figure 6.2 A 4-node directed graph with 6 edges.

Directed graphs have adjacency matrices just like undirected graphs. In the case
of a directed graph G D .V;E/, the adjacency matrix AG D faij g is defined so
that

aij D

(
1 if i ! j 2 E

0 otherwise.

The only difference is that the adjacency matrix for a directed graph is not neces-
sarily symmetric (that is, it may be that ATG ¤ AG).

6.1.1 Degrees

With directed graphs, the notion of degree splits into indegree and outdegree. For
example, indegree.c/ D 2 and outdegree.c/ D 1 for the graph in Figure 6.2. If a
node has outdegree 0, it is called a sink; if it has indegree 0, it is called a source.
The graph in Figure 6.2 has one source (node a) and no sinks.

6.1.2 Directed Walks, Paths, and Cycles

The definitions for (directed) walks, paths, and cycles in a directed graph are similar
to those for undirected graphs except that the direction of the edges need to be
consistent with the order in which the walk is traversed.

Definition 6.1.2. A directed walk (or more simply, a walk) in a directed graph G
is a sequence of vertices v0, v1, . . . , vk and edges

v0 ! v1; v1 ! v2; : : : ; vk�1 ! vk

such that vi�1 ! vi is an edge of G for all i where 0 � i < k. A directed
path (or path) in a directed graph is a walk where the nodes in the walk are all
different. A directed closed walk (or closed walk) in a directed graph is a walk

“mcs-ftl” — 2010/9/8 — 0:40 — page 191 — #197

6.1. Definitions 191

where v0 D vk . A directed cycle (or cycle) in a directed graph is a closed walk
where all the vertices vi are different for 0 � i < k.

As with undirected graphs, we will typically refer to a walk in a directed graph
by a sequence of vertices. For example, for the graph in Figure 6.2,

� a, b, c, b, d is a walk,

� a, b, d is a path,

� d , c, b, c, b, d is a closed walk, and

� b, d , c, b is a cycle.

Note that b, c, b is also a cycle for the graph in Figure 6.2. This is a cycle of
length 2. Such cycles are not possible with undirected graphs.

Also note that
c; b; a; d

is not a walk in the graph shown in Figure 6.2, since b ! a is not an edge in this
graph. (You are not allowed to traverse edges in the wrong direction as part of a
walk.)

A path or cycle in a directed graph is said to be Hamiltonian if it visits every
node in the graph. For example, a, b, d , c is the only Hamiltonian path for the
graph in Figure 6.2. The graph in Figure 6.2 does not have a Hamiltonian cycle.

A walk in a directed graph is said to be Eulerian if it contains every edge. The
graph shown in Figure 6.2 does not have an Eulerian walk. Can you see why not?
(Hint: Look at node a.)

6.1.3 Strong Connectivity

The notion of being connected is a little more complicated for a directed graph
than it is for an undirected graph. For example, should we consider the graph in
Figure 6.2 to be connected? There is a path from node a to every other node so on
that basis, we might answer “Yes.” But there is no path from nodes b, c, or d to
node a, and so on that basis, we might answer “No.” For this reason, graph theorists
have come up with the notion of strong connectivity for directed graphs.

Definition 6.1.3. A directed graph G D .V;E/ is said to be strongly connected if
for every pair of nodes u; v 2 V , there is a directed path from u to v (and vice-
versa) in G.

For example, the graph in Figure 6.2 is not strongly connected since there is no
directed path from node b to node a. But if node a is removed, the resulting graph
would be strongly connected.

“mcs-ftl” — 2010/9/8 — 0:40 — page 192 — #198

Chapter 6 Directed Graphs192

a c

b

e

d

Figure 6.3 A 4-node directed acyclic graph (DAG).

A directed graph is said to be weakly connected (or, more simply, connected) if
the corresponding undirected graph (where directed edges u ! v and/or v ! u

are replaced with a single undirected edge fu; vg is connected. For example, the
graph in Figure 6.2 is weakly connected.

6.1.4 DAGs

If an undirected graph does not have any cycles, then it is a tree or a forest. But
what does a directed graph look like if it has no cycles? For example, consider the
graph in Figure 6.3. This graph is weakly connected and has no directed cycles but
it certainly does not look like a tree.

Definition 6.1.4. A directed graph is called a directed acyclic graph (or, DAG) if it
does not contain any directed cycles.

A first glance, DAGs don’t appear to be particularly interesting. But first im-
pressions are not always accurate. In fact, DAGs arise in many scheduling and
optimization problems and they have several interesting properties. We will study
them extensively in Chapter 7.

6.2 Tournament Graphs

Suppose that n players compete in a round-robin tournament and that for every pair
of players u and v, either u beats v or v beats u. Interpreting the results of a round-
robin tournament can be problematic—there might be all sorts of cycles where x
beats y and y beats z, yet z beats x. Who is the best player? Graph theory does not
solve this problem but it can provide some interesting perspectives.

“mcs-ftl” — 2010/9/8 — 0:40 — page 193 — #199

6.2. Tournament Graphs 193

a

c

b

d

e

Figure 6.4 A 5-node tournament graph.

The results of a round-robin tournament can be represented with a tournament
graph. This is a directed graph in which the vertices represent players and the edges
indicate the outcomes of games. In particular, an edge from u to v indicates that
player u defeated player v. In a round-robin tournament, every pair of players has
a match. Thus, in a tournament graph there is either an edge from u to v or an edge
from v to u (but not both) for every pair of distinct vertices u and v. An example
of a tournament graph is shown in Figure 6.4.

6.2.1 Finding a Hamiltonian Path in a Tournament Graph

We’re going to prove that in every round-robin tournament, there exists a ranking
of the players such that each player lost to the player one position higher. For
example, in the tournament corresponding to Figure 6.4, the ranking

a > b > d > e > c

satisfies this criterion, because b lost to a, d lost to b, e lost to d , and c lost to e.
In graph terms, proving the existence of such a ranking amounts to proving that
every tournament graph has a Hamiltonian path.

Theorem 6.2.1. Every tournament graph contains a directed Hamiltonian path.

Proof. We use strong induction. Let P.n/ be the proposition that every tournament
graph with n vertices contains a directed Hamiltonian path.

Base case: P.1/ is trivially true; every graph with a single vertex has a Hamiltonian
path consisting of only that vertex.

“mcs-ftl” — 2010/9/8 — 0:40 — page 194 — #200

Chapter 6 Directed Graphs194

v

T

F

Figure 6.5 The sets T and F in a tournament graph.

Inductive step: For n � 1, we assume that P.1/, . . . , P.n/ are all true and prove
P.n C 1/. Consider a tournament graph G D .V;E/ with n C 1 players. Select
one vertex v arbitrarily. Every other vertex in the tournament either has an edge to
vertex v or an edge from vertex v. Thus, we can partition the remaining vertices
into two corresponding sets, T and F , each containing at most n vertices, where
T D fu j u! v 2 E g and F D fu j v ! u 2 E g. For example, see Figure 6.5.

The vertices in T together with the edges that join them form a smaller tourna-
ment. Thus, by strong induction, there is a Hamiltonian path within T . Similarly,
there is a Hamiltonian path within the tournament on the vertices in F . Joining
the path in T to the vertex v followed by the path in F gives a Hamiltonian path
through the whole tournament. As special cases, if T or F is empty, then so is the
corresponding portion of the path. �

The ranking defined by a Hamiltonian path is not entirely satisfactory. For ex-
ample, in the tournament associated with Figure 6.4, notice that the lowest-ranked
player, c, actually defeated the highest-ranked player, a.

In practice, players are typically ranked according to how many victories they
achieve. This makes sense for several reasons. One not-so-obvious reason is that if
the player with the most victories does not beat some other player v, he is guaran-
teed to have at least beaten a third player who beat v. We’ll prove this fact shortly.
But first, let’s talk about chickens.

“mcs-ftl” — 2010/9/8 — 0:40 — page 195 — #201

6.2. Tournament Graphs 195

a b

cd

kingking

king not a king

Figure 6.6 A 4-chicken tournament in which chickens a, b, and d are kings.
.

6.2.2 The King Chicken Theorem

Suppose that there are n chickens in a farmyard. Chickens are rather aggressive
birds that tend to establish dominance in relationships by pecking. (Hence the term
“pecking order.”) In particular, for each pair of distinct chickens, either the first
pecks the second or the second pecks the first, but not both. We say that chicken u
virtually pecks chicken v if either:

� Chicken u directly pecks chicken v, or

� Chicken u pecks some other chicken w who in turn pecks chicken v.

A chicken that virtually pecks every other chicken is called a king chicken.
We can model this situation with a tournament digraph. The vertices are chick-

ens, and an edge u! v indicates that chicken u pecks chicken v. In the tournament
shown in Figure 6.6, three of the four chickens are kings. Chicken c is not a king in
this example since it does not peck chicken b and it does not peck any chicken that
pecks chicken b. Chicken a is a king since it pecks chicken d , who in turn pecks
chickens b and c.

Theorem 6.2.2 (King Chicken Theorem). The chicken with the largest outdegree
in an n-chicken tournament is a king.

Proof. By contradiction. Let u be a node in a tournament graph G D .V;E/ with
maximum outdegree and suppose that u is not a king. Let Y D f v j u! v 2 E g

be the set of chickens that chicken u pecks. Then outdegree.u/ D jY j.
Since u is not a king, there is a chicken x … Y (that is, x is not pecked by

chicken u) and that is not pecked by any chicken in Y . Since for any pair of
chickens, one pecks the other, this means that x pecks u as well as every chicken
in Y . This means that

outdegree.x/ D jY j C 1 > outdegree.u/:

“mcs-ftl” — 2010/9/8 — 0:40 — page 196 — #202

Chapter 6 Directed Graphs196

Figure 6.7 A 5-chicken tournament in which every chicken is a king.

But u was assumed to be the node with the largest degree in the tournament, so
we have a contradiction. Hence, u must be a king. �

Theorem 6.2.2 means that if the player with the most victories is defeated by
another player x, then at least he/she defeats some third player that defeats x. In
this sense, the player with the most victories has some sort of bragging rights over
every other player. Unfortunately, as Figure 6.6 illustrates, there can be many other
players with such bragging rights, even some with fewer victories. Indeed, for some
tournaments, it is possible that every player is a “king.” For example, consider the
tournament illustrated in Figure 6.7.

6.3 Communication Networks

While reasoning about chickens pecking each other may be amusing (to mathe-
maticians, at least), the use of directed graphs to model communication networks
is very serious business. In the context of communication problems, vertices repre-
sent computers, processors, or switches, and edges represent wires, fiber, or other
transmission lines through which data flows. For some communication networks,
like the Internet, the corresponding graph is enormous and largely chaotic. Highly
structured networks, such as an array or butterfly, by contrast, find application in
telephone switching systems and the communication hardware inside parallel com-
puters.

“mcs-ftl” — 2010/9/8 — 0:40 — page 197 — #203

6.3. Communication Networks 197

6.3.1 Packet Routing

Whatever architecture is chosen, the goal of a communication network is to get
data from inputs to outputs. In this text, we will focus on a model in which the data
to be communicated is in the form of a packet. In practice, a packet would consist
of a fixed amount of data, and a message (such as a web page or a movie) would
consist of many packets.

For simplicity, we will restrict our attention to the scenario where there is just one
packet at every input and where there is just one packet destined for each output.
We will denote the number of inputs and output by N and we will often assume
that N is a power of two.

We will specify the desired destinations of the packets by a permutation1 of 0,
1, . . . , N � 1. So a permutation, � , defines a routing problem: get a packet that
starts at input i to output �.i/ for 0 � i < N . A routing P that solves a routing
problem � is a set of paths from each input to its specified output. That is, P is a
set of paths, Pi , for i D 0; : : : ; N � 1, where Pi goes from input i to output �.i/.

Of course, the goal is to get all the packets to their destinations as quickly as
possible using as little hardware as possible. The time needed to get the packages
to their destinations depends on several factors, such as how many switches they
need to go through and how many packets will need to cross the same wire. We
will assume that only one packet can cross a wire at a time. The complexity of the
hardware depends on factors such as the number of switches needed and the size of
the switches.

Let’s see how all this works with an example—routing packets on a complete
binary tree.

6.3.2 The Complete Binary Tree

One of the simplest structured communications networks is a complete binary tree.
A complete binary tree with 4 inputs and 4 outputs is shown in Figure 6.8.

In this diagram and many that follow, the squares represent terminals (that is, the
inputs and outputs), and the circles represent switches, which direct packets through
the network. A switch receives packets on incoming edges and relays them forward
along the outgoing edges. Thus, you can imagine a data packet hopping through the
network from an input terminal, through a sequence of switches joined by directed
edges, to an output terminal.

Recall that there is a unique simple path between every pair of vertices in a tree.
So the natural way to route a packet of data from an input terminal to an output
terminal in the complete binary tree is along the corresponding directed path. For

1A permutation of a sequence is a reordering of the sequence.

“mcs-ftl” — 2010/9/8 — 0:40 — page 198 — #204

Chapter 6 Directed Graphs198

in0 out0 in1 out1 in2 out2 in3 out3

Figure 6.8 A 4-input, 4-output complete binary tree. The squares represent termi-
nals (input and output registers) and the circles represent switches. Directed edges
represent communication channels in the network through which data packets can
move. The unique path from input 1 to output 3 is shown in bold.

example, the route of a packet traveling from input 1 to output 3 is shown in bold
in Figure 6.8.

6.3.3 Network Diameter

The delay between the time that a packet arrives at an input and the time that it
reaches its designated output is referred to as latency and it is a critical issue in
communication networks. If congestion is not a factor, then this delay is generally
proportional to the length of the path a packet follows. Assuming it takes one time
unit to travel across a wire, and that there are no additional delays at switches, the
delay of a packet will be the number of wires it crosses going from input to output.2

Generally a packet is routed from input to output using the shortest path possible.
The length of this shortest path is the distance between the input and output. With
a shortest path routing, the worst possible delay is the distance between the input
and output that are farthest apart. This is called the diameter of the network. In
other words, the diameter of a network3 is the maximum length of any shortest

2Latency can also be measured as the number of switches that a packet must pass through when
traveling between the most distant input and output, since switches usually have the biggest impact
on network speed. For example, in the complete binary tree example, the packet traveling from input
1 to output 3 crosses 5 switches, which is 1 less than the number of edges traversed.

3The usual definition of diameter for a general graph (simple or directed) is the largest distance
between any two vertices, but in the context of a communication network, we’re only interested in
the distance between inputs and outputs, not between arbitrary pairs of vertices.

“mcs-ftl” — 2010/9/8 — 0:40 — page 199 — #205

6.3. Communication Networks 199

in0 out0
in1 out1

inNx1 outNx1

Figure 6.9 A monster N �N switch.

path between an input and an output. For example, in the complete binary tree
shown in Figure 6.8, the distance from input 1 to output 3 is six. No input and
output are farther apart than this, so the diameter of this tree is also six.

More generally, the diameter of a complete binary tree withN inputs and outputs
is 2 logN C 2. (All logarithms in this lecture—and in most of computer science—
are base 2.) This is quite good, because the logarithm function grows very slowly.
We could connect 220 D 1;048;576 inputs and outputs using a complete binary tree
and the worst input-output delay for any packet would be this diameter, namely,
2 log.220/C 2 D 42.

6.3.4 Switch Size

One way to reduce the diameter of a network (and hence the latency needed to
route packets) is to use larger switches. For example, in the complete binary tree,
most of the switches have three incoming edges and three outgoing edges, which
makes them 3 � 3 switches. If we had 4 � 4 switches, then we could construct a
complete ternary tree with an even smaller diameter. In principle, we could even
connect up all the inputs and outputs via a single monster N �N switch, as shown
in Figure 6.9. In this case, the “network” would consist of a single switch and the
latency would be 2.

This isn’t very productive, however, since we’ve just concealed the original net-
work design problem inside this abstract monster switch. Eventually, we’ll have
to design the internals of the monster switch using simpler components, and then
we’re right back where we started. So the challenge in designing a communication
network is figuring out how to get the functionality of an N �N switch using fixed
size, elementary devices, like 3 � 3 switches.

6.3.5 Switch Count

Another goal in designing a communication network is to use as few switches as
possible. The number of switches in a complete binary tree is 1 C 2 C 4 C 8 C
� � � C N D 2N � 1, since there is 1 switch at the top (the “root switch”), 2 below
it, 4 below those, and so forth. This is nearly the best possible with 3 � 3 switches,

“mcs-ftl” — 2010/9/8 — 0:40 — page 200 — #206

Chapter 6 Directed Graphs200

since at least one switch will be needed for each pair of inputs and outputs.

6.3.6 Congestion

The complete binary tree has a fatal drawback: the root switch is a bottleneck. At
best, this switch must handle an enormous amount of traffic: every packet traveling
from the left side of the network to the right or vice-versa. Passing all these packets
through a single switch could take a long time. At worst, if this switch fails, the
network is broken into two equal-sized pieces.

The traffic through the root depends on the routing problem. For example, if the
routing problem is given by the identity permutation, �.i/ WWD i , then there is an
easy routing P that solves the problem: let Pi be the path from input i up through
one switch and back down to output i . On the other hand, if the problem was given
by �.i/ WWD .N � 1/ � i , then in any solution P for � , each path Pi beginning at
input i must eventually loop all the way up through the root switch and then travel
back down to output .N � 1/ � i .

We can distinguish between a “good” set of paths and a “bad” set based on
congestion. The congestion of a routing, P , is equal to the largest number of paths
in P that pass through a single switch. Generally, lower congestion is better since
packets can be delayed at an overloaded switch.

By extending the notion of congestion to networks, we can also distinguish be-
tween “good” and “bad” networks with respect to bottleneck problems. For each
routing problem, � , for the network, we assume a routing is chosen that optimizes
congestion, that is, that has the minimum congestion among all routings that solve
� . Then the largest congestion that will ever be suffered by a switch will be the
maximum congestion among these optimal routings. This “maxi-min” congestion
is called the congestion of the network.

You may find it helpful to think about max congestion in terms of a value game.
You design your spiffy, new communication network; this defines the game. Your
opponent makes the first move in the game: she inspects your network and specifies
a permutation routing problem that will strain your network. You move second:
given her specification, you choose the precise paths that the packets should take
through your network; you’re trying to avoid overloading any one switch. Then her
next move is to pick a switch with as large as possible a number of packets passing
through it; this number is her score in the competition. The max congestion of
your network is the largest score she can ensure; in other words, it is precisely the
max-value of this game.

For example, if your enemy were trying to defeat the complete binary tree, she
would choose a permutation like �.i/ D .N � 1/� i . Then for every packet i , you
would be forced to select a path Pi;�.i/ passing through the root switch. Then, your

“mcs-ftl” — 2010/9/8 — 0:40 — page 201 — #207

6.3. Communication Networks 201

network diameter switch size # switches congestion
complete binary tree 2 logN C 2 3 � 3 2N � 1 N

Table 6.1 A summary of the attributes of the complete binary tree.

in0

in1

in2

in3

out3out2out1out0

Figure 6.10 A 4 � 4 2-dimensional array.

enemy would choose the root switch and achieve a score of N . In other words, the
max congestion of the complete binary tree is N—which is horrible!

We have summarized the results of our analysis of the complete binary tree in
Table 6.1. Overall, the complete binary tree does well in every category except the
last—congestion, and that is a killer in practice. Next, we will look at a network
that solves the congestion problem, but at a very high cost.

6.3.7 The 2-d Array

An illustration of the N � N 2-d array (also known as the grid or crossbar) is
shown in Figure 6.10 for the case when N D 4.

The diameter of the 4 � 4 2-d array is 8, which is the number of edges between
input 0 and output 3. More generally, the diameter of a 2-d array withN inputs and
outputs is 2N , which is much worse than the diameter of the complete binary tree
(2 logN C 2). On the other hand, replacing a complete binary tree with a 2-d array
almost eliminates congestion.

Theorem 6.3.1. The congestion of an N -input 2-d array is 2.

Proof. First, we show that the congestion is at most 2. Let � be any permutation.
Define a solution, P , for � to be the set of paths, Pi , where Pi goes to the right

“mcs-ftl” — 2010/9/8 — 0:40 — page 202 — #208

Chapter 6 Directed Graphs202

network diameter switch size # switches congestion
complete binary tree 2 logN C 2 3 � 3 2N � 1 N

2-D array 2N 2 � 2 N 2 2

Table 6.2 Comparing the N -input 2-d array to the N -input complete binary tree.

from input i to column �.i/ and then goes down to output �.i/. In this solution,
the switch in row i and column j encounters at most two packets: the packet
originating at input i and the packet destined for output j .

Next, we show that the congestion is at least 2. This follows because in any
routing problem, � , where �.0/ D 0 and �.N � 1/ D N � 1, two packets must
pass through the lower left switch. �

The characteristics of the 2-d array are recorded in Table 6.2. The crucial entry
in this table is the number of switches, which is N 2. This is a major defect of the
2-d array; a network withN D 1000 inputs would require a million 2�2 switches!
Still, for applications where N is small, the simplicity and low congestion of the
array make it an attractive choice.

6.3.8 The Butterfly

The Holy Grail of switching networks would combine the best properties of the
complete binary tree (low diameter, few switches) and the array (low congestion).
The butterfly is a widely-used compromise between the two. A butterfly network
with N D 8 inputs is shown in Figure 6.11.

The structure of the butterfly is certainly more complicated than that of the com-
plete binary or 2-d array. Let’s see how it is constructed.

All the terminals and switches in the network are inN rows. In particular, input i
is at the left end of row i , and output i is at the right end of row i . Now let’s label
the rows in binary so that the label on row i is the binary number b1b2 : : : blogN
that represents the integer i .

Between the inputs and outputs, there are log.N / C 1 levels of switches, num-
bered from 0 to logN . Each level consists of a column ofN switches, one per row.
Thus, each switch in the network is uniquely identified by a sequence .b1, b2, . . . ,
blogN , l/, where b1b2 : : : blogN is the switch’s row in binary and l is the switch’s
level.

All that remains is to describe how the switches are connected up. The basic

“mcs-ftl” — 2010/9/8 — 0:40 — page 203 — #209

6.3. Communication Networks 203

in1 out1

in0 out0

in2 out2

in3 out3

in4 out4

in5 out5

in6 out6

in7 out7

000

0 1 2 3

001

010

011

100

101

110

111

levels

Figure 6.11 An 8-input/output butterfly.

“mcs-ftl” — 2010/9/8 — 0:40 — page 204 — #210

Chapter 6 Directed Graphs204

connection pattern is expressed below in a compact notation:

%
.b1; b2; : : : blC1; : : : blogN ; l C 1/

.b1; b2; : : : blC1; : : : blogN ; l/
& .b1; b2; : : : blC1; : : : blogN ; l C 1/

This says that there are directed edges from switch .b1; b2; : : : ; blogN ; l/ to two
switches in the next level. One edges leads to the switch in the same row, and the
other edge leads to the switch in the row obtained by inverting the .lC1/st bit blC1.
For example, referring back to the illustration of the size N D 8 butterfly, there is
an edge from switch .0; 0; 0; 0/ to switch (0, 0, 0, 1), which is in the same row, and
to switch .1; 0; 0; 1/, which is in the row obtained by inverting bit l C 1 D 1.

The butterfly network has a recursive structure; specifically, a butterfly of size 2N
consists of two butterflies of size N and one additional level of switches. Each
switch in the additional level has directed edges to a corresponding switch in each
of the smaller butterflies. For example, see Figure 6.12.

Despite the relatively complicated structure of the butterfly, there is a simple way
to route packets through its switches. In particular, suppose that we want to send a
packet from input x1x2 : : : xlogN to output y1y2 : : : ylogN . (Here we are specifying
the input and output numbers in binary.) Roughly, the plan is to “correct” the first
bit on the first level, correct the second bit on the second level, and so forth. Thus,
the sequence of switches visited by the packet is:

.x1; x2; x3; : : : ; xlogN ; 0/! .y1; x2; x3; : : : ; xlogN ; 1/

! .y1; y2; x3; : : : ; xlogN ; 2/

! .y1; y2; y3; : : : ; xlogN ; 3/

! : : :

! .y1; y2; y3; : : : ; ylogN ; logN/

In fact, this is the only path from the input to the output!
The congestion of the butterfly network is about

p
N . More precisely, the con-

gestion is
p
N if N is an even power of 2 and

p
N=2 if N is an odd power of 2.

The task of proving this fact has been left to the problem section.4

A comparison of the butterfly with the complete binary tree and the 2-d array is
provided in Table 6.3. As you can see, the butterfly has lower congestion than the
complete binary tree. And it uses fewer switches and has lower diameter than the

4The routing problems that result in
p
N congestion do arise in practice, but for most routing

problems, the congestion is much lower (around logN), which is one reason why the butterfly is
useful in practice.

“mcs-ftl” — 2010/9/8 — 0:40 — page 205 — #211

6.3. Communication Networks 205

in1 out1

in0 out0

in2 out2

in3 out3

in4 out4

in5 out5

in6 out6

in7 out7

000

001

010

011

100

101

110

111

levels
0 1 2 3

Figure 6.12 An N -input butterfly contains two N=2-input butterflies (shown in
the dashed boxes). Each switch on the first level is adjacent to a corresponding
switch in each of the sub-butterflies. For example, we have used dashed lines to
show these edges for the node .0; 1; 1; 0/.

“mcs-ftl” — 2010/9/8 — 0:40 — page 206 — #212

Chapter 6 Directed Graphs206

network diameter switch size # switches congestion
complete binary tree 2 logN C 2 3 � 3 2N � 1 N

2-D array 2N 2 � 2 N 2 2
butterfly logN C 2 2 � 2 N.log.N /C 1/

p
N or

p
N=2

Table 6.3 A comparison of the N -input butterfly with the N -input complete bi-
nary tree and the N -input 2-d array.

in1 out1

in0 out0

in2 out2

in3 out3

in4 out4

in5 out5

in6 out6

in7 out7

Figure 6.13 The 8-input Beneš network.

array. However, the butterfly does not capture the best qualities of each network,
but rather is a compromise somewhere between the two. So our quest for the Holy
Grail of routing networks goes on.

6.3.9 Beneš Network

In the 1960’s, a researcher at Bell Labs named Václav Beneš had a remarkable idea.
He obtained a marvelous communication network with congestion 1 by placing
two butterflies back-to-back. For example, the 8-input Beneš network is shown in
Figure 6.13.

Putting two butterflies back-to-back roughly doubles the number of switches and
the diameter of a single butterfly, but it completely eliminates congestion problems!
The proof of this fact relies on a clever induction argument that we’ll come to in a

“mcs-ftl” — 2010/9/8 — 0:40 — page 207 — #213

6.3. Communication Networks 207

network diameter switch size # switches congestion
complete binary tree 2 logN C 2 3 � 3 2N � 1 N

2-D array 2N 2 � 2 N 2 2
butterfly logN C 2 2 � 2 N.log.N /C 1/

p
N or

p
N=2

Beneš 2 logN C 1 2 � 2 2N logN 1

Table 6.4 A comparison of the N -input Beneš network with the N -input com-
plete binary tree, 2-d array, and butterfly.

in0

in1

out0

out1

Figure 6.14 The 2-input Beneš network.

moment. Let’s first see how the Beneš network stacks up against the other networks
we have been studying. As you can see in Table 6.4, the Beneš network has small
size and diameter, and completely eliminates congestion. The Holy Grail of routing
networks is in hand!

Theorem 6.3.2. The congestion of the N -input Beneš network is 1 for any N that
is a power of 2.

Proof. We use induction. Let P.a/ be the proposition that the congestion of the
2a-input Beneš network is 1.

Base case (a D 1): We must show that the congestion of the 21-input Beneš net-
work is 1. The network is shown in Figure 6.14.

There are only two possible permutation routing problems for a 2-input network.
If �.0/ D 0 and �.1/ D 1, then we can route both packets along the straight edges.
On the other hand, if �.0/ D 1 and �.1/ D 0, then we can route both packets along
the diagonal edges. In both cases, a single packet passes through each switch.

Inductive step: We must show that P.a/ implies P.aC1/ where a � 1. Thus, we
assume that the congestion of a 2a-input Beneš network is 1 in order to prove that
the congestion of a 2aC1-input Beneš network is also 1.

Digression
Time out! Let’s work through an example, develop some intuition, and then com-
plete the proof. Notice that inside a Beneš network of size 2N lurk two Beneš
subnetworks of size N . This follows from our earlier observation that a butterfly

“mcs-ftl” — 2010/9/8 — 0:40 — page 208 — #214

Chapter 6 Directed Graphs208

in1 out1

in0 out0

in2 out2

in3 out3

in4 out4

in5 out5

in6 out6

in7 out7

Figure 6.15 A 2N -input Beneš network contains twoN -input Beneš networks—
shown here for N D 4.

of size 2N contains two butterflies of size N . In the Beneš network shown in Fig-
ure 6.15 with N D 8 inputs and outputs, the two 4-input/output subnetworks are
shown in dashed boxes.

By the inductive assumption, the subnetworks can each route an arbitrary per-
mutation with congestion 1. So if we can guide packets safely through just the first
and last levels, then we can rely on induction for the rest! Let’s see how this works
in an example. Consider the following permutation routing problem:

�.0/ D 1 �.4/ D 3

�.1/ D 5 �.5/ D 6

�.2/ D 4 �.6/ D 0

�.3/ D 7 �.7/ D 2

We can route each packet to its destination through either the upper subnetwork
or the lower subnetwork. However, the choice for one packet may constrain the
choice for another. For example, we can not route the packets at inputs 0 and 4 both
through the same network since that would cause two packets to collide at a single
switch, resulting in congestion. So one packet must go through the upper network
and the other through the lower network. Similarly, the packets at inputs 1 and 5,

“mcs-ftl” — 2010/9/8 — 0:40 — page 209 — #215

6.3. Communication Networks 209

1 5

0

4

2

6

7 3

Figure 6.16 The beginnings of a constraint graph for our packet routing problem.
Adjacent packets cannot be routed using the same sub-Beneš network.

1 5

0

4

2

6

7 3

Figure 6.17 The updated constraint graph.

2 and 6, and 3 and 7 must be routed through different networks. Let’s record these
constraints in a graph. The vertices are the 8 packets (labeled according to their
input position). If two packets must pass through different networks, then there is
an edge between them. The resulting constraint graph is illustrated in Figure 6.16.
Notice that at most one edge is incident to each vertex.

The output side of the network imposes some further constraints. For example,
the packet destined for output 0 (which is packet 6) and the packet destined for
output 4 (which is packet 2) can not both pass through the same network since that
would require both packets to arrive from the same switch. Similarly, the packets
destined for outputs 1 and 5, 2 and 6, and 3 and 7 must also pass through different
switches. We can record these additional constraints in our constraint graph with
gray edges, as is illustrated in Figure 6.17.

Notice that at most one new edge is incident to each vertex. The two lines drawn
between vertices 2 and 6 reflect the two different reasons why these packets must
be routed through different networks. However, we intend this to be a simple graph;

“mcs-ftl” — 2010/9/8 — 0:40 — page 210 — #216

Chapter 6 Directed Graphs210

the two lines still signify a single edge.
Now here’s the key insight: a 2-coloring of the graph corresponds to a solution

to the routing problem. In particular, suppose that we could color each vertex either
red or blue so that adjacent vertices are colored differently. Then all constraints are
satisfied if we send the red packets through the upper network and the blue packets
through the lower network.

The only remaining question is whether the constraint graph is 2-colorable. For-
tunately, this is easy to verify:

Lemma 6.3.3. If the edges of an undirected graph G can be grouped into two sets
such that every vertex is incident to at most 1 edge from each set, then the graph is
2-colorable.

Proof. Since the two sets of edges may overlap, let’s call an edge that is in both sets
a doubled edge. Note that no other edge can be incident to either of the endpoints
of a doubled edge, since that endpoint would then be incident to two edges from
the same set. This means that doubled edges form connected components with 2
nodes. Such connected components are easily colored with 2 colors and so we can
henceforth ignore them and focus on the remaining nodes and edges, which form a
simple graph.

By Theorem 5.6.2, we know that if a simple graph has no odd cycles, then it is
2-colorable. So all we need to do is show that every cycle in G has even length.
This is easy since any cycle inG must traverse successive edges that alternate from
one set to the other. In particular, a closed walk must traverse a path of alternating
edges that begins and ends with edges from different sets. This means that the cycle
has to be of even length. �

For example, a 2-coloring of the constraint graph in Figure 6.17 is shown in
Figure 6.18. The solution to this graph-coloring problem provides a start on the
packet routing problem. We can complete the routing in the two smaller Beneš
networks by induction. With this insight in hand, the digression is over and we can
now complete the proof of Theorem 6.3.2.

Proof of Theorem 6.3.2 (continued). Let � be an arbitrary permutation of 0, 1, . . . ,
N � 1. Let G be the graph whose vertices are packet numbers 0; 1; : : : ; N � 1 and
whose edges come from the union of these two sets:

E1WWDf fu; vg j ju � vj D N=2 g; and

E2WWDf fu;wg j j�.u/ � �.w/j D N=2 g:

Now any vertex, u, is incident to at most two edges: a unique edge fu; vg 2 E1 and
a unique edge fu;wg 2 E2. So according to Lemma 6.3.3, there is a 2-coloring for

“mcs-ftl” — 2010/9/8 — 0:40 — page 211 — #217

6.3. Communication Networks 211

blue

blue

blueblue

red

redred

red

1 5

0

4

2

6

7 3

Figure 6.18 A 2-coloring of the constraint graph in Figure 6.17.

the vertices of G. Now route packets of one color through the upper subnetwork
and packets of the other color through the lower subnetwork. Since for each edge in
E1, one vertex goes to the upper subnetwork and the other to the lower subnetwork,
there will not be any conflicts in the first level. Since for each edge inE2, one vertex
comes from the upper subnetwork and the other from the lower subnetwork, there
will not be any conflicts in the last level. We can complete the routing within each
subnetwork by the induction hypothesis P.n/. �

“mcs-ftl” — 2010/9/8 — 0:40 — page 212 — #218

“mcs-ftl” — 2010/9/8 — 0:40 — page 213 — #219

7 Relations and Partial Orders
A relation is a mathematical tool for describing associations between elements of
sets. Relations are widely used in computer science, especially in databases and
scheduling applications. A relation can be defined across many items in many sets,
but in this text, we will focus on binary relations, which represent an association
between two items in one or two sets.

7.1 Binary Relations

7.1.1 Definitions and Examples

Definition 7.1.1. Given sets A and B , a binary relation R W A ! B from1 A

to B is a subset of A � B . The sets A and B are called the domain and codomain
of R, respectively. We commonly use the notation aRb or a �R b to denote that
.a; b/ 2 R.

A relation is similar to a function. In fact, every function f W A ! B is a rela-
tion. In general, the difference between a function and a relation is that a relation
might associate multiple elements ofB with a single element ofA, whereas a func-
tion can only associate at most one element of B (namely, f .a/) with each element
a 2 A.

We have already encountered examples of relations in earlier chapters. For ex-
ample, in Section 5.2, we talked about a relation between the set of men and the
set of women where mRw if man m likes woman w. In Section 5.3, we talked
about a relation on the set of MIT courses where c1Rc2 if the exams for c1 and c2
cannot be given at the same time. In Section 6.3, we talked about a relation on the
set of switches in a network where s1Rs2 if s1 and s2 are directly connected by a
wire that can send a packet from s1 to s2. We did not use the formal definition of a
relation in any of these cases, but they are all examples of relations.

As another example, we can define an “in-charge-of” relation T from the set of
MIT faculty F to the set of subjects in the 2010 MIT course catalog. This relation
contains pairs of the form

.hinstructor-namei; hsubject-numi/

1We also say that the relationship is between A and B , or on A if B D A.

“mcs-ftl” — 2010/9/8 — 0:40 — page 214 — #220

Chapter 7 Relations and Partial Orders214

(Meyer, 6.042),
(Meyer, 18.062),
(Meyer, 6.844),
(Leighton, 6.042),
(Leighton, 18.062),
(Freeman, 6.011),
(Freeman, 6.881)
(Freeman, 6.882)
(Freeman, 6.UAT)
(Eng, 6.UAT)
(Guttag, 6.00)

Figure 7.1 Some items in the “in-charge-of” relation T between faculty and sub-
ject numbers.

where the faculty member named hinstructor-namei is in charge of the subject with
number hsubject-numi. So T contains pairs like those shown in Figure 7.1.

This is a surprisingly complicated relation: Meyer is in charge of subjects with
three numbers. Leighton is also in charge of subjects with two of these three
numbers—because the same subject, Mathematics for Computer Science, has two
numbers (6.042 and 18.062) and Meyer and Leighton are jointly in-charge-of the
subject. Freeman is in-charge-of even more subjects numbers (around 20), since
as Department Education Officer, he is in charge of whole blocks of special sub-
ject numbers. Some subjects, like 6.844 and 6.00 have only one person in-charge.
Some faculty, like Guttag, are in-charge-of only one subject number, and no one
else is jointly in-charge-of his subject, 6.00.

Some subjects in the codomain, N , do not appear in the list—that is, they are
not an element of any of the pairs in the graph of T ; these are the Fall term only
subjects. Similarly, there are faculty in the domain, F , who do not appear in the
list because all their in-charge-of subjects are Fall term only.

7.1.2 Representation as a Bipartite Graph

Every relation R W A ! B can be easily represented as a bipartite graph G D
.V;E/ by creating a “left” node for each element of A and a “right” node for each
element of B . We then create an edge between a left node u and a right node v
whenever aRb. Similarly, every bipartite graph (and every partition of the nodes
into a “left” and “right” set for which no edge connects a pair of left nodes or a pair
of right nodes) determines a relation between the nodes on the left and the nodes
on the right.

“mcs-ftl” — 2010/9/8 — 0:40 — page 215 — #221

7.1. Binary Relations 215

Meyer

Leighton

Freeman

Eng

Guttag

6:042

18:062

6:844

6:011

6:881

6:882

6:UAT

6:00

Figure 7.2 Part of the bipartite graph for the “in charge of” relation T from Fig-
ure 7.1.

For example, we have shown part of the bipartite graph for the in-charge-of
relation from Figure 7.1 in Figure 7.2. In this case, there is an edge between
hinstructor-namei and hsubject-numberi if hinstructor-namei is in charge of hsubject-numberi.

A relation R W A ! B between finite sets can also be represented as a matrix
A D faij g where

aij D

(
1 if the i th element of A is related to the j th element of B
0 otherwise

for 1 � i � jAj and 1 � j � jBj. For example, the matrix for the relation in
Figure 7.2 (but restricted to the five faculty and eight subject numbers shown in
Figure 7.2, ordering them as they appear top-to-bottom in Figure 7.2) is shown in
Figure 7.3.

7.1.3 Relational Images

The idea of the image of a set under a function extends directly to relations.

“mcs-ftl” — 2010/9/8 — 0:40 — page 216 — #222

Chapter 7 Relations and Partial Orders216

0BBBB@
1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 1 1 1 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1CCCCA
Figure 7.3 The matrix for the “in charge of” relation T restricted to the five
faculty and eight subject numbers shown in Figure 7.2. The .3; 4/ entry of this
matrix is 1 since the third professor (Freeman) is in charge of the fourth subject
number (6.011).

Definition 7.1.2. The image of a set Y under a relation R W A! B , written R.Y /,
is the set of elements that are related to some element in Y , namely,

R.Y / WWD f b 2 B j yRb for some y 2 Y g:

The image of the domain, R.A/, is called the range of R.

For example, to find the subject numbers that Meyer is in charge of, we can look
for all the pairs of the form

.Meyer; hsubject-numberi/

in the graph of the teaching relation T , and then just list the right-hand sides of these
pairs. These right-hand sides are exactly the image T .Meyer/, which happens to
be f6:042; 18:062; 6:844g. Similarly, since the domain F is the set of all in-charge
faculty, T .F /, the range of T , is exactly the set of all subjects being taught.

7.1.4 Inverse Relations and Images

Definition 7.1.3. The inverse R�1 of a relation R W A! B is the relation from B

to A defined by the rule

bR�1a if and only if aRb:

The image of a set under the relation R�1 is called the inverse image of the set.
That is, the inverse image of a set X under the relation R is R�1.X/.

Continuing with the in-charge-of example above, we can find the faculty in
charge of 6.UAT by taking the pairs of the form

.hinstructor-namei; 6.UAT/

“mcs-ftl” — 2010/9/8 — 0:40 — page 217 — #223

7.2. Relations and Cardinality 217

for the teaching relation T , and then just listing the left-hand sides of these pairs;
these turn out to be just Eng and Freeman. These left-hand sides are exactly the
inverse image of f6.UATg under T .

7.1.5 Combining Relations

There are at least two natural ways to combine relations to form new relations. For
example, given relationsR W B ! C and S W A! B , the composition ofR with S
is the relation .R B S/ W A! C defined by the rule

a.R B S/c IFF 9b 2 B: .bRc/ AND .aSb/

where a 2 A and c 2 C .
As a special case, the composition of two functions f W B ! C and g W A! B

is the function f B g W A! C defined by

.f B g/.a/ D f .g.a//

for all a 2 A. For example, if A D B D C D R, g.x/ D x C 1 and f .x/ D x2,
then

.f B g/.x/ D .x C 1/2

D x2 C 2x C 1:

One can also define the product of two relations R1 W A1 ! B1 and R2 W A2 !
B2 to be the relation S D R1 �R2 where

S W A1 � A2 ! B1 � B2

and
.a1; a2/S.b1; b2/ iff a1R1b1 and a2R2b2:

7.2 Relations and Cardinality

7.2.1 Surjective and Injective Relations

There are some properties of relations that will be useful when we take up the topic
of counting in Part III because they imply certain relations between the sizes of
domains and codomains. In particular, we say that a binary relation R W A! B is

� surjective if every element of B is assigned to at least one element of A.
More concisely, R is surjective iff R.A/ D B (that is, if the range of R is the
codomain of R),

“mcs-ftl” — 2010/9/8 — 0:40 — page 218 — #224

Chapter 7 Relations and Partial Orders218

� total when every element of A is assigned to some element of B . More
concisely, R is total iff A D R�1.B/,

� injective if every element of B is mapped at most once, and

� bijective if R is total, surjective, injective, and a function2.

We can illustrate these properties of a relation R W A ! B in terms of the cor-
responding bipartite graph G for the relation, where nodes on the left side of G
correspond to elements of A and nodes on the right side of G correspond to ele-
ments of B . For example:

� “R is a function” means that every node on the left is incident to at most one
edge.

� “R is total” means that every node on the left is incident to at least one edge.
So if R is a function, being total means that every node on the left is incident
to exactly one edge.

� “R is surjective” means that every node on the right is incident to at least one
edge.

� “R is injective” means that every node on the right is incident to at most one
edge.

� “R is bijective” means that every node on both sides is incident to precisely
one edge (that is, there is a perfect matching between A and B).

For example, consider the relations R1 and R2 shown in Figure 7.4. R1 is a total
surjective function (every node in the left column is incident to exactly one edge,
and every node in the right column is incident to at least one edge), but not injective
(node 3 is incident to 2 edges). R2 is a total injective function (every node in the
left column is incident to exactly one edge, and every node in the right column
is incident to at most one edge), but not surjective (node 4 is not incident to any
edges).

Notice that we need to know what the domain is to determine whether a relation
is total, and we need to know the codomain to determine whether it’s surjective.
For example, the function defined by the formula 1=x2 is total if its domain is RC
but partial if its domain is some set of real numbers that includes 0. It is bijective
if its domain and codomain are both RC, but neither injective nor surjective it is
domain and codomain are both R.

2These words surjective, injective, and bijective are not very memorable. Some authors use the
possibly more memorable phrases onto for surjective, one-to-one for injective, and exact correspon-
dence for bijective.

“mcs-ftl” — 2010/9/8 — 0:40 — page 219 — #225

7.2. Relations and Cardinality 219

a

b

c

d

e

1

2

3

4

A1 B1

R1

(a)

1

2

3

4

5

a

b

c

d

A2 B2

R2

(b)

Figure 7.4 Relation R1 W A1 ! B1 is shown in (a) and relation R2 W A2 ! B2
is shown in (b).

7.2.2 Cardinality

The relational properties in Section 7.2.1 are useful in figuring out the relative sizes
of domains and codomains.

If A is a finite set, we use jAj to denote the number of elements in A. This is
called the cardinality of A. In general, a finite set may have no elements (the empty
set), or one element, or two elements, . . . , or any nonnegative integer number of
elements, so for any finite set, jAj 2 N.

Now suppose R W A ! B is a function. Then every edge in the bipartite
graph G D .V;E/ for R is incident to exactly one element of A, so the num-
ber of edges is at most the number of elements of A. That is, if R is a function,
then

jEj � jAj:

Similarly, if R is surjective, then every element of B is incident to an edge, so there
must be at least as many edges in the graph as the size of B . That is

jEj � jBj:

Combining these inequalities implies that R W A! B is a surjective function, then
jAj � jBj. This fact and two similar rules relating domain and codomain size to
relational properties are captured in the following theorem.

“mcs-ftl” — 2010/9/8 — 0:40 — page 220 — #226

Chapter 7 Relations and Partial Orders220

Theorem 7.2.1 (Mapping Rules). Let A and B be finite sets.

1. If there is a surjection from A to B , then jAj � jBj.

2. If there is an injection from A to B , then jAj � jBj:

3. If there is a bijection between A and B , then jAj D jBj.

Mapping rule 2 can be explained by the same kind of reasoning we used for
rule 1. Rule 3 is an immediate consequence of the first two mapping rules.

We will see many examples where Theorem 7.2.1 is used to determine the car-
dinality of a finite set. Later, in Chapter 13, we will consider the case when the
sets are infinite and we’ll use surjective and injective relations to prove that some
infinite sets are “bigger” than other infinite sets.

7.3 Relations on One Set

For the rest of this chapter, we are going to focus on relationships between elements
of a single set; that is, relations from a set A to a set B where A D B . Thus, a
relation on a set A is a subset R � A � A. Here are some examples:

� Let A be a set of people and the relation R describe who likes whom: that is,
.x; y/ 2 R if and only if x likes y.

� Let A be a set of cities. Then we can define a relation R such that xRy if and
only if there is a nonstop flight from city x to city y.

� Let A D Z and let xRy hold if and only if x � y .mod 5/.

� Let A D N and let xRy if and only if x j y.

� Let A D N and let xRy if and only if x � y.

The last examples clarify the reason for using xRy or x �R y to indicate that the
relation R holds between x and y: many common relations (<, �, D, j, �) are
expressed with the relational symbol in the middle.

7.3.1 Representation as a Digraph

Every relation on a single set A can be modeled as a directed graph (albeit one
that may contain loops). For example, the graph in Figure 7.5 describes the “likes”
relation for a particular set of 3 people.

In this case, we see that:

“mcs-ftl” — 2010/9/8 — 0:40 — page 221 — #227

7.3. Relations on One Set 221

Julie Bill

Bob

Figure 7.5 The directed graph for the “likes” relation on the set fBill;Bob; Julieg.

4 2 8

12 6 1

3 9

10

11

7

5

Figure 7.6 The digraph for divisibility on f1; 2; : : : ; 12g.

� Julie likes Bill and Bob, but not herself.

� Bill likes only himself.

� Bob likes Julie, but not Bill nor himself.

Everything about the relationship is conveyed by the directed graph and nothing
more. This is no coincidence; a set A together with a relation R is precisely the
same thing as directed graph G D .V;E/ with vertex set V D A and edge set
E D R (where E may have loops).

As another example, we have illustrated the directed graph for the divisibility
relationship on the set f1; 2; : : : ; 12g in Figure 7.6. In this graph, every node has
a loop (since every positive number divides itself) and the composite numbers are
the nodes with indegree more than 1 (not counting the loop).

Relations on a single set can also be represented as a 0; 1-matrix. In this case,
the matrix is identical to the adjacency matrix for the corresponding digraph. For

“mcs-ftl” — 2010/9/8 — 0:40 — page 222 — #228

Chapter 7 Relations and Partial Orders222

example, the matrix for the relation shown in Figure 7.5 is simply0@0 1 1

0 1 0

1 0 0

1A
where v1 D Julie, v2 D Bill, and v3 D Bob.

7.3.2 Symmetry, Transitivity, and Other Special Properties

Many relations on a single set that arise in practice possess one or more noteworthy
properties. These properties are summarized in the box on the following page. In
each case, we provide the formal of the definition of the property, explain what the
property looks like in a digraph G for the relation, and give an example of what the
property means for the “likes” relation.

For example, the congruence relation modulo 5 on Z is reflexive symmetric, and
transitive, but not irreflexive, antisymmetric, or asymmetric. The same is true for
the “connected” relation R W V ! V on an undirected graph G D .V;E/ where
uRv if u and v are in the same connected component of graph G. In fact, relations
that have these three properties are so common that we give them a special name:
equivalence relations. We will discuss them in greater detail in just a moment.

As another example, the “divides” relation on ZC is reflexive, antisymmetric,
and transitive, but not irreflexive, symmetric, or asymmetric. The same is true for
the “�” relation on R. Relations that have these three properties are also very
common and they fall into a special case of relations called a partial order. We will
discuss partial orders at length in Sections 7.5–7.9.

As a final example, consider the “likes” relation on the set fJulie;Bill;Bobg il-
lustrated in Figure 7.5. This relation has none of the six properties described in the
box.

7.4 Equivalence Relations

A relation is an equivalence relation if it is reflexive, symmetric, and transitive.
Congruence modulo n is an excellent example of an equivalence relation:

� It is reflexive because x � x .mod n/.

� It is symmetric because x � y .mod n/ implies y � x .mod n/.

� It is transitive because x � y .mod n/ and y � z .mod n/ imply that x � z
.mod n/.

“mcs-ftl” — 2010/9/8 — 0:40 — page 223 — #229

7.4. Equivalence Relations 223

Properties of a Relation R W A ! A

Reflexivity R is reflexive if

8x 2 A: xRX:

“Everyone likes themselves.”

Every node in G has a loop.

Irreflexivity R is irreflexive if

:9x 2 A: xRx:

“No one likes themselves.”

There are no loops in G.

Symmetry R is symmetric if

8x; y 2 A: xRy IMPLIES yRx:

“If x likes y, then y likes x.”

If there is an edge from x to y in G, then there is an edge from y to x in G
as well.

Antisymmetry R is antisymmetric if

8x; y 2 A .xRy AND yRx/ IMPLIES x D y:

“No pair of distinct people like each other.”

There is at most one directed edge between any pair of distinct nodes.

Asymmetry R is asymmetric if

:9x; y 2 A: xRy AND yRx:

“No one likes themselves and no pair of people like each other.”

There are no loops and there is at most one directed edge between any pair
of nodes.

Transitivity R is transitive if

8x; y; z 2 A: .xRy AND yRz/ IMPLIES xRz:

“If x likes y and y likes z, then x likes z too.”

For any walk v0; v1; : : : ; vk inG where k � 2, v0 ! vk is inG (and, hence,
vi ! vj is also in G for all i < j .

“mcs-ftl” — 2010/9/8 — 0:40 — page 224 — #230

Chapter 7 Relations and Partial Orders224

There is an even more well-known example of an equivalence relation: equality
itself. Thus, an equivalence relation is a relation that shares some key properties
with “D”.

7.4.1 Partitions

There is another way to think about equivalence relations, but we’ll need a couple
of definitions to understand this alternative perspective.

Definition 7.4.1. Given an equivalence relation R W A! A, the equivalence class
of an element x 2 A is the set of all elements of A related to x by R. The equiva-
lence class of x is denoted Œx�. Thus, in symbols:

Œx� D fy j xRy g:

For example, suppose that A D Z and xRy means that x � y .mod 5/. Then

Œ7� D f: : : ;�3; 2; 7; 12; 22; : : : g:

Notice that 7, 12, 17, etc., all have the same equivalence class; that is, Œ7� D Œ12� D
Œ17� D � � � .

Definition 7.4.2. A partition of a finite set A is a collection of disjoint, nonempty
subsets A1, A2, . . . , An whose union is all of A. The subsets are usually called the
blocks of the partition.3 For example, one possible partition of A D fa; b; c; d; eg
is

A1 D fa; cg A2 D fb; eg A3 D fdg:

Here’s the connection between all this stuff: there is an exact correspondence
between equivalence relations on A and partitions of A. We can state this as a
theorem:

Theorem 7.4.3. The equivalence classes of an equivalence relation on a setA form
a partition of A.

We won’t prove this theorem (too dull even for us!), but let’s look at an example.

3We think they should be called the parts of the partition. Don’t you think that makes a lot more
sense?

“mcs-ftl” — 2010/9/8 — 0:40 — page 225 — #231

7.5. Partial Orders 225

The congruent-mod-5 relation partitions the integers into five equivalence classes:

f: : : ;�5; 0; 5; 10; 15; 20; : : : g

f: : : ;�4; 1; 6; 11; 16; 21; : : : g

f: : : ;�3; 2; 7; 12; 17; 22; : : : g

f: : : ;�2; 3; 8; 13; 18; 23; : : : g

f: : : ;�1; 4; 9; 14; 19; 24; : : : g

In these terms, x � y .mod 5/ is equivalent to the assertion that x and y are both
in the same block of this partition. For example, 6 � 16 .mod 5/, because they’re
both in the second block, but 2 ¥ 9 .mod 5/ because 2 is in the third block while
9 is in the last block.

In social terms, if “likes” were an equivalence relation, then everyone would be
partitioned into cliques of friends who all like each other and no one else.

7.5 Partial Orders

7.5.1 Strong and Weak Partial Orders

Definition 7.5.1. A relation R on a set A is a weak partial order if it is transitive,
antisymmetric, and reflexive. The relation is said to be a strong partial order if it
is transitive, antisymmetric, and irreflexive.4

Some authors defined partial orders to be what we call weak partial orders, but
we’ll use the phrase partial order to mean either a weak or a strong partial order.
The difference between a weak partial order and a strong one has to do with the
reflexivity property: in a weak partial order, every element is related to itself, but in
a strong partial order, no element is related to itself. Otherwise, they are the same
in that they are both transitive and antisymmetric.

Examples of weak partial orders include “�” on R, “�” on the set of subsets
of (say) Z, and the “divides” relation on NC. Examples of strict partial orders
include “<” on R, and “�” on the set of subsets of Z.5

4Equivalently, the relation is transitive and asymmetric, but stating it this way might have obscured
the irreflexivity property.

5If you are not feeling comfortable with all the definitions that we’ve been throwing at you, it’s
probably a good idea to verify that each of these relations are indeed partial orders by checking that
they have the transitivity and antisymmetry properties.

“mcs-ftl” — 2010/9/8 — 0:40 — page 226 — #232

Chapter 7 Relations and Partial Orders226

We often denote a weak partial order with a symbol such as � or v instead of a
letter such as R. This makes sense from one perspective since the symbols call to
mind � and �, which define common partial orders. On the other hand, a partial
order is really a set of related pairs of items, and so a letter like R would be more
normal.

Likewise, we will often use a symbol like� or@ to denote a strong partial order.

7.5.2 Total Orders

A partial order is “partial” because there can be two elements with no relation
between them. For example, in the “divides” partial order on f1; 2; : : : ; 12g, there
is no relation between 3 and 5 (since neither divides the other).

In general, we say that two elements a and b are incomparable if neither a � b
nor b � a. Otherwise, if a � b or b � a, then we say that a and b are comparable.

Definition 7.5.2. A total order is a partial order in which every pair of distinct
elements is comparable.

For example, the “�” partial order on R is a total order because for any pair of
real numbers x and y, either x � y or y � x. The “divides” partial order on
f1; 2; : : : ; 12g is not a total order because 3 − 5 and 5 − 3.

7.6 Posets and DAGs

7.6.1 Partially Ordered Sets

Definition 7.6.1. Given a partial order � on a set A, the pair .A;�/ is called a
partially ordered set or poset.

In terms of graph theory, a poset is simply the directed graph G D .A;�/ with
vertex set A and edge set �. For example, Figure 7.6 shows the graph form of the
poset for the “divides” relation on f1; 2; : : : ; 12g. We have shown the graph form
of the poset for the “<”-relation on f1; 2; 3; 4g in Figure 7.7.

7.6.2 Posets Are Acyclic

Did you notice anything that is common to Figures 7.6 and 7.7? Of course, they
both exhibit the transitivity and antisymmetry properties. And, except for the loops
in Figure 7.6, they both do not contain any cycles. This is not a coincidence. In fact,
the combination of the transitivity and asymmetry properties imply that the digraph

“mcs-ftl” — 2010/9/8 — 0:40 — page 227 — #233

7.6. Posets and DAGs 227

1

2

3

4

Figure 7.7 Representing the poset for the “<”-relation on f1; 2; 3; 4g as a digraph.

for any poset is an acyclic graph (that is, a DAG), at least if you don’t count loops
as cycles. We prove this fact in the following theorem.

Theorem 7.6.2. A poset has no directed cycles other than self-loops.

Proof. We use proof by contradiction. Let .A;�/ be a poset. Suppose that there
exist n � 2 distinct elements a1, a2, . . . , an such that

a1 � a2 � a3 � � � � � an�1 � an � a1:

Since a1 � a2 and a2 � a3, transitivity implies a1 � a3. Another application
of transitivity shows that a1 � a4 and a routine induction argument establishes
that a1 � an. Since we know that an � a1, antisymmetry implies a1 D an,
contradicting the supposition that a1, . . . , an are distinct and n � 2. Thus, there is
no such directed cycle. �

Thus, deleting the self-loops from a poset leaves a directed graph without cycles,
which makes it a directed acyclic graph or DAG.

7.6.3 Transitive Closure

Theorem 7.6.2 tells us that every poset corresponds to a DAG. Is the reverse true?
That is, does every DAG correspond to a poset? The answer is “Yes,” but we
need to modify the DAG to make sure that it satisfies the transitivity property. For
example, consider the DAG shown in Figure 7.8. As any DAG must, this graph
satisfies the antisymmetry property6 but it does not satisfy the transitivity property
because v1 ! v2 and v2 ! v3 are in the graph but v1 ! v3 is not in the graph.

6If u! v and v ! u are in a digraph G, then G would have a cycle of length 2 and it could not
be a DAG.

“mcs-ftl” — 2010/9/8 — 0:40 — page 228 — #234

Chapter 7 Relations and Partial Orders228

v2v1

v3v4v5

v6

Figure 7.8 A 6-node digraph that does not satisfy the transitivity property.

v2v1

v3v4v5

v6

Figure 7.9 The transitive closure for the digraph in Figure 7.8. The edges that
were added to form the transitive closure are shown in bold.

Definition 7.6.3. Given a digraph G D .V;E/, the transitive closure of G is the
digraph GC D .V;EC/ where

EC D fu! v j there is a directed path of positive length from u to v in G g:

Similarly, if R is the relation corresponding to G, the transitive closure of R (de-
noted RC) is the relation corresponding to GC.

For example, the transitive closure for the graph in Figure 7.8 is shown in Fig-
ure 7.9.

IfG is a DAG, then the transitive closure ofG is a strong partial order. The proof
of this fact is left as an exercise in the problem section.

7.6.4 The Hasse Diagram

One problem with viewing a poset as a digraph is that there tend to be lots of edges
due to the transitivity property. Fortunately, we do not necessarily have to draw

“mcs-ftl” — 2010/9/8 — 0:40 — page 229 — #235

7.7. Topological Sort 229

1

2 3 11

10 6

12

57

4 9

8
(a)

1

2

3

4
(b)

Figure 7.10 The Hasse diagrams for the posets in Figure 7.6 and 7.7.

all the edges if we know that the digraph corresponds to a poset. For example,
we could choose not to draw any edge which would be implied by the transitivity
property, knowing that it is really there by implication. In general, a Hasse diagram
for a poset .A;�/ is a digraph with vertex set A and edge set�minus all self-loops
and edges implied by transitivity. For example, the Hasse diagrams of the posets
shown in Figures 7.6 and 7.7 are shown in Figure 7.10.

7.7 Topological Sort

A total order that is consistent with a partial order is called a topological sort. More
precisely,

Definition 7.7.1. A topological sort of a poset .A;�/ is a total order .A;�T / such
that

x � y IMPLIES x �T y:

For example, consider the poset that describes how a guy might get dressed for
a formal occasion. The Hasse diagram for such a poset is shown in Figure 7.11.

“mcs-ftl” — 2010/9/8 — 0:40 — page 230 — #236

Chapter 7 Relations and Partial Orders230

underwear shirt

jacket

beltright shoeleft shoe

right sockleft sock

tiepants

Figure 7.11 The Hasse diagram for a poset that describes which items much pre-
cede others when getting dressed.

In this poset, the set is all the garments and the partial order specifies which items
much precede others when getting dressed.

There are several total orders that are consistent with the partial order shown in
Figure 7.11. We have shown two of them in list form in Figure 7.12. Each such
list is a topological sort for the partial order in Figure 7.11. In what follows, we
will prove that every finite poset has a topological sort. You can think of this as a
mathematical proof that you can get dressed in the morning (and then show up for
math lecture).

Theorem 7.7.2. Every finite poset has a topological sort.

We’ll prove the theorem constructively. The basic idea is to pull the “smallest”
element a out of the poset, find a topological sort of the remainder recursively, and
then add a back into the topological sort as an element smaller than all the others.

The first hurdle is that “smallest” is not such a simple concept in a set that is only
partially ordered. In a poset .A;�/, an element x 2 A is minimal if there is no other
element y 2 A such that y � x. For example, there are four minimal elements in
the getting-dressed poset: left sock, right sock, underwear, and shirt. (It may seem

“mcs-ftl” — 2010/9/8 — 0:40 — page 231 — #237

7.7. Topological Sort 231

underwear left sock
pants shirt
belt tie
shirt underwear
tie right sock

jacket pants
left sock right shoe

right sock belt
left shoe jacket

right shoe left shoe

(a) (b)

Figure 7.12 Two possible topological sorts of the poset shown in Figure 7.11. In
each case, the elements are listed so that x � y iff x is above y in the list.

odd that the minimal elements are at the top of the Hasse diagram rather than the
bottom. Some people adopt the opposite convention. If you’re not sure whether
minimal elements are on the top or bottom in a particular context, ask.) Similarly,
an element x 2 A is maximal if there is no other element y 2 A such that x � y.

Proving that every poset has a minimal element is extremely difficult, because it
is not true. For example, the poset .Z;�/ has no minimal element. However, there
is at least one minimal element in every finite poset.

Lemma 7.7.3. Every finite poset has a minimal element.

Proof. Let .A;�/ be an arbitrary poset. Let a1, a2, . . . , an be a maximum-length
sequence of distinct elements in A such that

a1 � a2 � � � � � an:

The existence of such a maximum-length sequence follows from the Well Ordering
Principle and the fact that A is finite. Now a0 � a1 cannot hold for any element
a0 2 A not in the chain, since the chain already has maximum length. And ai � a1
cannot hold for any i � 2, since that would imply a cycle

ai � a1 � a2 � � � � � ai

and no cycles exist in a poset by Theorem 7.6.2. Therefore a1 is a minimal element.
�

Now we’re ready to prove Theorem 7.7.2, which says that every finite poset has a
topological sort. The proof is rather intricate; understanding the argument requires
a clear grasp of all the mathematical machinery related to posets and relations!

“mcs-ftl” — 2010/9/8 — 0:40 — page 232 — #238

Chapter 7 Relations and Partial Orders232

Proof of Theorem 7.7.2. We use induction. Let P.n/ be the proposition that every
n-element poset has a topological sort.

Base case: Every 1-element poset is already a total order and thus is its own topo-
logical sort. So P.1/ is true.

Inductive step: Now we assume P.n/ in order to prove P.n C 1/ where n � 1.
Let .A;�/ be an .nC 1/-element poset. By Lemma 7.7.3, there exists a minimal
element in a 2 A. Remove a and all pairs in � involving a to obtain an n-element
poset .A0;�0/. This has a topological sort .A0;�0T / by the assumption P.n/. Now
we construct a total order .A;�T / by adding a back as an element smaller than all
the others. Formally, let

�TD�
0
T [f .a; z/ j z 2 A g:

All that remains is to check that this total order is consistent with the original partial
order .A;�/; that is, we must show that

x � y IMPLIES x �T y:

We assume that the left side is true and show that the right side follows. There are
two cases.

Case 1 If x D a, then a �T y holds, because a �T z for all z 2 A.

Case 2 if x ¤ a, then y can not equal a either, since a is a minimal element in the
partial order �. Thus, both x and y are in A0 and so x �0 y. This means
x �0T y, since �0T is a topological sort of the partial order �0. And this
implies x �T y since �T contains �0T .

Thus, .A;�T / is a topological sort of .A;�/. This shows that P.n/ implies
P.n C 1/ for all n � 1. Therefore P.n/ is true for all n � 1 by the principle of
induction, which proves the theorem. �

7.8 Parallel Task Scheduling

When items of a poset are tasks that need to be done and the partial order is a
precedence constraint, topological sorting provides us with a way to execute the
tasks sequentially without violating the precedence constraints.

But what if we have the ability to execute more than one task at the same time?
For example, suppose that the tasks are programs, the partial order indicates data

“mcs-ftl” — 2010/9/8 — 0:40 — page 233 — #239

7.8. Parallel Task Scheduling 233

underwear shirt

jacket

beltright shoeleft shoe

right sockleft sock

tiepants

A1

A2

A3

A4

Figure 7.13 A parallel schedule for the tasks-in-getting-dressed poset in Fig-
ure 7.11. The tasks in Ai can be performed in step i for 1 � i � 4. A chain
of length 4 (the critical path in this example) is shown with bold edges.

dependence, and we have a parallel machine with lots of processors instead of a
sequential machine with only one processor. How should we schedule the tasks so
as to minimize the total time used?

For simplicity, assume all tasks take 1 unit of time and we have an unlimited
number of identical processors. For example, in the clothes example in Figure 7.11,
how long would it take to handle all the garments?

In the first unit of time, we should do all minimal items, so we would put on our
left sock, our right sock, our underwear, and our shirt.7 In the second unit of time,
we should put on our pants and our tie. Note that we cannot put on our left or right
shoe yet, since we have not yet put on our pants. In the third unit of time, we should
put on our left shoe, our right shoe, and our belt. Finally, in the last unit of time,
we can put on our jacket. This schedule is illustrated in Figure 7.13.

The total time to do these tasks is 4 units. We cannot do better than 4 units of
7Yes, we know that you can’t actually put on both socks at once, but imagine you are being dressed

by a bunch of robot processors and you are in a big hurry. Still not working for you? Ok, forget about
the clothes and imagine they are programs with the precedence constraints shown in Figure 7.11.

“mcs-ftl” — 2010/9/8 — 0:40 — page 234 — #240

Chapter 7 Relations and Partial Orders234

time because there is a sequence of 4 tasks, each needing to be done before the
next, of length 4. For example, we must put on our shirt before our pants, our pants
before our belt, and our belt before our jacket. Such a sequence of items is known
as a chain

Definition 7.8.1. A chain is a sequence a1 � a2 � � � � � at , where ai ¤ aj for all
i ¤ j , such that each item is comparable to the next in the chain, and it is smaller
with respect to �. The length of the chain is t , the number of elements in the chain.

Thus, the time it takes to schedule tasks, even with an unlimited number of pro-
cessors, is at least the length of the longest chain. Indeed, if we used less time, then
two items from a longest chain would have to be done at the same time, which con-
tradicts the precedence constraints. For this reason, a longest chain is also known
as a critical path. For example, Figure 7.13 shows the critical path for the getting-
dressed poset.

In this example, we were in fact able to schedule all the tasks in t steps, where
t is the length of the longest chain. The really nice thing about posets is that this
is always possible! In other words, for any poset, there is a legal parallel schedule
that runs in t steps, where t is the length of the longest chain.

There are lots of ways to prove this fact. Our proof will also give us the corre-
sponding schedule in t time steps, and allow us to obtain some nice corollaries.

Theorem 7.8.2. Given any finite poset .A;�/ for which the longest chain has
length t , it is possible to partition A into t subsets A1, A2, . . . , At such that for
all i 2 f1; 2; : : : ; tg and for all a 2 Ai , we have that all b � a appear in the set
A1 [: : : [Ai�1.

Before proving this theorem, first note that for each i , all items in Ai can be
scheduled in time step i . This is because all preceding tasks are scheduled in pre-
ceding time steps, and thus are already completed. So the theorem implies that

Corollary 7.8.3. The total amount of parallel time needed to complete the tasks is
the same as the length of the longest chain.

Proof of Theorem 7.8.2. For all a 2 Ai , put a in Ai , where i is the length of the
longest chain ending at a. For example, the Ai for the getting-dressed poset are
shown in Figure 7.13. In what follows, we show that for all i , for all a 2 Ai and
for all b � a with b ¤ a, we have b 2 A1 [A2 [: : : [Ai�1.

We prove this by contradiction. Assume there is some i , a 2 Ai , and b � a

with b ¤ a and b … A1[A2[: : :[Ai�1. By the way we defined Ai , this implies
there is a chain of length at least i ending at b. Since b � a and b ¤ a, we can
extend this chain to a chain of length at least i C 1, ending at a. But then a could
not be in Ai . This is a contradiction. �

“mcs-ftl” — 2010/9/8 — 0:40 — page 235 — #241

7.9. Dilworth’s Lemma 235

If we have an unlimited number of processors, then the time to complete all tasks
is equal to the length of the longest chain of dependent tasks. The case where there
are only a limited number of processors is very useful in practice and it is covered
in the Problems section.

7.9 Dilworth’s Lemma

Definition 7.9.1. An antichain in a poset is a set of elements such that any two
elements in the set are incomparable.

For example, each Ai in the proof of Theorem 7.8.2 and in Figure 7.13 is an
antichain since its elements have no dependencies between them (which is why
they could be executed at the same time).

Our conclusions about scheduling also tell us something about antichains.

Corollary 7.9.2. If the largest chain in a partial order on a set A is of size t , then
A can be partitioned into t antichains.

Proof. Let the antichains be the sets A1, A2, . . . , At defined in Theorem 7.8.2. �

Corollary 7.9.2 implies a famous result8 about partially ordered sets:

Lemma 7.9.3 (Dilworth). For all t > 0, every partially ordered set with n elements
must have either a chain of size greater than t or an antichain of size at least n=t .

Proof. By contradiction. Assume that the longest chain has length at most t and the
longest antichain has size less than n=t . Then by Corollary 7.9.2, the n elements
can be partitioned into at most t antichains. Hence, there are fewer than t �n=t D n
elements in the poset, which is a contradiction. Hence there must be a chain longer
than t or an antichain with at least n=t elements. �

Corollary 7.9.4. Every partially ordered set with n elements has a chain of size
greater than

p
n or an antichain of size at least

p
n.

Proof. Set t D
p
n in Lemma 7.9.3. �

As an application, consider a permutation of the numbers from 1 to n arranged
as a sequence from left to right on a line. Corollary 7.9.4 can be used to show
that there must be a

p
n-length subsequence of these numbers that is completely

8Lemma 7.9.3 also follows from a more general result known as Dilworth’s Theorem that we will
not discuss.

“mcs-ftl” — 2010/9/8 — 0:40 — page 236 — #242

Chapter 7 Relations and Partial Orders236

increasing or completely decreasing as you move from left to right. For example,
the sequence

7; 8; 9; 4; 5; 6; 1; 2; 3

has an increasing subsequence of length 3 (for example, 7, 8, 9) and a decreasing
subsequence of length 3 (for example, 9, 6, 3). The proof of this result is left as an
exercise that will test your ability to find the right partial order on the numbers in
the sequence.

“mcs-ftl” — 2010/9/8 — 0:40 — page 237 — #243

8 State Machines
This chapter needs to be reworked.

“mcs-ftl” — 2010/9/8 — 0:40 — page 238 — #244

“mcs-ftl” — 2010/9/8 — 0:40 — page 239 — #245

III Counting

“mcs-ftl” — 2010/9/8 — 0:40 — page 240 — #246

“mcs-ftl” — 2010/9/8 — 0:40 — page 241 — #247

Introduction

Counting seems easy enough: 1, 2, 3, 4, etc. This direct approach works well
for counting simple things—like your toes—and may be the only approach for ex-
tremely complicated things with no identifiable structure. However, subtler meth-
ods can help you count many things in the vast middle ground, such as:

� The number of different ways to select a dozen doughnuts when there are
five varieties available.

� The number of 16-bit numbers with exactly 4 ones.

Perhaps surprisingly, but certainly not coincidentally, the number in each of these
two situations is the same: 1820.

Counting is useful in computer science for several reasons:

� Determining the time and storage required to solve a computational problem—
a central objective in computer science—often comes down to solving a
counting problem.

� Counting is the basis of probability theory, which plays a central role in all
sciences, including computer science.

� Two remarkable proof techniques, the “pigeonhole principle” and “combi-
natorial proof,” rely on counting. These lead to a variety of interesting and
useful insights.

In the next several chapters, we’re going to present a lot of rules for counting.
These rules are actually theorems, and we will prove some of them, but our focus
won’t be on the proofs per se—our objective is to teach you simple counting as a
practical skill, like integration.

“mcs-ftl” — 2010/9/8 — 0:40 — page 242 — #248

Part III Counting242

We begin our study of counting in Chapter 9 with a collection of rules and meth-
ods for finding closed-form expressions for commonly-occurring sums and prod-
ucts such as

Pn
iD1 x

i and nŠ D
Qn
iD1 i . We also introduce asymptotic notations

such as �, O , and ‚ that are commonly used in computer science to express the
how a quantity such as the running time of a program grows with the size of the
input.

In Chapter 10, we show how to solve a variety of recurrences that arise in com-
putational problems. These methods are especially useful when you need to design
or analyze recursive programs.

In Chapters 11 and 12, we describe the most basic rules for determining the
cardinality of a set. This material is simple yet powerful, and it provides a great
tool set for use in your future career.

We conclude in Chapter 13 with a brief digression into the final frontier of
counting—infinity. We’ll define what it means for a set to be countable and show
you some examples of sets that are really big—bigger even than the set of real
numbers.

“mcs-ftl” — 2010/9/8 — 0:40 — page 243 — #249

9 Sums and Asymptotics
Sums and products arise regularly in the analysis of algorithms, financial applica-
tions, physical problems, and probabilistic systems. For example, we have already
encountered the sum 1 C 2 C 4 C � � � C N when counting the number of nodes
in a complete binary tree with N inputs. Although such a sum can be represented
compactly using the sigma notation

logNX
iD0

2i ; (9.1)

it is a lot easier and more helpful to express the sum by its closed form value

2N � 1:

By closed form, we mean an expression that does not make use of summation
or product symbols or otherwise need those handy (but sometimes troublesome)
dots. . . . Expressions in closed form are usually easier to evaluate (it doesn’t get
much simpler than 2N � 1, for example) and it is usually easier to get a feel for
their magnitude than expressions involving large sums and products.

But how do you find a closed form for a sum or product? Well, it’s part math and
part art. And it is the subject of this chapter.

We will start the chapter with a motivating example involving annuities. Figuring
out the value of the annuity will involve a large and nasty-looking sum. We will then
describe several methods for finding closed forms for all sorts of sums, including
the annuity sums. In some cases, a closed form for a sum may not exist and so we
will provide a general method for finding good upper and lower bounds on the sum
(which are closed form, of course).

The methods we develop for sums will also work for products since you can
convert any product into a sum by taking a logarithm of the product. As an example,
we will use this approach to find a good closed-form approximation to

nŠ WWD 1 � 2 � 3 � � �n:

We conclude the chapter with a discussion of asymptotic notation. Asymptotic
notation is often used to bound the error terms when there is no exact closed form
expression for a sum or product. It also provides a convenient way to express the
growth rate or order of magnitude of a sum or product.

“mcs-ftl” — 2010/9/8 — 0:40 — page 244 — #250

Chapter 9 Sums and Asymptotics244

9.1 The Value of an Annuity

Would you prefer a million dollars today or $50,000 a year for the rest of your life?
On the one hand, instant gratification is nice. On the other hand, the total dollars
received at $50K per year is much larger if you live long enough.

Formally, this is a question about the value of an annuity. An annuity is a finan-
cial instrument that pays out a fixed amount of money at the beginning of every year
for some specified number of years. In particular, an n-year, m-payment annuity
pays m dollars at the start of each year for n years. In some cases, n is finite, but
not always. Examples include lottery payouts, student loans, and home mortgages.
There are even Wall Street people who specialize in trading annuities.1

A key question is, “What is an annuity worth?” For example, lotteries often pay
out jackpots over many years. Intuitively, $50,000 a year for 20 years ought to be
worth less than a million dollars right now. If you had all the cash right away, you
could invest it and begin collecting interest. But what if the choice were between
$50,000 a year for 20 years and a half million dollars today? Now it is not clear
which option is better.

9.1.1 The Future Value of Money

In order to answer such questions, we need to know what a dollar paid out in the
future is worth today. To model this, let’s assume that money can be invested at a
fixed annual interest rate p. We’ll assume an 8% rate2 for the rest of the discussion.

Here is why the interest rate p matters. Ten dollars invested today at interest rate
p will become .1Cp/ � 10 D 10:80 dollars in a year, .1Cp/2 � 10 � 11:66 dollars
in two years, and so forth. Looked at another way, ten dollars paid out a year from
now is only really worth 1=.1C p/ � 10 � 9:26 dollars today. The reason is that if
we had the $9.26 today, we could invest it and would have $10.00 in a year anyway.
Therefore, p determines the value of money paid out in the future.

So for an n-year,m-payment annuity, the first payment ofm dollars is truly worth
m dollars. But the second payment a year later is worth only m=.1 C p/ dollars.
Similarly, the third payment is worth m=.1 C p/2, and the n-th payment is worth
only m=.1 C p/n�1. The total value, V , of the annuity is equal to the sum of the

1Such trading ultimately led to the subprime mortgage disaster in 2008–2009. We’ll talk more
about that in Section 19.5.3.

2U.S. interest rates have dropped steadily for several years, and ordinary bank deposits now earn
around 1.5%. But just a few years ago the rate was 8%; this rate makes some of our examples a little
more dramatic. The rate has been as high as 17% in the past thirty years.

“mcs-ftl” — 2010/9/8 — 0:40 — page 245 — #251

9.1. The Value of an Annuity 245

payment values. This gives:

V D

nX
iD1

m

.1C p/i�1

D m �

n�1X
jD0

�
1

1C p

�j
(substitute j D i � 1)

D m �

n�1X
jD0

xj (substitute x D 1=.1C p/): (9.2)

The goal of the preceding substitutions was to get the summation into a simple
special form so that we can solve it with a general formula. In particular, the terms
of the sum

n�1X
jD0

xj D 1C x C x2 C x3 C � � � C xn�1

form a geometric series, which means that the ratio of consecutive terms is always
the same and it is a positive value less than one. In this case, the ratio is always x,
and 0 < x < 1 since we assumed that p > 0. It turns out that there is a nice
closed-form expression for any geometric series; namely

n�1X
iD0

xi D
1 � xn

1 � x
: (9.3)

Equation 9.3 can be verified by induction, but, as is often the case, the proof by
induction gives no hint about how the formula was found in the first place. So we’ll
take this opportunity to describe a method that you could use to figure it out for
yourself. It is called the Perturbation Method.

9.1.2 The Perturbation Method

Given a sum that has a nice structure, it is often useful to “perturb” the sum so that
we can somehow combine the sum with the perturbation to get something much
simpler. For example, suppose

S D 1C x C x2 C � � � C xn�1:

An example of a perturbation would be

xS D x C x2 C � � � C xn:

“mcs-ftl” — 2010/9/8 — 0:40 — page 246 — #252

Chapter 9 Sums and Asymptotics246

The difference between S and xS is not so great, and so if we were to subtract xS
from S , there would be massive cancellation:

S D 1C x C x2 C x3 C � � � C xn�1

�xS D � x � x2 � x3 � � � � � xn�1 � xn:

The result of the subtraction is

S � xS D 1 � xn:

Solving for S gives the desired closed-form expression in Equation 9.3:

S D
1 � xn

1 � x
:

We’ll see more examples of this method when we introduce generating functions
in Chapter 12.

9.1.3 A Closed Form for the Annuity Value

Using Equation 9.3, we can derive a simple formula for V , the value of an annuity
that pays m dollars at the start of each year for n years.

V D m

�
1 � xn

1 � x

�
(by Equations 9.2 and 9.3) (9.4)

D m

1C p � .1=.1C p//n�1

p

!
(substituting x D 1=.1C p/): (9.5)

Equation 9.5 is much easier to use than a summation with dozens of terms. For
example, what is the real value of a winning lottery ticket that pays $50,000 per
year for 20 years? Plugging in m D $50,000, n D 20, and p D 0:08 gives
V � $530,180. So because payments are deferred, the million dollar lottery is
really only worth about a half million dollars! This is a good trick for the lottery
advertisers.

9.1.4 Infinite Geometric Series

The question we began with was whether you would prefer a million dollars today
or $50,000 a year for the rest of your life. Of course, this depends on how long
you live, so optimistically assume that the second option is to receive $50,000 a
year forever. This sounds like infinite money! But we can compute the value of an
annuity with an infinite number of payments by taking the limit of our geometric
sum in Equation 9.3 as n tends to infinity.

“mcs-ftl” — 2010/9/8 — 0:40 — page 247 — #253

9.1. The Value of an Annuity 247

Theorem 9.1.1. If jxj < 1, then

1X
iD0

xi D
1

1 � x
:

Proof.

1X
iD0

xi WWD lim
n!1

n�1X
iD0

xi

D lim
n!1

1 � xn

1 � x
(by Equation 9.3)

D
1

1 � x
:

The final line follows from that fact that limn!1 xn D 0 when jxj < 1. �

In our annuity problem, x D 1=.1C p/ < 1, so Theorem 9.1.1 applies, and we
get

V D m �

1X
jD0

xj (by Equation 9.2)

D m �
1

1 � x
(by Theorem 9.1.1)

D m �
1C p

p
.x D 1=.1C p//:

Plugging inm D $50,000 and p D 0:08, we see that the value V is only $675,000.
Amazingly, a million dollars today is worth much more than $50,000 paid every
year forever! Then again, if we had a million dollars today in the bank earning 8%
interest, we could take out and spend $80,000 a year forever. So on second thought,
this answer really isn’t so amazing.

9.1.5 Examples

Equation 9.3 and Theorem 9.1.1 are incredibly useful in computer science. In fact,
we already used Equation 9.3 implicitly when we claimed in Chapter 6 than an
N -input complete binary tree has

1C 2C 4C � � � CN D 2N � 1

“mcs-ftl” — 2010/9/8 — 0:40 — page 248 — #254

Chapter 9 Sums and Asymptotics248

nodes. Here are some other common sums that can be put into closed form using

Equation 9.3 and Theorem 9.1.1:

1C 1=2C 1=4C � � � D

1X
iD0

�
1

2

�i
D

1

1 � .1=2/
D 2 (9.6)

0:99999 � � � D 0:9

1X
iD0

�
1

10

�i
D 0:9

1

1 � 1=10

!
D 0:9

10

9

!
D 1 (9.7)

1 � 1=2C 1=4 � � � � D

1X
iD0

�
�1

2

�i
D

1

1 � .�1=2/
D
2

3
(9.8)

1C 2C 4C � � � C 2n�1 D

n�1X
iD0

2i D
1 � 2n

1 � 2
D 2n � 1 (9.9)

1C 3C 9C � � � C 3n�1 D

n�1X
iD0

3i D
1 � 3n

1 � 3
D
3n � 1

2
(9.10)

If the terms in a geometric sum grow smaller, as in Equation 9.6, then the sum is
said to be geometrically decreasing. If the terms in a geometric sum grow progres-
sively larger, as in Equations 9.9 and 9.10, then the sum is said to be geometrically
increasing. In either case, the sum is usually approximately equal to the term in the
sum with the greatest absolute value. For example, in Equations 9.6 and 9.8, the
largest term is equal to 1 and the sums are 2 and 2/3, both relatively close to 1. In
Equation 9.9, the sum is about twice the largest term. In Equation 9.10, the largest
term is 3n�1 and the sum is .3n � 1/=2, which is only about a factor of 1:5 greater.
You can see why this rule of thumb works by looking carefully at Equation 9.3 and
Theorem 9.1.1.

9.1.6 Variations of Geometric Sums

We now know all about geometric sums—if you have one, life is easy. But in
practice one often encounters sums that cannot be transformed by simple variable
substitutions to the form

P
xi .

A non-obvious, but useful way to obtain new summation formulas from old is
by differentiating or integrating with respect to x. As an example, consider the
following sum:

n�1X
iD1

ixi D x C 2x2 C 3x3 C � � � C .n � 1/xn�1

“mcs-ftl” — 2010/9/8 — 0:40 — page 249 — #255

9.1. The Value of an Annuity 249

This is not a geometric sum, since the ratio between successive terms is not fixed,
and so our formula for the sum of a geometric sum cannot be directly applied. But
suppose that we differentiate Equation 9.3:

d

dx

n�1X
iD0

xi

!
D

d

dx

�
1 � xn

1 � x

�
: (9.11)

The left-hand side of Equation 9.11 is simply

n�1X
iD0

d

dx
.xi / D

n�1X
iD0

ixi�1:

The right-hand side of Equation 9.11 is

�nxn�1.1 � x/ � .�1/.1 � xn/

.1 � x/2
D
�nxn�1 C nxn C 1 � xn

.1 � x/2

D
1 � nxn�1 C .n � 1/xn

.1 � x/2
:

Hence, Equation 9.11 means that

n�1X
iD0

ixi�1 D
1 � nxn�1 C .n � 1/xn

.1 � x/2
:

Often, differentiating or integrating messes up the exponent of x in every term.
In this case, we now have a formula for a sum of the form

P
ixi�1, but we want a

formula for the series
P
ixi . The solution is simple: multiply by x. This gives:

n�1X
iD1

ixi D
x � nxn C .n � 1/xnC1

.1 � x/2
(9.12)

and we have the desired closed-form expression for our sum3. It’s a little compli-
cated looking, but it’s easier to work with than the sum.

Notice that if jxj < 1, then this series converges to a finite value even if there are
infinitely many terms. Taking the limit of Equation 9.12 as n tends infinity gives
the following theorem:

3Since we could easily have made a mistake in the calculation, it is always a good idea to go back
and validate a formula obtained this way with a proof by induction.

“mcs-ftl” — 2010/9/8 — 0:40 — page 250 — #256

Chapter 9 Sums and Asymptotics250

Theorem 9.1.2. If jxj < 1, then

1X
iD1

ixi D
x

.1 � x/2
:

As a consequence, suppose that there is an annuity that pays im dollars at the
end of each year i forever. For example, if m D $50,000, then the payouts are
$50,000 and then $100,000 and then $150,000 and so on. It is hard to believe that
the value of this annuity is finite! But we can use Theorem 9.1.2 to compute the
value:

V D

1X
iD1

im

.1C p/i

D m �
1=.1C p/

.1 � 1
1Cp

/2

D m �
1C p

p2
:

The second line follows by an application of Theorem 9.1.2. The third line is
obtained by multiplying the numerator and denominator by .1C p/2.

For example, if m D $50,000, and p D 0:08 as usual, then the value of the
annuity is V D $8,437,500. Even though the payments increase every year, the in-
crease is only additive with time; by contrast, dollars paid out in the future decrease
in value exponentially with time. The geometric decrease swamps out the additive
increase. Payments in the distant future are almost worthless, so the value of the
annuity is finite.

The important thing to remember is the trick of taking the derivative (or integral)
of a summation formula. Of course, this technique requires one to compute nasty
derivatives correctly, but this is at least theoretically possible!

9.2 Power Sums

In Chapter 3, we verified the formula

nX
iD1

i D
n.nC 1/

2
: (9.13)

But the source of this formula is still a mystery. Sure, we can prove it is true using
well ordering or induction, but where did the expression on the right come from in

“mcs-ftl” — 2010/9/8 — 0:40 — page 251 — #257

9.2. Power Sums 251

the first place? Even more inexplicable is the closed form expression for the sum
of consecutive squares:

nX
iD1

i2 D
.2nC 1/.nC 1/n

6
: (9.14)

It turns out that there is a way to derive these expressions, but before we explain
it, we thought it would be fun4 to show you how Gauss proved Equation 9.13 when
he was a young boy.5

Gauss’s idea is related to the perturbation method we used in Section 9.1.2. Let

S D

nX
iD1

i:

Then we can write the sum in two orders:

S D 1 C 2 C : : : C .n � 1/C n;

S D nC .n � 1/C : : : C 2 C 1:

Adding these two equations gives

2S D .nC 1/C .nC 1/C � � � C .nC 1/C .nC 1/

D n.nC 1/:

Hence,

S D
n.nC 1/

2
:

Not bad for a young child. Looks like Gauss had some potential.. . .
Unfortunately, the same trick does not work for summing consecutive squares.

However, we can observe that the result might be a third-degree polynomial in n,
since the sum contains n terms that average out to a value that grows quadratically
in n. So we might guess that

nX
iD1

i2 D an3 C bn2 C cnC d:

If the guess is correct, then we can determine the parameters a, b, c, and d by
plugging in a few values for n. Each such value gives a linear equation in a, b,

4Remember that we are mathematicians, so our definition of “fun” may be different than yours.
5We suspect that Gauss was probably not an ordinary boy.

“mcs-ftl” — 2010/9/8 — 0:40 — page 252 — #258

Chapter 9 Sums and Asymptotics252

c, and d . If we plug in enough values, we may get a linear system with a unique
solution. Applying this method to our example gives:

n D 0 implies 0 D d

n D 1 implies 1 D aC b C c C d

n D 2 implies 5 D 8aC 4b C 2c C d

n D 3 implies 14 D 27aC 9b C 3c C d:

Solving this system gives the solution a D 1=3, b D 1=2, c D 1=6, d D 0.
Therefore, if our initial guess at the form of the solution was correct, then the
summation is equal to n3=3C n2=2C n=6, which matches Equation 9.14.

The point is that if the desired formula turns out to be a polynomial, then once
you get an estimate of the degree of the polynomial, all the coefficients of the
polynomial can be found automatically.

Be careful! This method let’s you discover formulas, but it doesn’t guarantee
they are right! After obtaining a formula by this method, it’s important to go back
and prove it using induction or some other method, because if the initial guess at
the solution was not of the right form, then the resulting formula will be completely
wrong!6

9.3 Approximating Sums

Unfortunately, it is not always possible to find a closed-form expression for a sum.
For example, consider the sum

S D

nX
iD1

p
i :

No closed form expression is known for S .
In such cases, we need to resort to approximations for S if we want to have a

closed form. The good news is that there is a general method to find closed-form
upper and lower bounds that work for most any sum. Even better, the method is
simple and easy to remember. It works by replacing the sum by an integral and
then adding either the first or last term in the sum.

6Alternatively, you can use the method based on generating functions described in Chapter 12,
which does not require any guessing at all.

“mcs-ftl” — 2010/9/8 — 0:40 — page 253 — #259

9.3. Approximating Sums 253

Theorem 9.3.1. Let f W RC ! RC be a nondecreasing7 continuous function and
let

S D

nX
iD1

f .i/

and

I D

Z n

1

f .x/ dx:

Then
I C f .1/ � S � I C f .n/:

Similarly, if f is nonincreasing, then

I C f .n/ � S � I C f .1/:

Proof. Let f W RC ! RC be a nondecreasing function. For example, f .x/ D
p
x

is such a function.
Consider the graph shown in Figure 9.1. The value of

S D

nX
iD1

f .i/

is represented by the shaded area in this figure. This is because the i th rectangle in
the figure (counting from left to right) has width 1 and height f .i/.

The value of

I D

Z n

1

f .x/ dx

is the shaded area under the curve of f .x/ from 1 to n shown in Figure 9.2.
Comparing the shaded regions in Figures 9.1 and 9.2, we see that S is at least

I plus the area of the leftmost rectangle. Hence,

S � I C f .1/ (9.15)

This is the lower bound for S . We next derive the upper bound.
Figure 9.3 shows the curve of f .x/ from 1 to n shifted left by 1. This is the same

as the curve f .x C 1/ from 0 to n � 1 and it has the same area I .
Comparing the shaded regions in Figures 9.1 and 9.3, we see that S is at most

I plus the area of the rightmost rectangle. Hence,

S � I C f .n/: (9.16)

7A function f is nondecreasing if f .x/ � f .y/ whenever x � y. It is nonincreasing if f .x/ �
f .y/ whenever x � y.

“mcs-ftl” — 2010/9/8 — 0:40 — page 254 — #260

Chapter 9 Sums and Asymptotics254

0 1 2 3

n�2 n�1 n

f.n/

f.n�1/

f.3/

f.2/

f.1/

Figure 9.1 The area of the i th rectangle is f .i/. The shaded region has areaPn
iD1 f .i/.

0 1 2 3 n�2 n�1 n

f.n/

f.x/
f.n�1/

f.3/

f.2/

f.1/

Figure 9.2 The shaded area under the curve of f .x/ from 1 to n (shown in bold)
is I D

R n
1 f .x/ dx.

“mcs-ftl” — 2010/9/8 — 0:40 — page 255 — #261

9.3. Approximating Sums 255

0 1 2 3 n�2 n�1 n

f.n/

f.n�1/ f.xC1/

f.3/

f.2/

f.1/

Figure 9.3 The shaded area under the curve of f .xC 1/ from 0 to n� 1 is I , the
same as the area under the curve of f .x/ from 1 to n. This curve is the same as the
curve in Figure 9.2 except that has been shifted left by 1.

Combining Equations 9.15 and 9.16, we find that

I C f .1/ � S � I C f .n/;

for any nondecreasing function f , as claimed
The argument for the case when f is nonincreasing is very similar. The analo-

gous graphs to those shown in Figures 9.1–9.3 are provided in Figure 9.4. As you
can see by comparing the shaded regions in Figures 9.4(a) and 9.4(b),

S � I C f .1/:

Similarly, comparing the shaded regions in Figures 9.4(a) and 9.4(c) reveals that

S � I C f .n/:

Hence, if f is nonincreasing,

I C f .n/ � S � I C f .1/:

as claimed. �

Theorem 9.3.1 provides good bounds for most sums. At worst, the bounds will
be off by the largest term in the sum. For example, we can use Theorem 9.3.1 to
bound the sum

S D

nX
iD1

p
i

“mcs-ftl” — 2010/9/8 — 0:40 — page 256 — #262

Chapter 9 Sums and Asymptotics256

0 1 2 3 n�2 n�1 n

f.n/

f.n�1/

f.3/

f.2/

f.1/

(a)

0 1 2 3 n�2 n�1 n

f.n/

f.n�1/

f.3/

f.2/

f.1/

f.x/

(b)

0 1 2 3 n�2 n�1 n

f.n/

f.n�1/

f.xC1/f.3/

f.2/

f.1/

(c)

Figure 9.4 The area of the shaded region in (a) is S D
Pn
iD1 f .i/. The area in

the shaded regions in (b) and (c) is I D
R n
1 f .x/ dx.

“mcs-ftl” — 2010/9/8 — 0:40 — page 257 — #263

9.4. Hanging Out Over the Edge 257

as follows.
We begin by computing

I D

Z n

1

p
x dx

D
x3=2

3=2

ˇ̌̌̌
ˇ
n

1

D
2

3
.n3=2 � 1/:

We then apply Theorem 9.3.1 to conclude that

2

3
.n3=2 � 1/C 1 � S �

2

3
.n3=2 � 1/C

p
n

and thus that
2

3
n3=2 C

1

3
� S �

2

3
n3=2 C

p
n �

2

3
:

In other words, the sum is very close to 2
3
n3=2.

We’ll be using Theorem 9.3.1 extensively going forward. At the end of this
chapter, we will also introduce some notation that expresses phrases like “the sum
is very close to” in a more precise mathematical manner. But first, we’ll see how
Theorem 9.3.1 can be used to resolve a classic paradox in structural engineering.

9.4 Hanging Out Over the Edge

Suppose that you have n identical blocks8 and that you stack them one on top of
the next on a table as shown in Figure 9.5. Is there some value of n for which it is
possible to arrange the stack so that one of the blocks hangs out completely over
the edge of the table without having the stack fall over? (You are not allowed to use
glue or otherwise hold the stack in position.)

Most people’s first response to this question—sometimes also their second and
third responses—is “No. No block will ever get completely past the edge of the
table.” But in fact, if n is large enough, you can get the top block to stick out as far
as you want: one block-length, two block-lengths, any number of block-lengths!

8We will assume that the blocks are rectangular, uniformly weighted and of length 1.

“mcs-ftl” — 2010/9/8 — 0:40 — page 258 — #264

Chapter 9 Sums and Asymptotics258

table

Figure 9.5 A stack of 5 identical blocks on a table. The top block is hanging out
over the edge of the table, but if you try stacking the blocks this way, the stack will
fall over.

9.4.1 Stability

A stack of blocks is said to be stable if it will not fall over of its own accord. For
example, the stack illustrated in Figure 9.5 is not stable because the top block is
sure to fall over. This is because the center or mass of the top block is hanging out
over air.

In general, a stack of n blocks will be stable if and only if the center of mass of
the top i blocks sits over the .i C 1/st block for i D 1, 2, . . . , n � 1, and over the
table for i D n.

We define the overhang of a stable stack to be the distance between the edge of
the table and the rightmost end of the rightmost block in the stack. Our goal is thus
to maximize the overhang of a stable stack.

For example, the maximum possible overhang for a single block is 1=2. That is
because the center of mass of a single block is in the middle of the block (which is
distance 1=2 from the right edge of the block). If we were to place the block so that
its right edge is more than 1=2 from the edge of the table, the center of mass would
be over air and the block would tip over. But we can place the block so the center
of mass is at the edge of the table, thereby achieving overhang 1=2. This position
is illustrated in Figure 9.6.

“mcs-ftl” — 2010/9/8 — 0:40 — page 259 — #265

9.4. Hanging Out Over the Edge 259

1=2

table

center of mass
of block

Figure 9.6 One block can overhang half a block length.

In general, the overhang of a stack of blocks is maximized by sliding the entire
stack rightward until its center of mass is at the edge of the table. The overhang
will then be equal to the distance between the center of mass of the stack and the
rightmost edge of the rightmost block. We call this distance the spread of the stack.
Note that the spread does not depend on the location of the stack on the table—it
is purely a property of the blocks in the stack. Of course, as we just observed,
the maximum possible overhang is equal to the maximum possible spread. This
relationship is illustrated in Figure 9.7.

9.4.2 A Recursive Solution

Our goal is to find a formula for the maximum possible spread Sn that is achievable
with a stable stack of n blocks.

We already know that S1 D 1=2 since the right edge of a single block with
length 1 is always distance 1=2 from its center of mass. Let’s see if we can use a
recursive approach to determine Sn for all n. This means that we need to find a
formula for Sn in terms of Si where i < n.

Suppose we have a stable stack S of n blocks with maximum possible spread Sn.
There are two cases to consider depending on where the rightmost block is in the
stack.

“mcs-ftl” — 2010/9/8 — 0:40 — page 260 — #266

Chapter 9 Sums and Asymptotics260

overhang

table

center of mass
of whole stack

spread

Figure 9.7 The overhang is maximized by maximizing the spread and then plac-
ing the stack so that the center of mass is at the edge of the table.

“mcs-ftl” — 2010/9/8 — 0:40 — page 261 — #267

9.4. Hanging Out Over the Edge 261

Case 1: The rightmost block in S is the bottom block. Since the center of mass
of the top n � 1 blocks must be over the bottom block for stability, the spread is
maximized by having the center of mass of the top n�1 blocks be directly over the
left edge of the bottom block. In this case the center of mass of S is9

.n � 1/ � 1C .1/ � 1
2

n
D 1 �

1

2n

to the left of the right edge of the bottom block and so the spread for S is

1 �
1

2n
: (9.17)

For example, see Figure 9.8.
In fact, the scenario just described is easily achieved by arranging the blocks as

shown in Figure 9.9, in which case we have the spread given by Equation 9.17. For
example, the spread is 3=4 for 2 blocks, 5=6 for 3 blocks, 7=8 for 4 blocks, etc.

Can we do any better? The best spread in Case 1 is always less than 1, which
means that we cannot get a block fully out over the edge of the table in this scenario.
Maybe our intuition was right that we can’t do better. Before we jump to any false
conclusions, however, let’s see what happens in the other case.

Case 2: The rightmost block in S is among the top n � 1 blocks. In this case, the
spread is maximized by placing the top n � 1 blocks so that their center of mass is
directly over the right end of the bottom block. This means that the center of mass
for S is at location

.n � 1/ � C C 1 �
�
C � 1

2

�
n

D C �
1

2n

where C is the location of the center of mass of the top n � 1 blocks. In other
words, the center of mass of S is 1=2n to the left of the center of mass of the top
n� 1 blocks. (The difference is due to the effect of the bottom block, whose center
of mass is 1=2 unit to the left of C .) This means that the spread of S is 1=2n
greater than the spread of the top n � 1 blocks (because we are in the case where
the rightmost block is among the top n � 1 blocks.)

Since the rightmost block is among the top n � 1 blocks, the spread for S is
maximized by maximizing the spread for the top n�1 blocks. Hence the maximum
spread for S in this case is

Sn�1 C
1

2n
(9.18)

9The center of mass of a stack of blocks is the average of the centers of mass of the individual
blocks.

“mcs-ftl” — 2010/9/8 — 0:40 — page 262 — #268

Chapter 9 Sums and Asymptotics262

top n�1

blocks

bottom block

center of mass
of top

n�1 blocks

center of mass of S

Figure 9.8 The scenario where the bottom block is the rightmost block. In this
case, the spread is maximized by having the center of mass of the top n� 1 blocks
be directly over the left edge of the bottom block.

“mcs-ftl” — 2010/9/8 — 0:40 — page 263 — #269

9.4. Hanging Out Over the Edge 263

 n�1

blocks

1�1=2n1=2

table

Figure 9.9 A method for achieving spread (and hence overhang) 1 � 1=2n with
n blocks, where the bottom block is the rightmost block.

“mcs-ftl” — 2010/9/8 — 0:40 — page 264 — #270

Chapter 9 Sums and Asymptotics264

where Sn�1 is the maximum possible spread for n� 1 blocks (using any strategy).
We are now almost done. There are only two cases to consider when designing

a stack with maximum spread and we have analyzed both of them. This means
that we can combine Equation 9.17 from Case 1 with Equation 9.18 from Case 2 to
conclude that

Sn D max
�
1 �

1

2n
; Sn�1 C

1

2n

�
(9.19)

for any n > 1.
Uh-oh. This looks complicated. Maybe we are not almost done after all!
Equation 9.19 is an example of a recurrence. We will describe numerous tech-

niques for solving recurrences in Chapter 10, but, fortunately, Equation 9.19 is
simple enough that we can solve it without waiting for all the hardware in Chap-
ter 10.

One of the first things to do when you have a recurrence is to get a feel for it
by computing the first few terms. This often gives clues about a way to solve the
recurrence, as it will in this case.

We already know that S1 D 1=2. What about S2? From Equation 9.19, we find
that

S2 D max
�
1 �

1

4
;
1

2
C
1

4

�
D 3=4:

Both cases give the same spread, albeit by different approaches. For example, see
Figure 9.10.

That was easy enough. What about S3?

S3 D max
�
1 �

1

6
;
3

4
C
1

6

�
D max

�
5

6
;
11

12

�
D
11

12
:

As we can see, the method provided by Case 2 is the best. Let’s check n D 4.

S4 D max
�
1 �

1

8
;
11

12
C
1

8

�
D
25

24
: (9.20)

“mcs-ftl” — 2010/9/8 — 0:40 — page 265 — #271

9.4. Hanging Out Over the Edge 265

1=2 3=4

table

(a)

1=21=4

table

(b)

Figure 9.10 Two ways to achieve spread (and hence overhang) 3=4 with n D 2

blocks. The first way (a) is from Case 1 and the second (b) is from Case 2.

“mcs-ftl” — 2010/9/8 — 0:40 — page 266 — #272

Chapter 9 Sums and Asymptotics266

Wow! This is a breakthrough—for two reasons. First, Equation 9.20 tells us that
by using only 4 blocks, we can make a stack so that one of the blocks is hanging
out completely over the edge of the table. The two ways to do this are shown in
Figure 9.11.

The second reason that Equation 9.20 is important is that we now know that
S4 > 1, which means that we no longer have to worry about Case 1 for n > 4 since
Case 1 never achieves spread greater than 1. Moreover, even for n � 4, we have
now seen that the spread achieved by Case 1 never exceeds the spread achieved by
Case 2, and they can be equal only for n D 1 and n D 2. This means that

Sn D Sn�1 C
1

2n
(9.21)

for all n > 1 since we have shown that the best spread can always be achieved
using Case 2.

The recurrence in Equation 9.21 is much easier to solve than the one we started
with in Equation 9.19. We can solve it by expanding the equation as follows:

Sn D Sn�1 C
1

2n

D Sn�2 C
1

2.n � 1/
C

1

2n

D Sn�3 C
1

2.n � 2/
C

1

2.n � 1/
C

1

2n

and so on. This suggests that

Sn D

nX
iD1

1

2i
; (9.22)

which is, indeed, the case.
Equation 9.22 can be verified by induction. The base case when n D 1 is true

since we know that S1 D 1=2. The inductive step follows from Equation 9.21.
So we now know the maximum possible spread and hence the maximum possible

overhang for any stable stack of books. Are we done? Not quite. Although we
know that S4 > 1, we still don’t know how big the sum

Pn
iD1

1
2i

can get.
It turns out that Sn is very close to a famous sum known as the nth Harmonic

number Hn.

9.4.3 Harmonic Numbers

Definition 9.4.1. The nth Harmonic number is

Hn WWD

nX
iD1

1

i
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 267 — #273

9.4. Hanging Out Over the Edge 267

3=41=8

1=2

1=6

table

(a)

1=4 1=21=8 1=6

table

(b)

Figure 9.11 The two ways to achieve spread (and overhang) 25=24. The method
in (a) uses Case 1 for the top 2 blocks and Case 2 for the others. The method in (b)
uses Case 2 for every block that is added to the stack.

“mcs-ftl” — 2010/9/8 — 0:40 — page 268 — #274

Chapter 9 Sums and Asymptotics268

So Equation 9.22 means that

Sn D
Hn

2
: (9.23)

The first few Harmonic numbers are easy to compute. For example,

H4 D 1C
1

2
C
1

3
C
1

4
D
25

12
:

There is good news and bad news about Harmonic numbers. The bad news is that
there is no closed-form expression known for the Harmonic numbers. The good
news is that we can use Theorem 9.3.1 to get close upper and lower bounds onHn.
In particular, since Z n

1

1

x
dx D ln.x/

ˇ̌̌n
1
D ln.n/;

Theorem 9.3.1 means that

ln.n/C
1

n
� Hn � ln.n/C 1: (9.24)

In other words, the nth Harmonic number is very close to ln.n/.
Because the Harmonic numbers frequently arise in practice, mathematicians

have worked hard to get even better approximations for them. In fact, it is now
known that

Hn D ln.n/C C
1

2n
C

1

12n2
C

�.n/

120n4
(9.25)

Here is a value 0:577215664 : : : called Euler’s constant, and �.n/ is between 0
and 1 for all n. We will not prove this formula.

We are now finally done with our analysis of the block stacking problem. Plug-
ging the value of Hn into Equation 9.23, we find that the maximum overhang for
n blocks is very close to 1

2
ln.n/. Since ln.n/ grows to infinity as n increases, this

means that if we are given enough blocks (in theory anyway), we can get a block to
hang out arbitrarily far over the edge of the table. Of course, the number of blocks
we need will grow as an exponential function of the overhang, so it will probably
take you a long time to achieve an overhang of 2 or 3, never mind an overhang
of 100.

9.4.4 Asymptotic Equality

For cases like Equation 9.25 where we understand the growth of a function likeHn
up to some (unimportant) error terms, we use a special notation, �, to denote the
leading term of the function. For example, we say that Hn � ln.n/ to indicate that
the leading term of Hn is ln.n/. More precisely:

“mcs-ftl” — 2010/9/8 — 0:40 — page 269 — #275

9.5. Double Trouble 269

Definition 9.4.2. For functions f; g W R! R, we say f is asymptotically equal to
g, in symbols,

f .x/ � g.x/

iff
lim
x!1

f .x/=g.x/ D 1:

Although it is tempting to write Hn � ln.n/ C to indicate the two leading
terms, this is not really right. According to Definition 9.4.2,Hn � ln.n/C c where
c is any constant. The correct way to indicate that is the second-largest term is
Hn � ln.n/ � .

The reason that the � notation is useful is that often we do not care about lower
order terms. For example, if n D 100, then we can computeH.n/ to great precision
using only the two leading terms:

jHn � ln.n/ � j �
ˇ̌̌̌
1

200
�

1

120000
C

1

120 � 1004

ˇ̌̌̌
<

1

200
:

We will spend a lot more time talking about asymptotic notation at the end of the
chapter. But for now, let’s get back to sums.

9.5 Double Trouble

Sometimes we have to evaluate sums of sums, otherwise known as double summa-

tions. This sounds hairy, and sometimes it is. But usually, it is straightforward—

you just evaluate the inner sum, replace it with a closed form, and then evaluate the

“mcs-ftl” — 2010/9/8 — 0:40 — page 270 — #276

Chapter 9 Sums and Asymptotics270

outer sum (which no longer has a summation inside it). For example,10

1X
nD0

yn

nX
iD0

xi

!
D

1X
nD0

�
yn
1 � xnC1

1 � x

�
Equation 9.3

D

�
1

1 � x

� 1X
nD0

yn �

�
1

1 � x

� 1X
nD0

ynxnC1

D
1

.1 � x/.1 � y/
�

� x

1 � x

� 1X
nD0

.xy/n Theorem 9.1.1

D
1

.1 � x/.1 � y/
�

x

.1 � x/.1 � xy/
Theorem 9.1.1

D
.1 � xy/ � x.1 � y/

.1 � x/.1 � y/.1 � xy/

D
1 � x

.1 � x/.1 � y/.1 � xy/

D
1

.1 � y/.1 � xy/
:

When there’s no obvious closed form for the inner sum, a special trick that is
often useful is to try exchanging the order of summation. For example, suppose we
want to compute the sum of the first n Harmonic numbers

nX
kD1

Hk D

nX
kD1

kX
jD1

1

j
(9.26)

For intuition about this sum, we can apply Theorem 9.3.1 to Equation 9.24 to con-
clude that the sum is close toZ n

1

ln.x/ dx D x ln.x/ � x
ˇ̌̌n
1
D n ln.n/ � nC 1:

Now let’s look for an exact answer. If we think about the pairs .k; j / over which

10Ok, so maybe this one is a little hairy, but it is also fairly straightforward. Wait till you see the
next one!

“mcs-ftl” — 2010/9/8 — 0:40 — page 271 — #277

9.5. Double Trouble 271

we are summing, they form a triangle:

j

1 2 3 4 5 : : : n

k 1 1

2 1 1=2

3 1 1=2 1=3

4 1 1=2 1=3 1=4

: : :

n 1 1=2 : : : 1=n

The summation in Equation 9.26 is summing each row and then adding the row

sums. Instead, we can sum the columns and then add the column sums. Inspecting

the table we see that this double sum can be written as

nX
kD1

Hk D

nX
kD1

kX
jD1

1

j

D

nX
jD1

nX
kDj

1

j

D

nX
jD1

1

j

nX
kDj

1

D

nX
jD1

1

j
.n � j C 1/

D

nX
jD1

nC 1

j
�

nX
jD1

j

j

D .nC 1/

nX
jD1

1

j
�

nX
jD1

1

D .nC 1/Hn � n: (9.27)

“mcs-ftl” — 2010/9/8 — 0:40 — page 272 — #278

Chapter 9 Sums and Asymptotics272

9.6 Products

We’ve covered several techniques for finding closed forms for sums but no methods
for dealing with products. Fortunately, we do not need to develop an entirely new
set of tools when we encounter a product such as

nŠ WWD

nY
iD1

i: (9.28)

That’s because we can convert any product into a sum by taking a logarithm. For
example, if

P D

nY
iD1

f .i/;

then

ln.P / D
nX
iD1

ln.f .i//:

We can then apply our summing tools to find a closed form (or approximate closed
form) for ln.P / and then exponentiate at the end to undo the logarithm.

For example, let’s see how this works for the factorial function nŠ We start by
taking the logarithm:

ln.nŠ/ D ln.1 � 2 � 3 � � � .n � 1/ � n/

D ln.1/C ln.2/C ln.3/C � � � C ln.n � 1/C ln.n/

D

nX
iD1

ln.i/:

Unfortunately, no closed form for this sum is known. However, we can apply
Theorem 9.3.1 to find good closed-form bounds on the sum. To do this, we first
compute Z n

1

ln.x/ dx D x ln.x/ � x
ˇ̌̌n
1

D n ln.n/ � nC 1:

Plugging into Theorem 9.3.1, this means that

n ln.n/ � nC 1 �
nX
iD1

ln.i/ � n ln.n/ � nC 1C ln.n/:

“mcs-ftl” — 2010/9/8 — 0:40 — page 273 — #279

9.6. Products 273

Exponentiating then gives

nn

en�1
� nŠ �

nnC1

en�1
: (9.29)

This means that nŠ is within a factor of n of nn=en�1.

9.6.1 Stirling’s Formula

nŠ is probably the most commonly used product in discrete mathematics, and so
mathematicians have put in the effort to find much better closed-form bounds on its
value. The most useful bounds are given in Theorem 9.6.1.

Theorem 9.6.1 (Stirling’s Formula). For all n � 1,

nŠ D
p
2�n

�n
e

�n
e�.n/

where
1

12nC 1
� �.n/ �

1

12n
:

Theorem 9.6.1 can be proved by induction on n, but the details are a bit painful
(even for us) and so we will not go through them here.

There are several important things to notice about Stirling’s Formula. First, �.n/
is always positive. This means that

nŠ >
p
2�n

�n
e

�n
(9.30)

for all n 2 NC.
Second, �.n/ tends to zero as n gets large. This means that11

nŠ �
p
2�n

�n
e

�n
; (9.31)

which is rather surprising. After all, who would expect both � and e to show up in
a closed-form expression that is asymptotically equal to nŠ?

Third, �.n/ is small even for small values of n. This means that Stirling’s For-
mula provides good approximations for nŠ for most all values of n. For example, if
we use

p
2�n

�n
e

�n
11The � notation was defined in Section 9.4.4.

“mcs-ftl” — 2010/9/8 — 0:40 — page 274 — #280

Chapter 9 Sums and Asymptotics274

Approximation n � 1 n � 10 n � 100 n � 1000
p
2�n

�
n
e

�n
< 10% < 1% < 0.1% < 0.01%

p
2�n

�
n
e

�n
e1=12n < 1% < 0.01% < 0.0001% < 0.000001%

Table 9.1 Error bounds on common approximations for nŠ from Theorem 9.6.1.
For example, if n � 100, then

p
2�n

�
n
e

�n approximates nŠ to within 0.1%.

as the approximation for nŠ, as many people do, we are guaranteed to be within a
factor of

e�.n/ � e
1
12n

of the correct value. For n � 10, this means we will be within 1% of the correct
value. For n � 100, the error will be less than 0.1%.

If we need an even closer approximation for nŠ, then we could use either

p
2�n

�n
e

�n
e1=12n

or
p
2�n

�n
e

�n
e1=.12nC1/

depending on whether we want an upper bound or a lower bound, respectively. By
Theorem 9.6.1, we know that both bounds will be within a factor of

e
1
12n
� 1
12nC1 D e

1

144n2C12n

of the correct value. For n � 10, this means that either bound will be within 0.01%
of the correct value. For n � 100, the error will be less than 0.0001%.

For quick future reference, these facts are summarized in Corollary 9.6.2 and
Table 9.1.

Corollary 9.6.2. For n � 1,

nŠ < 1:09
p
2�n

�n
e

�n
:

For n � 10,
nŠ < 1:009

p
2�n

�n
e

�n
:

For n � 100,
nŠ < 1:0009

p
2�n

�n
e

�n
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 275 — #281

9.7. Asymptotic Notation 275

9.7 Asymptotic Notation

Asymptotic notation is a shorthand used to give a quick measure of the behavior of
a function f .n/ as n grows large. For example, the asymptotic notation � of Defi-
nition 9.4.2 is a binary relation indicating that two functions grow at the same rate.
There is also a binary relation indicating that one function grows at a significantly
slower rate than another.

9.7.1 Little Oh

Definition 9.7.1. For functions f; g W R ! R, with g nonnegative, we say f is
asymptotically smaller than g, in symbols,

f .x/ D o.g.x//;

iff
lim
x!1

f .x/=g.x/ D 0:

For example, 1000x1:9 D o.x2/, because 1000x1:9=x2 D 1000=x0:1 and since
x0:1 goes to infinity with x and 1000 is constant, we have limx!1 1000x1:9=x2 D
0. This argument generalizes directly to yield

Lemma 9.7.2. xa D o.xb/ for all nonnegative constants a < b.

Using the familiar fact that log x < x for all x > 1, we can prove

Lemma 9.7.3. log x D o.x�/ for all � > 0.

Proof. Choose � > ı > 0 and let x D zı in the inequality log x < x. This implies

log z < zı=ı D o.z�/ by Lemma 9.7.2: (9.32)

�

Corollary 9.7.4. xb D o.ax/ for any a; b 2 R with a > 1.

Lemma 9.7.3 and Corollary 9.7.4 can also be proved using l’Hôpital’s Rule or
the McLaurin Series for log x and ex . Proofs can be found in most calculus texts.

“mcs-ftl” — 2010/9/8 — 0:40 — page 276 — #282

Chapter 9 Sums and Asymptotics276

9.7.2 Big Oh

Big Oh is the most frequently used asymptotic notation. It is used to give an upper
bound on the growth of a function, such as the running time of an algorithm.

Definition 9.7.5. Given nonnegative functions f; g W R! R, we say that

f D O.g/

iff
lim sup
x!1

f .x/=g.x/ <1:

This definition12 makes it clear that

Lemma 9.7.6. If f D o.g/ or f � g, then f D O.g/.

Proof. limf=g D 0 or limf=g D 1 implies limf=g <1. �

It is easy to see that the converse of Lemma 9.7.6 is not true. For example,
2x D O.x/, but 2x 6� x and 2x ¤ o.x/.

The usual formulation of Big Oh spells out the definition of lim sup without
mentioning it. Namely, here is an equivalent definition:

Definition 9.7.7. Given functions f; g W R! R, we say that

f D O.g/

iff there exists a constant c � 0 and an x0 such that for all x � x0, jf .x/j � cg.x/.

This definition is rather complicated, but the idea is simple: f .x/ D O.g.x//

means f .x/ is less than or equal to g.x/, except that we’re willing to ignore a
constant factor, namely, c, and to allow exceptions for small x, namely, x < x0.

We observe,

Lemma 9.7.8. If f D o.g/, then it is not true that g D O.f /.

12We can’t simply use the limit as x !1 in the definition ofO./, because if f .x/=g.x/ oscillates
between, say, 3 and 5 as x grows, then f D O.g/ because f � 5g, but limx!1 f .x/=g.x/
does not exist. So instead of limit, we use the technical notion of lim sup. In this oscillating case,
lim supx!1 f .x/=g.x/ D 5.

The precise definition of lim sup is

lim sup
x!1

h.x/ WWD lim
x!1

luby�xh.y/;

where “lub” abbreviates “least upper bound.”

“mcs-ftl” — 2010/9/8 — 0:40 — page 277 — #283

9.7. Asymptotic Notation 277

Proof.

lim
x!1

g.x/

f .x/
D

1

limx!1 f .x/=g.x/
D
1

0
D1;

so g ¤ O.f /.
�

Proposition 9.7.9. 100x2 D O.x2/.

Proof. Choose c D 100 and x0 D 1. Then the proposition holds, since for all
x � 1,

ˇ̌
100x2

ˇ̌
� 100x2. �

Proposition 9.7.10. x2 C 100x C 10 D O.x2/.

Proof. .x2C100xC10/=x2 D 1C100=xC10=x2 and so its limit as x approaches
infinity is 1C0C0 D 1. So in fact, x2C100xC10 � x2, and therefore x2C100xC
10 D O.x2/. Indeed, it’s conversely true that x2 D O.x2 C 100x C 10/. �

Proposition 9.7.10 generalizes to an arbitrary polynomial:

Proposition 9.7.11. akxk C ak�1xk�1 C � � � C a1x C a0 D O.xk/.

We’ll omit the routine proof.
Big Oh notation is especially useful when describing the running time of an

algorithm. For example, the usual algorithm for multiplying n � n matrices uses
a number of operations proportional to n3 in the worst case. This fact can be
expressed concisely by saying that the running time is O.n3/. So this asymptotic
notation allows the speed of the algorithm to be discussed without reference to
constant factors or lower-order terms that might be machine specific. It turns out
that there is another, ingenious matrix multiplication procedure that uses O.n2:55/
operations. This procedure will therefore be much more efficient on large enough
matrices. Unfortunately, theO.n2:55/-operation multiplication procedure is almost
never used in practice because it happens to be less efficient than the usual O.n3/
procedure on matrices of practical size.13

9.7.3 Omega

Suppose you want to make a statement of the form “the running time of the algo-
rithm is a least. . . ”. Can you say it is “at least O.n2/”? No! This statement is
meaningless since big-oh can only be used for upper bounds. For lower bounds,
we use a different symbol, called “big-Omega.”

13It is even conceivable that there is anO.n2/matrix multiplication procedure, but none is known.

“mcs-ftl” — 2010/9/8 — 0:40 — page 278 — #284

Chapter 9 Sums and Asymptotics278

Definition 9.7.12. Given functions f; g W R! R, we say that

f D �.g/

iff there exists a constant c > 0 and an x0 such that for all x � x0, we have
f .x/ � cjg.x/j.

In other words, f .x/ D �.g.x// means that f .x/ is greater than or equal
to g.x/, except that we are willing to ignore a constant factor and to allow ex-
ceptions for small x.

If all this sounds a lot like big-Oh, only in reverse, that’s because big-Omega is
the opposite of big-Oh. More precisely,

Theorem 9.7.13. f .x/ D O.g.x// if and only if g.x/ D �.f .x//.

Proof.

f .x/ D O.g.x//

iff 9c > 0; x0: 8x � x0: jf .x/j � cg.x/ (Definition 9.7.7)

iff 9c > 0; x0: 8x � x0: g.x/ �
1

c
jf .x/j

iff 9c0 > 0; x0: 8x � x0: g.x/ � c0jf .x/j (set c0 D 1=c)

iff g.x/ D �.f .x// (Definition 9.7.12) �

For example, x2 D �.x/, 2x D �.x2/, and x=100 D �.100x C
p
x/.

So if the running time of your algorithm on inputs of size n is T .n/, and you
want to say it is at least quadratic, say

T .n/ D �.n2/:

Little Omega

There is also a symbol called little-omega, analogous to little-oh, to denote that one
function grows strictly faster than another function.

Definition 9.7.14. For functions f; g W R! R with f nonnegative, we say that

f .x/ D !.g.x//

iff

lim
x!1

g.x/

f .x/
D 0:

In other words,
f .x/ D !.g.x//

iff
g.x/ D o.f .x//:

“mcs-ftl” — 2010/9/8 — 0:40 — page 279 — #285

9.7. Asymptotic Notation 279

For example, x1:5 D !.x/ and
p
x D !.ln2.x//.

The little-omega symbol is not as widely used as the other asymptotic symbols
we have been discussing.

9.7.4 Theta

Sometimes we want to specify that a running time T .n/ is precisely quadratic up to
constant factors (both upper bound and lower bound). We could do this by saying
that T .n/ D O.n2/ and T .n/ D �.n2/, but rather than say both, mathematicians
have devised yet another symbol, ‚, to do the job.

Definition 9.7.15.

f D ‚.g/ iff f D O.g/ and g D O.f /:

The statement f D ‚.g/ can be paraphrased intuitively as “f and g are equal
to within a constant factor.” Indeed, by Theorem 9.7.13, we know that

f D ‚.g/ iff f D O.g/ and f D �.g/:

The Theta notation allows us to highlight growth rates and allow suppression
of distracting factors and low-order terms. For example, if the running time of an
algorithm is

T .n/ D 10n3 � 20n2 C 1;

then we can more simply write

T .n/ D ‚.n3/:

In this case, we would say that T is of order n3 or that T .n/ grows cubically, which
is probably what we really want to know. Another such example is

�23x�7 C
.2:7x113 C x9 � 86/4

p
x

� 1:083x D ‚.3x/:

Just knowing that the running time of an algorithm is‚.n3/, for example, is use-
ful, because if n doubles we can predict that the running time will by and large14

increase by a factor of at most 8 for large n. In this way, Theta notation preserves in-
formation about the scalability of an algorithm or system. Scalability is, of course,
a big issue in the design of algorithms and systems.

14Since ‚.n3/ only implies that the running time, T .n/, is between cn3 and dn3 for constants
0 < c < d , the time T .2n/ could regularly exceed T .n/ by a factor as large as 8d=c. The factor is
sure to be close to 8 for all large n only if T .n/ � n3.

“mcs-ftl” — 2010/9/8 — 0:40 — page 280 — #286

Chapter 9 Sums and Asymptotics280

9.7.5 Pitfalls with Asymptotic Notation

There is a long list of ways to make mistakes with asymptotic notation. This section
presents some of the ways that Big Oh notation can lead to ruin and despair. With
minimal effort, you can cause just as much chaos with the other symbols.

The Exponential Fiasco

Sometimes relationships involving Big Oh are not so obvious. For example, one
might guess that 4x D O.2x/ since 4 is only a constant factor larger than 2. This
reasoning is incorrect, however; 4x actually grows as the square of 2x .

Constant Confusion

Every constant is O.1/. For example, 17 D O.1/. This is true because if we let
f .x/ D 17 and g.x/ D 1, then there exists a c > 0 and an x0 such that jf .x/j �
cg.x/. In particular, we could choose c = 17 and x0 D 1, since j17j � 17 � 1 for all
x � 1. We can construct a false theorem that exploits this fact.

False Theorem 9.7.16.
nX
iD1

i D O.n/

Bogus proof. Define f .n/ D
Pn
iD1 i D 1C2C3C� � �Cn. Since we have shown

that every constant i is O.1/, f .n/ D O.1/CO.1/C � � � CO.1/ D O.n/. �

Of course in reality
Pn
iD1 i D n.nC 1/=2 ¤ O.n/.

The error stems from confusion over what is meant in the statement i D O.1/.
For any constant i 2 N it is true that i D O.1/. More precisely, if f is any constant
function, then f D O.1/. But in this False Theorem, i is not constant—it ranges
over a set of values 0, 1,. . . , n that depends on n.

And anyway, we should not be adding O.1/’s as though they were numbers. We
never even defined whatO.g/means by itself; it should only be used in the context
“f D O.g/” to describe a relation between functions f and g.

Lower Bound Blunder

Sometimes people incorrectly use Big Oh in the context of a lower bound. For
example, they might say, “The running time, T .n/, is at least O.n2/,” when they
probably mean15 “T .n/ D �.n2/.”

15This can also be correctly expressed as n2 D O.T .n//, but such notation is rare.

“mcs-ftl” — 2010/9/8 — 0:40 — page 281 — #287

9.7. Asymptotic Notation 281

Equality Blunder

The notation f D O.g/ is too firmly entrenched to avoid, but the use of “=”
is really regrettable. For example, if f D O.g/, it seems quite reasonable to
write O.g/ D f . But doing so might tempt us to the following blunder: because
2n D O.n/, we can say O.n/ D 2n. But n D O.n/, so we conclude that n D
O.n/ D 2n, and therefore n D 2n. To avoid such nonsense, we will never write
“O.f / D g.”

Similarly, you will often see statements like

Hn D ln.n/C CO
�
1

n

�
or

nŠ D .1C o.1//
p
2�n

�n
e

�n
:

In such cases, the true meaning is

Hn D ln.n/C C f .n/

for some f .n/ where f .n/ D O.1=n/, and

nŠ D .1C g.n//
p
2�n

�n
e

�n
where g.n/ D o.1/. These transgressions are OK as long as you (and you reader)
know what you mean.

“mcs-ftl” — 2010/9/8 — 0:40 — page 282 — #288

“mcs-ftl” — 2010/9/8 — 0:40 — page 283 — #289

10 Recurrences
A recurrence describes a sequence of numbers. Early terms are specified explic-
itly and later terms are expressed as a function of their predecessors. As a trivial
example, this recurrence describes the sequence 1, 2, 3, etc.:

T1 D 1

Tn D Tn�1 C 1 (for n � 2):

Here, the first term is defined to be 1 and each subsequent term is one more than its
predecessor.

Recurrences turn out to be a powerful tool. In this chapter, we’ll emphasize using
recurrences to analyze the performance of recursive algorithms. However, recur-
rences have other applications in computer science as well, such as enumeration of
structures and analysis of random processes. And, as we saw in Section 9.4, they
also arise in the analysis of problems in the physical sciences.

A recurrence in isolation is not a very useful description of a sequence. One
can not easily answer simple questions such as, “What is the hundredth term?” or
“What is the asymptotic growth rate?” So one typically wants to solve a recurrence;
that is, to find a closed-form expression for the nth term.

We’ll first introduce two general solving techniques: guess-and-verify and plug-
and-chug. These methods are applicable to every recurrence, but their success re-
quires a flash of insight—sometimes an unrealistically brilliant flash. So we’ll also
introduce two big classes of recurrences, linear and divide-and-conquer, that often
come up in computer science. Essentially all recurrences in these two classes are
solvable using cookbook techniques; you follow the recipe and get the answer. A
drawback is that calculation replaces insight. The “Aha!” moment that is essential
in the guess-and-verify and plug-and-chug methods is replaced by a “Huh” at the
end of a cookbook procedure.

At the end of the chapter, we’ll develop rules of thumb to help you assess many
recurrences without any calculation. These rules can help you distinguish promis-
ing approaches from bad ideas early in the process of designing an algorithm.

Recurrences are one aspect of a broad theme in computer science: reducing a big
problem to progressively smaller problems until easy base cases are reached. This
same idea underlies both induction proofs and recursive algorithms. As we’ll see,
all three ideas snap together nicely. For example, one might describe the running
time of a recursive algorithm with a recurrence and use induction to verify the
solution.

“mcs-ftl” — 2010/9/8 — 0:40 — page 284 — #290

Chapter 10 Recurrences284

Figure 10.1 The initial configuration of the disks in the Towers of Hanoi problem.

10.1 The Towers of Hanoi

According to legend, there is a temple in Hanoi with three posts and 64 gold disks
of different sizes. Each disk has a hole through the center so that it fits on a post.
In the misty past, all the disks were on the first post, with the largest on the bottom
and the smallest on top, as shown in Figure 10.1.

Monks in the temple have labored through the years since to move all the disks
to one of the other two posts according to the following rules:

� The only permitted action is removing the top disk from one post and drop-
ping it onto another post.

� A larger disk can never lie above a smaller disk on any post.

So, for example, picking up the whole stack of disks at once and dropping them on
another post is illegal. That’s good, because the legend says that when the monks
complete the puzzle, the world will end!

To clarify the problem, suppose there were only 3 gold disks instead of 64. Then
the puzzle could be solved in 7 steps as shown in Figure 10.2.

The questions we must answer are, “Given sufficient time, can the monks suc-
ceed?” If so, “How long until the world ends?” And, most importantly, “Will this
happen before the final exam?”

10.1.1 A Recursive Solution

The Towers of Hanoi problem can be solved recursively. As we describe the pro-
cedure, we’ll also analyze the running time. To that end, let Tn be the minimum
number of steps required to solve the n-disk problem. For example, some experi-
mentation shows that T1 D 1 and T2 = 3. The procedure illustrated above shows
that T3 is at most 7, though there might be a solution with fewer steps.

The recursive solution has three stages, which are described below and illustrated
in Figure 10.3. For clarity, the largest disk is shaded in the figures.

“mcs-ftl” — 2010/9/8 — 0:40 — page 285 — #291

10.1. The Towers of Hanoi 285

1

2

3

4

5

6

7

Figure 10.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 10.3 A recursive solution to the Towers of Hanoi problem.

“mcs-ftl” — 2010/9/8 — 0:40 — page 286 — #292

Chapter 10 Recurrences286

Stage 1. Move the top n�1 disks from the first post to the second using the solution
for n � 1 disks. This can be done in Tn�1 steps.

Stage 2. Move the largest disk from the first post to the third post. This takes just
1 step.

Stage 3. Move the n � 1 disks from the second post to the third post, again using
the solution for n � 1 disks. This can also be done in Tn�1 steps.

This algorithm shows that Tn, the minimum number of steps required to move n
disks to a different post, is at most Tn�1C1CTn�1 D 2Tn�1C1. We can use this
fact to upper bound the number of operations required to move towers of various
heights:

T3 � 2 � T2 C 1 D 7

T4 � 2 � T3 C 1 � 15

Continuing in this way, we could eventually compute an upper bound on T64, the
number of steps required to move 64 disks. So this algorithm answers our first
question: given sufficient time, the monks can finish their task and end the world.
This is a shame. After all that effort, they’d probably want to smack a few high-fives
and go out for burgers and ice cream, but nope—world’s over.

10.1.2 Finding a Recurrence

We can not yet compute the exact number of steps that the monks need to move
the 64 disks, only an upper bound. Perhaps, having pondered the problem since the
beginning of time, the monks have devised a better algorithm.

In fact, there is no better algorithm, and here is why. At some step, the monks
must move the largest disk from the first post to a different post. For this to happen,
the n � 1 smaller disks must all be stacked out of the way on the only remaining
post. Arranging the n�1 smaller disks this way requires at least Tn�1 moves. After
the largest disk is moved, at least another Tn�1 moves are required to pile the n� 1
smaller disks on top.

This argument shows that the number of steps required is at least 2Tn�1 C 1.
Since we gave an algorithm using exactly that number of steps, we can now write
an expression for Tn, the number of moves required to complete the Towers of
Hanoi problem with n disks:

T1 D 1

Tn D 2Tn�1 C 1 (for n � 2):

“mcs-ftl” — 2010/9/8 — 0:40 — page 287 — #293

10.1. The Towers of Hanoi 287

This is a typical recurrence. These two lines define a sequence of values, T1; T2; T3; : : :.
The first line says that the first number in the sequence, T1, is equal to 1. The sec-
ond line defines every other number in the sequence in terms of its predecessor. So
we can use this recurrence to compute any number of terms in the sequence:

T1 D 1

T2 D 2 � T1 C 1 D 3

T3 D 2 � T2 C 1 D 7

T4 D 2 � T3 C 1 D 15

T5 D 2 � T4 C 1 D 31

T6 D 2 � T5 C 1 D 63:

10.1.3 Solving the Recurrence

We could determine the number of steps to move a 64-disk tower by computing T7,
T8, and so on up to T64. But that would take a lot of work. It would be nice to have
a closed-form expression for Tn, so that we could quickly find the number of steps
required for any given number of disks. (For example, we might want to know how
much sooner the world would end if the monks melted down one disk to purchase
burgers and ice cream before the end of the world.)

There are several methods for solving recurrence equations. The simplest is to
guess the solution and then verify that the guess is correct with an induction proof.
As a basis for a good guess, let’s look for a pattern in the values of Tn computed
above: 1, 3, 7, 15, 31, 63. A natural guess is Tn D 2n� 1. But whenever you guess
a solution to a recurrence, you should always verify it with a proof, typically by
induction. After all, your guess might be wrong. (But why bother to verify in this
case? After all, if we’re wrong, its not the end of the... no, let’s check.)

Claim 10.1.1. Tn D 2n � 1 satisfies the recurrence:

T1 D 1

Tn D 2Tn�1 C 1 (for n � 2):

Proof. The proof is by induction on n. The induction hypothesis is that Tn D
2n � 1. This is true for n D 1 because T1 D 1 D 21 � 1. Now assume that
Tn�1 D 2

n�1 � 1 in order to prove that Tn D 2n � 1, where n � 2:

Tn D 2Tn�1 C 1

D 2.2n�1 � 1/C 1

D 2n � 1:

“mcs-ftl” — 2010/9/8 — 0:40 — page 288 — #294

Chapter 10 Recurrences288

The first equality is the recurrence equation, the second follows from the induction
assumption, and the last step is simplification. �

Such verification proofs are especially tidy because recurrence equations and
induction proofs have analogous structures. In particular, the base case relies on
the first line of the recurrence, which defines T1. And the inductive step uses the
second line of the recurrence, which defines Tn as a function of preceding terms.

Our guess is verified. So we can now resolve our remaining questions about the
64-disk puzzle. Since T64 D 264 � 1, the monks must complete more than 18
billion billion steps before the world ends. Better study for the final.

10.1.4 The Upper Bound Trap

When the solution to a recurrence is complicated, one might try to prove that some
simpler expression is an upper bound on the solution. For example, the exact so-
lution to the Towers of Hanoi recurrence is Tn D 2n � 1. Let’s try to prove the
“nicer” upper bound Tn � 2n, proceeding exactly as before.

Proof. (Failed attempt.) The proof is by induction on n. The induction hypothesis
is that Tn � 2n. This is true for n D 1 because T1 D 1 � 21. Now assume that
Tn�1 � 2

n�1 in order to prove that Tn � 2n, where n � 2:

Tn D 2Tn�1 C 1

� 2.2n�1/C 1

6� 2n Uh-oh!

The first equality is the recurrence relation, the second follows from the induction
hypothesis, and the third step is a flaming train wreck. �

The proof doesn’t work! As is so often the case with induction proofs, the ar-
gument only goes through with a stronger hypothesis. This isn’t to say that upper
bounding the solution to a recurrence is hopeless, but this is a situation where in-
duction and recurrences do not mix well.

10.1.5 Plug and Chug

Guess-and-verify is a simple and general way to solve recurrence equations. But
there is one big drawback: you have to guess right. That was not hard for the
Towers of Hanoi example. But sometimes the solution to a recurrence has a strange
form that is quite difficult to guess. Practice helps, of course, but so can some other
methods.

“mcs-ftl” — 2010/9/8 — 0:40 — page 289 — #295

10.1. The Towers of Hanoi 289

Plug-and-chug is another way to solve recurrences. This is also sometimes called
“expansion” or “iteration”. As in guess-and-verify, the key step is identifying a
pattern. But instead of looking at a sequence of numbers, you have to spot a pattern
in a sequence of expressions, which is sometimes easier. The method consists of
three steps, which are described below and illustrated with the Towers of Hanoi
example.

Step 1: Plug and Chug Until a Pattern Appears

The first step is to expand the recurrence equation by alternately “plugging” (apply-
ing the recurrence) and “chugging” (simplifying the result) until a pattern appears.
Be careful: too much simplification can make a pattern harder to spot. The rule
to remember—indeed, a rule applicable to the whole of college life—is chug in
moderation.

Tn D 2Tn�1 C 1

D 2.2Tn�2 C 1/C 1 plug

D 4Tn�2 C 2C 1 chug

D 4.2Tn�3 C 1/C 2C 1 plug

D 8Tn�3 C 4C 2C 1 chug

D 8.2Tn�4 C 1/C 4C 2C 1 plug

D 16Tn�4 C 8C 4C 2C 1 chug

Above, we started with the recurrence equation. Then we replaced Tn�1 with
2Tn�2 C 1, since the recurrence says the two are equivalent. In the third step,
we simplified a little—but not too much! After several similar rounds of plugging
and chugging, a pattern is apparent. The following formula seems to hold:

Tn D 2
kTn�k C 2

k�1
C 2k�2 C : : :C 22 C 21 C 20

D 2kTn�k C 2
k
� 1

Once the pattern is clear, simplifying is safe and convenient. In particular, we’ve
collapsed the geometric sum to a closed form on the second line.

“mcs-ftl” — 2010/9/8 — 0:40 — page 290 — #296

Chapter 10 Recurrences290

Step 2: Verify the Pattern

The next step is to verify the general formula with one more round of plug-and-
chug.

Tn D 2
kTn�k C 2

k
� 1

D 2k.2Tn�.kC1/ C 1/C 2
k
� 1 plug

D 2kC1Tn�.kC1/ C 2
kC1
� 1 chug

The final expression on the right is the same as the expression on the first line,
except that k is replaced by k C 1. Surprisingly, this effectively proves that the
formula is correct for all k. Here is why: we know the formula holds for k D 1,
because that’s the original recurrence equation. And we’ve just shown that if the
formula holds for some k � 1, then it also holds for k C 1. So the formula holds
for all k � 1 by induction.

Step 3: Write Tn Using Early Terms with Known Values

The last step is to express Tn as a function of early terms whose values are known.
Here, choosing k D n � 1 expresses Tn in terms of T1, which is equal to 1. Sim-
plifying gives a closed-form expression for Tn:

Tn D 2
n�1T1 C 2

n�1
� 1

D 2n�1 � 1C 2n�1 � 1

D 2n � 1:

We’re done! This is the same answer we got from guess-and-verify.

Let’s compare guess-and-verify with plug-and-chug. In the guess-and-verify
method, we computed several terms at the beginning of the sequence, T1, T2, T3,
etc., until a pattern appeared. We generalized to a formula for the nth term, Tn. In
contrast, plug-and-chug works backward from the nth term. Specifically, we started
with an expression for Tn involving the preceding term, Tn�1, and rewrote this us-
ing progressively earlier terms, Tn�2, Tn�3, etc. Eventually, we noticed a pattern,
which allowed us to express Tn using the very first term, T1, whose value we knew.
Substituting this value gave a closed-form expression for Tn. So guess-and-verify
and plug-and-chug tackle the problem from opposite directions.

“mcs-ftl” — 2010/9/8 — 0:40 — page 291 — #297

10.2. Merge Sort 291

10.2 Merge Sort

Algorithms textbooks traditionally claim that sorting is an important, fundamental
problem in computer science. Then they smack you with sorting algorithms until
life as a disk-stacking monk in Hanoi sounds delightful. Here, we’ll cover just one
well-known sorting algorithm, Merge Sort. The analysis introduces another kind
of recurrence.

Here is how Merge Sort works. The input is a list of n numbers, and the output
is those same numbers in nondecreasing order. There are two cases:

� If the input is a single number, then the algorithm does nothing, because the
list is already sorted.

� Otherwise, the list contains two or more numbers. The first half and the
second half of the list are each sorted recursively. Then the two halves are
merged to form a sorted list with all n numbers.

Let’s work through an example. Suppose we want to sort this list:

10, 7, 23, 5, 2, 8, 6, 9.

Since there is more than one number, the first half (10, 7, 23, 5) and the second half
(2, 8, 6, 9) are sorted recursively. The results are 5, 7, 10, 23 and 2, 6, 8, 9. All that
remains is to merge these two lists. This is done by repeatedly emitting the smaller
of the two leading terms. When one list is empty, the whole other list is emitted.
The example is worked out below. In this table, underlined numbers are about to
be emitted.

First Half Second Half Output
5, 7, 10, 23 2, 6, 8, 9
5, 7, 10, 23 6, 8, 9 2
7, 10, 23 6, 8, 9 2, 5
7, 10, 23 8, 9 2, 5, 6
10, 23 8, 9 2, 5, 6, 7
10, 23 9 2, 5, 6, 7, 8
10, 23 2, 5, 6, 7, 8, 9

2, 5, 6, 7, 8, 9, 10, 23

The leading terms are initially 5 and 2. So we output 2. Then the leading terms are
5 and 6, so we output 5. Eventually, the second list becomes empty. At that point,
we output the whole first list, which consists of 10 and 23. The complete output
consists of all the numbers in sorted order.

“mcs-ftl” — 2010/9/8 — 0:40 — page 292 — #298

Chapter 10 Recurrences292

10.2.1 Finding a Recurrence

A traditional question about sorting algorithms is, “What is the maximum number
of comparisons used in sorting n items?” This is taken as an estimate of the running
time. In the case of Merge Sort, we can express this quantity with a recurrence. Let
Tn be the maximum number of comparisons used while Merge Sorting a list of n
numbers. For now, assume that n is a power of 2. This ensures that the input can
be divided in half at every stage of the recursion.

� If there is only one number in the list, then no comparisons are required, so
T1 D 0.

� Otherwise, Tn includes comparisons used in sorting the first half (at most
Tn=2), in sorting the second half (also at most Tn=2), and in merging the two
halves. The number of comparisons in the merging step is at most n � 1.
This is because at least one number is emitted after each comparison and one
more number is emitted at the end when one list becomes empty. Since n
items are emitted in all, there can be at most n � 1 comparisons.

Therefore, the maximum number of comparisons needed to Merge Sort n items is
given by this recurrence:

T1 D 0

Tn D 2Tn=2 C n � 1 (for n � 2 and a power of 2):

This fully describes the number of comparisons, but not in a very useful way; a
closed-form expression would be much more helpful. To get that, we have to solve
the recurrence.

10.2.2 Solving the Recurrence

Let’s first try to solve the Merge Sort recurrence with the guess-and-verify tech-
nique. Here are the first few values:

T1 D 0

T2 D 2T1 C 2 � 1 D 1

T4 D 2T2 C 4 � 1 D 5

T8 D 2T4 C 8 � 1 D 17

T16 D 2T8 C 16 � 1 D 49:

We’re in trouble! Guessing the solution to this recurrence is hard because there is
no obvious pattern. So let’s try the plug-and-chug method instead.

“mcs-ftl” — 2010/9/8 — 0:40 — page 293 — #299

10.2. Merge Sort 293

Step 1: Plug and Chug Until a Pattern Appears

First, we expand the recurrence equation by alternately plugging and chugging until
a pattern appears.

Tn D 2Tn=2 C n � 1

D 2.2Tn=4 C n=2 � 1/C .n � 1/ plug

D 4Tn=4 C .n � 2/C .n � 1/ chug

D 4.2Tn=8 C n=4 � 1/C .n � 2/C .n � 1/ plug

D 8Tn=8 C .n � 4/C .n � 2/C .n � 1/ chug

D 8.2Tn=16 C n=8 � 1/C .n � 4/C .n � 2/C .n � 1/ plug

D 16Tn=16 C .n � 8/C .n � 4/C .n � 2/C .n � 1/ chug

A pattern is emerging. In particular, this formula seems holds:

Tn D 2
kTn=2k C .n � 2

k�1/C .n � 2k�2/C : : :C .n � 20/

D 2kTn=2k C kn � 2
k�1
� 2k�2 : : : � 20

D 2kTn=2k C kn � 2
k
C 1:

On the second line, we grouped the n terms and powers of 2. On the third, we
collapsed the geometric sum.

Step 2: Verify the Pattern

Next, we verify the pattern with one additional round of plug-and-chug. If we
guessed the wrong pattern, then this is where we’ll discover the mistake.

Tn D 2
kTn=2k C kn � 2

k
C 1

D 2k.2Tn=2kC1 C n=2
k
� 1/C kn � 2k C 1 plug

D 2kC1Tn=2kC1 C .k C 1/n � 2
kC1
C 1 chug

The formula is unchanged except that k is replaced by k C 1. This amounts to the
induction step in a proof that the formula holds for all k � 1.

“mcs-ftl” — 2010/9/8 — 0:40 — page 294 — #300

Chapter 10 Recurrences294

Step 3: Write Tn Using Early Terms with Known Values

Finally, we express Tn using early terms whose values are known. Specifically, if
we let k D logn, then Tn=2k D T1, which we know is 0:

Tn D 2
kTn=2k C kn � 2

k
C 1

D 2lognTn=2logn C n logn � 2logn
C 1

D nT1 C n logn � nC 1

D n logn � nC 1:

We’re done! We have a closed-form expression for the maximum number of com-
parisons used in Merge Sorting a list of n numbers. In retrospect, it is easy to see
why guess-and-verify failed: this formula is fairly complicated.

As a check, we can confirm that this formula gives the same values that we
computed earlier:

n Tn n logn � nC 1
1 0 1 log 1 � 1C 1 D 0
2 1 2 log 2 � 2C 1 D 1
4 5 4 log 4 � 4C 1 D 5
8 17 8 log 8 � 8C 1 D 17
16 49 16 log 16 � 16C 1 D 49

As a double-check, we could write out an explicit induction proof. This would be
straightforward, because we already worked out the guts of the proof in step 2 of
the plug-and-chug procedure.

10.3 Linear Recurrences

So far we’ve solved recurrences with two techniques: guess-and-verify and plug-
and-chug. These methods require spotting a pattern in a sequence of numbers or
expressions. In this section and the next, we’ll give cookbook solutions for two
large classes of recurrences. These methods require no flash of insight; you just
follow the recipe and get the answer.

10.3.1 Climbing Stairs

How many different ways are there to climb n stairs, if you can either step up one
stair or hop up two? For example, there are five different ways to climb four stairs:

1. step, step, step, step

“mcs-ftl” — 2010/9/8 — 0:40 — page 295 — #301

10.3. Linear Recurrences 295

2. hop, hop

3. hop, step, step

4. step, hop step

5. step, step, hop

Working through this problem will demonstrate the major features of our first cook-
book method for solving recurrences. We’ll fill in the details of the general solution
afterward.

Finding a Recurrence

As special cases, there is 1 way to climb 0 stairs (do nothing) and 1 way to climb
1 stair (step up). In general, an ascent of n stairs consists of either a step followed
by an ascent of the remaining n � 1 stairs or a hop followed by an ascent of n � 2
stairs. So the total number of ways to climb n stairs is equal to the number of ways
to climb n � 1 plus the number of ways to climb n � 2. These observations define
a recurrence:

f .0/ D 1

f .1/ D 1

f .n/ D f .n � 1/C f .n � 2/ for n � 2:

Here, f .n/ denotes the number of ways to climb n stairs. Also, we’ve switched
from subscript notation to functional notation, from Tn to fn. Here the change is
cosmetic, but the expressiveness of functions will be useful later.

This is the Fibonacci recurrence, the most famous of all recurrence equations.
Fibonacci numbers arise in all sorts of applications and in nature. Fibonacci intro-
duced the numbers in 1202 to study rabbit reproduction. Fibonacci numbers also
appear, oddly enough, in the spiral patterns on the faces of sunflowers. And the
input numbers that make Euclid’s GCD algorithm require the greatest number of
steps are consecutive Fibonacci numbers.

Solving the Recurrence

The Fibonacci recurrence belongs to the class of linear recurrences, which are es-
sentially all solvable with a technique that you can learn in an hour. This is some-
what amazing, since the Fibonacci recurrence remained unsolved for almost six
centuries!

In general, a homogeneous linear recurrence has the form

f .n/ D a1f .n � 1/C a2f .n � 2/C : : :C adf .n � d/

“mcs-ftl” — 2010/9/8 — 0:40 — page 296 — #302

Chapter 10 Recurrences296

where a1; a2; : : : ; ad and d are constants. The order of the recurrence is d . Com-
monly, the value of the function f is also specified at a few points; these are called
boundary conditions. For example, the Fibonacci recurrence has order d D 2 with
coefficients a1 D a2 D 1 and g.n/ D 0. The boundary conditions are f .0/ D 1

and f .1/ D 1. The word “homogeneous” sounds scary, but effectively means “the
simpler kind”. We’ll consider linear recurrences with a more complicated form
later.

Let’s try to solve the Fibonacci recurrence with the benefit centuries of hindsight.
In general, linear recurrences tend to have exponential solutions. So let’s guess that

f .n/ D xn

where x is a parameter introduced to improve our odds of making a correct guess.
We’ll figure out the best value for x later. To further improve our odds, let’s neglect
the boundary conditions, f .0/ D 0 and f .1/ D 1, for now. Plugging this guess
into the recurrence f .n/ D f .n � 1/C f .n � 2/ gives

xn D xn�1 C xn�2:

Dividing both sides by xn�2 leaves a quadratic equation:

x2 D x C 1:

Solving this equation gives two plausible values for the parameter x:

x D
1˙
p
5

2
:

This suggests that there are at least two different solutions to the recurrence, ne-
glecting the boundary conditions.

f .n/ D

1C
p
5

2

!n
or f .n/ D

1 �
p
5

2

!n
A charming features of homogeneous linear recurrences is that any linear com-

bination of solutions is another solution.

Theorem 10.3.1. If f .n/ and g.n/ are both solutions to a homogeneous linear
recurrence, then h.n/ D sf .n/C tg.n/ is also a solution for all s; t 2 R.

Proof.

h.n/ D sf .n/C tg.n/

D s .a1f .n � 1/C : : :C adf .n � d//C t .a1g.n � 1/C : : :C adg.n � d//

D a1.sf .n � 1/C tg.n � 1//C : : :C ad .sf .n � d/C tg.n � d//

D a1h.n � 1/C : : :C adh.n � d/

“mcs-ftl” — 2010/9/8 — 0:40 — page 297 — #303

10.3. Linear Recurrences 297

The first step uses the definition of the function h, and the second uses the fact that
f and g are solutions to the recurrence. In the last two steps, we rearrange terms
and use the definition of h again. Since the first expression is equal to the last, h is
also a solution to the recurrence. �

The phenomenon described in this theorem—a linear combination of solutions is
another solution—also holds for many differential equations and physical systems.
In fact, linear recurrences are so similar to linear differential equations that you can
safely snooze through that topic in some future math class.

Returning to the Fibonacci recurrence, this theorem implies that

f .n/ D s

1C
p
5

2

!n
C t

1 �
p
5

2

!n
is a solution for all real numbers s and t . The theorem expanded two solutions to
a whole spectrum of possibilities! Now, given all these options to choose from,
we can find one solution that satisfies the boundary conditions, f .0/ D 1 and
f .1/ D 1. Each boundary condition puts some constraints on the parameters s and
t . In particular, the first boundary condition implies that

f .0/ D s

1C
p
5

2

!0
C t

1 �
p
5

2

!0
D s C t D 1:

Similarly, the second boundary condition implies that

f .1/ D s

1C
p
5

2

!1
C t

1 �
p
5

2

!1
D 1:

Now we have two linear equations in two unknowns. The system is not degenerate,
so there is a unique solution:

s D
1
p
5
�
1C
p
5

2
t D �

1
p
5
�
1 �
p
5

2
:

These values of s and t identify a solution to the Fibonacci recurrence that also
satisfies the boundary conditions:

f .n/ D
1
p
5
�
1C
p
5

2

1C
p
5

2

!n
�

1
p
5
�
1 �
p
5

2

1 �
p
5

2

!n
D

1
p
5

1C
p
5

2

!nC1
�

1
p
5

1 �
p
5

2

!nC1
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 298 — #304

Chapter 10 Recurrences298

It is easy to see why no one stumbled across this solution for almost six centuries!
All Fibonacci numbers are integers, but this expression is full of square roots of
five! Amazingly, the square roots always cancel out. This expression really does
give the Fibonacci numbers if we plug in n D 0; 1; 2, etc.

This closed-form for Fibonacci numbers has some interesting corollaries. The
first term tends to infinity because the base of the exponential, .1 C

p
5/=2 D

1:618 : : : is greater than one. This value is often denoted � and called the “golden
ratio”. The second term tends to zero, because .1 �

p
5/=2 D �0:618033988 : : :

has absolute value less than 1. This implies that the nth Fibonacci number is:

f .n/ D
�nC1
p
5
C o.1/:

Remarkably, this expression involving irrational numbers is actually very close to
an integer for all large n—namely, a Fibonacci number! For example:

�20
p
5
D 6765:000029 : : : � f .19/:

This also implies that the ratio of consecutive Fibonacci numbers rapidly approaches
the golden ratio. For example:

f .20/

f .19/
D
10946

6765
D 1:618033998 : : : :

10.3.2 Solving Homogeneous Linear Recurrences

The method we used to solve the Fibonacci recurrence can be extended to solve
any homogeneous linear recurrence; that is, a recurrence of the form

f .n/ D a1f .n � 1/C a2f .n � 2/C : : :C adf .n � d/

where a1; a2; : : : ; ad and d are constants. Substituting the guess f .n/ D xn, as
with the Fibonacci recurrence, gives

xn D a1x
n�1
C a2x

n�2
C : : :C adx

n�d :

Dividing by xn�d gives

xd D a1x
d�1
C a2x

d�2
C : : :C ad�1x C ad :

This is called the characteristic equation of the recurrence. The characteristic equa-
tion can be read off quickly since the coefficients of the equation are the same as
the coefficients of the recurrence.

The solutions to a linear recurrence are defined by the roots of the characteristic
equation. Neglecting boundary conditions for the moment:

“mcs-ftl” — 2010/9/8 — 0:40 — page 299 — #305

10.3. Linear Recurrences 299

� If r is a nonrepeated root of the characteristic equation, then rn is a solution
to the recurrence.

� If r is a repeated root with multiplicity k then rn, nrn, n2rn, . . . , nk�1rn

are all solutions to the recurrence.

Theorem 10.3.1 implies that every linear combination of these solutions is also a
solution.

For example, suppose that the characteristic equation of a recurrence has roots s,
t , and u twice. These four roots imply four distinct solutions:

f .n/ D sn f .n/ D tn f .n/ D un f .n/ D nun:

Furthermore, every linear combination

f .n/ D a � sn C b � tn C c � un C d � nun (10.1)

is also a solution.
All that remains is to select a solution consistent with the boundary conditions

by choosing the constants appropriately. Each boundary condition implies a linear
equation involving these constants. So we can determine the constants by solving
a system of linear equations. For example, suppose our boundary conditions were
f .0/ D 0, f .1/ D 1, f .2/ D 4, and f .3/ D 9. Then we would obtain four
equations in four unknowns:

f .0/ D 0) a � s0 C b � t0 C c � u0 C d � 0u0 D 0

f .1/ D 1) a � s1 C b � t1 C c � u1 C d � 1u1 D 1

f .2/ D 4) a � s2 C b � t2 C c � u2 C d � 2u2 D 4

f .3/ D 9) a � s3 C b � t3 C c � u3 C d � 3u3 D 9

This looks nasty, but remember that s, t , and u are just constants. Solving this sys-
tem gives values for a, b, c, and d that define a solution to the recurrence consistent
with the boundary conditions.

10.3.3 Solving General Linear Recurrences

We can now solve all linear homogeneous recurrences, which have the form

f .n/ D a1f .n � 1/C a2f .n � 2/C : : :C adf .n � d/:

Many recurrences that arise in practice do not quite fit this mold. For example, the
Towers of Hanoi problem led to this recurrence:

f .1/ D 1

f .n/ D 2f .n � 1/C 1 (for n � 2):

“mcs-ftl” — 2010/9/8 — 0:40 — page 300 — #306

Chapter 10 Recurrences300

The problem is the extra C1; that is not allowed in a homogeneous linear recur-
rence. In general, adding an extra function g.n/ to the right side of a linear recur-
rence gives an inhomogeneous linear recurrence:

f .n/ D a1f .n � 1/C a2f .n � 2/C : : :C adf .n � d/C g.n/:

Solving inhomogeneous linear recurrences is neither very different nor very dif-
ficult. We can divide the whole job into five steps:

1. Replace g.n/ by 0, leaving a homogeneous recurrence. As before, find roots
of the characteristic equation.

2. Write down the solution to the homogeneous recurrence, but do not yet use
the boundary conditions to determine coefficients. This is called the homo-
geneous solution.

3. Now restore g.n/ and find a single solution to the recurrence, ignoring bound-
ary conditions. This is called a particular solution. We’ll explain how to find
a particular solution shortly.

4. Add the homogeneous and particular solutions together to obtain the general
solution.

5. Now use the boundary conditions to determine constants by the usual method
of generating and solving a system of linear equations.

As an example, let’s consider a variation of the Towers of Hanoi problem. Sup-
pose that moving a disk takes time proportional to its size. Specifically, moving the
smallest disk takes 1 second, the next-smallest takes 2 seconds, and moving the nth
disk then requires n seconds instead of 1. So, in this variation, the time to complete
the job is given by a recurrence with aCn term instead of aC1:

f .1/ D 1

f .n/ D 2f .n � 1/C n for n � 2:

Clearly, this will take longer, but how much longer? Let’s solve the recurrence with
the method described above.

In Steps 1 and 2, dropping the Cn leaves the homogeneous recurrence f .n/ D
2f .n � 1/. The characteristic equation is x D 2. So the homogeneous solution is
f .n/ D c2n.

In Step 3, we must find a solution to the full recurrence f .n/ D 2f .n � 1/C n,
without regard to the boundary condition. Let’s guess that there is a solution of the

“mcs-ftl” — 2010/9/8 — 0:40 — page 301 — #307

10.3. Linear Recurrences 301

form f .n/ D anC b for some constants a and b. Substituting this guess into the
recurrence gives

anC b D 2.a.n � 1/C b/C n

0 D .aC 1/nC .b � 2a/:

The second equation is a simplification of the first. The second equation holds for
all n if both a C 1 D 0 (which implies a D �1) and b � 2a D 0 (which implies
that b D �2). So f .n/ D anC b D �n � 2 is a particular solution.

In the Step 4, we add the homogeneous and particular solutions to obtain the
general solution

f .n/ D c2n � n � 2:

Finally, in step 5, we use the boundary condition, f .1/ D 1, determine the value
of the constant c:

f .1/ D 1) c21 � 1 � 2 D 1

) c D 2:

Therefore, the function f .n/ D 2 � 2n � n � 2 solves this variant of the Towers
of Hanoi recurrence. For comparison, the solution to the original Towers of Hanoi
problem was 2n � 1. So if moving disks takes time proportional to their size, then
the monks will need about twice as much time to solve the whole puzzle.

10.3.4 How to Guess a Particular Solution

Finding a particular solution can be the hardest part of solving inhomogeneous
recurrences. This involves guessing, and you might guess wrong.1 However, some
rules of thumb make this job fairly easy most of the time.

� Generally, look for a particular solution with the same form as the inhomo-
geneous term g.n/.

� If g.n/ is a constant, then guess a particular solution f .n/ D c. If this doesn’t
work, try polynomials of progressively higher degree: f .n/ D bnC c, then
f .n/ D an2 C bnC c, etc.

� More generally, if g.n/ is a polynomial, try a polynomial of the same degree,
then a polynomial of degree one higher, then two higher, etc. For example,
if g.n/ D 6nC 5, then try f .n/ D bnC c and then f .n/ D an2 C bnC c.

1In Chapter 12, we will show how to solve linear recurrences with generating functions—it’s a
little more complicated, but it does not require guessing.

“mcs-ftl” — 2010/9/8 — 0:40 — page 302 — #308

Chapter 10 Recurrences302

� If g.n/ is an exponential, such as 3n, then first guess that f .n/ D c3n.
Failing that, try f .n/ D bn3n C c3n and then an23n C bn3n C c3n, etc.

The entire process is summarized on the following page.

10.4 Divide-and-Conquer Recurrences

We now have a recipe for solving general linear recurrences. But the Merge Sort
recurrence, which we encountered earlier, is not linear:

T .1/ D 0

T .n/ D 2T .n=2/C n � 1 (for n � 2):

In particular, T .n/ is not a linear combination of a fixed number of immediately
preceding terms; rather, T .n/ is a function of T .n=2/, a term halfway back in the
sequence.

Merge Sort is an example of a divide-and-conquer algorithm: it divides the in-
put, “conquers” the pieces, and combines the results. Analysis of such algorithms
commonly leads to divide-and-conquer recurrences, which have this form:

T .n/ D

kX
iD1

aiT .bin/C g.n/

Here a1; : : : ak are positive constants, b1; : : : ; bk are constants between 0 and 1,
and g.n/ is a nonnegative function. For example, setting a1 D 2, b1 D 1=2, and
g.n/ D n � 1 gives the Merge Sort recurrence.

10.4.1 The Akra-Bazzi Formula

The solution to virtually all divide and conquer solutions is given by the amazing
Akra-Bazzi formula. Quite simply, the asymptotic solution to the general divide-
and-conquer recurrence

T .n/ D

kX
iD1

aiT .bin/C g.n/

is

T .n/ D ‚

�
np
�
1C

Z n

1

g.u/

upC1
du

��
(10.2)

“mcs-ftl” — 2010/9/8 — 0:40 — page 303 — #309

10.4. Divide-and-Conquer Recurrences 303

Short Guide to Solving Linear Recurrences
A linear recurrence is an equation

f .n/ D a1f .n � 1/C a2f .n � 2/C : : :C adf .n � d/„ ƒ‚ …
homogeneous part

C g.n/„ ƒ‚ …
inhomogeneous part

together with boundary conditions such as f .0/ D b0, f .1/ D b1, etc. Linear
recurrences are solved as follows:

1. Find the roots of the characteristic equation

xn D a1x
n�1
C a2x

n�2
C : : :C ak�1x C ak :

2. Write down the homogeneous solution. Each root generates one term and
the homogeneous solution is their sum. A nonrepeated root r generates the
term crn, where c is a constant to be determined later. A root r with multi-
plicity k generates the terms

d1r
n d2nr

n d3n
2rn : : : dkn

k�1rn

where d1; : : : dk are constants to be determined later.

3. Find a particular solution. This is a solution to the full recurrence that need
not be consistent with the boundary conditions. Use guess-and-verify. If
g.n/ is a constant or a polynomial, try a polynomial of the same degree, then
of one higher degree, then two higher. For example, if g.n/ D n, then try
f .n/ D bnCc and then an2CbnCc. If g.n/ is an exponential, such as 3n,
then first guess f .n/ D c3n. Failing that, try f .n/ D .bnC c/3n and then
.an2 C bnC c/3n, etc.

4. Form the general solution, which is the sum of the homogeneous solution
and the particular solution. Here is a typical general solution:

f .n/ D c2n C d.�1/n„ ƒ‚ …
homogeneous solution

C 3nC 1.„ƒ‚…
inhomogeneous solution

5. Substitute the boundary conditions into the general solution. Each boundary
condition gives a linear equation in the unknown constants. For example,
substituting f .1/ D 2 into the general solution above gives

2 D c � 21 C d � .�1/1 C 3 � 1C 1

) �2 D 2c � d:

Determine the values of these constants by solving the resulting system of
linear equations.

“mcs-ftl” — 2010/9/8 — 0:40 — page 304 — #310

Chapter 10 Recurrences304

where p satisfies
kX
iD1

aib
p
i D 1: (10.3)

A rarely-troublesome requirement is that the function g.n/ must not grow or
oscillate too quickly. Specifically, jg0.n/j must be bounded by some polynomial.
So, for example, the Akra-Bazzi formula is valid when g.n/ D x2 logn, but not
when g.n/ D 2n.

Let’s solve the Merge Sort recurrence again, using the Akra-Bazzi formula in-
stead of plug-and-chug. First, we find the value p that satisfies

2 � .1=2/p D 1:

Looks like p D 1 does the job. Then we compute the integral:

T .n/ D ‚

�
n

�
1C

Z n

1

u � 1

u2
du

��
D ‚

�
n

�
1C

�
loguC

1

u

�n
1

��
D ‚

�
n

�
lognC

1

n

��
D ‚.n logn/ :

The first step is integration and the second is simplification. We can drop the 1=n
term in the last step, because the logn term dominates. We’re done!

Let’s try a scary-looking recurrence:

T .n/ D 2T .n=2/C 8=9T .3n=4/C n2:

Here, a1 D 2, b1 D 1=2, a2 D 8=9, and b2 D 3=4. So we find the value p that
satisfies

2 � .1=2/p C .8=9/.3=4/p D 1:

Equations of this form don’t always have closed-form solutions, so you may need
to approximate p numerically sometimes. But in this case the solution is simple:
p D 2. Then we integrate:

T .n/ D ‚

�
n2
�
1C

Z n

1

u2

u3
du

��
D ‚

�
n2.1C logn/

�
D ‚

�
n2 logn

�
:

That was easy!

“mcs-ftl” — 2010/9/8 — 0:40 — page 305 — #311

10.4. Divide-and-Conquer Recurrences 305

10.4.2 Two Technical Issues

Until now, we’ve swept a couple issues related to divide-and-conquer recurrences
under the rug. Let’s address those issues now.

First, the Akra-Bazzi formula makes no use of boundary conditions. To see why,
let’s go back to Merge Sort. During the plug-and-chug analysis, we found that

Tn D nT1 C n logn � nC 1:

This expresses the nth term as a function of the first term, whose value is specified
in a boundary condition. But notice that Tn D ‚.n logn/ for every value of T1.
The boundary condition doesn’t matter!

This is the typical situation: the asymptotic solution to a divide-and-conquer
recurrence is independent of the boundary conditions. Intuitively, if the bottom-
level operation in a recursive algorithm takes, say, twice as long, then the overall
running time will at most double. This matters in practice, but the factor of 2 is
concealed by asymptotic notation. There are corner-case exceptions. For example,
the solution to T .n/ D 2T .n=2/ is either ‚.n/ or zero, depending on whether
T .1/ is zero. These cases are of little practical interest, so we won’t consider them
further.

There is a second nagging issue with divide-and-conquer recurrences that does
not arise with linear recurrences. Specifically, dividing a problem of size n may
create subproblems of non-integer size. For example, the Merge Sort recurrence
contains the term T .n=2/. So what if n is 15? How long does it take to sort seven-
and-a-half items? Previously, we dodged this issue by analyzing Merge Sort only
when the size of the input was a power of 2. But then we don’t know what happens
for an input of size, say, 100.

Of course, a practical implementation of Merge Sort would split the input ap-
proximately in half, sort the halves recursively, and merge the results. For example,
a list of 15 numbers would be split into lists of 7 and 8. More generally, a list of n
numbers would be split into approximate halves of size dn=2e and bn=2c. So the
maximum number of comparisons is actually given by this recurrence:

T .1/ D 0

T .n/ D T .dn=2e/C T .bn=2c/C n � 1 (for n � 2):

This may be rigorously correct, but the ceiling and floor operations make the recur-
rence hard to solve exactly.

Fortunately, the asymptotic solution to a divide and conquer recurrence is un-
affected by floors and ceilings. More precisely, the solution is not changed by
replacing a term T .bin/ with either T .dbine/ or T .bbinc/. So leaving floors and

“mcs-ftl” — 2010/9/8 — 0:40 — page 306 — #312

Chapter 10 Recurrences306

ceilings out of divide-and-conquer recurrences makes sense in many contexts; those
are complications that make no difference.

10.4.3 The Akra-Bazzi Theorem

The Akra-Bazzi formula together with our assertions about boundary conditions
and integrality all follow from the Akra-Bazzi Theorem, which is stated below.

Theorem 10.4.1 (Akra-Bazzi). Suppose that the function T W R! R satisfies the
recurrence

T .x/ D

8̂<̂
:

is nonnegative and bounded for 0 � x � x0
kP
iD1

aiT .bix C hi .x//C g.x/ for x > x0

where:

1. a1; : : : ; ak are positive constants.

2. b1; : : : ; bk are constants between 0 and 1.

3. x0 is large enough so that T is well-defined.

4. g.x/ is a nonnegative function such that jg0.x/j is bounded by a polynomial.

5. jhi .x/j D O.x= log2 x/.

Then

T .x/ D ‚

�
xp
�
1C

Z x

1

g.u/

upC1
du

��
where p satisfies

kX
iD1

aib
p
i D 1:

The Akra-Bazzi theorem can be proved using a complicated induction argument,
though we won’t do that here. But let’s at least go over the statement of the theorem.

All the recurrences we’ve considered were defined over the integers, and that is
the common case. But the Akra-Bazzi theorem applies more generally to functions
defined over the real numbers.

The Akra-Bazzi formula is lifted directed from the theorem statement, except
that the recurrence in the theorem includes extra functions, hi . These functions

“mcs-ftl” — 2010/9/8 — 0:40 — page 307 — #313

10.4. Divide-and-Conquer Recurrences 307

extend the theorem to address floors, ceilings, and other small adjustments to the
sizes of subproblems. The trick is illustrated by this combination of parameters

a1 D 1 b1 D 1=2 h1.x/ D
lx
2

m
�
x

2

a2 D 1 b2 D 1=2 h2.x/ D
jx
2

k
�
x

2

g.x/ D x � 1

which corresponds the recurrence

T .x/ D 1 � T
�x
2
C

�lx
2

m
�
x

2

��
C �T

�x
2
C

�jx
2

k
�
x

2

��
C x � 1

D T
�lx
2

m�
C T

�jx
2

k�
C x � 1:

This is the rigorously correct Merge Sort recurrence valid for all input sizes,
complete with floor and ceiling operators. In this case, the functions h1.x/ and
h2.x/ are both at most 1, which is easily O.x= log2 x/ as required by the theorem
statement. These functions hi do not affect—or even appear in—the asymptotic
solution to the recurrence. This justifies our earlier claim that applying floor and
ceiling operators to the size of a subproblem does not alter the asymptotic solution
to a divide-and-conquer recurrence.

10.4.4 The Master Theorem

There is a special case of the Akra-Bazzi formula known as the Master Theorem
that handles some of the recurrences that commonly arise in computer science. It
is called the Master Theorem because it was proved long before Akra and Bazzi
arrived on the scene and, for many years, it was the final word on solving divide-
and-conquer recurrences. We include the Master Theorem here because it is still
widely referenced in algorithms courses and you can use it without having to know
anything about integration.

Theorem 10.4.2 (Master Theorem). Let T be a recurrence of the form

T .n/ D aT
�n
b

�
C g.n/:

Case 1: If g.n/ D O
�
nlogb.a/��

�
for some constant � > 0, then

T .n/ D ‚
�
nlogb.a/

�
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 308 — #314

Chapter 10 Recurrences308

Case 2: If g.n/ D ‚
�
nlogb.a/ logk.n/

�
for some constant k � 0, then

T .n/ D ‚
�
nlogb.a/ logkC1.n/

�
:

Case 3: If g.n/ D �
�
nlogb.a/C�

�
for some constant � > 0 and ag.n=b/ < cg.n/

for some constant c < 1 and sufficiently large n, then

T .n/ D ‚.g.n//:

The Master Theorem can be proved by induction on n or, more easily, as a corol-
lary of Theorem 10.4.1. We will not include the details here.

10.4.5 Pitfalls with Asymptotic Notation and Induction

We’ve seen that asymptotic notation is quite useful, particularly in connection with
recurrences. And induction is our favorite proof technique. But mixing the two is
risky business; there is great potential for subtle errors and false conclusions!

False Claim. If

T .1/ D 1 and

T .n/ D 2T .n=2/C n;

then T .n/ D O.n/.

The Akra-Bazzi theorem implies that the correct solution is T .n/ D ‚.n logn/
and so this claim is false. But where does the following “proof” go astray?

Bogus proof. The proof is by strong induction. Let P.n/ be the proposition that
T .n/ D O.n/.

Base case: P.1/ is true because T .1/ D 1 D O.1/.

Inductive step: For n � 2, assume P.1/, P.2/, . . . , P.n � 1/ to prove P.n/. We
have

T .n/ D 2 � T .n=2/C n

D 2 �O.n=2/C n

D O.n/:

The first equation is the recurrence, the second uses the assumption P.n=2/, and
the third is a simplification. �

“mcs-ftl” — 2010/9/8 — 0:40 — page 309 — #315

10.5. A Feel for Recurrences 309

Where’s the bug? The proof is already far off the mark in the second sentence,
which defines the induction hypothesis. The statement “T .n/ D O.n/” is either
true or false; it’s validity does not depend on a particular value of n. Thus the very
idea of trying to prove that the statement holds for n D 1, 2, . . . , is wrong-headed.

The safe way to reason inductively about asymptotic phenomena is to work di-
rectly with the definition of the asymptotic notation. Let’s try to prove the claim
above in this way. Remember that f .n/ D O.n/ means that there exist constants
n0 and c > 0 such that jf .n/j � cn for all n � n0. (Let’s not worry about the
absolute value for now.) If all goes well, the proof attempt should fail in some
blatantly obvious way, instead of in a subtle, hard-to-detect way like the earlier ar-
gument. Since our perverse goal is to demonstrate that the proof won’t work for
any constants n0 and c, we’ll leave these as variables and assume only that they’re
chosen so that the base case holds; that is, T .n0/ � cn.

Proof Attempt. We use strong induction. Let P.n/ be the proposition that T .n/ �
cn.

Base case: P.n0/ is true, because T .n0/ � cn.

Inductive step: For n > n0, assume that P.n0/, . . . , P.n � 1/ are true in order to
prove P.n/. We reason as follows:

T .n/ D 2T .n=2/C n

� 2c.n=2/C n

D cnC n

D .c C 1/n

— cn: �

The first equation is the recurrence. Then we use induction and simplify until the
argument collapses!

In general, it is a good idea to stay away from asymptotic notation altogether
while you are doing the induction. Once the induction is over and done with, then
you can safely use big-Oh to simplify your result.

10.5 A Feel for Recurrences

We’ve guessed and verified, plugged and chugged, found roots, computed integrals,
and solved linear systems and exponential equations. Now let’s step back and look
for some rules of thumb. What kinds of recurrences have what sorts of solutions?

“mcs-ftl” — 2010/9/8 — 0:40 — page 310 — #316

Chapter 10 Recurrences310

Here are some recurrences we solved earlier:

Recurrence Solution
Towers of Hanoi Tn D 2Tn�1 C 1 Tn � 2

n

Merge Sort Tn D 2Tn=2 C n � 1 Tn � n logn
Hanoi variation Tn D 2Tn�1 C n Tn � 2 � 2

n

Fibonacci Tn D Tn�1 C Tn�2 Tn � .1:618 : : :/
nC1=

p
5

Notice that the recurrence equations for Towers of Hanoi and Merge Sort are some-
what similar, but the solutions are radically different. Merge Sorting n D 64 items
takes a few hundred comparisons, while moving n D 64 disks takes more than
1019 steps!

Each recurrence has one strength and one weakness. In the Towers of Hanoi,
we broke a problem of size n into two subproblem of size n � 1 (which is large),
but needed only 1 additional step (which is small). In Merge Sort, we divided the
problem of size n into two subproblems of size n=2 (which is small), but needed
.n � 1/ additional steps (which is large). Yet, Merge Sort is faster by a mile!

This suggests that generating smaller subproblems is far more important to al-
gorithmic speed than reducing the additional steps per recursive call. For example,
shifting to the variation of Towers of Hanoi increased the last term fromC1 toCn,
but the solution only doubled. And one of the two subproblems in the Fibonacci
recurrence is just slightly smaller than in Towers of Hanoi (size n � 2 instead of
n�1). Yet the solution is exponentially smaller! More generally, linear recurrences
(which have big subproblems) typically have exponential solutions, while divide-
and-conquer recurrences (which have small subproblems) usually have solutions
bounded above by a polynomial.

All the examples listed above break a problem of size n into two smaller prob-
lems. How does the number of subproblems affect the solution? For example,
suppose we increased the number of subproblems in Towers of Hanoi from 2 to 3,
giving this recurrence:

Tn D 3Tn�1 C 1

This increases the root of the characteristic equation from 2 to 3, which raises the
solution exponentially, from ‚.2n/ to ‚.3n/.

Divide-and-conquer recurrences are also sensitive to the number of subproblems.
For example, for this generalization of the Merge Sort recurrence:

T1 D 0

Tn D aTn=2 C n � 1:

“mcs-ftl” — 2010/9/8 — 0:40 — page 311 — #317

10.5. A Feel for Recurrences 311

the Akra-Bazzi formula gives:

Tn D

8̂<̂
:
‚.n/ for a < 2
‚.n logn/ for a D 2
‚.nloga/ for a > 2:

So the solution takes on three completely different forms as a goes from 1.99
to 2.01!

How do boundary conditions affect the solution to a recurrence? We’ve seen
that they are almost irrelevant for divide-and-conquer recurrences. For linear re-
currences, the solution is usually dominated by an exponential whose base is de-
termined by the number and size of subproblems. Boundary conditions matter
greatly only when they give the dominant term a zero coefficient, which changes
the asymptotic solution.

So now we have a rule of thumb! The performance of a recursive procedure is
usually dictated by the size and number of subproblems, rather than the amount
of work per recursive call or time spent at the base of the recursion. In particular,
if subproblems are smaller than the original by an additive factor, the solution is
most often exponential. But if the subproblems are only a fraction the size of the
original, then the solution is typically bounded by a polynomial.

“mcs-ftl” — 2010/9/8 — 0:40 — page 312 — #318

“mcs-ftl” — 2010/9/8 — 0:40 — page 313 — #319

11 Cardinality Rules

11.1 Counting One Thing by Counting Another

How do you count the number of people in a crowded room? You could count
heads, since for each person there is exactly one head. Alternatively, you could
count ears and divide by two. Of course, you might have to adjust the calculation
if someone lost an ear in a pirate raid or someone was born with three ears. The
point here is that you can often count one thing by counting another, though some
fudge factors may be required. This is a central theme of counting, from the easiest
problems to the hardest.

In more formal terms, every counting problem comes down to determining the
size of some set. The size or cardinality of a finite set S is the number of elements
in S and it is denoted by jS j. In these terms, we’re claiming that we can often find
the size of one set by finding the size of a related set. We’ve already seen a general
statement of this idea in the Mapping Rule of Theorem 7.2.1. Of particular interest
here is part 3 of Theorem 7.2.1, where we state that if there is a bijection between
two sets, then the sets have the same size. This important fact is commonly known
as the Bijection Rule.

11.1.1 The Bijection Rule

Rule 11.1.1 (Bijection Rule). If there is a bijection f W A! B between A and B ,
then jAj D jBj.

The Bijection Rule acts as a magnifier of counting ability; if you figure out the
size of one set, then you can immediately determine the sizes of many other sets
via bijections. For example, consider the two sets mentioned at the beginning of
Part III:

A D all ways to select a dozen doughnuts when five varieties are available

B D all 16-bit sequences with exactly 4 ones

Let’s consider a particular element of set A:

0 0„ƒ‚…
chocolate

„ƒ‚…
lemon-filled

0 0 0 0 0 0„ ƒ‚ …
sugar

0 0„ƒ‚…
glazed

0 0„ƒ‚…
plain

We’ve depicted each doughnut with a 0 and left a gap between the different vari-
eties. Thus, the selection above contains two chocolate doughnuts, no lemon-filled,

“mcs-ftl” — 2010/9/8 — 0:40 — page 314 — #320

Chapter 11 Cardinality Rules314

six sugar, two glazed, and two plain. Now let’s put a 1 into each of the four gaps:

0 0„ƒ‚…
chocolate

1 „ƒ‚…
lemon-filled

1 0 0 0 0 0 0„ ƒ‚ …
sugar

1 0 0„ƒ‚…
glazed

1 0 0„ƒ‚…
plain

We’ve just formed a 16-bit number with exactly 4 ones—an element of B!
This example suggests a bijection from set A to set B: map a dozen doughnuts

consisting of:

c chocolate, l lemon-filled, s sugar, g glazed, and p plain

to the sequence:

0 : : : 0„ ƒ‚ …
c

1 0 : : : 0„ ƒ‚ …
l

1 0 : : : 0„ ƒ‚ …
s

1 0 : : : 0„ ƒ‚ …
g

1 0 : : : 0„ ƒ‚ …
p

The resulting sequence always has 16 bits and exactly 4 ones, and thus is an
element of B . Moreover, the mapping is a bijection; every such bit sequence is
mapped to by exactly one order of a dozen doughnuts. Therefore, jAj D jBj by the
Bijection Rule!

This example demonstrates the magnifying power of the bijection rule. We man-
aged to prove that two very different sets are actually the same size—even though
we don’t know exactly how big either one is. But as soon as we figure out the size
of one set, we’ll immediately know the size of the other.

This particular bijection might seem frighteningly ingenious if you’ve not seen
it before. But you’ll use essentially this same argument over and over, and soon
you’ll consider it routine.

11.2 Counting Sequences

The Bijection Rule lets us count one thing by counting another. This suggests a
general strategy: get really good at counting just a few things and then use bijections
to count everything else. This is the strategy we’ll follow. In particular, we’ll get
really good at counting sequences. When we want to determine the size of some
other set T , we’ll find a bijection from T to a set of sequences S . Then we’ll
use our super-ninja sequence-counting skills to determine jS j, which immediately
gives us jT j. We’ll need to hone this idea somewhat as we go along, but that’s
pretty much the plan!

“mcs-ftl” — 2010/9/8 — 0:40 — page 315 — #321

11.2. Counting Sequences 315

11.2.1 The Product Rule

The Product Rule gives the size of a product of sets. Recall that if P1; P2; : : : ; Pn
are sets, then

P1 � P2 � : : : � Pn

is the set of all sequences whose first term is drawn from P1, second term is drawn
from P2 and so forth.

Rule 11.2.1 (Product Rule). If P1; P2; : : : Pn are sets, then:

jP1 � P2 � : : : � Pnj D jP1j � jP2j � � � jPnj

For example, suppose a daily diet consists of a breakfast selected from set B , a
lunch from set L, and a dinner from set D where:

B D fpancakes; bacon and eggs; bagel;Doritosg

L D fburger and fries; garden salad;Doritosg

D D fmacaroni; pizza; frozen burrito; pasta;Doritosg

ThenB�L�D is the set of all possible daily diets. Here are some sample elements:

.pancakes; burger and fries; pizza/

.bacon and eggs; garden salad; pasta/

.Doritos;Doritos; frozen burrito/

The Product Rule tells us how many different daily diets are possible:

jB � L �Dj D jBj � jLj � jDj

D 4 � 3 � 5

D 60:

11.2.2 Subsets of an n-element Set

How many different subsets of an n-element set X are there? For example, the set
X D fx1; x2; x3g has eight different subsets:

; fx1g fx2g fx1; x2g

fx3g fx1; x3g fx2; x3g fx1; x2; x3g:

There is a natural bijection from subsets ofX to n-bit sequences. Let x1; x2; : : : ; xn
be the elements ofX . Then a particular subset ofX maps to the sequence .b1; : : : ; bn/

“mcs-ftl” — 2010/9/8 — 0:40 — page 316 — #322

Chapter 11 Cardinality Rules316

where bi D 1 if and only if xi is in that subset. For example, if n D 10, then the
subset fx2; x3; x5; x7; x10g maps to a 10-bit sequence as follows:

subset: f x2; x3; x5; x7; x10 g

sequence: . 0; 1; 1; 0; 1; 0; 1; 0; 0; 1 /

We just used a bijection to transform the original problem into a question about
sequences—exactly according to plan! Now if we answer the sequence question,
then we’ve solved our original problem as well.

But how many different n-bit sequences are there? For example, there are 8
different 3-bit sequences:

.0; 0; 0/ .0; 0; 1/ .0; 1; 0/ .0; 1; 1/

.1; 0; 0/ .1; 0; 1/ .1; 1; 0/ .1; 1; 1/

Well, we can write the set of all n-bit sequences as a product of sets:

f0; 1g � f0; 1g � : : : � f0; 1g„ ƒ‚ …
n terms

D f0; 1gn

Then Product Rule gives the answer:

jf0; 1gnj D jf0; 1gjn

D 2n

This means that the number of subsets of an n-element set X is also 2n. We’ll
put this answer to use shortly.

11.2.3 The Sum Rule

Linus allocates his big sister Lucy a quota of 20 crabby days, 40 irritable days,
and 60 generally surly days. On how many days can Lucy be out-of-sorts one way
or another? Let set C be her crabby days, I be her irritable days, and S be the
generally surly. In these terms, the answer to the question is jC [I [S j. Now
assuming that she is permitted at most one bad quality each day, the size of this
union of sets is given by the Sum Rule:

Rule 11.2.2 (Sum Rule). If A1; A2; : : : ; An are disjoint sets, then:

jA1 [A2 [: : : [Anj D jA1j C jA2j C : : :C jAnj

Thus, according to Linus’ budget, Lucy can be out-of-sorts for:

jC [I [S j D jC j C jI j C jS j

D 20C 40C 60

D 120 days

“mcs-ftl” — 2010/9/8 — 0:40 — page 317 — #323

11.3. The Generalized Product Rule 317

Notice that the Sum Rule holds only for a union of disjoint sets. Finding the size
of a union of intersecting sets is a more complicated problem that we’ll take up
later.

11.2.4 Counting Passwords

Few counting problems can be solved with a single rule. More often, a solution
is a flurry of sums, products, bijections, and other methods. For example, the sum
and product rules together are useful for solving problems involving passwords,
telephone numbers, and license plates. For example, on a certain computer system,
a valid password is a sequence of between six and eight symbols. The first symbol
must be a letter (which can be lowercase or uppercase), and the remaining symbols
must be either letters or digits. How many different passwords are possible?

Let’s define two sets, corresponding to valid symbols in the first and subsequent
positions in the password.

F D fa; b; : : : ; z; A;B; : : : ; Zg

S D fa; b; : : : ; z; A;B; : : : ; Z; 0; 1; : : : ; 9g

In these terms, the set of all possible passwords is:1

.F � S5/ [.F � S6/ [.F � S7/

Thus, the length-six passwords are in the set F � S5, the length-seven passwords
are in F � S6, and the length-eight passwords are in F � S7. Since these sets
are disjoint, we can apply the Sum Rule and count the total number of possible
passwords as follows:

j.F � S5/ [.F � S6/ [.F � S7/j

D jF � S5j C jF � S6j C jF � S7j Sum Rule

D jF j � jS j5 C jF j � jS j6 C jF j � jS j7 Product Rule

D 52 � 625 C 52 � 626 C 52 � 627

� 1:8 � 1014 different passwords:

11.3 The Generalized Product Rule

We realize everyone has been working pretty hard this term, and we’re considering
awarding some prizes for truly exceptional coursework. Here are some possible

1The notation S5 means S � S � S � S � S .

“mcs-ftl” — 2010/9/8 — 0:40 — page 318 — #324

Chapter 11 Cardinality Rules318

categories:

Best Administrative Critique We asserted that the quiz was closed-book. On the
cover page, one strong candidate for this award wrote, “There is no book.”

Awkward Question Award “Okay, the left sock, right sock, and pants are in an
antichain, but how—even with assistance—could I put on all three at once?”

Best Collaboration Statement Inspired by a student who wrote “I worked alone”
on Quiz 1.

In how many ways can, say, three different prizes be awarded to n people? This
is easy to answer using our strategy of translating the problem about awards into
a problem about sequences. Let P be the set of n people taking the course. Then
there is a bijection from ways of awarding the three prizes to the set P 3 WWD P �
P � P . In particular, the assignment:

“person x wins prize #1, y wins prize #2, and z wins prize #3”

maps to the sequence .x; y; z/. By the Product Rule, we have jP 3j D jP j3 D n3,
so there are n3 ways to award the prizes to a class of n people.

But what if the three prizes must be awarded to different students? As before, we
could map the assignment

“person x wins prize #1, y wins prize #2, and z wins prize #3”

to the triple .x; y; z/ 2 P 3. But this function is no longer a bijection. For example,
no valid assignment maps to the triple (Dave, Dave, Becky) because Dave is not
allowed to receive two awards. However, there is a bijection from prize assignments
to the set:

S D f.x; y; z/ 2 P 3 j x, y, and z are different peopleg

This reduces the original problem to a problem of counting sequences. Unfortu-
nately, the Product Rule is of no help in counting sequences of this type because
the entries depend on one another; in particular, they must all be different. How-
ever, a slightly sharper tool does the trick.

Rule 11.3.1 (Generalized Product Rule). Let S be a set of length-k sequences. If
there are:

� n1 possible first entries,

� n2 possible second entries for each first entry,

“mcs-ftl” — 2010/9/8 — 0:40 — page 319 — #325

11.3. The Generalized Product Rule 319

� n3 possible third entries for each combination of first and second entries, etc.

then:
jS j D n1 � n2 � n3 � � �nk

In the awards example, S consists of sequences .x; y; z/. There are n ways to
choose x, the recipient of prize #1. For each of these, there are n�1ways to choose
y, the recipient of prize #2, since everyone except for person x is eligible. For each
combination of x and y, there are n� 2 ways to choose z, the recipient of prize #3,
because everyone except for x and y is eligible. Thus, according to the Generalized
Product Rule, there are

jS j D n � .n � 1/ � .n � 2/

ways to award the 3 prizes to different people.

11.3.1 Defective Dollar Bills

A dollar bill is defective if some digit appears more than once in the 8-digit serial
number. If you check your wallet, you’ll be sad to discover that defective bills
are all-too-common. In fact, how common are nondefective bills? Assuming that
the digit portions of serial numbers all occur equally often, we could answer this
question by computing

fraction of nondefective bills D
jfserial #’s with all digits differentgj

jfserial numbersgj
: (11.1)

Let’s first consider the denominator. Here there are no restrictions; there are are 10
possible first digits, 10 possible second digits, 10 third digits, and so on. Thus, the
total number of 8-digit serial numbers is 108 by the Product Rule.

Next, let’s turn to the numerator. Now we’re not permitted to use any digit twice.
So there are still 10 possible first digits, but only 9 possible second digits, 8 possible
third digits, and so forth. Thus, by the Generalized Product Rule, there are

10 � 9 � 8 � 7 � 6 � 5 � 4 � 3 D
10Š

2
D 1;814;400

serial numbers with all digits different. Plugging these results into Equation 11.1,
we find:

fraction of nondefective bills D
1;814;400

100;000;000
D 1:8144%

“mcs-ftl” — 2010/9/8 — 0:40 — page 320 — #326

Chapter 11 Cardinality Rules320

8 0Z0Z0Z0Z
7 Z0Z0m0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0a0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0o0Z
1 Z0Z0Z0Z0

a b c d e f g h

(a) valid

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0ZpZ0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0a0ZnZ0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

(b) invalid

Figure 11.1 Two ways of placing a pawn (p), a knight (N), and a bishop (B) on
a chessboard. The configuration shown in (b) is invalid because the bishop and the
knight are in the same row.

11.3.2 A Chess Problem

In how many different ways can we place a pawn (P), a knight (N), and a bishop
(B) on a chessboard so that no two pieces share a row or a column? A valid con-
figuration is shown in Figure 11.1(a), and an invalid configuration is shown in Fig-
ure 11.1(b).

First, we map this problem about chess pieces to a question about sequences.
There is a bijection from configurations to sequences

.rP ; cP ; rN ; cN ; rB ; cB/

where rP , rN , and rB are distinct rows and cP , cN , and cB are distinct columns.
In particular, rP is the pawn’s row, cP is the pawn’s column, rN is the knight’s
row, etc. Now we can count the number of such sequences using the Generalized
Product Rule:

� rP is one of 8 rows
� cP is one of 8 columns
� rN is one of 7 rows (any one but rP)
� cN is one of 7 columns (any one but cP)
� rB is one of 6 rows (any one but rP or rN)
� cB is one of 6 columns (any one but cP or cN)

Thus, the total number of configurations is .8 � 7 � 6/2.

“mcs-ftl” — 2010/9/8 — 0:40 — page 321 — #327

11.4. The Division Rule 321

11.3.3 Permutations

A permutation of a set S is a sequence that contains every element of S exactly
once. For example, here are all the permutations of the set fa; b; cg:

.a; b; c/ .a; c; b/ .b; a; c/

.b; c; a/ .c; a; b/ .c; b; a/

How many permutations of an n-element set are there? Well, there are n choices
for the first element. For each of these, there are n � 1 remaining choices for the
second element. For every combination of the first two elements, there are n � 2
ways to choose the third element, and so forth. Thus, there are a total of

n � .n � 1/ � .n � 2/ � � � 3 � 2 � 1 D nŠ

permutations of an n-element set. In particular, this formula says that there are
3Š D 6 permutations of the 3-element set fa; b; cg, which is the number we found
above.

Permutations will come up again in this course approximately 1.6 bazillion times.
In fact, permutations are the reason why factorial comes up so often and why we
taught you Stirling’s approximation:

nŠ �
p
2�n

�n
e

�n
:

11.4 The Division Rule

Counting ears and dividing by two is a silly way to count the number of people in
a room, but this approach is representative of a powerful counting principle.

A k-to-1 function maps exactly k elements of the domain to every element of
the codomain. For example, the function mapping each ear to its owner is 2-to-1.
Similarly, the function mapping each finger to its owner is 10-to-1, and the function
mapping each finger and toe to its owner is 20-to-1. The general rule is:

Rule 11.4.1 (Division Rule). If f W A! B is k-to-1, then jAj D k � jBj.

For example, suppose A is the set of ears in the room and B is the set of people.
There is a 2-to-1 mapping from ears to people, so by the Division Rule, jAj D
2 � jBj. Equivalently, jBj D jAj=2, expressing what we knew all along: the number
of people is half the number of ears. Unlikely as it may seem, many counting
problems are made much easier by initially counting every item multiple times and
then correcting the answer using the Division Rule. Let’s look at some examples.

“mcs-ftl” — 2010/9/8 — 0:40 — page 322 — #328

Chapter 11 Cardinality Rules322

8 0Z0Z0Z0s
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 s0Z0Z0Z0

a b c d e f g h

(a) valid

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0s0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0ZrZ0Z0

a b c d e f g h

(b) invalid

Figure 11.2 Two ways to place 2 rooks (R) on a chessboard. The configuration
in (b) is invalid because the rooks are in the same column.

11.4.1 Another Chess Problem

In how many different ways can you place two identical rooks on a chessboard
so that they do not share a row or column? A valid configuration is shown in
Figure 11.2(a), and an invalid configuration is shown in Figure 11.2(b).

Let A be the set of all sequences

.r1; c1; r2; c2/

where r1 and r2 are distinct rows and c1 and c2 are distinct columns. Let B be the
set of all valid rook configurations. There is a natural function f from set A to set
B; in particular, f maps the sequence .r1; c1; r2; c2/ to a configuration with one
rook in row r1, column c1 and the other rook in row r2, column c2.

But now there’s a snag. Consider the sequences:

.1; 1; 8; 8/ and .8; 8; 1; 1/

The first sequence maps to a configuration with a rook in the lower-left corner and
a rook in the upper-right corner. The second sequence maps to a configuration with
a rook in the upper-right corner and a rook in the lower-left corner. The problem is
that those are two different ways of describing the same configuration! In fact, this
arrangement is shown in Figure 11.2(a).

More generally, the function f maps exactly two sequences to every board con-
figuration; that is f is a 2-to-1 function. Thus, by the quotient rule, jAj D 2 � jBj.

“mcs-ftl” — 2010/9/8 — 0:40 — page 323 — #329

11.4. The Division Rule 323

Rearranging terms gives:

jBj D
jAj

2
D
.8 � 7/2

2
:

On the second line, we’ve computed the size of A using the General Product Rule
just as in the earlier chess problem.

11.4.2 Knights of the Round Table

In how many ways can King Arthur seat n different knights at his round table? Two
seatings are considered equivalent if one can be obtained from the other by rotation.
For example, the following two arrangements are equivalent:

"!
k1

k2

k3

k4 "!
k3

k4

k1

k2

Let A be all the permutations of the knights, and let B be the set of all possible
seating arrangements at the round table. We can map each permutation in set A to a
circular seating arrangement in set B by seating the first knight in the permutation
anywhere, putting the second knight to his left, the third knight to the left of the
second, and so forth all the way around the table. For example:

.k2; k4; k1; k3/ �! "!
k2

k4

k1

k3

This mapping is actually an n-to-1 function from A to B , since all n cyclic shifts of
the original sequence map to the same seating arrangement. In the example, n D 4
different sequences map to the same seating arrangement:

.k2; k4; k1; k3/

.k4; k1; k3; k2/

.k1; k3; k2; k4/

.k3; k2; k4; k1/

�! "!
k2

k4

k1

k3

“mcs-ftl” — 2010/9/8 — 0:40 — page 324 — #330

Chapter 11 Cardinality Rules324

Therefore, by the division rule, the number of circular seating arrangements is:

jBj D
jAj

n
D
nŠ

n
D .n � 1/Š

Note that jAj D nŠ since there are nŠ permutations of n knights.

11.5 Counting Subsets

How many k-element subsets of an n-element set are there? This question arises
all the time in various guises:

� In how many ways can I select 5 books from my collection of 100 to bring
on vacation?

� How many different 13-card Bridge hands can be dealt from a 52-card deck?

� In how many ways can I select 5 toppings for my pizza if there are 14 avail-
able toppings?

This number comes up so often that there is a special notation for it:
n

k

!
WWD the number of k-element subsets of an n-element set.

The expression

n

k

!
is read “n choose k.” Now we can immediately express the

answers to all three questions above:

� I can select 5 books from 100 in

100

5

!
ways.

� There are

52

13

!
different Bridge hands.

� There are

14

5

!
different 5-topping pizzas, if 14 toppings are available.

“mcs-ftl” — 2010/9/8 — 0:40 — page 325 — #331

11.5. Counting Subsets 325

11.5.1 The Subset Rule

We can derive a simple formula for the n-choose-k number using the Division Rule.
We do this by mapping any permutation of an n-element set fa1; : : : ; ang into a k-
element subset simply by taking the first k elements of the permutation. That is,
the permutation a1a2 : : : an will map to the set fa1; a2; : : : ; akg.

Notice that any other permutation with the same first k elements a1; : : : ; ak in
any order and the same remaining elements n � k elements in any order will also
map to this set. What’s more, a permutation can only map to fa1; a2; : : : ; akg
if its first k elements are the elements a1; : : : ; ak in some order. Since there are
kŠ possible permutations of the first k elements and .n � k/Š permutations of the
remaining elements, we conclude from the Product Rule that exactly kŠ.n � k/Š
permutations of the n-element set map to the the particular subset, S . In other
words, the mapping from permutations to k-element subsets is kŠ.n � k/Š-to-1.

But we know there are nŠ permutations of an n-element set, so by the Division
Rule, we conclude that

nŠ D kŠ.n � k/Š

n

k

!
which proves:

Rule 11.5.1 (Subset Rule). The number of k-element subsets of an n-element set is
n

k

!
D

nŠ

kŠ .n � k/Š
:

Notice that this works even for 0-element subsets: nŠ=0ŠnŠ D 1. Here we use the
fact that 0Š is a product of 0 terms, which by convention2 equals 1.

11.5.2 Bit Sequences

How many n-bit sequences contain exactly k ones? We’ve already seen the straight-
forward bijection between subsets of an n-element set and n-bit sequences. For
example, here is a 3-element subset of fx1; x2; : : : ; x8g and the associated 8-bit
sequence:

f x1; x4; x5 g

. 1; 0; 0; 1; 1; 0; 0; 0 /

Notice that this sequence has exactly 3 ones, each corresponding to an element
of the 3-element subset. More generally, the n-bit sequences corresponding to a
k-element subset will have exactly k ones. So by the Bijection Rule,

2We don’t use it here, but a sum of zero terms equals 0.

“mcs-ftl” — 2010/9/8 — 0:40 — page 326 — #332

Chapter 11 Cardinality Rules326

The number of n-bit sequences with exactly k ones is

n

k

!
.

11.6 Sequences with Repetitions

11.6.1 Sequences of Subsets

Choosing a k-element subset of an n-element set is the same as splitting the set
into a pair of subsets: the first subset of size k and the second subset consisting of
the remaining n � k elements. So the Subset Rule can be understood as a rule for
counting the number of such splits into pairs of subsets.

We can generalize this to splits into more than two subsets. Namely, let A be
an n-element set and k1; k2; : : : ; km be nonnegative integers whose sum is n. A
.k1; k2; : : : ; km/-split of A is a sequence

.A1; A2; : : : ; Am/

where the Ai are disjoint subsets of A and jAi j D ki for i D 1; : : : ; m.

Rule 11.6.1 (Subset Split Rule). The number of .k1; k2; : : : ; km/-splits of an n-
element set is

n

k1; : : : ; km

!
WWD

nŠ

k1Š k2Š � � � kmŠ

The proof of this Rule is essentially the same as for the Subset Rule. Namely, we
map any permutation a1a2 : : : an of an n-element setA into a .k1; k2; : : : ; km/-split
by letting the 1st subset in the split be the first k1 elements of the permutation, the
2nd subset of the split be the next k2 elements, . . . , and themth subset of the split be
the final km elements of the permutation. This map is a k1Š k2Š � � � kmŠ-to-1 func-
tion from the nŠ permutations to the .k1; k2; : : : ; km/-splits of A, and the Subset
Split Rule now follows from the Division Rule.

11.6.2 The Bookkeeper Rule

We can also generalize our count of n-bit sequences with k ones to counting se-
quences of n letters over an alphabet with more than two letters. For example,
how many sequences can be formed by permuting the letters in the 10-letter word
BOOKKEEPER?

Notice that there are 1 B, 2 O’s, 2 K’s, 3 E’s, 1 P, and 1 R in BOOKKEEPER. This
leads to a straightforward bijection between permutations of BOOKKEEPER and

“mcs-ftl” — 2010/9/8 — 0:40 — page 327 — #333

11.6. Sequences with Repetitions 327

(1,2,2,3,1,1)-splits of f1; 2; : : : ; 10g. Namely, map a permutation to the sequence
of sets of positions where each of the different letters occur.

For example, in the permutation BOOKKEEPER itself, the B is in the 1st posi-
tion, the O’s occur in the 2nd and 3rd positions, K’s in 4th and 5th, the E’s in the
6th, 7th and 9th, P in the 8th, and R is in the 10th position. So BOOKKEEPER
maps to

.f1g; f2; 3g; f4; 5g; f6; 7; 9g; f8g; f10g/:

From this bijection and the Subset Split Rule, we conclude that the number of ways
to rearrange the letters in the word BOOKKEEPER is:

total letters‚…„ƒ
10Š

1Š„ƒ‚…
B’s

2Š„ƒ‚…
O’s

2Š„ƒ‚…
K’s

3Š„ƒ‚…
E’s

1Š„ƒ‚…
P’s

1Š„ƒ‚…
R’s

This example generalizes directly to an exceptionally useful counting principle
which we will call the

Rule 11.6.2 (Bookkeeper Rule). Let l1; : : : ; lm be distinct elements. The number
of sequences with k1 occurrences of l1, and k2 occurrences of l2, . . . , and km
occurrences of lm is

.k1 C k2 C : : :C km/Š

k1Š k2Š : : : kmŠ

For example, suppose you are planning a 20-mile walk, which should include 5
northward miles, 5 eastward miles, 5 southward miles, and 5 westward miles. How
many different walks are possible?

There is a bijection between such walks and sequences with 5 N’s, 5 E’s, 5 S’s,
and 5 W’s. By the Bookkeeper Rule, the number of such sequences is:

20Š

5Š4
:

11.6.3 The Binomial Theorem

Counting gives insight into one of the basic theorems of algebra. A binomial is a
sum of two terms, such as aC b. Now consider its 4th power, .aC b/4.

If we multiply out this 4th power expression completely, we get

.aC b/4 D aaaa C aaab C aaba C aabb

C abaa C abab C abba C abbb

C baaa C baab C baba C babb

C bbaa C bbab C bbba C bbbb

“mcs-ftl” — 2010/9/8 — 0:40 — page 328 — #334

Chapter 11 Cardinality Rules328

Notice that there is one term for every sequence of a’s and b’s. So there are 24

terms, and the number of terms with k copies of b and n � k copies of a is:

nŠ

kŠ .n � k/Š
D

n

k

!
by the Bookkeeper Rule. Hence, the coefficient of an�kbk is

�
n
k

�
. So for n D 4,

this means:

.aC b/4 D

4

0

!
� a4b0 C

4

1

!
� a3b1 C

4

2

!
� a2b2 C

4

3

!
� a1b3 C

4

4

!
� a0b4

In general, this reasoning gives the Binomial Theorem:

Theorem 11.6.3 (Binomial Theorem). For all n 2 N and a; b 2 R:

.aC b/n D

nX
kD0

n

k

!
an�kbk

The expression

n

k

!
is often called a “binomial coefficient” in honor of its ap-

pearance here.
This reasoning about binomials extends nicely to multinomials, which are sums

of two or more terms. For example, suppose we wanted the coefficient of

bo2k2e3pr

in the expansion of .b C oC k C e C p C r/10. Each term in this expansion is a
product of 10 variables where each variable is one of b, o, k, e, p, or r . Now, the
coefficient of bo2k2e3pr is the number of those terms with exactly 1 b, 2 o’s, 2
k’s, 3 e’s, 1 p, and 1 r . And the number of such terms is precisely the number of
rearrangements of the word BOOKKEEPER:

10

1; 2; 2; 3; 1; 1

!
D

10Š

1Š 2Š 2Š 3Š 1Š 1Š
:

The expression on the left is called a “multinomial coefficient.” This reasoning
extends to a general theorem.

Definition 11.6.4. For n; k1; : : : ; km 2 N, such that k1Ck2C� � �Ckm D n, define
the multinomial coefficient

n

k1; k2; : : : ; km

!
WWD

nŠ

k1Š k2Š : : : kmŠ
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 329 — #335

11.7. Counting Practice: Poker Hands 329

Theorem 11.6.5 (Multinomial Theorem). For all n 2 N,

.z1 C z2 C � � � C zm/
n
D

X
k1;:::;km2N
k1C���CkmDn

n

k1; k2; : : : ; km

!
z
k1
1 z

k2
2 � � � z

km
m :

You’ll be better off remembering the reasoning behind the Multinomial Theorem
rather than this ugly formal statement.

11.6.4 A Word about Words

Someday you might refer to the Subset Split Rule or the Bookkeeper Rule in front
of a roomful of colleagues and discover that they’re all staring back at you blankly.
This is not because they’re dumb, but rather because we made up the name “Book-
keeper Rule”. However, the rule is excellent and the name is apt, so we suggest
that you play through: “You know? The Bookkeeper Rule? Don’t you guys know
anything???”

The Bookkeeper Rule is sometimes called the “formula for permutations with
indistinguishable objects.” The size k subsets of an n-element set are sometimes
called k-combinations. Other similar-sounding descriptions are “combinations with
repetition, permutations with repetition, r-permutations, permutations with indis-
tinguishable objects,” and so on. However, the counting rules we’ve taught you are
sufficient to solve all these sorts of problems without knowing this jargon, so we
won’t burden you with it.

11.7 Counting Practice: Poker Hands

Five-Card Draw is a card game in which each player is initially dealt a hand con-
sisting of 5 cards from a deck of 52 cards.3 (Then the game gets complicated, but
let’s not worry about that.) The number of different hands in Five-Card Draw is the

3There are 52 cards in a standard deck. Each card has a suit and a rank. There are four suits:

� (spades) ~ (hearts) | (clubs) } (diamonds)

And there are 13 ranks, listed here from lowest to highest:

Ace
A ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ;

Jack
J ;

Queen
Q ;

King
K :

Thus, for example, 8~ is the 8 of hearts and A� is the ace of spades.

“mcs-ftl” — 2010/9/8 — 0:40 — page 330 — #336

Chapter 11 Cardinality Rules330

number of 5-element subsets of a 52-element set, which is
52

5

!
D 2; 598; 960:

Let’s get some counting practice by working out the number of hands with various
special properties.

11.7.1 Hands with a Four-of-a-Kind

A Four-of-a-Kind is a set of four cards with the same rank. How many different
hands contain a Four-of-a-Kind? Here are a couple examples:

f8�; 8}; Q~; 8~; 8|g

fA|; 2|; 2~; 2}; 2�g

As usual, the first step is to map this question to a sequence-counting problem. A
hand with a Four-of-a-Kind is completely described by a sequence specifying:

1. The rank of the four cards.

2. The rank of the extra card.

3. The suit of the extra card.

Thus, there is a bijection between hands with a Four-of-a-Kind and sequences con-
sisting of two distinct ranks followed by a suit. For example, the three hands above
are associated with the following sequences:

.8;Q;~/$ f 8�; 8}; 8~; 8|; Q~g

.2; A;|/$ f2|; 2~; 2}; 2�; A|g

Now we need only count the sequences. There are 13 ways to choose the first rank,
12 ways to choose the second rank, and 4 ways to choose the suit. Thus, by the
Generalized Product Rule, there are 13 � 12 � 4 D 624 hands with a Four-of-a-Kind.
This means that only 1 hand in about 4165 has a Four-of-a-Kind. Not surprisingly,
Four-of-a-Kind is considered to be a very good poker hand!

“mcs-ftl” — 2010/9/8 — 0:40 — page 331 — #337

11.7. Counting Practice: Poker Hands 331

11.7.2 Hands with a Full House

A Full House is a hand with three cards of one rank and two cards of another rank.
Here are some examples:

f2�; 2|; 2}; J|; J}g

f5}; 5|; 5~; 7~; 7|g

Again, we shift to a problem about sequences. There is a bijection between Full
Houses and sequences specifying:

1. The rank of the triple, which can be chosen in 13 ways.

2. The suits of the triple, which can be selected in
�
4
3

�
ways.

3. The rank of the pair, which can be chosen in 12 ways.

4. The suits of the pair, which can be selected in
�
4
2

�
ways.

The example hands correspond to sequences as shown below:

.2; f�;|;}g; J; f|;}g/$ f2�; 2|; 2}; J|; J}g

.5; f};|;~g; 7; f~;|g/$ f5}; 5|; 5~; 7~; 7|g

By the Generalized Product Rule, the number of Full Houses is:

13 �

4

3

!
� 12 �

4

2

!
:

We’re on a roll—but we’re about to hit a speed bump.

11.7.3 Hands with Two Pairs

How many hands have Two Pairs; that is, two cards of one rank, two cards of
another rank, and one card of a third rank? Here are examples:

f3}; 3�; Q}; Q~; A|g

f9~; 9}; 5~; 5|; K�g

Each hand with Two Pairs is described by a sequence consisting of:

1. The rank of the first pair, which can be chosen in 13 ways.

2. The suits of the first pair, which can be selected
�
4
2

�
ways.

“mcs-ftl” — 2010/9/8 — 0:40 — page 332 — #338

Chapter 11 Cardinality Rules332

3. The rank of the second pair, which can be chosen in 12 ways.

4. The suits of the second pair, which can be selected in
�
4
2

�
ways.

5. The rank of the extra card, which can be chosen in 11 ways.

6. The suit of the extra card, which can be selected in
�
4
1

�
D 4 ways.

Thus, it might appear that the number of hands with Two Pairs is:

13 �

4

2

!
� 12 �

4

2

!
� 11 � 4:

Wrong answer! The problem is that there is not a bijection from such sequences to
hands with Two Pairs. This is actually a 2-to-1 mapping. For example, here are the
pairs of sequences that map to the hands given above:

.3; f};�g;Q; f};~g; A;|/ &

f3}; 3�; Q}; Q~; A|g

.Q; f};~g; 3; f};�g; A;|/ %

.9; f~;}g; 5; f~;|g; K;�/ &

f9~; 9}; 5~; 5|; K�g

.5; f~;|g; 9; f~;}g; K;�/ %

The problem is that nothing distinguishes the first pair from the second. A pair of
5’s and a pair of 9’s is the same as a pair of 9’s and a pair of 5’s. We avoided this
difficulty in counting Full Houses because, for example, a pair of 6’s and a triple of
kings is different from a pair of kings and a triple of 6’s.

We ran into precisely this difficulty last time, when we went from counting ar-
rangements of different pieces on a chessboard to counting arrangements of two
identical rooks. The solution then was to apply the Division Rule, and we can do
the same here. In this case, the Division rule says there are twice as many sequences
as hands, so the number of hands with Two Pairs is actually:

13 �
�
4
2

�
� 12 �

�
4
2

�
� 11 � 4

2
:

Another Approach

The preceding example was disturbing! One could easily overlook the fact that the
mapping was 2-to-1 on an exam, fail the course, and turn to a life of crime. You
can make the world a safer place in two ways:

“mcs-ftl” — 2010/9/8 — 0:40 — page 333 — #339

11.7. Counting Practice: Poker Hands 333

1. Whenever you use a mapping f W A! B to translate one counting problem
to another, check that the same number elements in A are mapped to each
element in B . If k elements of A map to each of element of B , then apply
the Division Rule using the constant k.

2. As an extra check, try solving the same problem in a different way. Multiple
approaches are often available—and all had better give the same answer!
(Sometimes different approaches give answers that look different, but turn
out to be the same after some algebra.)

We already used the first method; let’s try the second. There is a bijection be-
tween hands with two pairs and sequences that specify:

1. The ranks of the two pairs, which can be chosen in
�
13
2

�
ways.

2. The suits of the lower-rank pair, which can be selected in
�
4
2

�
ways.

3. The suits of the higher-rank pair, which can be selected in
�
4
2

�
ways.

4. The rank of the extra card, which can be chosen in 11 ways.

5. The suit of the extra card, which can be selected in
�
4
1

�
D 4 ways.

For example, the following sequences and hands correspond:

.f3;Qg; f};�g; f};~g; A;|/$ f3}; 3�; Q}; Q~; A|g

.f9; 5g; f~;|g; f~;}g; K;�/$ f9~; 9}; 5~; 5|; K�g

Thus, the number of hands with two pairs is:
13

2

!
�

4

2

!
�

4

2

!
� 11 � 4:

This is the same answer we got before, though in a slightly different form.

11.7.4 Hands with Every Suit

How many hands contain at least one card from every suit? Here is an example of
such a hand:

f7}; K|; 3}; A~; 2�g

Each such hand is described by a sequence that specifies:

1. The ranks of the diamond, the club, the heart, and the spade, which can be
selected in 13 � 13 � 13 � 13 D 134 ways.

“mcs-ftl” — 2010/9/8 — 0:40 — page 334 — #340

Chapter 11 Cardinality Rules334

2. The suit of the extra card, which can be selected in 4 ways.

3. The rank of the extra card, which can be selected in 12 ways.

For example, the hand above is described by the sequence:

.7;K;A; 2;}; 3/$ f7}; K|; A~; 2�; 3}g:

Are there other sequences that correspond to the same hand? There is one more!
We could equally well regard either the 3} or the 7} as the extra card, so this
is actually a 2-to-1 mapping. Here are the two sequences corresponding to the
example hand:

.7;K;A; 2;}; 3/ &

f7}; K|; A~; 2�; 3}g

.3;K;A; 2;}; 7/ %

Therefore, the number of hands with every suit is:

134 � 4 � 12

2
:

11.8 Inclusion-Exclusion

How big is a union of sets? For example, suppose there are 60 math majors, 200
EECS majors, and 40 physics majors. How many students are there in these three
departments? Let M be the set of math majors, E be the set of EECS majors, and
P be the set of physics majors. In these terms, we’re asking for jM [E [P j.

The Sum Rule says that if M , E, and P are disjoint, then the sum of their sizes
is

jM [E [P j D jM j C jEj C jP j:

However, the sets M , E, and P might not be disjoint. For example, there might
be a student majoring in both math and physics. Such a student would be counted
twice on the right side of this equation, once as an element of M and once as an
element of P . Worse, there might be a triple-major4 counted three times on the
right side!

Our most-complicated counting rule determines the size of a union of sets that
are not necessarily disjoint. Before we state the rule, let’s build some intuition by
considering some easier special cases: unions of just two or three sets.

4. . . though not at MIT anymore.

“mcs-ftl” — 2010/9/8 — 0:40 — page 335 — #341

11.8. Inclusion-Exclusion 335

11.8.1 Union of Two Sets

For two sets, S1 and S2, the Inclusion-Exclusion Rule is that the size of their union
is:

jS1 [S2j D jS1j C jS2j � jS1 \ S2j (11.2)

Intuitively, each element of S1 is accounted for in the first term, and each element
of S2 is accounted for in the second term. Elements in both S1 and S2 are counted
twice—once in the first term and once in the second. This double-counting is cor-
rected by the final term.

11.8.2 Union of Three Sets

So how many students are there in the math, EECS, and physics departments? In
other words, what is jM [E [P j if:

jM j D 60

jEj D 200

jP j D 40:

The size of a union of three sets is given by a more complicated Inclusion-Exclusion
formula:

jS1 [S2 [S3j D jS1j C jS2j C jS3j

� jS1 \ S2j � jS1 \ S3j � jS2 \ S3j

C jS1 \ S2 \ S3j:

Remarkably, the expression on the right accounts for each element in the union of
S1, S2, and S3 exactly once. For example, suppose that x is an element of all three
sets. Then x is counted three times (by the jS1j, jS2j, and jS3j terms), subtracted
off three times (by the jS1\S2j, jS1\S3j, and jS2\S3j terms), and then counted
once more (by the jS1 \ S2 \ S3j term). The net effect is that x is counted just
once.

If x is in two sets (say, S1 and S2), then x is counted twice (by the jS1j and jS2j
terms) and subtracted once (by the jS1 \ S2j term). In this case, x does not factor
into any of the other terms, since x … S3.

So we can’t answer the original question without knowing the sizes of the various
intersections. Let’s suppose that there are:

4 math - EECS double majors
3 math - physics double majors
11 EECS - physics double majors
2 triple majors

“mcs-ftl” — 2010/9/8 — 0:40 — page 336 — #342

Chapter 11 Cardinality Rules336

Then jM\Ej D 4C2, jM\P j D 3C2, jE\P j D 11C2, and jM\E\P j D 2.
Plugging all this into the formula gives:

jM [E [P j D jM j C jEj C jP j � jM \Ej � jM \ P j � jE \ P j C jM \E \ P j

D 60C 200C 40 � 6 � 5 � 13C 2

D 278

11.8.3 Sequences with 42, 04, or 60

In how many permutations of the set f0; 1; 2; : : : ; 9g do either 4 and 2, 0 and 4, or
6 and 0 appear consecutively? For example, none of these pairs appears in:

.7; 2; 9; 5; 4; 1; 3; 8; 0; 6/:

The 06 at the end doesn’t count; we need 60. On the other hand, both 04 and 60
appear consecutively in this permutation:

.7; 2; 5; 6; 0; 4; 3; 8; 1; 9/:

Let P42 be the set of all permutations in which 42 appears. Define P60 and P04
similarly. Thus, for example, the permutation above is contained in both P60 and
P04, but not P42. In these terms, we’re looking for the size of the set P42 [P04 [
P60.

First, we must determine the sizes of the individual sets, such as P60. We can
use a trick: group the 6 and 0 together as a single symbol. Then there is a natural
bijection between permutations of f0; 1; 2; : : : 9g containing 6 and 0 consecutively
and permutations of:

f60; 1; 2; 3; 4; 5; 7; 8; 9g:

For example, the following two sequences correspond:

.7; 2; 5; 6; 0; 4; 3; 8; 1; 9/ ! .7; 2; 5; 60; 4; 3; 8; 1; 9/:

There are 9Š permutations of the set containing 60, so jP60j D 9Š by the Bijection
Rule. Similarly, jP04j D jP42j D 9Š as well.

Next, we must determine the sizes of the two-way intersections, such as P42 \
P60. Using the grouping trick again, there is a bijection with permutations of the
set:

f42; 60; 1; 3; 5; 7; 8; 9g:

Thus, jP42 \ P60j D 8Š. Similarly, jP60 \ P04j D 8Š by a bijection with the set:

f604; 1; 2; 3; 5; 7; 8; 9g:

“mcs-ftl” — 2010/9/8 — 0:40 — page 337 — #343

11.8. Inclusion-Exclusion 337

And jP42 \ P04j D 8Š as well by a similar argument. Finally, note that jP60 \
P04 \ P42j D 7Š by a bijection with the set:

f6042; 1; 3; 5; 7; 8; 9g:

Plugging all this into the formula gives:

jP42 [P04 [P60j D 9ŠC 9ŠC 9Š � 8Š � 8Š � 8ŠC 7Š:

11.8.4 Union of n Sets

The size of a union of n sets is given by the following rule.

Rule 11.8.1 (Inclusion-Exclusion).

jS1 [S2 [� � � [Snj D

the sum of the sizes of the individual sets
minus the sizes of all two-way intersections

plus the sizes of all three-way intersections
minus the sizes of all four-way intersections

plus the sizes of all five-way intersections, etc.

The formulas for unions of two and three sets are special cases of this general
rule.

This way of expressing Inclusion-Exclusion is easy to understand and nearly
as precise as expressing it in mathematical symbols, but we’ll need the symbolic
version below, so let’s work on deciphering it now.

We already have a standard notation for the sum of sizes of the individual sets,
namely,

nX
iD1

jSi j:

A “two-way intersection” is a set of the form Si \Sj for i ¤ j . We regard Sj \Si
as the same two-way intersection as Si \ Sj , so we can assume that i < j . Now
we can express the sum of the sizes of the two-way intersections asX

1�i<j�n

jSi \ Sj j:

Similarly, the sum of the sizes of the three-way intersections isX
1�i<j<k�n

jSi \ Sj \ Skj:

“mcs-ftl” — 2010/9/8 — 0:40 — page 338 — #344

Chapter 11 Cardinality Rules338

These sums have alternating signs in the Inclusion-Exclusion formula, with the
sum of the k-way intersections getting the sign .�1/k�1. This finally leads to a
symbolic version of the rule:

Rule (Inclusion-Exclusion).

j

n[
iD1

Si j D

nX
iD1

jSi j

�

X
1�i<j�n

jSi \ Sj j

C

X
1�i<j<k�n

jSi \ Sj \ Skj C � � �

C .�1/n�1j

n\
iD1

Si j:

11.8.5 Computing Euler’s Function

As an example, let’s use Inclusion-Exclusion to calculate Euler’s function, �.n/.
By definition, �.n/ is the number of nonnegative integers less than a positive inte-
ger n that are relatively prime to n. But the set S of nonnegative integers less than n
that are not relatively prime to n will be easier to count.

Suppose the prime factorization of n is pe11 � � �p
em
m for distinct primes pi . This

means that the integers in S are precisely the nonnegative integers less than n that
are divisible by at least one of the pi ’s. Letting Ci be the set of nonnegative integers
less than n that are divisible by pi , we have

S D

m[
iD1

Ci :

We’ll be able to find the size of this union using Inclusion-Exclusion because
the intersections of the Ci ’s are easy to count. For example, C1 \ C2 \ C3 is the
set of nonnegative integers less than n that are divisible by each of p1, p2 and p3.
But since the pi ’s are distinct primes, being divisible by each of these primes is the
same as being divisible by their product. Now observe that if r is a positive divisor
of n, then exactly n=r nonnegative integers less than n are divisible by r , namely,
0; r; 2r; : : : ; ..n=r/ � 1/r . So exactly n=p1p2p3 nonnegative integers less than n
are divisible by all three primes p1, p2, p3. In other words,

jC1 \ C2 \ C3j D
n

p1p2p3
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 339 — #345

11.9. Combinatorial Proofs 339

Reasoning this way about all the intersections among the Ci ’s and applying
Inclusion-Exclusion, we get

jS j D j

m[
iD1

Ci j

D

mX
iD1

jCi j �
X

1�i<j�m

jCi \ Cj j C
X

1�i<j<k�m

jCi \ Cj \ Ckj � � � � C .�1/
m�1
j

m\
iD1

Ci j

D

mX
iD1

n

pi
�

X
1�i<j�m

n

pipj
C

X
1�i<j<k�m

n

pipjpk
� � � � C .�1/m�1

n

p1p2 � � �pn

D n

0@ mX
iD1

1

pi
�

X
1�i<j�m

1

pipj
C

X
1�i<j<k�m

1

pipjpk
� � � � C .�1/m�1

1

p1p2 � � �pn

1A
But �.n/ D n � jS j by definition, so

�.n/ D n

0@1 � mX
iD1

1

pi
C

X
1�i<j�m

1

pipj
�

X
1�i<j<k�m

1

pipjpk
C � � � C .�1/m

1

p1p2 � � �pn

1A
D n

mY
iD1

�
1 �

1

pi

�
: (11.3)

Yikes! That was pretty hairy. Are you getting tired of all that nasty algebra? If
so, then good news is on the way. In the next section, we will show you how to
prove some heavy-duty formulas without using any algebra at all. Just a few words
and you are done. No kidding.

11.9 Combinatorial Proofs

Suppose you have n different T-shirts, but only want to keep k. You could equally
well select the k shirts you want to keep or select the complementary set of n � k
shirts you want to throw out. Thus, the number of ways to select k shirts from
among n must be equal to the number of ways to select n� k shirts from among n.
Therefore:

n

k

!
D

n

n � k

!
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 340 — #346

Chapter 11 Cardinality Rules340

This is easy to prove algebraically, since both sides are equal to:

nŠ

kŠ .n � k/Š
:

But we didn’t really have to resort to algebra; we just used counting principles.
Hmmm.. . .

11.9.1 Pascal’s Identity

Jay, famed Math for Computer Science Teaching Assistant, has decided to try out
for the US Olympic boxing team. After all, he’s watched all of the Rocky movies
and spent hours in front of a mirror sneering, “Yo, you wanna piece a’ me?!” Jay
figures that n people (including himself) are competing for spots on the team and
only k will be selected. As part of maneuvering for a spot on the team, he needs to
work out how many different teams are possible. There are two cases to consider:

� Jay is selected for the team, and his k�1 teammates are selected from among
the other n�1 competitors. The number of different teams that can be formed
in this way is:

n � 1

k � 1

!
:

� Jay is not selected for the team, and all k team members are selected from
among the other n� 1 competitors. The number of teams that can be formed
this way is:

n � 1

k

!
:

All teams of the first type contain Jay, and no team of the second type does;
therefore, the two sets of teams are disjoint. Thus, by the Sum Rule, the total
number of possible Olympic boxing teams is:

n � 1

k � 1

!
C

n � 1

k

!
:

Jeremy, equally-famed Teaching Assistant, thinks Jay isn’t so tough and so he
might as well also try out. He reasons that n people (including himself) are trying
out for k spots. Thus, the number of ways to select the team is simply:

n

k

!
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 341 — #347

11.9. Combinatorial Proofs 341

Jeremy and Jay each correctly counted the number of possible boxing teams.
Thus, their answers must be equal. So we know:

n

k

!
D

n � 1

k � 1

!
C

n � 1

k

!
:

This is called Pascal’s Identity. And we proved it without any algebra! Instead, we
relied purely on counting techniques.

11.9.2 Finding a Combinatorial Proof

A combinatorial proof is an argument that establishes an algebraic fact by relying
on counting principles. Many such proofs follow the same basic outline:

1. Define a set S .

2. Show that jS j D n by counting one way.

3. Show that jS j D m by counting another way.

4. Conclude that n D m.

In the preceding example, S was the set of all possible Olympic boxing teams. Jay
computed

jS j D

n � 1

k � 1

!
C

n � 1

k

!
by counting one way, and Jeremy computed

jS j D

n

k

!
by counting another way. Equating these two expressions gave Pascal’s Identity.

More typically, the set S is defined in terms of simple sequences or sets rather
than an elaborate story. Here is a less colorful example of a combinatorial argu-
ment.

Theorem 11.9.1.
nX
rD0

n

r

!
2n

n � r

!
D

3n

n

!

“mcs-ftl” — 2010/9/8 — 0:40 — page 342 — #348

Chapter 11 Cardinality Rules342

Proof. We give a combinatorial proof. Let S be all n-card hands that can be dealt
from a deck containing n red cards (numbered 1; : : : ; n) and 2n black cards (num-
bered 1; : : : ; 2n). First, note that every 3n-element set has

jS j D

3n

n

!
n-element subsets.

From another perspective, the number of hands with exactly r red cards is
n

r

!
2n

n � r

!
since there are

�
n
r

�
ways to choose the r red cards and

�
2n
n�r

�
ways to choose the

n � r black cards. Since the number of red cards can be anywhere from 0 to n, the
total number of n-card hands is:

jS j D

nX
rD0

n

r

!
2n

n � r

!
:

Equating these two expressions for jS j proves the theorem. �

Combinatorial proofs are almost magical. Theorem 11.9.1 looks pretty scary, but
we proved it without any algebraic manipulations at all. The key to constructing
a combinatorial proof is choosing the set S properly, which can be tricky. Gener-
ally, the simpler side of the equation should provide some guidance. For example,
the right side of Theorem 11.9.1 is

�
3n
n

�
, which suggests that it will be helpful to

choose S to be all n-element subsets of some 3n-element set.

11.10 The Pigeonhole Principle

Here is an old puzzle:

A drawer in a dark room contains red socks, green socks, and blue
socks. How many socks must you withdraw to be sure that you have a
matching pair?

For example, picking out three socks is not enough; you might end up with one
red, one green, and one blue. The solution relies on the Pigeonhole Principle,
which is a friendly name for the contrapositive of the injective case of the Mapping
Rule.

“mcs-ftl” — 2010/9/8 — 0:40 — page 343 — #349

11.10. The Pigeonhole Principle 343

1st sock

A f

2nd sock

3rd sock

4th sock

red

B

green

blue

Figure 11.3 One possible mapping of four socks to three colors.

Rule 11.10.1 (Pigeonhole Principle). If jX j > jY j, then for every total function5

f W X ! Y , there exist two different elements of X that are mapped to the same
element of Y .

What this abstract mathematical statement has to do with selecting footwear un-
der poor lighting conditions is maybe not obvious. However, let A be the set of
socks you pick out, let B be the set of colors available, and let f map each sock
to its color. The Pigeonhole Principle says that if jAj > jBj D 3, then at least two
elements of A (that is, at least two socks) must be mapped to the same element of
B (that is, the same color). Therefore, four socks are enough to ensure a matched
pair. For example, one possible mapping of four socks to three colors is shown in
Figure 11.3.

Not surprisingly, the pigeonhole principle is often described in terms of pigeons:

If there are more pigeons than holes they occupy, then at least two
pigeons must be in the same hole.

In this case, the pigeons form set A, the pigeonholes are set B , and f describes
which hole each pigeon flies into.

Mathematicians have come up with many ingenious applications for the pigeon-
hole principle. If there were a cookbook procedure for generating such arguments,
we’d give it to you. Unfortunately, there isn’t one. One helpful tip, though: when
you try to solve a problem with the pigeonhole principle, the key is to clearly iden-
tify three things:

5This Mapping Rule applies even if f is a total injective relation. Recall that a function is total if
8x 2 X 9y 2 Y: f .x/ D y.

“mcs-ftl” — 2010/9/8 — 0:40 — page 344 — #350

Chapter 11 Cardinality Rules344

1. The set A (the pigeons).

2. The set B (the pigeonholes).

3. The function f (the rule for assigning pigeons to pigeonholes).

11.10.1 Hairs on Heads

There are a number of generalizations of the pigeonhole principle. For example:

Rule 11.10.2 (Generalized Pigeonhole Principle). If jX j > k � jY j, then every total
function f W X ! Y maps at least k C 1 different elements of X to the same
element of Y .

For example, if you pick two people at random, surely they are extremely un-
likely to have exactly the same number of hairs on their heads. However, in the
remarkable city of Boston, Massachusetts there are actually three people who have
exactly the same number of hairs! Of course, there are many bald people in Boston,
and they all have zero hairs. But we’re talking about non-bald people; say a person
is non-bald if they have at least ten thousand hairs on their head.

Boston has about 500,000 non-bald people, and the number of hairs on a person’s
head is at most 200,000. Let A be the set of non-bald people in Boston, let B D
f10; 000; 10; 001; : : : ; 200; 000g, and let f map a person to the number of hairs on
his or her head. Since jAj > 2jBj, the Generalized Pigeonhole Principle implies
that at least three people have exactly the same number of hairs. We don’t know
who they are, but we know they exist!

11.10.2 Subsets with the Same Sum

For your reading pleasure, we have displayed ninety 25-digit numbers in Fig-
ure 11.4. Are there two different subsets of these 25-digit numbers that have the
same sum? For example, maybe the sum of the last ten numbers in the first column
is equal to the sum of the first eleven numbers in the second column?

Finding two subsets with the same sum may seem like a silly puzzle, but solving
these sorts of problems turns out to be useful in diverse applications such as finding
good ways to fit packages into shipping containers and decoding secret messages.

It turns out that it is hard to find different subsets with the same sum, which
is why this problem arises in cryptography. But it is easy to prove that two such
subsets exist. That’s where the Pigeonhole Principle comes in.

Let A be the collection of all subsets of the 90 numbers in the list. Now the sum
of any subset of numbers is at most 90 � 1025, since there are only 90 numbers and
every 25-digit number is less than 1025. So letB be the set of integers f0; 1; : : : ; 90�
1025g, and let f map each subset of numbers (in A) to its sum (in B).

“mcs-ftl” — 2010/9/8 — 0:40 — page 345 — #351

11.10. The Pigeonhole Principle 345

0020480135385502964448038 3171004832173501394113017
5763257331083479647409398 8247331000042995311646021
0489445991866915676240992 3208234421597368647019265
5800949123548989122628663 8496243997123475922766310
1082662032430379651370981 3437254656355157864869113
6042900801199280218026001 8518399140676002660747477
1178480894769706178994993 3574883393058653923711365
6116171789137737896701405 8543691283470191452333763
1253127351683239693851327 3644909946040480189969149
6144868973001582369723512 8675309258374137092461352
1301505129234077811069011 3790044132737084094417246
6247314593851169234746152 8694321112363996867296665
1311567111143866433882194 3870332127437971355322815
6814428944266874963488274 8772321203608477245851154
1470029452721203587686214 4080505804577801451363100
6870852945543886849147881 8791422161722582546341091
1578271047286257499433886 4167283461025702348124920
6914955508120950093732397 9062628024592126283973285
1638243921852176243192354 4235996831123777788211249
6949632451365987152423541 9137845566925526349897794
1763580219131985963102365 4670939445749439042111220
7128211143613619828415650 9153762966803189291934419
1826227795601842231029694 4815379351865384279613427
7173920083651862307925394 9270880194077636406984249
1843971862675102037201420 4837052948212922604442190
7215654874211755676220587 9324301480722103490379204
2396951193722134526177237 5106389423855018550671530
7256932847164391040233050 9436090832146695147140581
2781394568268599801096354 5142368192004769218069910
7332822657075235431620317 9475308159734538249013238
2796605196713610405408019 5181234096130144084041856
7426441829541573444964139 9492376623917486974923202
2931016394761975263190347 5198267398125617994391348
7632198126531809327186321 9511972558779880288252979
2933458058294405155197296 5317592940316231219758372
7712154432211912882310511 9602413424619187112552264
3075514410490975920315348 5384358126771794128356947
7858918664240262356610010 9631217114906129219461111
8149436716871371161932035 3157693105325111284321993
3111474985252793452860017 5439211712248901995423441
7898156786763212963178679 9908189853102753335981319
3145621587936120118438701 5610379826092838192760458
8147591017037573337848616 9913237476341764299813987
3148901255628881103198549 5632317555465228677676044
5692168374637019617423712 8176063831682536571306791

Figure 11.4 Ninety 25-digit numbers. Can you find two different subsets of these
numbers that have the same sum?

“mcs-ftl” — 2010/9/8 — 0:40 — page 346 — #352

Chapter 11 Cardinality Rules346

We proved that an n-element set has 2n different subsets in Section 11.2. There-
fore:

jAj D 290 � 1:237 � 1027

On the other hand:

jBj D 90 � 1025 C 1 � 0:901 � 1027:

Both quantities are enormous, but jAj is a bit greater than jBj. This means that f
maps at least two elements of A to the same element of B . In other words, by the
Pigeonhole Principle, two different subsets must have the same sum!

Notice that this proof gives no indication which two sets of numbers have the
same sum. This frustrating variety of argument is called a nonconstructive proof.
To see if was possible to actually find two different subsets of the ninety 25-digit
numbers with the same sum, we offered a $100 prize to the first student who did it.
We didn’t expect to have to pay off this bet, but we underestimated the ingenuity
and initiative of the students. One computer science major wrote a program that
cleverly searched only among a reasonably small set of “plausible” sets, sorted
them by their sums, and actually found a couple with the same sum. He won the
prize. A few days later, a math major figured out how to reformulate the sum
problem as a “lattice basis reduction” problem; then he found a software package
implementing an efficient basis reduction procedure, and using it, he very quickly
found lots of pairs of subsets with the same sum. He didn’t win the prize, but he
got a standing ovation from the class—staff included.

11.11 A Magic Trick

There is a Magician and an Assistant. The Assistant goes into the audience with a
deck of 52 cards while the Magician looks away.

Five audience members each select one card from the deck. The Assistant then
gathers up the five cards and holds up four of them so the Magician can see them.
The Magician concentrates for a short time and then correctly names the secret,
fifth card!

Since we don’t really believe the Magician can read minds, we know the As-
sistant has somehow communicated the secret card to the Magician. Since real
Magicians and Assistants are not to be trusted, we can expect that the Assistant
would illegitimately signal the Magician with coded phrases or body language, but
they don’t have to cheat in this way. In fact, the Magician and Assistant could be

“mcs-ftl” — 2010/9/8 — 0:40 — page 347 — #353

11.11. A Magic Trick 347

Sets with Distinct Subset Sums
How can we construct a set of n positive integers such that all its subsets have
distinct sums? One way is to use powers of two:

f1; 2; 4; 8; 16g

This approach is so natural that one suspects all other such sets must involve larger
numbers. (For example, we could safely replace 16 by 17, but not by 15.) Remark-
ably, there are examples involving smaller numbers. Here is one:

f6; 9; 11; 12; 13g

One of the top mathematicians of the Twentieth Century, Paul Erdős, conjectured in
1931 that there are no such sets involving significantly smaller numbers. More pre-
cisely, he conjectured that the largest number in such a set must be greater than c2n

for some constant c > 0. He offered $500 to anyone who could prove or disprove
his conjecture, but the problem remains unsolved.

“mcs-ftl” — 2010/9/8 — 0:40 — page 348 — #354

Chapter 11 Cardinality Rules348

kept out of sight of each other while some audience member holds up the 4 cards
designated by the Assistant for the Magician to see.

Of course, without cheating, there is still an obvious way the Assistant can com-
municate to the Magician: he can choose any of the 4Š D 24 permutations of the
4 cards as the order in which to hold up the cards. However, this alone won’t
quite work: there are 48 cards remaining in the deck, so the Assistant doesn’t have
enough choices of orders to indicate exactly what the secret card is (though he
could narrow it down to two cards).

11.11.1 The Secret

The method the Assistant can use to communicate the fifth card exactly is a nice
application of what we know about counting and matching.

The Assistant has a second legitimate way to communicate: he can choose which
of the five cards to keep hidden. Of course, it’s not clear how the Magician could
determine which of these five possibilities the Assistant selected by looking at the
four visible cards, but there is a way, as we’ll now explain.

The problem facing the Magician and Assistant is actually a bipartite matching
problem. Put all the sets of 5 cards in a collection X on the left. And put all the
sequences of 4 distinct cards in a collection Y on the right. These are the two sets
of vertices in the bipartite graph. There is an edge between a set of 5 cards and
a sequence of 4 if every card in the sequence is also in the set. In other words, if
the audience selects a set of 5 cards, then the Assistant must reveal a sequence of
4 cards that is adjacent in the bipartite graph. Some edges are shown in the diagram
in Figure 11.5.

For example,
f8~; K�;Q�; 2}; 6}g (11.4)

is an element of X on the left. If the audience selects this set of 5 cards, then
there are many different 4-card sequences on the right in set Y that the Assis-
tant could choose to reveal, including .8~; K�;Q�; 2}/, .K�; 8~;Q�; 2}/, and
.K�; 8~; 6};Q�/.

What the Magician and his Assistant need to perform the trick is a matching for
the X vertices. If they agree in advance on some matching, then when the audience
selects a set of 5 cards, the Assistant reveals the matching sequence of 4 cards. The
Magician uses the matching to find the audience’s chosen set of 5 cards, and so he
can name the one not already revealed.

For example, suppose the Assistant and Magician agree on a matching containing
the two bold edges in Figure 11.5. If the audience selects the set

f8~; K�;Q�; 9|; 6}g; (11.5)

“mcs-ftl” — 2010/9/8 — 0:40 — page 349 — #355

11.11. A Magic Trick 349

f8~;K;Q;2};6}g

f8~;K;Q;9|;6}g

fK;8~;6};Qg

fK;8~;Q;2}g

f8~;K;Q;2}g

xDall
sets of
5 cards

yDall
sequences of 4
distinct cards

Figure 11.5 The bipartite graph where the nodes on the left correspond to sets
of 5 cards and the nodes on the right correspond to sequences of 4 cards. There is
an edge between a set and a sequence whenever all the cards in the sequence are
contained in the set.

then the Assistant reveals the corresponding sequence

.K�; 8~; 6};Q�/: (11.6)

Using the matching, the Magician sees that the hand (11.5) is matched to the se-
quence (11.6), so he can name the one card in the corresponding set not already
revealed, namely, the 9|. Notice that the fact that the sets are matched, that is,
that different sets are paired with distinct sequences, is essential. For example, if
the audience picked the previous hand (11.4), it would be possible for the Assistant
to reveal the same sequence (11.6), but he better not do that; if he did, then the
Magician would have no way to tell if the remaining card was the 9| or the 2}.

So how can we be sure the needed matching can be found? The answer is that
each vertex on the left has degree 5 � 4Š D 120, since there are five ways to select
the card kept secret and there are 4Š permutations of the remaining 4 cards. In
addition, each vertex on the right has degree 48, since there are 48 possibilities for
the fifth card. So this graph is degree-constrained according to Definition 5.2.6,
and therefore satisfies Hall’s matching condition.

In fact, this reasoning shows that the Magician could still pull off the trick if 120
cards were left instead of 48, that is, the trick would work with a deck as large as
124 different cards—without any magic!

“mcs-ftl” — 2010/9/8 — 0:40 — page 350 — #356

Chapter 11 Cardinality Rules350

A
2

3

4

5

6

78

9

10

J

Q

K

Figure 11.6 The 13 card ranks arranged in cyclic order.

11.11.2 The Real Secret

But wait a minute! It’s all very well in principle to have the Magician and his
Assistant agree on a matching, but how are they supposed to remember a matching
with

�
52
5

�
D 2; 598; 960 edges? For the trick to work in practice, there has to be a

way to match hands and card sequences mentally and on the fly.
We’ll describe one approach. As a running example, suppose that the audience

selects:
10~ 9} 3~ Q� J}:

� The Assistant picks out two cards of the same suit. In the example, the
assistant might choose the 3~ and 10~. This is always possible because of
the Pigeonhole Principle—there are five cards and 4 suits so two cards must
be in the same suit.

� The Assistant locates the ranks of these two cards on the cycle shown in Fig-
ure 11.6. For any two distinct ranks on this cycle, one is always between 1
and 6 hops clockwise from the other. For example, the 3~ is 6 hops clock-
wise from the 10~.

� The more counterclockwise of these two cards is revealed first, and the other
becomes the secret card. Thus, in our example, the 10~ would be revealed,
and the 3~ would be the secret card. Therefore:

– The suit of the secret card is the same as the suit of the first card re-
vealed.

“mcs-ftl” — 2010/9/8 — 0:40 — page 351 — #357

11.11. A Magic Trick 351

– The rank of the secret card is between 1 and 6 hops clockwise from the
rank of the first card revealed.

� All that remains is to communicate a number between 1 and 6. The Magician
and Assistant agree beforehand on an ordering of all the cards in the deck
from smallest to largest such as:

A| A} A~ A� 2| 2} 2~ 2� : : : K~ K�

The order in which the last three cards are revealed communicates the num-
ber according to the following scheme:

. small; medium; large / = 1

. small; large; medium / = 2

.medium; small; large / = 3

.medium; large; small / = 4

. large; small; medium / = 5

. large; medium; small / = 6

In the example, the Assistant wants to send 6 and so reveals the remaining
three cards in large, medium, small order. Here is the complete sequence that
the Magician sees:

10~ Q� J} 9}

� The Magician starts with the first card, 10~, and hops 6 ranks clockwise to
reach 3~, which is the secret card!

So that’s how the trick can work with a standard deck of 52 cards. On the other
hand, Hall’s Theorem implies that the Magician and Assistant can in principle per-
form the trick with a deck of up to 124 cards. It turns out that there is a method
which they could actually learn to use with a reasonable amount of practice for a
124-card deck, but we won’t explain it here.6

11.11.3 The Same Trick with Four Cards?

Suppose that the audience selects only four cards and the Assistant reveals a se-
quence of three to the Magician. Can the Magician determine the fourth card?

Let X be all the sets of four cards that the audience might select, and let Y be all
the sequences of three cards that the Assistant might reveal. Now, on one hand, we
have

jX j D

52

4

!
D 270; 725

6See The Best Card Trick by Michael Kleber for more information.

“mcs-ftl” — 2010/9/8 — 0:40 — page 352 — #358

Chapter 11 Cardinality Rules352

by the Subset Rule. On the other hand, we have

jY j D 52 � 51 � 50 D 132; 600

by the Generalized Product Rule. Thus, by the Pigeonhole Principle, the Assistant
must reveal the same sequence of three cards for at least�

270; 725

132; 600

�
D 3

different four-card hands. This is bad news for the Magician: if he sees that se-
quence of three, then there are at least three possibilities for the fourth card which
he cannot distinguish. So there is no legitimate way for the Assistant to communi-
cate exactly what the fourth card is!

11.11.4 Never Say Never

No sooner than we finished proving that the Magician can’t pull off the trick with
four cards instead of five, a student showed us a way that it might be doable after
all. The idea is to place the three cards on a table one at a time instead of revealing
them all at once. This provides the Magician with two completely independent
sequences of three cards: one for the temporal order in which the cards are placed
on the table, and one for the spatial order in which they appear once placed.

For example, suppose the audience selects

10~ 9} 3~ Q�

and the assistant decides to reveal

10~ 9} Q�:

The assistant might decide to reveal theQ� first, the 10~ second, and the 9} third,
thereby production the temporal sequence

.Q�; 10~; 9}/:

If the Q� is placed in the middle position on the table, the 10~ is placed in the
rightmost position on the table, and the 9} is placed in the leftmost position on the
table, the spatial sequence would be

.9};Q�; 10~/:

In this version of the card trick, X consists of all sets of 4 cards and Y consists
of all pairs of sequences of the same 3 cards. As before, we can create a bipartite

“mcs-ftl” — 2010/9/8 — 0:40 — page 353 — #359

11.11. A Magic Trick 353

graph where an edge connects a set S of 4 cards in X with a pair of sequences in Y
if the 3 cards in the sequences are in S .

The degree of every node in X is then

4 � 3Š � 3Š D 144

since there are 4 choices for which card is not revealed and 3Š orders for each
sequence in the pair.

The degree of every node in Y is 49 since there are 52�3 D 49 possible choices
for the 4th card. Since 144 � 49, we can use Hall’s Theorem to establish the
existing of a matching for X .

Hence, the magic trick is doable with 4 cards—the assistant just has to convey
more information. Can you figure out a convenient way to pull off the trick on the
fly?

So what about the 3-card version? Surely that is not doable.. . .

“mcs-ftl” — 2010/9/8 — 0:40 — page 354 — #360

“mcs-ftl” — 2010/9/8 — 0:40 — page 355 — #361

12 Generating Functions
Generating Functions are one of the most surprising and useful inventions in Dis-
crete Math. Roughly speaking, generating functions transform problems about se-
quences into problems about functions. This is great because we’ve got piles of
mathematical machinery for manipulating functions. Thanks to generating func-
tions, we can then apply all that machinery to problems about sequences. In this
way, we can use generating functions to solve all sorts of counting problems. They
can also be used to find closed-form expressions for sums and to solve recurrences.
In fact, many of the problems we addressed in Chapters 9–11 can be formulated
and solved using generating functions.

12.1 Definitions and Examples

The ordinary generating function for the sequence1 hg0; g1; g2; g3 : : : i is the power
series:

G.x/ D g0 C g1x C g2x
2
C g3x

3
C � � � :

There are a few other kinds of generating functions in common use, but ordinary
generating functions are enough to illustrate the power of the idea, so we’ll stick to
them and from now on, generating function will mean the ordinary kind.

A generating function is a “formal” power series in the sense that we usually
regard x as a placeholder rather than a number. Only in rare cases will we actually
evaluate a generating function by letting x take a real number value, so we generally
ignore the issue of convergence.

Throughout this chapter, we’ll indicate the correspondence between a sequence
and its generating function with a double-sided arrow as follows:

hg0; g1; g2; g3; : : : i ! g0 C g1x C g2x
2
C g3x

3
C � � � :

For example, here are some sequences and their generating functions:

h0; 0; 0; 0; : : : i ! 0C 0x C 0x2 C 0x3 C � � � D 0

h1; 0; 0; 0; : : : i ! 1C 0x C 0x2 C 0x3 C � � � D 1

h3; 2; 1; 0; : : : i ! 3C 2x C 1x2 C 0x3 C � � � D 3C 2x C x2

1In this chapter, we’ll put sequences in angle brackets to more clearly distinguish them from the
many other mathematical expressions floating around.

“mcs-ftl” — 2010/9/8 — 0:40 — page 356 — #362

Chapter 12 Generating Functions356

The pattern here is simple: the i th term in the sequence (indexing from 0) is the
coefficient of xi in the generating function.

Recall that the sum of an infinite geometric series is:

1C z C z2 C z3 C � � � D
1

1 � z
:

This equation does not hold when jzj � 1, but as remarked, we won’t worry about
convergence issues for now. This formula gives closed form generating functions
for a whole range of sequences. For example:

h1; 1; 1; 1; : : : i ! 1C x C x2 C x3 C x4 C � � � D
1

1 � x

h1;�1; 1;�1; : : : i ! 1 � x C x2 � x3 C x4 � � � � D
1

1C x

˝
1; a; a2; a3; : : :

˛
 ! 1C ax C a2x2 C a3x3 C � � � D

1

1 � ax

h1; 0; 1; 0; 1; 0; : : : i ! 1C x2 C x4 C x6 C x8 C � � � D
1

1 � x2

12.2 Operations on Generating Functions

The magic of generating functions is that we can carry out all sorts of manipulations
on sequences by performing mathematical operations on their associated generating
functions. Let’s experiment with various operations and characterize their effects
in terms of sequences.

12.2.1 Scaling

Multiplying a generating function by a constant scales every term in the associated
sequence by the same constant. For example, we noted above that:

h1; 0; 1; 0; 1; 0; : : : i ! 1C x2 C x4 C x6 C � � � D
1

1 � x2
:

Multiplying the generating function by 2 gives

2

1 � x2
D 2C 2x2 C 2x4 C 2x6 C � � �

“mcs-ftl” — 2010/9/8 — 0:40 — page 357 — #363

12.2. Operations on Generating Functions 357

which generates the sequence:

h2; 0; 2; 0; 2; 0; : : : i :

Rule 12.2.1 (Scaling Rule). If

hf0; f1; f2; : : : i ! F.x/;

then
hcf0; cf1; cf2; : : : i ! c � F.x/:

The idea behind this rule is that:

hcf0; cf1; cf2; : : : i ! cf0 C cf1x C cf2x
2
C � � �

D c � .f0 C f1x C f2x
2
C � � � /

D cF.x/:

12.2.2 Addition

Adding generating functions corresponds to adding the two sequences term by
term. For example, adding two of our earlier examples gives:

h1; 1; 1; 1; 1; 1; : : : i !
1

1 � x

C h1;�1; 1;�1; 1;�1; : : : i !
1

1C x

h2; 0; 2; 0; 2; 0; : : : i !
1

1 � x
C

1

1C x

We’ve now derived two different expressions that both generate the sequence h2; 0; 2; 0; : : : i.
They are, of course, equal:

1

1 � x
C

1

1C x
D
.1C x/C .1 � x/

.1 � x/.1C x/
D

2

1 � x2
:

Rule 12.2.2 (Addition Rule). If

hf0; f1; f2; : : : i ! F.x/ and

hg0; g1; g2; : : : i ! G.x/;

then
hf0 C g0; f1 C g1; f2 C g2; : : : i ! F.x/CG.x/:

“mcs-ftl” — 2010/9/8 — 0:40 — page 358 — #364

Chapter 12 Generating Functions358

The idea behind this rule is that:

hf0 C g0; f1 C g1; f2 C g2; : : : i !

1X
nD0

.fn C gn/x
n

D

1X
nD0

fnx
n

!
C

1X
nD0

gnx
n

!
D F.x/CG.x/:

12.2.3 Right Shifting

Let’s start over again with a simple sequence and its generating function:

h1; 1; 1; 1; : : : i !
1

1 � x
:

Now let’s right-shift the sequence by adding k leading zeros:

h

k zeroes‚ …„ ƒ
0; 0; : : : ; 0; 1; 1; 1; : : : i ! xk C xkC1 C xkC2 C xkC3 C � � �

D xk � .1C x C x2 C x3 C � � � /

D
xk

1 � x
:

Evidently, adding k leading zeros to the sequence corresponds to multiplying the
generating function by xk . This holds true in general.

Rule 12.2.3 (Right-Shift Rule). If hf0; f1; f2; : : : i ! F.x/, then:

h

k zeroes‚ …„ ƒ
0; 0; : : : ; 0; f0; f1; f2; : : : i ! xk � F.x/:

The idea behind this rule is that:

h

k zeroes‚ …„ ƒ
0; 0; : : : ; 0; f0; f1; f2; : : : i ! f0x

k
C f1x

kC1
C f2x

kC2
C � � �

D xk � .f0 C f1x C f2x
2
C f3x

3
C � � � /

D xk � F.x/:

“mcs-ftl” — 2010/9/8 — 0:40 — page 359 — #365

12.2. Operations on Generating Functions 359

12.2.4 Differentiation

What happens if we take the derivative of a generating function? As an exam-
ple, let’s differentiate the now-familiar generating function for an infinite sequence
of 1’s:

1C x C x2 C x3 C x4 C � � � D
1

1 � x

IMPLIES
d

dx
.1C x C x2 C x3 C x4 C � � � / D

d

dx

�
1

1 � x

�
IMPLIES 1C 2x C 3x2 C 4x3 C � � � D

1

.1 � x/2

IMPLIES h1; 2; 3; 4; : : : i !
1

.1 � x/2
: (12.1)

We found a generating function for the sequence h1; 2; 3; 4; : : : i of positive inte-
gers!

In general, differentiating a generating function has two effects on the corre-
sponding sequence: each term is multiplied by its index and the entire sequence is
shifted left one place.

Rule 12.2.4 (Derivative Rule). If

hf0; f1; f2; f3; : : : i ! F.x/;

then
hf1; 2f2; 3f3; : : : i ! F 0.x/:

The idea behind this rule is that:

hf1; 2f2; 3f3; : : : i ! f1 C 2f2x C 3f3x
2
C � � �

D
d

dx
.f0 C f1x C f2x

2
C f3x

3
C � � � /

D
d

dx
F.x/:

The Derivative Rule is very useful. In fact, there is frequent, independent need
for each of differentiation’s two effects, multiplying terms by their index and left-
shifting one place. Typically, we want just one effect and must somehow cancel out
the other. For example, let’s try to find the generating function for the sequence of
squares, h0; 1; 4; 9; 16; : : : i. If we could start with the sequence h1; 1; 1; 1; : : : i and
multiply each term by its index two times, then we’d have the desired result:

h0 � 0; 1 � 1; 2 � 2; 3 � 3; : : : i D h0; 1; 4; 9; : : : i :

“mcs-ftl” — 2010/9/8 — 0:40 — page 360 — #366

Chapter 12 Generating Functions360

A challenge is that differentiation not only multiplies each term by its index, but
also shifts the whole sequence left one place. However, the Right-Shift Rule 12.2.3
tells how to cancel out this unwanted left-shift: multiply the generating function
by x.

Our procedure, therefore, is to begin with the generating function for h1; 1; 1; 1; : : : i,

differentiate, multiply by x, and then differentiate and multiply by x once more.

Then

h1; 1; 1; 1; : : : i !
1

1 � x

Derivative Rule: h1; 2; 3; 4; : : : i !
d

dx

1

1 � x
D

1

.1 � x/2

Right-shift Rule: h0; 1; 2; 3; : : : i ! x �
1

.1 � x/2
D

x

.1 � x/2

Derivative Rule: h1; 4; 9; 16; : : : i !
d

dx

x

.1 � x/2
D

1C x

.1 � x/3

Right-shift Rule: h0; 1; 4; 9; : : : i ! x �
1C x

.1 � x/3
D
x.1C x/

.1 � x/3

Thus, the generating function for squares is:

x.1C x/

.1 � x/3
: (12.2)

12.2.5 Products

Rule 12.2.5 (Product Rule). If

ha0; a1; a2; : : : i ! A.x/; and hb0; b1; b2; : : : i ! B.x/;

then
hc0; c1; c2; : : : i ! A.x/ � B.x/;

where
cn WWD a0bn C a1bn�1 C a2bn�2 C � � � C anb0:

To understand this rule, let

C.x/ WWD A.x/ � B.x/ D

1X
nD0

cnx
n:

“mcs-ftl” — 2010/9/8 — 0:40 — page 361 — #367

12.3. Evaluating Sums 361

We can evaluate the product A.x/ � B.x/ by using a table to identify all the
cross-terms from the product of the sums:

b0x
0 b1x

1 b2x
2 b3x

3 : : :

a0x
0 a0b0x

0 a0b1x
1 a0b2x

2 a0b3x
3 : : :

a1x
1 a1b0x

1 a1b1x
2 a1b2x

3 : : :

a2x
2 a2b0x

2 a2b1x
3 : : :

a3x
3 a3b0x

3 : : :

::: : : :

Notice that all terms involving the same power of x lie on a diagonal. Collecting
these terms together, we find that the coefficient of xn in the product is the sum of
all the terms on the .nC 1/st diagonal, namely,

a0bn C a1bn�1 C a2bn�2 C � � � C anb0: (12.3)

This expression (12.3) may be familiar from a signal processing course; the se-
quence hc0; c1; c2; : : : i is called the convolution of sequences ha0; a1; a2; : : : i and
hb0; b1; b2; : : : i.

12.3 Evaluating Sums

The product rule looks complicated. But it is surprisingly useful. For example,
suppose that we set

B.x/ D
1

1 � x
:

Then bi D 1 for i � 0 and the nth coefficient of A.x/B.x/ is

a0 � 1C a1 � 1C a2 � 1C � � � C an � 1 D

nX
iD0

ai :

In other words, given any sequence ha0; a1; a2; : : : i, we can compute

sn D

nX
iD0

ai

“mcs-ftl” — 2010/9/8 — 0:40 — page 362 — #368

Chapter 12 Generating Functions362

for all n by simply multiplying the sequence’s generating function by 1=.1 � x/.
This is the Summation Rule.

Rule 12.3.1 (Summation Rule). If

ha0; a1; a2; : : : i ! A.x/;

then

hs0; s1; s2; : : : i !
A.x/

1 � x

where

sn D

nX
iD0

ai for n � 0:

The Summation Rule sounds powerful, and it is! We know from Chapter 9 that
computing sums is often not easy. But multiplying by 1=.1� x/ is about as easy as
it gets.

For example, suppose that we want to compute the sum of the first n squares

sn D

nX
iD0

i2

and we forgot the method in Chapter 9. All we need to do is compute the generating
function for h0; 1; 4; 9; : : : i and multiply by 1=.1 � x/. We already computed the
generating function for h0; 1; 4; 9; : : : i in Equation 12.2—it is

x.1C x/

.1 � x/3
:

Hence, the generating function for hs0; s1; s2; : : : i is

x.1C x/

.1 � x/4
:

This means that
Pn
iD0 i

2 is the coefficient of xn in x.1C x/=.1 � x/4.
That was pretty easy, but there is one problem—we have no idea how to deter-

mine the coefficient of xn in x.1 C x/=.1 � x/4! And without that, this whole
endeavor (while magical) would be useless. Fortunately, there is a straightforward
way to produce the sequence of coefficients from a generating function.

“mcs-ftl” — 2010/9/8 — 0:40 — page 363 — #369

12.4. Extracting Coefficients 363

12.4 Extracting Coefficients

12.4.1 Taylor Series

Given a sequence of coefficients hf0; f1; f2; : : : i, computing the generating func-
tion F.x/ is easy since

F.x/ D f0 C f1x C f2x
2
C � � � :

To compute the sequence of coefficients from the generating function, we need to
compute the Taylor Series for the generating function.

Rule 12.4.1 (Taylor Series). Let F.x/ be the generating function for the sequence

hf0; f1; f2; : : : i:

Then
f0 D F.0/

and

fn D
F .n/.0/

nŠ

for n � 1, where F .n/.0/ is the nth derivative of F.x/ evaluated at x D 0.

This is because if

F.x/ D f0 C f1x C f2x
2
C � � � ;

then

F.0/ D f0 C f1 � 0C f2 � 0
2
C � � �

D f0:

Also,

F 0.x/ D
d

dx
.F.x//

D f1 C 2f2x C 3f3x
2
C 4f4x

3
C � � �

and so
F 0.0/ D f1;

“mcs-ftl” — 2010/9/8 — 0:40 — page 364 — #370

Chapter 12 Generating Functions364

as desired. Taking second derivatives, we find that

F 00.x/ D
d

dx
.F 0.x//

D 2f2 C 3 � 2f3x C 4 � 3f4x
2
C � � �

and so
F 00.0/ D 2f2;

which means that

f2 D
F 00.0/

2
:

In general,

F .n/ D nŠfn C .nC 1/ŠfnC1x C
.nC 2/Š

2
fnC2x

2
C � � �

C
.nC k/Š

kŠ
fnCkx

k
C � � �

and so
F .n/.0/ D nŠfn

and

fn D
F .n/.0/

nŠ
;

as claimed.
This means that*

F.0/; F 0.0/;
F 00.0/

2Š
;
F 000.0/

3Š
; : : : ;

F .n/.0/

nŠ
; : : :

+
 ! F.x/: (12.4)

The sequence on the left-hand side of Equation 12.4 gives the well-known Taylor
Series expansion for a function

F.x/ D F.0/C F 0.0/x C
F 00.0/

2Š
x2 C

F 000.0/

3Š
x3 C � � � C

F .n/.0/

nŠ
xn C � � � :

12.4.2 Examples

Let’s try this out on a familiar example:

F.x/ D
1

1 � x
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 365 — #371

12.4. Extracting Coefficients 365

Computing derivatives, we find that

F 0.x/ D
1

.1 � x/2
;

F 00.x/ D
2

.1 � x/3
;

F 000.x/ D
2 � 3

.1 � x/4
;

:::

F .n/ D
nŠ

.1 � x/nC1
:

This means that the coefficient of xn in 1=.1 � x/ is

F .n/.0/

nŠ
D

nŠ

nŠ .1 � 0/nC1
D 1:

In other words, we have reconfirmed what we already knew; namely, that

1

1 � x
D 1C x C x2 C � � � :

Using a similar approach, we can establish some other well-known series:

ex D 1C x C
x2

2Š
C
x3

3Š
C � � � C

xn

nŠ
C � � � ;

eax D 1C ax C
a2

2Š
x2 C

a3

3Š
x3 C � � � C

an

nŠ
xn C � � � ;

ln.1 � x/ D �ax �
a2

2
x2 �

a3

3
x3 � � � � �

an

n
xn � � � � :

But what about the series for

F.x/ D
x.1C x/

.1 � x/4
‹ (12.5)

In particular, we need to know the coefficient of xn in F.x/ to determine

sn D

nX
iD0

i2:

While it is theoretically possible to compute the nth derivative of F.x/, the result
is a bloody mess. Maybe these generating functions weren’t such a great idea after
all. . . .

“mcs-ftl” — 2010/9/8 — 0:40 — page 366 — #372

Chapter 12 Generating Functions366

12.4.3 Massage Helps

In times of stress, a little massage can often help relieve the tension. The same is
true for polynomials with painful derivatives. For example, let’s take a closer look
at Equation 12.5. If we massage it a little bit, we find that

F.x/ D
x C x2

.1 � x/4
D

x

.1 � x/4
C

x2

.1 � x/4
: (12.6)

The goal is to find the coefficient of xn in F.x/. If you stare at Equation 12.6 long
enough (or if you combine the Right-Shift Rule with the Addition Rule), you will
notice that the coefficient of xn in F.x/ is just the sum of

the coefficient of xn�1 in
1

.1 � x/4
and

the coefficient of xn�2 in
1

.1 � x/4
:

Maybe there is some hope after all. Let’s see if we can produce the coefficients
for 1=.1 � x/4. We’ll start by looking at the derivatives:

F 0.x/ D
4

.1 � x/5
;

F 00.x/ D
4 � 5

.1 � x/6
;

F 000.x/ D
4 � 5 � 6

.1 � x/7
;

:::

F .n/.x/ D
.nC 3/Š

6.1 � x/nC4
:

This means that the nth coefficient of 1=.1 � x/4 is

F .n/.0/

nŠ
D
.nC 3/Š

6nŠ
D
.nC 3/.nC 2/.nC 1/

6
: (12.7)

We are now almost done. Equation 12.7 means that the coefficient of xn�1

in 1=.1 � x/4 is
.nC 2/.nC 1/n

6
(12.8)

“mcs-ftl” — 2010/9/8 — 0:40 — page 367 — #373

12.4. Extracting Coefficients 367

and the coefficient2 of xn�2 is

.nC 1/n.n � 1/

6
: (12.9)

Adding these values produces the desired sum

nX
iD0

i2 D
.nC 2/.nC 1/n

6
C
.nC 1/n.n � 1/

6

D
.2nC 1/.nC 1/n

6
:

This matches Equation 9.14 from Chapter 9. Using generating functions to get the
result may have seemed to be more complicated, but at least there was no need for
guessing or solving a linear system of equations over 4 variables.

You might argue that the massage step was a little tricky. After all, how were you
supposed to know that by converting F.x/ into the form shown in Equation 12.6,
it would be sufficient to compute derivatives of 1=.1 � x/4, which is easy, instead
of derivatives of x.1C x/=.1 � x/4, which could be harder than solving a 64-disk
Tower of Hanoi problem step-by-step?

The good news is that this sort of massage works for any generating function
that is a ratio of polynomials. Even better, you probably already know how to do it
from calculus—it’s the method of partial fractions!

12.4.4 Partial Fractions

The idea behind partial fractions is to express a ratio of polynomials as a sum of a
polynomial and terms of the form

cxa

.1 � ˛x/b
(12.10)

where a and b are integers and b > a � 0. That’s because it is easy to com-
pute derivatives of 1=.1 � ˛x/b and thus it is easy to compute the coefficients of
Equation 12.10. Let’s see why.

Lemma 12.4.2. If b 2 NC, then the nth derivative of 1=.1 � ˛x/b is

.nC b � 1/Š ˛n

.b � 1/Š .1 � ˛x/bCn
:

2To be precise, Equation 12.8 holds for n � 1 and Equation 12.9 holds for n � 2. But since
Equation 12.8 is 0 for n D 1 and Equation 12.9 is 0 for n D 1; 2, both equations hold for all n � 0.

“mcs-ftl” — 2010/9/8 — 0:40 — page 368 — #374

Chapter 12 Generating Functions368

Proof. The proof is by induction on n. The induction hypothesis P.n/ is the state-
ment of the lemma.

Base case (n D 1): The first derivative is

b˛

.1 � ˛x/bC1
:

This matches
.1C b � 1/Š ˛1

.b � 1/Š .1 � ˛x/bC1
D

b˛

.1 � ˛x/bC1
;

and so P.1/ is true.

Induction step: We next assume P.n/ to prove P.nC 1/ for n � 1. P.n/ implies
that the nth derivative of 1=.1 � ˛x/b is

.nC b � 1/Š ˛n

.b � 1/Š .1 � ˛x/bCn
:

Taking one more derivative reveals that the .nC 1/st derivative is

.nC b � 1/Š .b C n/˛nC1

.b � 1/Š .1 � ˛x/bCnC1
D

.nC b/Š ˛nC1

.b � 1/Š .1 � ˛x/bCnC1
;

which means that P.nC 1/ is true. Hence, the induction is complete. �

Corollary 12.4.3. If a; b 2 N and b > a � 0, then for any n � a, the coefficient
of xn in

cxa

.1 � ˛x/b

is
c.n � aC b � 1/Š ˛n�a

.n � a/Š .b � 1/Š
:

Proof. By the Taylor Series Rule, the nth coefficient of

1

.1 � ˛x/b

is the nth derivative of this expression evaluated at x D 0 and then divided by nŠ.
By Lemma 12.4.2, this is

.nC b � 1/Š ˛n

nŠ .b � 1/Š .1 � 0/bCn
D
.nC b � 1/Š ˛n

nŠ .b � 1/Š
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 369 — #375

12.4. Extracting Coefficients 369

By the Scaling Rule and the Right-Shift Rule, the coefficient of xn in

cx˛

.1 � ˛x/b

is thus
c.n � aC b � 1/Š ˛n�a

.n � a/Š .b � 1/Š
:

as claimed. �

Massaging a ratio of polynomials into a sum of a polynomial and terms of the
form in Equation 12.10 takes a bit of work but is generally straightforward. We
will show you the process by means of an example.

Suppose our generating function is the ratio

F.x/ D
4x3 C 2x2 C 3x C 6

2x3 � 3x2 C 1
: (12.11)

The first step in massaging F.x/ is to get the degree of the numerator to be less than
the degree of the denominator. This can be accomplished by dividing the numerator
by the denominator and taking the remainder, just as in the Fundamental Theorem
of Arithmetic—only now we have polynomials instead of numbers. In this case we
have

4x3 C 2x2 C 3x C 6

2x3 � 3x2 C 1
D 2C

8x2 C 3x C 4

2x3 � 3x2 C 1
:

The next step is to factor the denominator. This will produce the values of ˛ for
Equation 12.10. In this case,

2x3 � 3x2 C 1 D .2x C 1/.x2 � 2x C 1/

D .2x C 1/.x � 1/2

D .1 � x/2.1C 2x/:

We next find values c1, c2, c3 so that

8x2 C 3x C 4

2x3 � 3x2 C 1
D

c1

1C 2x
C

c2

.1 � x/2
C

c3x

.1 � x/2
: (12.12)

This is done by cranking through the algebra:

c1

1C 2x
C

c2

.1 � x/2
C

c3x

.1 � x/2
D
c1.1 � x/

2 C c2.1C 2x/C c3x.1C 2x/

.1C 2x/.1 � x/2

D
c1 � 2c1x C c1x

2 C c2 C 2c2x C c3x C 2c3x
2

2x3 � 3x2 C 1

D
c1 C c2 C .�2c1 C 2c2 C c3/x C .c1 C 2c3/x

2

2x3 � 3x2 C 1
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 370 — #376

Chapter 12 Generating Functions370

For Equation 12.12 to hold, we need

8 D c1 C 2c3;

3 D �2c1 C 2c2 C c3;

4 D c1 C c2:

Solving these equations, we find that c1 D 2, c2 D 2, and c3 D 3. Hence,

F.x/ D
4x3 C 2x2 C 3x C 6

2x3 � 3x2 C 1

D 2C
2

1C 2x
C

2

.1 � x/2
C

3x

.1 � x/2
:

Our massage is done! We can now compute the coefficients of F.x/ using Corol-
lary 12.4.3 and the Sum Rule. The result is

f0 D 2C 2C 2 D 6

and

fn D
2.n � 0C 1 � 1/Š .�2/n�0

.n � 0/Š .1 � 1/Š

C
2.n � 0C 2 � 1/Š .1/n�0

.n � 0/Š .2 � 1/Š

C
3.n � 1C 2 � 1/Š .1/n�1

.n � 1/Š .2 � 1/Š

D .�1/n2nC1 C 2.nC 1/C 3n

D .�1/n2nC1 C 5nC 2

for n � 1.
Aren’t you glad that you know that? Actually, this method turns out to be useful

in solving linear recurrences, as we’ll see in the next section.

12.5 Solving Linear Recurrences

Generating functions can be used to find a solution to any linear recurrence. We’ll
show you how this is done by means of a familiar example, the Fibonacci recur-
rence, so that you can more easily understand the similarities and differences of
this approach and the method we showed you in Chapter 10.

“mcs-ftl” — 2010/9/8 — 0:40 — page 371 — #377

12.5. Solving Linear Recurrences 371

12.5.1 Finding the Generating Function

Let’s begin by recalling the definition of the Fibonacci numbers:

f0 D 0

f1 D 1

fn D fn�1 C fn�2 for n � 2:

We can expand the final clause into an infinite sequence of equations. Thus, the
Fibonacci numbers are defined by:

f0 D0

f1 D1

f2 Df1 C f0

f3 Df2 C f1

f4 Df3 C f2

:::

The overall plan is to define a function F.x/ that generates the sequence on the
left side of the equality symbols, which are the Fibonacci numbers. Then we derive
a function that generates the sequence on the right side. Finally, we equate the two
and solve for F.x/. Let’s try this. First, we define:

F.x/ D f0 C f1x C f2x
2
C f3x

3
C f4x

4
C � � � :

Now we need to derive a generating function for the sequence:

h0; 1; f1 C f0; f2 C f1; f3 C f2; : : : i :

One approach is to break this into a sum of three sequences for which we know
generating functions and then apply the Addition Rule:

h0; 1; 0; 0; 0; : : : i ! x

h0; f0; f1; f2; f3; : : : i ! xF.x/

C h0; 0; f0; f1; f2; : : : i ! x2F.x/

h0; 1C f0; f1 C f0; f2 C f1; f3 C f2; : : : i ! x C xF.x/C x2F.x/

This sequence is almost identical to the right sides of the Fibonacci equations. The
one blemish is that the second term is 1 C f0 instead of simply 1. However, this
amounts to nothing, since f0 D 0 anyway.

“mcs-ftl” — 2010/9/8 — 0:40 — page 372 — #378

Chapter 12 Generating Functions372

If we equate F.x/ with the new function x C xF.x/ C x2F.x/, then we’re
implicitly writing down all of the equations that define the Fibonacci numbers in
one fell swoop:

F.x/ D f0C f1 xC f2 x2C f3 x3C � � �

Î Î Î Î Î
x C xF.x/C x2F.x/ D 0 C .1C f0/xC .f1 C f0/x

2C .f2 C f1/x
3C � � �

Solving for F.x/ gives the generating function for the Fibonacci sequence:

F.x/ D x C xF.x/C x2F.x/

so
F.x/ D

x

1 � x � x2
: (12.13)

This is pretty cool. After all, who would have thought that the Fibonacci numbers
are precisely the coefficients of such a simple function? Even better, this function
is a ratio of polynomials and so we can use the method of partial fractions from
Section 12.4.4 to find a closed-form expression for the nth Fibonacci number.

12.5.2 Extracting the Coefficients

Repeated differentiation of Equation 12.13 would be very painful. But it is easy to
use the method of partial fractions to compute the coefficients. Since the degree of
the numerator in Equation 12.13 is less than the degree of the denominator, the first
step is to factor the denominator:

1 � x � x2 D .1 � ˛1x/.1 � ˛2x/

where ˛1 D .1 C
p
5/=2 and ˛2 D .1 �

p
5/=2. These are the same as the

roots of the characteristic equation for the Fibonacci recurrence that we found in
Chapter 10. That is not a coincidence.

The next step is to find c1 and c2 that satisfy

x

1 � x � x2
D

c1

1 � ˛1x
C

c2

1 � ˛2x

D
c1.1 � ˛2x/C c2.1 � ˛1x/

.1 � ˛1x/.1 � ˛2x/

D
c1 C c2 � .c1˛2 C c2˛1/x

1 � x � x2
:

Hence,
c1 C c2 D 0 and � .c1˛2 C c2˛1/ D 1:

“mcs-ftl” — 2010/9/8 — 0:40 — page 373 — #379

12.5. Solving Linear Recurrences 373

Solving these equations, we find that

c1 D
1

˛1 � ˛2
D

1
p
5

c2 D
�1

˛1 � ˛2
D
�1
p
5
:

We can now use Corollary 12.4.3 and the Sum Rule to conclude that

fn D
˛n1
p
5
�
˛n2
p
5

D
1
p
5

1C
p
5

2

!n
�

1 �
p
5

2

!n!
:

This is exactly the same formula we derived for the nth Fibonacci number in Chap-
ter 10.

12.5.3 General Linear Recurrences

The method that we just used to solve the Fibonacci recurrence can also be used to
solve general linear recurrences of the form

fn D a1fn�1 C a2fn�2 C � � � C adfn�d C gn

for n � d . The generating function for hf0; f1; f2; : : : i is

F.x/ D
h.x/CG.x/

1 � a1x � a2x2 � � � � � adx
d

where G.x/ is the generating function for the sequence

h

d‚ …„ ƒ
0; 0; : : : ; 0; gd ; gdC1; gdC2; : : : i

and h.x/ is a polynomial of degree at most d � 1 that is based on the values of f0,
f1, . . . , fd�1. In particular,

h.x/ D

d�1X
iD0

hix
i

where
hi D f0 � a1fi�1 � a2fi�2 � � � � � aif0

for 0 � i < d .
To solve the recurrence, we use the method of partial fractions described in Sec-

tion 12.4.4 to find a closed-form expression for F.x/. This can be easy or hard to
do depending on G.x/.

“mcs-ftl” — 2010/9/8 — 0:40 — page 374 — #380

Chapter 12 Generating Functions374

12.6 Counting with Generating Functions

Generating functions are particularly useful for solving counting problems. In par-
ticular, problems involving choosing items from a set often lead to nice generating
functions by letting the coefficient of xn be the number of ways to choose n items.

12.6.1 Choosing Distinct Items from a Set

The generating function for binomial coefficients follows directly from the Bino-
mial Theorem:D�

k
0

�
;
�
k
1

�
;
�
k
2

�
; : : : ;

�
k
k

�
; 0; 0; 0; : : :

E
 !

�
k
0

�
C
�
k
1

�
x C

�
k
2

�
x2 C � � � C

�
k
k

�
xk

D .1C x/k

Thus, the coefficient of xn in .1 C x/k is
�
k
n

�
, the number of ways to choose n

distinct items3 from a set of size k. For example, the coefficient of x2 is
�
k
2

�
,

the number of ways to choose 2 items from a set with k elements. Similarly, the
coefficient of xkC1 is the number of ways to choose k C 1 items from a size k set,
which is zero.

12.6.2 Building Generating Functions that Count

Often we can translate the description of a counting problem directly into a gen-
erating function for the solution. For example, we could figure out that .1 C x/k

generates the number of ways to select n distinct items from a k-element set with-
out resorting to the Binomial Theorem or even fussing with binomial coefficients!
Let’s see how.

First, consider a single-element set fa1g. The generating function for the number
of ways to select n elements from this set is simply 1C x: we have 1 way to select
zero elements, 1 way to select one element, and 0 ways to select more than one
element. Similarly, the number of ways to select n elements from the set fa2g is
also given by the generating function 1C x. The fact that the elements differ in the
two cases is irrelevant.

Now here is the main trick: the generating function for choosing elements from
a union of disjoint sets is the product of the generating functions for choosing from
each set. We’ll justify this in a moment, but let’s first look at an example. Ac-
cording to this principle, the generating function for the number of ways to select

3Watch out for the reversal of the roles that k and n played in earlier examples; we’re led to this
reversal because we’ve been using n to refer to the power of x in a power series.

“mcs-ftl” — 2010/9/8 — 0:40 — page 375 — #381

12.6. Counting with Generating Functions 375

n elements from the fa1; a2g is:

.1C x/„ ƒ‚ …
select from fa1g

� .1C x/„ ƒ‚ …
select from fa2g

D .1C x/2„ ƒ‚ …
select from fa1; a2g

D 1C 2x C x2:

Sure enough, for the set fa1; a2g, we have 1 way to select zero elements, 2 ways to
select one element, 1 way to select two elements, and 0 ways to select more than
two elements.

Repeated application of this rule gives the generating function for selecting n
items from a k-element set fa1; a2; : : : ; akg:

.1C x/„ ƒ‚ …
select from fa1g

� .1C x/„ ƒ‚ …
select from fa2g

� � � .1C x/„ ƒ‚ …
select from fakg

D .1C x/k„ ƒ‚ …
select from
fa1; a2; : : : ; akg

This is the same generating function that we obtained by using the Binomial Theo-
rem. But this time around, we translated directly from the counting problem to the
generating function.

We can extend these ideas to a general principle:

Rule 12.6.1 (Convolution Rule). Let A.x/ be the generating function for selecting
items from set A, and let B.x/ be the generating function for selecting items from
set B. IfA and B are disjoint, then the generating function for selecting items from
the union A [B is the product A.x/ � B.x/.

This rule is rather ambiguous: what exactly are the rules governing the selection
of items from a set? Remarkably, the Convolution Rule remains valid under many
interpretations of selection. For example, we could insist that distinct items be
selected or we might allow the same item to be picked a limited number of times or
any number of times. Informally, the only restrictions are that (1) the order in which
items are selected is disregarded and (2) restrictions on the selection of items from
sets A and B also apply in selecting items from A [B. (Formally, there must be a
bijection between n-element selections from A[B and ordered pairs of selections
from A and B containing a total of n elements.)

To count the number of ways to select n items from A [B, we observe that we
can select n items by choosing j items fromA and n� j items from B, where j is
any number from 0 to n. This can be done in aj bn�j ways. Summing over all the
possible values of j gives a total of

a0bn C a1bn�1 C a2bn�2 C � � � C anb0

ways to select n items from A [B. By the Product Rule, this is precisely the
coefficient of xn in the series for A.x/B.x/.

“mcs-ftl” — 2010/9/8 — 0:40 — page 376 — #382

Chapter 12 Generating Functions376

12.6.3 Choosing Items with Repetition

The first counting problem we considered was the number of ways to select a dozen
doughnuts when five flavors were available. We can generalize this question as
follows: in how many ways can we select n items from a k-element set if we’re
allowed to pick the same item multiple times? In these terms, the doughnut problem
asks how many ways we can select n D 12 doughnuts from the set of k D 5 flavors

fchocolate; lemon-filled; sugar; glazed; plaing

where, of course, we’re allowed to pick several doughnuts of the same flavor. Let’s
approach this question from a generating functions perspective.

Suppose we make n choices (with repetition allowed) of items from a set con-
taining a single item. Then there is one way to choose zero items, one way to
choose one item, one way to choose two items, etc. Thus, the generating function
for choosing n elements with repetition from a 1-element set is:

h1; 1; 1; 1; : : : i ! 1C x C x2 C x3 C � � � D
1

1 � x
:

The Convolution Rule says that the generating function for selecting items from
a union of disjoint sets is the product of the generating functions for selecting items
from each set:

1

1 � x„ƒ‚…
choose a1’s

�
1

1 � x„ƒ‚…
choose a2’s

� � �
1

1 � x„ƒ‚…
choose ak’s

D
1

.1 � x/k„ ƒ‚ …
repeatedly choose from
fa1; a2; : : : ; akg

Therefore, the generating function for choosing items from a k-element set with
repetition allowed is 1=.1 � x/k . Computing derivatives and applying the Taylor
Series Rule, we can find that the coefficient of xn in 1=.1 � x/k is

nC k � 1

n

!
:

This is the Bookkeeper Rule from Chapter 11—namely there are
�
nCk�1
n

�
ways to

select n items with replication from a set of k items.

12.6.4 Fruit Salad

In this chapter, we have covered a lot of methods and rules for using generating
functions. We’ll now do an example that demonstrates how the rules and methods
can be combined to solve a more challenging problem—making fruit salad.

“mcs-ftl” — 2010/9/8 — 0:40 — page 377 — #383

12.6. Counting with Generating Functions 377

In how many ways can we make a salad with n fruits subject to the following
constraints?

� The number of apples must be even.

� The number of bananas must be a multiple of 5.

� There can be at most four oranges.

� There can be at most one pear.

For example, there are 7 ways to make a salad with 6 fruits:

Apples 6 4 4 2 2 0 0

Bananas 0 0 0 0 0 5 5

Oranges 0 2 1 4 3 1 0

Pears 0 0 1 0 1 0 1

These constraints are so complicated that the problem seems hopeless! But gener-
ating functions can solve the problem in a straightforward way.

Let’s first construct a generating function for choosing apples. We can choose a
set of 0 apples in one way, a set of 1 apple in zero ways (since the number of apples
must be even), a set of 2 apples in one way, a set of 3 apples in zero ways, and so
forth. So we have:

A.x/ D 1C x2 C x4 C x6 C � � � D
1

1 � x2
:

Similarly, the generating function for choosing bananas is:

B.x/ D 1C x5 C x10 C x15 C � � � D
1

1 � x5
:

We can choose a set of 0 oranges in one way, a set of 1 orange in one way, and so
on. However, we can not choose more than four oranges, so we have the generating
function:

O.x/ D 1C x C x2 C x3 C x4 D
1 � x5

1 � x
:

Here we’re using the geometric sum formula. Finally, we can choose only zero or
one pear, so we have:

P.x/ D 1C x:

“mcs-ftl” — 2010/9/8 — 0:40 — page 378 — #384

Chapter 12 Generating Functions378

The Convolution Rule says that the generating function for choosing from among
all four kinds of fruit is:

A.x/B.x/O.x/P.x/ D
1

1 � x2
1

1 � x5
1 � x5

1 � x
.1C x/

D
1

.1 � x/2

D 1C 2x C 3x2 C 4x3 C � � � :

Almost everything cancels! We’re left with 1=.1 � x/2, which we found a power
series for earlier: the coefficient of xn is simply nC 1. Thus, the number of ways
to make a salad with n fruits is just n C 1. This is consistent with the example
we worked out at the start, since there were 7 different salads containing 6 fruits.
Amazing!

“mcs-ftl” — 2010/9/8 — 0:40 — page 379 — #385

13 Infinite Sets
So you might be wondering how much is there to say about an infinite set other
than, well, it has an infinite number of elements. Of course, an infinite set does
have an infinite number of elements, but it turns out that not all infinite sets have
the same size—some are bigger than others! And, understanding infinity is not as
easy as you might think. Some of the toughest questions in mathematics involve
infinite sets.

Why should you care? Indeed, isn’t computer science only about finite sets? Not
exactly. For example, we deal with the set of natural numbers N all the time and it
is an infinite set. In fact, that is why we have induction: to reason about predicates
over N. Infinite sets are also important in Part IV of the text when we talk about
random variables over potentially infinite sample spaces.

So sit back and open your mind for a few moments while we take a very brief
look at infinity.

13.1 Injections, Surjections, and Bijections

We know from Theorem 7.2.1 that if there is an injection or surjection between two
finite sets, then we can say something about the relative sizes of the two sets. The
same is true for infinite sets. In fact, relations are the primary tool for determining
the relative size of infinite sets.

Definition 13.1.1. Given any two sets A and B , we say that

A surj B iff there is a surjection from A to B ,
A inj B iff there is an injection from A to B ,
A bij B iff there is a bijection between A and B , and
A strict B iff there is a surjection from A to B but there is no

bijection from B to A.

Restating Theorem 7.2.1 with this new terminology, we have:

Theorem 13.1.2. For any pair of finite sets A and B ,

jAj � jBj iff A surj B;

jAj � jBj iff A inj B;

jAj D jBj iff A bij B;

jAj > jBj iff A strict B:

“mcs-ftl” — 2010/9/8 — 0:40 — page 380 — #386

Chapter 13 Infinite Sets380

Theorem 13.1.2 suggests a way to generalize size comparisons to infinite sets;
namely, we can think of the relation surj as an “at least as big” relation between sets,
even if they are infinite. Similarly, the relation bij can be regarded as a “same size”
relation between (possibly infinite) sets, and strict can be thought of as a “strictly
bigger” relation between sets.

Note that we haven’t, and won’t, define what the size of an infinite set is. The
definition of infinite “sizes” is cumbersome and technical, and we can get by just
fine without it. All we need are the “as big as” and “same size” relations, surj
and bij, between sets.

But there’s something else to watch out for. We’ve referred to surj as an “as big
as” relation and bij as a “same size” relation on sets. Most of the “as big as” and
“same size” properties of surj and bij on finite sets do carry over to infinite sets,
but some important ones don’t—as we’re about to show. So you have to be careful:
don’t assume that surj has any particular “as big as” property on infinite sets until
it’s been proved.

Let’s begin with some familiar properties of the “as big as” and “same size”
relations on finite sets that do carry over exactly to infinite sets:

Theorem 13.1.3. For any sets, A, B , and C ,

1. A surj B and B surj C IMPLIES A surj C .

2. A bij B and B bij C IMPLIES A bij C .

3. A bij B IMPLIES B bij A.

Parts 1 and 2 of Theorem 13.1.3 follow immediately from the fact that composi-
tions of surjections are surjections, and likewise for bijections. Part 3 follows from
the fact that the inverse of a bijection is a bijection. We’ll leave a proof of these
facts to the problems.

Another familiar property of finite sets carries over to infinite sets, but this time
it’s not so obvious:

Theorem 13.1.4 (Schröder-Bernstein). For any pair of sets A and B , if A surj B
and B surj A, then A bij B .

The Schröder-Bernstein Theorem says that if A is at least as big as B and, con-
versely, B is at least as big as A, then A is the same size as B . Phrased this way,
you might be tempted to take this theorem for granted, but that would be a mis-
take. For infinite sets A and B , the Schröder-Bernstein Theorem is actually pretty
technical. Just because there is a surjective function f W A ! B—which need
not be a bijection—and a surjective function g W B ! A—which also need not

“mcs-ftl” — 2010/9/8 — 0:40 — page 381 — #387

13.2. Countable Sets 381

be a bijection—it’s not at all clear that there must be a bijection h W A ! B .
The challenge is to construct h from parts of both f and g. We’ll leave the actual
construction to the problems.

13.1.1 Infinity Is Different

A basic property of finite sets that does not carry over to infinite sets is that adding
something new makes a set bigger. That is, if A is a finite set and b … A, then
jA [fbgj D jAj C 1, and so A and A [fbg are not the same size. But if A is
infinite, then these two sets are the same size!

Theorem 13.1.5. Let A be a set and b … A. Then A is infinite iff A bij A [fbg.

Proof. Since A is not the same size as A [fbg when A is finite, we only have to
show that A [fbg is the same size as A when A is infinite.

That is, we have to find a bijection between A [fbg and A when A is infinite.
SinceA is infinite, it certainly has at least one element; call it a0. SinceA is infinite,
it has at least two elements, and one of them must not be equal to a0; call this new
element a1. Since A is infinite, it has at least three elements, one of which must
not equal a0 or a1; call this new element a2. Continuing in this way, we conclude
that there is an infinite sequence a0, a1, a2, . . . , an, . . . , of different elements of A.
Now it’s easy to define a bijection f W A [fbg ! A:

f .b/ WWD a0;

f .an/ WWD anC1 for n 2 N;
f .a/ WWD a for a 2 A � fb; a0; a1; : : : g: �

13.2 Countable Sets

13.2.1 Definitions

A set C is countable iff its elements can be listed in order, that is, the distinct
elements in C are precisely

c0; c1; : : : ; cn; : : : :

This means that if we defined a function f on the nonnegative integers by the rule
that f .i/ WWD ci , then f would be a bijection from N to C . More formally,

Definition 13.2.1. A set C is countably infinite iff N bij C . A set is countable iff
it is finite or countably infinite.

“mcs-ftl” — 2010/9/8 — 0:40 — page 382 — #388

Chapter 13 Infinite Sets382

Discrete mathematics is often defined as the mathematics of countable sets and
so it is probably worth spending a little time understanding what it means to be
countable and why countable sets are so special. For example, a small modification
of the proof of Theorem 13.1.5 shows that countably infinite sets are the “smallest”
infinite sets; namely, if A is any infinite set, then A surj N.

13.2.2 Unions

Since adding one new element to an infinite set doesn’t change its size, it’s obvi-
ous that neither will adding any finite number of elements. It’s a common mis-
take to think that this proves that you can throw in countably infinitely many new
elements—just because it’s ok to do something any finite number of times doesn’t
make it ok to do it an infinite number of times.

For example, suppose that you have two countably infinite setsA D fa0; a1; a2; : : : g
andB D fb0; b1; b2; : : : g. You might try to show thatA[B is countable by making
the following “list” for A [B:

a0; a1; a2; : : : ; b0; b1; b2; : : : (13.1)

But this is not a valid argument because Equation 13.1 is not a list. The key property
required for listing the elements in a countable set is that for any element in the set,
you can determine its finite index in the list. For example, ai shows up in position i
in Equation 13.1, but there is no index in the supposed “list” for any of the bi .
Hence, Equation 13.1 is not a valid list for the purposes of showing that A [B is
countable when A is infinite. Equation 13.1 is only useful when A is finite.

It turns out you really can add a countably infinite number of new elements to
a countable set and still wind up with just a countably infinite set, but another
argument is needed to prove this.

Theorem 13.2.2. If A and B are countable sets, then so is A [B .

Proof. Suppose the list of distinct elements of A is a0, a1, . . . , and the list of B is
b0, b1, Then a valid way to list all the elements of A [B is

a0; b0; a1; b1; : : : ; an; bn; : : : : (13.2)

Of course this list will contain duplicates if A and B have elements in common, but
then deleting all but the first occurrence of each element in Equation 13.2 leaves a
list of all the distinct elements of A and B . �

Note that the list in Equation 13.2 does not have the same defect as the purported
“list” in Equation 13.1, since every item in A [B has a finite index in the list
created in Theorem 13.2.2.

“mcs-ftl” — 2010/9/8 — 0:40 — page 383 — #389

13.2. Countable Sets 383

b0 b1 b2 b3 : : :

a0 c0 c1 c4 c9
a1 c3 c2 c5 c10
a2 c8 c7 c6 c11
a3 c15 c14 c13 c12
:::

: : :

Figure 13.1 A listing of the elements of C D A�B where A D fa0; a1; a2; : : : g
and B D fb0; b1; b2; : : : g are countably infinite sets. For example, c5 D .a1; b2/.

13.2.3 Cross Products

Somewhat surprisingly, cross products of countable sets are also countable. At first,
you might be tempted to think that “infinity times infinity” (whatever that means)
somehow results in a larger infinity, but this is not the case.

Theorem 13.2.3. The cross product of two countable sets is countable.

Proof. Let A and B be any pair of countable sets. To show that C D A�B is also
countable, we need to find a listing of the elements

f .a; b/ j a 2 A; b 2 B g:

There are many such listings. One is shown in Figure 13.1 for the case when A
and B are both infinite sets. In this listing, .ai ; bj / is the kth element in the list
for C where

ai is the i th element in A,

bj is the j th element in B , and

k D max.i; j /2 C i Cmax.i � j; 0/:

The task of finding a listing when one or both of A and B are finite is left to the
problems at the end of the chapter.

�

13.2.4 Q Is Countable

Theorem 13.2.3 also has a surprising Corollary; namely that the set of rational
numbers is countable.

Corollary 13.2.4. The set of rational numbers Q is countable.

“mcs-ftl” — 2010/9/8 — 0:40 — page 384 — #390

Chapter 13 Infinite Sets384

Proof. Since Z�Z is countable by Theorem 13.2.3, it suffices to find a surjection f
from Z � Z to Q. This is easy to to since

f .a; b/ D

(
a=b if b ¤ 0
0 if b D 0

is one such surjection. �

At this point, you may be thinking that every set is countable. That is not the
case. In fact, as we will shortly see, there are many infinite sets that are uncountable,
including the set of real numbers R.

13.3 Power Sets Are Strictly Bigger

It turns out that the ideas behind Russell’s Paradox, which caused so much trouble
for the early efforts to formulate Set Theory, also lead to a correct and astonishing
fact discovered by Georg Cantor in the late nineteenth century: infinite sets are not
all the same size.

Theorem 13.3.1. For any set A, the power set P.A/ is strictly bigger than A.

Proof. First of all, P.A/ is as big as A: for example, the partial function f W
P.A/! A where f .fag/ WWD a for a 2 A is a surjection.

To show that P.A/ is strictly bigger than A, we have to show that if g is a
function from A to P.A/, then g is not a surjection. So, mimicking Russell’s
Paradox, define

Ag WWD f a 2 A j a … g.a/ g:

Ag is a well-defined subset of A, which means it is a member of P.A/. But Ag
can’t be in the range of g, because if it were, we would have

Ag D g.a0/

for some a0 2 A. So by definition of Ag ,

a 2 g.a0/ iff a 2 Ag iff a … g.a/

for all a 2 A. Now letting a D a0 yields the contradiction

a0 2 g.a0/ iff a0 … g.a0/:

So g is not a surjection, because there is an element in the power set of A, namely
the set Ag , that is not in the range of g. �

“mcs-ftl” — 2010/9/8 — 0:40 — page 385 — #391

13.3. Power Sets Are Strictly Bigger 385

13.3.1 R Is Uncountable

To prove that the set of real numbers is uncountable, we will show that there is a
surjection from R to P.N/ and then apply Theorem 13.3.1 to P.N/.

Lemma 13.3.2. R surj P.N/.

Proof. Let A � N be any subset of the natural numbers. Since N is countable, this
means that A is countable and thus that A D fa0; a1; a2; : : : g. For each i � 0,
define bin.ai / to be the binary representation of ai . Let xA be the real number
using only digits 0, 1, 2 as follows:

xA WWD 0:2 bin.a0/2 bin.a1/2 bin.a2/2 : : : (13.3)

We can then define a surjection f W R! P.N/ as follows:

f .x/ D

(
A if x D xA for some A 2 N;
0 otherwise:

Hence R surj P.N/. �

Corollary 13.3.3. R is uncountable.

Proof. By contradiction. Assume R is countable. Then N surj R. By Lemma 13.3.2,
R surj P.N/. Hence N surj P.N/. This contradicts Theorem 13.3.1 for the case
when A D N. �

So the set of rational numbers and the set of natural numbers have the same size,
but the set of real numbers is strictly larger. In fact, R bij P.N /, but we won’t
prove that here.

Is there anything bigger?

13.3.2 Even Larger Infinities

There are lots of different sizes of infinite sets. For example, starting with the
infinite set N of nonnegative integers, we can build the infinite sequence of sets

N; P.N/; P.P.N//; P.P.P.N///; : : :

By Theorem 13.3.1, each of these sets is strictly bigger than all the preceding ones.
But that’s not all, the union of all the sets in the sequence is strictly bigger than each
set in the sequence. In this way, you can keep going, building still bigger infinities.

“mcs-ftl” — 2010/9/8 — 0:40 — page 386 — #392

Chapter 13 Infinite Sets386

13.3.3 The Continuum Hypothesis

Georg Cantor was the mathematician who first developed the theory of infinite sizes
(because he thought he needed it in his study of Fourier series). Cantor raised the
question whether there is a set whose size is strictly between the “smallest” infinite
set, N, and P.N/. He guessed not:

Cantor’s Continuum Hypothesis. There is no set A such that P.N/ is strictly
bigger than A and A is strictly bigger than N.

The Continuum Hypothesis remains an open problem a century later. Its diffi-
culty arises from one of the deepest results in modern Set Theory—discovered in
part by Gödel in the 1930s and Paul Cohen in the 1960s—namely, the ZFC axioms
are not sufficient to settle the Continuum Hypothesis: there are two collections
of sets, each obeying the laws of ZFC, and in one collection, the Continuum Hy-
pothesis is true, and in the other, it is false. So settling the Continuum Hypothesis
requires a new understanding of what sets should be to arrive at persuasive new
axioms that extend ZFC and are strong enough to determine the truth of the Con-
tinuum Hypothesis one way or the other.

13.4 Infinities in Computer Science

If the romance of different size infinities and continuum hypotheses doesn’t appeal
to you, not knowing about them is not going to lower your professional abilities
as a computer scientist. These abstract issues about infinite sets rarely come up in
mainstream mathematics, and they don’t come up at all in computer science, where
the focus is generally on countable, and often just finite, sets. In practice, only
logicians and set theorists have to worry about collections that are too big to be sets.
In fact, at the end of the 19th century, even the general mathematical community
doubted the relevance of what they called “Cantor’s paradise” of unfamiliar sets of
arbitrary infinite size.

That said, it is worth noting that the proof of Theorem 13.3.1 gives the simplest
form of what is known as a “diagonal argument.” Diagonal arguments are used
to prove many fundamental results about the limitations of computation, such as
the undecidability of the Halting Problem for programs and the inherent, unavoid-
able inefficiency (exponential time or worse) of procedures for other computational
problems. So computer scientists do need to study diagonal arguments in order to
understand the logical limits of computation. Ad a well-educated computer scien-
tist will be comfortable dealing with countable sets, finite as well as infinite.

“mcs-ftl” — 2010/9/8 — 0:40 — page 387 — #393

IV Probability

“mcs-ftl” — 2010/9/8 — 0:40 — page 388 — #394

“mcs-ftl” — 2010/9/8 — 0:40 — page 389 — #395

Introduction

Probability is one of the most important disciplines in all of the sciences. It is also
one of the least well understood.

Probability is especially important in computer science—it arises in virtually
every branch of the field. In algorithm design and game theory, for example, ran-
domized algorithms and strategies (those that use a random number generator as a
key input for decision making) frequently outperform deterministic algorithms and
strategies. In information theory and signal processing, an understanding of ran-
domness is critical for filtering out noise and compressing data. In cryptography
and digital rights management, probability is crucial for achieving security. The
list of examples is long.

Given the impact that probability has on computer science, it seems strange that
probability should be so misunderstood by so many. Perhaps the trouble is that
basic human intuition is wrong as often as it is right when it comes to problems
involving random events. As a consequence, many students develop a fear of prob-
ability. Indeed, we have witnessed many graduate oral exams where a student will
solve the most horrendous calculation, only to then be tripped up by the simplest
probability question. Indeed, even some faculty will start squirming if you ask them
a question that starts “What is the probability that. . . ?”

Our goal in the remaining chapters is to equip you with the tools that will enable
you to easily and confidently solve problems involving probability.

We begin in Chapter 14 with the basic definitions and an elementary 4-step pro-
cess that can be used to determine the probability that a specified event occurs. We
illustrate the method on two famous problems where your intuition will probably
fail you.

In Chapter 15, we describe conditional probability and the notion of indepen-
dence. Both notions are important, and sometimes misused, in practice. We will

“mcs-ftl” — 2010/9/8 — 0:40 — page 390 — #396

Part IV Probability390

consider the probability of having a disease given that you tested positive, and the
probability that a suspect is guilty given that his blood type matches the blood found
at the scene of the crime.

We study random variables and distributions in Chapter 17. Random variables
provide a more quantitative way to measure random events. For example, instead
of determining the probability that it will rain, we may want to determine how much
or how long it is likely to rain. This is closely related to the notion of the expected
value of a random variables, which we will consider in Chapter 18.

In Chapter 19, we examine the probability that a random variable deviates sig-
nificantly from its expected value. This is especially important in practice, where
things are generally fine if they are going according to expectation, and you would
like to be assured that the probability of deviating from the expectation is very low.

We conclude in Chapter 20 by combining the tools we have acquired to solve
problems involving more complex random processes. We will see why you will
probably never get very far ahead at the casino, and how two Stanford graduate
students became gazillionaires by combining graph theory and probability theory
to design a better search engine for the web.

“mcs-ftl” — 2010/9/8 — 0:40 — page 391 — #397

14 Events and Probability Spaces

14.1 Let’s Make a Deal

In the September 9, 1990 issue of Parade magazine, columnist Marilyn vos Savant
responded to this letter:

Suppose you’re on a game show, and you’re given the choice of three
doors. Behind one door is a car, behind the others, goats. You pick a
door, say number 1, and the host, who knows what’s behind the doors,
opens another door, say number 3, which has a goat. He says to you,
”Do you want to pick door number 2?” Is it to your advantage to
switch your choice of doors?

Craig. F. Whitaker
Columbia, MD

The letter describes a situation like one faced by contestants in the 1970’s game
show Let’s Make a Deal, hosted by Monty Hall and Carol Merrill. Marilyn replied
that the contestant should indeed switch. She explained that if the car was behind
either of the two unpicked doors—which is twice as likely as the the car being
behind the picked door—the contestant wins by switching. But she soon received
a torrent of letters, many from mathematicians, telling her that she was wrong. The
problem became known as the Monty Hall Problem and it generated thousands of
hours of heated debate.

This incident highlights a fact about probability: the subject uncovers lots of
examples where ordinary intuition leads to completely wrong conclusions. So until
you’ve studied probabilities enough to have refined your intuition, a way to avoid
errors is to fall back on a rigorous, systematic approach such as the Four Step
Method that we will describe shortly. First, let’s make sure we really understand
the setup for this problem. This is always a good thing to do when you are dealing
with probability.

14.1.1 Clarifying the Problem

Craig’s original letter to Marilyn vos Savant is a bit vague, so we must make some
assumptions in order to have any hope of modeling the game formally. For exam-
ple, we will assume that:

“mcs-ftl” — 2010/9/8 — 0:40 — page 392 — #398

Chapter 14 Events and Probability Spaces392

1. The car is equally likely to be hidden behind each of the three doors.

2. The player is equally likely to pick each of the three doors, regardless of the
car’s location.

3. After the player picks a door, the host must open a different door with a goat
behind it and offer the player the choice of staying with the original door or
switching.

4. If the host has a choice of which door to open, then he is equally likely to
select each of them.

In making these assumptions, we’re reading a lot into Craig Whitaker’s letter. Other
interpretations are at least as defensible, and some actually lead to different an-
swers. But let’s accept these assumptions for now and address the question, “What
is the probability that a player who switches wins the car?”

14.2 The Four Step Method

Every probability problem involves some sort of randomized experiment, process,
or game. And each such problem involves two distinct challenges:

1. How do we model the situation mathematically?

2. How do we solve the resulting mathematical problem?

In this section, we introduce a four step approach to questions of the form, “What
is the probability that. . . ?” In this approach, we build a probabilistic model step-
by-step, formalizing the original question in terms of that model. Remarkably, the
structured thinking that this approach imposes provides simple solutions to many
famously-confusing problems. For example, as you’ll see, the four step method
cuts through the confusion surrounding the Monty Hall problem like a Ginsu knife.

14.2.1 Step 1: Find the Sample Space

Our first objective is to identify all the possible outcomes of the experiment. A
typical experiment involves several randomly-determined quantities. For example,
the Monty Hall game involves three such quantities:

1. The door concealing the car.

2. The door initially chosen by the player.

“mcs-ftl” — 2010/9/8 — 0:40 — page 393 — #399

14.2. The Four Step Method 393

car location

A

B

C

Figure 14.1 The first level in a tree diagram for the Monty Hall Problem. The
branches correspond to the door behind which the car is located.

3. The door that the host opens to reveal a goat.

Every possible combination of these randomly-determined quantities is called an
outcome. The set of all possible outcomes is called the sample space for the exper-
iment.

A tree diagram is a graphical tool that can help us work through the four step
approach when the number of outcomes is not too large or the problem is nicely
structured. In particular, we can use a tree diagram to help understand the sample
space of an experiment. The first randomly-determined quantity in our experiment
is the door concealing the prize. We represent this as a tree with three branches, as
shown in Figure 14.1. In this diagram, the doors are called A, B , and C instead of
1, 2, and 3, because we’ll be adding a lot of other numbers to the picture later.

For each possible location of the prize, the player could initially choose any of
the three doors. We represent this in a second layer added to the tree. Then a third
layer represents the possibilities of the final step when the host opens a door to
reveal a goat, as shown in Figure 14.2.

Notice that the third layer reflects the fact that the host has either one choice
or two, depending on the position of the car and the door initially selected by the
player. For example, if the prize is behind door A and the player picks door B, then

“mcs-ftl” — 2010/9/8 — 0:40 — page 394 — #400

Chapter 14 Events and Probability Spaces394

car location

A

B

C

A

B

C

A

B

C

A

B

C

player’s
intial
guess

B

A

A

B

A

C

A

C

B

C

C

B

door
revealed

Figure 14.2 The full tree diagram for the Monty Hall Problem. The second level
indicates the door initially chosen by the player. The third level indicates the door
revealed by Monty Hall.

“mcs-ftl” — 2010/9/8 — 0:40 — page 395 — #401

14.2. The Four Step Method 395

the host must open door C. However, if the prize is behind door A and the player
picks door A, then the host could open either door B or door C.

Now let’s relate this picture to the terms we introduced earlier: the leaves of the
tree represent outcomes of the experiment, and the set of all leaves represents the
sample space. Thus, for this experiment, the sample space consists of 12 outcomes.
For reference, we’ve labeled each outcome in Figure 14.3 with a triple of doors
indicating:

.door concealing prize; door initially chosen; door opened to reveal a goat/:

In these terms, the sample space is the set

S D
�
.A;A;B/; .A;A; C /; .A;B; C /; .A; C;B/; .B;A; C /; .B;B;A/;

.B;B; C /; .B; C;A/; .C;A;B/; .C;B;A/; .C; C;A/; .C; C;B/

�
The tree diagram has a broader interpretation as well: we can regard the whole
experiment as following a path from the root to a leaf, where the branch taken at
each stage is “randomly” determined. Keep this interpretation in mind; we’ll use it
again later.

14.2.2 Step 2: Define Events of Interest

Our objective is to answer questions of the form “What is the probability that . . . ?”,
where, for example, the missing phrase might be “the player wins by switching”,
“the player initially picked the door concealing the prize”, or “the prize is behind
door C”. Each of these phrases characterizes a set of outcomes. For example, the
outcomes specified by “the prize is behind door C ” is:

f.C;A;B/; .C;B;A/; .C; C;A/; .C; C;B/g:

A set of outcomes is called an event and it is a subset of the sample space. So the
event that the player initially picked the door concealing the prize is the set:

f.A;A;B/; .A;A; C /; .B;B;A/; .B;B; C /; .C; C;A/; .C; C;B/g:

And what we’re really after, the event that the player wins by switching, is the set
of outcomes:

f.A;B; C /; .A; C;B/; .B;A; C /; .B; C;A/; .C;A;B/; .C;B;A/g:

These outcomes are denoted with a check mark in Figure 14.4.
Notice that exactly half of the outcomes are checked, meaning that the player

wins by switching in half of all outcomes. You might be tempted to conclude that
a player who switches wins with probability 1=2. This is wrong. The reason is that
these outcomes are not all equally likely, as we’ll see shortly.

“mcs-ftl” — 2010/9/8 — 0:40 — page 396 — #402

Chapter 14 Events and Probability Spaces396

car location

A

B

C

A

B

C

A

B

C

A

B

C

player’s
intial
guess

B

A

A

B

A

C

A

C

B

C

C

B

door
revealed

outcome

.A;A;B/

.A;A;C/

.A;B;C/

.A;C;B/

.B;A;C/

.B;B;A/

.B;B;C/

.B;C;A/

.C;A;B/

.C;B;A/

.C;C;A/

.C;C;B/

Figure 14.3 The tree diagram for the Monty Hal Problem with the outcomes la-
beled for each path from root to leaf. For example, outcome .A;A;B/ corresponds
to the car being behind door A, the player initially choosing door A, and Monty
Hall revealing the goat behind door B .

“mcs-ftl” — 2010/9/8 — 0:40 — page 397 — #403

14.2. The Four Step Method 397

car location

A

B

C

A

B

C

A

B

C

A

B

C

player’s
intial
guess

B

A

A

B

A

C

A

C

B

C

C

B

door
revealed

outcome

.A;A;B/

.A;A;C/

.A;B;C/

.A;C;B/

.B;A;C/

.B;B;A/

.B;B;C/

.B;C;A/

.C;A;B/

.C;B;A/

.C;C;A/

.C;C;B/

switch
wins

Figure 14.4 The tree diagram for the Monty Hall Problem where the outcomes
in the event where the player wins by switching are denoted with a check mark.

“mcs-ftl” — 2010/9/8 — 0:40 — page 398 — #404

Chapter 14 Events and Probability Spaces398

14.2.3 Step 3: Determine Outcome Probabilities

So far we’ve enumerated all the possible outcomes of the experiment. Now we
must start assessing the likelihood of those outcomes. In particular, the goal of this
step is to assign each outcome a probability, indicating the fraction of the time this
outcome is expected to occur. The sum of all outcome probabilities must be one,
reflecting the fact that there always is an outcome.

Ultimately, outcome probabilities are determined by the phenomenon we’re mod-
eling and thus are not quantities that we can derive mathematically. However, math-
ematics can help us compute the probability of every outcome based on fewer and
more elementary modeling decisions. In particular, we’ll break the task of deter-
mining outcome probabilities into two stages.

Step 3a: Assign Edge Probabilities

First, we record a probability on each edge of the tree diagram. These edge-
probabilities are determined by the assumptions we made at the outset: that the
prize is equally likely to be behind each door, that the player is equally likely to
pick each door, and that the host is equally likely to reveal each goat, if he has a
choice. Notice that when the host has no choice regarding which door to open, the
single branch is assigned probability 1. For example, see Figure 14.5.

Step 3b: Compute Outcome Probabilities

Our next job is to convert edge probabilities into outcome probabilities. This is a
purely mechanical process: the probability of an outcome is equal to the product of
the edge-probabilities on the path from the root to that outcome. For example, the
probability of the topmost outcome in Figure 14.5, .A;A;B/, is

1

3
�
1

3
�
1

2
D

1

18
:

There’s an easy, intuitive justification for this rule. As the steps in an experiment
progress randomly along a path from the root of the tree to a leaf, the probabilities
on the edges indicate how likely the path is to proceed along each branch. For
example, a path starting at the root in our example is equally likely to go down
each of the three top-level branches.

How likely is such a path to arrive at the topmost outcome, .A;A;B/? Well,
there is a 1-in-3 chance that a path would follow the A-branch at the top level,
a 1-in-3 chance it would continue along the A-branch at the second level, and 1-
in-2 chance it would follow the B-branch at the third level. Thus, it seems that
1 path in 18 should arrive at the .A;A;B/ leaf, which is precisely the probability
we assign it.

“mcs-ftl” — 2010/9/8 — 0:40 — page 399 — #405

14.2. The Four Step Method 399

car location

A

B

C

1=3

1=3

1=3

A

B

C

A

B

C

A

B

C

1=3

1=3

1=3

1=3

1=3

1=3

1=3

1=3

1=3

player’s
intial
guess

B

A

A

B

A

C

A

C

B

C

C

B

1=2

1=2

1

1

1

1=2

1=2

1

1

1

1=2

1=2

door
revealed

outcome

.A;A;B/

.A;A;C/

.A;B;C/

.A;C;B/

.B;A;C/

.B;B;A/

.B;B;C/

.B;C;A/

.C;A;B/

.C;B;A/

.C;C;A/

.C;C;B/

switch
wins

Figure 14.5 The tree diagram for the Monty Hall Problem where edge weights
denote the probability of that branch being taken given that we are at the parent of
that branch. For example, if the car is behind door A, then there is a 1/3 chance that
the player’s initial selection is door B .

“mcs-ftl” — 2010/9/8 — 0:40 — page 400 — #406

Chapter 14 Events and Probability Spaces400

We have illustrated all of the outcome probabilities in Figure 14.6.
Specifying the probability of each outcome amounts to defining a function that

maps each outcome to a probability. This function is usually called Pr. In these
terms, we’ve just determined that:

PrŒ.A;A;B/� D
1

18
;

PrŒ.A;A; C /� D
1

18
;

PrŒ.A;B; C /� D
1

9
;

etc.

14.2.4 Step 4: Compute Event Probabilities

We now have a probability for each outcome, but we want to determine the proba-
bility of an event. The probability of an event E is denoted by PrŒE� and it is the
sum of the probabilities of the outcomes in E. For example, the probability of the
event that the player wins by switching is:1

PrŒswitching wins� D PrŒ.A;B; C /�C PrŒ.A; C;B/�C PrŒ.B;A; C /�C

PrŒ.B; C;A/�C PrŒ.C;A;B/�C PrŒ.C; B;A/�

D
1

9
C
1

9
C
1

9
C
1

9
C
1

9
C
1

9

D
2

3
:

It seems Marilyn’s answer is correct! A player who switches doors wins the car
with probability 2=3. In contrast, a player who stays with his or her original door
wins with probability 1=3, since staying wins if and only if switching loses.

We’re done with the problem! We didn’t need any appeals to intuition or inge-
nious analogies. In fact, no mathematics more difficult than adding and multiplying
fractions was required. The only hard part was resisting the temptation to leap to
an “intuitively obvious” answer.

14.2.5 An Alternative Interpretation of the Monty Hall Problem

Was Marilyn really right? Our analysis indicates that she was. But a more accurate
conclusion is that her answer is correct provided we accept her interpretation of the

1“Switching wins” is shorthand for the set of outcomes where switching wins; namely,
f.A;B; C /; .A; C;B/; .B;A; C /; .B; C;A/; .C;A;B/; .C;B;A/g. We will frequently use such
shorthand to denote events.

“mcs-ftl” — 2010/9/8 — 0:40 — page 401 — #407

14.2. The Four Step Method 401

car location

A

B

C

1=3

1=3

1=3

A

B

C

A

B

C

A

B

C

1=3

1=3

1=3

1=3

1=3

1=3

1=3

1=3

1=3

player’s
intial
guess

B

A

A

B

A

C

A

C

B

C

C

B

1=2

1=2

1

1

1

1=2

1=2

1

1

1

1=2

1=2

door
revealed

outcome

.A;A;B/

.A;A;C/

.A;B;C/

.A;C;B/

.B;A;C/

.B;B;A/

.B;B;C/

.B;C;A/

.C;A;B/

.C;B;A/

.C;C;A/

.C;C;B/

switch
wins

probability

1=18

1=18

1=9

1=9

1=9

1=18

1=18

1=9

1=9

1=9

1=18

1=18

Figure 14.6 The rightmost column shows the outcome probabilities for the
Monty Hall Problem. Each outcome probability is simply the product of the prob-
abilities on the branches on the path from the root to the leaf for that outcome.

“mcs-ftl” — 2010/9/8 — 0:40 — page 402 — #408

Chapter 14 Events and Probability Spaces402

a b c

Figure 14.7 The strange dice. The number of pips on each concealed face is the
same as the number on the opposite face. For example, when you roll die A, the
probabilities of getting a 2, 6, or 7 are each 1=3.

question. There is an equally plausible interpretation in which Marilyn’s answer
is wrong. Notice that Craig Whitaker’s original letter does not say that the host is
required to reveal a goat and offer the player the option to switch, merely that he
did these things. In fact, on the Let’s Make a Deal show, Monty Hall sometimes
simply opened the door that the contestant picked initially. Therefore, if he wanted
to, Monty could give the option of switching only to contestants who picked the
correct door initially. In this case, switching never works!

14.3 Strange Dice

The four-step method is surprisingly powerful. Let’s get some more practice with
it. Imagine, if you will, the following scenario.

It’s a typical Saturday night. You’re at your favorite pub, contemplating the
true meaning of infinite cardinalities, when a burly-looking biker plops down on
the stool next to you. Just as you are about to get your mind around P.P.R//,
biker dude slaps three strange-looking dice on the bar and challenges you to a $100
wager.

The rules are simple. Each player selects one die and rolls it once. The player
with the lower value pays the other player $100.

Naturally, you are skeptical. A quick inspection reveals that these are not ordi-
nary dice. They each have six sides, but the numbers on the dice are different, as
shown in Figure 14.7.

Biker dude notices your hesitation and so he offers to let you pick a die first, and

“mcs-ftl” — 2010/9/8 — 0:40 — page 403 — #409

14.3. Strange Dice 403

then he will choose his die from the two that are left. That seals the deal since you
figure that you now have an advantage.

But which of the dice should you choose? Die B is appealing because it has
a 9, which is a sure winner if it comes up. Then again, die A has two fairly large
numbers and die B has an 8 and no really small values.

In the end, you choose dieB because it has a 9, and then biker dude selects dieA.
Let’s see what the probability is that you will win.2 Not surprisingly, we will use
the four-step method to compute this probability.

14.3.1 Die A versus Die B

Step 1: Find the sample space.
The sample space for this experiment is worked out in the tree diagram shown in
Figure 14.8.3

For this experiment, the sample space is a set of nine outcomes:

S D f .2; 1/; .2; 5/; .2; 9/; .6; 1/; .6; 5/; .6; 9/; .7; 1/; .7; 5/; .7; 9/ g:

Step 2: Define events of interest.
We are interested in the event that the number on die A is greater than the number
on die B . This event is a set of five outcomes:

f .2; 1/; .6; 1/; .6; 5/; .7; 1/; .7; 5/ g:

These outcomes are marked A in the tree diagram in Figure 14.8.

Step 3: Determine outcome probabilities.
To find outcome probabilities, we first assign probabilities to edges in the tree di-
agram. Each number on each die comes up with probability 1=3, regardless of
the value of the other die. Therefore, we assign all edges probability 1=3. The
probability of an outcome is the product of the probabilities on the correspond-
ing root-to-leaf path, which means that every outcome has probability 1=9. These
probabilities are recorded on the right side of the tree diagram in Figure 14.8.

Step 4: Compute event probabilities.
The probability of an event is the sum of the probabilities of the outcomes in that
event. In this case, all the outcome probabilities are the same. In general, when the
probability of every outcome is the same, we say that the sample space is uniform.
Computing event probabilities for uniform sample spaces is particularly easy since

2Of course, you probably should have done this before picking die B in the first place.
3Actually, the whole probability space is worked out in this one picture. But pretend that each

component sort of fades in—nyyrrroom!—as you read about the corresponding step below.

“mcs-ftl” — 2010/9/8 — 0:40 — page 404 — #410

Chapter 14 Events and Probability Spaces404

2

6

7

1=3

1=3

1=3

die A

1=3

1=3

1=3
9

1

5

1=3

1=3

1=3
9

1

5

1=3

1=3

1=3
9

1

5

die B winner

A

B

B

A

A

B

A

A

B

probability
of outcome

1=9

1=9

1=9

1=9

1=9

1=9

1=9

1=9

1=9

Figure 14.8 The tree diagram for one roll of die A versus die B . Die A wins with
probability 5=9.

“mcs-ftl” — 2010/9/8 — 0:40 — page 405 — #411

14.3. Strange Dice 405

you just have to compute the number of outcomes in the event. In particular, for
any event E in a uniform sample space S,

PrŒE� D
jEj

jSj
: (14.1)

In this case, E is the event that die A beats die B , so jEj D 5, jSj D 9, and

PrŒE� D 5=9:

This is bad news for you. Die A beats die B more than half the time and, not
surprisingly, you just lost $100.

Biker dude consoles you on your “bad luck” and, given that he’s a sensitive guy
beneath all that leather, he offers to go double or nothing.4 Given that your wallet
only has $25 in it, this sounds like a good plan. Plus, you figure that choosing die A
will give you the advantage.

So you choose A, and then biker dude chooses C . Can you guess who is more
likely to win? (Hint: it is generally not a good idea to gamble with someone you
don’t know in a bar, especially when you are gambling with strange dice.)

14.3.2 Die A versus Die C

We can construct the three diagram and outcome probabilities as before. The result
is shown in Figure 14.9 and there is bad news again. Die C will beat die A with
probability 5=9, and you lose once again.

You now owe the biker dude $200 and he asks for his money. You reply that you
need to go to the bathroom.

Being a sensitive guy, biker dude nods understandingly and offers yet another
wager. This time, he’ll let you have die C . He’ll even let you raise the wager
to $200 so you can win your money back.

This is too good a deal to pass up. You know that die C is likely to beat die A
and that die A is likely to beat die B , and so die C is surely the best. Whether biker
dude picks A or B , the odds are surely in your favor this time. Biker dude must
really be a nice guy.

So you pick C , and then biker dude picks B . Let’s use the tree method to figure
out the probability that you win.

4Double or nothing is slang for doing another wager after you have lost the first. If you lose again,
you will owe biker dude double what you owed him before. If you win, you will now be even and
you will owe him nothing.

“mcs-ftl” — 2010/9/8 — 0:40 — page 406 — #412

Chapter 14 Events and Probability Spaces406

3

4

8

1=3

1=3

1=3

die C

1=3

1=3

1=3
7

2

6

1=3

1=3

1=3
7

2

6

1=3

1=3

1=3
7

2

6

die A winner

C

A

A

C

A

A

C

C

C

probability
of outcome

1=9

1=9

1=9

1=9

1=9

1=9

1=9

1=9

1=9

Figure 14.9 The tree diagram for one roll of die C versus dieA. Die C wins with
probability 5=9.

“mcs-ftl” — 2010/9/8 — 0:40 — page 407 — #413

14.3. Strange Dice 407

1

5

9

1=3

1=3

1=3

die B

1=3

1=3

1=3
8

3

4

1=3

1=3

1=3
8

3

4

1=3

1=3

1=3
8

3

4

die C winner

C

C

C

B

B

C

B

B

B

probability
of outcome

1=9

1=9

1=9

1=9

1=9

1=9

1=9

1=9

1=9

Figure 14.10 The tree diagram for one roll of die B versus die C . Die B wins
with probability 5=9.

14.3.3 Die B versus Die C

The tree diagram and outcome probabilities for B versus C are shown in Fig-
ure 14.10. But surely there is a mistake! The data in Figure 14.10 shows that
die B wins with probability 5=9. How is it possible that

C beats A with probability 5=9,

A beats B with probability 5=9, and

B beats C with probability 5=9?

The problem is not with the math, but with your intuition. It seems that the
“likely-to-beat” relation should be transitive. But it is not, and whatever die you
pick, biker dude can pick one of the others and be likely to win. So picking first is
a big disadvantage and you now owe biker dude $400.

Just when you think matters can’t get worse, biker dude offers you one final
wager for $1,000. This time, you demand to choose second. Biker dude agrees,

“mcs-ftl” — 2010/9/8 — 0:40 — page 408 — #414

Chapter 14 Events and Probability Spaces408

1st A
roll

2nd A
roll

sum of
A rolls

2

2

7

6

7

7

6
2

2
6

6

7

4

8

9

8

12

13

9

13

14

1st B
roll

2nd B
roll

sum of
B rolls

1

1

9

5

9

9

5
1

1
5

5

9

2

6

10

6

10

14

10

14

18

‹

Figure 14.11 Parts of the tree diagram for die B versus die A where each die is
rolled twice. The first two levels are shown in (a). The last two levels consist of
nine copies of the tree in (b).

but with the condition that instead of rolling each die once, you each roll your die
twice and your score is the sum of your rolls.

Believing that you finally have a winning wager, you agree.5 Biker dude chooses
die B and, of course, you grab die A. That’s because you know that die A will beat
die B with probability 5=9 on one roll and so surely two rolls of die A are likely to
beat two rolls of die B , right?

Wrong!

14.3.4 Rolling Twice

If each player rolls twice, the tree diagram will have four levels and 34 D 81 out-
comes. This means that it will take a while to write down the entire tree diagram.
We can, however, easily write down the first two levels (as we have done in Fig-
ure 14.11(a)) and then notice that the remaining two levels consist of nine identical
copies of the tree in Figure 14.11(b).

The probability of each outcome is .1=3/4 D 1=81 and so, once again, we have
a uniform probability space. By Equation 14.1, this means that the probability that
A wins is the number of outcomes where A beats B divided by 81.

To compute the number of outcomes where A beats B , we observe that the sum

5Did we mention that playing strange gambling games with strangers in a bar is a bad idea?

“mcs-ftl” — 2010/9/8 — 0:40 — page 409 — #415

14.3. Strange Dice 409

of the two rolls of dieA is equally likely to be any element of the following multiset:

SA D f4; 8; 8; 9; 9; 12; 13; 13; 14g:

The sum of two rolls of die B is equally likely to be any element of the following
multiset:

SB D f2; 6; 6; 10; 10; 10; 14; 14; 18g:
We can treat each outcome as a pair .x; y/ 2 SA � SB , where A wins iff x > y. If
x D 4, there is only one y (namely y D 2) for which x > y. If x D 8, there are
three values of y for which x > y. Continuing the count in this way, the number
of pairs for which x > y is

1C 3C 3C 3C 3C 6C 6C 6C 6 D 37:

A similar count shows that there are 42 pairs for which x > y, and there are
two pairs (.14; 14/, .14; 14/) which result in ties. This means that A loses to B
with probability 42=81 > 1=2 and ties with probability 2=81. Die A wins with
probability only 37=81.

How can it be that A is more likely than B to win with 1 roll, but B is more
likely to win with 2 rolls?!? Well, why not? The only reason we’d think otherwise
is our (faulty) intuition. In fact, the die strength reverses no matter which two die
we picked. So for 1 roll,

A � B � C � A;

but for two rolls,
A � B � C � A;

where we have used the symbols � and � to denote which die is more likely to
result in the larger value. This is surprising even to us, but at least we don’t owe
biker dude $1400.

14.3.5 Even Stranger Dice

Now that we know that strange things can happen with strange dice, it is natural,
at least for mathematicians, to ask how strange things can get. It turns out that
things can get very strange. In fact, mathematicians6 recently made the following
discovery:

Theorem 14.3.1. For any n � 2, there is a set of n dice D1, D2, . . . , Dn such that
for any n-node tournament graph7 G, there is a number of rolls k such that if each

6Reference Ron Graham paper.
7Recall that a tournament graph is a directed graph for which there is precisely one directed edge

between any two distinct nodes. In other words, for every pair of distinct nodes u and v, either u
beats v or v beats u, but not both.

“mcs-ftl” — 2010/9/8 — 0:40 — page 410 — #416

Chapter 14 Events and Probability Spaces410

D1

D3 D2

D1

D3 D2

D1

D3 D2

D1

D3 D2

D1

D3 D2

D1

D3 D2

D1

D3 D2

D1

D3 D2

.a/ .b/ .c/ .d/

.e/ .f / .g/ .h/

Figure 14.12 All possible relative strengths for three dice D1, D2, and D3. The
edge Di ! Dj denotes that the sum of rolls for Di is likely to be greater than the
sum of rolls for Dj .

die is rolled k times, then for all i ¤ j , the sum of the k rolls for Di will exceed
the sum for Dj with probability greater than 1=2 iff Di ! Dj is in G.

It will probably take a few attempts at reading Theorem 14.3.1 to understand
what it is saying. The idea is that for some sets of dice, by rolling them different
numbers of times, the dice have varying strengths relative to each other. (This is
what we observed for the dice in Figure 14.7.) Theorem 14.3.1 says that there is a
set of (very) strange dice where every possible collection of relative strengths can
be observed by varying the number of rolls. For example, the eight possible relative
strengths for n D 3 dice are shown in Figure 14.12.

Our analysis for the dice in Figure 14.7 showed that for 1 roll, we have the
relative strengths shown in Figure 14.12(a), and for two rolls, we have the (reverse)
relative strengths shown in Figure 14.12(b). Can you figure out what other relative
strengths are possible for the dice in Figure 14.7 by using more rolls? This might
be worth doing if you are prone to gambling with strangers in bars.

“mcs-ftl” — 2010/9/8 — 0:40 — page 411 — #417

14.4. Set Theory and Probability 411

14.4 Set Theory and Probability

The study of probability is very closely tied to set theory. That is because any set
can be a sample space and any subset can be an event. This means that most of
the rules and identities that we have developed for sets extend very naturally to
probability. We’ll cover several examples in this section, but first let’s review some
definitions that should already be familiar.

14.4.1 Probability Spaces

Definition 14.4.1. A countable8 sample space S is a nonempty countable set. An
element w 2 S is called an outcome. A subset of S is called an event.

Definition 14.4.2. A probability function on a sample space S is a total function
Pr W S ! R such that

� PrŒw� � 0 for all w 2 S, and

�
P
w2S PrŒw� D 1.

A sample space together with a probability function is called a probability space.
For any event E � S, the probability of E is defined to be the sum of the probabil-
ities of the outcomes in E:

PrŒE� WWD
X
w2E

PrŒw�:

14.4.2 Probability Rules from Set Theory

An immediate consequence of the definition of event probability is that for disjoint
events E and F ,

PrŒE [F � D PrŒE�C PrŒF �:

This generalizes to a countable number of events, as follows.

Rule 14.4.3 (Sum Rule). If fE0; E1; : : : g is collection of disjoint events, then

Pr

" [
n2N

En

#
D

X
n2N

PrŒEn�:

8Yes, sample spaces can be infinite. We’ll see some examples shortly. If you did not read Chap-
ter 13, don’t worry—countable means that you can list the elements of the sample space as w1, w2,
w3,

“mcs-ftl” — 2010/9/8 — 0:40 — page 412 — #418

Chapter 14 Events and Probability Spaces412

The Sum Rule lets us analyze a complicated event by breaking it down into
simpler cases. For example, if the probability that a randomly chosen MIT student
is native to the United States is 60%, to Canada is 5%, and to Mexico is 5%, then
the probability that a random MIT student is native to North America is 70%.

Another consequence of the Sum Rule is that PrŒA�C PrŒA� D 1, which follows
because PrŒS� D 1 and S is the union of the disjoint sets A and A. This equation
often comes up in the form:

Rule 14.4.4 (Complement Rule).

PrŒA� D 1 � PrŒA�:

Sometimes the easiest way to compute the probability of an event is to compute
the probability of its complement and then apply this formula.

Some further basic facts about probability parallel facts about cardinalities of
finite sets. In particular:

PrŒB � A� D PrŒB� � PrŒA \ B�, (Difference Rule)
PrŒA [B� D PrŒA�C PrŒB� � PrŒA \ B�, (Inclusion-Exclusion)
PrŒA [B� � PrŒA�C PrŒB�, (Boole’s Inequality
If A � B , then PrŒA� � PrŒB�. (Monotonicity)

The Difference Rule follows from the Sum Rule because B is the union of the
disjoint sets B � A and A \ B . Inclusion-Exclusion then follows from the Sum
and Difference Rules, because A [B is the union of the disjoint sets A and B �
A. Boole’s inequality is an immediate consequence of Inclusion-Exclusion since
probabilities are nonnegative. Monotonicity follows from the definition of event
probability and the fact that outcome probabilities are nonnegative.

The two-event Inclusion-Exclusion equation above generalizes to n events in
the same way as the corresponding Inclusion-Exclusion rule for n sets. Boole’s
inequality also generalizes to

PrŒE1 [� � � [En� � PrŒE1�C � � � C PrŒEn�: (Union Bound)

This simple Union Bound is useful in many calculations. For example, suppose
that Ei is the event that the i -th critical component in a spacecraft fails. Then
E1 [� � � [En is the event that some critical component fails. If

Pn
iD1 PrŒEi �

is small, then the Union Bound can give an adequate upper bound on this vital
probability.

“mcs-ftl” — 2010/9/8 — 0:40 — page 413 — #419

14.5. Infinite Probability Spaces 413

14.4.3 Uniform Probability Spaces

Definition 14.4.5. A finite probability space S, Pr is said to be uniform if PrŒw� is
the same for every outcome w 2 S.

As we saw in the strange dice problem, uniform sample spaces are particularly
easy to work with. That’s because for any event E � S,

PrŒE� D
jEj

jSj
: (14.2)

This means that once we know the cardinality of E and S, we can immediately
obtain PrŒE�. That’s great news because we developed lots of tools for computing
the cardinality of a set in Part III.

For example, suppose that you select five cards at random from a standard deck
of 52 cards. What is the probability of having a full house? Normally, this question
would take some effort to answer. But from the analysis in Section 11.7.2, we know
that

jSj D

13

5

!
and

jEj D 13 �

4

3

!
� 12 �

4

2

!
whereE is the event that we have a full house. Since every five-card hand is equally
likely, we can apply Equation 14.2 to find that

PrŒE� D
13 � 12 �

�
4
3

�
�
�
4
2

��
13
5

�
D
13 � 12 � 4 � 6 � 5 � 4 � 3 � 2

52 � 51 � 50 � 49 � 48

D
18

12495

�
1

694
:

14.5 Infinite Probability Spaces

General probability theory deals with uncountable sets like R, but in computer sci-
ence, it is usually sufficient to restrict our attention to countable probability spaces.

“mcs-ftl” — 2010/9/8 — 0:40 — page 414 — #420

Chapter 14 Events and Probability Spaces414

1=2

1=2

1=2

1=2

H

H

H

H

T

T

T

T

1=2

1=2

1=2

1=2

1=2

1=4

1=8

1=16

1st
player

1st
player2nd

player

2nd
player

Figure 14.13 The tree diagram for the game where players take turns flipping a
fair coin. The first player to flip heads wins.

It’s also a lot easier—infinite sample spaces are hard enough to work with without
having to deal with uncountable spaces.

Infinite probability spaces are fairly common. For example, two players take
turns flipping a fair coin. Whoever flips heads first is declared the winner. What is
the probability that the first player wins? A tree diagram for this problem is shown
in Figure 14.13.

The event that the first player wins contains an infinite number of outcomes, but
we can still sum their probabilities:

PrŒfirst player wins� D
1

2
C
1

8
C

1

32
C

1

128
C � � �

D
1

2

1X
nD0

�
1

4

�n
D
1

2

�
1

1 � 1=4

�
D
2

3
:

Similarly, we can compute the probability that the second player wins:

PrŒsecond player wins� D
1

4
C

1

16
C

1

64
C

1

256
C � � � D

1

3
:

In this case, the sample space is the infinite set

S WWD fTnH j n 2 N g;

“mcs-ftl” — 2010/9/8 — 0:40 — page 415 — #421

14.5. Infinite Probability Spaces 415

where Tn stands for a length n string of T’s. The probability function is

PrŒTnH� WWD
1

2nC1
:

To verify that this is a probability space, we just have to check that all the probabili-
ties are nonnegative and that they sum to 1. Nonnegativity is obvious, and applying
the formula for the sum of a geometric series, we find thatX

n2N
PrŒTnH� D

X
n2N

1

2nC1
D 1:

Notice that this model does not have an outcome corresponding to the possibility
that both players keep flipping tails forever.9 That’s because the probability of
flipping forever would be

lim
n!1

1

2nC1
D 0;

and outcomes with probability zero will have no impact on our calculations.

9In the diagram, flipping forever corresponds to following the infinite path in the tree without
ever reaching a leaf or outcome. Some texts deal with this case by adding a special “infinite” sample
point wforever to the sample space, but we will follow the more traditional approach of excluding such
sample points, as long as they collectively have probability 0.

“mcs-ftl” — 2010/9/8 — 0:40 — page 416 — #422

“mcs-ftl” — 2010/9/8 — 0:40 — page 417 — #423

15 Conditional Probability

15.1 Definition

Suppose that we pick a random person in the world. Everyone has an equal chance
of being selected. Let A be the event that the person is an MIT student, and let
B be the event that the person lives in Cambridge. What are the probabilities of
these events? Intuitively, we’re picking a random point in the big ellipse shown in
Figure 15.1 and asking how likely that point is to fall into region A or B .

set of all people
in the world

set of people
who live in
Cambridge

set of MIT
students

B

A

Figure 15.1 Selecting a random person. A is the event that the person is an MIT
student. B is the even that the person lives in Cambridge.

The vast majority of people in the world neither live in Cambridge nor are MIT
students, so events A and B both have low probability. But what about the prob-
ability that a person is an MIT student, given that the person lives in Cambridge?
This should be much greater—but what is it exactly?

What we’re asking for is called a conditional probability; that is, the probability
that one event happens, given that some other event definitely happens. Questions
about conditional probabilities come up all the time:

� What is the probability that it will rain this afternoon, given that it is cloudy
this morning?

“mcs-ftl” — 2010/9/8 — 0:40 — page 418 — #424

Chapter 15 Conditional Probability418

� What is the probability that two rolled dice sum to 10, given that both are
odd?

� What is the probability that I’ll get four-of-a-kind in Texas No Limit Hold
’Em Poker, given that I’m initially dealt two queens?

There is a special notation for conditional probabilities. In general, Pr
�
A j B

�
denotes the probability of event A, given that event B happens. So, in our example,
Pr
�
A j B

�
is the probability that a random person is an MIT student, given that he

or she is a Cambridge resident.
How do we compute Pr

�
A j B

�
? Since we are given that the person lives in

Cambridge, we can forget about everyone in the world who does not. Thus, all
outcomes outside event B are irrelevant. So, intuitively, Pr

�
A j B

�
should be the

fraction of Cambridge residents that are also MIT students; that is, the answer
should be the probability that the person is in set A \ B (the darkly shaded region
in Figure 15.1) divided by the probability that the person is in set B (the lightly
shaded region). This motivates the definition of conditional probability:

Definition 15.1.1.
Pr
�
A j B

�
WWD

PrŒA \ B�
PrŒB�

If PrŒB� D 0, then the conditional probability Pr
�
A j B

�
is undefined.

Pure probability is often counterintuitive, but conditional probability is even
worse! Conditioning can subtly alter probabilities and produce unexpected results
in randomized algorithms and computer systems as well as in betting games. Yet,
the mathematical definition of conditional probability given above is very simple
and should give you no trouble—provided that you rely on formal reasoning and
not intuition. The four-step method will also be very helpful as we will see in the
next examples.

15.2 Using the Four-Step Method to Determine Conditional
Probability

15.2.1 The “Halting Problem”

The Halting Problem was the first example of a property that could not be tested
by any program. It was introduced by Alan Turing in his seminal 1936 paper. The
problem is to determine whether a Turing machine halts on a given . . . yadda yadda

“mcs-ftl” — 2010/9/8 — 0:40 — page 419 — #425

15.2. Using the Four-Step Method to Determine Conditional Probability 419

yadda . . . more importantly, it was the name of the MIT EECS department’s famed
C-league hockey team.

In a best-of-three tournament, the Halting Problem wins the first game with prob-
ability 1=2. In subsequent games, their probability of winning is determined by the
outcome of the previous game. If the Halting Problem won the previous game,
then they are invigorated by victory and win the current game with probability 2=3.
If they lost the previous game, then they are demoralized by defeat and win the
current game with probability only 1=3. What is the probability that the Halting
Problem wins the tournament, given that they win the first game?

This is a question about a conditional probability. Let A be the event that the
Halting Problem wins the tournament, and let B be the event that they win the first
game. Our goal is then to determine the conditional probability Pr

�
A j B

�
.

We can tackle conditional probability questions just like ordinary probability
problems: using a tree diagram and the four step method. A complete tree diagram
is shown in Figure 15.2.

W

W

W

L

L

L

W

L

W

L

1=2

1=2

2=3

1=3

2=3

1=3

1=3

2=3

1=3

2=3

WW

WLW

WLL

LWW

LWL

LL

1=3

1=18

1=9

1=9

1=18

1=3

game 1 game 2 game 3 outcome event A:
win the
series

event B:
win

game 1

outcome
probability

Figure 15.2 The tree diagram for computing the probability that the “Halting
Problem” wins two out of three games given that they won the first game.

Step 1: Find the Sample Space
Each internal vertex in the tree diagram has two children, one corresponding to
a win for the Halting Problem (labeled W) and one corresponding to a loss (la-

“mcs-ftl” — 2010/9/8 — 0:40 — page 420 — #426

Chapter 15 Conditional Probability420

beled L). The complete sample space is:

S D fWW; WLW; WLL; LWW; LWL; LLg:

Step 2: Define Events of Interest
The event that the Halting Problem wins the whole tournament is:

T D fWW; WLW; LWW g:

And the event that the Halting Problem wins the first game is:

F D fWW; WLW; WLLg:

The outcomes in these events are indicated with check marks in the tree diagram in
Figure 15.2.

Step 3: Determine Outcome Probabilities
Next, we must assign a probability to each outcome. We begin by labeling edges
as specified in the problem statement. Specifically, The Halting Problem has a 1=2
chance of winning the first game, so the two edges leaving the root are each as-
signed probability 1=2. Other edges are labeled 1=3 or 2=3 based on the outcome
of the preceding game. We then find the probability of each outcome by multi-
plying all probabilities along the corresponding root-to-leaf path. For example, the
probability of outcome WLL is:

1

2
�
1

3
�
2

3
D
1

9
:

Step 4: Compute Event Probabilities

We can now compute the probability that The Halting Problem wins the tourna-
ment, given that they win the first game:

Pr
�
A j B

�
D

PrŒA \ B�
PrŒB�

D
PrŒfWW;WLW g�

PrŒfWW;WLW;WLLg�

D
1=3C 1=18

1=3C 1=18C 1=9

D
7

9
:

We’re done! If the Halting Problem wins the first game, then they win the whole
tournament with probability 7=9.

“mcs-ftl” — 2010/9/8 — 0:40 — page 421 — #427

15.2. Using the Four-Step Method to Determine Conditional Probability 421

15.2.2 Why Tree Diagrams Work

We’ve now settled into a routine of solving probability problems using tree dia-
grams. But we’ve left a big question unaddressed: what is the mathematical justifi-
cation behind those funny little pictures? Why do they work?

The answer involves conditional probabilities. In fact, the probabilities that
we’ve been recording on the edges of tree diagrams are conditional probabilities.
For example, consider the uppermost path in the tree diagram for the Halting Prob-
lem, which corresponds to the outcome WW . The first edge is labeled 1=2, which
is the probability that the Halting Problem wins the first game. The second edge
is labeled 2=3, which is the probability that the Halting Problem wins the second
game, given that they won the first—that’s a conditional probability! More gener-
ally, on each edge of a tree diagram, we record the probability that the experiment
proceeds along that path, given that it reaches the parent vertex.

So we’ve been using conditional probabilities all along. But why can we multiply
edge probabilities to get outcome probabilities? For example, we concluded that:

PrŒW W � D
1

2
�
2

3
D
1

3
:

Why is this correct?
The answer goes back to Definition 15.1.1 of conditional probability which could

be written in a form called the Product Rule for probabilities:

Rule (Product Rule for 2 Events). If PrŒE1� ¤ 0, then:

PrŒE1 \E2� D PrŒE1� � Pr
�
E2 j E1

�
:

Multiplying edge probabilities in a tree diagram amounts to evaluating the right
side of this equation. For example:

PrŒwin first game \ win second game�

D PrŒwin first game� � Pr
�
win second game j win first game

�
D
1

2
�
2

3
:

So the Product Rule is the formal justification for multiplying edge probabilities to
get outcome probabilities! Of course to justify multiplying edge probabilities along
longer paths, we need a Product Rule for n events.

Rule (Product Rule for n Events).

PrŒE1 \E2 \ : : : \En� DPrŒE1� � Pr
�
E2 j E1

�
� Pr

�
E3 j E1 \E2

�
� � �

� Pr
�
En j E1 \E2 \ : : : \En�1

�

“mcs-ftl” — 2010/9/8 — 0:40 — page 422 — #428

Chapter 15 Conditional Probability422

provided that
PrŒE1 \E2 \ � � � \En�1� ¤ 0:

This rule follows from the definition of conditional probability and induction
on n.

15.2.3 Medical Testing

There is an unpleasant condition called BO suffered by 10% of the population.
There are no prior symptoms; victims just suddenly start to stink. Fortunately,
there is a test for latent BO before things start to smell. The test is not perfect,
however:

� If you have the condition, there is a 10% chance that the test will say you do
not. These are called “false negatives”.

� If you do not have the condition, there is a 30% chance that the test will say
you do. These are “false positives”.

Suppose a random person is tested for latent BO. If the test is positive, then what
is the probability that the person has the condition?

Step 1: Find the Sample Space

The sample space is found with the tree diagram in Figure 15.3.

yes

pos

no

neg

pos

neg

0:9

0:1

0:9

0:1

0:3

0:7

0:09

0:01

0:27

0:63

person
has BO

test result event A:
has BO

event B:
tests

positive

outcome
probability

event
A\B

Figure 15.3 The tree diagram for the BO problem.

“mcs-ftl” — 2010/9/8 — 0:40 — page 423 — #429

15.2. Using the Four-Step Method to Determine Conditional Probability 423

Step 2: Define Events of Interest

Let A be the event that the person has BO. Let B be the event that the test was
positive. The outcomes in each event are marked in the tree diagram. We want
to find Pr

�
A j B

�
, the probability that a person has BO, given that the test was

positive.

Step 3: Find Outcome Probabilities

First, we assign probabilities to edges. These probabilities are drawn directly from
the problem statement. By the Product Rule, the probability of an outcome is the
product of the probabilities on the corresponding root-to-leaf path. All probabilities
are shown in Figure 15.3.

Step 4: Compute Event Probabilities

From Definition 15.1.1, we have

Pr
�
A j B

�
D

PrŒA \ B�
PrŒB�

D
0:09

0:09C 0:27
D
1

4
:

So, if you test positive, then there is only a 25% chance that you have the condition!
This answer is initially surprising, but makes sense on reflection. There are two

ways you could test positive. First, it could be that you have the condition and the
test is correct. Second, it could be that you are healthy and the test is incorrect. The
problem is that almost everyone is healthy; therefore, most of the positive results
arise from incorrect tests of healthy people!

We can also compute the probability that the test is correct for a random person.
This event consists of two outcomes. The person could have the condition and
test positive (probability 0:09), or the person could be healthy and test negative
(probability 0:63). Therefore, the test is correct with probability 0:09 C 0:63 D
0:72. This is a relief; the test is correct almost three-quarters of the time.

But wait! There is a simple way to make the test correct 90% of the time: always
return a negative result! This “test” gives the right answer for all healthy people
and the wrong answer only for the 10% that actually have the condition. So a better
strategy by this measure is to completely ignore the test result!

There is a similar paradox in weather forecasting. During winter, almost all days
in Boston are wet and overcast. Predicting miserable weather every day may be
more accurate than really trying to get it right!

“mcs-ftl” — 2010/9/8 — 0:40 — page 424 — #430

Chapter 15 Conditional Probability424

15.3 A Posteriori Probabilities

If you think about it too much, the medical testing problem we just considered
could start to trouble you. The concern would be that by the time you take the test,
you either have the BO condition or you don’t—you just don’t know which it is.
So you may wonder if a statement like “If you tested positive, then you have the
condition with probability 25%” makes sense.

In fact, such a statement does make sense. It means that 25% of the people who
test positive actually have the condition. It is true that any particular person has it
or they don’t, but a randomly selected person among those who test positive will
have the condition with probability 25%.

Anyway, if the medical testing example bothers you, you will definitely be wor-
ried by the following examples, which go even further down this path.

15.3.1 The “Halting Problem,” in Reverse

Suppose that we turn the hockey question around: what is the probability that the
Halting Problem won their first game, given that they won the series?

This seems like an absurd question! After all, if the Halting Problem won the
series, then the winner of the first game has already been determined. Therefore,
who won the first game is a question of fact, not a question of probability. However,
our mathematical theory of probability contains no notion of one event preceding
another—there is no notion of time at all. Therefore, from a mathematical perspec-
tive, this is a perfectly valid question. And this is also a meaningful question from
a practical perspective. Suppose that you’re told that the Halting Problem won the
series, but not told the results of individual games. Then, from your perspective, it
makes perfect sense to wonder how likely it is that The Halting Problem won the
first game.

A conditional probability Pr
�
B j A

�
is called a posteriori if event B precedes

event A in time. Here are some other examples of a posteriori probabilities:

� The probability it was cloudy this morning, given that it rained in the after-
noon.

� The probability that I was initially dealt two queens in Texas No Limit Hold
’Em poker, given that I eventually got four-of-a-kind.

Mathematically, a posteriori probabilities are no different from ordinary probabil-
ities; the distinction is only at a higher, philosophical level. Our only reason for
drawing attention to them is to say, “Don’t let them rattle you.”

“mcs-ftl” — 2010/9/8 — 0:40 — page 425 — #431

15.3. A Posteriori Probabilities 425

Let’s return to the original problem. The probability that the Halting Problem
won their first game, given that they won the series is Pr

�
B j A

�
. We can com-

pute this using the definition of conditional probability and the tree diagram in
Figure 15.2:

Pr
�
B j A

�
D

PrŒB \ A�
PrŒA�

D
1=3C 1=18

1=3C 1=18C 1=9
D
7

9
:

This answer is suspicious! In the preceding section, we showed that Pr
�
A j B

�
was also 7=9. Could it be true that Pr

�
A j B

�
D Pr

�
B j A

�
in general? Some

reflection suggests this is unlikely. For example, the probability that I feel uneasy,
given that I was abducted by aliens, is pretty large. But the probability that I was
abducted by aliens, given that I feel uneasy, is rather small.

Let’s work out the general conditions under which Pr
�
A j B

�
D Pr

�
B j A

�
.

By the definition of conditional probability, this equation holds if an only if:

PrŒA \ B�
PrŒB�

D
PrŒA \ B�

PrŒA�

This equation, in turn, holds only if the denominators are equal or the numerator
is 0; namely if

PrŒB� D PrŒA� or PrŒA \ B� D 0:

The former condition holds in the hockey example; the probability that the Halting
Problem wins the series (event A) is equal to the probability that it wins the first
game (event B) since both probabilities are 1=2.

In general, such pairs of probabilities are related by Bayes’ Rule:

Theorem 15.3.1 (Bayes’ Rule). If PrŒA� and PrŒB� are nonzero, then:

Pr
�
B j A

�
D

Pr
�
A j B

�
� PrŒB�

PrŒA�
(15.1)

Proof. When PrŒA� and PrŒB� are nonzero, we have

Pr
�
A j B

�
� PrŒB� D PrŒA \ B� D Pr

�
B j A

�
� PrŒA�

by definition of conditional probability. Dividing by PrŒA� gives (15.1). �

Next, let’s look at a problem that even bothers us.

“mcs-ftl” — 2010/9/8 — 0:40 — page 426 — #432

Chapter 15 Conditional Probability426

15.3.2 A Coin Problem

Suppose that someone hands you either a fair coin or a trick coin with heads on
both sides. You flip the coin 100 times and see heads every time. What can you say
about the probability that you flipped the fair coin? Remarkably, nothing!

In order to make sense out of this outrageous claim, let’s formalize the problem.
The sample space is worked out in the tree diagram shown in Figure 15.4. We
do not know the probability p that you were handed the fair coin initially—you
were just given one coin or the other. Let A be the event that you were handed the

fair coin

all heads

all heads

trick coin

some
tails

p

1�p

1=2100

1100

1�1=2100

p=2100

p�p=2100

1�p

coin given
to you

result of
100 flips

event A:
given fair

coin

event B:
flipped all

heads

probability

Figure 15.4 The tree diagram for the coin-flipping problem.

fair coin, and let B be the event that you flipped 100 straight heads. We’re look-
ing for Pr

�
A j B

�
, the probability that you were handed the fair coin, given that

you flipped 100 heads. The outcome probabilities are worked out in Figure 15.4.
Plugging the results into the definition of conditional probability gives:

Pr
�
A j B

�
D

PrŒA \ B�
PrŒB�

D
p=2100

1 � p C p=2100

D
p

2100.1 � p/C p
:

This expression is very small for moderate values of p because of the 2100 term
in the denominator. For example, if p D 1=2, then the probability that you were
given the fair coin is essentially zero.

“mcs-ftl” — 2010/9/8 — 0:40 — page 427 — #433

15.4. Conditional Identities 427

But we do not know the probability p that you were given the fair coin. And
perhaps the value of p is not moderate; in fact, maybe p D 1 � 2�100. Then there
is nearly an even chance that you have the fair coin, given that you flipped 100
heads. In fact, maybe you were handed the fair coin with probability p D 1. Then
the probability that you were given the fair coin is, well, 1!

Of course, it is extremely unlikely that you would flip 100 straight heads, but in
this case, that is a given from the assumption of the conditional probability. And so
if you really did see 100 straight heads, it would be very tempting to also assume
that p is not close to 1 and hence that you are very likely to have flipped the trick
coin.

We will encounter a very similar issue when we look at methods for estimation
by sampling in Section 17.5.5.

15.4 Conditional Identities

15.4.1 The Law of Total Probability

Breaking a probability calculation into cases simplifies many problems. The idea
is to calculate the probability of an event A by splitting into two cases based on
whether or not another event E occurs. That is, calculate the probability of A \ E
and A\E. By the Sum Rule, the sum of these probabilities equals PrŒA�. Express-
ing the intersection probabilities as conditional probabilities yields:

Rule 15.4.1 (Law of Total Probability, single event). If PrŒE� and PrŒE� are nonzero,
then

PrŒA� D Pr
�
A j E

�
� PrŒE�C Pr

�
A
ˇ̌
E
�
� PrŒE�:

For example, suppose we conduct the following experiment. First, we flip a fair
coin. If heads comes up, then we roll one die and take the result. If tails comes up,
then we roll two dice and take the sum of the two results. What is the probability
that this process yields a 2? Let E be the event that the coin comes up heads,
and let A be the event that we get a 2 overall. Assuming that the coin is fair,
PrŒE� D PrŒE� D 1=2. There are now two cases. If we flip heads, then we roll
a 2 on a single die with probability Pr

�
A j E

�
D 1=6. On the other hand, if we

flip tails, then we get a sum of 2 on two dice with probability Pr
�
A
ˇ̌
E
�
D 1=36.

Therefore, the probability that the whole process yields a 2 is

PrŒA� D
1

2
�
1

6
C
1

2
�
1

36
D

7

72
:

There is also a form of the rule to handle more than two cases.

“mcs-ftl” — 2010/9/8 — 0:40 — page 428 — #434

Chapter 15 Conditional Probability428

Rule 15.4.2 (Law of Total Probability). If E1; : : : ; En are disjoint events whose
union is the whole sample space, then:

PrŒA� D
nX
iD1

Pr
�
A j Ei

�
� PrŒEi �:

15.4.2 Conditioning on a Single Event

The probability rules that we derived in Chapter 14 extend to probabilities condi-
tioned on the same event. For example, the Inclusion-Exclusion formula for two
sets holds when all probabilities are conditioned on an event C :

Pr
�
A [B j C

�
D Pr

�
A j C

�
C Pr

�
B j C

�
� Pr

�
A \ B j C

�
:

This follows from the fact that if PrŒC � ¤ 0, then

Pr
�
A [B j C

�
D

PrŒ.A [B/ \ C �
PrŒC �

D
PrŒ.A \ C/ [.B \ C/�

PrŒC �

D
PrŒA \ C �C PrŒB \ C � � PrŒA \ B \ C �

PrŒC �

D Pr
�
A j C

�
C Pr

�
B j C

�
� Pr

�
A \ B j C

�
:

It is important not to mix up events before and after the conditioning bar. For
example, the following is not a valid identity:

False Claim.

Pr
�
A j B [C

�
D Pr

�
A j B

�
C Pr

�
A j C

�
� Pr

�
A j B \ C

�
: (15.2)

A counterexample is shown in Figure 15.5. In this case, Pr
�
A j B

�
D 1=2,

Pr
�
A j C

�
D 1=2, Pr

�
A j B \ C

�
D 1, and Pr

�
A j B [C

�
D 1=3. However,

since 1=3 ¤ 1=2C 1=2 � 1, Equation 15.2 does not hold.
So you’re convinced that this equation is false in general, right? Let’s see if you

really believe that.

15.4.3 Discrimination Lawsuit

Several years ago there was a sex discrimination lawsuit against a famous uni-
versity. A female math professor was denied tenure, allegedly because she was

“mcs-ftl” — 2010/9/8 — 0:40 — page 429 — #435

15.4. Conditional Identities 429

sample space

B

A C

Š

Š

Figure 15.5 A counterexample to Equation 15.2. Event A is the gray rectangle,
event B is the rectangle with vertical stripes, and event C is the rectangle with
horizontal stripes. B\C lies entirely within A while B�C and C �B are entirely
outside of A.

a woman. She argued that in every one of the university’s 22 departments, the
percentage of male applicants accepted was greater than the percentage of female
applicants accepted. This sounds very suspicious!

However, the university’s lawyers argued that across the university as a whole,
the percentage of male applicants accepted was actually lower than the percentage
of female applicants accepted. This suggests that if there was any sex discrimi-
nation, then it was against men! Surely, at least one party in the dispute must be
lying.

Let’s simplify the problem and express both arguments in terms of conditional
probabilities. To simplify matters, suppose that there are only two departments, EE
and CS, and consider the experiment where we pick a random applicant. Define
the following events:

� Let A be the event that the applicant is accepted.

� Let FEE the event that the applicant is a female applying to EE.

� Let FCS the event that the applicant is a female applying to CS.

� Let MEE the event that the applicant is a male applying to EE.

� Let MCS the event that the applicant is a male applying to CS.

Assume that all applicants are either male or female, and that no applicant applied
to both departments. That is, the events FEE , FCS , MEE , and MCS are all dis-
joint.

“mcs-ftl” — 2010/9/8 — 0:40 — page 430 — #436

Chapter 15 Conditional Probability430

CS 0 females accepted, 1 applied 0%
50 males accepted, 100 applied 50%

EE 70 females accepted, 100 applied 70%
1 male accepted, 1 applied 100%

Overall 70 females accepted, 101 applied � 70%
51 males accepted, 101 applied � 51%

Table 15.1 A scenario where females are less likely to be admitted than males in
each department, but more likely to be admitted overall.

In these terms, the plaintiff is making the following argument:

Pr
�
A j FEE

�
< Pr

�
A j MEE

�
and

Pr
�
A j FCS

�
< Pr

�
A j MCS

�
:

That is, in both departments, the probability that a woman is accepted for tenure is
less than the probability that a man is accepted. The university retorts that overall,
a woman applicant is more likely to be accepted than a man; namely that

Pr
�
A j FEE [FCS

�
> Pr

�
A j MEE [MCS

�
:

It is easy to believe that these two positions are contradictory. In fact, we might
even try to prove this by adding the plaintiff’s two inequalities and then arguing as
follows:

Pr
�
A j FEE

�
C Pr

�
A j FCS

�
< Pr

�
A j MEE

�
C Pr

�
A j MCS

�
) Pr

�
A j FEE [FCS

�
< Pr

�
A j MEE [MCS

�
:

The second line exactly contradicts the university’s position! But there is a big
problem with this argument; the second inequality follows from the first only if we
accept the false identity (15.2). This argument is bogus! Maybe the two parties do
not hold contradictory positions after all!

In fact, Table 15.1 shows a set of application statistics for which the assertions of
both the plaintiff and the university hold. In this case, a higher percentage of males
were accepted in both departments, but overall a higher percentage of females were
accepted! Bizarre!

“mcs-ftl” — 2010/9/8 — 0:40 — page 431 — #437

16 Independence

16.1 Definitions

Suppose that we flip two fair coins simultaneously on opposite sides of a room.
Intuitively, the way one coin lands does not affect the way the other coin lands.
The mathematical concept that captures this intuition is called independence:

Definition 16.1.1. Events A and B are independent if PrŒB� D 0 or if

Pr
�
A j B

�
D PrŒA�: (16.1)

In other words, A and B are independent if knowing that B happens does not al-
ter the probability thatA happens, as is the case with flipping two coins on opposite
sides of a room.

16.1.1 Potential Pitfall

Students sometimes get the idea that disjoint events are independent. The opposite
is true: if A \ B D ;, then knowing that A happens means you know that B
does not happen. So disjoint events are never independent—unless one of them has
probability zero.

16.1.2 Alternative Formulation

Sometimes it is useful to express independence in an alternate form:

Theorem 16.1.2. A and B are independent if and only if

PrŒA \ B� D PrŒA� � PrŒB�: (16.2)

Proof. There are two cases to consider depending on whether or not PrŒB� D 0.

Case 1 .PrŒB� D 0/: If PrŒB� D 0, A and B are independent by Definition 16.1.1.
In addition, Equation 16.2 holds since both sides are 0. Hence, the theorem
is true in this case.

Case 2 .PrŒB� > 0/: By Definition 15.1.1,

PrŒA \ B� D Pr
�
A j B

�
PrŒB�:

“mcs-ftl” — 2010/9/8 — 0:40 — page 432 — #438

Chapter 16 Independence432

So Equation 16.2 holds if

Pr
�
A j B

�
D PrŒA�;

which, by Definition 16.1.1, is true iff A and B are independent. Hence, the
theorem is true in this case as well. �

16.2 Independence Is an Assumption

Generally, independence is something that you assume in modeling a phenomenon.
For example, consider the experiment of flipping two fair coins. Let A be the event
that the first coin comes up heads, and let B be the event that the second coin is
heads. If we assume that A and B are independent, then the probability that both
coins come up heads is:

PrŒA \ B� D PrŒA� � PrŒB� D
1

2
�
1

2
D
1

4
:

In this example, the assumption of independence is reasonable. The result of one
coin toss should have negligible impact on the outcome of the other coin toss. And
if we were to repeat the experiment many times, we would be likely to have A\B
about 1/4 of the time.

There are, of course, many examples of events where assuming independence is
not justified, For example, let C be the event that tomorrow is cloudy and R be the
event that tomorrow is rainy. Perhaps PrŒC � D 1=5 and PrŒR� D 1=10 in Boston.
If these events were independent, then we could conclude that the probability of a
rainy, cloudy day was quite small:

PrŒR \ C � D PrŒR� � PrŒC � D
1

5
�
1

10
D

1

50
:

Unfortunately, these events are definitely not independent; in particular, every rainy
day is cloudy. Thus, the probability of a rainy, cloudy day is actually 1=10.

Deciding when to assume that events are independent is a tricky business. In
practice, there are strong motivations to assume independence since many useful
formulas (such as Equation 16.2) only hold if the events are independent. But you
need to be careful lest you end up deriving false conclusions. We’ll see several
famous examples where (false) assumptions of independence led to trouble over
the next several chapters. This problem gets even trickier when there are more than
two events in play.

“mcs-ftl” — 2010/9/8 — 0:40 — page 433 — #439

16.3. Mutual Independence 433

16.3 Mutual Independence

16.3.1 Definition

We have defined what it means for two events to be independent. What if there are
more than two events? For example, how can we say that the flips of n coins are all
independent of one another?

Events E1; : : : ; En are said to be mutually independent if and only if the prob-
ability of any event Ei is unaffected by knowledge of the other events. More for-
mally:

Definition 16.3.1. A set of eventsE1; E2; : : : ; En, is mutually independent if 8i 2
Œ1; n� and 8S � Œ1; n� � fig, either

Pr

24 \
j2S

Ej

35 D 0 or PrŒEi � D Pr

24Ei ˇ̌̌ \
j2S

Ej

35 :
In other words, no matter which other events are known to occur, the probability

that Ei occurs is unchanged for any i .
For example, if we toss 100 fair coins at different times, we might reasonably

assume that the tosses are mutually independent since the probability that the i th
coin is heads should be 1=2, no matter which other coin tosses came out heads.

16.3.2 Alternative Formulation

Just as Theorem 16.1.2 provided an alternative definition of independence for two
events, there is an alternative definition for mutual independence.

Theorem 16.3.2. A set of events E1; E2; : : : ; En is mutually independent iff 8S �
Œ1; n�,

Pr

24 \
j2S

Ej

35 D Y
j2S

PrŒEj �:

The proof of Theorem 16.3.2 uses induction and reasoning similar to the proof
of Theorem 16.1.2. We will not include the details here.

Theorem 16.3.2 says that E1; E2; : : : ; En are mutually independent if and only

“mcs-ftl” — 2010/9/8 — 0:40 — page 434 — #440

Chapter 16 Independence434

if all of the following equations hold for all distinct i , j , k, and l :

PrŒEi \Ej � D PrŒEi � � PrŒEj �

PrŒEi \Ej \Ek� D PrŒEi � � PrŒEj � � PrŒEk�

PrŒEi \Ej \Ek \El � D PrŒEi � � PrŒEj � � PrŒEk� � PrŒEl �
:::

PrŒE1 \ � � � \En� D PrŒE1� � � � PrŒEn�:

For example, if we toss n fair coins, the tosses are mutually independent iff for
all m 2 Œ1; n� and every subset of m coins, the probability that every coin in the
subset comes up heads is 2�m.

16.3.3 DNA Testing

Assumptions about independence are routinely made in practice. Frequently, such
assumptions are quite reasonable. Sometimes, however, the reasonableness of an
independence assumption is not so clear, and the consequences of a faulty assump-
tion can be severe.

For example, consider the following testimony from the O. J. Simpson murder
trial on May 15, 1995:

Mr. Clarke: When you make these estimations of frequency—and I believe you
touched a little bit on a concept called independence?

Dr. Cotton: Yes, I did.

Mr. Clarke: And what is that again?

Dr. Cotton: It means whether or not you inherit one allele that you have is not—
does not affect the second allele that you might get. That is, if you inherit
a band at 5,000 base pairs, that doesn’t mean you’ll automatically or with
some probability inherit one at 6,000. What you inherit from one parent is
what you inherit from the other.

Mr. Clarke: Why is that important?

Dr. Cotton: Mathematically that’s important because if that were not the case, it
would be improper to multiply the frequencies between the different genetic
locations.

Mr. Clarke: How do you—well, first of all, are these markers independent that
you’ve described in your testing in this case?

“mcs-ftl” — 2010/9/8 — 0:40 — page 435 — #441

16.4. Pairwise Independence 435

Presumably, this dialogue was as confusing to you as it was for the jury. Es-
sentially, the jury was told that genetic markers in blood found at the crime scene
matched Simpson’s. Furthermore, they were told that the probability that the mark-
ers would be found in a randomly-selected person was at most 1 in 170 million.
This astronomical figure was derived from statistics such as:

� 1 person in 100 has marker A.

� 1 person in 50 marker B .

� 1 person in 40 has marker C .

� 1 person in 5 has marker D.

� 1 person in 170 has marker E.

Then these numbers were multiplied to give the probability that a randomly-selected
person would have all five markers:

PrŒA \ B \ C \D \E� D PrŒA� � PrŒB� � PrŒC � � PrŒD� � PrŒE�

D
1

100
�
1

50
�
1

40
�
1

5
�
1

170

D
1

170;000;000
:

The defense pointed out that this assumes that the markers appear mutually inde-
pendently. Furthermore, all the statistics were based on just a few hundred blood
samples.

After the trial, the jury was widely mocked for failing to “understand” the DNA
evidence. If you were a juror, would you accept the 1 in 170 million calculation?

16.4 Pairwise Independence

The definition of mutual independence seems awfully complicated—there are so
many subsets of events to consider! Here’s an example that illustrates the subtlety
of independence when more than two events are involved. Suppose that we flip
three fair, mutually-independent coins. Define the following events:

� A1 is the event that coin 1 matches coin 2.

� A2 is the event that coin 2 matches coin 3.

“mcs-ftl” — 2010/9/8 — 0:40 — page 436 — #442

Chapter 16 Independence436

� A3 is the event that coin 3 matches coin 1.

Are A1, A2, A3 mutually independent?
The sample space for this experiment is:

fHHH; HHT; HTH; HT T; THH; THT; T TH; T T T g:

Every outcome has probability .1=2/3 D 1=8 by our assumption that the coins are
mutually independent.

To see if events A1, A2, and A3 are mutually independent, we must check a
sequence of equalities. It will be helpful first to compute the probability of each
event Ai :

PrŒA1� D PrŒHHH�C PrŒHHT �C PrŒT TH�C PrŒT T T �

D
1

8
C
1

8
C
1

8
C
1

8

D
1

2
:

By symmetry, PrŒA2� D PrŒA3� D 1=2 as well. Now we can begin checking all the
equalities required for mutual independence in Theorem 16.3.2:

PrŒA1 \ A2� D PrŒHHH�C PrŒT T T �

D
1

8
C
1

8

D
1

4

D
1

2
�
1

2

D PrŒA1�PrŒA2�:

By symmetry, PrŒA1 \ A3� D PrŒA1� � PrŒA3� and PrŒA2 \ A3� D PrŒA2� � PrŒA3�
must hold also. Finally, we must check one last condition:

PrŒA1 \ A2 \ A3� D PrŒHHH�C PrŒT T T �

D
1

8
C
1

8

D
1

4

¤ PrŒA1�PrŒA2�PrŒA3� D
1

8
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 437 — #443

16.4. Pairwise Independence 437

The three events A1, A2, and A3 are not mutually independent even though any
two of them are independent! This not-quite mutual independence seems weird at
first, but it happens. It even generalizes:

Definition 16.4.1. A set A1, A2, . . . , of events is k-way independent iff every set
of k of these events is mutually independent. The set is pairwise independent iff it
is 2-way independent.

So the sets A1, A2, A3 above are pairwise independent, but not mutually inde-
pendent. Pairwise independence is a much weaker property than mutual indepen-
dence.

For example, suppose that the prosecutors in the O. J. Simpson trial were wrong
and markers A, B , C , D, and E appear only pairwise independently. Then the
probability that a randomly-selected person has all five markers is no more than:

PrŒA \ B \ C \D \E� � PrŒA \E�

D PrŒA� � PrŒE�

D
1

100
�
1

170

D
1

17;000
:

The first line uses the fact that A\B\C \D\E is a subset of A\E. (We picked
out theA andE markers because they’re the rarest.) We use pairwise independence
on the second line. Now the probability of a random match is 1 in 17,000—a far cry
from 1 in 170 million! And this is the strongest conclusion we can reach assuming
only pairwise independence.

On the other hand, the 1 in 17,000 bound that we get by assuming pairwise
independence is a lot better than the bound that we would have if there were no
independence at all. For example, if the markers are dependent, then it is possible
that

everyone with marker E has marker A,

everyone with marker A has marker B ,

everyone with marker B has marker C , and

everyone with marker C has marker D.

In such a scenario, the probability of a match is

PrŒE� D 1=170:

“mcs-ftl” — 2010/9/8 — 0:40 — page 438 — #444

Chapter 16 Independence438

So a stronger independence assumption leads to a smaller bound on the prob-
ability of a match. The trick is to figure out what independence assumption is
reasonable. Assuming that the markers are mutually independent may well not be
reasonable unless you have examined hundreds of millions of blood samples. Oth-
erwise, how would you know that marker D does not show up more frequently
whenever the other four markers are simultaneously present?

We will conclude our discussion of independence with a useful, and somewhat
famous, example known as the Birthday Paradox.

16.5 The Birthday Paradox

Suppose that there are 100 students in a class. What is the probability that some
birthday is shared by two people? Comparing 100 students to the 365 possible
birthdays, you might guess the probability lies somewhere around 1=3—but you’d
be wrong: the probability that there will be two people in the class with matching
birthdays is actually 0:999999692 : : : . In other words, the probability that all 100
birthdays are different is less than 1 in 3,000,000.

Why is this probability so small? The answer involves a phenomenon known as
the Birthday Paradox (or the Birthday Principle), which is surprisingly important
in computer science, as we’ll see later.

Before delving into the analysis, we’ll need to make some modeling assump-
tions:

� For each student, all possible birthdays are equally likely. The idea under-
lying this assumption is that each student’s birthday is determined by a ran-
dom process involving parents, fate, and, um, some issues that we discussed
earlier in the context of graph theory. The assumption is not completely ac-
curate, however; a disproportionate number of babies are born in August and
September, for example.

� Birthdays are mutually independent. This isn’t perfectly accurate either. For
example, if there are twins in the class, then their birthdays are surely not
independent.

We’ll stick with these assumptions, despite their limitations. Part of the reason is
to simplify the analysis. But the bigger reason is that our conclusions will apply to
many situations in computer science where twins, leap days, and romantic holidays
are not considerations. After all, whether or not two items collide in a hash table
really has nothing to do with human reproductive preferences. Also, in pursuit of

“mcs-ftl” — 2010/9/8 — 0:40 — page 439 — #445

16.5. The Birthday Paradox 439

generality, let’s switch from specific numbers to variables. Let m be the number of
people in the room, and let N be the number of days in a year.

We can solve this problem using the standard four-step method. However, a tree
diagram will be of little value because the sample space is so enormous. This time
we’ll have to proceed without the visual aid!

Step 1: Find the Sample Space
Let’s number the people in the room from 1 to m. An outcome of the experiment
is a sequence .b1; : : : ; bm/ where bi is the birthday of the i th person. The sample
space is the set of all such sequences:

S D f .b1; : : : ; bm/ j bi 2 f1; : : : N g g:

Step 2: Define Events of Interest
Our goal is to determine the probability of the eventA in which some pair of people
have the same birthday. This event is a little awkward to study directly, however.
So we’ll use a common trick, which is to analyze the complementary event A, in
which all m people have different birthdays:

A D f .b1; : : : ; bm/ 2 S j all bi are distinct g:

If we can compute PrŒA�, then we can compute what really want, PrŒA�, using the
identity

PrŒA�C PrŒA� D 1:

Step 3: Assign Outcome Probabilities
We need to compute the probability thatm people have a particular combination of
birthdays .b1; : : : ; bm/. There areN possible birthdays and all of them are equally
likely for each student. Therefore, the probability that the i th person was born on
day bi is 1=N . Since we’re assuming that birthdays are mutually independent, we
can multiply probabilities. Therefore, the probability that the first person was born
on day b1, the second on b2, and so forth is .1=N /m. This is the probability of
every outcome in the sample space, which means that the sample space is uniform.
That’s good news, because, as we have seen, it means that the analysis will be
simpler.

Step 4: Compute Event Probabilities
We’re interested in the probability of the event A in which everyone has a different
birthday:

A D f .b1; : : : ; bn/ j all bi are distinct g:

“mcs-ftl” — 2010/9/8 — 0:40 — page 440 — #446

Chapter 16 Independence440

This is a gigantic set. In fact, there are N choices for bi , N � 1 choices for b2, and
so forth. Therefore, by the Generalized Product Rule,

jAj D
NŠ

.N �m/Š
D N.N � 1/.N � 2/ � � � .N �mC 1/:

Since the sample space is uniform, we can conclude that

PrŒA� D
jAj

Nm
D

NŠ

Nm.N �m/Š
: (16.3)

We’re done!
Or are we? While correct, it would certainly be nicer to have a closed-form ex-

pression for Equation 16.3. That means finding an approximation for NŠ and .N �
m/Š. But this is what we learned how to do in Section 9.6. In fact, since N
and N �m are each at least 100, we know from Corollary 9.6.2 that

p
2�N

�
N

e

�N
and

p
2�.N �m/

�
N �m

e

�N�m
are excellent approximations (accurate to within .09%) of NŠ and .N � m/Š, re-

spectively. Plugging these values into Equation 16.3 means that (to within .2%)1

PrŒA� D

p
2�N

�
N
e

�N
Nm

p
2�.N �m/

�
N�m
e

�N�m
D

r
N

N �m

eN ln.N/�N

em ln.N/e.N�m/ ln.N�m/�.N�m/

D

r
N

N �m
e.N�m/ ln.N/�.N�m/ ln.N�m/�m

D

r
N

N �m
e.N�m/ ln. N

N�m/�m

D e.N�mC
1
2/ ln. N

N�m/�m: (16.4)

1If there are two terms that can be off by .09%, then the ratio can be off by at most a factor
of .1:0009/2 < 1:002.

“mcs-ftl” — 2010/9/8 — 0:40 — page 441 — #447

16.5. The Birthday Paradox 441

We can now evaluate Equation 16.4 for m D 100 and N D 365 to find that the
probability that all 100 birthdays are different is2

3:07 : : : � 10�7:

We can also plug in other values of m to find the number of people so that the
probability of a matching birthday will be about 1=2. In particular, form D 23 and
N D 365, Equation 16.4 reveals that the probability that all the birthdays differ is
0.49. . . . So if you are in a room with 23 other people, the probability that some pair
of people share a birthday will be a little better than 1=2. It is because 23 seems
like such a small number of people for a match that the phenomenon is called the
Birthday Paradox.

16.5.1 Applications to Hashing

Hashing is frequently used in computer science to map large strings of data into
short strings of data. In a typical scenario, you have a set ofm items and you would
like to assign each item to a number from 1 toN where no pair of items is assigned
to the same number and N is as small as possible. For example, the items might be
messages, addresses, or variables. The numbers might represent storage locations,
devices, indices, or digital signatures.

If two items are assigned to the same number, then a collision is said to occur.
Collisions are generally bad. For example, collisions can correspond to two vari-
ables being stored in the same place or two messages being assigned the same dig-
ital signature. Just imagine if you were doing electronic banking and your digital
signature for a $10 check were the same as your signature for a $10 million dollar
check. In fact, finding collisions is a common technique in breaking cryptographic
codes.3

In practice, the assignment of a number to an item is done using a hash function

h W S ! Œ1; N �;

where S is the set of items andm D jS j. Typically, the values of h.S/ are assigned
randomly and are assumed to be equally likely in Œ1; N � and mutually independent.

For efficiency purposes, it is generally desirable to makeN as small as necessary
to accommodate the hashing of m items without collisions. Ideally, N would be
only a little larger than m. Unfortunately, this is not possible for random hash
functions. To see why, let’s take a closer look at Equation 16.4.

2The possible .2% error is so small that it is lost in the . . . after 3.07.
3Such techniques are often referred to as birthday attacks because of the association of such

attacks with the Birthday Paradox.

“mcs-ftl” — 2010/9/8 — 0:40 — page 442 — #448

Chapter 16 Independence442

By Theorem 9.6.1 and the derivation of Equation 16.4, we know that the proba-
bility that there are no collisions for a random hash function is

� e.N�mC
1
2/ ln. N

N�m/�m: (16.5)

For anym, we now need to find a value ofN for which this expression is at least 1/2.
That will tell us how big the hash table needs to be in order to have at least a
50% chance of avoiding collisions. This means that we need to find a value of N
for which �

N �mC
1

2

�
ln
�

N

N �m

�
�m � ln

�
1

2

�
: (16.6)

To simplify Equation 16.6, we need to get rid of the ln
�

N
N�m

�
term. We can do

this by using the Taylor Series expansion for

ln.1 � x/ D �x �
x2

2
�
x3

3
� � � �

to find that4

ln
�

N

N �m

�
D � ln

�
N �m

N

�
D � ln

�
1 �

m

N

�
D �

�
�
m

N
�
m2

2N 2
�
m3

3N 3
� � � �

�
D
m

N
C

m2

2N 2
C

m3

3N 3
C � � � :

4This may not look like a simplification, but stick with us here.

“mcs-ftl” — 2010/9/8 — 0:40 — page 443 — #449

16.5. The Birthday Paradox 443

Hence,�
N �mC

1

2

�
ln
�

N

N �m

�
�m D

�
N �mC

1

2

��
m

N
C

m2

2N 2
C

m3

3N 3
C � � �

�
�m

D

�
mC

m2

2N
C

m3

3N 2
C � � �

�
�

�
m2

N
C

m3

2N 2
C

m4

3N 3
C � � �

�
C
1

2

�
m

N
C

m2

2N 2
C

m3

3N 3
C � � �

�
�m

D �

�
m2

2N
C

m3

6N 2
C

m4

12N 3
C � � �

�
C
1

2

�
m

N
C

m2

2N 2
C

m3

3N 3
C � � �

�
:

(16.7)

If N grows faster than m2, then the value in Equation 16.7 tends to 0 and Equa-
tion 16.6 cannot be satisfied. If N grows more slowly than m2, then the value in
Equation 16.7 diverges to negative infinity, and, once again, Equation 16.6 cannot
be satisfied. This suggests that we should focus on the case where N D ‚.m2/,
when Equation 16.7 simplifies to

�
�m2

2N

and Equation 16.6 becomes

�m2

2N
� ln

�
1

2

�
: (16.8)

Equation 16.8 is satisfied when

N �
m2

2 ln.2/
: (16.9)

In other words,N needs to grow quadratically withm in order to avoid collisions.
This unfortunate fact is known as the Birthday Principle and it limits the efficiency
of hashing in practice—either N is quadratic in the number of items being hashed
or you need to be able to deal with collisions.

“mcs-ftl” — 2010/9/8 — 0:40 — page 444 — #450

“mcs-ftl” — 2010/9/8 — 0:40 — page 445 — #451

17 Random Variables and Distributions
Thus far, we have focused on probabilities of events. For example, we computed
the probability that you win the Monty Hall game, or that you have a rare medical
condition given that you tested positive. But, in many cases we would like to more
more. For example, how many contestants must play the Monty Hall game until
one of them finally wins? How long will this condition last? How much will I lose
gambling with strange dice all night? To answer such questions, we need to work
with random variables.

17.1 Definitions and Examples

Definition 17.1.1. A random variable R on a probability space is a total function
whose domain is the sample space.

The codomain of R can be anything, but will usually be a subset of the real
numbers. Notice that the name “random variable” is a misnomer; random variables
are actually functions!

For example, suppose we toss three independent1, unbiased coins. Let C be the
number of heads that appear. Let M D 1 if the three coins come up all heads or
all tails, and let M D 0 otherwise. Every outcome of the three coin flips uniquely
determines the values of C andM . For example, if we flip heads, tails, heads, then
C D 2 and M D 0. If we flip tails, tails, tails, then C D 0 and M D 1. In effect,
C counts the number of heads, and M indicates whether all the coins match.

Since each outcome uniquely determines C andM , we can regard them as func-
tions mapping outcomes to numbers. For this experiment, the sample space is

S D fHHH;HHT;HTH;HT T; THH; THT; T TH; T T T g

and C is a function that maps each outcome in the sample space to a number as

1Going forward, when we talk about flipping independent coins, we will assume that they are
mutually independent.

“mcs-ftl” — 2010/9/8 — 0:40 — page 446 — #452

Chapter 17 Random Variables and Distributions446

follows:

C.HHH/ D 3 C.THH/ D 2

C.HHT / D 2 C.THT / D 1

C.HTH/ D 2 C.T TH/ D 1

C.HT T / D 1 C.T T T / D 0:

Similarly, M is a function mapping each outcome another way:

M.HHH/ D 1 M.THH/ D 0

M.HHT / D 0 M.THT / D 0

M.HTH/ D 0 M.T TH/ D 0

M.HT T / D 0 M.T T T / D 1:

So C and M are random variables.

17.1.1 Indicator Random Variables

An indicator random variable is a random variable that maps every outcome to
either 0 or 1. Indicator random variables are also called Bernoulli variables. The
random variableM is an example. If all three coins match, thenM D 1; otherwise,
M D 0.

Indicator random variables are closely related to events. In particular, an in-
dicator random variable partitions the sample space into those outcomes mapped
to 1 and those outcomes mapped to 0. For example, the indicator M partitions the
sample space into two blocks as follows:

HHH T T T„ ƒ‚ …
M D 1

HHT HTH HT T THH THT T TH„ ƒ‚ …
M D 0

:

In the same way, an eventE partitions the sample space into those outcomes inE
and those not in E. So E is naturally associated with an indicator random variable,
IE , where IE .w/ D 1 for outcomes w 2 E and IE .w/ D 0 for outcomes w … E.
Thus, M D IE where E is the event that all three coins match.

17.1.2 Random Variables and Events

There is a strong relationship between events and more general random variables
as well. A random variable that takes on several values partitions the sample space
into several blocks. For example, C partitions the sample space as follows:

T T T„ƒ‚…
C D 0

T TH THT HT T„ ƒ‚ …
C D 1

THH HTH HHT„ ƒ‚ …
C D 2

HHH„ƒ‚…
C D 3

:

“mcs-ftl” — 2010/9/8 — 0:40 — page 447 — #453

17.1. Definitions and Examples 447

Each block is a subset of the sample space and is therefore an event. Thus, we
can regard an equation or inequality involving a random variable as an event. For
example, the event that C D 2 consists of the outcomes THH , HTH , andHHT .
The event C � 1 consists of the outcomes T T T , T TH , THT , and HT T .

Naturally enough, we can talk about the probability of events defined by proper-
ties of random variables. For example,

PrŒC D 2� D PrŒTHH�C PrŒHTH�C PrŒHHT �

D
1

8
C
1

8
C
1

8

D
3

8
:

As another example:

PrŒM D 1� D PrŒT T T �C PrŒHHH�

D
1

8
C
1

8

D
1

4
:

17.1.3 Functions of Random Variables

Random variables can be combined to form other random variables. For exam-
ple, suppose that you roll two unbiased, independent 6-sided dice. Let Di be the
random variable denoting the outcome of the i th die for i D 1, 2. For example,

PrŒD1 D 3� D 1=6:

Then let T D D1CD2. T is also a random variable and it denotes the sum of the
two dice. For example,

PrŒT D 2� D 1=36

and

PrŒT D 7� D 1=6:

Random variables can be combined in complicated ways, as we will see in Chap-
ter 19. For example,

Y D eT

is also a random variable. In this case,

PrŒY D e2� D 1=36

and

“mcs-ftl” — 2010/9/8 — 0:40 — page 448 — #454

Chapter 17 Random Variables and Distributions448

PrŒY D e7� D 1=6:

17.1.4 Conditional Probability

Mixing conditional probabilities and events involving random variables creates no
new difficulties. For example, Pr

�
C � 2 j M D 0

�
is the probability that at least

two coins are heads (C � 2) given that not all three coins are the same (M D 0).
We can compute this probability using the definition of conditional probability:

Pr
�
C � 2 j M D 0

�
D

PrŒC � 2 \M D 0�
PrŒM D 0�

D
PrŒfTHH;HTH;HHT g�

PrŒfTHH;HTH;HHT;HT T; THT; T TH g�

D
3=8

6=8

D
1

2
:

The expression C � 2 \M D 0 on the first line may look odd; what is the set
operation \ doing between an inequality and an equality? But recall that, in this
context, C � 2 and M D 0 are events, and so they are sets of outcomes.

17.1.5 Independence

The notion of independence carries over from events to random variables as well.
Random variables R1 and R2 are independent iff for all x1 in the codomain of R1,
and x2 in the codomain of R2 for which PrŒR2 D X2� > 0, we have:

Pr
�
R1 D x1 j R2 D x2

�
D PrŒR1 D x1�:

As with events, we can formulate independence for random variables in an equiva-
lent and perhaps more useful way: random variables R1 and R2 are independent if
for all x1 and x2

PrŒR1 D x1 \R2 D x2� D PrŒR1 D x1� � PrŒR2 D x2�:

For example, are C and M independent? Intuitively, the answer should be “no”.
The number of heads, C , completely determines whether all three coins match; that
is, whether M D 1. But, to verify this intuition, we must find some x1; x2 2 R
such that:

PrŒC D x1 \M D x2� ¤ PrŒC D x1� � PrŒM D x2�:

“mcs-ftl” — 2010/9/8 — 0:40 — page 449 — #455

17.1. Definitions and Examples 449

One appropriate choice of values is x1 D 2 and x2 D 1. In this case, we have:

PrŒC D 2 \M D 1� D 0

and
PrŒM D 1� � PrŒC D 2� D

1

4
�
3

8
¤ 0:

The first probability is zero because we never have exactly two heads (C D 2)
when all three coins match (M D 1). The other two probabilities were computed
earlier.

On the other hand, let F be the indicator variable for the event that the first flip
is a Head, so

“F D 1” D fHHH;HTH;HHT;HT T g:

Then F is independent of M , since

PrŒM D 1� D 1=4 D Pr
�
M D 1 j F D 1

�
D Pr

�
M D 1 j F D 0

�
and

PrŒM D 0� D 3=4 D Pr
�
M D 0 j F D 1

�
D Pr

�
M D 0 j F D 0

�
:

This example is an instance of a simple lemma:

Lemma 17.1.2. Two events are independent iff their indicator variables are inde-
pendent.

As with events, the notion of independence generalizes to more than two random
variables.

Definition 17.1.3. Random variables R1; R2; : : : ; Rn are mutually independent iff

PrŒR1 D x1 \R2 D x2 \ � � � \Rn D xn�

D PrŒR1 D x1� � PrŒR2 D x2� � � � PrŒRn D xn�:

for all x1; x2; : : : ; xn.

A consequence of Definition 17.1.3 is that the probability that any subset of the
variables takes a particular set of values is equal to the product of the probabilities
that the individual variables take their values. Thus, for example, ifR1; R2; : : : ; R100
are mutually independent random variables, then it follows that:

PrŒR1 D 7 \R7 D 9:1 \R23 D ��

D PrŒR1 D 7� � PrŒR7 D 9:1� � PrŒR23 D ��:

The proof is based on summing over all possible values for all of the other random
variables.

“mcs-ftl” — 2010/9/8 — 0:40 — page 450 — #456

Chapter 17 Random Variables and Distributions450

17.2 Distribution Functions

A random variable maps outcomes to values. Often, random variables that show up
for different spaces of outcomes wind up behaving in much the same way because
they have the same probability of having any given value. Hence, random variables
on different probability spaces may wind up having the same probability density
function.

Definition 17.2.1. Let R be a random variable with codomain V . The probability
density function (pdf) of R is a function PDFR W V ! Œ0; 1� defined by:

PDFR.x/ WWD

(
PrŒR D x� if x 2 range.R/
0 if x … range.R/:

A consequence of this definition is thatX
x2range.R/

PDFR.x/ D 1:

This is because R has a value for each outcome, so summing the probabilities over
all outcomes is the same as summing over the probabilities of each value in the
range of R.

As an example, suppose that you roll two unbiased, independent, 6-sided dice.
Let T be the random variable that equals the sum of the two rolls. This random
variable takes on values in the set V D f2; 3; : : : ; 12g. A plot of the probability
density function for T is shown in Figure 17.1: The lump in the middle indicates
that sums close to 7 are the most likely. The total area of all the rectangles is 1
since the dice must take on exactly one of the sums in V D f2; 3; : : : ; 12g.

A closely-related concept to a PDF is the cumulative distribution function (cdf)
for a random variable whose codomain is the real numbers. This is a function
CDFR W R! Œ0; 1� defined by:

CDFR.x/ D PrŒR � x�:

As an example, the cumulative distribution function for the random variable T
is shown in Figure 17.2: The height of the i th bar in the cumulative distribution
function is equal to the sum of the heights of the leftmost i bars in the probability

“mcs-ftl” — 2010/9/8 — 0:40 — page 451 — #457

17.2. Distribution Functions 451

3=36

6=36

x 2 V

2 3 4 5 6 7 8 9 10 11 12

PDFT.x/

Figure 17.1 The probability density function for the sum of two 6-sided dice.

0

1=2

1

x 2 V

0 1 2 3 4 5 6 7 8 9 10 11 12

: : :

CDFT.x/

Figure 17.2 The cumulative distribution function for the sum of two 6-sided dice.

“mcs-ftl” — 2010/9/8 — 0:40 — page 452 — #458

Chapter 17 Random Variables and Distributions452

density function. This follows from the definitions of pdf and cdf:

CDFR.x/ D PrŒR � x�

D

X
y�x

PrŒR D y�

D

X
y�x

PDFR.y/:

In summary, PDFR.x/ measures the probability that R D x and CDFR.x/
measures the probability that R � x. Both PDFR and CDFR capture the same
information about the random variable R—you can derive one from the other—but
sometimes one is more convenient.

One of the really interesting things about density functions and distribution func-
tions is that many random variables turn out to have the same pdf and cdf. In other
words, even thoughR and S are different random variables on different probability
spaces, it is often the case that

PDFR D PDFs:

In fact, some pdfs are so common that they are given special names. For exam-
ple, the three most important distributions in computer science are the Bernoulli
distribution, the uniform distribution, and the binomial distribution. We look more
closely at these common distributions in the next several sections.

17.3 Bernoulli Distributions

The Bernoulli distribution is the simplest and most common distribution func-
tion. That’s because it is the distribution function for an indicator random vari-
able. Specifically, the Bernoulli distribution has a probability density function of
the form fp W f0; 1g ! Œ0; 1� where

fp.0/ D p; and

fp.1/ D 1 � p;

for some p 2 Œ0; 1�. The corresponding cumulative distribution function is Fp W
R! Œ0; 1� where:

Fp.x/ D

8̂<̂
:
0 if x < 0
p if 0 � x < 1
1 if 1 � x:

“mcs-ftl” — 2010/9/8 — 0:40 — page 453 — #459

17.4. Uniform Distributions 453

17.4 Uniform Distributions

17.4.1 Definition

A random variable that takes on each possible value with the same probability is
said to be uniform. If the sample space is f1; 2; : : : ; ng, then the uniform distribu-
tion has a pdf of the form

fn W f1; 2; : : : ; ng ! Œ0; 1�

where
fn.k/ D

1

n

for some n 2 NC. The cumulative distribution function is then Fn W R ! Œ0; 1�

where

Fn.x/ D

8̂<̂
:
0 if x < 1
k=n if k � x < k C 1 for 1 � k < n
1 if n � x:

Uniform distributions arise frequently in practice. For example, the number rolled
on a fair die is uniform on the set f1; 2; : : : ; 6g. If p D 1=2, then an indicator
random variable is uniform on the set f0; 1g.

17.4.2 The Numbers Game

Enough definitions—let’s play a game! I have two envelopes. Each contains an in-
teger in the range 0; 1; : : : ; 100, and the numbers are distinct. To win the game, you
must determine which envelope contains the larger number. To give you a fighting
chance, we’ll let you peek at the number in one envelope selected at random. Can
you devise a strategy that gives you a better than 50% chance of winning?

For example, you could just pick an envelope at random and guess that it contains
the larger number. But this strategy wins only 50% of the time. Your challenge is
to do better.

So you might try to be more clever. Suppose you peek in one envelope and see
the number 12. Since 12 is a small number, you might guess that that the number in
the other envelope is larger. But perhaps we’ve been tricky and put small numbers
in both envelopes. Then your guess might not be so good!

An important point here is that the numbers in the envelopes may not be random.
We’re picking the numbers and we’re choosing them in a way that we think will
defeat your guessing strategy. We’ll only use randomization to choose the numbers
if that serves our purpose, which is to make you lose!

“mcs-ftl” — 2010/9/8 — 0:40 — page 454 — #460

Chapter 17 Random Variables and Distributions454

Intuition Behind the Winning Strategy

Amazingly, there is a strategy that wins more than 50% of the time, regardless of
what numbers we put in the envelopes!

Suppose that you somehow knew a number x that was in between the numbers
in the envelopes. Now you peek in one envelope and see a number. If it is bigger
than x, then you know you’re peeking at the higher number. If it is smaller than x,
then you’re peeking at the lower number. In other words, if you know a number x
between the numbers in the envelopes, then you are certain to win the game.

The only flaw with this brilliant strategy is that you do not know such an x. Oh
well.

But what if you try to guess x? There is some probability that you guess cor-
rectly. In this case, you win 100% of the time. On the other hand, if you guess
incorrectly, then you’re no worse off than before; your chance of winning is still
50%. Combining these two cases, your overall chance of winning is better than
50%!

Informal arguments about probability, like this one, often sound plausible, but
do not hold up under close scrutiny. In contrast, this argument sounds completely
implausible—but is actually correct!

Analysis of the Winning Strategy

For generality, suppose that we can choose numbers from the set f0; 1; : : : ; ng. Call
the lower number L and the higher number H .

Your goal is to guess a number x between L andH . To avoid confusing equality
cases, you select x at random from among the half-integers:�

1

2
; 1
1

2
; 2
1

2
; : : : ; n �

1

2

�
But what probability distribution should you use?

The uniform distribution turns out to be your best bet. An informal justification
is that if we figured out that you were unlikely to pick some number—say 501

2
—

then we’d always put 50 and 51 in the envelopes. Then you’d be unlikely to pick
an x between L and H and would have less chance of winning.

After you’ve selected the number x, you peek into an envelope and see some
number T . If T > x, then you guess that you’re looking at the larger number.
If T < x, then you guess that the other number is larger.

All that remains is to determine the probability that this strategy succeeds. We
can do this with the usual four step method and a tree diagram.

“mcs-ftl” — 2010/9/8 — 0:40 — page 455 — #461

17.4. Uniform Distributions 455

Step 1: Find the sample space.
You either choose x too low (< L), too high (> H), or just right (L < x < H).
Then you either peek at the lower number (T D L) or the higher number (T D H).
This gives a total of six possible outcomes, as show in Figure 17.3.

choices
of x

number
peeked at

TDH

TDL

TDH

TDL

TDH

TDL

1=2

1=2

1=2

1=2

1=2

1=2

L=n

.H�L/=n

.n�H/=n

result

lose

win

win

win

win

lose

probability

L=2n

L=2n

.H�L/=2n

.H�L/=2n

.n�H/=2n

.n�H/=2n

x too low

x too high

x just right

Figure 17.3 The tree diagram for the numbers game.

Step 2: Define events of interest.
The four outcomes in the event that you win are marked in the tree diagram.

Step 3: Assign outcome probabilities.
First, we assign edge probabilities. Your guess x is too low with probability L=n,
too high with probability .n �H/=n, and just right with probability .H � L/=n.
Next, you peek at either the lower or higher number with equal probability. Multi-
plying along root-to-leaf paths gives the outcome probabilities.

“mcs-ftl” — 2010/9/8 — 0:40 — page 456 — #462

Chapter 17 Random Variables and Distributions456

Step 4: Compute event probabilities.
The probability of the event that you win is the sum of the probabilities of the four
outcomes in that event:

PrŒwin� D
L

2n
C
H � L

2n
C
H � L

2n
C
n �H

2n

D
1

2
C
H � L

2n

�
1

2
C

1

2n

The final inequality relies on the fact that the higher number H is at least 1 greater
than the lower number L since they are required to be distinct.

Sure enough, you win with this strategy more than half the time, regardless of
the numbers in the envelopes! For example, if I choose numbers in the range
0; 1; : : : ; 100, then you win with probability at least 1

2
C

1
200
D 50:5%. Even

better, if I’m allowed only numbers in the range 0; : : : ; 10, then your probability of
winning rises to 55%! By Las Vegas standards, those are great odds!

17.4.3 Randomized Algorithms

The best strategy to win the numbers game is an example of a randomized algo-
rithm—it uses random numbers to influence decisions. Protocols and algorithms
that make use of random numbers are very important in computer science. There
are many problems for which the best known solutions are based on a random num-
ber generator.

For example, the most commonly-used protocol for deciding when to send a
broadcast on a shared bus or Ethernet is a randomized algorithm known as expo-
nential backoff. One of the most commonly-used sorting algorithms used in prac-
tice, called quicksort, uses random numbers. You’ll see many more examples if
you take an algorithms course. In each case, randomness is used to improve the
probability that the algorithm runs quickly or otherwise performs well.

17.5 Binomial Distributions

17.5.1 Definitions

The third commonly-used distribution in computer science is the binomial distri-
bution. The standard example of a random variable with a binomial distribution is
the number of heads that come up in n independent flips of a coin. If the coin is

“mcs-ftl” — 2010/9/8 — 0:40 — page 457 — #463

17.5. Binomial Distributions 457

f20.k/

0:18

0:16

0:14

0:12

0:10

0:08

0:06

0:04

0:02

0

k

10 15 2050

Figure 17.4 The pdf for the unbiased binomial distribution for n D 20, f20.k/.

fair, then the number of heads has an unbiased binomial distribution, specified by
the pdf

fn W f1; 2; : : : ; ng ! Œ0; 1�

where

fn.k/ D

n

k

!
2�n

for some n 2 NC. This is because there are
�
n
k

�
sequences of n coin tosses with

exactly k heads, and each such sequence has probability 2�n.
A plot of f20.k/ is shown in Figure 17.4. The most likely outcome is k D 10

heads, and the probability falls off rapidly for larger and smaller values of k. The
falloff regions to the left and right of the main hump are called the tails of the
distribution. We’ll talk a lot more about these tails shortly.

The cumulative distribution function for the unbiased binomial distribution is
Fn W R! Œ0; 1� where

Fn.x/ D

8̂<̂
:
0 if x < 1Pk
iD0

�
n
i

�
2�n if k � x < k C 1 for 1 � k < n

1 if n � x:

“mcs-ftl” — 2010/9/8 — 0:40 — page 458 — #464

Chapter 17 Random Variables and Distributions458

f20;:75.k/

0:25

0:2

0:15

0:1

0:05

0

k

10 15 2050

Figure 17.5 The pdf for the general binomial distribution fn;p.k/ for n D 20

and p D :75.

The General Binomial Distribution

If the coins are biased so that each coin is heads with probability p, then the number
of heads has a general binomial density function specified by the pdf

fn;p W f1; 2; : : : ; ng ! Œ0; 1�

where

fn;p.k/ D

n

k

!
pk.1 � p/n�k :

for some n 2 NC and p 2 Œ0; 1�. This is because there are
�
n
k

�
sequences with

k heads and n � k tails, but now the probability of each such sequence is pk.1 �
p/n�k .

For example, the plot in Figure 17.5 shows the probability density function
fn;p.k/ corresponding to flipping n D 20 independent coins that are heads with
probability p D 0:75. The graph shows that we are most likely to get k D 15

heads, as you might expect. Once again, the probability falls off quickly for larger
and smaller values of k.

“mcs-ftl” — 2010/9/8 — 0:40 — page 459 — #465

17.5. Binomial Distributions 459

The cumulative distribution function for the general binomial distribution isFn;p W
R! Œ0; 1� where

Fn;p.x/ D

8̂<̂
:
0 if x < 1Pk
iD0

�
n
i

�
pi .1 � p/n�i if k � x < k C 1 for 1 � k < n

1 if n � x:

(17.1)

17.5.2 Approximating the Probability Density Function

Computing the general binomial density function is daunting when k and n are
large. Fortunately, there is an approximate closed-form formula for this function
based on an approximation for the binomial coefficient. In the formula below, k is
replaced by ˛n where ˛ is a number between 0 and 1.

Lemma 17.5.1.
n

˛n

!
�

2nH.˛/p
2�˛.1 � ˛/n

(17.2)

and
n

˛n

!
<

2nH.˛/p
2�˛.1 � ˛/n

(17.3)

where H.˛/ is the entropy function2

H.˛/ WWD ˛ log
�
1

˛

�
C .1 � ˛/ log

�
1

1 � ˛

�
:

Moreover, if ˛n > 10 and .1 � ˛/n > 10, then the left and right sides of Equa-
tion 17.2 differ by at most 2%. If ˛n > 100 and .1�˛/n > 100, then the difference
is at most 0:2%.

The graph of H is shown in Figure 17.6.
Lemma (17.5.1) provides an excellent approximation for binomial coefficients.

We’ll skip its derivation, which consists of plugging in Theorem 9.6.1 for the fac-
torials in the binomial coefficient and then simplifying.

Now let’s plug Equation 17.2 into the general binomial density function. The
probability of flipping ˛n heads in n tosses of a coin that comes up heads with

2log.x/ means log2.x/.

“mcs-ftl” — 2010/9/8 — 0:40 — page 460 — #466

Chapter 17 Random Variables and Distributions460

H.’/

1

0:8

0:6

0:4

0:2

0

’

0:4 0:6 0:8 10:20

Figure 17.6 The Entropy Function

probability p is:

fn;p.˛n/ �
2nH.˛/p˛n.1 � p/.1�˛/np

2�˛.1 � ˛/n

D
2
n
�
˛ log.p˛ /C.1�˛/ log

�
1�p
1�˛

��
p
2�˛.1 � ˛/n

; (17.4)

where the margin of error in the approximation is the same as in Lemma 17.5.1.
From Equation 17.3, we also find that

fn;p.˛n/ <
2
n
�
˛ log.p˛ /C.1�˛/ log

�
1�p
1�˛

��
p
2�˛.1 � ˛/n

: (17.5)

The formula in Equations 17.4 and 17.5 is as ugly as a bowling shoe, but it’s
useful because it’s easy to evaluate. For example, suppose we flip a fair coin n
times. What is the probability of getting exactly pn heads? Plugging ˛ D p

into Equation 17.4 gives:

fn;p.pn/ �
1p

2�p.1 � p/n
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 461 — #467

17.5. Binomial Distributions 461

Thus, for example, if we flip a fair coin (where p D 1=2) n D 100 times, the
probability of getting exactly 50 heads is within 2% of 0:079, which is about 8%.

17.5.3 Approximating the Cumulative Distribution Function

In many fields, including computer science, probability analyses come down to get-
ting small bounds on the tails of the binomial distribution. In a typical application,
you want to bound the tails in order to show that there is very small probability that
too many bad things happen. For example, we might like to know that it is very
unlikely that too many bits are corrupted in a message, or that too many servers or
communication links become overloaded, or that a randomized algorithm runs for
too long.

So it is usually good news that the binomial distribution has small tails. To
get a feel for their size, consider the probability of flipping at most 25 heads in
100 independent tosses of a fair coin.

The probability of getting at most ˛n heads is given by the binomial cumulative
distribution function

Fn;p.˛n/ D

˛nX
iD0

n

i

!
pi .1 � p/n�i : (17.6)

We can bound this sum by bounding the ratio of successive terms.

In particular, for i � ˛n,
n

i � 1

!
pi�1.1 � p/n�.i�1/
n

i

!
pi .1 � p/n�i

D

nŠpi�1.1 � p/n�iC1

.i � 1/Š.n � i C 1/Š

nŠpi .1 � p/n�i

i Š.n � i/Š

D
i.1 � p/

.n � i C 1/p

�
˛n.1 � p/

.n � ˛nC 1/p

�
˛.1 � p/

.1 � ˛/p
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 462 — #468

Chapter 17 Random Variables and Distributions462

This means that for ˛ < p,

Fn;p.˛n/ < fn;p.˛n/

1X
iD0

�
˛.1 � p/

.1 � ˛/p

�i
D

fn;p.˛n/

1 �
˛.1 � p/

.1 � ˛/p

D

�
1 � ˛

1 � ˛=p

�
fn;p.˛n/: (17.7)

In other words, the probability of at most ˛n heads is at most

1 � ˛

1 � ˛=p

times the probability of exactly ˛n heads. For our scenario, where p D 1=2 and
˛ D 1=4,

1 � ˛

1 � ˛=p
D
3=4

1=2
D
3

2
:

Plugging n D 100, ˛ D 1=4, and p D 1=2 into Equation 17.5, we find that the
probability of at most 25 heads in 100 coin flips is

F100;1=2.25/ <
3

2
�
2100.

1
4

log.2/C 3
4

log. 23//p
75�=2

� 3 � 10�7:

This says that flipping 25 or fewer heads is extremely unlikely, which is consis-
tent with our earlier claim that the tails of the binomial distribution are very small.
In fact, notice that the probability of flipping 25 or fewer heads is only 50% more
than the probability of flipping exactly 25 heads. Thus, flipping exactly 25 heads is
twice as likely as flipping any number between 0 and 24!

Caveat. The upper bound on Fn;p.˛n/ in Equation 17.7 holds only if ˛ < p. If
this is not the case in your problem, then try thinking in complementary terms; that
is, look at the number of tails flipped instead of the number of heads. In fact, this
is precisely what we will do in the next example.

17.5.4 Noisy Channels

Suppose you are sending packets of data across a communication channel and that
each packet is lost with probability p D :01. Also suppose that packet losses are
independent. You need to figure out how much redundancy (or error correction) to

“mcs-ftl” — 2010/9/8 — 0:40 — page 463 — #469

17.5. Binomial Distributions 463

build into your communication protocol. Since redundancy is expensive overheard,
you would like to use as little as possible. On the other hand, you never want to be
caught short. Would it be safe for you to assume that in any batch of 10,000 packets,
only 200 (or 2%) are lost? Let’s find out.

The noisy channel is analogous to flipping n D 10;000 independent coins, each
with probability p D :01 of coming up heads, and asking for the probability that
there are at least ˛n heads where ˛ D :02. Since ˛ > p, we cannot use Equa-
tion 17.7. So we need to recast the problem by looking at the numbers of tails. In
this case, the probability of tails is p D :99 and we are asking for the probability
of at most ˛n tails where ˛ D :98.

Now we can use Equations 17.5 and 17.7 to find that the probability of losing 2%
or more of the 10,000 packets is at most�

1 � :98

1 � :98=:99

�
210000.:98 log. :99:98/C:02 log. :01:02//p

2�.:98/.1 � :98/10000
< 2�60:

This is good news. It says that planning on at most 2% packet loss in a batch of
10,000 packets should be very safe, at least for the next few millennia.

17.5.5 Estimation by Sampling

Sampling is a very common technique for estimating the fraction of elements in
a set that have a certain property. For example, suppose that you would like to
know how many Americans plan to vote for the Republican candidate in the next
presidential election. It is infeasible to ask every American how they intend to
vote, so pollsters will typically contact n Americans selected at random and then
compute the fraction of those Americans that will vote Republican. This value is
then used as the estimate of the number of all Americans that will vote Republican.
For example, if 45% of the n contacted voters report that they will vote Republican,
the pollster reports that 45% of all Americans will vote Republican. In addition,
the pollster will usually also provide some sort of qualifying statement such as

“There is a 95% probability that the poll is accurate to within ˙4 per-
centage points.”

The qualifying statement is often the source of confusion and misinterpretation.
For example, many people interpret the qualifying statement to mean that there is
a 95% chance that between 41% and 49% of Americans intend to vote Republican.
But this is wrong! The fraction of Americans that intend to vote Republican is a
fixed (and unknown) value p that is not a random variable. Since p is not a random
variable, we cannot say anything about the probability that :41 � p � :49.

“mcs-ftl” — 2010/9/8 — 0:40 — page 464 — #470

Chapter 17 Random Variables and Distributions464

To obtain a correct interpretation of the qualifying statement and the results of
the poll, it is helpful to introduce some notation.

Define Ri to be the indicator random variable for the i th contacted American in
the sample. In particular, set Ri D 1 if the i th contacted American intends to vote
Republican andRi D 0 otherwise. For the purposes of the analysis, we will assume
that the i th contacted American is selected uniformly at random (with replacement)
from the set of all Americans.3 We will also assume that every contacted person
responds honestly about whether or not they intend to vote Republican and that
there are only two options—each American intends to vote Republican or they
don’t. Thus,

PrŒRi D 1� D p (17.8)

where p is the (unknown) fraction of Americans that intend to vote Republican.
We next define

T D R1 CR2 C � � � CRn

to be the number of contacted Americans who intend to vote Republican. Then
T=n is a random variable that is the estimate of the fraction of Americans that
intend to vote Republican.

We are now ready to provide the correct interpretation of the qualifying state-
ment. The poll results mean that

Pr
�
jT=n � pj � :04

�
� :95: (17.9)

In other words, there is a 95% chance that the sample group will produce an esti-
mate that is within ˙4 percentage points of the correct value for the overall popu-
lation. So either we were “unlucky” in selecting the people to poll or the results of
the poll will be correct to within˙4 points.

How Many People Do We Need to Contact?

There remains an important question: how many people n do we need to contact to
make sure that Equation 17.9 is true? In general, we would like n to be as small as
possible in order to minimize the cost of the poll.

Surprisingly, the answer depends only on the desired accuracy and confidence of
the poll and not on the number of items in the set being sampled. In this case, the
desired accuracy is .04, the desired confidence is .95, and the set being sampled is
the set of Americans. It’s a good thing that n won’t depend on the size of the set
being sampled—there are over 300 million Americans!

3This means that someone could be contacted multiple times.

“mcs-ftl” — 2010/9/8 — 0:40 — page 465 — #471

17.5. Binomial Distributions 465

The task of finding an n that satisfies Equation 17.9 is made tractable by observ-
ing that T has a general binomial distribution with parameters n and p and then
applying Equations 17.5 and 17.7. Let’s see how this works.

Since we will be using bounds on the tails of the binomial distribution, we first
do the standard conversion

Pr
�
jT=n � pj � :04

�
D 1 � Pr

�
jT=n � pj > :04

�
:

We then proceed to upper bound

Pr
�
jT=n � pj > :04

�
D PrŒT < .p � :04/n�C PrŒT > .p C :04/n�

D Fn;p..p � 0:4/n/C Fn;1�p..1 � p � :04/n/: (17.10)

We don’t know the true value of p, but it turns out that the expression on the

righthand side of Equation 17.10 is maximized when p D 1=2 and so

Pr
�
jT=n � pj > :04

�
� 2Fn;1=2.:46n/

< 2

�
1 � :46

1 � .:46=:5/

�
fn;1=2.:46n/

< 13:5 �
2n.:46 log. :5:46/C:54 log. :5:54//
p
2� � 0:46 � 0:54 � n

<
10:81 � 2�:00462n

p
n

: (17.11)

The second line comes from Equation 17.7 using ˛ D :46. The third line comes
from Equation 17.5.

Equation 17.11 provides bounds on the confidence of the poll for different values
of n. For example, if n D 665, the bound in Equation 17.11 evaluates to :04978 : : : .
Hence, if the pollster contacts 665 Americans, the poll will be accurate to within
˙4 percentage points with at least 95% probability.

Since the bound in Equation 17.11 is exponential in n, the confidence increases
greatly as n increases. For example, if n D 6;650Americans are contacted, the poll
will be accurate to within˙4 points with probability at least 1� 10�10. Of course,
most pollsters are not willing to pay the added cost of polling 10 times as many
people when they already have a confidence level of 95% from polling 665 people.

“mcs-ftl” — 2010/9/8 — 0:40 — page 466 — #472

“mcs-ftl” — 2010/9/8 — 0:40 — page 467 — #473

18 Expectation

18.1 Definitions and Examples

The expectation or expected value of a random variable is a single number that
tells you a lot about the behavior of the variable. Roughly, the expectation is the
average value of the random variable where each value is weighted according to its
probability. Formally, the expected value (also known as the average or mean) of a
random variable is defined as follows.

Definition 18.1.1. If R is a random variable defined on a sample space S , then the
expectation of R is

ExŒR� WWD
X
w2S

R.w/PrŒw�: (18.1)

For example, suppose S is the set of students in a class, and we select a student
uniformly at random. Let R be the selected student’s exam score. Then ExŒR� is
just the class average—the first thing everyone wants to know after getting their test
back! For similar reasons, the first thing you usually want to know about a random
variable is its expected value.

Let’s work through some examples.

18.1.1 The Expected Value of a Uniform Random Variable

Let R be the value that comes up with you roll a fair 6-sided die. The the expected
value of R is

ExŒR� D 1 �
1

6
C 2 �

1

6
C 3 �

1

6
C 4 �

1

6
C 5 �

1

6
C 6 �

1

6
D
7

2
:

This calculation shows that the name “expected value” is a little misleading; the
random variable might never actually take on that value. You don’t ever expect to
roll a 31

2
on an ordinary die!

Also note that the mean of a random variable is not the same as the median. The
median is the midpoint of a distribution.

Definition 18.1.2. The median1 of a random variable R is the value x 2 range.R/

1Some texts define the median to be the value of x 2 range.R/ for which PrŒR � x� < 1=2 and
PrŒR > x� � 1=2. The difference in definitions is not important.

“mcs-ftl” — 2010/9/8 — 0:40 — page 468 — #474

Chapter 18 Expectation468

such that

PrŒR � x� �
1

2
and

PrŒR > x� <
1

2
:

In this text, we will not devote much attention to the median. Rather, we will
focus on the expected value, which is much more interesting and useful.

Rolling a 6-sided die provides an example of a uniform random variable. In
general, if Rn is a random variable with a uniform distribution on f1; 2; : : : ; ng,
then

ExŒRn� D
nX
iD1

i �
1

n
D
n.nC 1/

2n
D
nC 1

2
:

18.1.2 The Expected Value of an Indicator Random Variable

The expected value of an indicator random variable for an event is just the proba-
bility of that event.

Lemma 18.1.3. If IA is the indicator random variable for event A, then

ExŒIA� D PrŒA�:

Proof.

ExŒIA� D 1 � PrŒIA D 1�C 0 � PrŒIA D 0�

D PrŒIA D 1�

D PrŒA�: (def of IA) �

For example, if A is the event that a coin with bias p comes up heads, then
ExŒIA� D PrŒIA D 1� D p.

18.1.3 Alternate Definitions

There are several equivalent ways to define expectation.

Theorem 18.1.4. If R is a random variable defined on a sample space S then

ExŒR� D
X

x2range.R/

x � PrŒR D x�: (18.2)

The proof of Theorem 18.1.4, like many of the elementary proofs about expecta-
tion in this chapter, follows by judicious regrouping of terms in the Equation 18.1:

“mcs-ftl” — 2010/9/8 — 0:40 — page 469 — #475

18.1. Definitions and Examples 469

Proof.

ExŒR� D
X
!2S

R.!/PrŒ!� (Def 18.1.1 of expectation)

D

X
x2range.R/

X
!2ŒRDx�

R.!/PrŒ!�

D

X
x2range.R/

X
!2ŒRDx�

x PrŒ!� (def of the event ŒR D x�)

D

X
x2range.R/

x

0@ X
!2ŒRDx�

PrŒ!�

1A (distributing x over the inner sum)

D

X
x2range.R/

x � PrŒR D x�: (def of PrŒR D x�)

The first equality follows because the events ŒR D x� for x 2 range.R/ partition
the sample space S, so summing over the outcomes in ŒR D x� for x 2 range.R/
is the same as summing over S. �

In general, Equation 18.2 is more useful than Equation 18.1 for calculating ex-
pected values and has the advantage that it does not depend on the sample space,
but only on the density function of the random variable. It is especially useful when
the range of the random variable is N, as we will see from the following corollary.

Corollary 18.1.5. If the range of a random variable R is N, then

ExŒR� D
1X
iD1

i PrŒR D i � D
1X
iD0

PrŒR > i�:

Proof. The first equality follows directly from Theorem 18.1.4 and the fact that
range.R/ D N. The second equality is derived by adding the following equations:

PrŒR > 0� D PrŒR D 1� C PrŒR D 2� C PrŒR D 3� C � � �
PrŒR > 1� D PrŒR D 2� C PrŒR D 3� C � � �
PrŒR > 2� D PrŒR D 3� C � � �

:::
1X
iD0

PrŒR > i� D 1 � PrŒR D 1�C 2 � PrŒR D 2�C 3 � PrŒR D 3�C � � �

D

1X
iD1

i PrŒR D i �: �

“mcs-ftl” — 2010/9/8 — 0:40 — page 470 — #476

Chapter 18 Expectation470

18.1.4 Mean Time to Failure

The mean time to failure is a critical parameter in the design of most any system.
For example, suppose that a computer program crashes at the end of each hour of
use with probability p, if it has not crashed already. What is the expected time until
the program crashes?

If we let C be the number of hours until the crash, then the answer to our prob-
lem is ExŒC �. C is a random variable with values in N and so we can use Corol-
lary 18.1.5 to determine that

ExŒC � D
1X
iD0

PrŒC > i�: (18.3)

PrŒC > i� is easy to evaluate: a crash happens later than the i th hour iff the
system did not crash during the first i hours, which happens with probability .1 �
p/i . Plugging this into Equation 18.3 gives:

ExŒC � D
1X
iD0

.1 � p/i

D
1

1 � .1 � p/
(sum of geometric series)

D
1

p
: (18.4)

For example, if there is a 1% chance that the program crashes at the end of each
hour, then the expected time until the program crashes is 1=0:01 D 100 hours.

The general principle here is well-worth remembering:

If a system fails at each time step with probability p, then the expected
number of steps up to (and including) the first failure is 1=p.

Making Babies

As a related example, suppose a couple really wants to have a baby girl. For sim-
plicity, assume that there is a 50% chance that each child they have is a girl, and
that the genders of their children are mutually independent. If the couple insists on
having children until they get a girl, then how many baby boys should they expect
first?

The question, “How many hours until the program crashes?” is mathematically
the same as the question, “How many children must the couple have until they
get a girl?” In this case, a crash corresponds to having a girl, so we should set

“mcs-ftl” — 2010/9/8 — 0:40 — page 471 — #477

18.1. Definitions and Examples 471

p D 1=2. By the preceding analysis, the couple should expect a baby girl after
having 1=p D 2 children. Since the last of these will be the girl, they should
expect just one boy.

18.1.5 Dealing with Infinity

The analysis of the mean time to failure was easy enough. But if you think about it
further, you might start to wonder about the case when the computer program never
fails. For example, what if the program runs forever? How do we handle outcomes
with an infinite value?

These are good questions and we wonder about them too. Indeed, mathemati-
cians have gone to a lot of work to reason about sample spaces with an infinite
number of outcomes or outcomes with infinite value.

To keep matters simple in this text, we will follow the common convention of
ignoring the contribution of outcomes that have probability zero when computing
expected values. This means that we can safely ignore the “never-fail” outcome,
because it has probability

lim
n!1

.1 � p/n D 0:

In general, when we are computing expectations for infinite sample spaces, we
will generally focus our attention on a subset of outcomes that occur with collec-
tive probability one. For the most part, this will allow us to ignore the “infinite”
outcomes because they will typically happen with probability zero.2

This assumption does not mean that the expected value of a random variable is
always finite, however. Indeed, there are many examples where the expected value
is infinite. And where infinity raises its ugly head, trouble is sure to follow. Let’s
see an example.

18.1.6 Pitfall: Computing Expectations by Sampling

Suppose that you are trying to estimate a parameter such as the average delay across
a communication channel. So you set up an experiment to measure how long it
takes to send a test packet from one end to the other and you run the experiment
100 times.

You record the latency, rounded to the nearest millisecond, for each of the hun-
dred experiments, and then compute the average of the 100 measurements. Suppose
that this average is 8.3 ms.

Because you are careful, you repeat the entire process twice more and get aver-
ages of 7.8 ms and 7.9 ms. You conclude that the average latency across the channel

2If this still bothers you, you might consider taking a course on measure theory.

“mcs-ftl” — 2010/9/8 — 0:40 — page 472 — #478

Chapter 18 Expectation472

is
7:8C 7:9C 8:3

3
D 8ms:

You might be right but you might also be horribly wrong. In fact, the expected
latency might well be infinite. Here’s how.

Let D be a random variable that denotes the time it takes for the packet to cross
the channel. Suppose that

PrŒD D i � D

(
0 for i D 0
1
i
�

1
iC1

for i 2 NC:
(18.5)

It is easy to check that
1X
iD0

PrŒD D i � D
�
1 �

1

2

�
C

�
1

2
�
1

3

�
C

�
1

3
�
1

4

�
C � � � D 1

and so D is, in fact, a random variable.
From Equation 18.5, we might expect thatD is likely to be small. Indeed,D D 1

with probability 1=2, D D 2 with probability 1=6, and so forth. So if we took
100 samples of D, about 50 would be 1 ms, about 16 would be 2 ms, and very
few would be large. In summary, it might well be the case that the average of the
100 measurements would be under 10 ms, just as in our example.

This sort of reasoning and the calculation of expected values by averaging ex-
perimental values is very common in practice. It can easily lead to incorrect con-
clusions, however. For example, using Corollary 18.1.5, we can quickly (and accu-
rately) determine that

ExŒD� D
1X
iD1

i PrŒD D i �

D

1X
iD1

i

�
1

i
�

1

i C 1

�
D

1X
iD1

i

�
1

i.i C 1/

�
D

1X
iD1

�
1

i C 1

�
D1:

Uh-oh! The expected time to cross the communication channel is infinite! This
result is a far cry from the 10 ms that we calculated. What went wrong?

“mcs-ftl” — 2010/9/8 — 0:40 — page 473 — #479

18.1. Definitions and Examples 473

It is true that most of the time, the value of D will be small. But sometimes
D will be very large and this happens with sufficient probability that the expected
value of D is unbounded. In fact, if you keep repeating the experiment, you are
likely to see some outcomes and averages that are much larger than 10 ms. In
practice, such “outliers” are sometimes discarded, which masks the true behavior
of D.

In general, the best way to compute an expected value in practice is to first use
the experimental data to figure out the distribution as best you can, and then to use
Theorem 18.1.4 or Corollary 18.1.5 to compute its expectation. This method will
help you identify cases where the expectation is infinite, and will generally be more
accurate than a simple averaging of the data.

18.1.7 Conditional Expectation

Just like event probabilities, expectations can be conditioned on some event. Given
a random variable R, the expected value of R conditioned on an event A is the
(probability-weighted) average value of R over outcomes in A. More formally:

Definition 18.1.6. The conditional expectation ExŒR j A� of a random variable R
given event A is:

ExŒR j A� WWD
X

r2range.R/

r � Pr
�
R D r j A

�
: (18.6)

For example, we can compute the expected value of a roll of a fair die, given,
for example, that the number rolled is at least 4. We do this by letting R be the
outcome of a roll of the die. Then by equation (18.6),

ExŒR j R � 4� D
6X
iD1

i �Pr
�
R D i j R � 4

�
D 1�0C2�0C3�0C4�1

3
C5�1

3
C6�1

3
D 5:

As another example, consider the channel latency problem from Section 18.1.6.
The expected latency for this problem was infinite. But what if we look at the

“mcs-ftl” — 2010/9/8 — 0:40 — page 474 — #480

Chapter 18 Expectation474

expected latency conditioned on the latency not exceeding n. Then

ExŒD� D
1X
iD1

i Pr
�
D D i j D � n

�
D

1X
iD1

i
PrŒD D i ^D � n�

PrŒD � n�

D

nX
iD1

i PrŒD D i �
PrŒD � n�

D
1

PrŒD � n�

nX
iD1

i

�
1

i.i C 1/

�
D

1

PrŒD � n�

nX
iD1

1

i C 1

D
1

PrŒD � n�
.HnC1 � 1/;

where HnC1 is the .nC 1/st Harmonic number

HnC1 D ln.nC 1/C C
1

2n
C

1

12n2
C

�.n/

120n4

and 0 � �.n/ � 1. The second equality follows from the definition of conditional
expectation, the third equality follows from the fact that PrŒD D i ^D � n� D 0

for i > n, and the fourth equality follows from the definition ofD in Equation 18.5.
To compute PrŒD � n�, we observe that

PrŒD � n� D 1 � PrŒD > n�

D 1 �

1X
iDnC1

�
1

i
�

1

i C 1

�
D 1 �

��
1

nC 1
�

1

nC 2

�
C

�
1

nC 2
�

1

nC 3

�
C

�
1

nC 3
�

1

nC 4

�
C � � �

�
D 1 �

1

nC 1

D
n

nC 1
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 475 — #481

18.1. Definitions and Examples 475

Hence,

ExŒD� D
nC 1

n
.HnC1 � 1/: (18.7)

For n D 1000, this is about 6.5. This explains why the expected value ofD appears
to be finite when you try to evaluate it experimentally. If you compute 100 samples
of D, it is likely that all of them will be at most 1000 ms. If you condition on not
having any outcomes greater than 1000 ms, then the conditional expected value will
be about 6.5 ms, which would be a commonly observed result in practice. Yet we
know that ExŒD� is infinite. For this reason, expectations computed in practice are
often really just conditional expectations where the condition is that rare “outlier”
sample points are eliminated from the analysis.

18.1.8 The Law of Total Expectation

Another useful feature of conditional expectation is that it lets us divide compli-
cated expectation calculations into simpler cases. We can then find the desired
expectation by calculating the conditional expectation in each simple case and av-
eraging them, weighing each case by its probability.

For example, suppose that 49.8% of the people in the world are male and the
rest female—which is more or less true. Also suppose the expected height of a
randomly chosen male is 50 1100, while the expected height of a randomly chosen
female is 50 500. What is the expected height of a randomly chosen individual? We
can calculate this by averaging the heights of men and women. Namely, let H be
the height (in feet) of a randomly chosen person, and let M be the event that the
person is male and F the event that the person is female. Then

ExŒH � D ExŒH jM�PrŒM �C ExŒH j F �PrŒF �

D .5C 11=12/ � 0:498C .5C 5=12/ � 0:502

D 5:665

which is a little less than 5’ 8”.
This method is justified by the Law of Total Expectation.

Theorem 18.1.7 (Law of Total Expectation). Let R be a random variable on a
sample space S and suppose that A1, A2, . . . , is a partition of S . Then

ExŒR� D
X
i

ExŒR j Ai �PrŒAi �:

“mcs-ftl” — 2010/9/8 — 0:40 — page 476 — #482

Chapter 18 Expectation476

Proof.

ExŒR� D
X

r2range.R/

r � PrŒR D r� (Equation 18.2)

D

X
r

r �
X
i

Pr
�
R D r j Ai

�
PrŒAi � (Law of Total Probability)

D

X
r

X
i

r � Pr
�
R D r j Ai

�
PrŒAi � (distribute constant r)

D

X
i

X
r

r � Pr
�
R D r j Ai

�
PrŒAi � (exchange order of summation)

D

X
i

PrŒAi �
X
r

r � Pr
�
R D r j Ai

�
(factor constant PrŒAi �)

D

X
i

PrŒAi �ExŒR j Ai �: (Def 18.1.6 of cond. expectation)

�

As a more interesting application of the Law of Total Expectation, let’s take
another look at the mean time to failure of a system that fails with probability p at
each step. We’ll define A to be the event that the system fails on the first step and
A to be the complementary event (namely, that the system does not fail on the first
step). Then the mean time to failure ExŒC � is

ExŒC � D ExŒC j A�PrŒA�C ExŒC j A�PrŒA�: (18.8)

Since A is the condition that the system crashes on the first step, we know that

ExŒC j A� D 1: (18.9)

SinceA is the condition that the system does not crash on the first step, conditioning
onA is equivalent to taking a first step without failure and then starting over without
conditioning. Hence,

ExŒC j A� D 1C ExŒC �: (18.10)

Plugging Equations 18.9 and 18.10 into Equation 18.8, we find that

ExŒC � D 1 � p C .1C ExŒC �/.1 � p/

D p C 1 � p C .1 � p/ExŒC �

D 1C .1 � p/ExŒC �:

“mcs-ftl” — 2010/9/8 — 0:40 — page 477 — #483

18.2. Expected Returns in Gambling Games 477

Rearranging terms, we find that

1 D ExŒC � � .1 � p/ExŒC � D p ExŒC �;

and thus that
ExŒC � D

1

p
;

as expected.
We will use this sort of analysis extensively in Chapter 20 when we examine the

expected behavior of random walks.

18.1.9 Expectations of Functions

Expectations can also be defined for functions of random variables.

Definition 18.1.8. Let R W S ! V be a random variable and f W V ! R be a total
function on the range of R. Then

ExŒf .R/� D
X
w2S

f .R.w//PrŒw�: (18.11)

Equivalently,
ExŒf .R/� D

X
r2range.R/

f .r/PrŒR D r�: (18.12)

For example, suppose that R is the value obtained by rolling a fair 6-sided die.
Then

Ex
�
1

R

�
D
1

1
�
1

6
C
1

2
�
1

6
C
1

3
�
1

6
C
1

4
�
1

6
C
1

5
�
1

6
C
1

6
�
1

6
D

49

120
:

18.2 Expected Returns in Gambling Games

Some of the most interesting examples of expectation can be explained in terms of
gambling games. For straightforward games where you win $A with probability p
and you lose $B with probability 1� p, it is easy to compute your expected return
or winnings. It is simply

pA � .1 � p/B:

For example, if you are flipping a fair coin and you win $1 for heads and you lose $1
for tails, then your expected winnings are

1

2
� 1 �

�
1 �

1

2

�
� 1 D 0:

“mcs-ftl” — 2010/9/8 — 0:40 — page 478 — #484

Chapter 18 Expectation478

In such cases, the game is said to be fair since your expected return is zero.
Some gambling games are more complicated and thus more interesting. For

example, consider the following game where the winners split a pot. This sort of
game is representative of many poker games, betting pools, and lotteries.

18.2.1 Splitting the Pot

After your last encounter with biker dude, one thing lead to another and you have
dropped out of school and become a Hell’s Angel. It’s late on a Friday night and,
feeling nostalgic for the old days, you drop by your old hangout, where you en-
counter two of your former TAs, Eric and Nick. Eric and Nick propose that you
join them in a simple wager. Each player will put $2 on the bar and secretly write
“heads” or “tails” on their napkin. Then one player will flip a fair coin. The $6 on
the bar will then be divided equally among the players who correctly predicted the
outcome of the coin toss.

After your life-altering encounter with strange dice, you are more than a little
skeptical. So Eric and Nick agree to let you be the one to flip the coin. This
certainly seems fair. How can you lose?

But you have learned your lesson and so before agreeing, you go through the
four-step method and write out the tree diagram to compute your expected return.
The tree diagram is shown in Figure 18.1.

The “payoff” values in Figure 18.1 are computed by dividing the $6 pot3 among
those players who guessed correctly and then subtracting the $2 that you put into
the pot at the beginning. For example, if all three players guessed correctly, then
you payoff is $0, since you just get back your $2 wager. If you and Nick guess
correctly and Eric guessed wrong, then your payoff is

6

2
� 2 D 1:

In the case that everyone is wrong, you all agree to split the pot and so, again, your
payoff is zero.

To compute your expected return, you use Equation 18.1 in the definition of
expected value. This yields

ExŒpayoff� D 0 �
1

8
C 1 �

1

8
C 1 �

1

8
C 4 �

1

8

C .�2/ �
1

8
C .�2/ �

1

8
C .�2/ �

1

8
C 0 �

1

8

D 0:

3The money invested in a wager is commonly referred to as the pot.

“mcs-ftl” — 2010/9/8 — 0:40 — page 479 — #485

18.2. Expected Returns in Gambling Games 479

you guess
right?

Eric guesses
right?

no

yes

no

yes

1=2

1=2

1=2

1=2

1=2

1=2

yes 1=2

no 1=2

yes 1=2

no 1=2

yes 1=2

no 1=2

yes 1=2

no 1=2

yes

no

your
payoff

$0

$1

$1

$4

�$2

�$2

�$2

$0

probability

1=8

1=8

1=8

1=8

1=8

1=8

1=8

1=8

Nick guesses
right?

Figure 18.1 The tree diagram for the game where three players each wager $2
and then guess the outcome of a fair coin toss. The winners split the pot.

“mcs-ftl” — 2010/9/8 — 0:40 — page 480 — #486

Chapter 18 Expectation480

This confirms that the game is fair. So, for old time’s sake, you break your solemn
vow to never ever engage in strange gambling games.

18.2.2 The Impact of Collusion

Needless to say, things are not turning out well for you. The more times you play
the game, the more money you seem to be losing. After 1000 wagers, you have lost
over $500. As Nick and Eric are consoling you on your “bad luck,” you do a back-
of-the-napkin calculation using the bounds on the tails of the binomial distribution
from Section 17.5 that suggests that the probability of losing $500 in 1000 wagers
is less than the probability of a Vietnamese Monk waltzing in and handing you one
of those golden disks. How can this be?

It is possible that you are truly very very unlucky. But it is more likely that
something is wrong with the tree diagram in Figure 18.1 and that “something” just
might have something to do with the possibility that Nick and Eric are colluding
against you.

To be sure, Nick and Eric can only guess the outcome of the coin toss with
probability 1=2, but what if Nick and Eric always guess differently? In other words,
what if Nick always guesses “tails” when Eric guesses “heads,” and vice-versa?
This would result in a slightly different tree diagram, as shown in Figure 18.2.

The payoffs for each outcome are the same in Figures 18.1 and 18.2, but the
probabilities of the outcomes are different. For example, it is no longer possible
for all three players to guess correctly, since Nick and Eric are always guessing
differently. More importantly, the outcome where your payoff is $4 is also no
longer possible. Since Nick and Eric are always guessing differently, one of them
will always get a share of the pot. As you might imagine, this is not good for you!

When we use Equation 18.1 to compute your expected return in the collusion
scenario, we find that

ExŒpayoff� D 0 � 0C 1 �
1

4
C 1 �

1

4
C 4 � 0

C .�2/ � 0C .�2/ �
1

4
C .�2/ �

1

4
C 0 � 0

D �
1

2
:

This is very bad indeed. By colluding, Nick and Eric have made it so that you
expect to lose $.50 every time you play. No wonder you lost $500 over the course
of 1000 wagers.

Maybe it would be a good idea to go back to school—your Hell’s Angels buds
may not be too happy that you just lost their $500.

“mcs-ftl” — 2010/9/8 — 0:40 — page 481 — #487

18.2. Expected Returns in Gambling Games 481

you guess
right?

Eric guesses
right?

no

yes

no

yes

1=2

1=2

1=2

1=2

1=2

1=2

yes 0

no 1

yes 1

no 0

yes 0

no 1

yes 1

no 0

yes

no

your
payoff

$0

$1

$1

$4

�$2

�$2

�$2

$10

probability

0

1=4

1=4

0

0

1=4

1=4

0

Nick guesses
right?

Figure 18.2 The revised tree diagram reflecting the scenario where Nick always
guesses the opposite of Eric.

“mcs-ftl” — 2010/9/8 — 0:40 — page 482 — #488

Chapter 18 Expectation482

18.2.3 How to Win the Lottery

Similar opportunities to “collude” arise in many betting games. For example, con-
sider the typical weekly football betting pool, where each participant wagers $10
and the participants that pick the most games correctly split a large pot. The pool
seems fair if you think of it as in Figure 18.1. But, in fact, if two or more players
collude by guessing differently, they can get an “unfair” advantage at your expense!

In some cases, the collusion is inadvertent and you can profit from it. For ex-
ample, many years ago, a former MIT Professor of Mathematics named Herman
Chernoff figured out a way to make money by playing the state lottery. This was
surprising since state lotteries typically have very poor expected returns. That’s be-
cause the state usually takes a large share of the wagers before distributing the rest
of the pot among the winners. Hence, anyone who buys a lottery ticket is expected
to lose money. So how did Chernoff find a way to make money? It turned out to be
easy!

In a typical state lottery,

� all players pay $1 to play and select 4 numbers from 1 to 36,

� the state draws 4 numbers from 1 to 36 uniformly at random,

� the states divides 1/2 of the money collected among the people who guessed
correctly and spends the other half redecorating the governor’s residence.

This is a lot like the game you played with Nick and Eric, except that there are
more players and more choices. Chernoff discovered that a small set of numbers
was selected by a large fraction of the population. Apparently many people think
the same way; they pick the same numbers not on purpose as in the previous game
with Nick and Eric, but based on Manny’s batting average or today’s date.

It was as if the players were colluding to lose! If any one of them guessed
correctly, then they’d have to split the pot with many other players. By selecting
numbers uniformly at random, Chernoff was unlikely to get one of these favored
sequences. So if he won, he’d likely get the whole pot! By analyzing actual state
lottery data, he determined that he could win an average of 7 cents on the dollar. In
other words, his expected return was not �$:50 as you might think, butC$:07.4

Inadvertent collusion often arises in betting pools and is a phenomenon that you
can take advantage of. For example, suppose you enter a Super Bowl betting pool
where the goal is to get closest to the total number of points scored in the game.
Also suppose that the average Super Bowl has a total of 30 point scored and that

4Most lotteries now offer randomized tickets to help smooth out the distribution of selected se-
quences.

“mcs-ftl” — 2010/9/8 — 0:40 — page 483 — #489

18.3. Expectations of Sums 483

everyone knows this. Then most people will guess around 30 points. Where should
you guess? Well, you should guess just outside of this range because you get to
cover a lot more ground and you don’t share the pot if you win. Of course, if you
are in a pool with math students and they all know this strategy, then maybe you
should guess 30 points after all.

18.3 Expectations of Sums

18.3.1 Linearity of Expectation

Expected values obey a simple, very helpful rule called Linearity of Expectation.
Its simplest form says that the expected value of a sum of random variables is the
sum of the expected values of the variables.

Theorem 18.3.1. For any random variables R1 and R2,

ExŒR1 CR2� D ExŒR1�C ExŒR2�:

Proof. Let T WWD R1 C R2. The proof follows straightforwardly by rearranging
terms in Equation (18.1):

ExŒT � D
X
!2S

T .!/ � PrŒ!� (Definition 18.1.1)

D

X
!2S

.R1.!/CR2.!// � PrŒ!� (definition of T)

D

X
!2S

R1.!/PrŒ!�C
X
!2S

R2.!/PrŒ!� (rearranging terms)

D ExŒR1�C ExŒR2�: (Definition 18.1.1) �

A small extension of this proof, which we leave to the reader, implies

Theorem 18.3.2. For random variables R1, R2 and constants a1; a2 2 R,

ExŒa1R1 C a2R2� D a1 ExŒR1�C a2 ExŒR2�:

In other words, expectation is a linear function. A routine induction extends the
result to more than two variables:

Corollary 18.3.3 (Linearity of Expectation). For any random variablesR1; : : : ; Rk
and constants a1; : : : ; ak 2 R,

ExŒ
kX
iD1

aiRi � D

kX
iD1

ai ExŒRi �:

“mcs-ftl” — 2010/9/8 — 0:40 — page 484 — #490

Chapter 18 Expectation484

The great thing about linearity of expectation is that no independence is required.
This is really useful, because dealing with independence is a pain, and we often
need to work with random variables that are not known to be independent.

As an example, let’s compute the expected value of the sum of two fair dice. Let
the random variable R1 be the number on the first die, and let R2 be the number on
the second die. We observed earlier that the expected value of one die is 3.5. We
can find the expected value of the sum using linearity of expectation:

ExŒR1 CR2� D ExŒR1�C ExŒR2� D 3:5C 3:5 D 7:

Notice that we did not have to assume that the two dice were independent. The
expected sum of two dice is 7, even if they are glued together (provided each indi-
vidual die remains fair after the gluing). Proving that this expected sum is 7 with a
tree diagram would be a bother: there are 36 cases. And if we did not assume that
the dice were independent, the job would be really tough!

18.3.2 Sums of Indicator Random Variables

Linearity of expectation is especially useful when you have a sum of indicator ran-
dom variables. As an example, suppose there is a dinner party where n men check
their hats. The hats are mixed up during dinner, so that afterward each man receives
a random hat. In particular, each man gets his own hat with probability 1=n. What
is the expected number of men who get their own hat?

Letting G be the number of men that get their own hat, we want to find the
expectation of G. But all we know about G is that the probability that a man gets
his own hat back is 1=n. There are many different probability distributions of hat
permutations with this property, so we don’t know enough about the distribution
of G to calculate its expectation directly. But linearity of expectation makes the
problem really easy.

The trick5 is to express G as a sum of indicator variables. In particular, let Gi be
an indicator for the event that the i th man gets his own hat. That is, Gi D 1 if the
i th man gets his own hat, and Gi D 0 otherwise. The number of men that get their
own hat is then the sum of these indicator random variables:

G D G1 CG2 C � � � CGn: (18.13)

These indicator variables are not mutually independent. For example, if n� 1 men
all get their own hats, then the last man is certain to receive his own hat. But, since
we plan to use linearity of expectation, we don’t have worry about independence!

5We are going to use this trick a lot so it is important to understand it.

“mcs-ftl” — 2010/9/8 — 0:40 — page 485 — #491

18.3. Expectations of Sums 485

Since Gi is an indicator random variable, we know from Lemma 18.1.3 that

ExŒGi � D PrŒGi D 1� D 1=n: (18.14)

By Linearity of Expectation and Equation 18.13, this means that

ExŒG� D ExŒG1 CG2 C � � � CGn�

D ExŒG1�C ExŒG2�C � � � C ExŒGn�

D

n‚ …„ ƒ
1

n
C
1

n
C � � � C

1

n

D 1:

So even though we don’t know much about how hats are scrambled, we’ve figured
out that on average, just one man gets his own hat back!

More generally, Linearity of Expectation provides a very good method for com-
puting the expected number of events that will happen.

Theorem 18.3.4. Given any collection of n events A1; A2; : : : ; An � S, the ex-
pected number of events that will occur is

nX
iD1

PrŒAi �:

For example, Ai could be the event that the i th man gets the right hat back. But
in general, it could be any subset of the sample space, and we are asking for the
expected number of events that will contain a random sample point.

Proof. Define Ri to be the indicator random variable for Ai , where Ri .w/ D 1 if
w 2 Ai and Ri .w/ D 0 if w … Ai . Let R D R1 CR2 C � � � CRn. Then

ExŒR� D
nX
iD1

ExŒRi � (by Linearity of Expectation)

D

nX
iD1

PrŒRi D 1� (by Lemma 18.1.3)

D

nX
iD1

X
w2Ai

PrŒw� (definition of indicator variable)

D

nX
iD1

PrŒAi �: �

“mcs-ftl” — 2010/9/8 — 0:40 — page 486 — #492

Chapter 18 Expectation486

So whenever you are asked for the expected number of events that occur, all you
have to do is sum the probabilities that each event occurs. Independence is not
needed.

18.3.3 Expectation of a Binomial Distribution

Suppose that we independently flip n biased coins, each with probability p of com-
ing up heads. What is the expected number of heads?

Let J be the random variable denoting the number of heads. Then J has a
binomial distribution with parameters n, p, and

PrŒJ D k� D

n

k

!
kp.n � k/1�p:

Applying Equation 18.2, this means that

ExŒJ � D
nX
kD0

k PrŒJ D k�

D

nX
kD0

k

n

k

!
kp.n � k/1�p: (18.15)

Ouch! This is one nasty looking sum. Let’s try another approach.
Since we have just learned about linearity of expectation for sums of indicator

random variables, maybe Theorem 18.3.4 will be helpful. But how do we express J
as a sum of indicator random variables? It turns out to be easy. Let Ji be the
indicator random variable for the i th coin. In particular, define

Ji D

(
1 if the i th coin is heads
0 if the i th coin is tails:

Then the number of heads is simply

J D J1 C J2 C � � � C Jn:

By Theorem 18.3.4,

ExŒJ � D
nX
iD1

PrŒJi �

D np: (18.16)

“mcs-ftl” — 2010/9/8 — 0:40 — page 487 — #493

18.3. Expectations of Sums 487

That really was easy. If we flip n mutually independent coins, we expect to get
pn heads. Hence the expected value of a binomial distribution with parameters n
and p is simply pn.

But what if the coins are not mutually independent? It doesn’t matter—the an-
swer is still pn because Linearity of Expectation and Theorem 18.3.4 do not as-
sume any independence.

If you are not yet convinced that Linearity of Expectation and Theorem 18.3.4
are powerful tools, consider this: without even trying, we have used them to prove
a very complicated identity, namely6

nX
kD0

k

n

k

!
kp.n � k/1�p D pn:

If you are still not convinced, then take a look at the next problem.

18.3.4 The Coupon Collector Problem

Every time we purchase a kid’s meal at Taco Bell, we are graciously presented with
a miniature “Racin’ Rocket” car together with a launching device which enables us
to project our new vehicle across any tabletop or smooth floor at high velocity.
Truly, our delight knows no bounds.

There are n different types of Racin’ Rocket cars (blue, green, red, gray, etc.).
The type of car awarded to us each day by the kind woman at the Taco Bell reg-
ister appears to be selected uniformly and independently at random. What is the
expected number of kid’s meals that we must purchase in order to acquire at least
one of each type of Racin’ Rocket car?

The same mathematical question shows up in many guises: for example, what
is the expected number of people you must poll in order to find at least one person
with each possible birthday? Here, instead of collecting Racin’ Rocket cars, you’re
collecting birthdays. The general question is commonly called the coupon collector
problem after yet another interpretation.

A clever application of linearity of expectation leads to a simple solution to the
coupon collector problem. Suppose there are five different types of Racin’ Rocket
cars, and we receive this sequence:

blue green green red blue orange blue orange gray.

Let’s partition the sequence into 5 segments:

blue„ƒ‚…
X0

green„ƒ‚…
X1

green red„ ƒ‚ …
X2

blue orange„ ƒ‚ …
X3

blue orange gray„ ƒ‚ …
X4

:

6This follows by combining Equations 18.15 and 18.16.

“mcs-ftl” — 2010/9/8 — 0:40 — page 488 — #494

Chapter 18 Expectation488

The rule is that a segment ends whenever we get a new kind of car. For example, the
middle segment ends when we get a red car for the first time. In this way, we can
break the problem of collecting every type of car into stages. Then we can analyze
each stage individually and assemble the results using linearity of expectation.

Let’s return to the general case where we’re collecting n Racin’ Rockets. Let
Xk be the length of the kth segment. The total number of kid’s meals we must
purchase to get all n Racin’ Rockets is the sum of the lengths of all these segments:

T D X0 CX1 C � � � CXn�1

Now let’s focus our attention on Xk , the length of the kth segment. At the
beginning of segment k, we have k different types of car, and the segment ends
when we acquire a new type. When we own k types, each kid’s meal contains a
type that we already have with probability k=n. Therefore, each meal contains a
new type of car with probability 1� k=n D .n� k/=n. Thus, the expected number
of meals until we get a new kind of car is n=.n � k/ by the “mean time to failure”
formula in Equation 18.4. This means that

ExŒXk� D
n

n � k
:

Linearity of expectation, together with this observation, solves the coupon col-

lector problem:

ExŒT � D ExŒX0 CX1 C � � � CXn�1�

D ExŒX0�C ExŒX1�C � � � C ExŒXn�1�

D
n

n � 0
C

n

n � 1
C � � � C

n

3
C
n

2
C
n

1

D n

�
1

n
C

1

n � 1
C � � � C

1

3
C
1

2
C
1

1

�
D n

�
1

1
C
1

2
C
1

3
C � � � C

1

n � 1
C
1

n

�
D nHn (18.17)

� n lnn: (18.18)

Wow! It’s those Harmonic Numbers again!
We can use Equation 18.18 to answer some concrete questions. For example, the

expected number of die rolls required to see every number from 1 to 6 is:

6H6 D 14:7 : : : :

“mcs-ftl” — 2010/9/8 — 0:40 — page 489 — #495

18.3. Expectations of Sums 489

And the expected number of people you must poll to find at least one person with
each possible birthday is:

365H365 D 2364:6 : : : :

18.3.5 Infinite Sums

Linearity of expectation also works for an infinite number of random variables
provided that the variables satisfy some stringent absolute convergence criteria.

Theorem 18.3.5 (Linearity of Expectation). Let R0, R1, . . . , be random variables
such that

1X
iD0

ExŒjRi j�

converges. Then

Ex

"
1X
iD0

Ri

#
D

1X
iD0

ExŒRi �:

Proof. Let T WWD
P1
iD0Ri .

We leave it to the reader to verify that, under the given convergence hypothesis,
all the sums in the following derivation are absolutely convergent, which justifies
rearranging them as follows:

1X
iD0

ExŒRi � D
1X
iD0

X
s2S

Ri .s/ � PrŒs� (Def. 18.1.1)

D

X
s2S

1X
iD0

Ri .s/ � PrŒs� (exchanging order of summation)

D

X
s2S

"
1X
iD0

Ri .s/

#
� PrŒs� (factoring out PrŒs�)

D

X
s2S

T .s/ � PrŒs� (Def. of T)

D ExŒT � (Def. 18.1.1)

D ExŒ
1X
iD0

Ri �: (Def. of T): �

“mcs-ftl” — 2010/9/8 — 0:40 — page 490 — #496

Chapter 18 Expectation490

18.4 Expectations of Products

While the expectation of a sum is the sum of the expectations, the same is usually
not true for products. For example, suppose that we roll a fair 6-sided die and
denote the outcome with the random variable R. Does ExŒR �R� D ExŒR� �ExŒR�?

We know that ExŒR� D 31
2

and thus ExŒR�2 D 121
4

. Let’s compute ExŒR2� to
see if we get the same result.

ExŒR2� D
X
w2S

R2.w/PrŒw�

D

6X
iD1

i2 � PrŒRi D i �

D
12

6
C
22

6
C
32

6
C
42

6
C
52

6
C
62

6

D 15 1=6

¤ 12 1=4:

Hence,
ExŒR �R� ¤ ExŒR� � ExŒR�

and so the expectation of a product is not always equal to the product of the expec-
tations.

There is a special case when such a relationship does hold however; namely,
when the random variables in the product are independent.

Theorem 18.4.1. For any two independent random variables R1, R2,

ExŒR1 �R2� D ExŒR1� � ExŒR2�:

Proof. The event ŒR1 � R2 D r� can be split up into events of the form ŒR1 D

“mcs-ftl” — 2010/9/8 — 0:40 — page 491 — #497

18.4. Expectations of Products 491

r1 and R2 D r2� where r1 � r2 D r . So

ExŒR1 �R2�

D

X
r2range.R1�R2/

r � PrŒR1 �R2 D r� (Theorem 18.1.4)

D

X
r12range.R1/

X
r22range.R2/

r1r2 � PrŒR1 D r1 and R2 D r2�

D

X
r12range.R1/

X
r22range.R2/

r1r2 � PrŒR1 D r1� � PrŒR2 D r2� (independence of R1; R2)

D

X
r12range.R1/

r1 PrŒR1 D r1�

0@ X
r22range.R2/

r2 PrŒR2 D r2�

1A (factor out r1 PrŒR1 D r1�)

D

X
r12range.R1/

r1 PrŒR1 D r1� � ExŒR2� (Theorem 18.1.4)

D ExŒR2�

0@ X
r12range.R1/

r1 PrŒR1 D r1�

1A (factor out ExŒR2�)

D ExŒR2� � ExŒR1�: (Theorem 18.1.4)

�

For example, let R1 and R2 be random variables denoting the result of rolling
two independent and fair 6-sided dice. Then

ExŒR1 �R2� D ExŒR1�ExŒR2� D 3
1

2
� 3
1

2
D 12

1

4
:

Theorem 18.4.1 extends by induction to a collection of mutually independent
random variables.

Corollary 18.4.2. If random variables R1; R2; : : : ; Rk are mutually independent,
then

Ex

24 kY
iD1

Ri

35 D kY
iD1

ExŒRi �:

“mcs-ftl” — 2010/9/8 — 0:40 — page 492 — #498

Chapter 18 Expectation492

18.5 Expectations of Quotients

If S and T are random variables, we know from Linearity of Expectation that

ExŒS C T � D ExŒS�C ExŒT �:

If S and T are independent, we know from Theorem 18.4.1 that

ExŒST � D ExŒS�ExŒT �:

Is it also true that
ExŒS=T � D ExŒS�=ExŒT �‹ (18.19)

Of course, we have to worry about the situation when ExŒT � D 0, but what if we
assume that T is always positive? As we will soon see, Equation 18.19 is usually
not true, but let’s see if we can prove it anyway.

False Claim 18.5.1. If S and T are independent random variables with T > 0,
then

ExŒS=T � D ExŒS�=ExŒT �: (18.20)

Bogus proof.

ExŒ
S

T
� D ExŒS �

1

T
�

D ExŒS� � Ex
�
1

T

�
(independence of S and T) (18.21)

D ExŒS� �
1

ExŒT �
: (18.22)

D
ExŒS�
ExŒT �

: �

Note that line 18.21 uses the fact that if S and T are independent, then so are
S and 1=T . This holds because functions of independent random variables are
independent. It is a fact that needs proof, which we will leave to the reader, but it
is not the bug. The bug is in line (18.22), which assumes

False Claim 18.5.2.
ExŒ

1

T
� D

1

ExŒT �
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 493 — #499

18.5. Expectations of Quotients 493

Benchmark RISC CISC CISC/RISC
E-string search 150 120 0.8
F-bit test 120 180 1.5
Ackerman 150 300 2.0
Rec 2-sort 2800 1400 0.5
Average 1.2

Table 18.1 Sample program lengths for benchmark problems using RISC and
CISC compilers.

Here is a counterexample. Define T so that

PrŒT D 1� D
1

2
and PrŒT D 2� D

1

2
:

Then
ExŒT � D 1 �

1

2
C 2 �

1

2
D
3

2

and
1

ExŒT �
D
2

3

and

Ex
�
1

T

�
D
1

1
�
1

2
C
1

2
�
1

2
D
3

4
¤

1

ExŒ1=T �
:

This means that Claim 18.5.1 is also false since we could define S D 1 with prob-
ability 1. In fact, both Claims 18.5.1 and 18.5.2 are untrue for most all choices of
S and T . Unfortunately, the fact that they are false does not keep them from being
widely used in practice! Let’s see an example.

18.5.1 A RISC Paradox

The data in Table 18.1 is representative of data in a paper by some famous pro-
fessors. They wanted to show that programs on a RISC processor are generally
shorter than programs on a CISC processor. For this purpose, they applied a RISC
compiler and then a CISC compiler to some benchmark source programs and made
a table of compiled program lengths.

Each row in Table 18.1 contains the data for one benchmark. The numbers in
the second and third columns are program lengths for each type of compiler. The
fourth column contains the ratio of the CISC program length to the RISC program
length. Averaging this ratio over all benchmarks gives the value 1.2 in the lower
right. The conclusion is that CISC programs are 20% longer on average.

“mcs-ftl” — 2010/9/8 — 0:40 — page 494 — #500

Chapter 18 Expectation494

Benchmark RISC CISC RISC/CISC
E-string search 150 120 1.25
F-bit test 120 180 0.67
Ackerman 150 300 0.5
Rec 2-sort 2800 1400 2.0
Average 1.1

Table 18.2 The same data as in Table 18.1, but with the opposite ratio in the last
column.

However, some critics of their paper took the same data and argued this way:
redo the final column, taking the other ratio, RISC/CISC instead of CISC/RISC, as
shown in Table 18.2.

From Table 18.2, we would conclude that RISC programs are 10% longer than
CISC programs on average! We are using the same reasoning as in the paper, so
this conclusion is equally justifiable—yet the result is opposite. What is going on?

A Probabilistic Interpretation

To resolve these contradictory conclusions, we can model the RISC vs. CISC de-
bate with the machinery of probability theory.

Let the sample space be the set of benchmark programs. Let the random variable
R be the length of the compiled RISC program, and let the random variable C be
the length of the compiled CISC program. We would like to compare the average
length ExŒR� of a RISC program to the average length ExŒC � of a CISC program.

To compare average program lengths, we must assign a probability to each sam-
ple point; in effect, this assigns a “weight” to each benchmark. One might like
to weigh benchmarks based on how frequently similar programs arise in practice.
Lacking such data, however, we will assign all benchmarks equal weight; that is,
our sample space is uniform.

In terms of our probability model, the paper computes C=R for each sample
point, and then averages to obtain ExŒC=R� D 1:2. This much is correct. The
authors then conclude that CISC programs are 20% longer on average; that is, they
conclude that ExŒC � D 1:2 ExŒR�. Therein lies the problem. The authors have
implicitly used False Claim 18.5.1 to assume that ExŒC=R� D ExŒC �=ExŒR�. By
using the same false logic, the critics can arrive at the opposite conclusion; namely,
that RISC programs are 10% longer on average.

“mcs-ftl” — 2010/9/8 — 0:40 — page 495 — #501

18.5. Expectations of Quotients 495

The Proper Quotient

We can compute ExŒR� and ExŒC � as follows:

ExŒR� D
X

i2Range(R)

i � PrŒR D i �

D
150

4
C
120

4
C
150

4
C
2800

4

D 805;

ExŒC � D
X

i2Range(C)

i � PrŒC D i �

D
120

4
C
180

4
C
300

4
C
1400

4

D 500

Now since ExŒR�=ExŒC � D 1:61, we conclude that the average RISC program
is 61% longer than the average CISC program. This is a third answer, completely
different from the other two! Furthermore, this answer makes RISC look really
bad in terms of code length. This one is the correct conclusion, under our assump-
tion that the benchmarks deserve equal weight. Neither of the earlier results were
correct—not surprising since both were based on the same False Claim.

A Simpler Example

The source of the problem is clearer in the following, simpler example. Suppose
the data were as follows.

Benchmark Processor A Processor B B=A A=B

Problem 1 2 1 1/2 2
Problem 2 1 2 2 1/2
Average 1.25 1.25

Now the data for the processors A and B is exactly symmetric; the two proces-
sors are equivalent. Yet, from the third column we would conclude that ProcessorB
programs are 25% longer on average, and from the fourth column we would con-
clude that Processor A programs are 25% longer on average. Both conclusions are
obviously wrong.

The moral is that one must be very careful in summarizing data, we must not
take an average of ratios blindly!

“mcs-ftl” — 2010/9/8 — 0:40 — page 496 — #502

“mcs-ftl” — 2010/9/8 — 0:40 — page 497 — #503

19 Deviations
In some cases, a random variable is likely to be very close to its expected value.
For example, if we flip 100 fair, mutually-independent coins, it is very likely that
we will get about 50 heads. In fact, we proved in Section 17.5 that the probability
of getting fewer than 25 or more than 75 heads are each less than 3 � 10�7. In such
cases, the mean provides a lot of information about the random variable.

In other cases, a random variable is likely to be far from its expected value. For
example, suppose we flipped 100 fair coins that are glued together so that they all
come out “heads” or they call all come out “tails.” In this case, the expected value
of the number of heads is still 50, but the actual number of heads is guaranteed to
be far from this value—it will be 0 or 100, each with probability 1=2.

Mathematicians have developed a variety of measures and methods to help us
understand how a random variable performs in comparison to its mean. The sim-
plest and most widely used measure is called the variance of the random variable.
The variance is a single value associated with the random variable that is large for
random variables that are likely to deviate significantly from the mean and that is
small otherwise.

19.1 Variance

19.1.1 Definition and Examples

Consider the following two gambling games:

Game A: You win $2 with probability 2=3 and lose $1 with probability 1=3.

Game B: You win $1002 with probability 2=3 and lose $2001 with probabil-
ity 1=3.

Which game would you rather play? Which game is better financially? We have the
same probability, 2/3, of winning each game, but that does not tell the whole story.
What about the expected return for each game? Let random variables A and B be
the payoffs for the two games. For example, A is 2 with probability 2/3 and -1 with

“mcs-ftl” — 2010/9/8 — 0:40 — page 498 — #504

Chapter 19 Deviations498

probability 1/3. We can compute the expected payoff for each game as follows:

ExŒA� D 2 �
2

3
C .�1/ �

1

3
D 1;

ExŒB� D 1002 �
2

3
C .�2001/ �

1

3
D 1:

The expected payoff is the same for both games, but they are obviously very
different! The stakes are a lot higher for Game B and so it is likely to deviate
much farther from its mean than is Game A. This fact is captured by the notion of
variance.

Definition 19.1.1. The variance VarŒR� of a random variable R is

VarŒR� WWD ExŒ.R � ExŒR�/2�:

In words, the variance of a random variable R is the expectation of the square of
the amount by which R differs from its expectation.

Yikes! That’s a mouthful. Try saying that 10 times in a row!
Let’s look at this definition more carefully. We’ll start with R � ExŒR�. That’s

the amount by whichR differs from its expectation and it is obviously an important
measure. Next, we square this value. More on why we do that in a moment. Finally,
we take the the expected value of the square. If the square is likely to be large, then
the variance will be large. If it is likely to be small, then the variance will be small.
That’s just the kind of statistic we are looking for. Let’s see how it works out for
our two gambling games.

We’ll start with Game A:

A � ExŒA� D

(
1 with probability 2

3

�2 with probability 1
3

.A � ExŒA�/2 D

(
1 with probability 2

3

4 with probability 1
3

ExŒ.A � ExŒA�/2� D 1 �
2

3
C 4 �

1

3

VarŒA� D 2: (19.1)

“mcs-ftl” — 2010/9/8 — 0:40 — page 499 — #505

19.1. Variance 499

For Game B, we have

B � ExŒB� D

(
1001 with probability 2

3

�2002 with probability 1
3

.B � ExŒB�/2 D

(
1;002;001 with probability 2

3

4;008;004 with probability 1
3

ExŒ.B � ExŒB�/2� D 1;002;001 �
2

3
C 4;008;004 �

1

3

VarŒB� D 2;004;002:

The variance of Game A is 2 and the variance of Game B is more than two
million! Intuitively, this means that the payoff in Game A is usually close to the
expected value of $1, but the payoff in Game B can deviate very far from this
expected value.

High variance is often associated with high risk. For example, in ten rounds
of Game A, we expect to make $10, but could conceivably lose $10 instead. On
the other hand, in ten rounds of Game B, we also expect to make $10, but could
actually lose more than $20,000!

Why Bother Squaring?

The variance is the average of the square of the deviation from the mean. For this
reason, variance is sometimes called the “mean squared deviation.” But why bother
squaring? Why not simply compute the average deviation from the mean? That is,
why not define variance to be ExŒR � ExŒR��?

The problem with this definition is that the positive and negative deviations from
the mean exactly cancel. By linearity of expectation, we have:

Ex
�
R � ExŒR�

�
D ExŒR� � Ex

�
ExŒR�

�
:

Since ExŒR� is a constant, its expected value is itself. Therefore

Ex
�
R � ExŒR�

�
D ExŒR� � ExŒR� D 0:

By this definition, every random variable would have zero variance, which would
not be very useful! Because of the square in the conventional definition, both pos-
itive and negative deviations from the mean increase the variance, and they do not
cancel.

Of course, we could also prevent positive and negative deviations from canceling
by taking an absolute value. In other words, we could compute ExŒ jR � ExŒR�j �.
But this measure doesn’t have the many useful properties that variance has, and so
mathematicians went with squaring.

“mcs-ftl” — 2010/9/8 — 0:40 — page 500 — #506

Chapter 19 Deviations500

19.1.2 Standard Deviation

Because of its definition in terms of the square of a random variable, the variance
of a random variable may be very far from a typical deviation from the mean. For
example, in Game B above, the deviation from the mean is 1001 in one outcome
and -2002 in the other. But the variance is a whopping 2,004,002.

From a dimensional analysis viewpoint, the “units” of variance are wrong: if the
random variable is in dollars, then the expectation is also in dollars, but the variance
is in square dollars.

For these reasons, people often describe the deviation of a random variable using
standard deviation instead of variance.

Definition 19.1.2. The standard deviation �R of a random variable R is the square
root of the variance:

�R WWD
p

VarŒR� D
q

ExŒ.R � ExŒR�/2�:

So the standard deviation is the square root of the mean of the square of the
deviation, or the root mean square for short. It has the same units—dollars in our
example—as the original random variable and as the mean. Intuitively, it measures
the average deviation from the mean, since we can think of the square root on the
outside as roughly canceling the square on the inside.

For example, the standard deviations for A and B are

�A D
p

VarŒA� D
p
2 � 1:41;

�B D
p

VarŒB� D
p
2; 004; 002 � 1416:

The random variable B actually deviates from the mean by either positive 1001
or negative 2002; therefore, the standard deviation of 1416 describes this situation
reasonably well.

19.1.3 An Alternative Formulation

Applying linearity of expectation to the formula for variance yields a convenient
alternative formula.

Lemma 19.1.3. For any random variable R,

VarŒR� D ExŒR2� � Ex2ŒR�:

Here we use the notation Ex2ŒR� as shorthand for .ExŒR�/2. Remember that
ExŒR2� is generally not equal to Ex2ŒR�. We know the expected value of a product
is the product of the expected values for independent variables, but not in general.
And R is not independent of itself unless it is constant.

“mcs-ftl” — 2010/9/8 — 0:40 — page 501 — #507

19.1. Variance 501

Proof of Lemma 19.1.3. Let � D ExŒR�. Then

VarŒR� D ExŒ.R � ExŒR�/2� (Definition 19.1.1 of variance)

D ExŒ.R � �/2� (definition of �)

D ExŒR2 � 2�RC �2�

D ExŒR2� � 2�ExŒR�C �2 (linearity of expectation)

D ExŒR2� � 2�2 C �2 (definition of �)

D ExŒR2� � �2

D ExŒR2� � Ex2ŒR�: (definition of �) �

For example, let’s take another look at Game A from Section 19.1 where you
win $2 with probability 2=3 and lose $1 with probability 1=3. Then

ExŒA� D 2 �
2

3
C .�1/ �

1

3
D 1

and
ExŒA2� D 4 �

2

3
C 1 �

1

3
D 3:

By Lemma 19.1.3, this means that

VarŒA� D ExŒA2� � Ex2ŒA� D 3 � 12 D 2;

confirming the result in Equation 19.1.
The alternate formulation of variance given in Lemma 19.1.3 has a cute implica-

tion:

Corollary 19.1.4. If R is a random variable, then ExŒR2� � Ex2ŒR�.

Proof. We defined VarŒR� as an average of a squared expression, so VarŒR� is non-
negative. Then we proved that VarŒR� D ExŒR2� � Ex2ŒR�. This implies that
ExŒR2� � Ex2ŒR� is nonnegative. Therefore, ExŒR2� � Ex2ŒR�. �

In words, the expectation of a square is at least the square of the expectation.
The two are equal exactly when the variance is zero:

ExŒR2� D Ex2ŒR� iff ExŒR2� � Ex2ŒR� D 0 iff VarŒR� D 0:

This happens precisely when

Pr
�
R D ExŒR�

�
D 1I

namely, when R is a constant.1

1Technically, R could deviate from its mean on some sample points with probability 0, but we are
ignoring events of probability 0 when computing expectations and variances.

“mcs-ftl” — 2010/9/8 — 0:40 — page 502 — #508

Chapter 19 Deviations502

19.1.4 Indicator Random Variables

Computing the variance of an indicator random variable is straightforward given
Lemma 19.1.3.

Lemma 19.1.5. Let B be an indicator random variable for which PrŒB D 1� D p.
Then

VarŒB� D p � p2 D p.1 � p/: (19.2)

Proof. By Lemma 18.1.3, ExŒB� D p. But since B only takes values 0 and 1,
B2 D B . So

VarŒB� D ExŒB2� � Ex2ŒB� D p � p2;

as claimed. �

For example, let R be the number of heads when you flip a single fair coin. Then

VarŒR� D
1

2
�

�
1

2

�2
D
1

4
(19.3)

and

�R D

r
1

4
D
1

2
:

19.1.5 Mean Time to Failure

As another example, consider the mean time to failure problem, described in Sec-
tion 18.1.4. If the system crashes at each step with probability p, then we already
know that the mean time to failure is 1=p. In other words, if C is the number of
steps up to and including the step when the first crash occurs, then

ExŒC � D
1

p
:

What about the variance ofC ? To use Lemma 19.1.3, we need to compute ExŒC 2�.
As in Section 18.1.4, we can do this by summing over all the sample points or we
can use the Law of Total Expectation. The latter approach is simpler, so we’ll do
that. The analysis breaks into two cases: the system crashes in the first step or it
doesn’t. Hence,

ExŒC 2� D 12 � p C ExŒ.C C 1/2�.1 � p/

D p C ExŒC 2�.1 � p/C 2ExŒC �.1 � p/C .1 � p/

D 1C ExŒC 2�.1 � p/C 2
�
1 � p

p

�
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 503 — #509

19.1. Variance 503

Simplifying, we find that

p ExŒC 2� D
2 � p

p

and that
ExŒC 2� D

2 � p

p2
:

Using Lemma 19.1.3, we conclude that

VarŒC � D ExŒC 2� � Ex2ŒC �

D
2 � p

p2
�
1

p2

D
1 � p

p2
:

19.1.6 Uniform Random Variables

Computing the variance of a uniform random variable is also straightforward given
Lemma 19.1.3. For example, we can compute the variance of the outcome of a fair
die R as follows:

ExŒR2� D
1

6
.12 C 22 C 32 C 42 C 52 C 62/ D

91

6
;

Ex2ŒR� D
�
3
1

2

�2
D
49

4
;

VarŒR� D ExŒR2� � Ex2ŒR� D
91

6
�
49

4
D
35

12
:

For a general uniform random variable R on f1; 2; 3; : : : ng, the variance can be

“mcs-ftl” — 2010/9/8 — 0:40 — page 504 — #510

Chapter 19 Deviations504

computed as follows:

ExŒR� D
1

n
.1C 2C � � � C n/

D
1

n
�
n.nC 1/

2

D
nC 1

2
:

ExŒR2� D
1

n
.12 C 22 C � � � C n2/

D
1

n
�
.2nC 1/n.nC 1/

6

D
.2nC 1/.nC 1/

6
:

VarŒR� D ExŒR2� � Ex2ŒR�

D
.2nC 1/.nC 1/

6
�

�
nC 1

2

�2
D
n2 � 1

12
:

19.1.7 Dealing with Constants

It helps to know how to calculate the variance of aRC b:

Theorem 19.1.6. Let R be a random variable, and let a and b be constants. Then

VarŒaRC b� D a2 VarŒR�: (19.4)

Proof. Beginning with Lemma 19.1.3 and repeatedly applying linearity of expec-
tation, we have:

VarŒaR� D ExŒ.aRC b/2� � Ex2ŒaRC b�

D ExŒa2R2 C 2abRC b2� � .a ExŒR�C b/2

D a2 ExŒR2�C 2ab ExŒR�C b2 � a2 Ex2ŒR� � 2ab ExŒR� � b2

D a2 ExŒR2� � a2 Ex2ŒR�

D a2
�
ExŒR2� � Ex2ŒR�

�
D a2 VarŒR� (by Lemma 19.1.3): �

Corollary 19.1.7.
�aRCb D jaj �R:

“mcs-ftl” — 2010/9/8 — 0:40 — page 505 — #511

19.1. Variance 505

19.1.8 Variance of a Sum

In general, the variance of a sum is not equal to the sum of the variances, but
variances do add for independent random variables. In fact, mutual independence
is not necessary: pairwise independence will do.

Theorem 19.1.8. If R1 and R2 are independent random variables, then

VarŒR1 CR2� D VarŒR1�C VarŒR2�: (19.5)

Proof. As with the proof of Theorem 19.1.6, this proof uses repeated applications
of Lemma 19.1.3 and Linearity of Expectation.

VarŒR1 CR2� D ExŒ.R1 CR2/2� � Ex2ŒR1 CR2�

D ExŒR21 C 2R1R2 CR
2� � .ExŒR1�C ExŒR2�/2

D ExŒR21�C 2ExŒR1R2�C ExŒR22�

� Ex2ŒR1� � 2ExŒR1�ExŒR2� � Ex2ŒR2�

D VarŒR1�C VarŒR2�C 2.ExŒR1R2� � ExŒR1�ExŒR2�/

D VarŒR1�C VarŒR2�:

The last step follows because

ExŒR1R2� D ExŒR1�ExŒR2�

when R1 and R2 are independent. �

Note that Theorem 19.1.8 does not necessarily hold if R1 and R2 are dependent
since then it would generally not be true that

ExŒR1R2� D ExŒR1�ExŒR2� (19.6)

in the last step of the proof. For example, suppose that R1 D R2 D R. Then
Equation 19.6 holds only if R is essentially constant.

The proof of Theorem 19.1.8 carries over straightforwardly to the sum of any
finite number of variables.

Theorem 19.1.9 (Pairwise Independent Additivity of Variance). IfR1, R2, . . . , Rn
are pairwise independent random variables, then

VarŒR1 CR2 C � � � CRn� D VarŒR1�C VarŒR2�C � � � C VarŒRn�: (19.7)

Unfortunately, there is no product rule for computing variances, even if the ran-
dom variables are mutually independent. However, we can use Theorem 19.1.9 to
quickly compute the variance of a random variable with a general binomial distri-
bution.

“mcs-ftl” — 2010/9/8 — 0:40 — page 506 — #512

Chapter 19 Deviations506

19.1.9 Binomial Distributions

Lemma 19.1.10 (Variance of the Binomial Distribution). If J has a binomial dis-
tribution with parameters n and p, then

VarŒJ � D np.1 � p/: (19.8)

Proof. From the definition of the binomial distribution, we can think of J as being
the number of “heads” when you flip n mutually independent coins, each of which
is “heads” with probability p. Thus J can be expressed as the sum of n mutually
independent indicator variables Ji where

PrŒJi D 1� D p

for 1 � i � n. From Lemma 19.1.5, we know that

VarŒJi � D p.1 � p/:

By Theorem 19.1.9, this means that

VarŒJ � D
nX
iD1

VarŒJi � D np.1 � p/: �

For example, suppose we flip n mutually independent2 fair coins. Let R be the
number of heads. Then Theorem 19.1.9 tells us that

VarŒR� D n
�
1

2

��
1 �

1

2

�
D
n

4
:

Hence,

�R D

p
n

2
:

This value is small compared with

ExŒR� D
n

2
;

which should not be surprising since we already knew from Section 17.5 that R is
unlikely to stray very far from its mean.

2Actually, we only need to assume pairwise independence for this to be true using Theorem 19.1.9.

“mcs-ftl” — 2010/9/8 — 0:40 — page 507 — #513

19.2. Markov’s Theorem 507

19.2 Markov’s Theorem

The variance of a random variable gives us a rough idea of the amount by which a
random variable is likely to deviate from its mean. But it does not directly give us
specific bounds on the probability that the deviation exceeds a specified threshold.
To obtain such specific bounds, we’ll need to work a little harder.

In this section, we derive a famous result known as Markov’s Theorem that gives
an upper bound on the probability that a random variable exceeds a specified thresh-
old. In the next section, we give a similar but stronger result known as Chebyshev’s
Theorem. The difference between these results is that Markov’s Theorem depends
only on the mean of the random variable, whereas Chebyshev’s Theorem makes
use of the mean and the variance. Basically, the more you know about a random
variable, the better bounds you can derive on the probability that it deviates from
its mean.

19.2.1 A Motivating Example

The idea behind Markov’s Theorem can be explained with a simple example involv-
ing intelligence quotients, or IQs. This quantity was devised so that the average IQ
measurement would be 100. From this fact alone we can conclude that at most 1/3
the population can have an IQ of 300 or more, because if more than a third had an
IQ of at least 300, then the average IQ would have to be more than .1=3/300 D 100,
contradicting the fact that the average is 100. So the probability that a randomly
chosen person has an IQ of 300 or more is at most 1/3. Of course this is not a very
strong conclusion since no IQ over 200 has ever been recorded.

By the same logic, we can also conclude that at most 2/3 of the population can
have an IQ of 150 or more. IQ’s over 150 have certainly been recorded, although a
much smaller fraction than 2/3 of the population actually has an IQ that high.

Although these conclusions about IQ are weak, they are actually the strongest
general conclusions that can be reached about a random variable using only the fact
that it is nonnegative and its mean is 100. For example, if we choose a random
variable equal to 300 with probability 1/3, and 0 with probability 2/3, then its mean
is 100, and the probability of a value of 300 or more really is 1/3. So we can’t hope
to get a better upper bound based solely on this limited amount of information.

Markov’s Theorem characterizes the bounds that can be achieved with this kind
of analysis

“mcs-ftl” — 2010/9/8 — 0:40 — page 508 — #514

Chapter 19 Deviations508

19.2.2 The Theorem

Theorem 19.2.1 (Markov’s Theorem). IfR is a nonnegative random variable, then
for all x > 0,

PrŒR � x� �
ExŒR�
x

:

Proof. For any x > 0

ExŒR� D
X

y2range.R/

y PrŒR D y�

�

X
y�x;

y2range.R/

y PrŒR D y� (because R � 0)

�

X
y�x;

y2range.R/

x PrŒR D y�

D x
X
y�x;

y2range.R/

PrŒR D y�

D x PrŒR � x�: (19.9)

Hence,

PrŒR � x� �
ExŒR�
x

: �

Corollary 19.2.2. If R is a nonnegative random variable, then for all c � 1,

Pr
�
R � c � ExŒR�

�
�
1

c
: (19.10)

Proof. Set x D c ExŒR� in Theorem 19.2.1. �

As an example, suppose we flip 100 fair coins and use Markov’s Theorem to
compute the probability of getting all heads:

PrŒheads � 100� �
ExŒheads�
100

D
50

100
D
1

2
:

If the coins are mutually independent, then the actual probability of getting all
heads is a minuscule 1 in 2100. In this case, Markov’s Theorem looks very weak.
However, in applying Markov’s Theorem, we made no independence assumptions.
In fact, if all the coins are glued together, then probability of throwing all heads is
exactly 1=2. In this nasty case, Markov’s Theorem is actually tight!

“mcs-ftl” — 2010/9/8 — 0:40 — page 509 — #515

19.2. Markov’s Theorem 509

The Chinese Appetizer Problem

Suppose that n people are seated at a circular table and that each person has an
appetizer in front of them on a rotating Chinese banquet tray. Just as everyone
is about to dig in, some joker spins the tray so that each person receives a random
appetizer. We are interested in the number of peopleR that get their same appetizer
as before, assuming that the n appetizers are all different.

Each person gets their original appetizer with probability 1=n. Hence, by Lin-
earity of Expectation,

ExŒR� D n �
1

n
D 1:

What is the probability that all n people get their original appetizer back? Markov’s
Theorem tells us that

PrŒR D n� D PrŒR � n� �
ExŒR�
n
D
1

n
:

In fact, this bound is tight sine everyone gets their original appetizers back if and
only if the rotating tray returns to its original configuration, which happens with
probability 1=n.

The Chinese Appetizer problem is similar to the Hat Check problem that we
studied in Section 18.3.2, except that no distribution was specified in the Hat Check
problem—we were told only that each person gets their correct hat back with prob-
ability 1=n. If the hats are scrambled according to uniformly random permutations,
then the probability that everyone gets the right hat back is 1=nŠ, which is much
less than the 1=n upper bound given by Markov’s Theorem. So, in this case, the
bound given by Markov’s Theorem is not close to the actual probability.

What is the probability that at least two people get their right hats back? Markov’s
Theorem tells us that

PrŒR � 2� �
ExŒR�
2
D
1

2
:

In this case, Markov’s Theorem is not too far off from the right answer if the hats
are distributed according to a random permutation3 but it is not very close to the
correct answer 1=n for the case when the hats are distributed as in the Chinese
Appetizer problem.

Why R Must be Nonnegative

Remember that Markov’s Theorem applies only to nonnegative random variables!
Indeed, the theorem is false if this restriction is removed. For example, letR be -10

3Proving this requires some effort.

“mcs-ftl” — 2010/9/8 — 0:40 — page 510 — #516

Chapter 19 Deviations510

with probability 1=2 and 10 with probability 1=2. Then

ExŒR� D �10 �
1

2
C 10 �

1

2
D 0:

Suppose that we now tried to compute PrŒR � 5� using Markov’s Theorem:

PrŒR � 5� �
ExŒR�
5
D
0

5
D 0:

This is the wrong answer! Obviously, R is at least 5 with probability 1=2.
On the other hand, we can still apply Markov’s Theorem indirectly to derive a

bound on the probability that an arbitrary variable likeR is 5 or more. For example,
given any random variable, R with expectation 0 and values � �10, we can con-
clude that PrŒR � 5� � 2=3. To prove this fact, we define T WWDRC 10. Then T is
a nonnegative random variable with expectation ExŒRC 10� D ExŒR�C 10 D 10,
so Markov’s Theorem applies and tells us that PrŒT � 15� � 10=15 D 2=3. But
T � 15 iff R � 5, so PrŒR � 5� � 2=3, as claimed.

19.2.3 Markov’s Theorem for Bounded Variables

Suppose we learn that the average IQ among MIT students is 150 (which is not
true, by the way). What can we say about the probability that an MIT student has
an IQ of more than 200? Markov’s Theorem immediately tells us that no more than
150=200 or 3=4 of the students can have such a high IQ. That’s because if R is the
IQ of a random MIT student, then

PrŒR > 200� �
ExŒR�
200

D
150

200
D
3

4
:

But let’s also suppose that no MIT student has an IQ less than 100 (which may
be true). This means that if we let T WWD R � 100, then T is nonnegative and
ExŒT � D 50, so we can apply Markov’s Theorem to T and conclude:

PrŒR > 200� D PrŒT > 100� �
ExŒT �
100

D
50

100
D
1

2
:

So only half, not 3/4, of the students can be as amazing as they think they are. A
bit of a relief!

More generally, we can get better bounds applying Markov’s Theorem to R � l
instead of R for any lower bound l on R, even when l is negative.

Theorem 19.2.3. Let R be a random variable for which R � l for some l 2 R.
Then for all x � l ,

PrŒR � x� �
ExŒR� � l
x � l

:

“mcs-ftl” — 2010/9/8 — 0:40 — page 511 — #517

19.2. Markov’s Theorem 511

Proof. Define
T WWDR � l:

Then T is a nonnegative random variable with mean

ExŒT � D ExŒR � l � D ExŒR� � l:

Hence, Markov’s Theorem implies that

PrŒT � x � l � �
ExŒT �
x � l

D
ExŒR� � l
x � l

:

The result then follows from the fact that

PrŒR � x� D PrŒR � l � x � l �

D PrŒT � x � l �: �

19.2.4 Deviations Below the Mean

Markov’s Theorem says that a random variable is unlikely to greatly exceed the
mean. Correspondingly, there is a variation of Markov’s Theorem that says a ran-
dom variable is unlikely to be much smaller than its mean.

Theorem 19.2.4. Let u 2 R and let R be a random variable such that R � u.
Then for all x < u,

PrŒR � x� �
u � ExŒR�
u � x

:

Proof. The proof is similar to that of Theorem 19.2.3. Define

S WWD u �R:

Then S is a nonnegative random variable with mean

ExŒS� D ExŒu �R� D u � ExŒR�:

Hence, Markov’s Theorem implies that

PrŒS � u � x� �
ExŒS�
u � x

D
u � ExŒR�
u � x

:

The result then follows from the fact that

PrŒR � x� D PrŒu � S � x� D PrŒS � u � x�: �

“mcs-ftl” — 2010/9/8 — 0:40 — page 512 — #518

Chapter 19 Deviations512

For example, suppose that the class average on a midterm was 75/100. What
fraction of the class scored below 50?

There is not enough information here to answer the question exactly, but Theo-
rem 19.2.4 gives an upper bound. Let R be the score of a random student. Since
100 is the highest possible score, we can set u D 100 to meet the condition in the
theorem that R � u. Applying Theorem 19.2.4, we find:

PrŒR � 50� �
100 � 75

100 � 50
D
1

2
:

That is, at most half of the class scored 50 or worse. This makes sense; if more
than half of the class scored 50 or worse, then the class average could not be 75,
even if everyone else scored 100. As with Markov’s Theorem, Theorem 19.2.4
often gives weak results. In fact, based on the data given, the entire class could
have scored above 50.

19.2.5 Using Markov’s Theorem to Analyze Non-Random Events

In the previous example, we used a theorem about a random variable to conclude
facts about non-random data. For example, we concluded that if the average score
on a test is 75, then at most 1=2 the class scored 50 or worse. There is no random-
ness in this problem, so how can we apply Theorem 19.2.4 to reach this conclusion?

The explanation is not difficult. For any set of scores S D fs1; s2; : : : ; sng, we
introduce a random variable R such that

PrŒR D si � D
(# of students with score si)

n
:

We then use Theorem 19.2.4 to conclude that PrŒR � 50� � 1=2. To see why
this means (with certainty) that at most 1=2 of the students scored 50 or less, we
observe that

PrŒR � 50� D
X
si�50

PrŒR D si �

D

X
si�50

(# of students with score si)
n

D
1

n
(# of students with score 50 or less):

So, if PrŒR � 50� � 1=2, then the number of students with score 50 or less is at
most n=2.

“mcs-ftl” — 2010/9/8 — 0:40 — page 513 — #519

19.3. Chebyshev’s Theorem 513

19.3 Chebyshev’s Theorem

As we have just seen, Markov’s Theorem can be extended by applying it to func-
tions of a random variable R such as R � l and u � R. Even stronger results can
be obtained by applying Markov’s Theorem to powers of R.

Lemma 19.3.1. For any random variable R, ˛ 2 RC, and x > 0,

PrŒjRj � x� �
ExŒjRj˛�
x˛

:

Proof. The event jRj � x is the same as the event jRj˛ � x˛. Since jRj˛ is
nonnegative, the result follows immediately from Markov’s Theorem. �

Similarly,

PrŒjR � ExŒR�j � x� �
ExŒ.R � ExŒR�/˛�

x˛
: (19.11)

The restatement of Equation 19.11 for ˛ D 2 is known as Chebyshev’s Theorem.

Theorem 19.3.2 (Chebyshev). Let R be a random variable and x 2 RC. Then

PrŒjR � ExŒR�j � x� �
VarŒR�
x2

:

Proof. Define
T WWDR � ExŒR�:

Then

Pr
�
jR � ExŒR�j � x

�
D PrŒjT j � x�

D PrŒT 2 � x2�

�
ExŒT 2�
x2

(by Markov’s Theorem)

D
ExŒ.R � ExŒR�/2�

x2

D
VarŒR�
x2

: (by Definition 19.1.1) �

Corollary 19.3.3. Let R be a random variable, and let c be a positive real number.

PrŒjR � ExŒR�j � c�R� �
1

c2
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 514 — #520

Chapter 19 Deviations514

Proof. Substituting x D c�R in Chebyshev’s Theorem gives:

PrŒjR � ExŒR�j � c�R� �
VarŒR�
.c�R/2

D
�2R

.c�R/2
D

1

c2
: �

As an example, suppose that, in addition to the national average IQ being 100,
we also know the standard deviation of IQ’s is 10. How rare is an IQ of 300 or
more?

Let the random variable R be the IQ of a random person. So we are supposing
that ExŒR� D 100, �R D 10, and R is nonnegative. We want to compute PrŒR �
300�.

We have already seen that Markov’s Theorem 19.2.1 gives a coarse bound, namely,

PrŒR � 300� �
1

3
:

Now we apply Corollary 19.3.3 to the same problem:

PrŒR � 300� � Pr
�
jR � 100j � 20�R

�
�

1

400
: (19.12)

So Chebyshev’s Theorem implies that at most one person in four hundred has
an IQ of 300 or more. We have gotten a much tighter bound using the additional
information, namely the standard deviation of R, than we could get knowing only
the expectation.

More generally, Corollary 19.3.3 tells us that a random variable is never likely
to stray by more than a few standard deviations from its mean. For example, plug-
ging c D 3 into Corollary 19.3.3, we find that the probability that a random variable
strays from the mean by more than 3� is at most 1=9.

This fact has a nice pictorial characterization for pdf’s with a “bell-curve” shape;
namely, the width of the bell is O.�/, as shown in Figure 19.1.

19.3.1 Bounds on One-Sided Errors

Corollary 19.3.3 gives bounds on the probability of deviating from the mean in
either direction. If you only care about deviations in one direction, as was the case
in the IQ example, then slightly better bounds can be obtained.

Theorem 19.3.4. For any random variable R and any c > 0,

PrŒR � ExŒR� � c�R� �
1

c2 C 1

and
PrŒR � ExŒR� � �c�R� �

1

c2 C 1
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 515 — #521

19.3. Chebyshev’s Theorem 515

mean

O.¢/

Figure 19.1 If the pdf of a random variable is “bell-shaped,” then the width of the
bell is O.�/.

The proof of Theorem 19.3.4 is trickier than the proof of Chebyshev’s Theorem
and we will not give the details here. Nor will we prove the fact that the bounds in
Theorem 19.3.4 are the best bounds that you can obtain if you know only the mean
and standard deviation of the random variable R.

Returning to the IQ example, Theorem 19.3.4 tells us that

PrŒR � 300� � PrŒR � 100 � 20�R� �
1

401
;

which is a very slight improvement over Equation 19.12.
As another example, suppose we give an exam. What fraction of the class can

score more than 2 standard deviations from the average? If R is the score of a
random student, then

PrŒjR � ExŒR�j � 2�R� �
1

4
:

For one-sided error, the fraction that could be 2 standard deviations or more above
the average is at most

1

22 C 1
D
1

5
:

This results holds no matter what the test scores are, and is again a deterministic
fact derived using probabilistic tools.

“mcs-ftl” — 2010/9/8 — 0:40 — page 516 — #522

Chapter 19 Deviations516

19.4 Bounds for Sums of Random Variables

If all you know about a random variable is its mean and variance, then Cheby-
shev’s Theorem is the best you can do when it comes to bounding the probabil-
ity that the random variable deviates from its mean. In some cases, however, we
know more—for example, that the random variable has a binomial distribution—
and then it is possible to prove much stronger bounds. Instead of polynomially
small bounds such as 1=c2, we can sometimes even obtain exponentially small
bounds such as 1=ec . As we will soon discover, this is the case whenever the ran-
dom variable T is the sum of nmutually independent random variables T1, T2, . . . ,
Tn where 0 � Ti � 1. A random variable with a binomial distribution is just one
of many examples of such a T . Here is another.

19.4.1 A Motivating Example

Fussbook is a new social networking site oriented toward unpleasant people.
Like all major web services, Fussbook has a load balancing problem. Specif-

ically, Fussbook receives 24,000 forum posts every 10 minutes. Each post is as-
signed to one of m computers for processing, and each computer works sequen-
tially through its assigned tasks. Processing an average post takes a computer 1=4
second. Some posts, such as pointless grammar critiques and snide witticisms, are
easier. But the most protracted harangues require 1 full second.

Balancing the work load across the m computers is vital; if any computer is as-
signed more than 10 minutes of work in a 10-minute interval, then that computer is
overloaded and system performance suffers. That would be bad, because Fussbook
users are not a tolerant bunch.

An early idea was to assign each computer an alphabetic range of forum topics.
(“That oughta work!”, one programmer said.) But after the computer handling the
“privacy” and “preferred text editor” threads melted, the drawback of an ad hoc
approach was clear: there are no guarantees.

If the length of every task were known in advance, then finding a balanced dis-
tribution would be a kind of “bin packing” problem. Such problems are hard to
solve exactly, though approximation algorithms can come close. But in this case,
task lengths are not known in advance, which is typical for workload problems in
the real world.

So the load balancing problem seems sort of hopeless, because there is no data
available to guide decisions. Heck, we might as well assign tasks to computers at
random!

As it turns out, random assignment not only balances load reasonably well, but

“mcs-ftl” — 2010/9/8 — 0:40 — page 517 — #523

19.4. Bounds for Sums of Random Variables 517

also permits provable performance guarantees in place of “That oughta work!” as-
sertions. In general, a randomized approach to a problem is worth considering when
a deterministic solution is hard to compute or requires unavailable information.

Some arithmetic shows that Fussbook’s traffic is sufficient to keepm D 10 com-
puters running at 100% capacity with perfect load balancing. Surely, more than 10
servers are needed to cope with random fluctuations in task length and imperfect
load balance. But how many is enough? 11? 15? 20? 100? We’ll answer that
question with a new mathematical tool.

19.4.2 The Chernoff Bound

The Chernoff4 bound is a hammer that you can use to nail a great many problems.
Roughly, the Chernoff bound says that certain random variables are very unlikely
to significantly exceed their expectation. For example, if the expected load on
a computer is just a bit below its capacity, then that computer is unlikely to be
overloaded, provided the conditions of the Chernoff bound are satisfied.

More precisely, the Chernoff Bound says that the sum of lots of little, indepen-
dent random variables is unlikely to significantly exceed the mean of the sum. The
Markov and Chebyshev bounds lead to the same kind of conclusion but typically
provide much weaker bounds. In particular, the Markov and Chebyshev bounds are
polynomial, while the Chernoff bound is exponential.

Here is the theorem. The proof will come later in Section 19.4.3.

Theorem 19.4.1 (Chernoff Bound). Let T1; : : : Tn be mutually independent ran-
dom variables such that 0 � Ti � 1 for all i . Let T D T1 C � � � C Tn. Then for all
c � 1,

PrŒT � c ExŒT �� � e�k ExŒT � (19.13)

where k D c ln.c/ � c C 1.

The Chernoff bound applies only to distributions of sums of independent random
variables that take on values in the interval Œ0; 1�. The binomial distribution is
of course such a distribution, but there are lots of other distributions because the
Chernoff bound allows the variables in the sum to have differing, arbitrary, and
even unknown distributions over the range Œ0; 1�. Furthermore, there is no direct
dependence on the number of random variables in the sum or their expectations. In
short, the Chernoff bound gives strong results for lots of problems based on little
information—no wonder it is widely used!

4Yes, this is the same Chernoff who figured out how to beat the state lottery. So you might want
to pay attention—this guy knows a thing or two.

“mcs-ftl” — 2010/9/8 — 0:40 — page 518 — #524

Chapter 19 Deviations518

More Examples

The Chernoff bound is pretty easy to apply, though the details can be daunting at
first. Let’s walk through a simple example to get the hang of it.

What is the probability that the number of heads that come up in 1000 indepen-
dent tosses of a fair coin exceeds the expectation by 20% or more? Let Ti be an
indicator variable for the event that the i -th coin is heads. Then the total number of
heads is

T D T1 C � � � C T1000:

The Chernoff bound requires that the random variables Ti be mutually independent
and take on values in the range Œ0; 1�. Both conditions hold here. In fact, this
example is similar to many applications of the Chernoff bound in that every Ti is
either 0 or 1, since they’re indicators.

The goal is to bound the probability that the number of heads exceeds its expec-
tation by 20% or more; that is, to bound PrŒT � c ExŒT �� where c = 1:2. To that
end, we compute k as defined in the theorem:

k D c ln.c/ � c C 1 D 0:0187 : : : :

Plugging this value into the Chernoff bound gives:

Pr
�
T � 1:2ExŒT �

�
� e�k ExŒT �

D e�.0:0187::: /�500

< 0:0000834:

So the probability of getting 20% or more extra heads on 1000 coins is less than 1
in 10,000.5

The bound becomes much stronger as the number of coins increases, because
the expected number of heads appears in the exponent of the upper bound. For
example, the probability of getting at least 20% extra heads on a million coins is at
most

e�.0:0187::: /�500000 < e�9392

which is pretty darn small.
Alternatively, the bound also becomes stronger for larger deviations. For exam-

ple, suppose we’re interested in the odds of getting 30% or more extra heads in
1000 tosses, rather than 20%. In that case, c D 1:3 instead of 1:2. Consequently,
the parameter k rises from 0:0187 to about 0:0410, which may seem insignificant.

5Since we are analyzing a binomial distribution here, we can get somewhat better bounds using
the methods from Section 17.5, but it is much easier to use the Chernoff bounds, and they provide
results that are nearly as good.

“mcs-ftl” — 2010/9/8 — 0:40 — page 519 — #525

19.4. Bounds for Sums of Random Variables 519

But because k appears in the exponent of the upper bound, the final probability
decreases from around 1 in 10,000 to about 1 in a billion!

Pick-4

Pick-4 is a lottery game where you pick a 4-digit number between 0000 and 9999.
If your number comes up in a random drawing, then you win $5,000. Your chance
of winning is 1 in 10,000. And if 10 million people play, then the expected number
of winners is 1000. The lottery operator’s nightmare is that the number of winners
is much greater; say, 2000 or more. What is the probability that will happen?

Let Ti be an indicator for the event that the i -th player wins. Then T D T1 C

� � �CTn is the total number of winners. If we assume6 that the players’ picks and the
winning number are random, independent and uniform, then the indicators Ti are
independent, as required by the Chernoff bound.

Since 2000 winners would be twice the expected number, we choose c D 2,
compute k D c ln.c/� c C 1 D 0:386 : : : , and plug these values into the Chernoff
bound:

PrŒT � 2000� D Pr
�
T � 2ExŒT �

�
� e�k ExŒT �

D e�.0:386::: /�1000

< e�386:

So there is almost no chance that the lottery operator pays out double. In fact, the
number of winners won’t even be 10% higher than expected very often. To prove
that, let c D 1:1, compute k D c ln.c/ � c C 1 D 0:00484 : : : , and plug in again:

Pr
�
T � 1:1ExŒT �

�
� e�k ExŒT �

D e�.0:00484/�1000

< 0:01:

So the Pick-4 lottery may be exciting for the players, but the lottery operator has
little doubt about the outcome!

Randomized Load Balancing

Now let’s return to Fussbook and its load balancing problem. Specifically, we need
to determine how many machines suffice to ensure that no server is overloaded;

6As we noted in Chapter 18, human choices are often not uniform and they can be highly depen-
dent. For example, lots of people will pick an important date. So the lottery folks should not get
too much comfort from the analysis that follows, unless they assign random 4-digit numbers to each
player.

“mcs-ftl” — 2010/9/8 — 0:40 — page 520 — #526

Chapter 19 Deviations520

that is, assigned to do more than 10 minutes of work in a 10-minute interval.
To begin, let’s find the probability that the first server is overloaded. Let Ti be the

number of seconds that the first server spends on the i -th task. So Ti is zero if the
task is assigned to another machine, and otherwise Ti is the length of the task. Then
T D

Pn
iD1 Ti is the total length of tasks assigned to the server, where n D 24;000.

We need an upper bound on PrŒT � 600�; that is, the probability that the first server
is assigned more than 600 seconds (or, equivalently, 10 minutes) of work.

The Chernoff bound is applicable only if the Ti are mutually independent and
take on values in the range Œ0; 1�. The first condition is satisfied if we assume that
task lengths and assignments are independent. And the second condition is satisfied
because processing even the most interminable harangue takes at most 1 second.

In all, there are 24,000 tasks, each with an expected length of 1/4 second. Since
tasks are assigned to computers at random, the expected load on the first server is:

ExŒT � D
24;000 tasks � 1=4 second per task

m machines
D 6000=m seconds: (19.14)

For example, if there are m D 10 machines, then the expected load on the first
server is 600 seconds, which is 100% of its capacity.

Now we can use the Chernoff bound to upper bound the probability that the first
server is overloaded:

Pr
�
T � 600

�
D Pr

h
T �

m

10
ExŒT �

i
D Pr

�
T � c ExŒT �

�
� e�.c ln.c/�cC1/�6000=m;

where c D m=10. The first equality follows from Equation 19.14.
The probability that some server is overloaded is at mostm times the probability

that the first server is overloaded by the Sum Rule in Section 14.4.2. So

PrŒsome server is overloaded� �
mX
iD1

PrŒserver i is overloaded�

D mPrŒthe first server is overloaded�

� me�.c ln.c/�cC1/�6000=m;

where c D m=10. Some values of this upper bound are tabulated below:

m D 11 W 0:784 : : :

m D 12 W 0:000999 : : :

m D 13 W 0:0000000760 : : :

“mcs-ftl” — 2010/9/8 — 0:40 — page 521 — #527

19.4. Bounds for Sums of Random Variables 521

These values suggest that a system with m D 11 machines might suffer immediate
overload,m D 12machines could fail in a few days, butm D 13 should be fine for
a century or two!

19.4.3 Proof of the Chernoff Bound

The proof of the Chernoff bound is somewhat involved. Heck, even Chernoff didn’t
come up with it! His friend, Herman Rubin, showed him the argument. Thinking
the bound not very significant, Chernoff did not credit Rubin in print. He felt pretty
bad when it became famous!7

Here is the theorem again, for reference:

Theorem 19.4.2 (Chernoff Bound). Let T1; : : : ; Tn be mutually independent ran-
dom variables such that 0 � Ti � 1 for all i . Let T D T1 C � � � C Tn. Then for all
c � 1,

PrŒT � c ExŒT �� � e�k ExŒT � (19.13)

where k D c ln.c/ � c C 1.

Proof. For clarity, we’ll go through the proof “top down”; that is, we’ll use facts
that are proved immediately afterward.

The key step is to exponentiate both sides of the inequality T � c ExŒT � and

then apply the Markov bound:

PrŒT � c ExŒT �� D PrŒcT � cc ExŒT ��

�
ExŒcT �
cc ExŒT �

(by Markov)

�
e.c�1/ExŒT �

cc ExŒT �

D e�.c ln.c/�cC1/ExŒT �:

In the third step, the numerator is rewritten using the inequality

ExŒcT � � e.c�1/ExŒT �

which is proved below in Lemma 19.4.3. The final step is simplification, using the
fact that cc is equal to ec ln.c/. �

7See “A Conversation with Herman Chernoff,” Statistical Science 1996, Vol. 11, No. 4, pp 335–
350.

“mcs-ftl” — 2010/9/8 — 0:40 — page 522 — #528

Chapter 19 Deviations522

Algebra aside, there is a brilliant idea in this proof: in this context, exponenti-
ating somehow supercharges the Markov bound. This is not true in general! One
unfortunate side-effect is that we have to bound some nasty expectations involving
exponentials in order to complete the proof. This is done in the two lemmas below,
where variables take on values as in Theorem 19.4.1.

Lemma 19.4.3.
ExŒcT � � e.c�1/ExŒT �:

Proof.

ExŒcT � D ExŒcT1C���CTn �

D ExŒcT1 � � � cTn �

D ExŒcT1 � � � �ExŒcTn �

� e.c�1/ExŒT1� � � � e.c�1/ExŒTn�

D e.c�1/.ExŒT1�C���CExŒTn�/

D e.c�1/ExŒT1C���CTn�

D e.c�1/ExŒT �:

The first step uses the definition of T , and the second is just algebra. The third
step uses the fact that the expectation of a product of independent random variables
is the product of the expectations. This is where the requirement that the Ti be
independent is used. Then we bound each term using the inequality

ExŒcTi � � e.c�1/ExŒTi �;

which is proved in Lemma 19.4.4. The last steps are simplifications using algebra
and linearity of expectation. �

Lemma 19.4.4.
ExŒcTi � � e.c�1/ExŒTi �

Proof. All summations below range over values v taken by the random variable Ti ,

“mcs-ftl” — 2010/9/8 — 0:40 — page 523 — #529

19.5. Mutually Independent Events 523

which are all required to be in the interval Œ0; 1�.

ExŒcTi � D
X
v

cv PrŒTi D v�

�

X
v

.1C .c � 1/v/PrŒTi D v�

D

X
v

PrŒTi D v�C .c � 1/v PrŒTi D v�

D

X
v

PrŒTi D v�C
X

.c � 1/v PrŒTi D v�

D 1C .c � 1/
X
v

v PrŒTi D v�

D 1C .c � 1/ExŒTi �

� e.c�1/ExŒTi �:

The first step uses the definition of expectation. The second step relies on the
inequality cv � 1C .c�1/v, which holds for all v in Œ0; 1� and c � 1. This follows
from the general principle that a convex function, namely cv, is less than the linear
function, 1C .c � 1/v, between their points of intersection, namely v D 0 and 1.
This inequality is why the variables Ti are restricted to the interval Œ0; 1�. We then
multiply out inside the summation and split into two sums. The first sum adds the
probabilities of all possible outcomes, so it is equal to 1. After pulling the constant
c � 1 out of the second sum, we’re left with the definition of ExŒTi �. The final step
uses the standard inequality 1C z � ez , which holds for all z > 0. �

19.5 Mutually Independent Events

Suppose that we have a collection of mutually independent events A1, A2, . . . , An,
and we want to know how many of the events are likely to occur.

Let Ti be the indicator random variable for Ai and define

pi D PrŒTi D 1� D Pr
�
Ai
�

for 1 � i � n. Define
T D T1 C T2 C � � � C Tn

to be the number of events that occur.

“mcs-ftl” — 2010/9/8 — 0:40 — page 524 — #530

Chapter 19 Deviations524

We know from Linearity of Expectation that

ExŒT � D ExŒT1�C ExŒT2�C � � � C ExŒTn�

D

nX
iD1

pi :

This is true even if the events are not independent.
By Theorem 19.1.9, we also know that

VarŒT � D VarŒT1�C VarŒT2�C � � � C VarŒTn�

D

nX
iD1

pi .1 � pi /;

and thus that

�T D

vuut nX
iD1

pi .1 � pi /:

This is true even if the events are only pairwise independent.
Markov’s Theorem tells us that for any c > 1,

PrŒT � c ExŒT �� �
1

c
:

Chebyshev’s Theorem gives us the stronger result that

PrŒjT � ExŒT �j � c�T � �
1

c2
:

The Chernoff Bound gives us an even stronger result; namely, that for any c > 0,

PrŒT � ExŒT � � c ExŒT �� � e�.c ln.c/�cC1/ExŒT �:

In this case, the probability of exceeding the mean by c ExŒT � decreases as an
exponentially small function of the deviation.

By considering the random variable n � T , we can also use the Chernoff Bound
to prove that the probability that T is much lower than ExŒT � is also exponentially
small.

“mcs-ftl” — 2010/9/8 — 0:40 — page 525 — #531

19.5. Mutually Independent Events 525

19.5.1 Murphy’s Law

Suppose we want to know the probability that at least 1 event occurs. If ExŒT � < 1,
then Markov’s Theorem tells us that

PrŒT � 1� � ExŒT �:

On the other hand, if ExŒT � � 1, then we can obtain a lower bound on PrŒT � 1�
using a result that we call Murphy’s Law8.

Theorem 19.5.1 (Murphy’s Law). Let A1, A2, . . . , An be mutually independent
events. Let Ti be the indicator random variable for Ai and define

T WWD T1 C T C 2C � � � C Tn

to be the number of events that occur. Then

PrŒT D 0� � e�ExŒT �:

Proof.

PrŒT D 0� D PrŒA1 ^ A2 ^ � � � ^ An�

D

nY
iD1

PrŒAi � (by independence of Ai)

D

nY
iD1

.1 � PrŒAi �/

�

nY
iD1

e�PrŒAi � (since 8x:1 � x � e�x)

D e�
Pn
iD1 PrŒAi �

D e�
Pn
iD1 ExŒTi � (since Ti is an indicator for Ai)

D e�ExŒT � (Linearity of Expectation) �

For example, given any set of mutually independent events, if you expect 10 of
them to happen, then at least one of them will happen with probability at least 1 �
e�10. The probability that none of them happen is at most e�10 < 1=22000.

So if there are a lot of independent things that can go wrong and their probabil-
ities sum to a number much greater than 1, then Theorem 19.5.1 proves that some
of them surely will go wrong.

8This is in reference and deference to the famous saying that “If something can go wrong, it will
go wrong.”

“mcs-ftl” — 2010/9/8 — 0:40 — page 526 — #532

Chapter 19 Deviations526

This result can help to explain “coincidences,” “miracles,” and crazy events that
seem to have been very unlikely to happen. Such events do happen, in part, because
there are so many possible unlikely events that the sum of their probabilities is
greater than one. For example, someone does win the lottery.

In fact, if there are 100,000 random tickets in Pick-4, Theorem 19.5.1 says that
the probability that there is no winner is less than e�10 < 1=22000. More generally,
there are literally millions of one-in-a-million possible events and so some of them
will surely occur.

19.5.2 Another Magic Trick

Theorem 19.5.1 is surprisingly powerful. In fact, it is so powerful that it can enable
us to read your mind. Here’s how.

You choose a secret number n from 1 to 9. Then we randomly shuffle an ordinary
deck of 52 cards and display the cards one at a time. You watch as we reveal the
cards and when we reveal the nth card, that card becomes your secret card. If
the card is an Ace, a 10, or a face card, then you assign that card a value of 1.
Otherwise, you assign that card a value that is its number. For example, the J~ gets
assigned a value v1 D 1 and the 4} gets assigned a value v1 D 4. You do all of
this in your mind so that we can’t tell when the nth card shows up.

We keep revealing the cards, and when the (nC v1)th card shows up, that card
becomes your new secret card. You compute its value v2 using the same scheme
as for v1. For example, if your new secret card is the 10|, then v2 D 1. The
.nC v1 C v2/th card will then become your next secret card, and so forth.

We proceed in this fashion until all 52 cards have been revealed, whereupon we
read your mind by predicting your last secret card! How is this possible?

For the purposes of illustration, suppose that your secret number was n D 3 and
the deck consisted of the 11 cards:

3} 5� 2} 3| 10| Q} 3~ 7� 6| 4} 2~:

Then your secret cards would be

2}; 10|; Q}; 3~; 4}

since v1 D 2, v2 D 1, v3 D 1, v4 D 3, and v5 D 4. In this example, your last
secret card is the 4}.

To make the trick work, we follow the same rules as you, except that we start
with n D 1. With the 11-card deck shown above, our secret cards would be

3}; 3|; 3~; 4}:

“mcs-ftl” — 2010/9/8 — 0:40 — page 527 — #533

19.5. Mutually Independent Events 527

We have the same last secret card as you do! That is not a coincidence. In fact, this
is how we predict your last card—we just guess that it is the same as our last card.
And, we will be right with probability greater than 90%.

To see why the trick is likely to work, you need to notice that if we ever share a
secret card, then we will surely have the same last secret card. That’s because we
will perform exactly the same steps as the cards are revealed.

Each time we get a new secret card, there is always a chance that it was one of
your secret cards. For any given step, the chance of a match is small but we get a
lot of chances. In fact, the number of chances will typically outweigh the inverse of
the probability of a match on any given step and so, at least informally, Murphy’s
Law suggests that we are likely to eventually get a match, whereupon we can read
your mind.

The details of the proof are complicated and we will not present them here. One
of the main complications is that when you are revealing cards from a deck without
replacement, the probability of getting a match on a given step is conditional based
on the cards that have already been revealed.

19.5.3 The Subprime Mortgage Disaster

Throughout the last few chapters, we have seen many examples where powerful
conclusions can be drawn about a collection of events if the events are independent.
Of course, such conclusions are totally invalid if the events have dependencies.
Unforeseen dependencies can result in disaster in practice. For example, misguided
assumptions about the independence of loans (combined with a large amount of
greed) triggered the global financial meltdown in 2008–2009.

In what follows, we’ll explain some of what went wrong. You may notice that we
have changed the names of the key participants. That is not to protect the innocent,
since innocents are few and far between in this sordid tale. Rather, we changed the
names to protect ourselves.9 In fact, just to be on the safe side, we’ll forget about
what really happened here on Earth and instead tell you a fairy tale that took place
in a land far, far away.

The central players in our story are the major Wall Street firms, of which Golden
Scoundrels (commonly referred to as “Golden”) is the biggest and most aggressive.
Firms such as Golden ostensibly exist to make markets; they purport to create an
open and orderly market in which buyers and sellers can be brought together and
through which capitalism can flourish. It all sounds good, but the fees that can be
had from facilitating transactions in a truly open and orderly market are often just
not enough to satisfy the ever-increasing need to make more. So the employees at

9For a much more detailed accounting of these events (and one that does name names), you may
enjoy reading The Big Short by Michael Lewis.

“mcs-ftl” — 2010/9/8 — 0:40 — page 528 — #534

Chapter 19 Deviations528

such firms are always trying to figure out a way to create new opportunities to make
even more money.

One day, they came up with a whopper. Suppose they bought a collection of 1000
(say) subprime mortgage loans from all around the country and packaged them up
into a single entity called a bond. A mortgage loan is a loan to a homeowner using
the house as collateral; if the homeowner stops paying on the loan (in which case
the loan is said to be in default), then the owner of the loan takes ownership of the
house. A mortgage loan is classified as subprime if the homeowner does not have
a very good credit history. Subprime loans are considered to be more risky than
prime loans since they are more likely to default. Defaults are bad for everyone;
the homeowner loses the home and the loan owner gets stuck trying to sell the
house, which can take years and often results in very high losses.

Of course, a bond consisting of 1000 subprime loans doesn’t sound very appeal-
ing to investors, so to dress it up, Golden sells the bond in tranches. The idea
behind the tranches is to provide a way to assign losses from defaults. In a typical
scenario, there would be 10 tranches and they are prioritized from 1 to 10. The
defaults are assessed against the lowest tranches first. For example, suppose that
there were 150 defaults in the collection of 1000 loans (an impossibly high number
of defaults according to Golden). Then the lowest tranche would absorb the first
100 defaults (effectively wiping them out since all 100 of “their” loans would be
in default) and the second-lowest tranche would be assigned the next 50 defaults,
(wiping out half of their investment). The remaining 8 tranches would be doing
great—none of “their” loans would be in default.

Because they are taking on more risk, the lower tranches would get more of the
interest payments. The top tranche would get the lowest rate of return and would
also be the safest. The lowest tranche would get the most interest, but also be the
most exposed.

But how much should you pay for a tranche? Suppose the probability that any
given loan defaults in a year is 1%. In other words, suppose you expect 10 of the
1000 loans to default in each year. If the defaults are independent, then we can use
the Chernoff bound to conclude that the chances of more than 100 defaults (10%)
in the 1000-loan collection is exceedingly tiny. This means that every tranche but
the lowest is essentially risk-free. That is excellent news for Golden since they can
buy 1000 cheap10 subprime loans and then sell the top 9 tranches at premium rates,
thereby making a large and instant profit on 900 of the 1000 loans. It is like turning
a bunch of junk into a bunch of gold with a little junk left over.

There remains the problem of the lowest tranche, which is expected to have
10 defaults in a pool of 100 loans for a default rate of 10%. This isn’t so good

10They are subprime loans after all.

“mcs-ftl” — 2010/9/8 — 0:40 — page 529 — #535

19.5. Mutually Independent Events 529

so the first thing to do is to give the tranche a better sounding name than “lowest
tranche.” “Mezzanine” tranche sounds much less ominous and so that is what they
used.

By the Chernoff bound, the default rate in the Mezzanine tranche is very un-
likely to be much greater than 10%, and so the risk of owning this tranche can be
addressed in part by increasing the interest payments for the tranche by 10%. But
Golden had an even better idea (whopper number two)—rather than pay the ex-
tra 10%, why not collect together a bunch of mezzanine tranches from a bunch of
bonds and then package them together into a “super bond” and then create tranches
in the super-bond? The technical name for such a super bond is a collateralized
debt obligation or CDO. This way, 90% of the mezzanine tranches instantly be-
came essentially “risk-free,” or so Golden claimed as they were marketing them.

The only problem now is getting the pension funds and other big investors to
buy the CDOs at the same price as if they were AAA-rated “risk-free” bonds. This
was a little tricky because 1) it was virtually impossible for the buyer to figure out
exactly what loans they were effectively buying since they were buying a tranche of
a collection of tranches, and 2) if you could ever figure out what it was, you would
discover that it was the junk of the junk when it comes to loans.

The solution was to enlist the help of the big bond-rating agencies: Substandard
and Prevaricators (S&P) and Mopey’s. If Golden could get AAA ratings11 on their
tranches, then the pension funds and other big investors would buy them at premium
rates.

It turned out to be easier than you might think (or hope) to convince S&P and
Mopey’s to give high ratings to the CDO tranches. After all, the ratings agencies
are trying to make money too and they make money by rating bonds. And Golden
was only going to pay them if their bonds and CDOs got good ratings. And, since
defaults were assumed to be essentially independent, there was a good argument
as to why all but the mezzanine tranche of a bond or CDO would be essentially
risk-free.12

So the stage is set for Golden to make a bundle of money. Cheap junk loans come
in the back door and exit as expensive AAA-rated bonds and CDOs out the front
door. The remaining challenge is to ramp up the new money-making machine. That

11AAA ratings are the best you can get and are supposed to imply that there is virtually no chance
of default.

12The logic gets a little fuzzy when you keep slicing and dicing the tranches—after a few iterations,
you should be able to conclude that the mezzanine tranche of a CDO is sure to have 100% defaults, but
it required effort to see what was going on under the covers and effort costs money, and so the ratings
agencies considered the risk of the mezzanine tranche of one CDO to be the same as the mezzanine
tranche of any other, even though they could have wildly different probabilities of sustaining large
numbers of defaults.

“mcs-ftl” — 2010/9/8 — 0:40 — page 530 — #536

Chapter 19 Deviations530

means creating more (preferably, many, many more) junk loans to fuel the machine.
This is where Joe enters the scene. Joe is a migrant laborer earning $15,000

per year. Joe’s credit history is not great (since he has never had a loan or credit
card) but it is also not bad (since he has never missed a payment on a credit card
and never defaulted on a loan). In short, Joe is a perfect candidate for a subprime
mortgage loan on a $750,000 home.

When Loans- R-Us approaches Joe for a home loan,13 Joe dutifully explains that
while he would love to own a $750,000 home, he doesn’t have enough money to pay
for food, let alone the interest payments on the mortgage. “No problem!” replies
Loans- R-Us. It is Joe’s lucky day. The interest rates are super-low for the first
2 years and Joe can take out a second loan to cover them during that period. “What
happens after 2 years?” Joe wants to know. “No problem!” replies Loans- R-Us.
Joe can refinance—his home will surely be worth more in 2 years. Indeed, Joe can
even make money while he enjoys the comforts of his new home. If all goes well,
he can even ease off on the laborer work, and maybe even by a second home. Joe is
sold. In fact, millions of Joes are sold and, before long, the subprime loan business
is booming.

It turns out that there were a few folks out there who really did their math
homework when they were in college. They were running hedge funds and, as
the money-making machine was cranking away, they realized that a disaster was
looming. They knew that loan defaults are not independent—in fact, they are very
dependent. Once home values stop rising, or a recession hits, or it comes time for
Joe to refinance, defaults will occur at much higher rates than projected and the
CDOs and many tranches of the underlying bonds will become worthless. And
there is so much money invested in these bonds and CDOs that the economy could
be ruined.

Unfortunately, the folks who figured out what was going to happen didn’t alert
anyone. They didn’t go to the newspapers. They didn’t call the See no Evil Com-
mission. They didn’t even call 911. Instead, they worked with Golden to find a new
way to make even more money—betting against the CDO market.

If you think a stock is going to decline, you can profit from the decline by bor-
rowing the stock and selling it. After the stock declines in value, you buy it back
and return it to the person that lent it to you. Your profit is the decline in price. This
process is called shorting the stock.

So the hedge funds wanted to short the CDOs. Unfortunately, there was no
established way to borrow a tranche of a CDO. Always looking for a new way to
make money, the investment houses came up with an even bigger whopper than the

13Yes, we know it is supposed to go the other way around—Joe is supposed to approach the loan
company—but these are extraordinary times.

“mcs-ftl” — 2010/9/8 — 0:40 — page 531 — #537

19.5. Mutually Independent Events 531

CDO—they invented the credit default swap.
The idea behind the credit default swap is to provide a kind of insurance against

the event that a bond or CDO suffers a certain number of defaults. Since the hedge
funds believe that the CDOs were going to have lots of defaults, they want to buy
the insurance. The trick is to find someone dumb enough to sell the insurance.
That’s where the world’s largest insurance company, Awful Insurance Group (AIG),
enters the fray. AIG sells insurance on just about anything and they, too, are looking
for new ways to make money, so why not sell insurance on CDO defaults?

Golden has a new business! They buy the CDO insurance from AIG for an
astonishingly low price (about $2 annually for every $1000 of CDO value) and
sell it to the hedge funds for a much higher price (about $20 annually for every
$1000 of CDO value). If a CDO sustains defaults, then AIG needs to pay the value
of the CDO ($1000 in this hypothetical example) to the hedge funds who own
the insurance. Until that time, the hedge funds are paying the annual fee for the
insurance, 90% of which is pocketed by Golden. This is a great business; Golden
pockets 90% of the money and AIG takes all the risk. The only risk that Golden
has is if AIG goes down, but AIG is “too big to fail. . . . ”

Golden’s new credit default swap business is even better than the CDO business.
The only trouble now is that there are only so many Joes out there who can take out
subprime loans. This means that there is a hard limit on how many billions Golden
can make. This challenge led to whopper number four.

If the hedge funds want to buy insurance and AIG wants to sell it, who really
cares if there is only one insurance policy per loan or CDO? Indeed, why not just
sell lots of credit default swaps on the same set of junk CDOs? This way, the profits
could be unlimited! And so it went. “Synthetic” CDOs were created and soon the
“insurance” quickly turned into a very high-stakes (and very stupid, at least for
AIG) bet. The odds were weighted heavily in favor of the folks who did their math
homework (the hedge funds); the hedge funds had figured out that the failure of
the CDOs was a virtual certainty, whereas AIG believed that failure was virtually
impossible.

Of course, we all know how the story ends. The holders of the CDOs and sub-
prime debt and the sellers of insurance got wiped out, losing hundreds of billions
of dollars. Since many of these folks were deemed by the Government as “too big
to fail,” they were bailed out using nearly a trillion dollars of taxpayer money. The
executives who presided over the disaster were given huge bonuses because, well,
that’s how it works for executives in the land far, far away. The story also ends well
for the hedge funds that bought the insurance—they made many, many billions of
dollars.

So everyone involved in the disaster ends up very rich. Everyone except Joe, of

“mcs-ftl” — 2010/9/8 — 0:40 — page 532 — #538

Chapter 19 Deviations532

course. Joe got kicked out of his home and lost his job in the recession.
Too bad for Joe that it isn’t just a fairy tale.

“mcs-ftl” — 2010/9/8 — 0:40 — page 533 — #539

20 Random Walks
Random Walks are used to model situations in which an object moves in a sequence
of steps in randomly chosen directions. Many phenomena can be modeled as a
random walk and we will see several examples in this chapter. Among other things,
we’ll see why it is rare that you leave the casino with more money than you entered
with and we’ll see how the Google search engine uses random walks through the
graph of the world-wide web links to determine the relative importance of websites.

20.1 Unbiased Random Walks

20.1.1 A Bug’s Life

There is a small flea named Stencil. To his right, there is an endless flat plateau.
One inch to his left is the Cliff of Doom, which drops to a raging sea filled with
flea-eating monsters.

Cliff of Doom

1 inch

Each second, Stencil hops 1 inch to the right or 1 inch to the left with equal
probability, independent of the direction of all previous hops. If he ever lands on
the very edge of the cliff, then he teeters over and falls into the sea. So, for example,
if Stencil’s first hop is to the left, he’s fishbait. On the other hand, if his first few
hops are to the right, then he may bounce around happily on the plateau for quite

“mcs-ftl” — 2010/9/8 — 0:40 — page 534 — #540

Chapter 20 Random Walks534

oops...

some time.
Our job is to analyze the life of Stencil. Does he have any chance of avoiding a

fatal plunge? If not, how long will he hop around before he takes the plunge?
Stencil’s movement is an example of a random walk. A typical one-dimensional

random walk involves some value that randomly wavers up and down over time.
The walk is said to be unbiased if the value is equally likely to move up or down. If
the walk ends when a certain value is reached, then that value is called a boundary
condition or absorbing barrier. For example, the Cliff of Doom is a boundary
condition in the example above.

Many natural phenomena are nicely modeled by random walks. However, for
some reason, they are traditionally discussed in the context of some social vice. For
example, the value is often regarded as the position of a drunkard who randomly
staggers left, staggers right, or just wobbles in place during each time step. Or
the value is the wealth of a gambler who is continually winning and losing bets. So
discussing random walks in terms of fleas is actually sort of elevating the discourse.

20.1.2 A Simpler Problem

Let’s begin with a simpler problem. Suppose that Stencil is on a small island; now,
not only is the Cliff of Doom 1 inch to his left, but also there is another boundary
condition, the Pit of Disaster, 2 inches to his right! For example, see Figure 20.1

In the figure, we’ve worked out a tree diagram for Stencil’s possible fates. In

“mcs-ftl” — 2010/9/8 — 0:40 — page 535 — #541

20.1. Unbiased Random Walks 535

1=4

1=16

1=2

1=8

1=2

1=2

1=2

1=2

1=2

1=2

1=2

1=2

:
:
:

:
:
:

Cliff of Doom Pit of Disaster

Figure 20.1 An unbiased, one-dimensional random walk with absorbing barriers
at positions 0 and 3. The walk begins at position 1. The tree diagram shows the
probabilities of hitting each barrier.

particular, he falls off the Cliff of Doom on the left side with probability:

1

2
C
1

8
C

1

32
C : : : D

1

2

�
1C

1

4
C

1

16
C : : :

�
D
1

2
�

1

1 � 1=4

D
2

3
:

Similarly, he falls into the Pit of Disaster on the right side with probability:

1

4
C

1

16
C

1

64
C : : : D

1

3
:

There is a remaining possibility: Stencil could hop back and forth in the middle
of the island forever. However, we’ve already identified two disjoint events with
probabilities 2=3 and 1=3, so this happy alternative must have probability 0.

20.1.3 A Big Island

Putting Stencil on such a tiny island was sort of cruel. Sure, he’s probably carrying
bubonic plague, but there’s no reason to pick on the little fella. So suppose that
we instead place him n inches from the left side of an island w inches across: In

“mcs-ftl” — 2010/9/8 — 0:40 — page 536 — #542

Chapter 20 Random Walks536

Cliff of
Doom

Pit of
Disaster

wn0

other words, Stencil starts at position n and his random walk ends if he ever reaches
positions 0 or w.

Now he has three possible fates: he could fall off the Cliff of Doom, fall into
the Pit of Disaster, or hop around on the island forever. We could compute the
probabilities of these three events with a horrific summation, but fortunately there’s
a far easier method: we can use a linear recurrence.

Let Rn be the probability that Stencil falls to the right into the Pit of Disaster,
given that he starts at position n. In a couple special cases, the value of Rn is easy
to determine. If he starts at position w, he falls into the Pit of Disaster immediately,
so Rw D 1. On the other hand, if he starts at position 0, then he falls from the Cliff
of Doom immediately, so R0 D 0.

Now suppose that our frolicking friend starts somewhere in the middle of the
island; that is, 0 < n < w. Then we can break the analysis of his fate into two
cases based on the direction of his first hop:

� If his first hop is to the left, then he lands at position n � 1 and eventually
falls into the Pit of Disaster with probability Rn�1.

� On the other hand, if his first hop is to the right, then he lands at position nC1
and eventually falls into the Pit of Disaster with probability RnC1.

Therefore, by the Total Probability Theorem, we have:

Rn D
1

2
Rn�1 C

1

2
RnC1:

Solving the Recurrence

Let’s assemble all our observations about Rn, the probability that Stencil falls into
the Pit of Disaster if he starts at position n:

R0 D 1

Rw D 0

Rn D
1

2
Rn�1 C

1

2
RnC1 .0 < n < w/:

“mcs-ftl” — 2010/9/8 — 0:40 — page 537 — #543

20.1. Unbiased Random Walks 537

This is just a linear recurrence—and we know how to solve those! Uh, right?
Remember Chapter 10 or Chapter 12?

There is one unusual complication: in a normal recurrence, Rn is written a func-
tion of preceding terms. In this recurrence equation, however, Rn is a function of
both a preceding term (Rn�1) and a following term (RnC1). This is no big deal,
however, since we can just rearrange the terms in the recurrence equation:

RnC1 D 2Rn �Rn�1:

Now we’re back on familiar territory.
Let’s solve the recurrence. The characteristic equation is:

x2 � 2x C 1 D 0:

This equation has a double root at x D 1. There is no inhomogeneous part, so the
general solution has the form:

Rn D a � 1
n
C b � n1n D aC bn:

Substituting in the boundary conditions R0 D 0 and Rw D 1 gives two linear
equations:

0 D a;

1 D aC bw:

The solution to this system is a D 0, b D 1=w. Therefore, the solution to the
recurrence is:

Rn D n=w:

20.1.4 Death Is Certain

Our analysis shows that if we place Stencil n inches from the left side of an island
w inches across, then he falls off the right side with probability n=w. For example,
if Stencil is n D 4 inches from the left side of an island w D 12 inches across, then
he falls off the right side with probability n=w D 4=12 D 1=3.

We can compute the probability that he falls off the left side by exploiting the
symmetry of the problem: the probability that he falls off the left side starting at
position n is the same as the probability that he falls of the right side starting at
position w � n, which is .w � n/=n.

This is bad news. The probability that Stencil eventually falls off one side or the
other is:

n

w
C
w � n

w
D 1:

“mcs-ftl” — 2010/9/8 — 0:40 — page 538 — #544

Chapter 20 Random Walks538

There’s no hope! The probability that Stencil hops around on the island forever is
zero.

And there’s even worse news. Let’s go back to the original problem where Sten-
cil is 1 inch from the left edge of an infinite plateau. In this case, the probability
that he eventually falls into the sea is:

lim
w!1

w � 1

w
D 1:

So even if there were no Pit of Disaster, Stencil still falls off the Cliff of Doom with
probability 1. And since

lim
w!1

w � n

w
D 1

for any finite n, this is true no matter where Stencil starts. Our little friend is
doomed!

Hey, you know how in the movies they often make it look like the hero dies,
but then he comes back in the end and everything turns out okay? Well, we’re not
sayin’ anything, just pointing that out.

20.1.5 Life Expectancy

On the bright side, Stencil may get to hop around for a while before he goes over an
edge. Let’s use the same setup as before, where he starts out n inches from the left
side of an island w inches across: What is the expected number of hops he takes

Cliff of
Doom

Pit of
Disaster

wn0

before falling off an edge?
Let Xn be Stencil’s expected lifespan, measured in hops. If he starts at either

edge of the island, then he dies immediately:

X0 D 0;

Xw D 0:

If he starts somewhere in the middle of the island (0 < n < w), then we can again
break down the analysis into two cases based on his first hop:

“mcs-ftl” — 2010/9/8 — 0:40 — page 539 — #545

20.1. Unbiased Random Walks 539

� If his first hop is to the left, then he lands at position n� 1 and can expect to
live for another Xn�1 steps.

� If his first hop is to the right, then he lands at position nC 1 and can expect
to live for another XnC1 steps.

Thus, by the Law of Total Expectation and Linearity of Expectation, Stencil’s ex-
pected lifespan is:

Xn D 1C
1

2
Xn�1 C

1

2
XnC1:

The leading 1 accounts for his first hop.

Solving the Recurrence

Once again, Stencil’s fate hinges on a recurrence equation:

X0 D 0

Xw D 0

Xn D 1C
1
2
Xn�1 C

1
2
XnC1 .0 < n < w/:

We can rewrite the last line as:

XnC1 D 2Xn �Xn�1 � 2: (20.1)

As before, the characteristic equation is:

x2 � 2x C 1 D 0:

There is a double-root at 1, so the homogeneous solution has the form:

Xn D aC bn:

But this time, there’s an inhomogeneous term, so we also need to find a particular
solution. Since this term is a constant, we should try a particular solution of the
form Xn D c and then try Xn D c C dn and then Xn D c C dn C en2 and
so forth. As it turns out, the first two possibilities don’t work, but the third does.
Substituting Xn D c C dnC en2 into Equation 20.1 gives

cC d.nC 1/C e.nC 1/2 D 2.cC dnC en2/�
�
c C d.n � 1/C e.n � 1/2

�
� 2;

which simplifies to e D �1. Since all the c and d terms cancel, Xn D cCdn�n2

is a particular solution for all c and d . For simplicity, let’s take c D d D 0. Thus,
our particular solution is Xn D �n2.

“mcs-ftl” — 2010/9/8 — 0:40 — page 540 — #546

Chapter 20 Random Walks540

Adding the homogeneous and particular solutions gives the general form of the
solution:

Xn D aC bn � n
2:

Substituting in the boundary conditions X0 D 0 and Xw D 0 gives two linear
equations:

0 D a;

0 D aC bw � w2:

The solution to this system is a D 0 and b D w. Therefore, the solution to the
recurrence equation is:

Xn D wn � n
2
D n.w � n/:

Interpreting the Solution

Stencil’s expected lifespan is Xn D n.w�n/, which is the product of the distances
to the two edges. Thus, for example, if he’s 4 inches from the left edge and 8 inches
from the right cliff, then his expected lifespan is 4 � 8 D 32.

Let’s return to the original problem where Stencil has the Cliff of Doom 1 inch
to his left and an infinite plateau to this right. (Also, cue the “hero returns” theme
music.) In this case, his expected lifespan is:

lim
w!1

1.w � 1/ D1

Yes, Stencil is certain to eventually fall off the Cliff of Doom—but his expected
lifespan is infinite! This sounds almost like a contradiction, but both answers are
correct!

Here’s an informal explanation. It turns out that the probability pk that Stencil
falls from the Cliff of Doom on the kth step is ‚.1=k3=2/. You can verify by the
integration bound that

P1
iD1 1=k

3=2 converges.
On the other hand, the expected time until Stencil falls over the edge is

1X
iD1

kpk � c

1X
kD1

k

k3=2

D c

1X
kD1

1
p
k

D1;

where c is a constant that comes from the ‚ notation. So our answers are compati-
ble.

“mcs-ftl” — 2010/9/8 — 0:40 — page 541 — #547

20.1. Unbiased Random Walks 541

20.1.6 Application to Fair Gambling Games

We took the high road for a while, but let’s now discuss random walks in a more
conventional setting—gambling.

A gambler goes to Las Vegas with $n in her pocket. Her plan is to make only
$1 bets and somehow she has found a casino that will offer her truly even odds1;
namely, she will win or lose $1 on each bet with probability 1=2. She’ll play until
she is broke or she has won $m. In the latter case, she will go home with

w D nCm

dollars. What’s the probability that she goes home a winner?
This is identical to the flea problem that we just analyzed. Going broke is analo-

gous to falling off the Cliff of Doom. Going home a winner is analogous to falling
into the Pit of Disaster, just a lot more fun.

Our analysis of Stencil’s life tells us everything we want to know about the gam-
bler’s prospects:

� The gambler goes home broke with probability
n

w
D

m

nCm
;

� the gambler goes home a winner with probability
w � n

w
D

n

nCm
;

� the gambler goes home with probability
n

nCm
C

m

nCm
D 1;

� and the number of bets before the gambler goes home is expected to be

n.w � n/ D nm:

If the gambler gets greedy and keeps playing until she goes broke, then

� the gambler eventually goes broke with probability 1, and

� the number of bets before the gambler goes broke is expected to be infinite.

The bottom line here is clear: when gambling, quit while you are ahead—if you
play until you go broke, you will certainly go broke.

And that’s the good news! Matters get much worse for the more typical scenario
where the odds are against you. Let’s see why.

1Don’t worry, we’ll get to the more realistic scenario when she is more likely to lose than win in
a moment, but let’s just fantasize about the fair scenario for a bit.

“mcs-ftl” — 2010/9/8 — 0:40 — page 542 — #548

Chapter 20 Random Walks542

20.2 Gambler’s Ruin

So far, we have considered unbiased random walks, where the probability of mov-
ing up or down (or left or right) is 1=2. Unfortunately, things are never quite this
simple (or fair) in real casinos.

For example, suppose the gambler goes to Las Vegas and makes $1 bets on red
or black in roulette. In this case, she will win $1 with probability

18

38
� 0:473

and she will lose $1 with probability

20

38
� 0:527:

That’s because the casinos add those bothersome green 0 and 00 to give the house
a slight advantage.

At first glance (or after a few drinks), 18=38 seems awfully close to 1=2 and so
our intuition tells us that the game is “almost fair.” So we might expect the analysis
we just did for the fair game to be “almost right” for the real game. For example,
if the gambler starts with $100 and quits when she gets ahead by $100 in the fair
game, then she goes home a winner with probability

100

200
D :5:

And, if she wants to improve her chances of going home a winner, she could bring
more money. If she brings $1000 and quits when she gets ahead by $100 in the fair
game, then she goes home a winner with probability

1000

1100
� :91:

So, given that the real game is “almost fair,” we might expect the probabilities of
going home a winner in these two scenarios to be “almost 50% and 91%,” respec-
tively.

Unfortunately for the gambler, all this “almost” reasoning will almost surely lead
to disaster. Here are the grim facts for the real game where the gambler wins $1
with probability 18=38.

n D starting wealth probability she reaches nC $100 before $0
$100 1 in 37649.619496. . .

$1000 1 in 37648.619496. . .
$1; 000; 000; 000 1 in 37648.619496. . .

“mcs-ftl” — 2010/9/8 — 0:40 — page 543 — #549

20.2. Gambler’s Ruin 543

Except on the very low end, the amount of money she brings makes almost no
difference!2 She is almost certain to go broke before winning $100. Let’s see why.

20.2.1 Finding a Recurrence

We can approach the gambling problem the same way we studied the life of Stencil.
Suppose that the gambler starts with n dollars. She wins each bet with probability
p and plays until she either goes bankrupt or has w D nCm dollars in her pocket.
(To be clear, w is the total amount of money she wants to end up with, not the
amount by which she wants to increase her wealth, which ism.) Our objective is to
compute Rn, the probability that she goes home a winner.

As usual, we begin by identifying some boundary conditions. If she starts with
no money, then she’s bankrupt immediately so R0 D 0. On the other hand, if she
starts with w dollars, then she’s an instant winner, so Rw D 1.

Now we divide the analysis of the general situation into two cases based on the
outcome of her first bet:

� She wins her first bet with probability p. She then has n C 1 dollars and
probability RnC1 of reaching her goal of w dollars.

� She loses her first bet with probability 1 � p. This leaves her with n � 1
dollars and probability Rn�1 of reaching her goal.

Plugging these facts into the Total Probability Theorem gives the equation:

Rn D pRnC1 C .1 � p/Rn�1: (20.2)

20.2.2 Solving the Recurrence

Rearranging the terms in Equation 20.2 gives us a recurrence forRn, the probability
that the gambler reaches her goal of w dollars if she starts with n:

R0 D 0

Rw D 1

pRnC1 �Rn C .1 � p/Rn�1 D 0 .0 < n < w/:

The characteristic equation is:

px2 � x C .1 � p/ D 0:

2The fact that only one digit changes from the first case to the second is a peripheral bit of
bizarreness that we’ll leave in your hands.

“mcs-ftl” — 2010/9/8 — 0:40 — page 544 — #550

Chapter 20 Random Walks544

The quadratic formula gives the roots:

x D
1˙

p
1 � 4p.1 � p/

2p

D
1˙

p
.1 � 2p/2

2p

D
1˙ .1 � 2p/

2p

D
1 � p

p
or 1:

There’s an important point lurking here. If the gambler is equally likely to win
or lose each bet, then p D 1=2, and the characteristic equation has a double root at
x D 1. This is the situation we considered in the flea problem. The double root led
to a general solution of the form:

Rn D aC bn

Now suppose that the gambler is not equally likely to win or lose each bet; that is,
p ¤ 1=2. Then the two roots of the characteristic equation are different, which
means that the solution has a completely different form:

Rn D a �

�
1 � p

p

�n
C b � 1n

In mathematical terms, this is where the fair game and the “almost fair” game take
off in completely different directions: in one case we get a linear solution and in
the other we get an exponential solution! This is going to be bad news for anyone
playing the “almost fair” game.

Anyway, substituting the boundary conditions into the general form of the solu-
tion gives a system of linear equations:

0 D aC b

1 D a �

�
1 � p

p

�w
C b:

Solving this system, gives:

a D
1�

1�p
p

�w
� 1

; b D �
1�

1�p
p

�w
� 1

:

“mcs-ftl” — 2010/9/8 — 0:40 — page 545 — #551

20.2. Gambler’s Ruin 545

Substituting these values back into the general solution gives:

Rn D

0B@ 1�
1�p
p

�w
� 1

1CA � �1 � p
p

�n
�

1�
1�p
p

�w
� 1

D

�
1�p
p

�n
� 1�

1�p
p

�w
� 1

:

(Suddenly, Stencil’s life doesn’t seem so bad, huh?)

20.2.3 Bad News!

We have an answer! But it’s not good news. If the gambler starts with n dollars and
wins each bet with probability p, then the probability she reaches w dollars before
going broke is: �

1�p
p

�n
� 1�

1�p
p

�w
� 1

:

Let’s try to make sense of this expression. If the game is biased against her, as
with roulette, then 1�p (the probability she loses) is greater than p (the probability
she wins). If n, her starting wealth, is also reasonably large, then both exponenti-
ated fractions are big numbers and the -1’s don’t make much difference. Thus, her
probability of reaching w dollars is very close to:�

1 � p

p

�n�w
D

�
1 � p

p

�m
:

In particular, if she is hoping to come out m D $100 ahead in roulette, then p D
18=38 and her probability of success is:�

10

9

��100
D 1 in 37648:619496:

This explains the strange number we arrived at earlier! In fact, this number does
not change no matter how large n gets, so even if the gambler starts with a trillion
dollars, she is sill not likely to ever get ahead by even $100.

20.2.4 But Why?

Why does the gambler’s starting wealth have so little impact on her probability of
coming out ahead? Intuitively, there are two forces at work. First, the gambler’s

“mcs-ftl” — 2010/9/8 — 0:40 — page 546 — #552

Chapter 20 Random Walks546

wealth has random upward and downward swings due to runs of good and bad luck.
Second, her wealth has a steady, downward drift because she has a small expected
loss on every bet. The situation is illustrated in Figure 20.2.

w

n

0

downward
drift

gambler’s
wealth

time

upward
swing

(too late)

Figure 20.2 In a biased random walk, the downward drift usually dominates
swings of good luck.

For example, in roulette, the gambler wins a dollar with probability 18=38 and
loses a dollar with probability 20=38. Therefore, her expected return on each bet is

1 �
18

38
C .�1/ �

20

38
D
�2

38
D �

1

19
:

Thus, her expected wealth drifts downward by a little over 5 cents per bet.
One might think that if the gambler starts with a billion dollars, then she will

play for a long time, so at some point she should have a lucky, upward swing that
puts her $100 ahead. The problem is that her capital is steadily drifting downward.
And after her capital drifts down a few hundred dollars, she needs a huge upward
swing to save herself. And such a huge swing is extremely improbable. So if she
does not have a lucky, upward swing early on, she’s doomed forever. As a rule of
thumb, drift dominates swings over the long term.

20.2.5 Expected Playing Time

Even though casino gamblers are destined to lose, some of them enjoy the process.
So let’s figure out how long their enjoyment is expected to last.

Let Xn be the expected number of bets before going home (broke or a winner).

“mcs-ftl” — 2010/9/8 — 0:40 — page 547 — #553

20.2. Gambler’s Ruin 547

Reasoning as in Section 20.1.5, we can set up a recurrence for Xn:

X0 D 0;

Xw D 0;

Xn D 1C .1 � p/Xn�1 C pXnC1: (20.3)

This is the same as the recurrence for Rn in Equation 20.2 except for the inhomo-
geneous part.

To find the particular solution, we try Xn D c (which doesn’t work) and then
Xn D cC dn (which does work as long as p ¤ 1=2). Plugging Xn D cC dn into
Equation 20.3 yields:

c C dn D 1C .1 � p/.c C d.n � 1//C p.c C d.nC 1//

D 1C c C dn � .1 � p/d C pd

and thus that
d D

1

1 � 2p
:

Since c is arbitrary, we will set c D 0 and our particular solution is

Xn D
n

1 � 2p
:

The characteristic equation for Equation 20.3 is

px2 � x C .1 � p/ D 0:

We have already determined that the roots for this equation are

1 � p

p
and 1:

Hence, the general solution to the recurrence is

Xn D a

�
1 � p

p

�n
C b C

n

1 � 2p
:

Plugging in the boundary conditions, we find that

0 D aC b;

0 D a

�
1 � p

p

�w
C b C

w

1 � 2p
:

“mcs-ftl” — 2010/9/8 — 0:40 — page 548 — #554

Chapter 20 Random Walks548

Hence

a D

�

�
w

1 � 2p

�
�
1 � p

p

�w
� 1

and b D

�
w

1 � 2p

�
�
1 � p

p

�w
� 1

:

The final solution to the recurrence is then

Xn D

�

�
w

1 � 2p

��
1 � p

p

�n
�
1 � p

p

�w
� 1

C

�
w

1 � 2p

�
�
1 � p

p

�w
� 1

C
n

1 � 2p

D
n

1 � 2p
�

�
w

1 � 2p

�2664
�
1 � p

p

�n
� 1�

1 � p

p

�w
� 1

3775 :
Yikes! The gambler won’t have any fun at all if she is thinking about this equa-

tion. Let’s see if we can make it simpler in the case when m D w � n is large.
Since p < 1=2, .1 � p/=p > 1 and for large m,

lim
m!1

�
w

1 � 2p

�2664
�
1 � p

p

�n
� 1�

1 � p

p

�w
� 1

3775 D lim
m!1

�
w

1 � 2p

��
1 � p

p

��m
D 0:

This means that as m gets large,

Xn �
n

1 � 2p
;

which is much simpler. It says that if the gambler starts with $n, she will expect
to make about n=.1 � 2p/ bets before she goes home broke. This seems to make
sense since she expects to lose

1 � .1 � p/C .�1/p D 1 � 2p

dollars on every bet and she started with n dollars.3

3Be careful, it is tempting to use such a direct and simple argument instead of all those nasty
recurrences, but such an argument is not correct. There are examples where the expected duration of
a process is not close to the starting point divided by the expected decrease at each step.

“mcs-ftl” — 2010/9/8 — 0:40 — page 549 — #555

20.3. Walking in Circles 549

0

B
1

2

3

�

�

k � 1k
k C 1

�

�

n � 1

n

Figure 20.3 nC 1 people sitting in a circle. The B indicates the person with the
broccoli—in this case, person 0.

20.3 Walking in Circles

So far, we have considered random walks on a line. Now we’ll look at a problem
where the random walk is on a circle. Going from a line to a circle may not seem
like such a big change, but as we have seen so often with probability, small changes
can have large consequences that are often beyond the grasp of our intuition.

20.3.1 Pass the Broccoli

Suppose there are nC 1 people, numbered 0, 1, . . . , n, sitting in a circle as shown
in Figure 20.3. The B in Figure 20.3 indicates that person 0 has a big stalk of
nutritious broccoli, which provides 250% of the US recommended daily allowance
of vitamin C and is also a good source of vitamin A and iron. (Typical for a random
walk problem, this game originally involved a pitcher of beer instead of a broccoli.
We’re taking the high road again.)

Person 0 passes the broccoli either to the person on his left or the person on his
right with equal probability. Then, that person also passes the broccoli left or right
at random and so on. After a while, everyone in an arc of the circle has touched the
broccoli and everyone outside that arc has not. Eventually, the arc grows until all
but one person has touched the broccoli. That final person is declared the winner
because they have avoided the brocolli for the longest time.

Suppose that you are allowed to position yourself anywhere in the circle. Where
should you stand in order to maximize the probability that you win? You shouldn’t
be person 0; you can’t win in that position. The answer is “intuitively obvious”:
you should sit as far as possible from person 0, which would be position n=2 or
.nC 1/=2 depending on whether n is even or odd.

“mcs-ftl” — 2010/9/8 — 0:40 — page 550 — #556

Chapter 20 Random Walks550

20.3.2 There Is No Escape

Let’s try to verify this intuition. Suppose that you sit at position k ¤ 0. At some
point, the broccoli is going to end up in the hands of one of your neighbors. This
has to happen eventually; the game can’t end until at least one of them touches it.
Let’s say that person k � 1 gets the broccoli first. Now let’s cut the circle between
yourself and your other neighbor, person k C 1:

k .k � 1/ : : : 3 2 1 0 n .n � 1/ : : : .k C 1/:

B

There are two possibilities. If the broccoli reaches you before it reaches person
k C 1, then you lose. But if the broccoli reaches person k C 1 before it reaches
you, then every other person has touched the broccoli and you win. So we need to
compute the probability that the broccoli hops n � 1 people to the right before it
takes 1 hop to the left. This will be the probability that you win.

But this is just the flea problem all over again. From the analysis in Section 20.1.3,
we know that the probability of moving n � 1 steps rightward before moving one
step leftward is simply 1=n. This means that wherever you sit (aside from posi-
tion 0, of course), your probability of getting the broccoli last is 1=n.

So our intuition was completely wrong (again)! It doesn’t matter where you sit.
Being close to the broccoli or far away at the start makes no difference; there is no
escape—you still get the broccoli last with probability 1=n.

Enough with the bad news: Stencil’s doomed, you go home broke from the
casino, and you can’t escape the broccoli. Let’s see how to use probability to make
some money.

	Cover
	Mathematics for Computer Science
	©
	Contents
	I Proofs
	1 Propositions
	1.1 Compound Propositions
	1.2 Propositional Logic in Computer Programs
	1.3 Predicates and Quantifiers
	1.4 Validity
	1.5 Satisfiability

	2 Patterns of Proof
	2.1 The Axiomatic Method
	2.2 Proof by Cases
	2.3 Proving an Implication
	2.4 Proving an ``If and Only If''
	2.5 Proof by Contradiction
	2.6 Proofs about Sets
	2.7 Good Proofs in Practice

	3 Induction
	3.1 The Well Ordering Principle
	3.2 Ordinary Induction
	3.3 Invariants
	3.4 Strong Induction
	3.5 Structural Induction

	4 Number Theory
	4.1 Divisibility
	4.2 The Greatest Common Divisor
	4.3 The Fundamental Theorem of Arithmetic
	4.4 Alan Turing
	4.5 Modular Arithmetic
	4.6 Arithmetic with a Prime Modulus
	4.7 Arithmetic with an Arbitrary Modulus
	4.8 The RSA Algorithm

	II Structures
	5 Graph Theory
	5.1 Definitions
	5.2 Matching Problems
	5.3 Coloring
	5.4 Getting from A to B in a Graph
	5.5 Connectivity
	5.6 Around and Around We Go
	5.7 Trees
	5.8 Planar Graphs

	6 Directed Graphs
	6.1 Definitions
	6.2 Tournament Graphs
	6.3 Communication Networks

	7 Relations and Partial Orders
	7.1 Binary Relations
	7.2 Relations and Cardinality
	7.3 Relations on One Set
	7.4 Equivalence Relations
	7.5 Partial Orders
	7.6 Posets and DAGs
	7.7 Topological Sort
	7.8 Parallel Task Scheduling
	7.9 Dilworth's Lemma

	8 State Machines

	III Counting
	9 Sums and Asymptotics
	9.1 The Value of an Annuity
	9.2 Power Sums
	9.3 Approximating Sums
	9.4 Hanging Out Over the Edge
	9.5 Double Trouble
	9.6 Products
	9.7 Asymptotic Notation

	10 Recurrences
	10.1 The Towers of Hanoi
	10.2 Merge Sort
	10.3 Linear Recurrences
	10.4 Divide-and-Conquer Recurrences
	10.5 A Feel for Recurrences

	11 Cardinality Rules
	11.1 Counting One Thing by Counting Another
	11.2 Counting Sequences
	11.3 The Generalized Product Rule
	11.4 The Division Rule
	11.5 Counting Subsets
	11.6 Sequences with Repetitions
	11.7 Counting Practice: Poker Hands
	11.8 Inclusion-Exclusion
	11.9 Combinatorial Proofs
	11.10 The Pigeonhole Principle
	11.11 A Magic Trick

	12 Generating Functions
	12.1 Definitions and Examples
	12.2 Operations on Generating Functions
	12.3 Evaluating Sums
	12.4 Extracting Coefficients
	12.5 Solving Linear Recurrences
	12.6 Counting with Generating Functions

	13 Infinite Sets
	13.1 Injections, Surjections, and Bijections
	13.2 Countable Sets
	13.3 Power Sets Are Strictly Bigger
	13.4 Infinities in Computer Science

	IV Probability
	14 Events and Probability Spaces
	14.1 Let's Make a Deal
	14.2 The Four Step Method
	14.3 Strange Dice
	14.4 Set Theory and Probability
	14.5 Infinite Probability Spaces

	15 Conditional Probability
	15.1 Definition
	15.2 Using the Four-Step Method to Determine Conditional Probability
	15.3 A Posteriori Probabilities
	15.4 Conditional Identities

	16 Independence
	16.1 Definitions
	16.2 Independence Is an Assumption
	16.3 Mutual Independence
	16.4 Pairwise Independence
	16.5 The Birthday Paradox

	17 Random Variables and Distributions
	17.1 Definitions and Examples
	17.2 Distribution Functions
	17.3 Bernoulli Distributions
	17.4 Uniform Distributions
	17.5 Binomial Distributions

	18 Expectation
	18.1 Definitions and Examples
	18.2 Expected Returns in Gambling Games
	18.3 Expectations of Sums
	18.4 Expectations of Products
	18.5 Expectations of Quotients

	19 Deviations
	19.1 Variance
	19.2 Markov's Theorem
	19.3 Chebyshev's Theorem
	19.4 Bounds for Sums of Random Variables
	19.5 Mutually Independent Events

	20 Random Walks
	20.1 Unbiased Random Walks
	20.2 Gambler's Ruin
	20.3 Walking in Circles

