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v

 This is the third volume in the series of books on translational medicine gleaned 
from the annual vascular biology and clinical medicine workshop held at the Royal 
College of Physicians. The chapters are invited papers presented by internationally 
recognized basic science and clinical experts. The aim of the workshop is to bring 
basic scientists and clinicians together to discuss their work and perspectives in 
areas of cardiovascular medicine and biology. We ask them to address the areas 
which are likely to be important in the future and the associated challenges. 

 Our previous books,  Vascular Complications in Human Disease  (2008) and 
 Advances in Vascular Medicine  (2010), both also published by Springer, have dealt 
with other key and developing areas of basic science and its clinical applications. 
This volume covers new and exciting advances in cardiovascular medicine. As 
before, we have tried to explore the bi-directional and integrated approaches of 
translational cardiovascular medicine, linking basic science to patient care. 

 The chapters in this book span a number of translational themes in cardiovascu-
lar medicine. There is a section on surgery    and non-pharmacological treatments for 
atherosclerotic disease of the aorta. Pulmonary arterial hypertension is a rapidly 
evolving area following recent discoveries of some of the molecular pathways 
implicated in its pathogenesis which have led to some promising drug development 
and clinical optimism. Some of the trials underpinning clinical    guidelines are 
described. Other chapters include “Cytoprotective Mechanisms in the Vasculature,” 
“Potassium Channels Regulating the Electrical Activity of the Heart,” and “Novel 
Molecular Mediators Regulating the Cardiovascular System.” We are particularly 
pleased to include a chapter on “The Broken Heart Syndrome” by our friend and 
colleague, Professor Larry Cohen, from Yale University School of Medicine, with 
which UCL has recently established a collegiate and collaborative relationship. 

 We hope that this book, a formal record and reference of our annual workshop, 
is a useful way to transmit the information from the excellent papers presented at the 
meeting to a wider readership. Our authors provide their expert insight into impor-
tant areas of translational cardiovascular medicine and key bibliographies for the 
reader. 

        Preface   



vi Preface

 We hope that this book, like its predecessors, is a useful contribution to the litera-
ture in this fascinating fi eld. 

 David Abraham 
 Clive Handler 

 Michael Dashwood 
 Gerry Coghlan   
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    1.1   General Introduction 

 The existence of perivascular cells associated with capillaries was fi rst reported by 
Eberth and Rouget in the late nineteenth    century. Since then, these cells have been 
given a variety of names, including Rouget cells, mural cells, deep cells, adventitial 
cells, perivascular cells, and periendothelial cells. Zimmermann introduced the 
name “pericyte” ( peri  = around;  cyte  = cell) in 1923, and it is this term which is still 
used most frequently. 

 In this chapter, we will discuss the morphological characteristics of pericytes, 
their frequency and distribution within the vasculature, the markers that can be used 
to identify pericytes, and the theories about the origin of these cells. In addition, we 
shall discuss pericyte function and review the evidence that pericytes are adaptable 
vascular progenitor    cells with potential therapeutic use. Readers are referred to 
other excellent recent reviews for information on additional pericyte functions, 
including regulating microvascular blood fl ow, and pericyte involvement in diseases 
such as cancer, hypertension, and diabetic retinopathy  [  1–  3  ] .  

    1.2   Pericyte Morphology, Frequency, and Distribution 

 Although pericytes are an extremely heterogeneous population of cells, they can be 
characterized by several morphological properties. For example, pericytes are typi-
cally elongated, stellate-shaped cells with multiple processes that extend along the 
length and, sometimes, the circumference of the vessel. In addition, pericytes often 

    G.  D.   Hyde   •     A.  E.   Canfi eld   (*)
     Wellcome Trust Centre for Cell-Matrix Research & Cardiovascular Research Group, 
The Michael Smith Building ,  School of Biomedicine, Faculty of Medical & Human Sciences, 
University of Manchester ,   Oxford Road, Manchester, M13 9PT ,  UK    
e-mail:  ann.canfi eld@manchester.ac.uk   
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possess a heterochromatic nucleus, large numbers of plasmalemmal vesicles, and 
contractile microfi lament bundles (see Fig.  1.1 ).  

 Interestingly, the actual shape and size of pericytes can vary markedly depending 
on their anatomical location. The relative frequency of pericytes also varies between 
vessel type, developmental stage, and species. For example, the human retina has 
been shown to have a higher pericyte to endothelial cell ratio than rats (1:1 and 1:3 
respectively)  [  4  ]  and retinal microvessels have been reported to contain a higher 
ratio (1:1) compared to those in striated muscle (1:100)  [  5  ] . It is also noteworthy 
that alterations in pericyte frequency and distribution can contribute to the develop-
ment and progression of several pathologies, including diabetic retinopathy (loss), 
myopathy (gain), fi brosis, and cancer (distribution)  [  1  ] . 

 In arterioles, capillaries, and venules, pericytes are closely associated with 
endothelial cells and are embedded within a shared basement membrane. Via their 
long processes, pericytes can make contact with multiple endothelial cells, resulting 
in the partial coverage of the abluminal surface, and can also connect vessels within 
the microcirculation. Pericytes are frequently found adjacent to endothelial cell 
junctions and themselves form multiple connections with endothelial cells via peg 
and socket arrangements, adherens junctions, gap junctions, and tight junctions. 

 Pericyte or pericyte-like cells have also been identifi ed in larger vessels by immu-
nohistochemistry using the 3G5 antibody  [  6–  8  ]  which recognizes a cell surface gan-
glioside present on pericytes but not on endothelial cells, smooth muscle cells, or 
fi broblasts  [  9  ] . Using this antibody, pericytes have been shown to be present in the 
subendothelial layer of the intima; in the media and in the vaso vasora of the adven-
titia; in large, medium, and small arteries and veins. Furthermore, the pericyte-like 
cells identifi ed in these locations were shown to contact each other via their  processes 
forming a subendothelial network in the vascular bed  [  6  ] .  

  Fig. 1.1    Transmission electron micrograph of a capillary. A ring of endothelial cells ( EC ) forms 
the lumen of the capillary which contains several erythrocytes. On the abluminal surface of the 
capillary, a pericyte can be seen. The pericyte has several characteristic features including a large 
heterochromatic nucleus ( HN ), and an elongated cellular process containing large amounts of rough 
endoplasmic reticulum ( RER ) (Image kindly provided by Dr. C. Jones, University of Manchester)       
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    1.3   Pericyte Markers 

 The heterogeneous nature of pericytes has made the identifi cation of cell markers 
diffi cult. Indeed, the identifi cation of a marker exclusively expressed by pericytes 
and expressed by all pericytes at all times remains elusive. In the absence of such a 
maker, many other antigens have been used (see Table  1.1 ).  

 It should be stressed that the expression of these markers by pericytes is species, 
tissue, developmental stage, and disease dependent. For example, NG2 is present on 
the surface of arteriolar and capillary pericytes but is absent in venular pericytes 
 [  19  ] . Alpha-smooth muscle actin is absent in pericytes in many tissues but is present 
in pericytes isolated from chick embryonic brains  [  25  ]  and appears to be upregu-
lated in pericytes within tumors  [  21,   26  ] .  

    1.4   Pericyte Origin 

 One reason for the heterogeneity in pericyte marker expression may be their differing 
origins. As with vascular smooth muscle cells (VSMCs)  [  27  ] , pericytes have been 
proposed to arise from multiple embryonic and cellular progenitors. Pericytes are 
often thought of as having a mesenchymal origin. However, studies using avian 
embryos have shown that the pericytes of the face and forebrain develop from the 
neural crest, whereas the endothelial cells are mesoderm-derived  [  28  ] . It has also been 
reported that perivascular mural cells (pericytes and VSMC) and endothelial cells can 
both develop from Flk1-positive embryonic stem cells  [  29  ] . As Flk1 is a marker of the 
embryonic lateral plate mesoderm, this work suggests that both endothelial and 
perivascular cells have a common mesodermal origin. These two theories are not 
mutually exclusive, and it is therefore possible that in the face and forebrain, pericytes 
arise from the neural crest, while in other parts of the body they develop from a more 
mesodermal progenitor that can also give rise to endothelial cells. 

   Table 1.1    Most commonly used pericyte markers   
 Marker  Description  Example References 
 Alpha-smooth muscle actin  Cytoskeletal contractile protein   [  10–  13  ]  
 Aminopeptidase A + N  Zinc-dependent peptidase   [  14–  16  ]  
 Desmin  Intermediate fi lament protein predomi-

nantly expressed in muscle cells 
  [  17,   18  ]  

 Nestin  Intermediate fi lament protein predomi-
nantly expressed in nerve cells 

  [  14  ]  

 Neuron glial 2 (NG2) 
(HMWMAA) 

 Chondroitin sulfate proteoglycan   [  19–  21  ]  

 Platelet-derived growth factor 
(PDGF) receptor-beta 

 Transmembrane receptor tyrosine 
kinase 

  [  22  ]  

 Regulator of G protein 
signaling 5 (RGS-5) 

 GTPase-activating protein   [  23,   24  ]  

 3G5  Cell surface ganglioside   [  6,   9  ]  
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 The study that proposed a common ontogeny for both perivascular mural cells 
and endothelial cells went on to show that Flk1-positive embryonic stem cell dif-
ferentiation into these cell types is dependent on PDGF-BB and vascular endothe-
lial growth factor (VEGF) respectively. As a result of this, and many other studies, 
it is now well known that PDGF-BB and its receptors are critical for pericyte dif-
ferentiation, recruitment to endothelial tubes, and normal vessel morphogenesis and 
function  [  30–  33  ] . 

 In addition to having multiple embryonic origins, it has also been suggested that 
pericytes can be derived from several adult cell types. These include VSMC  [  34  ] , 
endothelial cells  [  35  ] , and bone marrow–derived cells  [  36–  39  ] . Pericyte progenitor 
cells have also been isolated from the rat aorta using suspension culture. This method 
led to the isolation of an anchorage-independent population of cells that formed 
spheroidal colonies in suspension and that expressed several pericyte markers  [  40  ] .  

    1.5   Pericyte Function 

 Pericytes have multiple functions within the vasculature. These include:
   Giving structural rigidity to the vessel wall  • 
  Regulating the contractile ability, blood fl ow, and permeability of the vessel  • 
  Regulating endothelial cell proliferation and differentiation  • 
  Maintaining the functional integrity of the blood–brain barrier  • 
  Phagocytic and antigen-presenting functions    • 
 For further details on these functions, readers are referred to other recent excel-

lent reviews  [  1,   3  ] . This chapter will focus on pericyte function as vascular progeni-
tor cells. 

    1.5.1   Pericytes as Progenitor Cells: An Historical Perspective 

 In 1927, Maximov described pericytes as “resting wandering cells” and “primitive 
mesenchymal cells”  [  41  ] . After Maximov’s ideas of the 1920s, the concept that 
pericytes could act as progenitor cells failed to receive much attention until the early 
1980s. At this time, it was proposed that pericytes could give rise to immature adi-
pocytes in response to thermal lesions in the rat inguinal fat pad  [  42  ] , and that peri-
cytes were the target of bone morphogenetic protein (BMP) signaling during cranial 
bone regeneration, resulting in pericyte differentiation into osteoprogenitor cells 
 [  43  ] . These early analyses of animal injury models generated the fi rst data indicat-
ing that pericytes had the ability to differentiate into other cell types. 

 In a series of elegant studies performed in the early 1990s, Diaz-Flores and col-
leagues labeled vascular cells with Monastral Blue and monitored their fate in vivo. 
Their studies investigating neochondrogenesis in grafted perichondrium  [  44  ]  and 
periosteal osteogenesis  [  45  ]  indicated that pericytes could differentiate down the 
chondrogenic and osteogenic lineages, respectively. Subsequent ultrastructural 
studies during post-injury bone formation supported these conclusions  [  46,   47  ] . 
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 The fi rst direct evidence that pericytes could undergo osteogenic differentiation 
was published in 1990, when it was demonstrated that isolated bovine retinal peri-
cytes could deposit a calcifi ed matrix which resembled bone in vitro  [  48  ] . After 
reaching confl uence, pericytes cultured on either plastic or a collagen substratum 
formed multilayered areas that retracted away from each other, leading to the for-
mation of multicellular nodules containing needle-like crystals of hydroxyapatite 
(see Figs.  1.2  and  1.3 ). Furthermore, the cells within these nodules expressed mark-
ers of the osteoblastic lineage including bone sialoprotein, osteocalcin, osteonectin, 
and osteopontin  [  50  ] .   

 In addition to undergoing osteogenic differentiation, cultured pericytes were 
shown to be able to differentiate along the chondrogenic and adipogenic lineages. 
When grown as pellets in chondrogenic medium, pericytes deposited an extracel-
lular matrix rich in sulfated proteoglycans and expressed the chondrogenic markers 
Sox9, aggrecan, and type II collagen (see Fig.  1.3 ). In adipogenic medium, pericytes 

a b

c

dd ee

f

  Fig. 1.2    Pericytes cultured in vitro deposit a calcifi ed matrix. Immunocytochemical detection of 
alpha-smooth muscle actin ( a ) and the cell surface ganglioside recognized by the 3G5 monoclonal 
antibody ( b ) in pericytes isolated from bovine retinal microvessels. Scanning electron micrograph 
of a multicellular nodule formed by bovine retinal pericytes during in vitro culture ( c ). Transmission 
electron micrographs showing matrix calcifi cation in sections cut through pericyte nodules ( d–f ). 
Areas of dense calcifi cation can be seen in many sections ( d–e ). In addition, matrix vesicles 
( arrowed ) and needle-like crystals of hydroxyapatite are apparent ( f ) (Figures  a  and  b  are repro-
duced from Farrington-Rock et al.  [  49  ] . Figures  c–f  are reproduced from Schor et al.  [  48  ] )       
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accumulated oil red O positive lipid droplets and expressed the adipocyte transcrip-
tion factor proliferator-activated receptor-gamma  [  49  ] . 

 Direct evidence that pericytes could undergo multi-lineage differentiation in vivo 
was generated when isolated pericytes were inoculated into diffusion chambers and 
implanted into athymic mice. When recovered, the chambers containing pericytes 
were found to contain tissue resembling bone, mineralized cartilage, fi brocartilage, 
non-mineralized cartilage with lacunae containing chondrocytes and small clusters 
of cells that resembled adipocytes  [  49,   50  ]  (see Fig.  1.3 ). 

 There is now evidence that in addition to being able to differentiate along the 
“classical” osteogenic, chondrogenic, and adipogenic lineages, pericytes can also 
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  Fig. 1.3    Pericytes can undergo osteogenic, chondrogenic, and adipogenic differentiation in vitro 
and in vivo. In vitro differentiation of pericytes ( a–c ). Pericytes grown in monolayer in vitro form 
multicellular nodules that stain positive with alizarin red, indicating the presence of calcium deposits 
( a ). Pericytes grown as a pellet in chondrogenic medium produce type II collagen that can be detected 
immunohistochemically ( brown staining ) ( b ). Pericytes cultured in adipogenic medium accumulate 
intracellular lipid droplets ( e ). In vivo differentiation of pericytes ( d–f ). Pericytes inoculated into dif-
fusion chambers and implanted into athymic mice could be seen to form mineralized bone ( d ), carti-
lage and mineralized cartilage that stained with Von Kossa indicating the presence of mineral ( e ), and 
adipocyte-like cells ( f ) (Figures  b, e–f  are reproduced from Farrington-Rock et al.  [  49  ] )       
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differentiate into VSMCs  [  51  ] , Leydig cells  [  52  ] , fi broblasts  [  53  ] , myoblasts  [  54  ] , 
myofi broblasts  [  55,   56  ] , odontoblasts  [  57  ] , and neuronal cell types  [  58  ] , suggesting 
that these cells have enormous therapeutic potential.  

    1.5.2   Regulation of Pericyte Differentiation 

 Aberrant pericyte differentiation has been implicated in multiple disorders includ-
ing chondro/osteoblastic differentiation in calcifi c vasculopathies  [  7  ]  and myofi bro-
blastic differentiation in kidney fi brosis  [  55  ] , dermal scarring  [  53  ] , spinal cord 
scarring  [  59  ] , and systemic sclerosis  [  56  ] . Understanding what regulates pericyte 
differentiation would not only be of potential therapeutic use in these conditions but 
would also be of use in tissue regeneration and engineering strategies that use peri-
cytes as a source of progenitor cells. 

 Despite the potential value of understanding how pericyte differentiation is regu-
lated, little is currently known. One signaling pathway that has been implicated in 
pericyte differentiation is the canonical Wnt pathway  [  60  ] . In these studies, Wnt 
signaling was activated by the addition of either Wnt3a or LiCl, or inhibited (by 
adenovirus mediated overexpression of dominant negative TCF-4) during pericyte 
in vitro differentiation. Using this approach, it was demonstrated that Wnt signaling 
promoted pericyte chondrogenic differentiation, and inhibited pericyte adipogenic 
differentiation  [  60  ] . In support of this fi nding, it has been demonstrated that endothe-
lial cells repress the adipogenic potential of adipose stromal cells (which have a 
functional and phenotypic overlap with pericytes  [  61,   62  ] ) by the secretion of Wnt 
ligands  [  61  ] . Recent studies have also shown that Wnt signaling regulates the osteo-
genic differentiation of pericytes, although this effect is highly dependent upon the 
stage at which Wnt signaling is activated (Canfi eld and Brennan, unpublished infor-
mation). BMPs and fi broblast growth factors (FGFs) have also been implicated in 
pericyte differentiation. BMP signaling has been suggested to promote the osteo-
genic differentiation of pericytes  [  43  ]  whereas basic FGF has been shown to pro-
mote the neuronal differentiation of central nervous system–derived pericytes  [  58  ] . 

 In addition to secreted signaling molecules, dexamethasone, a synthetic gluco-
corticoid, has been shown to downregulate pericyte expression of calcifi cation 
inhibitor molecules and thereby promote pericyte osteogenic differentiation  [  63  ] . 
Similarly, dexamethasone has been shown to stimulate odontoblastic differentiation 
of pericytes isolated from human dental pulp  [  57  ] . However, it is clear that we still 
have much to learn about what regulates pericyte differentiation, both in disease 
states and in potential tissue regeneration strategies.   

    1.6   Progenitor Cells and the Perivascular Niche 

 The perivascular niche is a 3-dimensional microenvironment that includes the proge-
nitor cells, their neighboring differentiated cells, the extracellular matrix, and soluble 
secreted molecules. It is proposed that residing within this specifi c niche allows adult 
progenitor cells to retain their multi-lineage potential and self-renewal capacity. 
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 Many studies have suggested that in different tissues and organs, adult progenitor 
cells or mesenchymal stromal/stem cells (MSCs) reside within a perivascular niche. 
These include: bone marrow  [  64,   65  ] , dental pulp  [  66  ] , periodontal ligament  [  67  ] , 
aorta  [  7,   68  ] , umbilical cord Wharton’s jelly  [  69  ] , skeletal muscle  [  54  ] , adipose tis-
sue  [  62,   70  ] , neural tissue  [  71  ] , infrapatellar fat pads  [  72  ] , chorionic villi  [  73  ] , bone 
 [  74  ] , and saphenous vein  [  75  ] . Indeed, it has now been established that MSCs reside 
in a perivascular niche in virtually all postnatal tissues and organs  [  71,   76,   77  ] . 

 In many of these cases, the population of adult stem cells isolated from the tissue 
or organ has been found to express markers of pericytes. For example, dental pulp 
stem cells were found to be positive for alpha-smooth muscle actin and the cell 
surface ganglioside recognized by the 3G5 antibody  [  66  ] . Skeletal muscle progeni-
tors were shown to express NG2 and alkaline phosphatase  [  54  ] , adipose-derived 
stem cells have been shown to express the 3G5 epitope  [  70  ]  and other pericyte 
markers  [  62  ] , and stem cells in human placental chorionic villi  [  73  ]  and infrapatel-
lar fat pads  [  72  ]  were shown to express the 3G5 epitope. Indeed, adult stem cells 
have been isolated from many human tissues on the basis of the expression of peri-
cyte markers  [  66,   67,   76,   77  ] . 

 In addition to adult stem cells being shown to express pericyte markers, pericytes 
have been shown to express markers normally associated with mesenchymal stem 
cells, such as STRO-1  [  50,   66,   77  ] . Furthermore, pericytes isolated from multiple 
human tissues have been shown to have clonal multi-lineage potential during long-
term culture  [  77  ] , and such data has led Caplan to ask the question: “are all MSCs 
pericytes?”  [  78  ]  In 2008, Covas and colleagues performed gene expression profi les 
and other characterizations on MSCs isolated from adult and fetal human tissues, dif-
ferentiated cell types, and retinal pericytes  [  79  ] . A comparison of the gene expression 
profi les demonstrated that MSCs and pericytes are very similar, more similar then 
pericytes and smooth muscle cells or fi broblasts, for example  [  79  ] . Taken together, 
these data demonstrate that pericytes and adult mesenchymal stem cells have many 
common characteristics including their perivascular location, their distribution 
throughout the body, their cellular phenotype, and their differentiation potentials. 

    1.6.1   Therapeutic Potential of Pericytes 

 Several groups have started to explore the potential of using pericytes or pericyte-like 
cells as a source of progenitor cells for tissue regeneration and repair. Promising 
results have been achieved using human skeletal muscle–derived pericytes for the 
treatment of Duchenne muscular dystrophy  [  54  ] . In this study, human skeletal mus-
cle–derived pericytes were inoculated into a murine model of Duchenne muscular 
dystrophy and their fate, effect on muscle regeneration and functional consequence, 
was analyzed. The implanted pericytes where shown to colonize host muscle, gener-
ate muscle fi bers containing human dystrophin, and to result in partial but signifi cant 
functional recovery as judged by frequency of falling and treadmill exhaustion tests. 

 Another group has also demonstrated that in addition to being able to repair 
dystrophic muscle, human pericytes derived from either muscle, placenta, or pan-
creas can regenerate cardiotoxin-injured muscle  [  77  ] . The same group has also 
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reported that human skeletal muscle–derived pericytes improve cardiac function in 
acutely infarcted mouse hearts, and they suggested that this improvement may be 
due to increased angiogenesis and reduced fi brosis  [  80,   81  ] . These suggestions are 
consistent with recent studies demonstrating that pericyte-like progenitor cells 
increase neovascularization in a mouse model of muscle ischaemia  [  75  ]  and 
improve repair of infarcted mouse hearts through pro-angiogenic and anti-fi brotic 
programs  [  82  ] . 

 Beyond muscle regeneration, there is evidence for pericyte therapeutic potential 
in bone fracture repair. Over twenty-fi ve years ago, pericytes were suggested to be 
the target of BMP signaling and the source of osteoprogenitor cells during cranial 
bone regeneration; much more recently, it was shown that inoculation with human 
umbilical cord perivascular cells (a cell population with many similarities to peri-
cytes  [  69  ] ) increases the rate of bone and cartilage regeneration in mice. A recent 
study has also shown that pericytes can promote epidermal tissue renewal by modi-
fying the extracellular microenvironment of epithelial stem cells, suggesting that 
these cells may also be of therapeutic use in skin regeneration  [  83  ] . 

 The potential use of pericytes for therapeutic tissue engineering is also starting to 
be explored  [  84  ] . He and colleagues seeded human pericytes onto bi-layered tubular, 
elastomeric, biodegradable scaffolds and implanted them into rats as aortic interposi-
tion grafts. Interestingly, the grafts initially seeded with pericytes had a higher pat-
ency rate than unseeded controls. There was evidence of extensive tissue remodeling, 
together with the deposition of collagen and elastin, and the presence of cells express-
ing VSMC and endothelial cell markers. Intriguingly, these cells appeared to origi-
nate from the host tissue, rather than from the pericytes themselves  [  84  ] , which 
suggests that pericytes may improve the patency of vascular grafts by promoting the 
recruitment of host progenitor cells through the secretion of specifi c growth factors.   

    1.7   Conclusion 

 That pericytes closely resemble MSCs and are adaptable progenitor cells with great 
potential for tissue regeneration and repair is without question. The therapeutic 
potential of these cells may result from their ability to differentiate along multiple 
lineages, but it may also be due to their ability to evoke a host response, by releasing 
specifi c growth factors, cytokines, or matrix proteins, or by inducing angiogenesis 
 [  75,   80,   83  ] . However, as uncontrolled differentiation of pericytes can also contrib-
ute to calcifi c vasculopathies and fi brosis (for example), it is important that long-
term follow-up studies are performed when the therapeutic potential of these cells 
is evaluated in vivo. 

 Several key questions remain to be resolved. For example: Do all pericytes have 
multi-lineage potential? What is the nature of the perivascular niche? How is the 
stemness of pericytes maintained and controlled in vivo? How are pericytes liber-
ated from their niche? How is pericyte differentiation regulated? Do pericytes really 
contribute to repair and regeneration in vivo and, perhaps most importantly, do these 
cells have therapeutic potential in humans? The answer to all of these questions is 
eagerly awaited.      
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    2.1   Introduction 

 Ischemic heart disease is a major cause of morbidity and mortality in the Western 
world. It occurs when oxygen delivery cannot meet the metabolic needs of the heart, 
as observed in patients with stable coronary artery disease as well as those    experi-
encing acute myocardial infarction. Although conditions leading to myocardial 
injury have been well studied, and physical means of revascularization by stenting 
or coronary bypass surgery are well developed, there remains a need to defi ne treat-
ments that limit damage in the acute phase or promote revascularization by medical 
means. In particular, mechanisms that preserve cellular function during ischemia 
remain poorly understood. 

 Experimental models of myocardial ischemia in rodents have demonstrated that 
prior exposure to sublethal cycles of ischemia-reperfusion (I/R) protects tissues 
such as the heart from subsequent ischemia. There is compelling evidence that this 
ischemic preconditioning (IPC) is, at least in part, conferred through hypoxic acti-
vation of the transcription factor: hypoxia-inducible factor (HIF). HIF is a master 
regulator of oxygen homeostasis that induces the expression of hundreds of genes 
in response to hypoxia, including those that stimulate glycolysis, angiogenesis, and 
erythropoiesis. These changes help the organism adapt to oxygen deprivation at 
both the cellular and tissue levels. Pharmacological modulators of HIF are conse-
quently being pursued as therapeutic targets for myocardial (as well as more general 
tissue) ischemia. 

 HIF is an  a / b  heterodimeric transcription factor, whose  a  subunit is regulated 
through posttranslational modifi cation by HIF prolyl hydroxylases (PHDs,  p rolyl 
 h ydroxylase  d omain): PHD1, 2 and 3 (reviewed in Kaelin and Ratcliffe  [  1  ] ). 
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These non-heme Fe(II) and 2-oxoglutarate-dependent dioxygenase PHD enzymes 
are now widely regarded as cellular oxygen sensors that transduce the oxygen status 
to the cell via posttranslational hydroxylation of HIF a . In the presence of oxygen, 
PHD hydroxylates two proline residues within a central degradation domain in HIF-
1 a  and -2 a . This promotes their binding to von Hippel–Lindau tumor suppressor 
(VHL) E3 ubiquitin ligase, leading to proteasomal degradation. A second point of 
regulation involves asparaginyl hydroxylation by another non-heme Fe(II) and 
2-oxoglutarate-dependent dioxygenase termed FIH ( f actor  i nhibiting  H IF). During 
hypoxia, reduced PHD and FIH activity allows HIF a  subunits to escape proteolysis 
and assemble into an active  a / b  heterodimer that induces a broad range of target 
genes (Fig.  2.1 ).  

 A substantial body of work indicates that despite this dual control system, activa-
tion of HIF can be achieved through inhibition of the PHD/VHL degradation path-
way alone. Indeed, several PHD inhibitory drugs are in development to test whether 
pharmacological modulation of the HIF hydroxylase system to activate HIF protects 
from subsequent ischemic insult. This type of intervention may have effects in 
the short term through enhanced cellular metabolism (for example, stimulation of 
glycolysis, glucose metabolism, and reduced mitochondrial oxygen consumption) 
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VHL-mediated
proteolysis

Inactivation of HIF transcriptional activity Activation of HIF transcriptional activity
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co-activator recruitment
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  Fig. 2.1    Dual regulation of HIF-alpha subunits by prolyl and asparaginyl hydroxylation. In the 
presence of oxygen, active HIF prolyl hydroxylases ( PHDs ), as well as factor inhibiting HIF ( FIH ), 
downregulate and inactivate HIF a  subunits. PHDs hydroxylate prolyl residues to promote von 
Hippel–Lindau tumor suppressor ( VHL )–dependent proteolysis of HIF a  subunits. FIH, on the 
other hand, hydroxylates an asparaginyl residue, which blocks p300 co-activator recruitment from 
activating HIF a -subunit transcriptional activity. In hypoxia, HIF hydroxylases ( PHDs  and  FIH ) 
are inactive and these processes are suppressed, which allows the formation of a transcriptionally 
active HIF complex       
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as well as in the medium to longer term through increased perfusion (for example, 
by stimulation of angiogenesis), giving potential applications both in the acute 
phase as well as in chronic ischemic heart disease. 

 The safety of long-term PHD inhibition/HIF activation, however, remains unclear. 
Given the ubiquitous distribution of the HIF hydroxylase system and wide range of 
processes affected by HIF, it seems unlikely that all consequences of HIF activation 
will be benefi cial to treating myocardial ischemia; some may even impinge normal 
physiological function in the heart or other tissues. We consider in this review evi-
dence relating to the benefi ts and risks of manipulating the HIF hydroxylase system 
as a therapeutic means of treating myocardial ischemia.  

    2.2   Benefits 

    2.2.1   Genetic Manipulation of HIF-1 a  

 Evidence for the essential role of HIF-1 a  in IPC was obtained from transgenic 
mouse models, wherein haploinsuffi ciency of  HIF-1 a   is suffi cient to ablate the pro-
tective effect conferred by IPC on myocardial infarction  [  2,   3  ] . This result is simi-
larly present in mice treated with intraventricular infusion of  HIF-1 a   siRNA  [  4  ] . 

 In agreement with this, overexpression of HIF-1 a  in the myocardium of mice 
attenuates infarct size and improves cardiac function several weeks (but not 24 h) 
after coronary artery occlusion  [  5  ] . This delayed protective effect is thought to be 
conferred, at least in part, through increased capillary density in the infarct and 
peri-infarct zones via transcriptional activation of pro-angiogenic HIF target genes 
such as vascular endothelial growth factor (VEGF) and angiopoietin-2. Together 
with the predicted vasodilation from HIF-mediated stimulation of inducible nitric 
oxide synthase, these changes are postulated to help restore delivery of blood to the 
heart. It should be noted that the overexpressed HIF-1 a  in these mice would be 
subject to normoxic degradation, thus limiting upregulation of the pathway in the 
cells that are best oxygenated. The long-term effects of more complete HIF-1 a  
activation from blockage of the degradation pathway, therefore, cannot be readily 
deduced from this study. 

 Further, overexpression of a stable form of HIF-1 a  in the epidermis of mice has 
been shown to induce hypervascularity (in line with the predicted induction of 
 pro-angiogenic HIF target genes)  [  6  ] . Interestingly, in contrast to transgenic mice 
overexpressing myocardial VEGF, in which rapid stimulation of dysregulated 
angio genesis leads to fragile and immature vessel formation  [  7,   8  ] , HIF-1 a  overex-
pression induces blood vessel formation without any leakage or infl ammation. Most 
probably this is because of multiple, coordinated actions on the angiogenic process. 
It is also possible that effects of HIF activation at sites remote from the site of isch-
emia may have protective actions (for instance, by increasing circulating endothe-
lial progenitors). This might conceivably assist perfusion of distant tissues and may 
underlie remote ischemic preconditioning effects, whereby IPC of, for example, the 
kidney can result in cardioprotection  [  9  ] .  
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    2.2.2   Pharmacological Inhibition and Genetic Manipulation 
of PHD Enzymes 

 Small molecule inhibitors of the PHD enzymes potently activate the HIF response 
both  in vitro  and  in vivo . Thus, it has been proposed that administration of PHD 
inhibitors could mimic, at least in part, the protective effects of exposure to hypoxia. 
Indeed, PHD inhibition likely results in greater HIF activation than the submaximal 
levels achieved through ischemic insult. 

 Initial studies using cobalt chloride and the iron chelator desferrioxamine to 
inhibit PHD enzymes (by displacement of their Fe(II) center or decreasing Fe(II) 
availability in solution) suggested that PHD inhibition acts similarly to IPC in pro-
viding protection against myocardial infarction  [  10,   11  ] . However, such inhibitors 
would be predicted to target other Fe(II)-containing enzymes and likely result in 
side effects from dysregulation of non-HIF hydroxylase pathways. 

 Subsequent studies have applied more specifi c inhibitors of PHD activity, 
 dimethyl-oxalylglycine (DMOG) and FG2216, to rodent models of myocardial 
ischemia. DMOG is a 2-oxoglutarate analogue that inhibits the 2-oxoglutarate-
dependent-dioxygenase family of enzymes (which includes the PHD enzymes); 
FG2216, on the other hand, is a more selective analogue which is proposed to spe-
cifi cally target the PHD enzymes, making it attractive for therapeutic use. Both 
DMOG and FG2216 have been reported to minimize tissue damage 24 h to several 
weeks after myocardial infarction  [  4,   12–  14  ] . 

 Genetic manipulation of PHD activity has also been shown to protect from myo-
cardial I/R. Although all three isoforms of PHD (1, 2, and 3) can hydroxylate and 
regulate HIF a  in vitro, the ubiquitously high level of PHD2 protein across a range 
of cell lines is thought to account for its dominant role in setting low steady-state 
levels of HIF in normoxia  [  15  ] . In keeping with this, intraventricular infusion with 
 PHD2 , but not  PHD1  or  3 , siRNA reduced post-ischemic infarct area  [  4,   16,   17  ] . 
Similar results were obtained with PHD2 silencing using intramyocardial injection 
of  PHD2  shRNA  [  18  ] . 

 Genetic deletion of  PHD2  (but not  PHD1  or  3 ) in mice results in embryonic 
lethality  [  19  ] . It has been reported, however, that transgenic mice containing hypo-
morphic alleles for  PHD2  are viable with no obvious cardiac abnormalities. These 
mice have improved functional recovery, coronary fl ow rate, and reduced infarct 
size following I/R in the isolated mouse heart  [  20  ] , in agreement with the dominant 
role of the PHD2 isoform in HIF regulation. 

 Interestingly,  PHD1–/–  mice, which survive until adulthood with no obvious heart 
defects, have also been reported to show signifi cant protection from myocardial I/R 
 [  21  ] . Further, this protection against ischemic insult is observed in  PHD1–/–  skeletal 
muscle  [  22  ]  and liver  [  23  ] , indicating that the mechanisms involved are not restricted 
to the heart. Although the latter phenotypes are thought to involve HIF-dependent 
pathways, it is curious that the other hallmarks of HIF activation such as polycythemia 
and angiogenesis are not observed in  PHD1–/–  mice. Indeed, PHD1 has been reported 
to have HIF-independent functions in regulating cellular proliferation  [  24  ]  and it is 
possible that these may contribute to the ischemic protection. Alternatively, it may be 
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that PHD1 loss induces HIF to a lesser extent than loss of PHD2, such that there is 
suffi cient HIF to provide protection from ischemia without activating erythropoiesis 
or angiogenesis. Whatever the mechanism, the fi ndings raise the interesting possibil-
ity that PHD isoform-specifi c inhibitors (which have yet to be developed) could pro-
vide more targeted drug intervention. 

 Overall, these studies provide evidence that short-term (or mild chronic) activation 
of HIF, by either pharmacological inhibition of PHD enzymes or genetic manipulation 
of PHD/HIF, can be benefi cial against myocardial I/R. The protection conferred may 
occur shortly after HIF induction via changes in cellular metabolism (for example, 
enhanced glucose uptake and metabolism through activation of HIF target genes 
such as GLUT-1, pyruvate dehydrogenase kinase, and 6-phosphofructokinase 1) 
and vasodilation (for example, by induction of nitric oxide synthases). In addition, 
activation of HIF may confer delayed protection via angiogenesis and vascular 
remodeling. 

 Long-term HIF activation, for example, through genetic manipulation of the HIF 
hydroxylase system, however, has potential detrimental effects. These are outlined 
below.   

    2.3   Risks 

    2.3.1   Genetic Manipulation of HIF a  

 Evidence for the detrimental effects of sustained HIF a  activation are obtained from 
recent studies, whereby overexpression of a stable form of either HIF-1 a  or HIF-2 a  
in cardiomyocytes results in cardiomyopathy  [  25,   26  ] .  

    2.3.2   Genetic Manipulation of PHD Enzymes 

 The effects of chronic PHD inhibitor exposure are largely unknown and existing 
data derives from  PHD  knockout mice which may not accurately mimic the effects 
of catalytic inhibition (for example, because of loss of additional non-catalytic 
effects of the enzyme protein). It is worth noting, however, that supplementation of 
a certain brand of Canadian beer with cobalt sulfate was identifi ed as a contributing 
etiological factor in the so-called Quebec beer-drinker’s cardiomyopathy (with 
associated polycythemia) of the late 1960s  [  27  ] . This hints at protracted PHD inhib-
itor usage being potentially detrimental to cardiac function – a possibility that is 
supported by genetic manipulation of the PHD enzymes in mice. 

 Widespread, conditional inactivation of  PHD2  in adult mice results in severe 
polycythemia and hyperactive angiogenesis/angiectasia, in line with the predicted 
induction of HIF a , pro-angiogenic HIF target genes, and erythropoiesis-promoting 
HIF target gene erythropoietin. However, these mice also suffer from dilated cardio-
myopathy and premature mortality  [  28–  31  ] . The latter phenotypes may occur either 
as an indirect consequence of polycythemia and/or as a direct action of  PHD2  loss 
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in cardiomyocytes. Further studies demonstrate that, in fact, cardiac-specifi c loss of 
 PHD2  is suffi cient to induce dilated cardiomyopathy and premature mortality in 
adult mice, which is exacerbated when on a  PHD3–/–  background  [  25  ] . Thus, sus-
tained PHD2 inactivation/HIF activation in the heart itself is detrimental to cardiac 
function and may even play a causal role in the pathogenesis of ischemic cardio-
myopathy  [  25  ] . 

 Aside from the risks of dysregulated erythropoiesis and angiogenesis, loss of 
PHD activity in other noncardiac tissues may also pose risks to both cardiovascular 
and other tissue functions. For instance,  PHD3–/–  mice, though viable and with no 
obvious cardiac abnormalities, suffer from abnormal sympathoadrenal development 
that is likely to be the cause of the observed reduced catecholamine secretion and 
systemic hypotension  [  32  ] . In humans, activating mutations in HIF-2 a  have been 
associated with pulmonary hypertension  [  33  ] . Systemic administration of PHD 
inhibitors may therefore result in a range of side effects from HIF activation in 
tissues other than the heart.  

    2.3.3   Genetic Manipulation of VHL 

 As both VHL and PHD negatively regulate HIF, and assuming a lack of divergence 
in the PHD/HIF/VHL oxygen-sensing pathway, one might predict loss of VHL to 
phenocopy loss of PHDs (in particular PHD2, given its dominant role in HIF regula-
tion). Indeed,  VHL–/–  mice, like  PHD2–/–  mice, are embryonic lethal due to pla-
cental defects  [  34  ] . Cardiac-restricted ablation of  VHL  in adult mice leads to dilated 
cardiomyopathy, lipid accumulation, myocyte loss, fi brosis, and even malignant 
transformation, in a HIF-1 a -dependent manner  [  35  ] . The cardiac phenotype after 
 VHL  loss is therefore more severe than observed after combined  PHD2/PHD3  inac-
tivation, possibly because of residual PHD1 activity and/or a contribution from 
PHD and HIF-independent functions of VHL. However, the fi ndings again suggest 
that long-term, high-level upregulation of HIF pathways is likely to entrain signifi -
cant side effects. 

 Overall, genetic studies demonstrate that extensive HIF activation in the heart is 
potentially deleterious to cardiovascular function. Thus, PHD inhibitors will prob-
ably require careful dose titration to achieve the desired risk/benefi t profi le and/or 
limitation of the duration of therapy.   

    2.4   Summary 

 Current work has defi ned both benefi ts and risks associated with the manipulation 
of the HIF hydroxylase system as a therapeutic means of treating myocardial 
ischemia. 

 Short-term (or mild, chronic) activation of HIF, like IPC, is protective against 
ischemic insult. Although this has been determined using interventions that precede 
ischemia, two fi ndings raise the possibility that PHD inhibitors could equally be 
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applied post-ischemia. First, HIF activation lasts several days following ischemic 
insult  [  36  ] . Second, cycles of I/R applied at the onset of, rather than preceding, 
ischemia are still able to confer protection (a process known as ischemic post- 
conditioning  [  37  ] ). The ability to treat myocardial ischemia by post-event drug 
intervention would make PHD inhibitors particularly useful in the clinical setting. 

 Prolonged, excessive HIF activation, on the other hand, phenocopies ischemic 
cardiomyopathy and is deleterious to cardiovascular function. It may also have det-
rimental side effects in noncardiac tissues if applied in a systemic manner. Ablation 
of  PHD1  in mice induces hypoxia tolerance without effect on PHD2-/HIF-regulated 
pathways such as erythrocytosis. In this regard, a PHD1-specifi c inhibitor, though 
not yet available, may be benefi cial. 

 In summary, PHD inhibitors that activate HIF are an attractive therapeutic option 
for minimizing tissue damage from myocardial ischemia or improving perfusion by 
medical means. However, care will be required to avoid side effects from uncon-
trolled activation of hypoxia pathways. This highlights the need for time, dose, 
tissue, and/or PHD isoform-specifi c drug interventions in order to minimize the 
potential deleterious side effects of PHD inhibitors.      
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           3.1   Introduction 

 The vascular endothelium forms an essential barrier, separating blood constituents 
and the extravascular tissues. For a long time considered an inert semipermeable 
membrane, the vascular endothelium is now recognized to be multifunctional, 
dynamic, and heterogeneous organ. In health, the endothelium contributes to the 
control of vasodilatation and permeability, while maintaining an anti-thrombotic, 
anti-infl ammatory, anti-adhesive phenotype. This is an active process controlled 
by intrinsic gene expression and external stimuli. As a consequence specialized 
endothelium is found in the blood-brain barrier, lining fenestrated capillaries in the 
kidney, as sinusoidal endothelium in the liver and in lung alveoli to facilitate gas 
exchange. The endothelium is also highly adaptable, changing phenotype in response 
to specifi c stimuli and so facilitating hemostasis and regulating the response to 
infl ammatory stimuli. In the latter, the endothelium regulates vascular permeability, 
expression of cellular adhesion molecules and recruitment of leukocytes. In addi-
tion, release of growth factors such as vascular endothelial growth factor (VEGF) 
and subsequent endothelial proliferation are important in tissue repair. 

 As a consequence of its anatomic location, the vascular endothelium is continu-
ously exposed to potentially harmful factors such as endotoxin, cytokines, advanced 
glycation end-products, complement components, activated leukocytes, and oxida-
tively modifi ed low-density lipoproteins (ox-LDL). If uncontrolled, these noxious 
stimuli predispose to endothelial dysfunction, predominantly driven by reduced 
expression of endothelial nitric oxide synthase (eNOS)  [  1  ] . 

 Endothelial injury is the earliest detectable event in atherogenesis  [  2  ] , and induces 
a local infl ammatory response resulting in endothelial dysfunction, characterized by 
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reduced NO biosynthesis, oxidative stress, increased permeability to lipoproteins, and 
monocyte recruitment  [  3  ] . Moreover, apoptosis occurs preferentially at sites of 
endothelial injury and atherosclerosis  [  4  ] , where denudation of vascular endothelium 
enhances the risk of thrombosis. Thus, mechanisms that control endothelial infl am-
mation and minimize vascular injury are essential for the maintenance of vascular 
integrity, initiation of repair, and resistance to atherogenesis. A detailed understanding 
of these molecular mechanisms may in turn reveal novel therapeutic targets which 
will help to prevent vascular injury and allow the maintenance of vascular endothelial 
homeostasis and integrity  [  5  ] .  

    3.2   Accelerated Atherosclerosis 

 Heart attack and stroke as a consequence of atherosclerosis remain the leading cause 
of death in the western world. Moreover, certain disease groups are exposed to the 
risk of accelerated atherogenesis, with hyperlipidemia, the metabolic syndrome, 
and diabetes mellitus the best recognized. Over the last decade, the increased risk of 
accelerated atherogenesis in patients suffering from systemic infl ammatory diseases 
has emerged as an intense area of research. 

 Prolonged systemic infl ammation, such as that associated with rheumatoid arthri-
tis (RA) and systemic lupus erythematosus (SLE), may accelerate atherogenesis with 
cardiovascular disease responsible for 35–50% increased mortality in RA  [  6  ] . 
Importantly, the disease itself represents a specifi c risk factor  [  7  ] . Likewise, SLE is 
an independent risk factor and responsible for a 10–50 fold increase in myocardial 
infarction in a female population characteristically protected against cardiovascular 
disease  [  8  ] . Thus, although patients with chronic infl ammatory disease commonly 
have more traditional risk factors than age- and sex-matched controls, these alone 
do not account for the increased cardiovascular risk. Additional mechanisms impli-
cated include increased oxidative stress, pro-infl ammatory cytokines, endothelial 
activation leading to enhanced leukocyte adhesion, and the deleterious effects of 
immune complexes, anti-phospholipid antibodies, homocysteinemia, hypercoagu-
lability, CD4 + CD28 −  T cells, and drug toxicity  [  6  ] . The signifi cance of chronic sys-
temic infl ammation is reinforced by evidence of accelerated atherosclerosis in 
patients with vasculitides and other non-rheumatic infl ammatory diseases. 

 A current challenge is to identify early the subgroup of patients with these dis-
eases most at risk of developing accelerated atherogenesis. The advance in novel 
noninvasive imaging techniques is one approach that has been adopted in recent 
years. For example, high-resolution ultrasound can monitor intima–media thickness 
and demonstrate early disease  [  9  ] . Using positron emission tomography with 
 oxygen-15-labeled water, we have demonstrated that the increase in myocardial 
blood fl ow in response to intravenous adenosine is signifi cantly attenuated in some 
patients with RA and SLE. These patients were known to have normal or minimally 
diseased ( £ 20% luminal reduction) coronary arteries and no signifi cant difference 
in conventional cardiovascular risk factors when compared with age- and sex-
matched controls  [  10  ] . Likewise, we have shown that an integrated method for 
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 cardiovascular magnetic resonance angiography (CMR) in patients with Takayasu’s 
arteritis provides not only accurate delineation of arterial wall thickening, but can also 
identify early atherosclerotic plaques, demonstrate dynamic ventricular function and 
myocardial scarring  [  11  ] . These techniques may have the potential to identify patients 
most at risk of accelerated atherosclerosis, so allowing early preventative therapy. 

 However, current treatments for atherosclerosis are directed predominantly at 
established symptomatic lesions, with an outstanding need for new preventative thera-
pies. Intensive management of infl ammation combined with traditional risk factor 
modifi cation is required to minimize cardiovascular risk in rheumatic diseases. 
Methotrexate and mycophenolate mofetil demonstrate anti-atherogenic effects, with 
methotrexate reducing cardiovascular mortality in RA by 70%  [  12,   13  ] . Anti-tumor 
necrosis factor- a  therapy may enhance endothelial function, and the risk of myocar-
dial infarction in patients with RA who respond to anti-TNF agents is signifi cantly 
reduced when compared to non-responders  [  14  ] . An important additional approach is 
to target endothelial dysfunction, an end achieved to some extent by statins  [  15  ]  and 
angiotensin-converting enzyme inhibitors  [  16  ] , which also exert anti-infl ammatory 
effects. However, effi cacy needs to be established by prospective studies, and to opti-
mize this approach, we need a detailed understanding of vascular endothelial cytopro-
tective signaling pathways and their downstream target genes.  

    3.3   Vascular Cytoprotection 

 Exogenous factors and intracellular mechanisms combine to control infl ammatory 
responses, prevent bystander endothelial injury, and maintain the integrity of the 
vascular wall (Fig.  3.1 ). I will provide a brief overview of these mechanisms before 
dealing in more detail with some recent advances.  

 A variety of anti-infl ammatory cytokines and growth factors play an important 
role in the maintenance of endothelial homeostasis, regulation of infl ammation and 
reparative mechanisms including angiogenesis. The IL-1 receptor antagonist 
(IL-1ra) and soluble TNF receptors exert potent anti-infl ammatory effects and are 
used clinically in the treatment of systemic infl ammatory diseases including auto-
infl ammatory disorders  [  17  ]  and rheumatoid arthritis  [  18  ] . In murine models IL-1ra 
is atheroprotective, inhibiting early atherogenesis in ApoE-defi cient mice  [  19  ] , 
while IL-1ra knockouts suffer arterial infl ammation and a low expressing polymor-
phism has been linked to coronary artery disease  [  20  ] . IL-10 is particularly impor-
tant for its effects on macrophages, inhibiting pro-infl ammatory cytokine synthesis 
and favoring a CD163hi anti-infl ammatory phenotype  [  21  ] . Although its effects on 
vascular endothelium are less well understood, IL-10 is reported to inhibit NF-kB, 
vascular infl ammation, and endothelial cell adhesion molecule expression  [  22  ] . 

 Growth factors play an essential role in endothelial homeostasis with basic fi bro-
blast growth factor (FGF-2) and VEGF (see below) capable of activating anti- apoptotic 
pathways. In addition to its mitogenic actions, FGF-2 induces expression of the anti-
apoptotic protein Bcl-2  [  23  ] . It may also enhance protection against complement-
mediated injury through induction of decay-accelerating factor (DAF)  [  24  ] , and exert 
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anti-thrombotic, anti-infl ammatory effects  [  25,   26  ] . TGF- b  signals via two type 1 
receptors, activin receptor-like kinases Alk-1 and Alk-5 which induce opposite effects, 
with Alk-1 driving pro-proliferative and pro-migratory gene expression, while Alk-5 
signaling facilitates growth arrest, matrix synthesis, and formation of a stable vessel  [  27  ] . 
TGF- b  may also inhibit expression of E-selectin so reducing leukocyte adhesion. 
Angiopoietin-1 (Ang-1) has also emerged as an important vasculoprotective growth 
factor, signaling predominantly via Tie2, with its actions opposed by family member 
Ang 2. Ang1 may exert multiple protective effects in the vasculature including anti-
infl ammatory, anti-apoptotic, and anti-thrombotic actions  [  27,   28  ] . 

    3.3.1   Cytoprotective Genes 

 Many of the vasculoprotective properties of exogenous mediators are facilitated 
through induction of intrinsic cytoprotective genes. In the vascular endothelium, 
these include endothelial nitric oxide synthase (eNOS), superoxide dismutases, A1, 
A20, B cell lymphoma protein (Bcl)-2, Bcl-xL, heme oxygenase-1 (HO-1)  [  5  ] , and 
membrane-bound complement regulatory proteins DAF and CD59  [  29,   30  ] . A20 is 
an inducible ubiquitin-editing anti-infl ammatory protein that negatively regulates 
NF- k B-dependent gene expression. A20 is induced as a consequence of NF- k B 
activation and exerts a negative feedback on further activation acting at multiple 
levels within the NF- k B pathway  [  31  ] . The importance of A20 is well illustrated by 
the phenotype of the knockout mice which are markedly susceptible to TNF and 
develop severe widespread infl ammation and cachexia  [  32  ] . 
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 Bcl-2, Bcl-xL, and A1 are members of the anti-apoptotic Bcl-2 family, which 
may also exert important anti-infl ammatory and cytoprotective effects. The balance 
between the pro- and anti-apoptotic members of the Bcl-2 family is critical in deter-
mining cell fate  [  33  ] . Thus, if pro-apoptotic Bim, Bid, and Bad are present in suffi -
cient amounts to bind to and overwhelm Bcl-2 and Bcl-X 

L
 , sequestered Bax and 

Bak are released allowing the escape of mitochondrial cytochrome  c . This in turn 
results in the generation of the apoptosome, which cleaves and activates downstream 
apoptosis effector caspases 3, 6, and 7,  [  33  ] . We have recently reported that protein 
kinase C e  forms a signaling complex and acts co-operatively with anti-apoptotic 
kinase (Akt) to protect human vascular endothelial cells against apoptosis, through 
induction of Bcl-2 and inhibition of caspase-3 cleavage  [  30  ] .  

    3.3.2   Resistance to Complement 

 Mechanisms implicated in complement deposition on the EC surface include activa-
tion of the classical pathway by immune complexes, anti-phospholipid, and anti-
endothelial cell Abs, and through recognition of apoptotic cell blebs by C1q  [  34  ] . 
Induction of both CD59 and DAF on EC via distinct signaling pathways contributes 
signifi cantly to the regulation of complement activity and protection against 
bystander injury  [  35,   36  ] . In particular, the propensity for DAF expression to be 
induced suggests it represents an important response to infl ammation and injury and 
hence in the protection against vascular injury. We have shown DAF expression to 
be upregulated in response to TNF a , IFN g , thrombin, VEGF, and bFGF, while epi-
dermal growth factor and PlGF failed to alter expression. The increase in DAF led 
to enhanced protection against complement-mediated injury (Fig.  3.2 ), which was 
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reversed by inclusion of an inhibitory DAF mAb  [  24,   29,   35,   37,   38  ] . Moreover, 
DAF −/−  and CD59 −/−  mice, when crossed with atherosclerosis prone strains, suffer 
accelerated disease  [  39–  41  ] .   

    3.3.3   Vascular Endothelial Growth Factor 

 In addition to their better known roles in vasculogenesis and angiogenesis, it is increas-
ingly recognized that VEGFs are important    in adult endothelial homeostasis  [  42  ] . The 
fi ve main VEGF ligands, VEGFA-D, and placenta growth factor PlGF are also found 
as splice variants. Thus, the isoforms of human VEGFA are VEGFA121, VEGF145, 
VEGFA165, VEGFA189, and VEGFA206. The VEGFs signal via the receptor 
tyrosine kinases VEGFR1-3 and this signaling maybe modulated by co-receptors 
such as neuropilin and heparan sulfate proteoglycans (see ref.  [  43  ]  for a detailed 
review). The ability of VEGFA to induce cytoprotective gene expression in vascular 
endothelium is well established and the cytoprotective actions of VEGFA include 
induction of the anti-apoptotic genes Bcl-2 and A1  [  30,   44  ] . In addition, VEGF 
increases eNOS expression and NO release  [  45  ] , induces expression of HO-1  [  46  ] , 
and contributes to the maintenance of an anti-thrombotic endothelial surface through 
induction of prostacyclin synthesis  [  45  ] . VEGF also enhances protection against com-
plement-mediated injury via upregulation of DAF expression  [  47  ] . Recent elegant 
studies, in which mice with an inducible podocyte-specifi c deletion of  vegfA  were 
generated, have demonstrated endothelial cell swelling, local thrombosis, and subse-
quent proteinuria and hypertension  [  48  ] . These abnormalities may contribute to the 
side effects associated with the use of the anti-VEGFA mAb bevacizumab in dissemi-
nated colonic carcinoma, which include both hypertension and thrombosis  [  48,   49  ] .  

    3.3.4   Heme Oxygenase-1 

 HO-1 is an inducible cytoprotective enzyme which degrades heme, generating 
 carbon monoxide, bilirubin, and ferrous iron which is rapidly sequestered by 
 intracellular ferritin  [  50,   51  ] . The cytoprotective properties of HO-1 are attributed 
to its products and include antioxidant, anti-apoptotic, anti-thrombotic, and anti- 
infl ammatory actions  [  50  ]  (Fig.  3.3 ). The importance of these cytoprotective actions 
are refl ected in the severe sequelae of HO-1 defi ciency, which include intravascular 
hemolysis, anemia, diffuse endothelial damage, and accelerated atherosclerosis 
 [  52  ] . We have recently reported an additional cytoprotective action of HO-1, the 
regulation of complement activation, mediated via induction of DAF. Analysis of 
cardiac EC isolated from  Hmox1   −/−   mice revealed a signifi cant reduction in DAF 
expression as compared to  Hmox1   +/+   EC, while the  Hmox1   −/−   cells displayed 
enhanced sensitivity to complement-mediated lysis  [  53  ] . HO-1 expression is 
required for prolonged allograft survival, and both HO-1 expression and comple-
ment regulation are important in accommodation, the resistance of a transplanted 
organ to graft-specifi c antibodies and complement fi xation  [  54  ] . Therefore, our data 
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linking the activity of HO-1 and expression of DAF is likely to be important in 
accommodation, resistance to post-transplant vasculopathy, and prolonged graft 
survival  [  55,   56  ] . HO-1 and its products may also protect against atherogenesis. 
Inhibition of VSMC proliferation, combined with its anti-infl ammatory, antioxidant 
actions and anti-thrombotic actions, contributes to the protective role of HO-1 
against atherogenesis and its ability to stabilize the vulnerable plaque. Furthermore, 
epidemiological studies suggest that a mildly raised serum bilirubin signifi cantly 
protects against ischemic heart disease.    

    3.4   Vascular Cytoprotection and Shear Stress 

 The geometric nature of atherosclerosis within the arterial tree led to the study of 
blood fl ow patterns as an infl uence in atherogenesis. These studies suggest that a 
disturbed fl ow (DF) waveform, with low shear reversing fl ow patterns, such as that 
located at arterial branch points, is pro-atherogenic, whereas unidirectional pulsatile 
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laminar shear stress (LSS) >10 dyn/cm 2  is atheroprotective  [  57  ] . This is refl ected in 
the phenotype of EC exposed to LSS, typically characterized by enhanced endothe-
lial nitric oxide synthase (eNOS) expression and nitric oxide (NO) biosynthesis, 
prolonged EC survival, and an anticoagulant, anti-adhesive cell surface  [  58,   59  ]  
(Fig.  3.4 ). In contrast, endothelium exposed to DF exhibits reduced levels of eNOS, 
increased apoptosis, generation of reactive oxygen species, permeability to LDL, 
and leukocyte adhesion  [  57  ] .  

    3.4.1   Cytoprotective Transcription Factors 

 Considerable recent attention has been given to the investigation of LSS-inducible 
cytoprotective transcription factors, and in particular Kruppel-like factors (KLF) 2 
and 4 and NF-E2-related factor-2 (Nrf2). KLF2 and KLF4 are members of a family 
of 17 zinc-fi nger transcription factors. In vitro, endothelial KLF2 is induced by 
LSS but not DF, while in vivo, KLF2 is differentially expressed in areas of the 
aorta exposed to LSS and DF  [  60  ] . Importantly, KLF2 activity has been shown to 
be an important regulator of cytoprotective genes including eNOS, thrombomodu-
lin, and HO-1  [  61–  63  ] . An ERK5/myocyte enhancing factor 2 pathway has been 
identifi ed upstream of KLF2 transcription, and this can be therapeutically activated 
by statins  [  64  ] . 

 KLF4 activity has also been linked to the regulation of vasculoprotective genes 
including eNOS and thrombomodulin  [  65,   66  ] . A recent study has demonstrated 
that shear stress–induced KLF4 expression via MEK5/MEF2 pathway shared with 
KLF2  [  66  ] . Subsequent microarray analysis demonstrated signifi cant overlap in 
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target genes between the two transcription factors. Thus, further details of their 
precise relationship in the maintenance of endothelial homeostasis both in the rest-
ing vascular endothelium and during infl ammation are awaited with interest. 

 Nrf2 is similarly an important fl ow-inducible cytoprotective transcription factor. 
Nrf2 is retained in the cytoplasm by kelch-like ECH-associated protein (Keap1). 
LSS results in dissociation of the Nrf2–Keap1 complex allowing Nrf2 translocation 
to the nucleus, where it controls expression of phase II detoxifi cation enzymes and 
antioxidant proteins including HO-1, NAD(P)H:quinine oxidoreductase 1, ferritin 
heavy chain, glutathione reductase, and thioredoxin reductase 1 via the antioxidant 
response element  [  67,   68  ] . 

 We have recently reported that LSS induces expression of CD59 in vascular EC 
via an ERK5/KLF2-dependent pathway, thereby preventing C9 insertion into the 
MAC and protecting against complement-mediated injury. We also demonstrated 
regional differences in CD59 in the murine aorta, with maximal expression of CD59 
at atheroprotected sites  [  69  ] . These data combined with the observation of acceler-
ated atherosclerosis in CD59/LDLR mice suggest CD59 contributes signifi cantly to 
shear stress-mediated protection against atherosclerosis  [  40  ] . 

 Recent data suggests that shear stress may infl uence endothelial responsiveness 
to exogenous factors including drugs. Thus, we have reported that atorvastatin-
mediated HO-1-dependent antioxidant effects  [  63  ]  are enhanced by LSS, demon-
strating that biomechanical signaling contributes to endothelial responsiveness to 
pharmacological agents. This synergistic relationship between LSS and statin 
involved Akt phosphorylation, activation of both KLF2 and Nrf2, eNOS induction, 
and prolonged HO-1 mRNA stability  [  68  ]  (Fig.  3.5 ).  

 This observation has potentially important implications for statin effi cacy in 
patients with ischemic heart disease, and for the increasing use of statins in prevention 
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of accelerated atherosclerosis in patients suffering from systemic infl ammatory dis-
eases. The data emphasize the need for novel therapies to optimize vasculoprotection, 
and our recent report of sulforaphane-mediated activation of Nrf2 in atheroprone sites 
of the murine aorta offers hope in this regard  [  70  ] .  

    3.4.2   Peroxisome Proliferator-Activated Receptors (PPARs) 

 PPAR a , PPAR d , and PPAR g , members of the nuclear receptor family, are ligand-
activated transcription factors which regulate energy balance. Transcriptional acti-
vation of their target genes requires ligand-induced heterodimerization with the 
retinoid X receptor and co-factor recruitment  [  71  ] . PPARs are activated by media-
tors including polyunsaturated fatty acids linoleic and docosahexaenoic acid, eico-
sanoids such as prostayclin and 15d-PGJ 

2
  and components of ox-LDL  [  71  ] . 

Expression of the PPARs in the vasculature and reported anti-infl ammatory effects 
of synthetic ligands has led to signifi cant interest therapeutically. PPAR a  agonists 
(Fibrates) and PPAR g  agonists (Thiazolidinediones) are in current clinical use for 
the treatment of hyperlipidemia and diabetes mellitus respectively, while PPAR d  
agonists reduce abnormalities associated with the metabolic syndrome  [  72  ] . 
However, the relatively disappointing data to date as regards reduction of cardiovas-
cular events with fi brates and thiazolidinediones suggests an improved understand-
ing of PPAR biology and the actions of PPAR ligands is required  [  73  ] . 

 Recent fi ndings of note include the report that LSS induces expression of the 
PPAR g  target gene CD36 via the PPAR g -responsive element in the CD36 promoter 
 [  74  ] . Release of endogenous PPAR ligands   , particularly prostacyclin, is likely to be 
important in LSS-induced protective responses, and EC-derived prostacyclin has 
been shown to activate PPAR a  and  d  in vascular smooth muscle cells  [  75  ] . PPAR d  
appears to play a multifunctional role in the vasculature, including increased fatty 
acid oxidation, protection against apoptosis and antioxidant, anti-infl ammatory 
actions such as suppression of VCAM-1  [  76  ] . These actions may contribute to the 
atheroprotective effect of PPAR d  ligand treatment of ApoE −/−  mice  [  77  ] . An addi-
tional important mechanism may be the ability of PPAR d  ligands to upregulate 
HO-1 in vitro, a response that requires the co-activator PGC-1 a  and can be repro-
duced in vivo  [  78  ] .   

    3.5   Therapeutic Manipulation of Vascular Cytoprotection 

 Therapeutic induction of cytoprotective genes in the vasculature has the potential to 
condition the vascular endothelium against injury, so minimizing or reversing 
endothelial dysfunction and preventing or slowing the progress of atherogenesis. 
This would be of particular benefi t to patients known to be at particularly high risk, 
such as those with diabetes mellitus, hyperlipidemias, and systemic infl ammatory 
diseases. Current immunosuppressive drugs may achieve this to some extent; how-
ever, therapies specifi cally targeting the vasculature are likely to be more effective. 
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Among these, biologic therapies such as those targeting TNF a  are of particular 
interest, and of note, these agents appear to reduce the rate of atherogenesis and 
myocardial infarction in patients with RA  [  18  ] . 

    3.5.1   Statins 

 Perhaps the best studied drugs in this regard are the statins, 3-hydroxy-3-methyl-
glutaryl coenzyme A (HMG-CoA) reductase antagonists, which inhibit choles-
terol synthesis and reduce serum LDL-cholesterol. This is turn reduces morbidity 
and mortality from ischemic heart disease. However, clinical trial data also dem-
onstrates that the benefi ts of statins are rapid, extend to patients within the accepted 
normal LDL-cholesterol range  [  79  ]  and exceed those of other lipid-lowering 
drugs, despite comparable falls in cholesterol  [  80  ] . These observations suggest 
that statins have pleiotropic effects above and beyond LDL-cholesterol lowering 
 [  81  ] . These cholesterol-independent actions of statins result in signifi cant improve-
ment in endothelial function in both hyper- and normocholesterolemic patients 
with atherosclerosis  [  82  ] . 

 Statin-mediated inhibition of isoprenoid lipid production and subsequent protein 
prenylation and activity of signaling proteins such as the small GTPases underlie 
many of the LDL-cholesterol-independent actions  [  81,   82  ] . This mechanism, ini-
tially identifi ed in vitro, has been supported by two recent studies in which a reduc-
tion in Rho-associated protein kinase (ROCK) activity and improved endothelial 
function was observed in patients treated with high-dose statins when compared to 
low-dose statins or ezetimibe (an alternative class of lipid-lowering agent)  [  83  ] . In 
vascular endothelium, statins increase eNOS mRNA stability and NO biosynthesis, 
leading to inhibition of leukocyte traffi cking, an anti-infl ammatory response that is 
lost in eNOS-defi cient mice  [  84  ] . Statins also exert anti-thrombotic, antioxidant, 
and immunomodulatory effects in EC  [  81,   85–  87  ] . We have identifi ed an additional 
cytoprotective action of statins, the regulation of complement activation. At least 
in vitro, atorvastatin and simvastatin induce expression of DAF  [  88  ]  and under    
hypoxic conditions, both DAF and CD59  [  36  ]  and we propose that this response 
may contribute to both their atheroprotective and anti-infl ammatory actions.  

    3.5.2   Heme Oxygenase-1 

 There is considerable interest in the therapeutic potential of HO-1 either through 
modulation of its expression or delivery of its products  [  50  ] . However, such an 
approach is not straightforward in light of the potential toxicity of CO, free iron, and 
bilirubin. In vivo animal models are encouraging and    HO-1 induction favors long-
term allograft survival  [  89  ]  and protects against atherosclerosis  [  90  ] . Exogenous 
CO may substitute for HO-1, conferring protection against ischemia reperfusion 
 [  91  ] , restenosis injury, and allograft rejection  [  92  ] . Although less well studied, biliv-
erdin and bilirubin exert similar effects  [  92  ] . In the vascular endothelium, we and 
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others have demonstrated HO-1 induction in vitro following treatment with statins 
 [  63,   68,   93  ] , celecoxib  [  94  ] , rapamycin  [  95  ] , and probucol  [  96  ] . PPAR a , PPAR g , 
and PPAR d  agonists have also been shown to induce HO-1 in vitro  [  78,   97  ] . Moreover, 
we have recently reported that treatment of mice with PPAR d  agonists increases aortic 
EC expression of HO-1  [  78  ] . Thus, the development of approaches through which 
HO-1 can be induced or its products delivered safely, and subsequent clinical trials 
investigating the effi cacy of such an approach, is awaited with interest.   

    3.6   Conclusion 

 Infl ammatory reactions    within the vasculature are tightly regulated, with dysregula-
tion increasingly recognized as a signifi cant contributory feature in a variety of 
disease states including atherosclerosis and chronic infl ammatory auto-immune 
 diseases. Vascular endothelial cell injury predisposes to endothelial dysfunction, a 
critical precursor to atherogenesis, and a potential target for preventative therapy. 
Signifi cant progress has been made in dissecting the molecular mechanisms through 
which the vascular endothelium is protected against injury, and over the next decade, 
it is hoped that these insights will reveal novel cytoprotective targets that can be 
therapeutically manipulated. This in turn may allow early intervention in those 
patients known to be at particularly high risk.      
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           4.1   Introduction 

 During vascular development, numerous cell fate decisions must occur. The 
hematopoietic, endothelial, and mural cell lineages are all derived from the meso-
derm, and during early embryonic development precursor cells must “decide” which 
of the three lineages to enter. Also, within each of these lineages, more decision 
making is needed to generate additional sub-specifi cation of cells. For instance, the 
vascular tree is split into different caliber vessels, arteries, veins, and capillaries; 
therefore, endothelial cells building this complex network are far from a uniform 
cell population. Instead they differentiate into vessel-specifi c and even tissue- 
specifi c phenotypes. The main function of the Notch signaling pathway is to gener-
ate cell diversity by mediating cell fate decision, and it is therefore no surprise that 
this signaling pathway participates critically on many levels throughout vascular 
development (Fig.  4.1 ).  

    4.1.1   Development of Hematopoietic and Vascular Cells 

 During early embryonic development, mesodermal progenitors give rise to blood 
cells and primitive vascular networks. In amniotes, this occurs in two areas: in the 
embryo proper and extra-embryonically, in the yolk sac. Fish and amphibians do not 
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have a yolk sac and therefore have no extra-embryonic source of vessels and blood. 
However, the precise lineage relationship of blood cells, vascular cells, and their 
mesodermal precursors is complex and only partially understood. During gastrula-
tion, mesoderm cells emerge from the posterior primitive streak and migrate to the 
proximal region of the yolk sac  [  1,   2  ] . There they give rise to so-called blood islands 
containing hematopoietic and endothelial precursors. In mice by circa embryonic 
day (E) 7.5, the fi rst blood islands can be detected in the yolk sac  [  3  ] . These mor-
phologically distinct cell clusters segregate into blood cells and ensheathing 
endothelial cells, then remodel into smaller channels and eventually into blood fi lled 
vascular networks  [  4  ] . Due to the close spatiotemporal relationship between 
hematopoietic and endothelial precursor cells, the existence of a common mesoder-
mal progenitor (the hemangioblast) has been proposed  [  5,   6  ] . Indeed, detailed map-
ping studies have shown that early mesodermal precursors are already committed to 
the hemangioblast lineage when they are still in the primitive streak  [  7  ] . Furthermore, 
genetic deletion of the Vascular endothelial growth factor receptor 2 ( Vegfr2 ) in 
mice results in a lack of hematopoietic and endothelial cells and blood islands do 
not form  [  8  ] . However, it has also been suggested that, as the mesodermal precur-
sors emerge from the primitive streak, allocation to the hematopoietic lineage may 
occur before, and independently of, the bulk of vascular commitment  [  9  ] . 

 Furthermore, mesodermal precursor cells not only give rise to the blood and 
endothelial lineage, but they also generate smooth muscle cells; the cells that par-
ticipate in building the vascular wall (therefore referred to as “mural” cells).  In vitro  
experiments have shown that cell colonies cultured from the primitive streak have 
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  Fig. 4.1    Notch signaling is implicated extensively in hematopoietic and vascular development, 
from the early mesoderm progenitor stage through to endothelial cell differentiation.  Blue coloring  
indicates Notch signaling involvement       
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hematopoietic, endothelial, and smooth muscle potential  [  7  ] . It is also possible to 
generate endothelial and smooth muscle cells from embryonic stem cell–derived 
cells that are Vegfr2-positive  [  10,   11  ] . In addition, embryonic stem cell–derived 
embryoid bodies contain blast colony–forming cells (BL-CFC) that have the poten-
tial to generate hematopoietic, endothelial, and smooth muscle cells depending on 
culture conditions  [  5,   12  ] . Alternatively, the three lineages may simply be deriva-
tives of ventral mesoderm that can give rise to a broader array of cell types  [  13  ] . It 
is therefore not entirely clear yet whether the three cell types are derived from a 
single common precursor or even whether the hemangioblast exists  in vivo . 

 Once endothelial precursor cells (also known as angioblasts) have been gener-
ated, they migrate, coalesce, and differentiate into endothelial cells, which form a 
primitive vascular plexus de novo. This is the classic defi nition of “vasculogenesis” 
 [  14  ] , the process responsible for forming blood vessels in the yolk sac and, intra-
embryonically, the endocardial tube, dorsal aortae, and cardinal veins. Subsequently, 
the primitive vessel networks recruit mural cells, remodel, and form further vessels 
in a process termed “angiogenesis”  [  15,   16  ] .   

    4.2   Notch Signaling Mechanisms 

 In mammals, there are four Notch receptors (Notch1-4) and two types of ligands: 
The Delta-like ligands (Dll1, Dll2 and Dll4) and the Jagged ligands (Jag1 and Jag2). 
Flies only have one Notch receptor and two ligands, Delta and Serrate (homologue 
to Jagged). Receptors and ligands are both transmembrane proteins and as a result 
Notch signaling is mediated between neighboring cells. Ligand–receptor binding 
induces proteolytic receptor cleavage, fi rst by the Adam metalloproteases, and then 
for a second time by a  g -secretase complex (containing Presenilin) to release the 
Notch intracellular domain (NICD), which then translocates to the nucleus. There it 
forms a complex with the transcription factor “Recombination signal binding pro-
tein for immunoglobulin kappa J region” (Rbpj, also known as CSL) and relieves 
the repression of downstream target genes. This mechanism is known as the “canon-
ical” Notch pathway (reviewed by Kopan and Ilagan  [  17  ] ). Non-canonical Notch 
signaling has also been observed  [  18,   19  ] , but is not discussed here. 

 Despite the pleiotropic function of Notch signaling in numerous cell types in all 
metazoa, to date, only a few downstream target genes have been identifi ed. The best 
characterized target genes are basic Helix-loop-helix (bHLH) transcription factors 
from the  Hes  and  Hey  gene families (in vertebrates) and the related  Hairy  and  E ( spl ) 
genes (in Drosophila). In classic examples, in fl ies, it has been shown that these 
transcription factors are part of a feedback mechanism that allows initially identical 
(or very similar) neighboring cells to take on different identities  [  20,   21  ] . Notch 
signaling–mediated activation of the bHLH transcription factors causes increased 
expression of Notch receptor and decreased expression of Notch ligand. In the 
absence of Notch signaling, the opposite occurs; an increase of the ligand and a 
decrease of the receptor. Such a bi-stable system amplifi es small, initial differences 
and simultaneously forces neighboring cells into opposite states regarding Notch 
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expression. In this model, referred to as the “lateral inhibition model,” a cell that 
expresses Notch ligand usually suppresses a particular differentiation outcome in its 
neighbors. However, some Notch signaling is also mediated by “lateral induction,” 
where a ligand-expressing cell induces a specifi c cell fate in its neighbors  [  21,   22  ] . 

 Superfi cially, the mode of action of the canonical Notch pathway appears rela-
tively simple, but there is a remarkable array of posttranslational and biological 
processes that modulate signaling strength and add signifi cant complexity to the 
system (reviewed by  [  22–  24  ] ). For instance, ligand expression in receptor positive 
cells may have inhibitory function under certain circumstances (so-called cis- 
inhibition). Furthermore, in Drosophila, it has been shown that ubiquitination and 
subsequent endocytosis of Notch ligands is essential for their activity  [  23  ] . Similarly, 
Notch receptor function also critically depends on posttranslational modifi cations. 
Glycosylation of Notch receptors is initiated by  O -fucosyl transferase by adding a 
fucose molecule. The carbohydrate chains are then extended by glycosyl trans-
ferases such as the Fringe family. This can modify the responsiveness of Notch 
receptors to specifi c ligands. For instance, Fringe-modifi ed Notch becomes more 
responsive to Delta-like/Delta and less responsive to Jagged/Serrate ligands  [  25,   26  ] . 
It has also been shown that receptor endocytosis and subsequent traffi cking can 
infl uence Notch activity. In addition, the multiple proteolytic cleavages and the vari-
ous proteases involved to generate the NICD add more possibilities to regulate 
Notch signaling and complicate things further. The bewildering complexity of these 
regulatory mechanisms seems to suggest that Notch signaling is so fundamental and 
important for biological function that it requires sophisticated and tight regulation.  

    4.3   Vascular Notch Expression and Knockout (KO) Mice 

 Most Notch receptors and their ligands are expressed in the developing vasculature 
(Table  4.1 ), whereas in the adult vasculature, expression becomes more restricted. It 
is remarkable that in the developing mammalian vascular system, with the excep-
tion of Notch 2 and Dll3, all Notch receptors and ligands are expressed. Interestingly, 
endothelial cells are usually not polarized into receptor- and ligand-expressing cells 
(as during lateral inhibition) but often express Notch receptors and ligands simulta-
neously. In line with the prominent expression of Notch genes in the vasculature, 
most Notch gene deletions tend to cause embryonic lethality due to disturbed vas-
cular and cardiac development (Table  4.1 ).  

    4.3.1   Notch Receptors 

 Notch1 and 4 are expressed in endothelial cells. While Notch1 expression is wide-
spread in numerous other cells types, Notch4 is largely restricted to the vascular 
endothelium  [  27,   28  ] . Genetic deletion of  Notch1  in mice is lethal by embryonic 
day (E)10.5. In these mice, development proceeds normally until E9.5 but subse-
quently somite condensation fails and cell death is apparent in the nervous 
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systems. Although embryonic lethality was not attributed to primary defects in 
the vasculature, the vessels that did form were anastomosing  [  28  ] . Endothelial 
specifi c loss of  Notch1  results in embryonic death by E10.5, with severe vascular 
defects  [  29  ] . 

 In contrast,  Notch4  KO mice are viable and fertile  [  30  ] . It is possible that Notch1 
can compensate for the loss of Notch4 because compound knockouts for both 
 Notch1  and  Notch4  exhibit a more severe phenotype than the single  Notch1  KO 
embryos. In these  Notch1 / 4  double KO embryos, vascular remodeling and sprouting 
is disturbed, as in  Notch1  KO mutants; but whereas in the  Notch1  KO mutants, the 
dorsal aorta is collapsed with a closed lumen, in the  Notch1 / 4  double mutants, both 
the dorsal aorta and the anterior cardinal vein are collapsed  [  30  ] . Notch signaling is 
usually activated transiently with a high signal turnover. Switching on the expres-
sion of constitutively active  Notch4  in endothelial cells during early development 
also leads to severely abnormal vascular remodeling  [  31  ] . Overactive  Notch4  post-
natally causes brain arteriovenous malformations resulting in hemorrhage, neuro-
logical damage, and perinatal death  [  32  ] . In summary, it appears that both under- and 
overactive Notch signaling can both severely disturb vascular remodeling  [  33  ]  and, 
although Notch4 is redundant during embryonic development, it may still play a 
role in this process. 

 Notch3 is expressed predominantly in vascular smooth muscle cells late in devel-
opment and in adults, with particular high levels in arteries  [  34–  36  ] . Notch3 func-
tion is not needed for viability and fertility in mice  [  37  ] , but adult  Notch3  KO mice 
display structural defects in arteries  [  38  ] . Vascular smooth muscle cells are recruited 
to the arteries in these KO mice but display abnormal differentiation and morphology, 
resulting in a thinner coating of the arteries with smooth muscle cells.  

   Table 4.1    Expression of Notch signaling mechanisms and mouse knockouts   
 Gene  Expression  Knockout phenotype  Reference 
  Notch1   Endothelial cells 

(widespread in many 
other tissues) 

 Lethal by E10.5   [  28  ]  
 Defective remodeling of the 
vasculature 

  Notch3   Smooth muscle cells  Viable   [  37,   38  ]  
 Artery differentiation defects 
in adults 

  Notch4   Endothelial cells  Viable   [  30  ]  
  Dll1   Endothelial cells 

(arterial) 
 Lethal at E12   [  40  ]  
 Segmentation defects 

  Dll4   Endothelial cells  Embryonic lethal at E10.5   [  43–  45  ]  
 Vascular development defects 

  Jag1   Endothelial cells and 
smooth muscle cells 

 Lethal between E10.5 & E11.5   [  51  ]  
 Defects in remodeling yolk sac 
and embryonic vasculature 

  Jag2   Endothelial cells and 
hematopoietic 
precursors 

 Perinatal lethal   [  53  ]  
 Craniofacial malformations 
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    4.3.2   Delta-Like Ligands 

 Dll1 is expressed in many tissues including the endothelium of major blood vessels 
during late development  [  39  ] ; in the postnatal vasculature, its expression is limited 
to endothelial cells of arteries  [  40  ] . Dll4, on the other hand, is relatively vascular 
endothelium specifi c (apart from a few exceptions). It is most strongly expressed in 
developing arteries and is downregulated in mature vessels  [  30,   34,   41  ] . Both,  Dll1  
and  Dll4  KO mice are embryonic lethal, due to severe hemorrhages, although the 
 Dll1  KOs also suffer from abnormal somite formation  [  42  ] . However, while 
heterozygous  Dll1  deletion results in only a minor vascular phenotype (impaired 
arteriogenesis in adults), heterozygous  Dll4  KO mutants also died in early embryo-
genesis  [  43–  45  ] . Although, subsequent studies have shown that in certain genetic 
backgrounds heterozygous Dll4 KO mutants are viable and fertile  [  46–  48  ] .  

    4.3.3   Jagged Ligands 

 Jagged1 is found in blood vessels throughout development into adulthood, where 
it is expressed by endothelial cells, vascular smooth muscle cells, and other cell 
types (e.g., neurons in certain brain nuclei)  [  49,   50  ] . Null mutants exhibit early 
embryonic lethality due to hemorrhaging and defects in remodeling of the embry-
onic and yolk sac vasculature  [  51  ] . Endothelial cell–specifi c knockouts of  Jag1  
exhibit the same phenotype with initial vascular patterning unperturbed, but remod-
eling of the blood vessels and vascular smooth muscle development affected  [  52  ] . 
In contrast to Jagged1, Jagged2 is expressed in virtually all postnatal neurons but 
appears only transiently in the developing vasculature  [  49  ] . Perhaps unsurpris-
ingly,  Jag2  null mutants die perinatally with severe craniofacial defects, but they 
do not display vascular defects  [  53  ] , suggesting that Jagged2 function in the vascu-
lature is redundant.   

    4.4   Notch Signaling in Hematopoiesis 

 In zebrafi sh, it has been shown that Notch signaling infl uences the balance between 
the endothelia and hematopoietic lineage  [  54  ] . In mammals and birds, the situation is 
more complicated because in these animals, the fi rst wave of hematopoiesis occurs in 
the yolk sac (termed “primitive hematopoiesis”) and only generates primitive erythro-
cytes and some macrophage progenitors  [  3,   55  ] . Hematopoiesis then shifts to intra-
embryonic sites such as the aorta-gonad mesonephros (AGM) region where 
hematopoietic stem cells (HSC) bud off from the ventral wall of the dorsal aorta 
 [  56–  58  ] , giving rise to all hematopoietic lineages (termed “defi nite hematopoiesis”). 
In contrast to extra-embryonic hematopoiesis, where endothelial and blood cells may 
have a common mesodermal precursor, in the AGM the hematopoietic lineage is 
derived from endothelial cells. Deleting  Notch1  or  Rbpj  in mice severely impairs 
intra-embryonic hematopoiesis but, interestingly, has no effect on yolk sac 
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hematopoiesis  [  59,   60  ] . Furthermore, deletion of  Jag1  (but not  Jag2 ) also disrupts the 
generation of HSCs in the AGM  [  61  ] , demonstrating that Jag1–Notch1 interactions 
are required for defi nitive hematopoiesis. Notch signaling also plays a major role in 
the immune system, where it is critically involved in T and B cell development and 
cell fate decisions in the myeloid lineage, which is reviewed elsewhere  [  62,   63  ] .  

    4.5   Notch Signaling in Vascular Wall Development 

 As discussed previously, early ventral mesoderm does not only generate hematopoietic 
and endothelial precursors, but is also a source of vascular smooth muscle cells  [  64  ] . 
Notch signaling has been implicated by several studies in the specifi cation of the vascu-
lar smooth muscle lineage. In vivo electroporation of chicken ventral mesoderm cells 
with constitutively active Notch1 led to a strong bias toward smooth muscle cell differ-
entiation, whereas application of a Notch inhibitor N-[N-(3,5-Difl uorophenacetyl)-L-
alanyl]-S-phenylglycine t-butyl ester (DAPT) skewed the balance toward the 
hematopoietic/vascular lineage  [  65  ] . Similarly, constitutively active Notch1 favoured 
the generation of mural cells from cultured embryonic stem cells  [  66  ] . This suggests that 
Notch signaling pushes mesodermal precursor cells toward the mural cell lineage. 

 Notch signaling has also been implicated in smooth muscle cell differentiation, 
which occurs later, once mural precursors have been generated, and when they start 
to invest primitive endothelial networks. At this stage, bi-directional signaling 
between mural and endothelial cells mediates vascular remodeling and initiates vas-
cular network maturation. Signaling through Notch3 (among other signaling sys-
tems) is part of this cross-talk. This is demonstrated by the abnormal artery 
differentiation in  Notch3  KO mice (see above). 

 Similarly, human mutations in  Notch3  cause cerebral arteriopathy with subcorti-
cal infarcts and leukoencephalopathy (CADASIL), which is an autosomal dominant 
disorder of small arterial vessels in the brain  [  67  ] . 

 Jagged1 is a likely ligand for Notch3 signaling during artery differentiation and mat-
uration, as endothelial-specifi c deletion of  Jag1  in mice causes defi cits in vascular 
smooth muscle cell differentiation  [  52  ] . Co-culture experiments have also shown that 
endothelial cells can induce and activate Notch3 via a positive feedback loop that 
includes endothelial-derived Jagged1  [  68  ] . The role of this pathway in mural cell dif-
ferentiation is further supported by the observation that in vitro stimulation of a mesen-
chymal cell line (C3H10T1/2) with Jagged1 (but not with Dll4) induced multiple smooth 
muscle marker genes  [  69  ] . However, how the role of Notch in mural cell differentiation 
relates to its earlier function in mural cell generation is not fully understood yet.  

    4.6   Notch Signaling in Vasculogenesis 

 During early embryogenesis, the dorsal aortae and cardinal veins are formed 
de novo from migrating and coalescing angioblasts  [  14  ] . Although arteries and 
veins are structurally and functionally distinct, for many years, it was thought that 
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this distinction was due to differences in blood fl ow and pressure. However, it is 
now clear that endothelial cells start to express either arterial or venous markers 
before the onset of circulation, suggesting a genetic infl uence  [  70  ] . 

 Lineage tracing in zebrafi sh has shown that individual angioblasts may already 
be restricted to an arterial or venous fate before the fi rst embryonic vessels are fully 
established  [  71  ] . Angioblasts migrating toward the midline contribute either to the 
dorsal aorta or the cardinal vein. Exposure of these cells to Vascular endothelial 
growth factor (Vegf) activates Notch signaling and arterial specifi cation  [  72  ] . Loss 
of Notch signaling leads to reduced arterial markers and ectopic expression of 
venous markers in the dorsal aorta  [  73  ] . In addition, the dorsal aorta fails to form in 
fi sh that lack the bHLH transcription factor gridlock (g rl ), the zebrafi sh orthologue 
of the mammalian  Hey2  and a downstream target of Notch signaling  [  71,   74  ] . 

 Between fi sh and mammals, the role of Notch signaling in vasculogenesis is 
remarkably well conserved. Transgenic overexpression of  Dll4  in mouse embryos 
leads to grossly enlarged dorsal aortae and embryonic lethality before E10.5  [  75  ] . 
Conversely, mice lacking  Dll4  display reduced dorsal aorta calibers and increased 
endothelial cell migration away from the dorsal aorta  [  76  ] . Similarly, experiments 
using constitutively active  Notch4  have shown that overactive Notch signaling 
results in enlarged dorsal aortae and underdeveloped cardinal veins, whereas the 
opposite (small aortae and enlarged veins) was found in endothelial-specifi c  Notch1  
KO mice  [  77  ] . 

 Interestingly, this study also found that the overall number of endothelial cells 
was unchanged by the manipulation of Notch signaling, suggesting that Notch sig-
naling reciprocally balances the size of the dorsal aortae and cardinal veins by mod-
ulating how angioblasts are allocated to either the developing aortae or the veins. 

 Dll4 and Jag1 are both expressed during early dorsal aorta vasculogenesis 
 [  39–  41  ] , but it appears that only Dll4 is essential for early arterial cell fate specifi ca-
tion. In  Jag1  KO mice, the primitive vascular plexus is initially established but then 
fails to remodel properly  [  51  ] , suggesting a non-essential role of Jag1 in vasculo-
genesis. Dll1 is not expressed in the vasculature until after the fi rst blood vessels are 
formed and therefore also not required for vasculogenesis  [  78  ] . However, Dll1 is 
needed to stabilize arteries after they have formed and, in comparison to Dll4, seems 
to act at a later stage of artery differentiation  [  40,   78  ] .  

    4.7   Notch Signaling in Angiogenesis 

 After the fi rst blood vessels have been generated, the vascular system is further 
expanded by angiogenesis (vascular growth from existing vessels). For instance, the 
developing retinal vasculature in mice is formed by angiogenesis  [  79  ] . The mouse 
retina is avascular at birth and its vasculature develops in the fi rst 3 weeks postnatally. 
During the fi rst postnatal week, a primary vascular plexus emerges from the optic 
nerve head and uses a template of retinal astrocytes as a substrate to spread across the 
inner surface of the retina. Angiogenic sprouting activity occurs at the growing edge, 
and vascular remodeling and differentiation can be observed more centrally. 



534 Notch Signaling in Vascular Development

Furthermore, the plexus consists of radially alternating and easily identifi able arteries 
and veins. In the second week, a secondary, deeper plexus sprouts from the superfi cial, 
primary network into the retina; and in the third week, vessels fully mature. Because 
of its stereotypical development and its 2-dimensional topology in the fi rst week, the 
developing mouse retinal vasculature has become a popular model system to study 
sprouting angiogenesis  [  80  ] . 

 In particular, the so-called tip cells at the sprouting edge can easily be identifi ed 
in the growing retinal vasculature. These specialized endothelial cells at the leading 
tip of angiogenic sprouts have pronounced fi lopodia and respond to angiogenic 
growth factors such as Vegf by migration. The endothelial cells that follow the tip 
cells are called “stalk cells” and proliferate in response to Vegf  [  81  ] . Endothelial 
cells can switch rapidly between the tip or stalk state and compete between each 
other for tip cell status  [  82  ] . This competition is mediated by a transcriptional feed-
back loop that is based on lateral inhibition via Dll4-Notch signaling and regulates 
the sensitivity of endothelial cells toward Vegf. High levels of Vegf in tip cells pro-
mote the expression of Dll4 and Vegfr2. The strong Dll4 expression in tip cells then 
activates Notch signaling and suppresses Dll4 and Vegfr2 transcription in adjacent 
stalk cells. 

 However, if stalk cells are exposed to high Vegf concentrations, they can upregu-
late Dll4 and Vegfr2 and turn themselves into tip cells  [  82  ] . Inhibition of Dll4-Notch 
signaling by chemical or genetic manipulation in mice or zebrafi sh disturbs the bal-
ance between tip and stalk cells and results in more tip cells and excessive vascular 
branching  [  46–  48,   83,   84  ] . Interestingly, there is also a Notch ligand that can inhibit 
this signaling axis. This is based on the fact that glycosylation of Notch receptors 
leads to stronger binding of Delta-like ligands versus Jagged ligands. Experiments 
studying the retinal vasculature of  Jag1  KO mice have shown that Jag1 can compete 
with Dll4 for receptor binding/activation and therefore act as an endogenous Dll4 
antagonist  [  85  ] . There are also other signaling pathways that can regulate Notch 
activity, such as the TGF b  or Wnt signaling pathways  [  86,   87  ] . How these signaling 
pathways precisely interact with Notch signaling is one of the current challenges in 
vascular biology.  

    4.8   Conclusions 

 In summary, Notch signaling plays a critical role at several, distinct stages of vascu-
lar development. Because a properly functioning vascular system is strictly required 
for the survival of embryos once they grow beyond the size of 1–2 mm, complete 
loss of function mutations in the Notch signaling pathway is therefore often embry-
onic lethal. This might explain, at least in part, why as yet only two genetic Notch 
mutations have been characterized in humans, the Alagille Syndrome ( JAG1 ) and 
CADASIL ( NOTCH3 )  [  67,   88  ] . The fact that they are both autosomal dominant 
conditions further highlights the importance of Notch signaling in development. 
Because Notch signaling is used at multiple times throughout vascular develop-
ment, it is usually diffi cult to interpret phenotypes in KO mice. Sophisticated model 
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systems that allow for conditional mutations in a cell- and time-specifi c manner will 
therefore play a particularly important role in future research of Notch signaling in 
the vascular system.      
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    5.1   Introduction 

 The establishment and progression of cardiovascular disease is associated with 
endothelial dysfunction. It is widely accepted that nitric oxide production from 
the vascular endothelium plays a key role in regulation of vascular function    in 
normal health and during disease. Therefore, mechanisms that regulate vascular 
nitric oxide production have become the focus of signifi cant attention from both 
vascular biologists and the pharmaceutical industry. The inhibition of nitric oxide 
synthase activity by endogenously produced competitive inhibitors has recently 
been    linked to reduced nitric oxide synthesis in numerous animal models of dis-
ease and several human disease states. In this chapter, we will review the current 
literature describing these relationships and briefl y focus on the pharmacological 
effects that some of the current therapies for treating these diseases might have on 
this pathway.  

    5.2   ADMA Synthesis 

 Asymmetric dimethylarginine (ADMA) is an amino acid that is constitutively pro-
duced following the posttranslational modifi cation of Arginine residues. A complex 
process, this methylation is carried out by protein arginine methytransferases 
(PRMTs) that can catalyze monomethylation, producing mono-methylated Arginines 
such as  l -NG-monomethyl Arginine ( l -NMMA)  [  1  ] .The PRMTs themselves exist 
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as different isoforms, and are classifi ed according to their enzyme activity (Type I 
enzymes and Type II enzymes) and substrate specifi city. PRMT 1 produces ADMA 
and PRMT2 the symmetrical isomer, SDMA (Fig.  5.1 )  [  2  ] . The activity of PRMT 
enzymes is regulated by many factors including cellular stresses  [  3–  5  ] .  

 As there is no evidence to suggest that ADMA can be made from the methylation 
of free arginines  [  6,   7  ] , the proteolysis of methylated arginines appears to be the sole 
source of ADMA  [  8  ]  that correlates with elevated levels of ADMA in induced car-
diovascular diseases  [  3,   5  ] . 

 The intracellular pool size of ADMA and other monomethylarginines is believed 
to be controlled predominantly by the hydrolysis of ADMA to citrulline and dime-
thylamine by dimethylarginine dimethylaminohydrolase (DDAH)  [  9,   10  ] , while 
SDMA is left unhydrolyzed  [  10  ] . Alternative pathways can also metabolize DMAs 
into derivatives of alpha-ketoacids (renal dimethyl pyruvate transferase DPT) and 
acetylated metabolites; however, these low-capacity pathways are minor and not 
thought to provide any major metabolic changes  [  11  ] . 

 The movement of the methylated arginines into and out of the cell is regu-
lated by the cationic amino acid transporter family (CAT)  [  12  ] . These transport 
amino acids, which include ADMA and SDMA, into and out of the cell in a one-
to-one exchange for another amino acid via an antiporter mechanism  [  13  ] . 
ADMA has a high affi nity for both the CAT type 1 and 2 transporters  [  12,   14  ]  
demonstrating a greater affi nity for them than  l -arginine  [  15  ] ; both ADMA and 
SDMA are considered to have an equal affi nity to other members of the CAT 
transporter family such as the CAT2B isoform  [  12  ] . The overall effect of com-
petition between methylated and non-methylated arginine at these transporters 
is not fully clear; however, at very high, superphysiological, concentrations, 
methylarginines may prevent the uptake of  l -Arginine into the cell, and  promote 
Arginine effl ux  [  16  ] . 
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 Due to the cationic nature of the transporter, the potential across the cell 
 membrane can regulate its activity, both positively and negatively  [  17  ] . This can 
provide a driving force of cationic amino acids into the cells so that by inducing 
membrane hyperpolarization, vasoactive agonists like Acetylcholine and Bradykinin 
can increase the driving force of CAT-mediated amino acid entry into the cell  [  18, 
  19  ] , potentially altering cellular Arginine and ADMA uptake  [  17  ] . 

 Following its export into the plasma, all the free methylated Arginines are ulti-
mately cleared from the body by renal excretion and hepatic metabolism  [  7  ] .  

    5.3   ADMA-Mediated Regulation of Nitric Oxide Synthesis 

 ADMA is a potent reversible inhibitor of all three Nitric Oxide Synthase (NOS) 
isoforms (nNOS, eNOS, iNOS)  [  20,   21  ]  by behaving as an  l -arginine analogue. 
 l -Arginine is the substrate of the Nitric Oxide Synthase (NOS) enzyme family that 
produces Nitric Oxide (NO) and  l -citrulline. The enzymes, eNOS (endothelial), 
iNOS (inducible), and nNOS (neuronal), coded by different genes  [  22  ]  were origi-
nally classifi ed according to their cellular distribution: in the endothelium, induc-
ibly in most cells, and neuronally but this has since been shown not to be exclusive. 
The isoforms are classifi ed according to their dependence on intracellular Ca 2+   [  23  ] , 
duration of action, and the fact that iNOS is inducible and nNOS and eNOS are 
constitutively produced  [  24,   25  ] . 

 Optimal NOS activity requires the presence of a number of cofactors including 
NADPH and BH4, substrate  l -Arginine, and, depending on the isoform, Ca 2+ . NO 
diffuses from the cell of origin into the target cells. NO reversibly binds to the heme 
group in soluble guanylate cyclase to form nitrosyl complexes in the target tissue 
that leads to cGMP production  [  26  ] . cGMP in turn activates Protein Kinase G (PKG) 
 [  27  ]  that in the smooth muscle lowers intracellular Ca 2+ , resulting in the dephospho-
rylation of myosin light chains causing a decrease in vascular tone. The actions of 
cGMP are terminated upon hydrolysis by a family of phosphodiesterases or pro-
longed pharmacologically by phosphodiesterase inhibitors  [  28  ] . 

 When produced in large enough quantities, such as following the induction of 
iNOS, NO can feedback negatively to inhibit NOS activity by s-nitrosylating the 
enzyme  [  29,   30  ] . 

 Other end products of NOS activity include nitrate and nitrite that can be reduced 
to NO, a reactive oxygen species, under conditions of low oxygen tension. If it 
reacts with superoxide, peroxynitrite (ONOO) forms, leading to    cellular damage 
and death  [  31  ] . Other actions of peroxynitrite that will affect NO production are 
thought to occur indirectly through tyrosine nitration of the CAT transporters  [  32  ]  
that may lead to increases in intracellular ADMA and reductions in  l -arginine 
 [  33  ] . 

 As a result of its actions, Nitric Oxide (NO) is involved in a wide variety of regu-
latory mechanisms that in the cardiovascular system include: the maintenance of 
vascular tone, anti-thrombotic effects, control of smooth muscle cell proliferation, 
leukocyte adhesion, endothelial cell proliferation, motility and survival  [  34–  37  ] , the 
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promotion and expression of VEGF and pro-angiogenic factors  [  37,   38  ] , and the 
inhibition of anti-angiogenic factors  [  34  ] . 

 Consequently, a reduction in NO bioavailability in vivo and in vitro results in 
numerous alterations in vascular function. The endothelial dysfunction that is 
directly linked to a decrease in the production of NO from eNOS is a risk factor 
associated with atherogenesis. 

 All NOS isoforms are inhibited by ADMA  [  20,   21,   39,   40  ]  with IC 
50

  values rang-
ing from 1 to 10  m m  [  41  ]  depending on the prevailing substrate concentration. 
Inhibition of eNOS by methylated Arginine analogues has been comprehensively 
measured by Cardounel and colleagues  [  15  ] . For endothelial NOS, the K 

m
  for 

eNOS = 3.14  m mol/l. The Ki for eNOS by ADMA is 0.9  m mol/l and by  l -NMMA is 
1.1  m mol/l. Under normal physiological conditions, these methylated arginine lev-
els inhibit only 10% of eNOS activity  [  15  ] . 

 Under pathophysiological conditions with plasma concentrations of ADMA increas-
ing threefold to ninefold, cellular NO output can be inhibited by 30–70%  [  7,   42,   43  ] . 
This effect may be amplifi ed by the action of CAT transporters that are able to concen-
trate methylarginines by up to 10× more inside than outside the cell. Some of these 
transporters have a higher affi nity for methylarginines than arginine and would therefore 
tend to increase the intracellular methylarginine:arginine ratio  [  15  ] . Thus, small changes 
in plasma levels of ADMA can result in large changes intracellularly  [  14  ] . 

 Other effects of increasing intracellular ADMA levels is the uncoupling of eNOS, 
which leads to superoxide production and subsequent increases in oxidative stress 
 [  44,   45  ]  that underlie the pathologies of many cardiovascular diseases  [  44,   46,   47  ] . 

 In healthy humans, the plasma levels of ADMA range from 0.35 to 0.7  m mol/l 
 [  17,   20,   21,   48  ] . These levels are due to the PRMT activity, hydrolysis by DDAH, 
and removal from the plasma by the kidneys  [  49  ] . 

 The selective nature of the metabolism of ADMA by DDAH means that ADMA/
SDMA ratios effectively demonstrate DDAH    metabolism since the CAT transport-
ers are not selective for DMAs. Consequently, SDMA levels are determined by 
PRMT activity and renal clearance and may therefore be a useful marker of renal 
function  [  50  ] . Indeed, SDMA correlates with creatinine clearance, while ADMA 
levels do not correlate with glomerular fi ltration rate  [  51–  53  ]  as a consequence of 
metabolism by DDAH.  

    5.4   DDAH-Catalyzed ADMA Hydrolysis 

 In mammals, there are two DDAH isoforms encoded by different genes  [  54,   55  ] . 
While ADMA is ubiquitously expressed in all cells, DDAH is selectively expressed 
to varying degrees in different organs, cellular and subcellular structures with some 
similarities to NOS isoforms. DDAH-1 is expressed in the pancreas, forebrain, 
aorta, peritoneal neutrophils and macrophages  [  55,   56  ] , and in the liver and kidney 
at sites of NOS expression  [  57–  59  ] . Using murine DDAH-1 knockouts, decreased 
expression of DDAH-1 independent of DDAH-2 can be found in skeletal muscle, 
lung, brain, and heart  [  60  ] . 
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 DDAH-2 expression is high in fetal tissue, vascular endothelium (in cytosol), 
smooth muscle, heart, placenta, spleen, thymus, peripheral leukocytes, lymph nodes, 
and bone marrow  [  55  ] . In the kidney, the selective structural distribution of DDAH 
includes the proximal tubule  [  61  ] , macula densa, distal convoluted tubule, the thick 
ascending limb of the loop of Henle, and the collecting ducts of the cortex and the 
medulla  [  61  ] . 

 DDAH isoforms are highly conserved at the amino acid level particularly in resi-
dues important for substrate binding and hydrolysis. Across species, DDAH iso-
forms are highly conserved with homology in the murine, bovine, and human gene 
sequences of DDAH-1 (92%) and DDAH-2 (95%). 

 DDAH catalyzes the metabolism of one molecule of ADMA to one molecule 
of Dimethylamine and  l -Citrulline and does not hydrolyze SDMA  [  62  ] . The K 

m
  

for ADMA metabolism by DDAH is 180  m mol/l  [  62  ] . Interestingly, recombi-
nantly expressed DDAH-2 has a greater K 

m
  for  l -NMMA of 0.51 mmol/l com-

pared    to 0.36 mmol/l for rat DDAH-1  [  62  ] . K 
m
  values for ADMA and  l -NMMA 

have been reported ranging from 69 to 170  m mol/l and 53.6 to 90  m mol/l respec-
tively for native and recombinant DDAH1  [  63,   64  ] . All investigations have 
demonstrated that the K 

m
  values for DDAH are greater than intracellular con-

centrations of ADMA, which suggests that the DDAH enzyme active site is 
never fully saturated, allowing ADMA metabolism to be proportional to its 
concentration. 

 It has been estimated that more than 70% of ADMA can be metabolized by 
DDAH  [  65  ]  with global heterozygous deletion of DDAH1 in the mouse increasing 
ADMA in the plasma, brain, and lung by 20%  [  60  ] . 

 There are a wide variety of factors that regulate DDAH activity and expression, 
some are isoform specifi c. DDAH can be competitively inhibited by  l -Arginine, 
although the required Ki is relatively high (Ki of 2.5 mM). This causes inhibition of 
ADMA metabolism in HepG2 liver cells increasing intracellular ADMA levels  [  66, 
  67  ] . This may explain not only the inability of supplemental  l -Arginine to improve 
vascular function but also the adverse effects that have been observed following 
administration  [  68  ] . 

 NO itself also regulates DDAH activity and expression. It is known that excess 
NO production found following iNOS stimulation often leads to inhibition of activ-
ity of constitutively expressed NOS isozymes by s-nitrosylation  [  29,   30  ] . NO can 
also reversibly inhibit recombinant DDAH in vitro and in mammalian DDAH 
extracts in a similar fashion via s-nitrosylation of cys-249 in the DDAH active site. 
This occurs after cytokine induced expression of the inducible NOS isoforms  [  69  ] . 
Interestingly, in IL-1 b -stimulated smooth muscle cells, the induction of iNOS is 
associated with increased DDAH activity and expression, causing ADMA levels to 
decrease  [  40  ] . One can assume that any    consequence of nitrosylation of the enzyme 
that occurs with high NO is negligible in this case, and further investigations into 
the precise mechanisms of DDAH regulation need to be undertaken. One putative 
mechanism might be via a cGMP-dependent pathway that can increase expression 
of the DDAH-2 isoform following increases in NO levels  [  70  ]  maintaining intracellular 
levels of NO. 
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 Other regulators of DDAH are: estradiol that increases DDAH activity  [  71  ]  
and expression  [  72  ] ; insulin that increases DDAH activity  [  73  ] , by inducing    
SIRT-1, an enzyme associated with the prevention of premature senescence  [  74  ] ; 
and all-trans-retinoic acid that can infl uence angiogenesis and is a transcriptional 
regulator of DDAH2. All-trans-retinoic acid targets the promoter region of the 
DDAH-2 gene, which also contains the PPAR/RXR site,  [  65  ]  and various PPAR 
ligands have been shown to increase the expression and activity of DDAH  [  74, 
  75  ] . 

 DDAH activity can be downregulated by factors that induce reactive oxygen spe-
cies as part of their mechanistic actions. These include: CF6, a component of mito-
chondrial ATP synthase that inhibits phospholipase A2  [  76  ] , LPS  [  77,   78  ] , and TNF 
 a   [  73,   77  ] . Sensitive to oxidation, peroxynitrite, and H 

2
 O 

2
   [  63  ] , DDAH has been 

reported by some to be less sensitive to in vitro inactivation by the potent oxidizer 
H 

2
 O 

2
   [  64  ] , because the active site may be protected from direct oxidation  [  79  ] , per-

haps because of the high pKa of the active site  [  64  ] .  

    5.5   ADMA, DDAH, and the Regulation of Vascular 
Function 

 Increased plasma ADMA concentrations as a consequence of the regulatory mecha-
nisms described above are linked to numerous vascular diseases alongside new and 
classical cardiovascular risk factors and are all associated with low NO output and 
endothelial dysfunction  [  80–  84  ] . Patients with pro-atherogenic cardiovascular dis-
eases such as hypercholesterolemia, hyperhomocystinemia, and hypertriglyceri-
demia demonstrate reduced endothelium-dependent fl ow-mediated vasodilatation 
in association with elevated plasma ADMA and reduced  l -Arginine/ADMA ratios 
 [  85–  87  ] . 

 The contribution of DDAH to NO-mediated dilatation has been demonstrated 
using experimental models in DDAH1 +/−  mice, where in vitro vasorelaxation to 
Acetylcholine (ACh) and the calcium ionophore is reduced  [  60  ] . Using small inhib-
itory RNA (siRNA) constructs targeted to DDAH-1 and DDAH-2 in rats, Wang and 
colleagues demonstrated that while DDAH-1 appeared to be responsible for regulat-
ing serum levels of ADMA, NO-mediated vasodilatation was regulated primarily 
through the DDAH-2 isoform  [  88  ] . 

 The angiogenic capabilities of endothelial cells are also affected by DDAH, 
improving following transfection of DDAH-2 by enhancing VEGF mRNA expres-
sion  [  9,   89  ] . Overexpression of DDAH1 increases neovascularization of tumor cells 
in vivo  [  90  ]  and results in improved endothelial regeneration following femoral 
artery injury in DDAH1 transgenic mice  [  91  ] . 

 Conversely, in DDAH1 +/−  mice, with elevated levels of ADMA, endothelium-
mediated angiogenesis is inhibited  [  89,   92,   93  ] .These pro-apoptotic and anti-
proliferative effects of ADMA are thought to occur via an increase in reactive 
oxygen species (ROS) and a p38 MAPK pathway in endothelial cells  [  44  ]  that 
induces apoptotic responses  [  94  ] . 
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 Increased levels of ADMA in patients with stable angina have also been shown 
to be associated with a decrease in myeloid endothelial progenitor cell number  [  95  ] , 
suggesting a role for DDAH in vascular repair mechanisms of the endothelium.  

    5.6   Nitric Oxide Synthase–Independent Actions 
of Methylarginines 

 Not all actions of  l -Arginine analogues are related directly to the activity of NOS 
and NO production. Other effects of  l -Arginine analogues include: inhibition of 
cytochrome C  [  96  ] , antagonism of muscarininc ACh receptors  [  97  ] , impairment of 
the urea cycle  [  98  ] , and induction of cytokines  [  99  ] . Rats overexpressing DDAH 
suppress the gene and protein expression of the cytokine TGF- b  in a rat model of 
chronic kidney disease  [  100  ] . 

 The importance of ADMA in non-NO-related pathology is demonstrated in 
eNOS −/−  mice, where following long-term administration of ADMA, coronary vas-
cular lesions are found, typifi ed by medial thickening and a perivascular fi brosis in 
the coronary microvessels  [  101,   102  ] . As this group found no expression of iNOS 
or nNOS in the thickened microvessels, the lesions occurring as a consequence of 
ADMA inhibition of other NOS isoforms were ruled out. Indeed, while NOS triple 
knockout mice are viable, homozygous null mice for DDAH-1 are embryonically 
lethal  [  60  ]  supporting the proposition of signifi cant non-NO-dependent effect of 
ADMA. 

 Several studies have investigated the NO-independent relationship of ADMA 
with angiotensin. Angiotensin II is used to artifi cially induce hypertension and renal 
injury, and in these cases, ADMA is elevated perhaps as a result of increased PRMT 
synthesis  [  5  ] . The augmented levels of ADMA further upregulate angiotensin- 
converting enzyme  [  47,   102  ]  that converts angiotensin I to angiotensin II. 

 Angiotensin II can however reduce ADMA levels by acting on AT-1 receptors, 
causing an increase in the mRNA expression of arginases, DDAH-2  [  103  ]  and CAT 
transporter expression and activity in the healthy kidney of angiotensin II hyperten-
sive rats  [  103,   104  ] . This feedback system may consequently contribute to the para-
doxically stable ADMA levels observed in rat models of angiotensin II hypertension 
when the kidneys are healthy  [  5  ] .  

    5.7   ADMA Clearance: The Liver and Kidneys 

 Free methylarginines are cleared from the plasma by renal excretion and hepatic 
metabolism  [  7,   105  ] . 

 Hepatocytes take up large amounts of particular amino acids from the hepatic 
circulation that include Arginine and ADMA  [  57,   58  ]  and regulate the circulating 
levels of ADMA by expressing high levels of Arginases  [  57,   58  ]  and DDAH  [  55  ] . 
Consequently, in liver failure, the plasma levels of Arginine, ADMA, SDMA, and 
other amino acids are elevated  [  57,   58,   106  ] . 
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 In the kidney, SDMA and ADMA are excreted equally. The kidney is also very 
sensitive to circulating levels of  l -arginine and plays a major role in Arginine 
metabolism. ADMA can be both generated and metabolized by the kidney as 
ADMA is taken up from the circulation via CAT transporters  [  17  ] . 

 In chronic kidney disease, there is reduced nitric oxide production  [  107  ]  and 
increased ADMA and SDMA levels. SDMA levels are associated with high levels 
of creatinine, a marker of kidney dysfunction  [  108  ]  and high SDMA levels are sug-
gestive of an increased expression of PRMTs  [  109  ] . 

 Relatively small increases in ADMA concentrations that occur in early-stage 
renal failure are associated with large increases in cardiovascular event rates. 
Dysfunctional kidneys excrete less ADMA, the severity of the renal disease cor-
relating to increased ADMA concentration and reduced NO bioavailability  [  110  ] . 
High ADMA levels in turn cause a decrease in renal plasma fl ow contributing to 
further progression of kidney damage that will raise ADMA to pathophysiologi-
cal levels  [  20,   21,   111  ]  and contribute to the progression of cardiovascular dys-
function  [  107  ] . Experimentally induced chronic NOS inhibition can result in: 
systemic and glomerular hypertension; tubulointerstitial injury; proteinuria, glom-
erular ischemia, and glomerulosclerosis  [  112  ] ; and chronic renal disease  [  113  ] . 
Consequently, plasma ADMA concentration is a strong independent predictor of 
disease progression in patients with kidney failure  [  111,   114  ]  with elevated plasma 
ADMA strongly associated with mortality in patients with renal failure  [  84  ]  and 
an increased morbidity and mortality in renal transplant patients  [  115  ] . 
Interestingly, in end-stage renal disease, the frequency of hemodialysis has very 
little effect on ADMA levels  [  116  ] .  

    5.8   Associations Between DDAH/ADMA and Disease 

 Clearly, ADMA has the potential to exert signifi cant effects on nitric oxide synthe-
sis and DDAH is a key regulator of ADMA levels in vivo (Fig.  5.2 ). In the following 
sections, we will review the literature implicating dysregulation of ADMA levels in 
several major human diseases.  

    5.8.1   Cardiovascular Disease 

 The pathologies of most patients with renal disease are characterized by cardiovas-
cular morbidity and mortality due to complications and premature atherosclerosis 
 [  117  ] . 

 Atherosclerosis is the leading cause of death and disability in North America 
 [  117  ] , and in 2003, the World Health Organisation (WHO) estimated that approxi-
mately 16.7 million people die annually of cardiovascular disease  [  118  ] . 

 Atherogenesis proceeds as a result of continuing endothelial dysfunction that is 
associated with cardiovascular risks. These include: aging, hyperhomocysteinemia, 
postmenopausal state, smoking, diabetes, hypercholesterolemia, and hypertension 
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 [  119  ]  and can be assessed according to the Framingham Risk score  [  120  ] , although 
the Framingham Risk currently underestimates event rates of chronic Kidney dis-
ease  [  121,   122  ] . 

 The relationship between the progression of atherosclerosis and the NO pathway 
is a close one. Plasma ADMA is elevated in established atherosclerosis  [  81  ] , periph-
eral vascular disease  [  85  ] , and coronary artery disease  [  66,   67  ] . 

 Behaving as an independent predictor of cardiovascular disease in patients with 
coronary artery disease  [  42,   123  ] , elevated ADMA is associated with what are con-
sidered to be classical risk factors for cardiovascular disease that include: hypercho-
lesterolemia  [  85,   124,   125  ] , raised low-density lipoproteins  [  77  ] , triglycerides  [  86  ] , 
raised C-reactive protein  [  123  ] , ageing  [  81  ] , hypertension, pulmonary hyperten-
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  Fig. 5.2    The DDAH/ADMA/NOS pathway. The methylation of protein incorporated arginine by 
PRMTs and subsequent proteolysis of arginine methylated proteins leads to a production of the 
methylarginines ADMA,  l -NMMA, and SDMA. ADMA and  l -NMMA (but not SDMA) inhibit 
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sion [  126  ] , diabetes, hyperlipidemia  [  124,   127–  129  ] , and hyperhomocysteinemia 
 [  130,   131  ] . High levels of homocysteine, which are associated with coronary and 
peripheral vascular disease  [  132  ] , result in elevated oxidative stress and increased 
ADMA levels in both animal  [  124  ]  and human experiments  [  133  ]  by directly 
increasing ADMA accumulation  [  131 ,  134  ]  causing endothelial dysfunction  [  130  ] .  

    5.8.2   Hypertension 

 Hypertension involves an interaction of multiple underlying mechanisms that 
include: the renin-angiotensin system  [  135,   136  ] , oxidative stress  [  137  ] , and nitric 
oxide synthesis. 

 Nitric oxide plays an integral role in the regulation of vascular tone and blood 
pressure  [  138,   139  ] , and in both human and animal experiments, there is an increas-
ing body of evidence associating the development of hypertension with NO defi -
ciency. Blood pressure is associated with plasma levels of ADMA in healthy subjects 
 [  81  ]  and the infusion of ADMA into healthy subjects will moderately elevate blood 
pressure, offset by decreases in cardiac output and cardiac dysfunction  [  127  ] . In 
patients with essential hypertension, plasma ADMA has been reported by some 
groups to be elevated  [  140–  143  ]  and by others to remain unaffected  [  144,   145  ] . 

 However, increased ADMA levels in hypertensive patients correspond with 
impaired fl ow-mediated vasodilatation  [  146  ]  and experiments performed ex vivo on 
resistance vessels taken from patients with essential hypertension demonstrate ele-
vated ADMA levels that correlate with endothelial dysfunction and a reduced NOS 
activity  [  147  ] . Experimentally increased plasma ADMA concentrations have been 
shown to result in hypertension. Genetic or pharmacological inhibition of ADMA 
metabolism causes elevated systemic and pulmonary pressures  [  60  ] , while genetic 
overexpression of DDAH1 produces the opposite effects. 

 ADMA may also regulate blood pressure by affecting the kidney excretion of 
Na +  ions. Mice lacking eNOS are salt sensitive  [  148  ]  and the effects of endogenous 
NOS inhibitors can induce kidney-mediated salt-sensitive hypertension in rats 
 [  149  ] .  

    5.8.3   Metabolic Syndrome 

 Metabolic syndrome is a cluster of the most dangerous risk factors, characterized by 
obesity, dyslipidemia, hypertension, and insulin resistance. It has reached epidemic 
proportions globally primarily due to an increased sedentary lifestyle and dietary 
habits. It is associated with an approximate twofold increased risk of cardiovascular 
morbidity and mortality in the European population  [  150  ] . This increased associa-
tion is due in part to vascular complications contributing to an increase in cardiovas-
cular risk  [  151,   152  ]  with impaired NO-mediated vasorelaxation  [  153  ] . 

 In rat models of metabolic syndrome, associations with either reduced NO  [  154  ]  
or endothelial dysfunction alongside oxidative stress  [  155  ]  have been  demonstrated. 
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Hypertension in the rat model of metabolic syndrome used by Roberts and co-workers 
was associated with NO downregulation and dysfunction of the pathway down-
stream from NO  [  156  ] . Patients with metabolic syndrome show correlations between 
NO and BMI, systolic blood pressure and triglyceride levels  [  157  ] , and decreased 
vascular reactivity to ACh compared to age-matched healthy controls  [  158  ] . 

 Decreased NO bioavailability in metabolic syndrome is associated with increased 
levels of ADMA  [  159  ] . Insulin resistance, which is pivotal to this syndrome  [  160  ] , 
positively correlates with ADMA levels in nondiabetic, normotensive individuals 
 [  159  ] . Increased ADMA levels are most likely the result of a decrease in DDAH 
activity that is associated with obesity, hypercholesterolemia, and oxidative stress 
 [  161,   162  ]  and an upregulation of PRMT1 expression that has been shown in the    
presence of low-density lipoprotein or oxidized LDL in cultured endothelial cells 
 [  2,   44  ] .  

    5.8.4   Diabetes 

 In approximately 70% of all deaths in patients with diabetes, cardiovascular dis-
ease is responsible  [  163,   164  ] . Insulin signaling pathways in the vascular endothe-
lium share similarities with metabolic insulin signaling pathways in adipose tissue 
and skeletal muscle  [  165  ] . In skeletal muscle, insulin can stimulate an increase in 
NO production, resulting in increased blood fl ow  [  166  ] . In this situation, increased 
NO production is the result of eNOS phosphorylation and activation that is down-
stream of Akt signaling.  [  167,   168  ] . When insulin-mediated glucose uptake is 
defective, it has been suggested that the MAP-kinase pathway can also regulate 
insulin-dependent NO production  [  169,   170  ] . Insulin can also increase arginine 
bioavailability via improved CAT transport, upregulate eNOS expression and activ-
ity in cultured Human Umbilical endothelial cells (HUVEC)  [  171  ] , and increase 
DDAH activity  [  73  ] . 

 Predictably, in animal models of diabetes  [  172,   173  ]  and in patients with impaired 
glucose tolerance  [  81  ] , insulin resistance  [  159  ] , and both type 1 and 2 diabetes 
 [  174–  176  ] , plasma ADMA levels are elevated.  

    5.8.5   Insulin-Resistant Type II Diabetes 

 Insulin resistance is typically defi ned as “decreased sensitivity and/or responsive-
ness to the metabolic actions of insulin that promote glucose disposal”  [  177  ] . Type 
2 diabetes is strongly linked to the metabolic syndrome and cardiovascular disease 
 [  160  ] , and obese patients with insulin resistance have higher plasma ADMA levels 
than obese patients without insulin resistance  [  178  ]  with a decline in ADMA plasma 
levels reported only with weight loss in patients with insulin resistance and not 
those without insulin resistance  [  179  ] . 

 Strong associations between the duration of the disease, smoking, nephropathy, 
and diabetic retinopathy were signifi cantly associated with ADMA levels in a cohort 
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of 343 patients with type 2 diabetes  [  180  ] . Genetic variations in both DDAH-1 and 
DDAH-2 genes in this cohort associated with the elevated levels of ADMA  [  180  ] . 

 Underlying the acquired insulin resistance present in type 2 diabetes is a degree 
of glucotoxicity, lipotoxicity, and infl ammation which are responsible for the 
increased levels of oxidative stress and infl ammatory molecules which contribute to 
endothelial dysfunction  [  181  ] . 

 Elevation of intracellular glucose levels is associated with an increase in ADMA 
 [  182,   183  ]  that is secondary to increased oxidative stress, reduced DDAH activity 
 [  3  ]  and eNOS expression  [  183 ,  184  ] , and increased PRMT activity  [  3  ] . Hyperglycemia 
has also been shown to downregulate DDAH activity in rat models of critical illness 
 [  182  ] , cultured endothelial cells  [  185  ] , and rat models of type 2 diabetes  [  172  ] . 

 Further consequences of high plasma glucose levels and oxidative stress are the 
production of Advanced End Glycation (AGE) products that are associated with 
elevated plasma ADMA in both type 2 diabetes  [  186  ]  and in hypercholesterolemia 
 [  187  ] . One putative mechanism for the action of AGE is via the inhibition of eNOS 
 [  184  ]  and/or a decrease in DDAH activity that can attenuate NO-dependent vasore-
laxation in rat aortic rings  [  189  ] .   

    5.9   Pharmacotherapy of ADMA 

 The importance of ADMA as an independent marker of cardiovascular disease risk 
 [  81  ]  and a marker for atherosclerotic change  [  190  ]   [  110  ]  suggests that the outcomes 
of certain cardiovascular diseases might be improved by pharmacologically manip-
ulating the ADMA/DDAH pathway. Here we discuss some of the more common 
therapies used in treatment of cardiovascular diseases that have been shown to mod-
ulate the activity of the ADMA/DDAH pathway (Table  5.1 ).  

    5.9.1   ACE and ARB Inhibitors 

 Numerous studies have shown a link between ADMA and the renin-angiotensin 
system (RAS). Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin 
AT 

1
  receptor blockers (ARBs) prevent eNOS uncoupling and oxidative stress via 

inhibitory effects on the activity of free radical–producing enzymes  [  87,   191 ,  192  ] . 
ACEIs work by inhibiting angiotensin II which increases ROS formation by vascu-
lar NADPH oxidase. The production of ROS leads to inactivation of DDAH and 
also upregulates activity of PRMTs, consequently contributing to increased levels 
of ADMA. 

 Delles et al. fi rst demonstrated the link between an activated renin-angiotensin 
system and the ADMA pathway by showing that (independent of blood pressure 
lowering effects) the monotherapy or combination therapy of an ACEI and ARB 
reduced ADMA plasma concentrations in young, mildly hypertensive men  [  193  ] . 
The effects of such treatments were later confi rmed by Suda et al., who revealed that 
vascular lesions and superoxide production in both wild-type and endothelial 
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NOS-defi cient mice were caused by chronic treatment with ADMA, and treatment 
by either ACEI or ARBs prevented these changes  [  102  ] . 

 In addition, treatment with Telmisartan, an ARB commonly used in the manage-
ment of hypertension as well as a selective modulator of PPAR- g , delayed endothe-
lial cell senescence, decreased oxidative stress, and upregulated the activity and 
protein expression of DDAH II. Importantly, Telmisartan was also shown to decrease 
the concentration of ADMA in endothelial cells, thereby inducing NO synthesis 
 [  74  ] . Studies comparing Telmisartan to another ACEI (Valsartan) in hypertensive 
patients with type 2 diabetes and overt nephropathy have shown renoprotection but 
no signifi cant difference in ADMA levels over a course of 12 months  [  195  ] . 

 While a signifi cant number of data indicates the positive effects of ACEIs and 
ARBs on lowering ADMA, the effects of these agents on PRMT activity and 
(methyl)-arginine transport remain unclear  [  196  ] .  

    5.9.2   Statins 

 Statins are commonly prescribed for adults with clinical evidence of cardiovascular 
disease. Different statin types exist and are prescribed on an individual basis accord-
ing to their difference in ability to reduce cholesterol levels. These Hydroxymethylg-
lutaryl Co-enzyme A reductase inhibitors decrease plasma cholesterol but can also 
inhibit platelet and leukocyte adherence to the endothelium, block proliferation of 
vascular smooth muscle, and stimulate eNOS expression  [  197  ] . They also improve 
oxidative shear stress by reducing the activity and/or expression of NAD(P) oxidase 
that leads to a reduction in vascular superoxide production  [  198  ] . 

 The suggestion that native or oxidized-LDL may cause ADMA accumulation via 
increases in PRMT activity or by oxidative inhibition of DDAH activity  [  2  ]  has 
meant that the effects exhibited by drugs such as statins might potentially lead to 
improvement of endothelial dysfunction. 

 However, studies investigating the effects of statins have shown an improvement 
in endothelial function in cardiovascular diseases independently of ADMA levels 
and the  l -arginine/ADMA ratio  [  199  ] . Young and co-workers showed that a double-
blinded, placebo-controlled crossover study of 40 mg Atorvastatin administered 
once daily for 6 weeks on patients with non-ischemic left ventricular dysfunction 
did improve lipid profi les, and endothelium-dependent vasodilatory responses of 
both the microvascular and macrovascular circulation, however, did not infl uence 
ADMA levels  [  199  ] . 

 Similarly, a 24-month study in patients with mild-to-moderate Chronic Kidney 
Disease (CKD) showed that plasma ADMA concentrations, which did not alter over 
time, were not infl uenced by Pravastatin, or homocysteine-lowering therapy  [  200  ] . 

 Of the major trials involving statins, the treatment of patients with hypercholester-
olemia by the administration of Rosuvastatin (10 mg/day for 6 weeks) was the only 
one shown to decrease plasma ADMA levels signifi cantly. Reduction in ADMA 
levels and low-density lipoprotein cholesterol corresponded with increases in fl ow-
mediated dilatation  [  162  ] . Rosuvastatin has also been shown to be potent in lowering 
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plasma cholesterol levels in patients with hypercholesterolemia  [  201  ]  as well as 
decreasing vascular endothelial NO production in mice subjected to myocardial isch-
emia reperfusion injury  [  202  ] . Interestingly, recent experiments on cultured endothe-
lial cells have shown that another statin, Simvastatin, decreases ADMA concentration 
by increasing DDAH1 mRNA expression via an SREBP2-dependent mechanism 
 [  203  ] . Overall, the effects of statins on ADMA levels remain unclear, dependent on 
the specifi c Statin prescribed and the type of cardiovascular disease.  

    5.9.3   Antioxidants and DDAH 

 Cardiovascular disease is linked to infl ammation and oxidative stress  [  137,   204  ] , 
induced by elevating levels of superoxide anions and peroxynitrite  [  205,   206  ]  which 
are known to inhibit DDAH and induce ADMA  [  161,   162  ] . Numerous synthetic 
antioxidants have been shown to reduce the formation of ADMA and prevent a 
decrease in DDAH activity. Probucol, a potent antioxidant drug which inhibits the 
oxidation of cholesterol in LDL, signifi cantly reduces levels of ADMA and improves 
endothelium-dependent relaxation by inhibiting PRMT 1 expression and enhancing 
the activity of DDAH  [  44,   207  ] . 

 Studies on the sulfur-containing    semi-essential amino acid Taurine, which has shown 
to be a potent antioxidant with the potential to inhibit lipid peroxidation and lower pro-
duction of oxidant free radical  [  208,   209  ]  signifi cantly decreased ADMA levels in vivo 
by increasing DDAH activity via the reduction of lipid peroxidation  [  210  ] . 

 More recently, Xiao et al.  [  211  ]  showed that Kaempferol, a naturally occurring 
fl avonoid with antioxidant properties, increased DDAH2 expression, decreased 
plasma ADMA levels, and increased plasma NO in ApoE −/−  mice. This effect was 
accompanied by a signifi cant decrease in ROS production levels  [  211  ] . 

 In patients with mild-to-moderate Chronic Kidney Disease (CKD) administra-
tion of Vitamin E decreased plasma ADMA concentrations, perhaps as a result of 
improved DDAH activity  [  210  ] , but neither Pravastatin nor other antioxidant ther-
apy that included vitamin B6, B12, and folic acid affected ADMA levels  [  200  ] . This 
suggests that not all antioxidant therapies produce the same anti-inhibitory mecha-
nisms for DDAH. The variations of the antioxidant effects on DDAH activity could 
in part be due to the protection of the active site by oxidized proteins that release 
zinc ions  [  212  ] .  

    5.9.4   Antidiabetic Drugs 

 The rise in obesity in developed countries has led to an increase in the prevalence of 
associated diseases such as type 2 diabetes and metabolic syndrome. These diseases 
are closely associated to hypercholesterolemia as well as oxidative stress which lead 
to increased plasma ADMA levels by reducing DDAH activity  [  161,   162  ] . 
Pharmacological antidiabetic drugs include PPAR- g  agonists, sulfonylureas, insulin 
mimetics, and biguanides.  
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    5.9.5   PPAR Agonists 

 Thiazolidinediones (TZDs) are PPAR- g  agonists which have shown benefi cial 
effects for the glycemic management of type 2 diabetes mellitus. By acting directly 
on the vascular wall and peripheral tissues, they are thought to improve vascular 
structure and function, improve fl ow-mediated dilation, and have antiatherogenic 
effects among others  [  213 ,  214 ,  215  ] . Disadvantages in the use of    TZDs have been 
shown to be an increased risk of fractures, particularly in women aged 65 years and 
over, particularly as individuals with type 2 diabetes are prone to rapid bone loss 
and the TZDs decrease bone formation; thus, therapy must be tailored appropriately 
to suit the patient’s requirements  [  216  ] . 

 Studies of the effects of the TZD Rosiglitazone have shown a variety of effects, 
with some studies showing positive ADMA-lowering effects by up to 30% in seven 
insulin-resistant patients with hypertension  [  159  ]  as well as reduced plasma ADMA 
levels in patients with metabolic syndrome  [  217  ] . However, a recent study in a 
mouse model of high cardiovascular risk has shown that although Rosiglitazone can 
prevent carotid remodeling, a subsequent increase in superoxide and ADMA pro-
duction and oxidative stress impairs endothelial dilatation of carotid arteries in 
response to ACh  [  218  ] . 

 A randomized 6-month study comparing Rosiglitazone with Glyburide, a 
commonly prescribed sulfonylurea used to treat type 2 diabetes mellitus, showed 
that compared to Glyburide, Rosiglitazone signifi cantly decreased c-reactive 
protein, c-peptides, improved arterial fl ow mediators, and showed trends toward 
improvements in carotoid artery distension. However, ADMA levels and other 
markers of oxidative stress remained unchanged in both groups, suggesting that 
ADMA was not associated with the improvements obtained by Rosiglitazone in 
this study  [  219  ] . This was confi rmed by Richer et al.  [  220  ]  and Mittermayer 
et al. who showed no effect in ADMA lowering by Rosiligtazone in critically ill 
patients  [  220,   221  ] .  

    5.9.6   Biguanides 

 Metformin is a biguanide antidiabetic drug which can be transported to cells by the 
CAT transporter system due to its similar structure to ADMA  [  222  ]  and unlike other 
antidiabetic drugs does not cause hypoglycemia. Asagami et al.  [  223  ]  fi rst looked at 
the effect of Metformin, either as monotherapy or in combination with sulfonylurea 
treatment, on ADMA, glucose, and  l -Arginine levels in patients with type 2 diabe-
tes. The study revealed that metformin (1–2 g/day for 3 months) decreased plasma 
ADMA concentrations by 30% in association with improved glycemic control in 
patients and this occurred regardless of single or combination use. Metformin did 
not have any effect on  l -arginine levels  [  223  ] . Several other studies have confi rmed 
this by showing that metformin treatment in women with polycystic ovaries 
(PCOS) reduced plasma ADMA levels as well as improved hormonal and metabolic 
 parameters  [  224,   225  ] .  
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    5.9.7   Insulin 

 In 2007, Eid et al. showed that co-stimulation of HUVECs and HCAECs with 
 insulin (10 nM) or adiponectin (20  m g/ml) for 48 h inhibited dose-dependent TNF-
induced ADMA. A reduction in ADMA was a result of an increase in DDAH 
activity  [  73  ] . A study on young people with type 1 diabetes confi rmed these fi ndings 
by showing that ADMA levels were not affected by acute change in glycemia but 
were signifi cantly reduced by insulin infusion  [  226  ] . Insulin sensitivity was shown 
to be augmented by a decrease in ADMA and an overexpression of DDAH  [  227  ] .  

    5.9.8    L -Arginine Supplementation 

 The supplementation of  l -arginine should in theory provide increased substrate for 
   NOS and therefore increase the levels of NO released by cells. In patients with 
hypertension  [  228 ,  229  ] , diabetes  [  220  ] , and hypercholesterolemia  [  230 ,  231  ] , 
short-term effects of  l -arginine infusion do demonstrate improvements in vasodila-
tion and lower levels of ADMA. 

 However, in 17 human    studies on oral  l -arginine supplementation, fi ve of them 
have demonstrated no benefi ts at all  [  232  ] . 

 Two studies by Blum showed that oral  l -arginine supplementation (9 g/daily 
for one month) did not enhance NO synthesis and release in postmenopausal 
women  [  233,   234  ] , or improve NO bioavailability in coronary artery disease 
patients  [  233,   234  ] . Chin-Dusting and colleagues  [  235,   236  ]  measured forearm 
blood fl ow and showed that in normal healthy patients, endothelial function was 
not improved by oral  l -arginine supplementation (20 g/day for 28 days)  [  235  ] , as 
was the case in    patients with heart failure  [  236  ]  and in some cases was associated 
with their death  [  68  ] . Such results could be explained by the fact that  l -arginine 
supplementation leads to increases in intracellular levels of  l -arginine and ADMA 
and consequently impairs activity of DDAH which is required for the metabolism 
of ADMA  [  237  ] . 

 Increasing    evidence associates cardiovascular disease with endothelial dysfunc-
tion and dysregulation of the DDAH/ADMA/NO pathway. A number of currently 
used cardiovascular drugs reduce plasma ADMA concentrations and enhance 
NO-mediated vascular function. A greater understanding of the regulation of DDAH 
gene expression and enzyme activity may provide novel therapeutic opportunities 
for the    treatment of cardiovascular diseases.       
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           6.1   Introduction 

 The potassium conductance in cardiac myocytes governs repolarization during the 
action potential, sets the resting membrane potential, and responds to hormonal 
and metabolic changes. Since the 1950s, the use of electrophysiological techniques 
has led to an appreciation of the large diversity of these currents and the recon-
struction of their role in cardiac physiology using mathematical models  [  1,   2  ] . The 
Na + \K +  ATPase is largely responsible for establishing the ionic gradients underly-
ing excitability, but it is the temporally coordinated fl ux through sodium, calcium, 
and potassium ion channels that determines the trajectory and properties of the 
action potential in a myocyte. Ion channels are protein pores in the membrane that 
allow a high fl ux of ions down their electrochemical gradients and often show high 
selectivity between different ions. Cloning efforts revealed the molecular species 
underlying these proteins in the 1990s. During this time, it also became clear that 
genetic defects in these proteins were responsible for human cardiac disease. In 
this chapter, we are going to discuss this interface between human disease and 
basic potassium channel biology. In particular, we will focus on the molecular 
pathogenesis of diseases that have been associated with potassium channel defects, 
and the implications for therapeutics in both hereditary and the commoner non-
hereditary cardiac pathology.  
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    6.2   The Human Cardiac Action Potential 
and Three Repolarizing K +  Currents 

 The starting point for discussion is the action potential in human ventricular cardiac 
myocytes. The initial depolarization is mediated by Na +  entry via the sodium chan-
nel, and the subsequent plateau and repolarization is shaped by Ca 2+  entry and out-
ward K +  currents as illustrated in Fig.  6.1 . The action potential waveform actually 
varies within different regions of the heart and even between the endocardium and 
epicardium of the same chamber. For example, in the SA (sinoatrial) node, there are 
several unique currents such as the hyperpolarization-activated cation current 
responsible for pacemaker depolarization, the G-protein-gated inwardly rectifying 
K +  current (GIRK/I 

KAch
 ), and the initial action potential depolarization is mediated 

by Ca 2+  entry with little contribution from sodium currents  [  3  ] . In particular, we are 
going to focus on three K +  currents responsible for the terminal repolarization of the 
ventricular cardiac action potential namely I 

Kr
 , I 

Ks
 , and I 

K1
 . In the ventricular myo-

cytes of large mammals, including man, there is a K +  current that characteristically 
activates with a delay (“delayed rectifi er”) and this was originally assumed to be a 
single current (“I 

K
 ”). In contrast, in smaller mammals, such as the rat, terminal repo-

larization is determined by a transient outward K +  current  [  4  ] . The use of E-4031 
refi ned the picture of I 

K
  leading to the pharmacological separation of two currents 

namely I 
Kr

  and I 
Ks

   [  5  ] . I 
K1

  is the classical strong inward rectifi er fi rst identifi ed by 
Weidmann in sheep Purkinje fi bers and subsequently in other species  [  6  ] .  
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  Fig. 6.1    A schematic of the ventricular cardiac action potential present in man. The fast upstroke 
seen in  phase 0  is generated by the activation of a sodium current (I 

Na
 ). The following downward 

defl ection/notch,  phase 1 , is then formed by the activation and rapid inactivation of a K +  current I 
to
 . 

After  phase 1 , the action potential enters a plateau phase, early  phase 2 , which is maintained by the 
entry of Ca 2+  ions through  l -type Ca 2+  channels (I 

Ca,L
 ) and a small amount of late sodium current 

(I 
Na,L

 ). Three K +  currents, I 
Kr

 , I 
Ks

 , and I 
K1

 , then act in a concerted fashion to repolarize the heart, 
 phases 2  and  3 . In  Phase 4 , I 

K1
  and I 

KATP
  act to set the membrane potential.  Blue arrows  indicate an 

inward fl ow of ions.  Red arrows  indicate an outward fl ow of ions       
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 Potassium channels are oligomeric complexes consisting of pore-forming alpha 
subunits often in complex with beta subunits that can critically alter traffi cking and 
function of the alpha subunit. The alpha subunits of voltage-gated channels (K 

v
 ) and 

inwardly rectifying channels (K 
ir
 ) are tetramers while twin pore channels (K 

2P
 ) are 

dimers  [  7  ] . The alpha subunits underlying I 
Kr

  (HERG, Kv11.1) and I 
Ks

  (KCNQ1, 
KvLQT1, Kv7.1) are members of the voltage-gated family of K +  channels and have 
six transmembrane domains. In contrast, the pore-forming subunits of the I 

K1
  are 

members of the inward rectifi er family and have two transmembrane domains. 

    6.2.1   I 
Kr

  

 The use of E-4031 allowed the separation of I 
K
  into two components. The drug-

sensitive component was labeled I 
Kr

  as it activated relatively rapidly compared to the 
drug-insensitive fraction (see below)  [  5  ] . The current is inwardly rectifying, and in 
contrast to the classical inward rectifi ers, this arises from fast inactivation and not 
block by Mg 2+  or polyamines     [  8,   9  ] . HERG was originally cloned from a brain 
cDNA library but its’ signifi cance in cardiac electrophysiology was not truly appre-
ciated until it was linked with the long QT syndrome  [  10,   11  ] . The properties of 
HERG after heterologous expression are similar but not identical to the native I 

Kr
  

current  [  12,   13  ] . It has been proposed that HERG channels have a beta subunit, 
KCNE2, in a fashion similar to I 

Ks
  (see below) and that defects in this protein can 

rarely lead to the long QT syndrome  [  14  ] . However, this has been disputed  [  15  ]  and 
it is clear that KCNE2 can interact with a number of other ion channels  [  16–  19  ] .  

    6.2.2   I 
Ks

  

 The E-4031-insensitive current has exceptionally slow activation (and deactivation) 
kinetics and steady-state current amplitude is only achieved after seconds of depo-
larization  [  5  ] . These properties have led to the designation of I 

K“slow”
  abbreviated to 

I 
Ks

 . However, this behavior is also physiologically important as it means that it is 
important late in repolarization and the current progressively accumulates during 
increases in heart rate as deactivation is incomplete. 

 I 
Ks

  is composed of the pore-forming KCNQ1 and the auxiliary subunit KCNE1 
 [  20,   21  ] . I 

Ks
  is thought to be a complex of four alpha KCNQ1 subunits and probably 

two beta KCNE1 proteins  [  22  ] . In the absence of coexpression of KCNE1, KCNQ1 
expression gives rise to smaller K +  selective currents that also activate rapidly and 
inactivate upon prolonged depolarization. When the two subunits are expressed, 
currents are substantially enhanced compared to those occurring with expression of 
KCNQ1 alone. Furthermore, the activation and deactivation kinetics are markedly 
slowed, inactivation is lost, and the steady-state activation curve is shifted rightward 
to more depolarized potentials  [  20,   21  ] . The native current in cardiac myocytes is 
similar to that occurring after coexpression of the two subunits; however, it is also 
possible that there is some KCNQ1 that is not complexed with KCNE1. Secondly, 
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it is known that during adrenergic beta receptor activation, the current is increased. 
This is important as increased Ca 2+  entry through L-type Ca 2+  channels would oth-
erwise prolong the action potential duration during sympathetic activation. The 
underlying molecular mechanism by which this occurs is also unusual. The activa-
tion is mediated through protein kinase A but involves an anchoring protein known 
as yotiao  [  23  ] . This occurs both through direct channel phosphorylation by PKA 
which is dependent on the A-kinase anchoring abilities of yotiao but also seems to 
involve a direct effect of PKA phosphorylated yotiao on channel function  [  24  ] .  

    6.2.3   I 
K1

  

 I 
K1

  in ventricular myocytes has the biophysical properties of a classical strong 
inward rectifi er namely that inward currents are more prominent than outward 
ones and the rectifi cation properties are dependent on the membrane potential and 
potassium reversal potential. The isolation of the fi rst member of the Kir2.0 fam-
ily of inward rectifi er (Kir2.1) was achieved using expression cloning  [  25  ] . Using 
homology approaches, the family now has six members  [  26,   27  ] . The exact iso-
forms and nature of the current in the heart are controversial. There is no dispute 
that Kir2.1 is of central importance in most species. For example, in the mouse, 
global genetic deletion of Kir2.1 leads to a complete loss of the current in ven-
tricular myocytes  [  28  ] . Furthermore, genetic defects in the gene (KCNJ2) lead to 
Andersen–Tawil syndrome in man: a component of which is a prolonged QT 
interval (see below)  [  29–  31  ] . However, a case has been made for a component of 
I 

K1
  being constituted by Kir2.2, Kir2.3, Kir2.4, and heteromultimers of these 

 isoforms with Kir2.1  [  32,   33  ] . It is possible there are species differences and 
developmental changes.   

    6.3   K +  Current Channelopathies Affecting the Heart 

 The main channelopathies affecting the heart involve the molecular counterparts 
underlying I 

Kr
 , I 

Ks
 , and I 

K1
  and proteins that regulate these currents. 

    6.3.1   Long QT Syndrome 

 Long QT syndrome is characterized by prolongation of the rate-corrected QT inter-
val on the ECG and this predisposes the individual to torsade-de-pointes (TdP) and 
subsequent sudden arrhythmic death due to ventricular fi brillation. The commonest 
correction is Bazett’s (QTc = QT/(R – R)) 0.5     but other corrections have been proposed. 
Probably the most accurate approach in a research setting is to examine the behavior 
of QT interval with heart rate on a beat-by-beat basis and compare this to normal 
individuals. It is also worth appreciating that it may not be the QT interval per se that 
is important. It is not solely the increase in action potential duration that is proar-
rhythmic and in fact all other things being equal this may well be antiarrhythmic 
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 [  34–  36  ] . Instead the proarrhythmic potential depends on three other factors: (1) the 
spatial dispersion of the corrected QT interval, (2) that early repolarization is delayed 
leading to an action potential with a more triangular shape, and (3) that the action 
potential duration becomes unstable with varying heart rates predisposing to ventricu-
lar alternans  [  37  ] . Two clinical syndromes are distinguished in the hereditary disease. 
In the Romano–Ward syndrome (RWS), inheritance occurs in an autosomal-dominant 
pattern, while in the rarer autosomal-recessive Jervell and Lange-Nielsen syndrome 
(JLNS), there is profound hearing loss in addition to the prolonged QT interval and 
predisposition to sudden death  [  38,   39  ] . Numerous genetic studies have shown that 
approximately 90% of hereditary diseases are due to defects in K +  channel alpha 
subunits in KCNQ1 (LQT1) and HERG (LQT2)  [  40  ] . 

 A variety of mutations have been identifi ed in KCNQ1 in LQT1. These are 
widely distributed throughout the protein with some evidence that mutations might 
cluster in the transmembrane and pore regions  [  40  ] . This is not surprising as these 
regions are responsible for the voltage sensor and the pore architecture. Much more 
rarely, the beta subunit, KCNE1, is affected in LQT5  [  41,   42  ] . Mutations in KCNQ1 
and KCNE1 can result in both RWS and JLNS. In an analogous fashion, mutations 
in HERG underlie LQT2 and the mutations are similarly widely distributed through-
out the coding sequence. It has been proposed that mutations in KCNE2 underlie 
LQT6, and this subunit is a potential beta subunit of HERG. This interaction is 
however still controversial, and it is clear that the KCNE subunits are promiscuous 
in interacting with a number of K +  and other channels (see above). Both missense 
and nonsense mutations can occur in the coding sequence and other genetic mecha-
nisms can also be operative (see below). A mutation has also been identifi ed in 
yotiao in one patient and the mutant A-kinase anchoring protein fails to mediate 
normal sympathetic modulation to the I 

Ks
  current  [  43  ] . Andersen–Tawil syndrome 

(LQT7) is a rare syndrome characterized by periodic paralysis, cardiac arrhythmia, 
and dysmorphic features. It has an autosomal-dominant inheritance, and a number 
of mutations in Kir2.1 have been identifi ed  [  29–  31  ] . 

 Clinically, the commonest cause    of LQTS is the administration of drugs. A whole 
variety of pharmacophores developed for a wide range of diseases can prolong the 
QT interval and this has caused a major issue in drug development and post-marketing 
surveillance  [  44,   45  ] . There is considerable debate as to the most appropriate safety 
screening strategy (see  [  36  ] ). Intriguingly the major molecular mechanism seems to 
be block    of the HERG K +  channel linking the acquired and hereditary causes of the 
disease (see below).  

    6.3.2   Short QT Syndrome 

 This is an intriguing syndrome in which the QT interval is dramatically shortened 
(QTc <320 ms) and there is a predisposition to sudden death. In addition, the ECG 
shows a virtual absence of the ST segment and tall peaked T-waves  [  46  ] . There 
seems to be some overlap with hereditary atrial fi brillation as these patients are also 
predisposed to this disease. Mutations that cause short QT syndrome have been 
identifi ed in HERG, KCNQ1, and Kir2.1  [  47–  49  ] .  
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    6.3.3   Hereditary Atrial Fibrillation 

 Though rare as a cause of atrial fi brillation, hereditary disease is particularly inter-
esting from a mechanistic point of view. In a number of families, a single gene 
mutation has been linked with the disease. With regard to the K +  channels discussed 
here, mutations that cause atrial fi brillation have been described in KCNQ1, KCNE2, 
and Kir2.1  [  50–  52  ] .   

    6.4   Disease Mechanisms 

 At the simplest level, a number of potential mechanisms might be operative. In the 
long QT syndrome, the ECG abnormality implies that the normal repolarizing K +  
currents are reduced, leading to an increase in the action potential duration (APD). 
This could occur because the protein is not transcribed and/or translated effectively, 
or alternatively a mutant protein is made that interferes with the normal cellular 
function of the protein. The short QT syndrome and hereditary atrial fi brillation 
represent the fl ip side of the coin. Under these circumstances, one would expect an 
increase in K +  currents such that the QT interval is shorter and/or the atrial action 
potential duration and effective refractory period are reduced. In this case, one might 
envisage a gain-of-function effect in the K +  channel proteins such that currents were 
increased under physiological conditions. 

    6.4.1   Genetic Issues 

 As discussed above, the protein may simply not be made but what type of genetic 
mechanisms underlies this? Aberrant splicing will interfere with the generation of a 
mature mRNA. Such mutations occur in about 5–7% of cases  [  40  ] . A second and 
less appreciated mechanism is nonsense-mediated decay  [  53  ] . This refers to degra-
dation of mRNA containing a premature stop codon by cellular quality control 
mechanisms. Both frame-shift and nonsense mutations have the potential to do this 
and these occur in approximately 10–15% of cases. Recently, there has been a study 
describing such a mechanism in long QT with HERG mutations (W1001X and 
R1014X)  [  54  ] . It is also worth bearing in mind that compound mutations are rela-
tively common in the long QT syndrome (~8% of probands). In addition, they lead 
to severe disease and are associated with a poor prognosis  [  55  ] . 

 In hereditary LQTS, mutations show variable penetrance  [  56  ] . For example, 
Priori et al. studied nine families and estimated penetrance in these families to be 
25%  [  57  ] . In view of this low penetrance, it has been suggested that sporadic cases 
of LQTS, for example, such as those induced by drugs, could in fact be a  forme 
fruste  of hereditary LQTS  [  58–  60  ] . It is apparent that drug-induced long QT syn-
drome only occurs relatively rarely in patients given a particular pharmacophore 
and might only attract regulatory attention during post-marketing surveillance. In a 
study of 16 patients with acquired LQTS  [  61  ] , only 1 patient had an identifi able 
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mutation in the  HERG  gene. The remaining 15 patients showed no detectable muta-
tions in  KCNQ1 ,  KCNE1 ,  KCNE2 , and  HERG  genes. Polymorphisms in KCNE2 
(T8A) and the sodium channel SCN5A (S1102Y) in African Americans have been 
associated with a propensity to drug-induced LQTS  [  59,   60  ] . Finally, in a more 
recent study, 20 patients were tested with drug-induced disease and 40% were found 
to have mutations in long QT-related genes while the ascertainment rate in the 
hereditary disease was 52%  [  62  ] . Therefore, the prevalence of mutations leading to 
abnormal protein expression or function in the drug-induced syndrome remains an 
open question. 

 A related hypothesis is that individuals have a variable degree of cardiac ventricu-
lar repolarization reserve  [  63,   64  ] . In other words, it is possible that some individuals 
tolerate a diminution of repolarizing currents without physiological and clinical 
sequelae. The degree of such reserve may differ among individuals and contribute to 
the predisposition to drug-induced LQTS. Genome-wide association studies have 
been used to investigate heritability in long QT. Ten genetic loci were isolated, and 
some of these were predictable, for example, the K +  channel and Na +  channel genes. 
However, for others, such as the nitric oxide synthase 1 adapter protein, the associa-
tion was unexpected. Subsequent functional studies revealed a role in action potential 
repolarization  [  65–  67  ] . However, there were loci for which the link with cardiac excit-
ability was opaque. For example, one SNP lay in the 3 ¢  UTR of RNF207 a ring fi nger 
protein of unknown function, another in LITAF which is a DNA-binding protein and 
another group close to NRDG4/GINS3/CNOT1/SETD6 complex of genes.  

    6.4.2   Protein Function 

 If a mutant protein is translated, how might it generate pathophysiology? The major-
ity of hereditary LQTS occurs as an autosomal-dominant syndrome (i.e., RWS). It 
is important to appreciate that in the cases occurring with K +  channel alpha subunits, 
a dominant negative mechanism is likely to be operative  [  68  ] . As mentioned before, 
both KCNQ1 and HERG are tetrameric proteins and the dominant negative effect 
arises most prominently when the presence of a single mutant in a tetramer can 
inactivate or modify the function of the complex. In contrast, in the autosomal-
recessive form of the disease (i.e., JLNS), the heterozygotes are asymptomatic. In 
JLNS, it is therefore unlikely that dominant negative mechanisms play a role, indi-
cating that a simple loss of function is the predominant mechanism. Our own in vitro 
studies using heterologous expression largely bear out this generalization  [  63  ] . 

 In LQTS, the mutations in the K +  channel subunits most commonly lead to a loss 
of function  [  69,   70  ] . However, there are mutations that impair channel gating such 
that repolarizing currents are reduced. For example, in KCNQ1, the steady-state 
activation may be shifted due to slowing of voltage-dependent activation or an accel-
eration of deactivation at a given potential  [  63,   71–  73  ] . Some of these mutations 
occur in RWS and it is important to consider how a single mutant subunit might 
infl uence the behavior of the wild-type subunit in a heteromultimeric complex. In 
contrast, in the short QT syndrome and hereditary atrial fi brillation, there is a pre-
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dicted increase in repolarizing current. The V307L mutation in KCNQ1 in the short 
QT syndrome leads to a pronounced shift in the half maximal activation potential 
and an acceleration in the activation kinetics  [  48  ] . The S140G mutation described in 
a family with hereditary atrial fi brillation leads to an increase in current with instan-
taneous activation and deactivation and a linear current–voltage relationship  [  50  ] . 

 In Andersen’s syndrome, the disease mechanisms have not been as comprehen-
sively investigated though many of the same principles apply  [  74  ] . One particularly 
interesting study correlated mutations in this channelopathy with known residues 
affecting the binding of phospatidylinositol bisphosphate (PIP 

2
 ) to the channel  [  75  ] . 

A number of common residues existed and the disease mutants were resistant to the 
activating actions of PIP 

2
  addition, potentially explaining the loss of channel func-

tion in cell membranes.  

    6.4.3   Cellular Mechanisms 

 The loss of function in hereditary LQTS was originally ascribed to the presence of 
non-functional channel complexes at the plasma membrane. However, it soon 
became apparent that other mechanisms could play a role in LQTS. Of these, the 
aberrant traffi cking of channel complexes appears to play a major role in both LQT1 
and LQT2 disease pathogenesis. The various traffi cking checkpoints and cellular 
controls that may be important are illustrated in Fig.  6.2 . Defects in the traffi cking 
of HERG and KCNQ1 to the cell surface have been reported for a variety of LQT1 
and 2 mutations  [  76–  84  ] . In fact, in LQT2, it has been suggested that most muta-
tions act to reduce I 

Kr
  current density through defects in traffi cking  [  85  ] . Whether 

this is also the case for LQT1 is less well established  [  76,   79,   80,   82,   83  ] .  
 Of the mutations in HERG or KCNQ1 that cause defective traffi cking the vast 

majority result in retention of the channel protein in endoplasmic reticulum (ER) 
 [  77,   79,   82  ] . In Fig.  6.3 , we show a typical example of ER retention of a mutant 
KCNQ1. In general, it is thought that such mutations act to disrupt protein folding 
or complex assembly and can be found throughout both channels’ structures. 
However, for HERG, it does appear that when mutations occur in regions that con-
tain a highly ordered structure, e.g.,  a -helices or  b -sheets, the dominant cause of 
loss of function is defective delivery to the plasma membrane  [  85  ] . This also 
appears to be the case for KCNQ1, although the majority of mutations appear to 
cluster in three regions, the S2–S3 linker, the pore, and the C-terminus  [  76,   79,   80, 
  82,   83,   86  ] . Although the location of mutations that affect traffi cking is diverse, 
specifi c focus on mutations that occur in certain domains has helped to establish 
how these domains are involved in channel biogenesis in the secretory pathway. In 
HERG and KCNQ1, mutations that occur in the C-terminus have been extensively 
investigated  [  81,   83,   87–  89  ] . In HERG, two nonsense C-terminal mutations, 
Q725X and R1014X, result in the formation of truncated proteins. Both proteins 
traffi c abnormally, but only R1014X is able to form a tetrameric complex with 
wild-type HERG and suppress current in a dominant negative fashion  [  88  ] . In addi-
tion, it has been shown that the last 147 amino acids of the C-terminus of HERG act 
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to mask an ER retention motif (RXR) located at position 1005–1007. Intriguingly, 
the surface delivery of this HERG deletion construct (HERG 

 D 147
 ) can be rescued by 

the coexpression of a 100-amino-acid peptide, as an ER targeted mini-gene, that 
spans the region containing the ER retention motif  [  89  ] . In KCNQ1, the C-terminal 
mutations, R518X, Q530X, T587M, and R594Q all cause signifi cant ER retention 
 [  82,   83  ] . R518X and Q530X cannot act in a dominant negative manner and it is 
thought that the loss of the last ~150 amino acids impairs assembly through the 
removal of a tetramerization domain  [  63,   81,   82,   90  ] . A small C-terminal region of 
KCNQ1 has also been identifi ed, residues 610–620, that is required for effi cient 
traffi cking to the cell surface. This region does not contain an ER retention motif, 
as is seen in HERG, but does provide a structural coiled coil domain that appears 
critical  [  91  ] . A putative ER retention motif (RXR) does however exist in the 
N-terminus and S2–S3 linker region of KCNQ1, and this motif is important for cell 

  Fig. 6.2    Processing of normal and mutant K +  channels in the secretory pathway. ( 1 ) Mutations 
lead to defects in transcription and translation and channel proteins are not synthesized. ( 2 ) 
Mutations lead to aberrant folding of the channel complex. Complexes that are incorrectly folded 
tend to be retained in the endoplasmic reticulum ( ER ) and are recognized as abnormal by chaper-
one and ER resident proteins that act to target these complexes to the proteasome for degradation. 
( 3 ) If the mutant channels manage to pass cellular quality control in the ER, they can still be rec-
ognized as abnormal or fail to associate with golgi resident proteins, important for sorting and 
packaging, and be retranslocated back to the ER or targeted for degradation. ( 4 ) Mutations could 
affect the exocytosis and endocytosis of channel containing vesicles to and from the cell surface. 
( 5 ) Normally processed channels.  X  = a block in the traffi cking pathway       
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  Fig. 6.3    An example of ER retention of a mutation in KCNQ1 causing LQT1. The LQT1  mutation 
E261K disrupts traffi cking by acting to promote retention of the channel complex in the endoplas-
mic reticulum ( ER ). ( a ) Confocal images of Chinese hamster ovary (CHO)-K1 cells transfected 
with either wild-type KCNQ1-GFP or the LQT1 mutant E261K-KCNQ1-GFP in the presence of 
KCNE1 and the ER marker DsRed2-ER. Images are shown for GFP alone, DsRed2-ER alone, and 
the merged image. Colocalization between GFP and DsRed2-ER appears as yellow. Scale bar 
indicates 10  m m. ( b ) Mean data showing the proportion of wild-type and mutant channel ER colo-
calization. Data are presented as means ± SE.  *   P  < 0.05 compared with control (KCNQ1-
GFP + KCNE1) (analysis made using a one-way ANOVA with Bonferroni post hoc test for multiple 
comparisons)  [  82  ]        
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surface delivery  [  86  ] . The LQT1 mutation, L191P, is located in the middle of this 
ER retention signal, and although it does not affect channel activation or deactiva-
tion kinetics, it does affect surface expression. In KCNQ1, there are two clusters of 
mutations that cause intracellular retention in the N-terminus, indicating that this 
region may also be important for traffi cking  [  76  ] . Indeed, a structural motif has 
been identifi ed, between residues 106 and 114, which based on structure prediction 
forms a short helix. Mutations in this region, Y111C and L114P, that may disrupt 
the structure of this short helix prevent normal traffi cking of KCNQ1 and promote 
intracellular retention of the channel  [  76  ] .  

    6.4.3.1   Beta Subunit Related Disease 
 Both KCNQ1 and perhaps HERG are thought to require the coexpression of  b -sub-
units to reconstitute I 

Ks
  and I 

Kr
 : KCNE1 for KCNQ1 (MinK, IsK) and more contro-

versially KCNE2 (MIRP1), for HERG  [  14,   20,   21  ] . Mutations in KCNE1 and 
KCNE2 account for LQT5 and LQT6 respectively. Mutations in KCNE1 act in 
general to cause a reduction in I 

Ks
  current density  [  92  ] . Polymorphisms in KCNE2, 

T8A and Q9E, cause an increase in the sensitivity of HERG channels to drug-
induced arrhythmia by LQTS-causing drugs  [  14,   59  ] . The mechanisms by which 
mutations/polymorphisms in KCNE2 cause disease are unclear. In comparison, sev-
eral studies have investigated whether LQT5 mutations cause disease through defec-
tive traffi cking. In general, these studies highlight that mutations in KCNE1 can 
promote defective traffi cking of the I 

Ks
  complex, for example, the mutations L51H, 

R98W, and T58P/L59P. However, in our opinion, the effects of defective traffi cking 
in LQT5 do not appear to be as severe or as common as those seen for mutations in 
HERG or KCNQ1  [  93–  95  ] . The role of defective traffi cking in LQT5 and LQT6 
may also be complicated by the fact that KCNE1 and KCNE2 appear to exhibit 
promiscuity in alpha subunit interaction (as described above). For example, both 
subunits have been shown, in vitro, to modulate the biophysical properties of both 
HERG and KCNQ1  [  96  ] .  

    6.4.3.2   Mechanisms That Underlie the Defects in Trafficking 
 Mutations in HERG and KCNQ1 can result in traffi cking defects but how do they 
act to reduce surface expression if they do not affect small peptide motifs? Before 
surface delivery occurs, proteins must fi rst overcome cellular quality control. This 
occurs in the ER and golgi compartments, and here a large number of proteins can 
recognize if proteins are correctly folded and assembled (see  [  97  ] ). Incorrectly 
folded proteins are targeted for degradation in an effort to prevent the passage of 
incorrectly folded complexes to the cell surface and/or the formation of toxic aggre-
gates  [  97  ] . A number of studies have investigated whether mutant channels interact 
differentially with cellular quality control systems. 

 In the early stages of channel complex biogenesis, chaperones, which normally 
aid and promote the folding of proteins, have been shown to interact abnormally 
with mutant HERG and KCNQ1 channels. For example, the chaperones Hsp 70 
and 90 interact with wild-type HERG and the specifi c Hsp90 inhibitor  geldanamycin 
inhibits maturation and increases proteasomal degradation of wild-type HERG. 
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For the HERG mutations, R725W and G601S, the interaction with Hsp70 and 
Hsp90 is increased and these mutants remain tightly associated in the ER  [  98  ] . The 
Hsp40 type 1 chaperones, DJA1 and DJA2, also modulate HERG degradation and 
overexpression of both reduces HERG traffi cking effi ciency. The DJAs reduce 
HERG protein stability and the overexpression of DJA2 can reduce the partial res-
cue of traffi cking seen for G601S when incubated at 26°C (discussed later)  [  99  ] . 
Another chaperone, FKBP38 (38-kDa FK506-binding protein), promotes HERG 
traffi cking. FKBP38 immunoprecipitates and colocalizes with HERG in the ER 
and knockdown of FKBP38 causes a reduction of HERG traffi cking. Interestingly, 
the overexpression of FKBP38 can partially rescue the mutant F805C  [  100  ] . 

 Whether Hsp40, Hsp70, or Hsp90 plays a role in the traffi cking of KCNQ1 or 
KCNQ1 mutants has not yet been investigated. However, the assembly and function 
of KCNQ1 is blocked by mutations that disrupt interaction with calmodulin (CaM). 
CaM is an obligate subunit for many ion channels and appears to act as a type of 
chaperone as it contributes to the control of channel assembly. CaM orchestrates the 
Ca 2+ -controlled regulation of channel assembly. The formation of KCNQ1 tetram-
ers requires CaM interaction with the C-terminus and mutations in IQ motifs; S373P 
(IQ1) and R518X (truncates the channel before IQ2) disrupt interaction of the channel 
with CaM  [  101,   102  ] . 

 Mechanisms that regulate the rate of protein turnover are also altered by the pres-
ence of mutations in HERG or KCNQ1. A study by Gong et al. identifi ed that degra-
dation of the HERG mutant, Y611H, is enhanced in comparison to wild-type HERG 
and that this degradation is inhibited by the proteasomal inhibitors N-acetyl-L   -leucyl-
L-leucyl-L-norleucinal and lactacystin but not by the lysozyme inhibitor leupeptin. 
Inhibition of the proteasome also leads to the accumulation of polyubiquitinated 
HERG channels, indicating that the degradation of HERG is mediated by the cytoso-
lic proteasome in a process that involves mannose trimming, polyubiquitination, and 
deglycosylation of mutant channels  [  103  ] . In a similar fashion, the LQT1 (N-terminal) 
mutants Y111C, L114P, and P117L are retained in the ER. All three exhibit reduced 
expression levels compared to wild-type KCNQ1 and radiolabeled pulse-chase exper-
iments highlight that the reduced expression is not because of reduced rate of synthe-
sis. Specifi cally, Y111C is in fact ubiquitinated and degraded in the proteasome more 
rapidly. The degradation of Y111C is also not dependent on Derlin 1, an ER resident 
protein implicated in the retrotranslocation of the cystic fi brosis transmembrane con-
ductance regulator (CFTR) from the ER to the cytosol  [  104  ] . 

 Mutations that cause defects in traffi cking also appear able to disrupt/alter inter-
actions with proteins that are involved in channel traffi cking distal to the ER. For 
example, HERG normally interacts with the golgi resident protein, GM130, that 
plays a role in the packaging and sorting of specifi c vesicles. Traffi cking-defi cient 
mutations in the C-terminus of HERG, V822M, S818P, and R823W, located in the 
cyclic-nucleotide-binding domain, disrupt interactions with GM130  [  105  ] . 

 It is also possible that mutations in HERG or KCNQ1 may increase endocytosis 
(and degradation), reduce recycling, or decrease the rate of exocytosis. However, 
membrane levels of channel complexes are tightly  regulated  [  106  ] . Indeed, the 
membrane density of KCNQ1 is regulated by Nedd4-2. Nedd4/Nedd4-like  proteins 
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bind to and ubiquitylate certain channels that contain a PY motif (L/PPxYxx F ) 
in their intracellular C-terminus. Overexpression of a catalytically inactive form of 
Nedd4-2, that is able to antagonize the action of endogenous Nedd4-2, results in an 
increase of I 

Ks
  current density in guinea pig cardiomyocytes. In HEK293 cells, the 

overexpression of Nedd4-2 increases ubiquitylation of KCNQ1 and reduces current 
density  [  107  ] . For HERG, channel density at the membrane appears to be strongly 
regulated by the concentration of extracellular K + . Guo et al. have found that low 
extracellular K +  promotes ubiquitination of the HERG channel–enhanced endocyto-
sis and fi nally increased degradation of the channel  [  108,   109  ] . Additionally, the 
four and a half LIM domain protein 2 (FHL2) interacts with and regulates both I 

Kr
  

and I 
Ks

   [  110,   111  ] . Coexpression of FLH2 with HERG increases current density and 
results in a faster deactivation of the tail current  [  111  ] . FHL2 also appears to be able 
to regulate I 

Ks
  and the expression of an antisense FHL2 construct reduces I 

Ks
  current 

density  [  110  ] . It also appears that signals from the stress-axis can regulate I 
Ks

  func-
tion. The expression of SGK1 (Serum and Glucocorticoid inducible Kinase 1) is regu-
lated by cortisol and in vitro SGK1 stimulates I 

Ks
 . SGK1 appears to increase I 

Ks
  current 

density by phosphorylating PIKfyve which in turn promotes an increase in the exocy-
tosis of KCNQ1/KCNE1 channels to the membrane via a Rab11-dependent pathway 
 [  112  ] . Intriguingly, a gain-of-function mutant in SGK1 is associated with shortening 
of the QT interval  [  113  ] .  

    6.4.3.3   Trafficking and Acquired LQTS 
 Originally, it was thought that drugs that prolong the APD do so by acting as pore 
blockers, reducing HERG channel current density. However, a number of the drugs 
also inhibit the traffi cking of HERG. In a thorough study, the ability of 100 com-
pounds to inhibit HERG traffi cking, 50 blockers and 50 non-blockers, was screened 
in a high-throughput system. This study identifi ed that 40% of the HERG blockers 
studied were also able to inhibit traffi cking  [  114  ] . Interestingly, some drugs not 
thought to block HERG directly, such as pentamidine or probucol, are able to affect 
traffi cking without causing a direct block of I 

Kr
  function  [  115,   116  ] . Importantly, 

these effects could be missed without screening for pharmacophores that reduce I 
Kr

  
through this mechanism. It is unclear as to how important these observations might 
be for drug development, but the implications are disconcerting. 

 It is surprising that the majority of cases of acquired LQT are due to drug interac-
tions with I 

Kr
  and not due to other repolarizing currents in the heart. The binding site 

for drugs that functionally block HERG has been identifi ed by mutagenesis and has 
been modeled computationally. These studies have identifi ed that the high-affi nity 
drug-binding site compromises the amino acids G648, Y652, F656 in the S6 trans-
membrane domain and residues T623 and V625 of the pore helix  [  117,   118  ] . In 
particular, the antihistamine terfenadine, a drug removed from market due to proar-
rhythmia, interacts with residues Y652 and F656  [  117  ] . The aromatic residues Y652 
and F656 are unique to eag/erg K +  channels, and this may explain why drugs that 
block HERG do not in general appear to affect the function of other channels that 
control APD  [  117  ] .  
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    6.4.3.4   Pharmacological Rescue of Trafficking Defects 
 Several methods have been developed for the rescue of traffi cking defects in HERG. 
These methods, discussed in detail below, are varied and involve the use of reduced 
temperature incubation or nonspecifi c or specifi c pharmacological chaperones. 

 The concept that HERG traffi cking could be rescued by incubation at reduced 
temperature came from the observation that the surface expression of the CFTR 
mutation ΔF508 could be increased by reducing temperature to 26°C  [  119  ] . At 
37°C, the HERG mutations, N470D, R752W, and G601S, are retained in the ER, 
but when incubated at 26°C, all are able to fold correctly and traffi c normally  [  78, 
  120,   121  ] . Interestingly, once at the membrane, these mutations appear to function 
normally. It is thought that a reduction in temperature provides more time for correct 
folding to occur which in turn reduces the level of targeted degradation  [  78,   120,   121  ] . 
We have tried to rescue the traffi cking defect for mutations in KCNQ1 by reducing 
temperature. However, none of the traffi cking defects for the mutations tested (R243H, 
E261D, L273F, R518X, Q530X, 1008delC, or R594Q) could be rescued  [  82  ] . A vari-
ety of low-molecular-weight compounds, that are believed to act as “nonspecifi c” 
chemical chaperones, such as dimethylsulfoxide (DMSO) and glycerol can also res-
cue traffi cking for certain HERG mutants  [  78,   121  ] . Whether these agents can pro-
mote rescue of traffi cking for KCNQ1 mutants has not been determined. 

 The use of specifi c pharmacological chaperones to aid/rescue traffi cking has 
been particularly successful for a number of HERG mutants. Specifi c blockers of 
HERG channels, such as E-4031, are able to restore traffi cking for N470D but not 
for all HERG mutations, for example, R725W is not rescued by E-4031  [  78,   121  ] . 
In contrast, the specifi c I 

Ks
  channel blockers and activators, Chromanol 293B and 

HMR-1556 respectively, are not able to rescue the traffi cking defect seen for the 
KCNQ1 mutants R243H or E261D  [  82  ] . For HERG, the ability of pharmacological 
chaperones to rescue traffi cking of the mutant G601S varies directly with their 
blocking potency. Ficker et al. have identifi ed a binding site in the hydrophobic 
inner vestibule of HERG and have established that the ability for rescue was related 
to hydrophobicity and cationic charge  [  122  ] . In addition, they show that the mutants 
F805C and R823W could not be rescued. These data imply that rescue is domain 
limited and that mutations that occur in the pore are more readily rescued by pore-
blocking pharmacological chaperones.    

    6.5   Therapeutic Considerations 

 For LQT1, drug therapy with beta-blockers is known to be effective; however, 
there have only been a few attempts to target drug therapy to the underlying chan-
nel mutation and/or disease mechanism  [  70  ] . The possibilities for mutation- 
specifi c therapy are actually quite broad. For LQT2, specifi c biophysical defects 
in HERG can be paradoxically overcome by increasing the extracellular K +  con-
centration and there is evidence that K +  supplementation is benefi cial  [  123  ] . 
Nonsense mutations might be overcome by agents known to promote readthrough 



1036 Potassium Channels Regulating the Electrical Activity of the Heart

and one such agent is in use in clinical trials in other diseases  [  124  ] . Specifi c 
agents in LQT5, such as fenamates and stilbenes, might be effi cacious  [  125  ] . 
Finally, gain-of-function mutations in Na +  channels in LQT3 and in KCNQ1 and 
HERG in short QT and atrial fi brillation might be managed with agents known to 
block these channels  [  126,   127  ] . 

 Whether the rescue of the function of mutants that are traffi cked abnormally is 
feasible in the clinical situation remains a subject of debate  [  128  ] . There are two 
problems in a clinical setting. The fi rst is that a lot of the techniques used, for exam-
ple, low temperature, toxic chemicals, and channel-blocking agents cannot be used 
therapeutically. However, agents that rescue traffi cking but do not cause channel 
block have been identifi ed for HERG. Fexofenadine can rescue channel traffi cking 
for N470D and G601S at concentrations that are ~350 fold lower than those that 
cause half maximal channel block  [  129  ] . In addition, thapsigargin, a sarcoplasmic/
endoplasmic reticulum Ca 2+  ATPase inhibitor, can also rescue the function of G601S 
without causing channel block  [  130  ] . A second practical point is that each mutation 
responds differently to a selected form of therapy and this means that clinical inter-
vention would have to be mutation specifi c.  

    6.6   Conclusions 

 Potassium channels    in the heart govern repolarization of the cardiac action poten-
tial. It has also become clear that they are involved in human disease and their 
abnormal function underlies hereditary and acquired disorders of cardiac rhythm. In 
one of these disorders, the long QT syndrome, abnormal traffi cking of the KCNQ1 
and HERG proteins, seems to be of major pathophysiological    signifi cance.      
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    7.1   Introduction 

 The evolution    of cardiovascular disease occurs over many decades and has several 
phases associated with it. It is a process of two parts, one which involves the devel-
opment of atherosclerotic plaque and the other the formation of thrombi most typi-
cally, but not exclusively, in the later stages of the disease. The association of free 
radicals and oxidative stress    with some stages of this process is widely considered 
to be most relevant to the infl ammatory elements of the disease. The principal phases 
leading to the formation of stable and unstable plaque are outlined in Table  7.1 .  

 The purpose here is to examine the role of free radicals in cardiovascular disease and 
of antioxidants as prophylactic agents. The following questions will be considered:

   Are free radicals always harmful?  
  What is the evidence that they play a role in the development of atheros-
clerosis?  
  Which radicals or reactive species are involved?  
  Do dietary antioxidants offer an effective means of therapy to prevent 
oxidation?     

    7.2   Free Radicals in Normal Physiology 

 There is a widespread assumption that free radicals and non-radical oxidizing species 
are always damaging to living cells and must always be suppressed. This is far from 
the truth, as is the common impression that they are of equivalent oxidizing power 
under all conditions and that they can be suppressed in the same way by all  antioxidants. 
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Reactive oxygen species, a term which covers free radical and non-radical oxidants, 
are produced as by-products of normal metabolic processes. Cells have excellent 
endogenous antioxidant mechanisms which regulate their reactivity and these species 
have specifi c physiological purposes not least in primary defense mechanisms against 
microorganisms. It is only when their production becomes excessive, as is the case in 
infl ammation, do they contribute to pathologies such as atherosclerosis and other 
infl ammatory conditions. It was perhaps not until the discovery of the enzyme super-
oxide dismutase  [  1  ] , and the realization that substantial amounts of free radicals are 
produced normally in the body, that this was fully understood. 

 In normal exercising muscle, free radicals are formed in tandem with increased 
mitochondrial respiratory activity. This evokes a protective response at gene level. 
Antioxidant enzymes such as hemoxygenase-1, other chaperone proteins, and anti-
oxidant enzymes are induced to prevent damage to muscle protein  [  2  ] . Regular 
exercise promotes lasting antioxidant protection in response to the greater produc-
tion of free radicals. 

 The main free radical produced through metabolic activity is superoxide anion, a 
by-product of mitochondrial oxidative phosphorylation, and the activity of NADPH 
oxidase. This has been estimated to be of the order of 1 kg per annum for a healthy 
individual  [  3  ] . Macromolecules can be also be radicalized and this may be an impor-
tant step in the regulation of the activity of enzymes and other proteins where sulfy-
dryl, histidyl, and tyrosyl residues are particularly vulnerable to radicalization. The 
main product of superoxide anion catabolism is the non-radical oxidant hydrogen 
peroxide, which is also formed during the metabolism of lysine. The peroxide is 
believed to have an important physiological role in the relaxation of resistance ves-
sels which may be essential in exercise  [  4  ] . This effect mirrors the action of the free 
radical nitric oxide, biosynthesized from L-arginine, as an important vasodilator 
released from the endothelium of larger blood vessels  [  5  ] . Furthermore, free radicals 
have an important role in the normal life cycle of the cell by initiating apoptosis  [  6  ] .  

    7.3   Discoveries Leading to an Understanding of the Role 
of LDL Oxidation in the Development of Atherosclerosis 

 Low-density lipoproteins (LDLs) are implicated in the development of  cardiovascular 
disease, but also have an essential role in normal physiology. They transport much 
of the cholesterol from its site of biosynthesis in the liver or in the diet to peripheral 

   Table 7.1    Sequence of events in the development of atherosclerotic plaque   

 Endothelial injury 
 Recruitment of monocyte/macrophages 
 Lipid deposition from lipoproteins into macrophages and their transformation into foam cells 
 Formation of a fi brotic plaque over the lipid layers by proliferation of smooth muscle cells in 
their fi broblastic phenotype 
 Further evolution to become vulnerable plaques linked to serious clinical events 
 Angiogenesis, calcifi cation, fi ssuring, and thrombosis 
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tissues, where the sterol is required for the assembly of cell membranes and, in 
some cases, the formation of steroid hormones and bile salts. LDLs carry not only 
cholesterol, but dietary polyunsaturated fatty acids required for biosynthesis of lon-
ger chain fatty acids and membrane phospholipids and eicosanoids. Poly unsaturated 
fatty acids are found in the phospholipid and cholesterol ester fractions of LDL in 
amounts that are disproportionately large compared to the normal dietary intake of 
polyunsaturated fat. However, their double bonds are susceptible to oxidative attack 
by free radicals. 

 LDL transports a high proportion of dietary fat-soluble antioxidants, particularly 
tocopherols and carotenoids, which are delivered to the periphery. These are nor-
mally suffi cient to protect the LDL from oxidation. Furthermore, water-soluble 
vitamin C accepts electrons from tocopheryl radicals formed during oxidative 
attack, thereby suppressing the propagation of fatty acid oxidation. LDLs are read-
ily oxidized in the presence of transition metal ions through the formation of 
hydroxyl radicals generated in the presence of the traces of hydrogen peroxide 
(Eq.  7.1 ). These free radicals attack LDL polyunsaturated fatty acids peroxyl radi-
cals, aldehydes, and other derivatives  [  7  ] . The formation of Schiff’s bases with the 
 e -amino groups of lysine residues on apolipoprotein B100 impairs its recognition 
by LDL receptors. Incubation of LDL with cultured macrophages or endothelial 
cells leads to similar change in these lipoproteins  [  8  ]  which become oxidized, more 
electronegative and are recognized by the scavenger receptors on macrophages 
SRA-1 and CD36. The macrophages arise in the artery by diapedesis of monocytes 
and transformation into the phagocytotic form subsequent to endothelial damage by 
hypercholesterolemia, smoking, or hypertension. The macrophages become foam 
cells as they engorge with lipid droplets of cholesterol esters derived from oxida-
tively modifi ed LDL. These macrophage receptors also remove apoptotic cells and 
cell debris from the tissues as part of the normal senescence and repair process. In 
the presence of cytotoxic oxidized LDL, macrophage/foam cells cannot leave the 
atherosclerotic plaque and return the circulation as monocytes. Ultimately cell death 
ensues and cholesterol is released as cholesterol ester droplets or crystalline non-
esterifi ed cholesterol. 

 Formation of hydroxyl radicals:

    ®2 • 3
2 2Fe H O OH OH Fe+ - ++ + +    (7.1)    

    7.4   Oxidants in Atherosclerotic Plaque 

 Attention has been given in recent years to the nature of the reactive species  produced 
by macrophages. It is widely accepted that superoxide anions are not directly 
responsible for the oxidation of LDL. Hazen and colleagues have shown that 
myeloperoxidase in activated macrophages leads to the release of hypochlorous 
acid  [  9  ]  which is a two-electron oxidant but not a free radical (Eq.  7.2 ). The enzyme 
contributes to the primary defense mechanisms against microorganisms. This 



114 K.R. Bruckdorfer

 oxidant chlorinates tyrosine residues on LDL and these are taken into the cells via a 
scavenger receptor mediated process. 

 The formation of hypochlorite catalyzed by myeloperoxidase:

    
- ®2 2 2H O Cl H HOCl H O++ + +    (7.2)   

 Furthermore, another two-electron oxidant, peroxynitrite, is formed by the 
action of this enzyme using nitrite ions as the substrate (Eq.  7.3 ). The heme 
 moiety of myeloperoxidase is essential for this conversion in its higher oxidation 
state and activates the formation of the nitrogen dioxide radical – a powerful 
oxidant. 

 Mechanisms leading to formation of nitrogen dioxide radicals from nitrite cata-
lyzed by myeloperoxidase:
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 The nitrogen dioxide radical nitrates susceptible tyrosyl residues in LDL and 
other proteins to 3-nitrotyrosine. Peroxynitrite may also be formed more directly 
by the reaction of nitric oxide and superoxide anion, both of which are produced in 
large amounts in activated macrophages as part of the primary defense mechanisms 
against infection (Eq.   7.4  ). Peroxynitrite readily decomposes at physiological pH to 
yield nitrogen dioxide radical and hydroxyl radical. The myeloperoxidase activity 
leaves a fi ngerprint of chlorinated and nitrated proteins in areas of plaque rich in 
macrophages. These fi ndings have been extended to show that HDL is also capable 
of modifi cation by hypochlorite and peroxynitrite  [  10  ] . This has profound effects 
on the ability of this lipoprotein to remove cholesterol from the macrophages 
through the ABC-A1 receptor and the enzyme phospholipid cholesterol acyltrans-
ferase (PCAT) which promotes cholesterol esterifi cation in HDL. These proteins 
are integral to the reverse cholesterol transport system for the return of cholesterol 
to the liver and its excretion. Therefore, these oxidants inhibit the removal of cho-
lesterol from plaque and enhance its deposition. Other relevant molecules may be 
modifi ed by peroxynitrite. For example, nitration of fi brinogen may render this 
molecule more thrombotic by decreasing the stability of clots and increasing the 
risk of microthrombi  [  11  ] . A pro-thrombotic state is therefore induced by post-
translational modifi cation of fi brinogen. Similarly, plasmin activity is impaired by 
nitration  [  12  ] . 

 The formation of peroxynitrous acid from nitric oxide:
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    7.5   Consequences of Lipoprotein Oxidation and Its Effects 
on Arterial Function 

 The products of lipoprotein oxidation are important to events than the formation of 
foam cells because of the formation of a wide range of oxidation products from 
polyunsaturated lipids. Many of these products are cytotoxic and genotoxic. 
Lysophosphatidylcholine    is a potent detergent that damages the endothelium  [  13  ] . 
Lysophosphatidic acid is an activator of platelets  [  14  ]  which, in concert with the 
diminished synthesis of endothelial nitric oxide a platelet inhibitor, is  pro-thrombotic. 
Cholesterol oxides at low concentrations activate genes for chaperones and antioxi-
dant enzymes which are protective for the endothelium, through the nuclear tran-
scription factors LXR and RXR  [  15  ] , thus providing some protection against the 
effects of oxidation. However, at higher concentrations, they are cytotoxic. 
Isoprostanes formed from the oxidation of polyunsaturated fatty acids are potent 
vasoconstrictors. The elevated plasma concentrations of isoprostanes are excellent 
markers for lipid oxidation in vivo  [  16  ] .  

    7.6   Antioxidants and Cardiovascular Disease 

 Over the last 20 years, epidemiological studies pointed to a link between dietary 
antioxidants and cardiovascular disease. There was evidence of an independent 
inverse link between the consumption of fruit and vegetables and mortality from 
cardiovascular disease (see below). This allowed many to make the assumption that 
it resulted from the presence of antioxidants in these foods, although there are alter-
native explanations for such an association. 

 Esterbauer found that if  a -tocopherol (but not  b -carotene) was added exoge-
nously to the LDL, or by oral doses to healthy subjects, these lipoproteins became 
much more resistant to oxidation  [  7  ] . The fi rst endogenous material to become oxi-
dized in the presence of cupric ions is  a -tocopherol before the lipids oxidize. 
However, the susceptibility of the LDL to oxidation ex vivo was independent of the 
amount of  endogenous   a -tocopherol in LDL isolated from the cohort of donors. In 
the original experiments, the oral dosage of  a -tocopherol was well in excess of the 
dietary norm. However, smaller amounts of the vitamin also increased resistance to 
oxidation  [  17  ] . Ascorbate also increases the resistance to oxidation: Electrons pass 
from the tocopherol in the LDL to ascorbate, limiting the oxidation of polyunsatu-
rated fatty acids  [  18  ] . 

 Experimental evidence in vitro showed that  a -tocopherol has a number of inhibi-
tory effects on processes which lead to the formation of atherosclerotic plaque, but 
it was not clear that these were due to its antioxidant function. Effects of  a -tocopherol 
were even found in healthy individuals on platelet function which was attenuated 
by the vitamin  [  17  ]  even at oral doses of 75 i.u. per day, much less than had been 
used in many trials, but still well above the intake from non-supplemented foods. 
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These fi ndings suggested that antioxidants, at least  a -tocopherol, may have an effect 
on thrombosis which is a key concomitant to myocardial infarction. These effects 
were minor compared with the actions of aspirin on platelet function which reduces 
the risk of infarction by about 20%. 

 The existence of antibodies to oxidized LDL in the plasma seemed to add sup-
portive evidence for the oxidation hypothesis. The association of the concentration 
of these antibodies with extent of atherosclerosis in patients with cardiovascular 
disease was weak  [  19  ] . Indeed it has been suggested that the formation of these 
antibodies may be a protective response since dietary intervention to reduce oxida-
tive stress increased the titer of circulation antibodies  [  20  ] . Indeed oral supplements 
of  a -tocopherol increased the titer of circulating antibodies to oxidized LDL  [  21  ] . 
The autoimmune response to oxidized LDL is also associated with the contribution 
of bacterially derived antigens and the participation of Toll-like receptors in mac-
rophages of atherosclerotic plaques  [  22  ] . Furthermore platelets express CD66 which 
links their activation to the presence of oxidized LDL in the circulation     [  23  ] . 

    7.6.1   Epidemiological Studies on Antioxidants 
and Cardiovascular Disease 

 The experimental studies and the established inverse relationship between the con-
sumption of fruit and vegetables and cardiovascular disease elicited a number of 
new studies on patients and populations which, for the most part, seemed to rein-
force the central role of antioxidants as protective nutrients. 

 Coronary Heart Disease rates were known to be higher in areas where fruit and 
vegetable consumption was lowest  [  24  ] . In countries where consumption of fruit 
and vegetables was high, rates of CHD were lower  [  25  ] . Furthermore, vegetarians 
have lower rates of CHD  [  26  ] . The diets of over 75,000 nurses and nearly 39,000 
male health professionals were compared showing a 31% reduction in the risk of 
stroke in the quintile eating the most fruit and vegetables compared with the quintile 
eating the least     [  27  ] . 

 The Lyon Diet Heart Study on M.I. patients found that those who followed a 
“Mediterranean” diet had a signifi cant reduction in the re-occurrence of myocardial 
infarction after 4 years  [  28  ] . Higher fruit and vegetable intakes lower the cardiovas-
cular disease risk factors, blood cholesterol and blood pressure  [  29,   30  ] . These stud-
ies were the basis for further studies. More recent evaluations of the benefi ts of fruit 
and vegetables reinforce this view, but suggest that the evidence is not always strong  [  31  ]  
and that controlled nutritional prevention studies are scarce  [  32  ] . 

 These and other fi ndings led researchers to investigate whether the active factor 
in the fruit and vegetables could indeed be attributed to their antioxidant content. 
The MONICA study showed a north-south gradient in cardiovascular disease risk 
across Europe inverse to the gradient for plasma concentrations of vitamin E. These 
fi ndings were supported by the results of case-control studies  [  33,   34  ] . Further stud-
ies demonstrated a lower risk of cardiovascular disease with a higher dietary intake 
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of antioxidant nutrients  [  35,   36  ] . The European Prospective Investigation of Cancer 
(EPIC) study found a relationship between high levels of ascorbate and reduced risk 
of cardiovascular disease  [  37  ] . 

 Prospective studies have investigated the contribution of vitamin supplements. In 
“The Nurses’ Health Study”     [  35  ] , where women in the highest (fi fth) quintile of 
 a -tocopherol consumption, many used supplements of vitamin E and had a 44% 
lower risk of CHD compared to those in the lowest quintile of intake of this vitamin. 
Those in the fourth quintile for dietary intake of vitamin E (mainly dietary vitamin 
rather than supplements) also had a lower risk (26% lower than the fi rst quintile). In 
a cohort of men     [  33  ] , the risk was also lower with higher  a -tocopherol intakes. A 
total of 34,000 postmenopausal women in the Iowa Women’s Health Study showed 
an inverse association between dietary vitamin E intake and deaths from CHD and 
stroke  [  38,   39  ] : Here vitamin E supplementation was not associated with protection 
from cardiovascular disease. 

 Intake of antioxidant fl avonoids was shown to be inversely associated with CHD 
risk in several studies. The Iowa Women’s Study found that increased intake of fl a-
vonoids was associated with a decreased risk of death from CHD  [  40  ] . A recent 
study from within the Iowa cohort showed a strong inverse association between 
CHD and intake of some types of catechins. 

 Selenium is important to the activity of certain antioxidant enzymes, particu-
larly glutathione peroxidase. Patients with MI had low plasma selenium concentra-
tions  [  41  ] , but not all studies show an inverse relationship between plasma selenium 
concentrations and cardiovascular disease. Selenium is a micronutrient for which a 
signifi cant proportion of the population of the UK and other countries has a mar-
ginal  defi ciency  [  42  ] . 

 In other studies, the intake of fruit and vegetables has been associated with 
changes in markers for cardiovascular disease or in measurable physiological 
changes in arterial function. Many studies have looked at the relationship to these 
markers and the level of antioxidants in the diet or to measurements in the plasma. 
Plasma C-reactive protein is used as an index of infl ammation, but also has been 
correlated strongly to the incidence and mortality from cardiovascular disease  [  43  ] . 
CRP plasma levels, in a prospective population study of 3,258 men aged 60–79, 
were also correlated inversely with plasma ascorbate concentrations and dietary 
vitamin C, even after adjustment for other confounding factors  [  44  ] . Another marker    
for endothelial dysfunction, the tissue plasminogen activator – 1, was also inversely 
correlated to these two parameters. 

 LDL and, to a greater extent and more permanently, oxidized LDL inhibit 
endothelium-dependent relaxation of arteries, a process mediated by the generation 
of nitric oxide. Organ bath studies with rabbit aortic rings showed that ascorbate 
reversed the actions of high concentrations of LDL but not that of oxidized LDL    
 [  45  ]  In endothelial cell cultures, increasing concentrations of ascorbate within the 
physiological range could enhance the synthesis of nitric oxide  [  46  ] , probably by 
increasing the biosynthesis of one of the co-factors for NO-synthase, tetrahydro-
biopterin. Arterial dilatation, in response to acetylcholine in the human coronary 
artery, improved endothelial responses with pre-treatment with antioxidants using 
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angiographic procedures. Relaxations of the brachial artery were measured using 
plethysmography or ultrasound techniques. Large oral doses of vitamin C (2 g) or 
direct infusion of the vitamin could improve these responses if they had been 
impaired by atherosclerosis or hypercholesterolemia  [  47  ] .   

    7.7   Intervention Trials 

 The stage was set for intervention studies to determine whether antioxidants had an 
important therapeutic value alongside the statins. 

 In the last decade, a number of intervention studies have been completed: Many 
of them very expensive to run. In most cases, the antioxidants used were in quanti-
ties many fold greater than those found in any diet and at a level where their action 
would be considered pharmacological rather than fulfi lling any nutritional require-
ment. There have been both primary and secondary intervention trials, some with 
a matrix design, so that the effects of single antioxidant, a combination of antioxi-
dants with a statin, or a single antioxidant and fi sh oils could be tested  [  48,   49  ] . 
With a small number of exceptions where benefi t was indicated, the majority of 
trials showed that antioxidant therapy did not decrease risk of cardiovascular dis-
ease. No benefi t was demonstrated whether the antioxidants, mainly  a -tocopherol, 
 b -carotene, and ascorbic acid, were used individually or in combination. Indeed 
some, but not all of the trials, indicated negative effects especially among smokers 
 [  50–  54  ] . The assessment of the major studies suggests that positive effects are 
only seen in patients who were experiencing oxidative stress  [  55  ] . Meta-analysis 
of these studies indicated that there is no real discernible benefi t for antioxidant 
therapy  [  56  ] . 

 One study found that  a -tocopherol supplementation suppressed restenosis in sur-
gically induced atherosclerosis  [  57  ] . The most recent reviews conclude that, though 
more work may be required, the future of antioxidants as therapeutic agents is bleak    
 [  58,   59  ] . Despite this, the sale of over-the-counter antioxidants and other dietary 
supplements remains a multi-billion dollar industry. In the food industry, they are 
frequently used for the preservation of foods. It is hard for consumers to avoid 
them. 

 The MRC/BHF Heart Protection Study was a large trial that examined the 
effects of a cocktail of antioxidant vitamins over 5 years (600 mg vitamin E, 
250 mg vitamin C, and 20 mg  b -carotene) or placebo in 20,536 UK adults (aged 
40–80) with coronary disease, other occlusive arterial disease, or diabetes melli-
tus  [  48  ] . The supplements increased the blood levels of antioxidant vitamins, but 
without any signifi cant reduction in mortality from vascular disease or cancer. 
The protection given by treatment with a cholesterol-lowering statin was evident 
and contrasted with the ineffectiveness of the antioxidant supplements. The 
GISSI-Prevenzione trial examined both the effects of vitamin E and dietary fi sh 
oils. The latter reduced the risk of death, non-fatal myocardial infarction, or 
stroke, but vitamin E supplementation (300 mg daily for 3.5 years) did not aug-
ment this effect  [  49  ] .  
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    7.8   What Could Be the Explanation? 

 An analysis of a large cohort of women aged between 60 and 79 years selected for 
the British Women’s Heart and Health Study was performed in which plasma 
 a -tocopherol and ascorbate concentrations were measured  [  60  ] . There was a 
strong associated with socioeconomic position indicators: the lower the social 
status, the lower the plasma concentration of these vitamins. Lower socioeco-
nomic status is also strongly related to a higher incidence of cardiovascular dis-
ease. Tunstall-Pedoe demonstrated that social deprivation is a factor that is often 
neglected.  [  61  ] . These studies also exposed very low levels of plasma vitamin C 
in some individuals in the lowest socioeconomic groups  [  62  ] . Low levels of 
 vitamin C are associated with smoking which may in turn affect food choice. 
These issues open the question whether the major intervention trials included only 
a small proportion of socially deprived individuals. This group may benefi t from 
antioxidant therapy or nutritional advice to increase their plasma antioxidant lev-
els. Low levels of ascorbate were also found in a study of the elderly and associ-
ated with an increased risk of cardiovascular disease and other diseases  [  63  ] . 
Genetic mutations which lead to impairment of the intestinal ascorbate co- 
transporter were found to have a small but signifi cant lowering effect on blood 
ascorbate levels  [  64  ] . 

 Antioxidants are not the sole nutritional factor in a diet rich in fruit and vegeta-
bles. An increased intake of these foods will lead to a benefi cial decrease in other 
food components, particularly saturated fats. An increase in dietary fi ber lowers 
blood cholesterol and improves glucose tolerance: Salt intakes are likely to be lower. 
There would also be an increase in the intake of polyunsaturated fatty acids with a 
concomitant decrease in LDL cholesterol. 

 The antioxidant content of the artery wall does not change signifi cantly during 
the evolution of the atherosclerotic plaque. Only at the most advanced stage of the 
lesion is a reduction in the amount of  a -tocopherol evident  [  65  ] . Plaque lipoproteins 
contained  a -tocopherol alongside lipid oxidation products. Either the antioxidants 
do not function or they are radicalized in this environment. Antioxidants become 
pro-oxidants in the presence of metal ions as indicated above and are cyclically 
depleted and repleted through these radical forms. 

 The studies that showed hypochlorite and peroxynitrite were key oxidants in 
atherosclerosis were published after the main intervention studies had begun. The 
footprints of these oxidants are found in atherosclerotic plaque (Fig.  7.1 ) but also in 
other infl ammatory diseases such as rheumatoid arthritis, Alzheimer’s disease, and 
diabetes. The nitration and chlorination of proteins arises by the action of the 
enzyme myeloperoxidase in macrophages  [  9  ] . Serum myeloperoxidase levels have 
been associated with the future risk of coronary artery disease  [  66  ] . There is evi-
dence that  g -tocopherol is a more effective antioxidant against peroxynitrite than 
 a -tocopherol and that the fl avonoid epi-gallocatechin or its gallate is yet more effec-
tive. These catechins are found in large amounts in green tea, chocolate, red wine, 
and fruit such as apples. Glutathione peroxidase, an antioxidant enzyme containing 
selenium, reduces peroxynitrite  [  67  ] .  
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 Under experimental conditions, epi-gallocatechin gallate, at concentrations as 
low as 2  m M, inhibits protein nitration during the    activation of blood platelets  [  68  ] . 
Although large amounts of these compounds may be consumed, levels in the plasma 
are low. The maximum concentration for this compound found in the plasma is 
1  m M: The intracellular concentrations are unknown. Catechins are metabolized and 
eliminated in the form of glucuronides: Some of these products may have antioxi-
dant activity. No major intervention studies have been attempted using these com-
pounds, despite the current enthusiasm for them. The biological availability of 
potential antioxidants is important. A cocktail of these compounds and metabolites 
may have important collective antioxidant actions. 

 One of the key roles of the free radical nitric oxide released from the endothelium 
is to prevent the proliferation of smooth muscle cells and to maintain them in their 
contractile state, inhibiting differentiation into a fi broblastic phenotype. The fi bro-
blastic phenotype biosynthesizes collagen and is abundant in fi brous plaque. 
Ascorbate is essential for the biosynthesis of collagen, specifi cally the hydroxylation 
of proline. NO has an inhibitory effect on collagen biosynthesis  [  69  ]  whereas ascor-
bate opposes the inhibitory action of NO on collagen biosynthesis in skin fi broblasts 
 [  70  ] . These studies have been extended now to show that epi-gallocatechin gallate 
enhances the inhibitory action of NO. The role of catechins and other polyphenols in 
prevention of cardiovascular disease has not been established  [  71  ] . 
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high-density lipoproteins and its relevance to the development of atherosclerosis       
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 The upregulation of genes in response to oxidative stress leads to the increased 
synthesis of protective proteins. These include the enzyme hemoxygenase-1, which 
catalyzes the formation of the endogenous antioxidant bilirubin and is a chaperone. 
These actions are mediated through nuclear transcription factors, some of which are 
sensitive to the reduction/ oxidation status of the cell which can be changed by oxi-
dation stress. Some of these proteins are regulated by NO through its interactions 
with sulfydryl groups on the transcription factors which are themselves proteins, 
e.g., NFкB, Nrf-2, and HIF-1. These factors operate through antioxidant response 
elements on the chromosome near regions where these antioxidant proteins are 
expressed. Siow and colleagues showed that polyphenols augment gene expression 
for antioxidant enzymes, chaperones, and increase NO biosynthesis through NFкB 
and Nrf-2  [  72  ] . 

 Jackson and co-workers  [  73  ]  investigated the action of antioxidant vitamins on 
the expression of protective genes following muscular exercise. Changes were 
observed in the proteins of lymphocytes and skeletal muscle in untrained human 
subjects with and without supplementation with ascorbate (0.5 g/day for 8 weeks). 
There was an increase in lymphocyte superoxide dismutase, catalase activity, and 
the cellular content of HSP60 and HSP70 chaperone proteins in response to a low 
concentration of hydrogen peroxide, without ascorbate supplementation. After sup-
plementation, the basal activity or content of the cellular proteins was slightly 
increased, but the cells gave an attenuated response to the peroxide. In muscle post 
exercise, there was a rise in HSP60 and HSP70 was diminished by supplementation 
with ascorbate, at least for HSP60.  

    7.9   Conclusions 

 A survey of the progress over 40 years of research into oxidative stress, free radi-
cals, and the role of dietary antioxidants as therapeutic agents shows that it had its 
high points and distinctive low points. It is clear that there is more to do to under-
stand the complex effects of dietary antioxidants and how they infl uence signaling 
mechanisms that respond to oxidative stress. Not all free radicals and reactive spe-
cies are suppressed by the same dietary antioxidants. The simple “free radicals bad – 
antioxidants good” slogan is simply not adequate to comprehend how they may 
contribute to the lifelong process of atherosclerosis. It is clear that oxidative stress 
is important to its evolution. However, pharmacological doses of antioxidants do not 
prevent these pathological changes. It does seem that a diet rich in fruit and vegeta-
bles is benefi cial and family resources may be better spent on them rather than 
expensive and ineffective supplements.      
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       8.1   Introduction 

 An interesting syndrome was reported    from Japan close to 20 years ago  [  1–  5  ] . It had 
a varying nomenclature but the name takotsubo syndrome or apical ballooning syn-
drome was used frequently. More recently, the descriptive name, “broken heart” 
syndrome has been used. Also    recently, the syndrome has been reported in patients 
from the United States and Europe  [  6–  10  ] . 

 The syndrome is found predominantly in postmenopausal women. It is some-
times mistaken for an acute myocardial infarction. The patient usually presents with 
chest pain or extreme weakness, has electrocardiographic changes mimicking an 
acute myocardial infarction, may have some elevation of cardiac biomarkers, and 
may present with hypotension or cardiogenic shock. Coronary arteriography reveals 
normal epicardial coronary arteries. Cardiac supportive therapy is usually success-
ful in getting the patient through the acute event. Takotsubo cardiomyopathy is most 
often characterized by transient regional contractile dysfunction with hypokinesis 
or akinesis of the left ventricular apical segments and hyperkinesis of the basal seg-
ments. The term “takotsubo” was used by the original Japanese    investigators as the 
left ventriculogram of a patient with the syndrome resembled a takotsubo, or 
Japanese octopus fi shing pot (Fig.  8.1 ). In Japanese, “takotsubo” means “fi shing pot 
for trapping octopus.” These traps have a round bottom with a narrow neck. When 
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the octopus enters the takotsubo, it is often trapped while the fi sherman pulls the 
device to the surface. The other feature of the syndrome is that it most often is 
 initiated by a severe emotional or psychological life event. These may include 
 violent arguments, domestic abuse, death of a relative, learning of a catastrophic 
medical event in oneself or a close relative, or fi nancial or gambling losses.   

    8.2   Case History 

 P.O. is a 68-year-old woman who had no cardiac history until May 2005 when she 
was 65 years of age. She had a history of surgical removal of uterine fi broids and the 
resection of a benign breast cyst. She was 10 years postmenopausal and had a life-
long history of Raynaud’s phenomenon. 

 During a routine yearly checkup in April 2005, an electrocardiogram was totally 
normal. In early May 2005, she had a severely emotional and stressful afternoon at 
her mother’s funeral. She had no chest pain but felt extremely weak and unwell. She 
was seen by her physician on May 19, 2005, where an electrocardiogram was quite 
abnormal. It revealed deep coved T waves in I, II, III, Avf, V3-V6. The QTc was 
484 ms (Fig.  8.2 ).  

 On June 16, 2005, the T wave coving was less and the QTc was 450 ms (Fig.  8.3 ). 
On July 7, 2005, the abnormalities were starting to abate. The QTc was 445 ms 
(Fig.  8.4 ). By September 22, 2005, the ECG was virtually normal with no T wave 
abnormalities. The QTc was 412 ms (Fig.  8.5 ).     

    8.3   Epidemiology and Prevalence 

 Since fi rst being described, the number of cases reported has increased. It is 
 estimated that up to 2% of patients presenting with an acute coronary syndrome 
may actually be presenting with the takotsubo syndrome. This number of cases 

  Fig. 8.1    A takotsubo or 
“Japanese fi shing pot.” These 
traps have a round bottom 
with a narrow neck. When 
the octopus enters the 
takotsubo, it is trapped       
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has been reported both in the United States and in Europe. There is a strong 
predominance of postmenopausal women. The reasons for this are not clear 
but as will be discussed later, it is likely that sex hormones exert important 
 infl uences on the sympathetic neurohumoral axis as well as on coronary 
vasoreactivity.  

    8.4   Clinical Presentation 

 Takotsubo cardiomyopathy is characterized by the acute onset of chest pain, dysp-
nea, and at times syncope. It is predominantly seen in postmenopausal women in 
their 50s or 60s. There is usually a severe emotional or physical event in the ante-
cedent period leading up to the clinical presentation. News of an unexpected death 
or other such emotional trauma is common. The patient may be hypotensive and 
may require circulatory pharmacologic support. Similarly the patient may present 
with severe dyspnea and at times pulmonary edema. With appropriate hemodynamic 
support which at times may require an intra-aortic balloon pump, the immediate 
prognosis is favorable.  

    8.5   The Electrocardiogram 

 The electrocardiogram may mimic closely that of an acute anterior wall myocardial 
infarction. There is ST-segment elevation which may evolve into deeply coved T 
waves after the ST segment approaches baseline. There is usually a prolonged QT 
(QTc) interval which returns to normal somewhat more quickly then pathologic 
precordial Q waves if present.  

    8.6   Echocardiogram 

 The initial left ventricular ejection fraction is most often markedly depressed, at 
times as low as 20%. The typical contractile pattern demonstrates preserved basal 
function, moderate-to-severe dysfunction in the mid-ventricle, and apical akinesis 
or dyskinesis. Within a week’s time, the left ventricular ejection fraction is usu-
ally improved and the mid-ventricular and apical segments are only mildly 
hypokinetic.  

    8.7   Cardiac Biomarkers 

 There is frequently a mild elevation of troponin T or troponin I levels. This elevation 
is by no means invariable and the biomarkers often remain normal. Similarly cre-
atine kinase or creatine kinase MB levels may be normal or only minimally 
elevated.  
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    8.8   Coronary Angiography and Ventriculography 

 Coronary angiography usually displays normal epicardial coronary arteries. At 
times there may be spasm recognized particularly in the left anterior descending 
coronary artery. The left ventriculogram usually displays typical apical ballooning 
and hypercontraction of the basal segments.  

    8.9   Pathogenesis 

 The etiology of the takotsubo syndrome is unclear. The most common explanation 
is that excessive catecholamine secretion and catecholamine cardiotoxicity are 
important. In support of this thesis, patients reported by Wittstein et al. had plasma 
levels of catecholamines (i.e., epinephrine, norepinephrine, and dopamine) on hos-
pital day 1 or 2 two to three times higher than patients with Killip class IV myocar-
dial infarction. Plasma levels of metanephrine and normetanephrine were also 
increased among patients with stress cardiomyopathy  [  10  ] . Further support for the 
thesis that a massive catecholamine discharge is relevant in this pathogenesis of the 
“broken heart” syndrome comes from the neurologic literature where patients with 
subarachnoid hemorrhage have been reported to develop profound electrocardio-
graphic changes characterized by deep symmetrical T wave changes across the 
anterior precordium  [  11  ] . 

 The mechanism underlying the association of catecholamine excess and electro-
cardiographic changes is not clear. One possibility is that catecholamine excess may 
lead to epicardial coronary artery spasm. Soufer and colleagues  [  12  ]  have demon-
strated that mental stress is a powerful initiator of a process that activates cerebral 
and adrenal pathways that lead to increased myocardial oxygen demand and simul-
taneously leads to coronary and peripheral vasoconstriction or spasm. 

 An alternative mechanism related to the above may be spasm of the myocardial 
microvasculature. The coronary microvasculature system is very responsive to sym-
pathetic stimulation and may under periods of stress alter the delivery of oxygen to 
the myocardial muscle. 

 The idea of myocardial stunning was enunciated in an early paper addressing the 
effects of transient ischemia on myocardial contractility. Braunwald and Kloner 
 [  13  ]  put forth the idea that transient coronary occlusion with reopening before 
necrosis occurs could lead to stunning or hibernation of the affected myocardium. 
With time, often up to a week or two, full function could be achieved. This phenom-
enon certainly mimics what is seen in women who develop the takotsubo syndrome. 
Lyon et al hypothesize that takotsubo cardiomyopathy is a form of myocardial stun-
ning but with a different cellular effect than that secondary to myocardial ischemia. 
They believe that high levels of circulating epinephrine trigger a switch in intracel-
lular signal traffi cking in ventricular cardiomyocytes  [  14  ] . 

 In addition, the fact that the overwhelming incidence of takotsubo cardiomyopa-
thy occurs in women obviously raises the question of whether estrogen, or the lack 
thereof, plays a role in the pathogenesis of this syndrome. There is considerable 
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experimental evidence that estrogen lack may also contribute. The fact that most 
patients with takotsubo cardiomyopathy are postmenopausal women is very sugges-
tive. It has been shown that in postmenopausal women, estrogen supplementation 
enhances nitric oxide release and attenuates norepinephrine-induced vasoconstric-
tion. The evidence is very strong that postmenopausal women who develop takot-
subo cardiomyopathy are estrogen defi cient. Further it is clear that the precipitating 
event causes an increase in norepinephrine and other catecholamines. The post-
menopausal estrogen-defi cient female may likely develop profound epicardial coro-
nary artery vasoconstriction. The 17-beta-estradiol therapy lessens angina in 
postmenopausal women with normal coronary arteries  [  15  ] . In an experimental rat 
model, it has been shown that estrogen supplementation partially reversed the car-
diac changes brought about by laboratory-induced stress  [  16  ] . 

 Therefore patients with takotsubo cardiomyopathy clearly have exaggerated 
sympathetic activation. It is a hypothesis yet to be proved that the catecholamine 
excess associated with grief reacts on a coronary artery system primed for spasm 
and stunning due to estrogen lack. 

 The weight of evidence points to a multifactorial pathogenesis in patients who 
develop the takotsubo syndrome. It is akin to a physiologic perfect storm. An 
extreme emotional event unleashes a catecholamine surge. The postmenopausal 
estrogen-defi cient female is particularly susceptible to the actions of the cate-
cholamine surge. It is likely that a catecholamine-induced combination of vasocon-
striction of the epicardial coronary arteries, constriction of the coronary 
microvasculature, and a direct effect on cardiomyocytes lead to a stunning effect on 
the left ventricular myocardium. With time, these changes resolve and the syndrome 
abates. Recognition of this syndrome leads to more rational and effective therapy.      
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 What made the long neglected lymphatic vessels an interesting aspect of vascular 
biology are two important discoveries: a lymphatic-specifi c growth factor, VEGF-C, 
and its receptor, VEGFR-3, and an excellent marker, D2-40. 

    9.1   The Discovery of VEGF-C and Its Receptor VEGFR-3 

 In 1995, the group    of Alitalo in Helsinki found a specifi c receptor: Flt4, subse-
quently re-named vascular endothelial growth factor receptor-3 (VEGFR-3), which 
is initially expressed by blood and lymphatic developing vessels and later becomes 
   restricted to lymphatic endothelium  [  1  ] . The year later the same group isolated and 
cloned from human prostatic carcinoma cells the ligand for VEGFR-3: vascular 
endothelial growth factor-C (VEGF-C), the fi rst growth factor specifi c for lymphatic 
vessels  [  2  ] . Transgenic mice overexpressing VEGF-C have hyperplastic lymphatic 
vessels  [  3  ] . Defective VEGFR-3 signaling due to missense mutations has been 
reported in the congenital hereditary form of lymphedema: Milroy’s disease  [  4,   5  ] . 
In this disease, lymphatic vessels are absent and lymphedema of the lower extremi-
ties is already present at birth and increases with age.  

    9.2   Lymphatic Markers 

 Research on lymphatic vessels has long been hampered by the diffi culty to recognize 
them in common histological sections particularly when they are collapsed as they 
very often do. Lymphatic vessels are also easily confused with venules. A number of 
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lymphatic markers have been proposed, but they had to be used in combination 
because a single marker often missed part of the lymphatic vessels present in a given 
tissue  [  6  ] . The most commonly used lymphatic markers besides VEGFR-3 are: Prox-
1, the homologue of the Drosophila homeobox gene; Prospero, a master gene in speci-
fying lymphatic fate  [  7,   8  ]  – it is a nuclear marker; and LYVE-1  [  9  ] , the receptor for 
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  Fig. 9.1    Immunostaining of human dermal lymphatic microvascular endothelial cells in culture 
with lymphatic markers: ( a ) LYVE-1, ( b ) Prox-1, ( c ) VEGFR-3, ( d ) D240       

100 µm

  Fig. 9.2    Human lung: 
lymphatic vessels ( arrows ) 
stained in black by D240 
around an artery       
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hyaluronan, homologue of CD44 for blood vessels. The immunostaining of cultured 
human lymphatic endothelial cells with these markers is illustrated in Fig.  9.1 . But the 
ideal marker, reliable and strongly expressed in all lymphatic vessels, is D2-40  [  10  ]  
(Fig.  9.2 ), a monoclonal antibody that recognizes podoplanin  [  11  ] . The role of podo-
planin in lymphatic vessel biology is not well understood, but podoplanin knockout 
mice have defects in lymphatic vessels with congenital lymphedema and dilation of 
skin and intestinal lymphatic vessels  [  12  ] .    

    9.3   Development of Lymphatic Vessels 

 How do lymphatic vessels    develop has been the subject of a long debate. A very 
old theory by Sabin  [  13  ]  said that lymphatic vessels arise from veins. Recent 
experimental evidence provided support to this theory: Primitive lymphatic vessels 
indeed bud from the cardinal vein at embryonic day 9  [  14  ] . Some endothelial cells 
in the wall of the vein start expressing Prox-1  [  7  ] ; this gene determines lymphatic 
commitment. Prox1 null mice fail to develop any lymphatic vasculature. Prox1-
expressing cells migrate and form primitive lymph sacs. Sprouting from primitive 
lymph sacs is made possible by VEGF-C stimulation. Homozygous deletion of 
VEGF-C in mouse embryos leads to the complete absence of the lymphatic vascu-
lature, whereas heterozygous mice display severe hypoplasia  [  15  ] . Maturation of 
lymphatic vessels is controlled by several different factors including angiopoietins, 
FOXC2, Ephrin B2, Podoplanin. During maturation, the wall of lymphatic collect-
ing vessels becomes provided with smooth muscle cells and valves are formed. In 
the absence of the forkhead transcription factor FOXC2, valves are ineffi cient and 
lymph fl ows back leading to a hereditary form of lymphedema with late onset, 
known as lymphedema-distichiasis because patients also have a double row of eye-
lashes  [  16  ] .  

    9.4   Postnatal Lymphangiogenesis 

 Once lymphatic vessels are formed, several growth factors may promote postnatal 
lymphangiogenesis acting on receptors present in lymphatic endothelial cells. 
VEGFR-3 binds not only VEGF-C but also VEGF-D  [  15  ] . VEGF-D is dispensable 
during development but, when exogenously added, it rescues the impaired vascular 
sprouting in VEGF-C null mice. Lymphatic endothelial cells also have VEGFR-2, 
which binds VEGF-A. In adult lymphangiogenesis, VEGFR-2 and VEGFR-3 have 
cooperative and redundant roles of signaling  [  17  ] . This has important implications 
in therapy: Combined inhibition of both receptors may be more effi cient in  reducing 
tumor lymphangiogenesis than the inhibition of either receptor alone. Hepatocyte 
growth factor (HGF) is a novel potent lymphangiogenic factor that promotes 
 lymphatic vessel formation and function independently from VEGFR-3  [  18  ] . 
HGF receptor may be an interesting new target for inhibiting pathological 
lymphangiogenesis. 
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 In the cornea, which normally is avascular, during infl ammation, new lymphatic 
vessels are formed  [  19  ] . These newly formed lymphatics    do not originate from the 
preexisting ones of the limbus but they rather arise in the center of the cornea due to 
the transdifferentiation of CD11b-positive macrophages that express lymphatic 
markers, Prox1, podoplanin, and LYVE-1. Macrophages have also been shown to 
be in vitro able to form lymphatic capillaries in matrigel.  

    9.5   Lymphatic Vessels and Tumors 

 The role of lymphatic vessels in tumor spreading has been extensively studied and 
is beyond the objectives of this chapter. Of particular interest is however the recent 
report that VEGF-A binding to VEGFR-2 in tumors not only induces angiogenesis 
but also tumor and sentinel lymph node lymphangiogenesis, promoting lymphatic 
metastasis. Non-metastatic sentinel lymph nodes have been shown to contain 
increased numbers of enlarged LYVE-1-positive sinusoids  [  20  ] , confi rming the old 
seed and soil hypothesis: Tumor cells prepare the soil (the lymph node) where they 
are going to be seeded during metastatic diffusion.  

    9.6   Lymphatic System Organization 

 Initial lymphatic vessels arise bluntly in the interstitium where they drain fl uids and 
macromolecules escaped from blood capillaries and venules. Initial lymphatic ves-
sels, improperly known as capillaries, are larger than blood capillaries, with a char-
acteristically tortuous, irregular profi le. Their wall is extremely thin, made only by 
endothelial cells without pericytes. They may contain valves. ECs of initial lym-
phatic vessels are large, oak-leaf shaped, with overlapping fl aps sealed by “buttons” 
that contain, like the “zippers” of collecting vessels, VE-cadherin and tight junc-
tion–associated proteins  [  21  ] . Buttons may open and close without disrupting junc-
tional integrity to allow fl uid entrance. 

 From initial lymphatic vessels, lymph fl ows into larger vessels, provided with 
valves, precollectors, whose wall has an alternation of thinner tracts made solely by 
endothelial and thicker tracts in which the endothelium is irregularly surrounded by 
smooth muscle cells  [  22,   23  ] . Precollectors drain into collecting vessels, character-
ized by larger dimensions and a continuous wrapping of smooth muscle cells. Their 
course is interrupted by lymph nodes. The largest lymphatic vessels, the thoracic 
duct and the right lymphatic duct, eventually convey lymph into the large veins at 
the base of the neck. 

 Under transmission electron microscopy, lymphatic vessels are characterized by 
a discontinuous basement membrane, which may be for long tracts absent, and 
anchoring fi laments (Fig.  9.3 ) which connect the abluminal membrane of endothe-
lial cells with the surrounding extracellular matrix  [  24  ] .   
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    9.7   Anchoring Filaments 

 Anchoring fi laments have long been postulated to favor interstitial fl uid drainage by 
pulling apart interendothelial junctions in edema  [  25  ] . They are made of fi brillin  [  26  ] , 
a large (approximately 350 kDa) and ancient molecule  [  27  ] , present even in jellyfi sh. 
In those animals that have a circulatory system, fi brillin during development forms a 
track for the deposition of elastin, the protein that confers elasticity to blood vessels. 
This is called the “structural” role of fi brillin. Fibrillin also has an “instructive” role 
due to its capacity to sequester transforming growth factor- b  (TGF- b ) and bone mor-
phogenetic protein complexes in the extracellular matrix  [  28  ] . 

 Around skin initial lymphatic vessels, fi brillin microfi brils, establish a connec-
tion with elastic fi bers forming a fi brillo-elastic apparatus  [  29  ]  that, under the 
mechanical solicitations of the surrounding connective tissue, dilates lymphatics 
favoring lymph formation and then allows the lymphatic to resume the original 
dimensions. 

 Fibrillin is produced by several types of cells; it was fi rst found in the cell culture 
medium of fi broblasts  [  30  ] , but it is also deposited in the extracellular matrix. We 
found that cultured bovine lymphatic endothelial cells obtained from the largest 
lymphatic vessel, the thoracic duct, also produce fi brillin (Fig.  9.4 )  [  31  ]  and the 
related protein microfi bril-associated glycoprotein-1 or MAGP-1  [  32  ] .  

 Based on literature and personal data, we have recently proposed  [  33  ]  that the 
role of fi brillin-containing anchoring fi laments in lymphatic vessels might be much 
more sophisticated than previously thought. A schematic diagram is illustrated in 

  Fig. 9.3    Transmission 
electron micrograph of a 
precollector. Anchoring 
fi laments ( arrows ) are clearly 
visible beneath the 
endothelium  [  23  ] )       
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Fig.  9.5 . Briefl y, fi brillin contains an RGD (arginine-glycine-aspartic acid) motif 
capable of binding to integrins at focal adhesions  [  28  ] . Focal adhesions are the 
molecular devices responsible for the transduction of mechanical signals from the 
extracellular matrix into biochemical signals inside the cytoplasm  [  34  ] . They are 
formed by clusterings of integrins. Since integrins have no enzymatic activity, many 

  Fig. 9.4    An irregular web of 
fi brillin microfi brils deposited 
by cultured lymphatic 
endothelial cells in the 
underlying matrix       

FOCAL ADHESIONS

Biochemical signals

Growth factors

Mechanical signals

ECM

Cytosol

Intermediate
molecules

FAK

MAPK ERK1/2

Strong connection
and cytoskeletal
rearrangement

Metabolism
Permeability

Movement

Shape
Transcription

Proliferation

Nucleus

αvβ3 integrins

β−
ac

tin

Fibrill
in

  Fig. 9.5    Schematic representation of signal transduction at focal adhesions       
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of the signaling functions of focal adhesions rely on the phosphorylation on tyrosine 
of an associated molecule: focal adhesion kinase (FAK). FAK phosphorylation trig-
gers a cascade of phosphorylations that causes actin and cytoskeletal rearrangement 
so that cells may strongly connect with the matrix and modify their shape  [  35  ] . 
Molecular cascades triggered by FAK are also directed toward the nucleus. The 
short duration signals of tyrosine phosphorylation are converted into long-lasting 
serine-threonine phosphorylations by mitogen-activated protein kinases (MAPK). 
On MAPK converge not only mechanical stimuli acting on focal adhesions but also 
biochemical signals acting on receptors, for instance, growth factors contained in 
serum or in cell culture medium. MAPK isoforms ERK1-(44 kDa) and ERK2-
(42 kDa) are phosphorylated, leave the cytoplasm and enter the nucleus  [  36  ] , where 
they act on the promoter of genes for transcriptional modulation. Thus, a number of 
cell activities, including metabolism, proliferation, and permeability, may be modu-
lated  [  37,   38  ] .  

 We applied static stretching to bovine thoracic duct segments and lymphatic 
endothelial cells cultured on elastic membranes and evaluated the expression of 
ERK1/2 by Western blotting  [  33  ] . The stretching of isolated thoracic duct segments 
and lymphatic endothelial cells cultured on elastic membranes activated the expres-
sion of MAPK ERK1/2. ERK1/2 activation occurs also in cells deprived of growth 
factors and grown with only 0.1% serum. The cells exposed to 20% serum with 
endothelial cell growth supplement (ECGS) express ERK1/2 independently from 
mechanical stimulation via the receptorial route of activation of ERK1/2. Signal 
transduction may thus occur in lymphatic endothelial cells in response to mechani-
cal stimulation of focal adhesions or via receptor activation by growth factors. 
Lymphatic endothelial cells would respond to these stimuli modifying their perme-
ability. Lymph formation would so be precisely and continuously adapted to func-
tional requirements.  

    9.8   Lymphatic Vessels in SSc Skin 

 Vascular involvement is frequent in scleroderma, but the role of the lymphatic vas-
culature is poorly known. Interestingly, systemic sclerosis (SSc) patients have no 
clinical evidence of lymphedema in spite of the profound alterations of their skin, 
which might potentially affect lymphatic circulation. In the skin of SSc patients, 
angiogenesis is insuffi cient despite severe hypoxia which is a major pro-angiogenic 
stimulus. VEGF-A is strongly overexpressed in the skin and serum of SSc patients  [  39  ] , 
and serum levels of VEGF correlate with the development of fi ngertip ulcers  [  40  ]  
Prolonged exposure to VEG-A leads however to formation of a chaotic vessel net-
work with megacapillaries and reduced blood fl ow, resembling the disturbed vessel 
morphology of SSc patients  [  41,   42  ] . Circulating levels of VEGF-C and local 
expression of its lymphatic receptor VEGFR-3 in the skin have been reported to be 
also increased in patients with scleroderma  [  43  ] . 

 The only report on lymphatic vessels in the skin of SSc patients is a fl uorescence 
microlymphography study by A.J.Leu et al.  [  44  ]  showing that in SSc, the clinically 
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affected areas have a pattern of lymphatic microangiopathy, characterized by 
increased length of the visualized lymphatic capillaries and cutaneous backfl ow or 
even the complete absence of stained microlymphatics. 

 We sought to determine whether lymphatic vessels are affected in SSc  [  45  ]  pos-
tulating that they might be decreased in number as in other fi brotic diseases due to 
inhibition of lymphangiogenesis by overexpression of TGF- b 1  [  46,   47  ]  or dilated as 
in conditions of chronic lymphostasis  [  48  ]  and in other autoimmune diseases  [  49,   50  ]  .  
Forearm skin biopsies of SSc patients (4 with the diffuse and 5 with the limited 
form) and healthy volunteers were fi xed in formalin and embedded in paraffi n. 
Double immunolabeling was performed with the lymphatic marker D2-40 followed 
by a panendothelial antibody to von Willebrand factor (vWF). Lymphatic and blood 
vessels were so easily recognized by their different staining, brown and red, respec-
tively. Both in controls and SSc biopsies, the density of lymphatic and blood vessels 
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  Fig. 9.6    ( a ) Only one 
lymphatic vessel ( arrow ) is 
present in this micrograph of 
the reticular dermis of a 
patient affected by SSc. 
( b ) The density of lymphatic 
vessels in the reticular dermis 
of patients affected by SSc is 
signifi cantly lower than in 
controls ( P  < 0.05)        

 



1459 Lymphatic Vessels in Health and Disease

in the papillary dermis resulted markedly greater, and their mean area conversely 
smaller, than in the reticular dermis. In SSc, in the reticular dermis, the density of 
lymphatic vessels was signifi cantly lower than in controls, and a similar trend 
(although not reaching statistical signifi cance) was observed in the papillary layer 
(Fig.  9.6 ).  

 Interestingly, periglandular lymphatic vessels were preserved in scleroderma 
(Fig.  9.7 ). To assess whether this could be due to local production of lymphangiogenic 
factors, we stained some sections with a polyclonal antibody to VEGF-C and we 
found that the epithelial cells of glands were strongly immunoreactive for VEGF-C.  

 Although the mean outer area was similar in the two groups, in the reticular der-
mis, the percentage of inner luminal area (Fig.  9.8 ), which can be considered a sign 
of dilation, was signifi cantly greater in SSc with respect to controls (p < 0.05). This 
difference was mainly due to the dilation of periglandular lymphatics. Lymphatics 
not associated with glands were similar in the two groups.  

 In conclusion, in SSc lymphatic vessels decrease in number due to diminution of 
the lymphatic vessels of the reticular dermis not associated with glands. Periglandular 
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bb

  Fig. 9.7    Periglandular 
lymphatics are spared in SSc. 
Lymphatic vessels ( arrows ) 
around a sebaceous ( a ) and 
sweat ( b ) gland       
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lymphatics are in fact spared in SSc, possibly due to VEGFC produced by the epi-
thelium of glands and dilated, interpretatively as a compensatory mechanism.  

    9.9   Perspectives for the Future 

 Experimental evidence suggests possible perspectives in therapy: congenital lym-
phedema might be treated by manipulation of VEGFR-3 signaling  [  51  ]  or alterna-
tively other lymphangiogenic factors like HGF. Inhibition of VEGFR-3 might be 
exploited to prevent lymphatic spreading of tumors. Inhibition of VEGFR-2 signal-
ing by a well-known anti-angiogenic drug, Avastin, may also be useful to prevent 
lymphangiogenesis induced by VEGF-A through VEGFR-2 in regional lymph 
nodes  [  17,   20  ] . Also the opposite is true: tumoral angiogenesis is stimulated also via 
VEGFR-3. Blockade of this receptor, which is normally restricted to lymphatic 
endothelium, but is upregulated in tumors, has been shown to suppress angiogenic 
sprouting in a mouse model  [  52  ] . Targeting VEGFR-3 may thus provide additional 
effi cacy for anti-angiogenic therapies in cancer. 

 As to secondary lymphedema, which is most often caused by surgical ablation of 
lymph nodes particularly in breast cancer, a new approach has been recently proposed: 
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Axillary Reverse Mapping  [  53  ] . A blue dye is injected dermally or subcutaneously in 
the arm and reaches the axillary nodes. The resulting blue lymph nodes that drain the 
upper arm can, in most cases, be preserved except when too close to or coincident with 
the sentinel lymph node. It has been shown that even when most axillary nodes are 
metastatic, the blue ones are not. This simple technique has proved safe and effective 
and, if one considers the burden of a life-long invalidating condition as lymphedema, it 
seems reasonable that axillary reverse mapping should enter standard surgical proce-
dures as the sentinel lymph node one. Since also collectors are colored in blue, this 
technique also facilitates performing lymphatico-venous anastomoses  [  54  ] .  

    9.10   Tissue Engineering of Lymphatic Vessels 

 Tissue-engineered blood vessels have been successfully implanted in humans, par-
ticularly in children with congenital vascular malformations  [  55  ] . The tissue-engi-
neered vessel grew with the child with no need of re-intervention. Tissue-engineered 
vessels can be made with autologous endothelial cells taken from a peripheral vein, 
expanded in culture, and seeded onto a reabsorbable polymer or with autologous 
bone marrow cells  [  56  ] . 

 Research on tissue engineering of lymphatic vessels is still in its infancy. Due to 
the fragility of their wall, it is unfeasible that the same approaches that have led to 
pioneer successful implants of tissue-engineered blood vessels in man may be 
applied to lymphatics. Basic research is needed to understand the strategies that can 
be useful for lymphatic vessel tissue engineering. Under this respect, micropat-
terned surfaces with different geometries based on the alternation of hyaluronan 
domains that prevents cell adhesion and aminosilanized glass ones that promote it 
have been proved effective in orienting lymphatic endothelial cell growth  [  32,   57, 
  58  ] . Cells may be induced to align along the desired direction and also actin cytoskel-
eton is accordingly oriented (Fig.  9.9 ). Fibrillin deposition is also infl uenced by the 

  Fig. 9.9    Lymphatic 
endothelial cells cultured 
on a negative spiral pattern 
obtained by 
photoimmobilization of Hyal 
on aminosilanized glass grow 
on the glass domains, 
avoiding Hyal, and align 
along the spiral       
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geometry of the substrate. Being able to condition cell growth, orientation, and 
metabolic activities may help in designing tissue-engineered vessels capable of 
adapting to the functional requirements of the environment.       
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    10.1   Endothelin Pathway in the Human Vasculature 

 The endothelins (ETs) are a family of three endogenous peptides: ET-1, ET-2, and 
ET-3 that are structurally similar in being comprised of 21 amino acids  [  1,   2  ] . In 
man, ET-2 differs from ET-1 by only two amino acids and both isoforms mediate 
their action via two G-protein-coupled receptors, ET 

A
   [  3,   4  ]  and ET 

B
   [  5  ] . In contrast, 

ET-3 differs by six amino acids, representing more substantial changes, and is the 
only isoform that can distinguish between the two receptor subtypes, having a simi-
lar potency at the ET 

A
  receptor as ET-1 and ET-2 but much lower affi nity for the ET 

B
  

subtype  [  6,   7  ] . The deleterious actions of ET are mainly mediated by the ET 
A
  recep-

tor, whereas ET 
B
  activation results in many of the benefi cial effects of the peptide, 

frequently acting as a regulatory counterbalance  [  7  ] . 
 Two distinct therapeutic strategies have emerged to block the unwanted action of 

ET in pathophysiological conditions: receptor antagonists  [  8  ]  and inhibitors of the 
endothelin-converting enzymes (ECE-1  [  9  ]  and ECE-2  [  10  ] ), the major synthetic 
pathway in the human vasculature  [  11  ] . Bosentan (Tracleer) was the fi rst ET antag-
onist to be introduced into the clinic for the treatment of pulmonary arterial hyper-
tension (PAH  [  12  ] ) and is a mixed ET 

A
 /ET 

B
  antagonist blocking both receptors. This 

was followed by ambrisentan (Letairis, Volibris) in 2007, reported to display mod-
est ET 

A
  selectivity  [  13  ] , and the more ET 

A
 -selective antagonist sitaxentan (Thelin) 
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 [  14,   15  ] . While mixed ET 
A
 /ET 

B
  and ET 

A
 -selective antagonists have become estab-

lished as having therapeutic benefi t in PAH  [  16,   17  ] , the relative merits of the two 
classes continue to be debated  [  18–  20  ] . To date both ET 

A
 /ET 

B
  or modest ET 

A
 -

selective antagonists are thought to have little or no effi cacy in chronic heart failure 
and further trials with more ET 

A
 -selective antagonists are unlikely  [  21  ] . More prom-

ising clinical uses are in chronic kidney disease where the ET system is increasingly 
recognized as an important pathway  [  22–  27  ]  and where effi cacy has been demon-
strated with experimental ET 

A
 -selective antagonists in acute trials  [  28  ] . ET recep-

tors are also emerging as new therapeutic targets in autoimmune disorders of the 
vasculature such as scleroderma  [  29  ]  and remarkably in cancer  [  30–  32  ] , particularly 
the treatment of refractory cancer of the prostrate by the ET 

A
 -selective antagonist 

ZD4054  [  32  ] . This is notably the fi rst G-protein-coupled receptor in Family A to be 
targeted for the treatment of cancer. Inhibitors of ECE are represented by SLV-306 
(Daglutril). This compound is an orally active mixed enzyme inhibitor of both ECE 
and neutral endopeptidase (NEP) and a Phase II trial has been completed in 2010 by 
Solvay for the treatment of essential hypertension and congestive heart failure 
 [  33–  35  ] . It is not yet clear whether lowering levels of endogenous ET changes the 
ratio of ET-1:ET-3 which could then impact on the relative activation of the two 
receptor subtypes. Signifi cantly, ET antagonists represent a spectrum of selectivity 
that has the potential to be exploited for extending the therapeutic targets for this 
class of compound. The objective of this review is to consider the importance of 
subtype selectivity for ET receptor antagonists in the human vasculature. 

    10.1.1   ET-1 

 ET-1 is the most abundant isoform in the human cardiovascular system and is one 
of the most powerful constrictors of human vessels discovered  [  7  ] . ET-1 plays a 
major physiological role in regulating vascular function in most, if not all, organs 
systems including heart, kidney, lungs, and liver. Overproduction in pathophysio-
logical conditions may lead to vasospasm, particularly where there is endothelial 
cell dysfunction and associated loss of opposing vasodilators such as nitric oxide, 
prostacyclin, and endothelium-derived hyperpolarizing factor. The peptide is 
thought to stimulate proliferation in multiple cell types, including vascular smooth 
muscle cells, as well as contributing to fi brosis and infl ammation – processes asso-
ciated with vascular remodeling.  

    10.1.2   Dual Synthetic Pathway in Endothelial Cells and Interaction 
with ET 

A
  and ET 

B
  Receptors 

 The primary source of ET-1 within vessels is the endothelial cells although other 
cell types that synthesize the peptide could also modulate vascular reactivity. These 
include perivascular neurons in the periphery, perivascular astrocytes in the CNS, 
and, under pathophysiological conditions such as atherosclerosis, macrophages and 
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monocytes. ET is synthesized in a three-step process. Initially pre-pro-ET-1 is 
cleaved by a signal peptidase to proET-1, which is in turn cleaved by a furin enzyme 
to an inactive precursor big ET-1 which is subsequently transformed to the mature, 
biologically active peptide by the action of the pathway-specifi c ECE-1. ECE-1 is 
present within the small secretory vesicles of the constitutive pathway from where 
ET-1 is continuously released to maintain normal vascular tone. A second enzyme, 
ECE-2, is also present within the vesicles and functions at an acidic pH  [  6  ]  that may 
occur under pathophysiological conditions associated with ischemia. Unusually for 
vasoactive peptides, ET-1 is also synthesized by ECE-1 and stored in specialized 
Weibel-Palade bodies within endothelial cells until released following an external 
physiological or pathophysiological stimulus (the regulated pathway) to produce 
further vasoconstriction  [  11,   36  ] .  

    10.1.3   ET 
A
  Receptors and Vasoconstriction 

 In the human vasculature, ET-1, released by these two distinct exocytotic pathways, 
can potentially interact with the ET 

A
  receptors that predominate on the underlying 

smooth muscle. ET 
A
  receptors are widely expressed on vascular smooth muscle 

cells throughout the human cardiovascular system and mediate vasoconstriction. 
Under pathophysiological conditions, ET 

A
  activation may contribute to prolifera-

tion, apoptosis, and fi brosis within the vessel wall. In some, but not all, human ves-
sels, a small population of ET 

B
  receptors (usually <15%) are present and these may 

also mediate constriction  [  37,   38  ] . Haynes and Webb  [  39  ]  were the fi rst to report 
that infusion of an ET 

A
 -selective peptide antagonist, BQ-123, into healthy volun-

teers via the brachial artery using venous occlusion plethysmography caused pro-
gressive vasodilatation. This is consistent with ET-1 being continuously released by 
the constitutive pathway to cause vasoconstriction and is unusual as antagonists of 
other vasoconstrictors, such as angiotensin II, do not alter blood fl ow in normoten-
sive individuals.  

    10.1.4   ET 
B
  Receptors and Vasodilatation 

 ET-1 also interacts with endothelial cell ET 
B
  receptors. Although representing about 

1% of the weight of the vessel wall, endothelial cells line the vasculature of every 
organ and tissue in the body that receives blood supply and have a combined mass 
comparable to some endocrine glands. Infusion of an ET 

B
  selective antagonist, 

BQ788, caused systemic vasoconstriction in healthy volunteers, showing that the 
main consequence of activation of endothelial ET 

B
  receptors by tonically secreted 

ET-1 was the physiological basal release of nitric oxide  [  40  ] . The interaction of 
ET-1 feeding back onto endothelial receptors to release nitric oxide not only limits 
ET 

A
 -mediated vasoconstriction by stimulation of vascular cyclic GMP, but also lim-

its further ET-1 release, emphasizing the importance of ET 
B
  receptors as a counter-

regulatory pathway. 
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 In agreement, and importantly, where different concentrations of ET-1 have been 
compared, infusions of low doses of exogenous ET-1 into the brachial artery caused 
vasodilatation, but this was followed by sustained vasoconstriction of the forearm 
vascular bed at higher doses  [  41  ] . Initially, it was surprising to fi nd in studies, 
knocking out the ET-1 gene, that ET-1+/− heterozygous mice (which produced 
lower levels of ET-1 in plasma and lung tissue than wild-type) developed  elevated  
blood pressure and mild hypertension, rather than the fall in blood pressure that 
might have been expected  [  42  ] . These results suggest that ET-1 has an essential 
physiological role in cardiovascular homeostasis. Low levels promote vasodilata-
tion, whereas higher and pathophysiological concentrations of ET-1 increase blood 
pressure and total peripheral vascular resistance. Interestingly, renal and pulmonary 
circulations are particularly sensitive to the vasoconstrictor effects of ET-1. Thus, in 
the vasculature, nitric oxide and other dilators are crucial in balancing the ET sys-
tem, but these may be reduced and absent in pathophysiological conditions. 
Furthermore, alternative pathways for ET-1 synthesis from big ET-1 by vascular 
smooth muscle (see Sect. 2.1) result in ET-1 binding immediately to ET 

A
  receptors 

without activation of the endothelial ET 
B
  feedback pathway to oppose 

vasoconstriction.  

    10.1.5   ET 
B
  Clearing Receptors, Diuresis, and Natriuresis 

 In addition to releasing vasodilators, the ET 
B
  receptor also functions as a “clearing 

receptor,” to internalize the ligand–receptor complex and remove ET-1 from the 
circulation  [  43–  45  ] . As a result, the plasma half-life of ET-1 is comparatively short. 
In the human heart, when the ratio of ET 

A
 :ET 

B
  receptors is measured, ET 

A
  receptors 

are more abundant (>60%). In marked contrast, while autoradiography reveals ET 
A
  

receptors also predominate on the smooth muscle of the vasculature in human lung, 
kidney, and liver, these organs are characterized by particularly high densities of the 
ET 

B
  subtype, refl ecting that they are rich in endothelial cells  [  46  ] . For example, the 

lungs have one of the highest densities of ET receptors (~9,600 fmol/g protein) 
compared with other peripheral tissues and even higher than the brain (~5,000 fmol/g 
protein). In lung, ET 

B
  receptors are present on airway smooth muscle (and mediate 

bronchoconstriction), epithelial cells, and vascular smooth muscle cells, but the 
majority are present on the endothelium. Similarly, in human kidney, ET 

B
  receptors 

comprise 70% of the ET receptors in both the cortex and medulla. ET 
B
  receptors 

localize to endothelial cells throughout the renal vasculature consistent with their 
roles in endothelium-dependent vasodilatation and as clearing receptors, removing 
ET-1 from circulation  [  47,   48  ] . ET 

B
  receptors are also present on epithelial cells 

throughout the tubular epithelium, particularly the inner medullary collecting duct 
cells where the major action of ET-1 is to promote benefi cial diuresis and natriuresis 
 [  47,   48  ] . As a result, evidence is emerging that ET 

A
 -selective antagonists might be 

superior to mixed blockade, as antagonism of ET 
B
  receptors may be undesirable. 

 ET-1 is also a very potent and sustained vasoconstrictor of the hepatic vascula-
ture  [  49  ] , and preclinical in vivo studies have suggested that ET antagonists could 
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be new therapeutic agents in the treatment of portal hypertension  [  50  ] . Interestingly, 
the isolated perfused liver avidly extracts proportionately more ET-1 than the 
lungs, with 80% uptake in a single pass. This is hypothesized to occur mostly 
through binding to ET 

B
  receptors on hepatic stellate cells and is reduced in condi-

tions such as cirrhosis  [  51  ] . Portal hypertension remains a major cause of morbid-
ity and mortality in patients with cirrhosis of the liver, but only about a third of 
patients respond to current therapies and new treatments are urgently needed. In 
human cirrhosis, plasma levels of ET-1 are enhanced and elevated concentrations 
in the liver are thought to be a consequence of both increased synthesis and 
decreased clearance  [  52  ] . Bosentan has been tested in a single patient and shown 
to benefi cially reduce hepatic venous gradient over time  [  53  ] . The cellular expres-
sion of ET subtypes has not been studied in detail in human liver, and the precise 
identity of cells expressing ET 

B
  receptors is unclear. A small number of animal 

studies have addressed whether ET 
A
  receptor-selective antagonists provide an 

advantage over nonselective agents in ameliorating the effects of portal hyperten-
sion; the majority of these data indicate that selective antagonists may be suffi -
cient  [  54,   55  ] . Thus, animal studies and a single clinical observation support a role 
for ET-1 in portal hypertension, but there are as yet insuffi cient human data to 
draw conclusions regarding optimum receptor selectivity for therapeutic ET 
receptor blockade in this condition. 

 The rapid clearance of ET labeled with the positron-emitting isotope [ 18 ]F from 
the circulation can be visualized in vivo using positron emission tomography in 
animal models  [  56  ] . In these studies, the distribution of ET into all major organs can 
be measured and confi rms that the major sites for clearance of circulating [ 18 F]-ET-1 
are the lungs, the liver, and the kidney, with little uptake by other tissues. Binding 
could not be displaced with BQ788 administered  after  infusing the radioligand, in 
agreement with the proposed internalization of ET-1 by ET 

B
  receptors and degrada-

tion in the lysosome. In contrast, infusion of BQ788 prior to injecting [ 18 F]-ET-1 
signifi cantly reduced clearing in lung and kidney by 85%, although importantly the 
amount of [ 18 F]-ET-1 signifi cantly increased in the liver as the label was no longer 
cleared by ET 

B
  receptors and now bound to the ET 

A
  subtype. Surprisingly, binding 

of [ 18 F]-ET-1 could not be visualized to receptors within the heart in the control 
animal, but binding was detected in this organ when ET 

B
  receptors were blocked by 

the antagonist. These results show that clearance of ET-1 was mediated by the ET 
B
  

receptor in the lung, kidney, and to a certain extent by the liver, and crucially, this 
prevents binding of ET-1 to the heart. This mechanism is important in limiting the 
detrimental vasoconstrictor effect caused by upregulation of ET-1 in the vascular 
system associated with disease. 

 ET 
B
  receptors are expressed by a number of cell types in addition to endothelial 

cells including epithelial and smooth muscle cells. Currently, there are no antago-
nists that distinguish between these receptors, but endothelial ET 

B
  receptors have 

been selectively deleted in mice  [  57,   58  ] . This did not alter the remaining ET 
B
  (or 

ET 
A
 ) receptor expression which was confi rmed by radioligand binding and autora-

diography. As expected, clearance of an intravenous bolus of labeled ET-1 was 
impaired in these knockout animals compared with controls. An ET 

B
  antagonist 
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reduced clearance in controls but not in the knockout mouse providing clear  evidence 
that endothelial ET 

B
  receptors are mainly, if not exclusively, responsible for ET 

clearance from the circulation.   

    10.2   Alternative Pathways for ET Synthesis 

    10.2.1   Tissue-Specific Conversion of Big ET-1 by Non-endothelial 
Cell ECE and Effect of ECE/NEP Inhibitors 

 A key question will be to determine what effect (if any) the lowering of ET levels 
by inhibiting synthesis has on ET receptors (Fig.  10.1 ). Some big ET-1 circulates in 
plasma but does not bind to vascular ET receptors until cleaved to ET-1 by convert-
ing enzymes present on smooth muscle  [  59  ] . Interestingly, ECE activity is increased 
in endothelium-denuded human vessels with atherosclerosis  [  60  ]  suggesting that 

  Fig. 10.1    ET pathway in the human cardiovascular system. All three ET isoforms are synthesized 
by a three-step process. For ET-1 and ET-2, this consists of an initial proteolytic cleavage of the 
signal peptidase of preproET-1, a second cleavage of proET-1, to big ET-1-by a furin-like enzyme. 
Transformation to the mature, biologically active peptides is mainly by the action of ECE-1 but 
also by ECE-2 within endothelial cells. Further processing may occur by smooth muscle ECE or 
via alternative pathways catalyzed by chymase for ET-1. ET-3 is synthesized by a similar pathway 
but not by the endothelium. Following release from endothelial cells, ET-1 interacts predominantly 
with ET 

A
  receptors on the underlying smooth muscle. In some, but not all, human vessels, a small 

population of ET 
B
  receptors can also mediate constriction. Some ET-1 may also interact with 

endothelial ET 
B
  receptors to act as a feedback mechanism to limit the constrictor response by the 

release of vasodilators such as nitric oxide. Low levels of ET-1 can also be detected in the plasma 
thought to be the result of overspill from the endothelium. ET 

B
  receptors present in organs that are 

rich in this subtype, the kidney and lungs, remove ET-1 from the circulation by internalization fol-
lowed by lysosomal degradation. Targets for therapeutic intervention are currently ECE and by 
blocking the ETA or both subtypes by antagonists       
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nonendothelial ECE may contribute to increased plasma/tissue ET levels in disease. 
To date, orally active dual inhibitors of both NEP and ECE have been developed, 
rather than purely ECE selective  [  61,   62  ] . These have the potential advantage over 
selective ECE inhibitors of reducing plasma ET and increasing plasma concentra-
tions of the atrial and brain natriuretic peptides, both benefi cial vasodilators. The 
fi rst study has been carried out on the acute effect of single oral doses of the NEP/
ECE inhibitor SLV 306  [  63  ] . This measured, in 15 normotensive volunteers, the 
blood pressure response to infused big ET-1 at doses, determined in pilot studies, 
likely to lead to a rise in mean arterial pressure of approximately 20 mmHg. SLV 
306 dose dependently attenuated the rise in blood pressure after big ET-1 infusion. 
This was accompanied by a corresponding increase in the big ET-1/ET-1 ratio in a 
concentration-dependent manner consistent with systemic ECE inhibition, prevent-
ing metabolism of the enzyme substrate, big ET-1, to its active metabolite, ET-1. 
Plasma atrial natriuretic peptide levels also increased as predicted.  

 This process of big ET-1 conversion can be imaged in the living animal by infu-
sion of [ 18 F]-big ET-1 to quantify tissue-specifi c conversion to [ 18 F]-ET-1 which 
immediately binds to ET 

A
  receptors on the vascular smooth muscle  [  64  ] . Infused 

[ 18 F]-big ET-1 was rapidly cleared from the circulation with a half-life (t½) of less 
than 3 min. Whole body images showed highest uptake of radioactivity in two 
major organs, the liver and lungs, which could be signifi cantly reduced using phos-
phoramidon, an inhibitor of ECE and NEP, consistent with inhibition of enzyme 
conversion and subsequent reduction of [ 18 F]-ET-1 receptor binding. The ET 

A
  

antagonist, FR139317, did not alter half-life of [ 18 F]-big ET-1 (t½ = 2.5 min) in the 
plasma, but radioactivity uptake was reduced in all tissues consistent with binding 
of the cleavage product [ 18 F]-ET-1 to this subtype rather than to ET 

B
  receptors. 

Plasma levels of big ET-1 are also elevated in pathophysiological conditions such 
as PAH. It is signifi cant that the lungs were an important site for big ET-1 conver-
sion, suggesting that overexpression of big ET-1, with subsequent cleavage to ET-1 
and binding to ET 

A
  receptors, is an additional source of peptide in PAH. Plasma 

levels of ET-1 are also elevated in renal failure. Interestingly in the kidney, in 
marked contrast to liver and lungs, there was no binding to renal ET receptors 
refl ecting excretion of [ 18 F]-big ET-1 unchanged without conversion to ET-1. In 
agreement with animal studies, big ET-1 can be detected in urine of normal human 
subjects  [  65  ]  and levels are increased in patients with acute myocardial infarction, 
chronic renal failure, essential hypertension, and vasospastic angina pectoris. 
These results suggest that excretion of unmetabolized big ET-1 by the kidney may 
be an important mechanism for removal of the precursor and, although not yet 
tested, may be a site of removal of increased plasma big ET-1 in volunteers treated 
with NEP/ECE inhibitors.  

    10.2.2   Non-ECE Pathways: The Serine Protease Chymase 

 One of the unexpected fi ndings of Yangisawa and colleagues  [  66  ]  was the presence 
of signifi cant amounts of ET-1/ET-2 in the ECE-1/ECE-2 double knockout mouse 
embryos, suggesting other proteases must be signifi cantly involved in the tissue 
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production of mature ET-1 and ET-2. This study has important implications for the 
action of NEP/ECE inhibition on the ET pathway and has led to the search for alter-
native synthetic pathways to ECE. 

 The serine protease chymase, which is present in mast cells, can mediate an addi-
tional conversion pathway by cleaving the Tyr 31 –Gly 32  peptide bond of big ET-1 to 
generate ET-1(1–31), which is in turn converted to the mature peptide by cleaving the 
Trp 21 –Val 22  bond  [  67,   68  ] . Importantly, ET-1(1–31) was equipotent compared with 
big ET-1 in causing vasoconstriction in human isolated vessels, including coronary 
arteries, and this was associated with the appearance of measurable levels of ET-1 in 
the bathing medium, consistent with conversion to the mature peptide. ET-1(1–31) 
competed for specifi c [ 125 I]-ET-1 binding to ET 

A
  and ET 

B
  receptors in human heart 

with a single affi nity, indicating little or no selectivity for the subtypes. Vasoconstriction 
was fully blocked by ET 

A
 -selective antagonists, refl ecting the predominance of the 

ET 
A
  receptor on vascular smooth muscle  [  69  ] . The precise physiological role of mast 

cells within the human blood vessels is unclear, but following degranulation, which 
may occur under pathophysiological conditions, the mast cell chymase is associated 
with interstitial spaces with the potential to convert circulating big ET-1 and provide 
a further source of ET-1. Mast cell expression is increased in cardiovascular disease, 
for example, in atherosclerotic lesions. In pathophysiological conditions, it is possi-
ble that the contribution of this pathway within the vasculature, leading to overex-
pression of ET-1, may be underestimated particularly in conditions of endothelial 
malfunction where opposing levels of endogenous vasodilators may be reduced. It is 
unclear whether under conditions of NEP/ECE inhibition, the rising levels of big 
ET-1 would favor increased conversion by the serine protease pathway, thus increas-
ing the pressor effect via ET 

A
  receptors or whether excretion of unmetabolized big 

ET-1 by the kidney would be suffi cient to remove the elevated levels of precursors.   

    10.3   ET-2: The Forgotten Isoform 

 ET-2 remains the least studied of the endothelin isopeptides and much less is known 
of its function and location than for ET-1 and ET-3. Messenger RNA encoding ET-2 
 [  70  ]  together with the peptide  [  71  ]  is present in the human cardiovascular system 
including failing hearts. Both mRNA  [  71  ]  and the precursor big ET-2 are detected 
in the cytoplasm of endothelial cells  [  72  ]  and ET-2 may also be released from these 
cells in addition to ET-1. Intriguingly, big ET-2 levels are higher in normal human 
plasma than big ET-1  [  73  ]  and plasma levels of ET-2 are detectable, with an average 
value in 40 volunteers of 0.9 ± 0.03 pmol/l. ET-2 differs from ET-1 by only two 
amino acids and binds with a similar affi nity as ET-1 to both receptor subtypes  [  74  ]  
and it is as potent a vasoconstrictor of isolated vessels as ET-1 ( [  37  ] . 

 Recently, a global knockout of ET-2 revealed a distinct phenotype exhibiting 
growth retardation and changes in energy homeostasis. Importantly, given the cur-
rent therapeutic targets of ET antagonists, changes in lung morphology and function 
were also observed  [  75  ] . While the importance of the ET-2 signaling pathway is not 
yet clear, big ET-2-like immunoreactivity has been detected in human lungs  [  76  ]  
and some of the alternatively spliced variants for ET-2 mRNA contain sites for the 
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posttranscriptional processing of preproET-2 into mature ET-2 and  posttranscriptional 
processing may be disrupted or altered in these variants  [  70  ] . A detailed investiga-
tion into the specifi c contribution, if any, of ET-2 to human diseases such as PAH 
has not yet been carried out.  

    10.4   ET-3: The Receptor Subtype Selective Isoform 

 ET-3 and its precursor big ET-3 circulate in the human plasma although at lower 
concentrations than ET-1  [  73  ]  and ET-3 is present in other tissues including the 
heart  [  71  ] . Endothelial cells do not synthesize ET-3, but alternative sources may be 
from the adrenal gland  [  77  ]  with conversion of big ET-3 to the mature peptide within 
the vasculature  [  78  ] . ET-3 is the only endogenous isoform that distinguishes between 
the two subtypes with at least 100-fold lower affi nity at the ET 

A
  receptor.  

    10.5   Is There a Shift Toward ET 
B
 -Mediated Vasoconstriction 

in Human Disease? 

 In human coronary artery disease, there is no functional evidence for an upregula-
tion in ET 

B
  receptors. Variable responses to the ET 

B
  agonist sarafotoxin S6c were 

obtained in control vessels ( n  = 15) and diseased coronary arteries containing ath-
erosclerotic lesions ( n  = 16) with 40% and 50% of arteries not responding to S6c, 
respectively. While S6c contracted the remaining vessels, there was no signifi cant 
difference in the maximum response to S6c observed between the two groups. In 
agreement, there was no signifi cant alteration in medial ET 

B
  subtype density 

observed in diseased vessels compared to control, with ET 
A
  receptors still compris-

ing over 90% of the total ET receptor population in both diseased and control arter-
ies. These results imply that there is no increase in the importance of the constrictor 
ET 

B
  receptor in human coronary artery disease  [  79  ] . 

 These results from in vitro experiments are supported by a substantial clinical 
study on the effect of ET antagonists in 39 patients with coronary atherosclerosis, or 
risk factors for coronary artery disease, undergoing cardiac catheterization. In agree-
ment with forearm blood fl ow studies in healthy volunteers, selective ET 

B
  receptor 

antagonism in this group caused coronary microvascular constriction, without 
affecting epicardial coronary tone or endothelial function. Treatment with combined 
ET 

A
  and ET 

B
  blockade dilated coronary conduit and resistance vessels and improved 

endothelial dysfunction of the epicardial coronary arteries. This evidence therefore 
suggests that ET-1 acting predominantly via ET 

A
  receptors contributes to basal con-

strictor tone and in disease to endothelial dysfunction. ET 
B
  activation mediated ben-

efi cial coronary vasodilatation in these patients indicating that selective ET 
A
  

blockade may have greater therapeutic potential than nonselective agents, particu-
larly for treatment of endothelial dysfunction in atherosclerosis  [  80  ] . 

 In human pulmonary resistance arteries with an internal diameter of 150–200  m m, 
ET-1 caused the expected sustained vasoconstriction, but the responses to low con-
centrations of peptide could be blocked by ET 

B
  antagonists. In contrast, higher 
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 concentrations above 1 nM were blocked by an ET 
A
  but not an ET 

B
  antagonist, 

 suggesting that at levels of ET-1 in the pathophysiological range, ET 
A
  receptors will 

be activated  [  81  ] . Davie and colleagues  [  82  ]  carried out an extensive study on the 
distribution of ET receptors in pulmonary arteries with an internal diameter of about 
500–1,000  m m from pulmonary hypertensive patients versus control subjects, using 
in vitro autoradiography, so that the ratio of the two subtypes could be quantifi ed in 
the small arteries. ET receptor density in distal arteries and lung parenchyma was 
twofold greater in these patients compared with controls. Although distal arteries 
possessed a higher proportion of medial smooth muscle ET 

B
  receptors than proxi-

mal arteries, there was no change in any vessel in the ratio of the two subtypes in 
patients compared with controls and therefore no shift toward increased ET 

B
  expres-

sion. These results are consistent with ET 
B
 -mediated constrictor responses at low 

ET concentrations, but in the absence of an upregulation in receptor density, it is 
unlikely there would be increased ET 

B
  constrictor response in this patient group.  

    10.6   Endothelin Antagonists and Receptor Selectivity 

    10.6.1   Rationale for ET-1 Receptor Blockade: How Do We Define 
Selectivity? 

 The defi nition of selectivity depends on the measurement of the affi nity (the equilib-
rium dissociation constant or K 

D
 ) of each compound at the two receptor subtypes and 

the comparison of these affi nities to give a ratio of selectivity  [  6,   7  ] . This classifi ca-
tion of antagonists will crucially depend on how affi nities were measured and this 
varies between investigators. Many of the reported affi nities for endothelin receptor 
antagonists are based on assays using cloned receptor subtypes each expressed in 
separate cell lines. Artifi cially expressed receptors may not refl ect and correspond to 
the affi nities measured in native tissues for a number of reasons, such as differences 
in posttranslational modifi cations and expression at much higher densities than is 
encountered in native human tissue. Affi nities for antagonists should ideally be mea-
sured in competition binding assays from their ability to compete for the binding of 
radiolabeled ET-1 since this is the predominant endogenous ligand that needs to be 
blocked in the clinic. However, in some cases, selectivity is calculated using radiola-
beled ET-1 to identify ET 

A
  receptors but radiolabeled ET-3 to identify ET 

B
 . 

 ET receptor antagonists are classifi ed as either selective for one subtype or alter-
natively as mixed antagonists that block both receptors. The classifi cation is usually 
made by the manufacturer (Fig.  10.2 ) but there is no agreed defi nition and there are 
anomalies. We have proposed that antagonists that are ET 

A
 -selective should display 

more than 100-fold selectivity for the ET 
A
  subtype and those that block both ET 

A
  

and ET 
B
  (mixed antagonists) should demonstrate less than 100-fold ET 

A
  selectivity. 

The rationale for this is shown in Fig.  10.3 . The Langmuir isotherm for the theoreti-
cal occupancy of ET receptor subtypes is shown for an ET 

A
 -selective compound that 

has an affi nity of 1 nM for the ET 
A
  receptor but 100 nM for the ET 

B
 , that is 100-fold 

ET 
A
  selectivity. Occupancy is calculated using the formula L*/(K 

D
  + L*), where 



16110 Importance of Subtype Selectivity for Endothelin Receptor Antagonists

  Fig. 10.2    Reported degree of selectivity of ET receptor antagonists for ET 
A
  receptors versus 

 classifi cation by manufactures as either mixed or ETA-selective       

  Fig. 10.3    Langmuir isotherm for a compound with 100-fold selectivity for ET 
A
  over ET 

B
  

receptors       
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L* = free ligand concentration (M) and K 
D
  is the affi nity constant (M). At a concen-

tration of 10 nM, 90% of ET 
A
  receptors are predicted to be blocked but less than 

10% of the ET 
B
 .   

 Compounds displaying 100-fold selectivity are therefore useful, at least in vitro 
where an ET 

A
 -selective concentration can be accurately achieved. However, 100-

fold selectivity is likely to represent the minimum that can be used in vivo to achieve 
selective ET 

A
  receptor blockade. An increase in the concentration of such an antago-

nist by only one log unit results in a signifi cant (50%) occupancy of ET 
B
  receptors 

(Fig.  10.3 ). In practice, if selective ET 
A
  blockade is desired, then compounds of 

higher selectivity are needed for testing in vivo in animal models or in clinical trials 
and experimental medicine to be certain that there is no signifi cant activation of ET 

B
  

receptors. Ideally, compounds of greater than a 1,000-fold selectivity are needed for 
in vivo studies to ensure ET 

A
  selectivity. Fortunately, the most widely used com-

pounds for preclinical as well as clinical studies, that are also commercially avail-
able, are the very highly selective peptide antagonists, FR139317, BQ-123 (both 
ET 

A
 -selective), and BQ-788 (ET 

B
 ). In addition, subtype selective radiolabeled 

ligands for the pharmacological characterization of receptors, [ 125 I]-PD151242 or 
[ 3 H]-BQ123 (ET 

A
 ) and [ 125 I]-BQ3020 or [ 125 I]-IRL1620 (ET 

B
 ), also display a high 

degree of selectivity. If these pharmacological tools have been used in studies, the 
results can be interpreted with confi dence that the expected subtype is blocked with-
out affecting the other  [  6,   7  ] . 

 The situation is more complex for nonpeptide antagonists. In Fig.  10.2 , examples 
of the selectivity of compounds used in clinical trials have been calculated from data 
published by the manufacturer when characterizing the compounds for the fi rst time 
and using the manufacturer’s own classifi cation as to whether they considered the 
compound mixed or ET 

A
  selective. The fi gure includes the three antagonists cur-

rently available for the treatment of PAH: bosentan, sitaxentan, and ambrisentan. 
The selectivity spectrum ranges from bosentan, the fi rst mixed antagonist to be 
introduced clinically, to the markedly ET 

A
 -selective sitaxentan to ZD4054, that is in 

Phase III clinical trial for refractory prostate cancer, that remarkably is reported to 
have no affi nity for ET 

B
  receptors. For compounds that display marginal selectivity, 

such as ambrisentan, the interpretation of results is less clear as it is diffi cult to be 
certain whether, in particular studies, the antagonist has been used at a concentra-
tion that blocked both receptors or just the ET 

A
  receptor. Additional confusion arises 

as some compounds that have similar marginal ET 
A
  selectivity such as enrasenatan 

   and darusentan were reported by their manufactures to be a mixed antagonist and an 
ET 

A
 -selective antagonist respectively.  

    10.6.2   Measuring Selectivity 

 One approach toward measuring selectivity is to compare the affi nity constants for 
a particular antagonist measured from its ability to compete for the binding of [ 125 I]-
ET-1 in the same assay to both native receptors using human tissue, the therapeutic 
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target, rather than using artifi cially expressed human receptors or animal tissues. ET 
receptor subtypes are present in left ventricle of the human heart in a ratio of about 
60% ET 

A
  to 40% ET 

B
  which is ideal for accurately measuring affi nity constants for 

antagonists against both receptors in the same tissue. Having determined the K 
D
  of 

radiolabeled ET-1 for the target receptors in a saturation assay, this information is 
used to determine the ability of unlabeled antagonists, tested over a much wider 
concentration range (typically 10 pM–100  m M), to compete for the binding of a 
fi xed concentration of [ 125 I]-ET-1 in human left ventricle. An example of a competi-
tion curve is shown in Fig.  10.4 , visualized by plotting the amount of [ 125 I] ET-1 
bound as a percentage of total specifi c [ 125 I] ET-1 binding (specifi c binding in the 
absence of competitor) against the log 

10
  of the molar concentration of the competing 

ligand. A steep competition curve is usually indicative of binding to a single popula-
tion of receptors. However, increasing concentrations of unlabeled FR139317 inhib-
ited the binding of [ 125 I]-ET-1 biphasically. Computer-based programs such as 
LIGAND are used to mathematically model the curve and to measure whether a 
two-site fi t is statistically a better fi t than a one-site model. In this case, a two-site fi t 
was preferred, consistent with FR139317 binding with high affi nity to the ET 

A
  site 

but with low, micromolar affi nity to the ET 
B
  receptors, giving >200,000 fold selec-

tivity for the ET 
A
  receptor ( [  83  ] , Table  10.1 ).    
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  Fig. 10.4    An example of a 
competition binding curve for the 
inhibition of a fi xed concentration of 
[ 125 I]-ET-1 (0.1 nM) binding to ET 
receptors by increasing 
concentrations of unlabeled 
antagonist (FR139317) in human 
heart. Over the concentration range 
tested, the antagonist competed in a 
biphasic manner and a two-site fi t 
was preferred to a one-site or 
three-site model using LIGAND. The 
high affi nity site corresponded to the 
ET 

A
  receptor (K 

D
  = 7 nM), the low 

affi nity site to the ET 
B
  K 

D
  = 104  m M, 

giving ~15,000 fold ET 
A
  selectivity       
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    10.6.3   Comparison of the Selectivity of ET Antagonists 
Determined in Human Tissues Versus Cloned 
Human or Animal Receptors 

 A crucial question is therefore how do values of antagonist affi nity obtained from 
either cloned human receptors or animal tissues relate to those obtained in human 
tissues that express both receptor subtypes and which are the intended target for 
endothelin antagonists clinically, specifi cally the heart, lungs, kidney, and vascula-
ture? We have identifi ed a number of antagonists, belonging to different structural 
classes (Fig.  10.5 ) that have a spectrum of reported ET receptor affi nity and selec-
tivity, and have pharmacologically characterized their activity at ET receptors in 
these human tissues. Table  10.1  shows the literature reported selectivity of com-
pounds determined for human cloned receptors or in cells/animal tissues that endog-
enously express only (or predominantly) one or other receptor subtype. Those 
antagonists that we have investigated belonging to the peptide, sulfonamide, or 

   Table 10.1    Receptor subtype binding affi nity and selectivity of endothelin antagonists  determined 
in model systems and human left ventricle   

 Antagonist 

 Cloned 
receptors a   Human left ventricle 
 Reported ET 

A
  

selectivity  K 
D
  ET 

A
   K 

D
  ET 

B
   ET 

A
  selectivity 

 Peptides 
 BQ123  653  [  85  ]   0.73 ± 0.22 nM  [  86  ]   24.3 ± 2.0  m M  [  86  ]   33,288  [  86  ]  

 FR139317  7,300  [  87  ]   1.20 ± 0.28 nM  [  88  ]   287 ± 93  m M  [  88  ]   239,167  [  88  ]  

 PD151242  ND  7.21 ± 2.80 nM  [  89  ]   104 ± 23  m M  [  89  ]   14,424  [  89  ]  

 PD142893  1.7  [  90  ]   0.30 ± 0.03  m M b   1.17 ± 0.14  m M b   4 b  

 Sulfonamides 
 Ro-462005  1.5  [  91  ]   One site fi t 50.3 ± 9.5  m M  [  88  ]   Non-selective  [  88  ]  

 Bosentan  20  [  92  ]   One site fi t 77.6 ± 7.9 nM  [  88  ]   Non-selective  [  88  ]  
 Sitaxentan  7,000  [  93  ]   1.65 ± 0.80 nM b   327 ± 134  m M b   198,182 b  

 BMS 182874  1,042  [  94  ]   590 ± 100 nM b   Not detectable b   >10,000 b  
 Carboxylic acids 
 SB209670  34  [  95  ]   One site fi t 0.67 ± 0.14 nM  [  96  ]   Non-selective  [  96  ]  
 PD156707  2,600  [  97  ]   0.92 ± 0.38 nM  [  98  ]   13.3 ± 2.1  m M  [  98  ]   14,457  [  98  ]  

 L-749329  65  [  99  ]   One site fi t 303.5 ± 34.3 nM b   Non-selective b  
 Myceric acids 
 50235  >1,000  [  100  ]   162 ± 61 nM  [  88  ]   171 ± 42  m M  [  88  ]   1,056  [  88  ]  

 S97-139  1,000  [  101  ]   45.3 ± 25 nM b   47.6 ± 9.9  m M b   1051 b  

   ND  Not determined 
  a Or cells/animal tissues that endogenously express one receptor subtype exclusively or predo-
minantly 
  b Unpublished data  
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 carboxylic acid groups comprise both reported ET 
A
 -selective and mixed  antagonists. 

From our human data, it is apparent that for these groups of compounds, the degree 
of selectivity for the ET 

A
 -selective compounds is markedly increased from 800 to 

8,000 fold in model cell/tissue systems to more than 10,000 fold in the human left 
ventricle binding assay. As expected, those that are reported to be mixed antagonists 
do not distinguish between the two receptors in human heart and a one-site fi t is 
statistically preferred by data analysis. Interestingly, the myceric acid derivatives 
have about 1,000-fold ET 

A
  selectivity in both the model receptor assays and in 

human cardiac tissue.  
 The binding experiments in human heart are carried out in the presence of bovine 

serum albumin (BSA) to more closely refl ect in vivo conditions, as some of these 
compounds are known to show appreciable binding to plasma proteins  [  84  ] . Indeed, 
in the absence of BSA, the potency of, for example, sitaxentan for both the ET 

A
  and 

ET 
B
  receptor is increased and ET 

A
  selectivity is maintained (unpublished data ET 

A
  

K 
D
  0.06 nM; ET 

B
  K 

D
  13  m M; ET 

A
  selectivity >230,000 fold). However, there are 

differences in the binding assays between the model systems and the human tissues 
that may account for some of the observed discrepancies in selectivity. Where ani-
mal tissues or cells have been employed, species differences in the ET receptors 
may need to be considered when comparing reported antagonist data to data obtained 
in human tissues. In some cases,    the different radioligands, [ 125 I]-ET-1 and [ 125 I]-ET-
3, are used to label ET 

A
  and ET 

B
  receptors respectively in both cloned/animal tissue 

experiments, whereas [ 125 I]-ET-1 is used to label both populations of receptor sub-
types in the human left ventricle. 

 If selective blockade of the vascular ET 
A
  receptor is clinically desirable, how 

predictable of functional potency is the affi nity of an antagonist determined in a 
receptor binding assay? To address this question we have carried out an additional 
study to measure how well the ET 

A
  affi nity of selective and mixed antagonists, 

determined in binding experiments, refl ects their potency as functional antagonists 
at the ET 

A
  receptor in vitro. We carried out Schild analysis of data obtained from the 

antagonism of ET-1-induced vasoconstriction in human isolated coronary artery 
and/or saphenous vein (an ET 

A
  response  [  37,   38  ] ) for representative antagonists 

from each structural group and compared the Schild-derived affi nity values (ET 
A
  

K 
B
 ) to the ET 

A
  affi nity (K 

D
 ) determined in binding experiments in the same vascular 

tissue. The resulting data were expressed as a K 
B
 /K 

D
  ratio (Table  10.2 ) and it can be 

seen that for most of the antagonists tested, their ability to block ET-1 vasoconstric-
tion was 10–1,000 fold less than predicted by their binding affi nity determined in 
the same tissue. The degree of K 

D
  to K 

B
  discrepancy did not appear to relate to 

structural class, although the peptide antagonists were particularly less effective as 
functional antagonists than predicted by their binding affi nity. To what extent these 
data can be extrapolated to the clinical setting is unclear, but it may be that for some 
antagonists, such as bosentan, the concentration required to achieve suffi cient recep-
tor occupancy in vivo for clinical effi cacy may be much greater than predicted by 
in vitro binding assays. While this is not necessarily a problem for compounds that 
are either nonselective or have a very marked ET 

A
  selectivity, it may mean that those 

compounds that have a more marginal ET 
A
  selectivity may have to be administered 

at doses at which ET 
B
  occupancy will become apparent and so these compounds 

will not behave as selective ET 
A
  antagonists at clinically effective doses.    
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    10.7   Conclusions 

 The differential distribution and function of ET receptor subtypes provides the 
rationale for using two distinct    pharmacological strategies, mixed or ET 

A
 -selective 

antagonism. To exploit this difference for selective compounds, it is essential to be 
able to achieve concentrations where ET 

A
  receptors are blocked, but there is no sig-

nifi cant ET 
B
  receptor occupancy. While this can be achieved in vitro with >100-fold 

selectivity, in vivo antagonists such as sitaxentan which display at least 1,000-fold 
selectivity may be the minimum to resolve this hypothesis.      
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           11.1   Introduction 

 Peripheral vascular disease (PVD) due to atherosclerosis of the lower limb arteries 
is an increasing problem in Western societies. Epidemiological studies suggest that 
the prevalence of asymptomatic PVD is approximately 7–15% in the middle-aged 
and elderly population  [  1  ] . About 15% of these patients develop lower limb symp-
toms within 5–7 years  [  2  ] , with 1 in 2,500 of the population developing critical limb 
ischemia each year  [  3  ] . 

 Risk factors for PVD are those of atherosclerosis: smoking, diabetes, hypertension, 
hyperlipidemia, hypercoagulable states,    and sedentary lifestyle. While aggressive con-
trol of risk factors, smoking cessation, antiplatelet and statin therapy, and physical exer-
cise are important in patients with PVD whose cardiovascular risks are signifi cantly 
increased  [  4  ] , this chapter provides an overview on non-pharmacological therapy in the 
treatment of lower limb symptoms in these patients.  

    11.2   Treatment Aims in PVD 

 Patients with symptomatic PVD present with either intermittent claudication (IC) or 
critical limb ischemia (CLI). IC describes pain in affected muscle groups on exercise. 
In CLI, patients suffer from pain at rest and may develop ulcers and gangrene. The 
viability of the limb is threatened with a signifi cant risk of limb loss. The treatment 
aims and strategies are different for these two modes of presentation. 
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    11.2.1   Intermittent Claudication 

 Patients with IC experience pain on exercise when the blood supply to the lower limb 
muscles is unable to meet metabolic requirements. The muscle groups affected depend 
on the arterial lesions present and the pain occurs at consistent walking distances with 
rapid relief on resting. While the lower limb outcomes of these patients are generally 
good, with less than 10% deteriorating suffi ciently to merit revascularization over time 
 [  5  ] , they are at signifi cantly higher risks of cardiovascular complications due to athero-
sclerosis in other vascular territories  [  6  ] . The treatment aims in these patients are there-
fore to reduce their risks of cardiovascular events and to improve quality of life by 
increasing walking distance. Aggressive risk factor management is crucial to reduce 
cardiovascular events, but despite available evidence, risk factors generally remain sub-
optimally monitored and managed in patients with PVD  [  7–  9  ] . Exercise therapy in the 
form of supervised exercise training programs is effective in improving walking ability 
and functional outcomes but long-term compliance is a problem  [  10,   11  ] . As interven-
tions are not without risks, in this group of patients where limb viability is not threat-
ened, intervention is only considered for patients with disabling symptoms which are 
signifi cantly affecting their day-to-day life.  

    11.2.2   Critical Limb Ischemia 

 In CLI, patients suffer from pain at rest, which is worse on elevation. Patients 
describe relentless pain particularly at night and may resort to sleeping in a chair. 
The viability of the limb is threatened and ulceration and/or gangrene may occur. 
Revascularization by endovascular, surgical, or a combination of techniques is 
required to prevent limb loss.   

    11.3   Revascularization Procedures in PVD 

 Non-pharmacological treatments of PVD are mainly divided into endovascular and 
surgical revascularization procedures. Since most patients who require intervention 
have CLI, the treatment options related to this group of patients will be discussed. 
The goal of revascularization is to re-establish in-line fl ow to the foot. In CLI, this 
generally involves treating multiple arterial segments; infl ow disease is addressed 
prior to treating outfl ow lesions. While treating proximal lesions may improve 
symptoms, establishment of uninterrupted fl ow in at least one infrapopliteal vessel 
to the foot is usually required where tissue loss is present  [  12  ] . 

    11.3.1   Endovascular Treatment of CLI 

 Many institutions have a strategy of using endovascular intervention as the initial 
choice of treatment since most patients with CLI have signifi cant comorbidities and 
high short-term mortality  [  12,   13  ] . Endovascular procedures are generally less 
 prolonged than surgical bypasses and can be performed under local anesthetic in high-
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risk patients. In addition, prior endovascular procedures do not preclude subsequent 
surgery and in patients with diseased distal vessels and lack of suitable conduit for 
bypass, endovascular treatment may be the only option for limb salvage. 

 Recent evidence from the BASIL trial, however, suggests that surgery is the more 
durable option and should be considered as initial treatment in some patients. In this 
trial, 452 patients with CLI due to infrainguinal disease were randomized to either sur-
gery fi rst ( n  = 228) or angioplasty fi rst ( n  = 224). At 5.5-year follow-up, 248 (55%) 
patients were alive without amputation, 38 (8%) were alive with amputation, 36 (8%) 
were dead after amputation, and 130 (29%) were dead without amputation. After 
6 months, there was no signifi cant difference in amputation-free survival or health-
related quality-of-life measurements between the two treatment arms. However, hospital 
costs were higher in the surgery fi rst group than the angioplasty fi rst group  [  14  ] . Beyond 
2 years however, the surgery fi rst group did better, suggesting that for patients who have 
a life expectancy of 2 years or more, surgery may be the more durable option. Moreover, 
surgical outcomes were worse after an initial failed angioplasty  [  15  ] . 

    11.3.1.1   Suprainguinal Intervention 
 Endovascular procedures to improve infl ow include percutaneous transluminal angioplasty 
(PTA) with or without stenting of the iliac arteries. In CLI, stent placements improve the 
success rates of treating iliac stenoses and occlusions compared to PTA alone, with primary 
patency rates of 90%, 74%, and 69% at 1, 3, and 5 years respectively. Women and patients 
with chronic renal insuffi ciency had poorer outcomes  [  16  ] .  

    11.3.1.2   Infrainguinal Intervention 
 For infrainguinal lesions, PTA with or without subintimal angioplasty or adjunctive 
stenting is associated with reasonable rates of limb salvage. In subintimal angioplasty, 
the wire is intentionally directed subintimally and then redirected within the true lumen, 
enabling long diffuse stenoses or occlusions to be crossed and treated  [  17,   18  ] . 

 In the femoral and popliteal arteries, PTA is associated with lower patency rates than 
for iliac arteries. In one study of femoro-politeal angioplasty with provisional stent place-
ment in patients with CLI, patency rates at the end of 2 years were 65% but with limb 
salvage rates of 97%  [  19  ] . A meta-analysis of 19 studies reported 3-year patency rates of 
30–43% following angioplasty and 60–65% following additional stent placement  [  20  ] . 

 Angioplasty of infrapopliteal vessels in CLI is reported to have limb salvage 
rates of between 92% and 95%  [  21  ]  (Fig.  11.1 ). In a series of 235 patients with CLI, 
tibio-peroneal angioplasty had an overall success rate of 92% with limb salvage rate 
of 95% at 5 years  [  22  ] . Bare metal stents have been used successfully in infraingui-
nal vessels but with similar success rates to angioplasty alone  [  23  ] . Drug-eluting 
stents are also under investigation to reduce restenosis rates  [  24  ] .  

 As increasingly challenging lesions are treated, different approaches have been 
described including retrograde puncture of pedal vessels and combined antegrade 
and retrograde approaches  [  25  ] . Long-term outcomes of these procedures from 
large studies are awaited.  

    11.3.1.3   Adjunctive Endovascular Devices 
 While the overall technical success rates of angioplasty and stents in the treatment 
of lower limb arterial lesions are relatively high, immediate failure is most  commonly 
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related to lesions that are diffi cult to cross or dilate, or diffi culty in re-entering the 
distal lumen, due to long lesions, total occlusions, calcifi ed vessels, and diffuse 
distal disease. Several devices have been developed to try and overcome these prob-
lems. These include cutting balloon catheters with embedded atherotomes on the 
exterior of the balloon aimed at treating heavily calcifi ed arteries which are diffi cult 
to dilate; laser-assisted angioplasty devices which aim to debulk atheromatous 
plaques which are diffi cult to cross; and directional atherectomy catheters which 
allow plaque to be excised and removed. Currently, there is inadequate evidence of 
their effi cacy and cost-effectiveness in the treatment of CLI  [  26  ] . 

 Late failure occurs due to intimal hyperplasia leading to restenosis of the native 
vessel as well as in-stent restenoses. A cryoplasty balloon catheter was developed 
with the aim of delivering cold thermal energy to the vessel wall to induce apoptosis 
and reduce restenosis, but again, there is little evidence to support its use in CLI. 
Other adjunctive devices include self-expandable stents which may be useful in the 
superfi cial femoral arteries or tortuous or tapering arteries; drug-eluting stents based 

  Fig. 11.1    Infrapopliteal angioplasty. ( a ) Tight stenoses at origins of the right infrapopliteal arter-
ies with subsequent occlusion of the posterior tibial artery ( arrow ). ( b ) Angioplasty of the anterior 
tibial artery. ( c ,  d ) Following successful angioplasty of the anterior tibial and peroneal arteries, 
in-line fl ow is restored to the foot             

a b
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on their use in the coronary circulation; covered stents and bioabsorbable stents 
 [  26  ] . While some of these warrant further investigation, they are currently not rec-
ommended for routine use in CLI.  

    11.3.1.4   Complications of Endovascular Procedures 
 Endovascular procedures are not without complications, particularly in patients 
with CLI who have calcifi ed vessels and multilevel disease  [  27  ] . 

 Puncture site complications are the most common with reported incidence of 2–6% 
 [  28  ] . These include bleeding, hematoma, false aneurysms, arteriovenous  fi stulae for-
mation, and infection. Bleeding complications usually resolve with  conservative 

c

d

Fig. 11.1 (continued)
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management but may require surgical intervention and may be life-threatening such 
as in cases of massive retroperitoneal hematomas. False aneurysms at the groin can 
usually be treated with thrombin injection  [  29  ] . 

 Complications related to the target vessel include vessel rupture, local dissection, 
thrombosis, and distal embolization. These are uncommon and can mostly be treated 
endovascularly with covered stents, further balloon infl ations, and local thrombolysis, 
but may require surgical intervention. Serious complications leading to limb loss have 
been reported to occur following 2.2% of angioplasties for CLI  [  27  ] . 

 In addition, with increasing use of devices, device-specifi c complications such as 
device migration and deployment failure may occur.   

    11.3.2   Surgical Treatment of CLI 

 In many centers, surgical revascularization is reserved for patients with lesions that 
are deemed unsuitable for endovascular treatment or for those where endovascular 
treatment has failed. Younger patients with prolonged life expectancy are more 
commonly considered for surgical revascularization due to its more durable results, 
particularly in light of recent evidence from the BASIL trial as discussed above. 

    11.3.2.1   Suprainguinal Procedures 
 Aortoiliac disease is treated with either aortic reconstruction or with an extra-anatomical 
bypass (e.g., axillofemoral, axillobifemoral, femorofemoral bypass). While aorto-
bifemoral bypasses have good patency rates of 80% and 72% at 5 and 10 years respec-
tively, operative mortality is on average 3.3%, rising to 8% in patients with signifi cant 
comorbidities  [  30  ] . For patients who are less fi t, extra-anatomical bypasses using exter-
nally supported Dacron or PTFE grafts are alternatives with 5-year limb salvage rates of 
60–90%  [  31  ] .  

    11.3.2.2   Infrainguinal Procedures 
 Infrainguinal procedures include common femoral endarterectomy and profundaplasty 
which may used to improve infl ow prior to an infrainguinal bypass procedure. However, 
there is evidence that isolated common femoral endarterectomy is suffi cient to salvage 
limbs in some patients with CLI  [  32  ] . 

 Infrainguinal bypass procedures are usually taken from the common femoral 
artery to the above- or below-knee popliteal artery or to the tibial or peroneal arteries. 
Autologous vein rather than synthetic grafts should be used where possible, particu-
larly in infrageniculate bypasses. A meta-analysis had shown primary patencies of 
66% for vein at any level compared to 47% for above-knee PTFE and 33% for below-
knee PTFE at 5 years  [  33  ] . While the long saphenous vein is the most commonly 
used autologous conduit, the short saphenous vein, arm veins, and deep leg veins can 
be used. Different strategies have been used to try and improve the outcome of vein 
grafts  [  34  ] , but the lack of a suitable autologous conduit is usually the problem. Vein 
cuffs performed at the distal anastomosis or less commonly formation of an arterio-
venous fi stula to an adjacent vein at the distal anastomosis have been used to improve 
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patency of infrageniculate bypasses using synthetic grafts  [  35,   36  ] . With advances in 
the fi elds of biomaterials and tissue engineering, novel grafts exploiting these inno-
vative technologies are likely to be the solution to improved outcomes of these 
procedures  [  37,   38  ] .   

    11.3.3   Hybrid Procedures in CLI 

 Hybrid procedures combining endovascular and open procedures are increasingly 
used to revascularize patients with CLI. These may offer less extensive procedures, 
reduced perioperative complications, and better outcomes  [  39,   40  ] . For example, 
iliac angioplasty and stenting may be combined with an infrainguinal bypass proce-
dure; angioplasty of an iliac stenosis may then allow a femorofemoral crossover 
graft to treat bilateral iliac disease; superfi cial femoral artery (SFA) angioplasty of 
a focal lesion may enable a shorter SFA-distal bypass graft to be performed particu-
larly where availability of vein is limited. The procedures can be done as staged 
procedures or increasingly commonly as concomitant procedures  [  41  ]  (Fig.  11.2 ).    

  Fig. 11.2    Iliac angioplasty and femorofemoral crossover graft in a 70-year-old man with CLI. 
( a ) Gangrenous ulcer on dorsum of right foot at presentation. A left-to-right femorofemoral cross-
over graft was initially performed which failed 2 weeks later due to inadequate infl ow (diseased 
left iliac artery) and poor outfl ow (occluded right superfi cial femoral artery). ( b ) A left iliac angio-
plasty, crossover graft thrombectomy, and femoro-distal bypass were successfully performed. 
( c ) Ulcer healing following revasuclarization. ( d ) Residual ulcer of approximately 1 cm in 
diameter       

a b 
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    11.4   Other Treatment Strategies 

 In patients with CLI who have non-reconstructable disease, other treatment strate-
gies are offered in an attempt to avoid or delay amputation. They aim to reduce 
ischemic rest pain, promote ulcer healing, and prevent further deterioration. 

c

d

Fig. 11.2 (continued)
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    11.4.1   Sympathectomy 

 Lumbar sympathectomy may be offered to patients with non-reconstructable dis-
ease. Open surgical sympathectomy has largely been replaced by percutaneous 
chemical sympathectomy  [  42  ]  or the laparoscopic approach  [  43  ] . These techniques 
have been shown to be of some benefi t in terms of pain relief and limb salvage in 
patients with CLI  [  44  ] .  

    11.4.2   Spinal Cord Stimulation 

 Spinal cord stimulation employs low-voltage electrical impulses from a subcutane-
ous pulse generator which are delivered to the epidural space by electrodes placed 
at the L3/4 level. The exact mechanism of action is unknown but is thought to 
improve microcirculatory blood fl ow. Early controlled studies suggested a benefi t 
in pain control although there was no improvement in ulcer healing, limb salvage, 
or mortality rates  [  45,   46  ] . However, most of these studies had small patient num-
bers and a recent systematic review found no signifi cant benefi t of the technique 
above best medical therapy  [  47  ] . Moreover, spinal cord stimulation is more expen-
sive  [  48  ] .  

    11.4.3   Therapeutic Angiogenesis 

 Therapeutic angiogenesis using gene- and cell-based therapies to stimulate new 
vessel formation has been investigated over the past decade. While initial pre-
clinical studies were promising  [  49  ] , clinical trials have been less convincing. A 
meta-analysis identifi ed six phase II randomized, controlled trials in therapeutic 
angiogenesis for PVD: four in patients with IC and two in CLI  [  50  ] . While the 
meta-analysis of the pooled data from these studies concluded that therapeutic 
angiogenesis was benefi cial in patients with CLI with only a slight increase in 
side effects of edema, hypotension, and proteinuria, this was mainly due to the 
results of two of the trials. The TRAFFIC trial showed that intra-arterial recom-
binant basic fi broblast growth factor (bFGF) improved peak walking time in 
patients with IC  [  51  ]  while the TACT trial demonstrated that autologous bone 
marrow mononuclear cell implantation signifi cantly improved rest pain in CLI 
patients  [  52  ] . Since then, the TAMARIS trial which was a randomized controlled 
study designed to evaluate the effi cacy of NV1FGF, a non-viral plasmid-based 
gene delivery system for FGF-1, in CLI patients has failed to meet its primary 
endpoint of prevention of major amputation or death at 12 months  [  53  ] . Overall, 
the results of these studies are disappointing and probably refl ect the complexity 
of angiogenesis which is unlikely to be easily manipulated by the administration 
of single factors.   
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    11.5   Amputation 

 Major amputation may be required in patients where no revascularization option is 
available or where treatment has failed. In some patients, primary amputation may 
be considered due to an unsalvageable limb, fi xed fl exion contractures of the leg or 
in patients who are already bed-bound due to comorbidities. The goals of amputa-
tion are pain relief, removal of nonviable or infected tissue, and the formation of a 
well-healed stump that maximizes chances of rehabilitation. The level of amputa-
tion therefore depends on healing and rehabilitation potential as well as prosthetic 
considerations. 

    11.5.1   Levels of Amputations 

 In patients with PAD, minor amputations, i.e., amputations of the foot, are generally 
performed only following successful revascularization to remove necrotic and/or 
infected tissue. Without revascularization, minor amputations are unlikely to heal 
and the patient is then faced with multiple procedures with increased risks and 
delayed rehabilitation. 

 The commonest levels of amputation in PAD patients are perigeniculate: below-
knee (transtibial), through-knee (knee disarticulation and Gritti–Stokes amputa-
tion), and above-knee (transfemoral) amputations. In patients who    are likely to 
achieve prosthetic walking, the knee joint should be preserved if possible and a 
below-knee amputation performed if healing at this level is likely. If healing is likely 
to be compromised, an above-knee amputation still allows prosthetic fi tting. In 
patients who are likely to remain chair- or bed-bound, through-knee amputations 
avoid development of fi xed fl exion contractures and subsequent diffi culties with 
transfers while providing longer lever lengths and larger surface areas for improved 
balance. Patients who have already developed a fi xed fl exion deformity of the knee, 
an above-knee amputation is more realistic. 

 Hip disarticulation and hindquarter amputations are extensive procedures which 
fortunately are rarely performed  [  54  ] . 

 In order to provide these patients with optimal care, the involvement of a dedi-
cated multidisciplinary team including specialist physiotherapists, occupational 
therapists, pain specialists, prosthetists, and social workers, from preoperative plan-
ning stages through to rehabilitation, is essential  [  55,   56  ] .   

    11.6   Prognosis of Patients with PVD 

 As mentioned above, lower limb outcomes for patients with IC are generally good. 
About 50% of patients will remain stable or experience some improvement in their 
symptoms over a 5-year period; 25% will deteriorate and only 1–2% will require 
major amputation. However, 2–4% of these patients will have a non-fatal cardio-
vascular event within the fi rst year of diagnosis with a 1–3% annual incidence 
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thereafter. Overall, patients with PAD have a 25% greater mortality risk than those 
without  [  57  ] . 

 In patients with CLI, overall long-term prognosis is poor with amputation rates 
of 10–40% and mortality rates of 20% at 1 year and 40–70% at 5 years  [  58  ] . While 
there is data from Denmark  [  59  ] and Finland [  60  ]  showing reduced amputation rates 
with more aggressive revascularization policies, the number of major amputations 
performed each year in the UK for vascular diseases has remained at approxi-
mately 3,000 from 2000 to 2007  [  54  ] . In 1999, Dormandy et al. reported that within 
2 years, 15% of below-knee amputees required a contralateral    major amputation and 
30% were dead  [  61  ] . More recently, Dillingham et al. reported similar fi gures: 10% 
of below-knee amputees had a contralateral amputation and over a third died within 
1 year  [  62  ] .  

    11.7   Conclusions 

 In conclusion, PVD is a prevalent disease and with an aging population and an 
increase in cardiovascular diseases, it will continue to be a challenging healthcare 
issue. In order to improve the outcomes of these patients, they must be managed by 
vascular specialists within multidisciplinary teams who are able to combine endo-
vascular and surgical techniques to revascularize threatened limbs and to reduce the 
impact of their overall cardiovascular risks. Novel therapeutic therapies are urgently 
required particularly to improve the quality of life of patients with disease that is not 
amenable to revascularization and also as adjuncts to improve the results of cur-
rently available treatment options.      
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    12.1   Introduction 

 In the last decade, there have been dramatic changes to the management of  abdominal 
aortic aneurysms (AAA) in the UK, and further    progress is likely in the next few 
years. The central strategy in managing abdominal aortic aneurysms is to detect 
these lesions before they rupture and perform an elective repair with low morbidity 
and mortality. Rupture of an abdominal aortic aneurysm is a catastrophic event 
which carries a community mortality in excess of 90%. 

 Historically, the UK has one of the worst mortality rates for aneurysm surgery in 
the world. The reasons for this are multi-factorial    but involve late diagnosis, high 
rates of comorbidity, low uptake of endovascular technology, and fragmented ser-
vice organization. This chapter will focus on three specifi c aspects of abdominal 
aortic aneurysm surgery which will have a major impact on UK practice in the next 
few years: the introduction of a national screening    program, the use of endovascular 
techniques to reduce operative mortality, and the urgent need for centralization of 
aortic surgery.  

    12.2   Screening for AAA 

 Community-based ultrasound screening is a noninvasive, cheap, and accurate 
method of detecting AAA. Large-scale population screening trials have shown that 
it is effective in men aged 65–75 years  [  1  ] , and reduces the rate of aneurysm rupture 
and aneurysm-related mortality. On this basis, the UK Secretary of State for Health 
announced a UK national screening program for abdominal aortic aneurysms in 
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January 2008. The primary aim of the program is to reduce AAA-related mortality 
by providing a systematic population-based screening program for the male popula-
tion during their 65th year, and on request for men over 65. 

 There are still many other practical aspects relating to screening programs that 
require further work. These include techniques to optimize the uptake of screening, 
whether to use internal or external aortic diameters, cost-effective surveillance 
intervals, and the management of anxiety and cardiovascular risk factors within the 
screened population with small aneurysms. The national quality assurance frame-
work and audit processes in place within the UK screening program may help to 
clarify some of these issues in due course. 

 The UK program is being rolled out in a staged process. The fi rst six centers 
commenced screening in 2009 as “early implementation sites,” namely St Georges 
London, Leicester, Manchester, South Devon, Gloucester and West Sussex. By 
2012/13, the aim is to have 60 centers operational around the country covering a 
population of 270,000 men aged 65. Sites are based on a minimum 800,000 total 
screening population, working within established vascular networks and able to 
demonstrate acceptable perioperative aneurysm mortality through submission to the 
National Vascular Database. 

 Subjects will receive an invitation to a single ultrasound scan during their 65th 
year, performed within community healthcare facilities. If the aorta measures less 
than 3 cm, no further recall scans will be arranged. For aortas measuring 3.0–4.4 cm, 
a follow-up scan will be arranged for 1 year, and for aortas measuring 4.5–5.4 cm, 
a further scan is arranged for 3 months. Above this size, an automatic referral is 
generated to the screening center or local network hospital. 

 Currently, internal aortic diameters are used though there has been debate about 
the use of external diameters. Ultrasound has high sensitivity and specifi city if per-
formed with adequate quality assurance, particularly for internal diameters. 
Ultrasound can reliably image the aorta in 99% of subjects. If the aorta is not visual-
ized, the subject should be rescanned by an experienced sonographer. The incidence 
of false-positive scans is uncertain but is small and of little clinical consequence. 

 The decision to introduce a national program was based on four randomized tri-
als, namely the Chichester trial in the UK  [  2  ] , the Viborg trial in Denmark  [  3  ] , the 
Western Australia trial  [  4  ] , and the UK Multi-centre Aneurysm Screening Study 
(MASS)  [  1  ] . In each study, individuals were randomized either to an offer of aneu-
rysm screening, or to no offer of screening. In all four trials, screening was shown 
to reduce aneurysm-related mortality for men. In the MASS trial, the screening 
group demonstrated a 43% reduction in overall mortality from aneurysm disease. 
Overall the odds ratio in favor of screening for men was 0.60 [95%CI 0.47–0.78].
The individual characteristics of the trials are summarized in Table  12.1 .  

 There is no good evidence to support aneurysm screening in women. In the only 
screening trial conducted in women, there was no reduction in the incidence of 
aneurysm rupture at 5 or 10 years  [  5  ] . Smoking and family history are important 
independent risk factors for aneurysm development, and though not specifi cally 
targeted within the program, these increased risks should be highlighted. Within the 
UK program, there exists the opportunity for lifestyle advice and cardiovascular 
risk factor assessment, particularly for those with small aneurysms. For example, 
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statins may reduce aneurysm growth rates by about 50% and smoking cessation 
appears to reduce growth rate by 20–30%. 

 While the benefi ts of screening are clear from the population-based studies, the 
possibility of causing harm must also be considered. Detection of a small aneurysm 
with the potential for unpredictable expansion and rupture is likely to create anxiety. 
Both the MASS and Viborg trials demonstrated a decreased quality of life for a 
short period after positive screening, though the effects resolved within a few months 
 [  6  ] . More importantly, there is the mortality risk associated with intervention. If 
screening is to be conducted safely, the referral centers must have an audited low 
mortality for both open and endovascular repair. For elective open repair, the opera-
tive mortality should be less than 5%, as in the Chichester, Viborg, and MASS trials, 
and for EVAR less than 2%. The early advantage of EVAR is unlikely to result in a 
greater survival advantage for population screening if the “catch-up” in all-cause 
mortality demonstrated in the EVAR trials is sustained in contemporary practice  [  7  ] . 
Again, the effectiveness of a national program has been based on the available trial 
data, though the UK program has set an upper limit perioperative mortality of 7% as 
the standard for screening centers. The current UK mortality for aneurysm surgery 
is higher than other European countries, and there is a drive from the Vascular 
Society of Great Britain and Ireland to reduce this by 50%. 

 It should be noted that in all studies, an age range up to 75 or 80 was screened. 
Calculations and projections on the benefi ts and cost-effectiveness of a national 
program have been based on these data. The initial detection rate in the UK program 
is likely to be lower due to the lower age at screening. Self-invitation in the 65–75-
year age group has been estimated to only recruit around 2% of the target popula-

   Table 12.1    Summary of the population-based randomized screening trials   

 Trial 
 Chichester  Viborg  MASS a   Western 

Australia  UK  Denmark  UK 
 Number randomized  15,775  12,628  67,800  41,000 
 People  Men and women  Men  Men  Men 
 Age (years)  65–80  65–73  65–74  65–79 
 Dates recruited  1988–90  1994–8  1997–9  1996–8 
 Date published  1995  2002  2002  2004 
 % accepting screening  68  76  80  70 
 Detection rate  4% (7.6% in men)  4%  4.9%  7.2% 
 Intervention policy  At 6 cm  At 5 cm  At 5.5 cm  None 
 Mean follow-up (months)  30.5  61  49  43 
 AAA-mortality, odds ratio  0.59 (men only)  0.31  0.58  0.72 
 Screened vs. not (95%CI)*  (0.27–1.29)  (0.13–0.79)  (0.42–0.78)  (0.39–1.32) 
 All-cause mortality, odds ratio  1.07 (men only)  0.97  0.98 
 Screened vs. not (95%CI)**  (0.93–1.22)  (0.93–1.02)  (0.91–1.04) 

  * Pooled odds ratio over all four trials is strongly in favor of screening, OR 0.57 (0.45–0.74), with 
a halving of the incidence of aneurysm rupture in screened populations 

 **Pooled odds ratio trend in favor of screening, OR 0.98 (0.95–1.02) 
  a  The MASS trial recently published 10-year follow-up, demonstrating the cost-effectiveness of 
screening and a signifi cant all-cause mortality benefi t, but a rising incidence of AAA rupture in 
the screened group  
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tion, while the trials demonstrate a 68–80% acceptance rate from formal invitation. 
Early fi gures from the early implementation centers within the UK national pro-
gram suggest that screen uptake rates will be below 80%. There is also some con-
cern about late aortic ruptures in men screened early from the MASS trial  [  8  ] . 
Further detailed analysis will be required to see how the decision to limit invited 
screening to 65-year olds, and the effect of an aging UK male population, infl uences 
the success of the national program.  

    12.3   Endovascular Aneurysm Repair 

 Since its inception in the early 1990s, endovascular repair of AAA has assumed an 
increasingly important role in the management of elective and ruptured AAA. It 
might be argued now that endovascular repair might be considered the fi rst-line 
therapy for the treatment of AAA, with many units reporting that over 90% of infra-
renal aneurysms are treated with this technology. 

 Endovascular aneurysm repair involves the exclusion of an aneurysm from the 
circulation using a stent graft that is delivered to the aneurysm via the femoral arter-
ies – often using a totally percutaneous approach (Fig.  12.1 a,b ). Most endovascular 
grafts are designed as a modular reconstruction that is assembled within the aneu-
rysm sac. Standard endovascular aneurysm repair can only be performed if there is 
an adequate fi xation zone between the renal arteries and the start of the aneurysm to 
allow adequate anchorage of the stent. Most series report that 50–70% of AAA are 
anatomically suitable for endovascular repair, but this percentage has increased in 
recent years with newer stent graft systems and the advent of fenestrated and 
branched endografts (Figs.  12.2  and  12.3 ).    

 The potential advantages of endovascular aneurysm repair relate to the mini-
mally invasive nature of the procedure with both a laparotomy and aortic cross 
clamping being avoided. The reduction in operative severity leads to a reduction in 
physiological stress with cardiac, respiratory, metabolic, and renal parameters being 
improved in comparison to conventional surgical procedures. It was hoped that the 
reduction in physiological stress associated with endovascular repair would trans-
late to a reduction in the mortality and morbidity of elective aneurysm repair. 

 Endovascular aneurysm repair has arguably evolved into the fi rst-line therapy for 
patients with infra-renal abdominal aortic aneurysms. The evidence for this position 
has been derived from a number of sources. At present, there is a substantial body 
of evidence that suggests an endovascular fi rst strategy is reasonable. Data from the 
randomized clinical trials has demonstrated that endovascular repair has a signifi -
cant advantage over an open strategy with regard to operative mortality rates. Data 
from the randomized trials comparing endovascular with open surgery (EVAR-1 
 [  7  ] , DREAM  [  9  ]  and OVER  [  10  ] ) (Table  12.2 ) suggest an odds ratio for endovascu-
lar repair in the order of approximately 0.3  [  11  ] . These data are backed up by large 
population-based registry fi gures, which suggest a similar advantage for endovascu-
lar repair over all age ranges  [  12  ] . It might be expected that as the technology 
improves, endovascular repair might be performed with a mortality of less than 1%, 
in contrast to open surgery, which will still most likely have a mortality of 3–5%.  
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a

b

  Fig. 12.1    ( a ) 3D 
reconstruction of an 
infra-renal abdominal aortic 
aneurysm with a good 
landing zone between renal 
arteries and start of the 
aneurysm. ( b ) 3D 
reconstruction of an 
infra-renal abdominal aortic 
aneurysm repaired using an 
endovascular stent graft       

  Fig. 12.2    3D reconstruction 
of a juxta-renal aneurysm that 
has been repaired with a 
fenestrated endograft. In 
these cases, the endograft is 
manufactured with 
fenestrations that are 
designed to individual patient 
anatomy. In the illustrated 
case, the graft has three 
fenestrations, one each for 
the renal arteries and the 
superior mesenteric artery       
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 Recently performed patient preference studies have also demonstrated that 
patients express a preference for endovascular repair over open procedures. 
Winterborne et al.  [  13  ]  demonstrated that in a population of screened patients, 84% 
would prefer EVR. Postoperative mortality and morbidity were more important 
than need for surveillance or long-term problems with EVR. Similarly, Reise et al. 
 [  14  ]  demonstrated a clear patient preference for endovascular repair in a cohort of 
patients given information regarding both procedures. 

 In the current healthcare climate, preferences for new technology need to be 
underpinned by a cost-effectiveness analysis. In the UK, the National Institute for 
Health and Clinical Excellence has recently concluded “endovascular stent grafts are 
recommended as a treatment option for patients with unruptured infra-renal abdomi-
nal aortic aneurysms, for whom surgical intervention is considered appropriate. The 
decision on whether endovascular aneurysm repair is preferred over open surgical 
repair should be made jointly by the patient and their clinician after assessment of a 
number of factors including, aneurysm size and morphology, patient age, general life 
expectancy and fi tness for open surgery, the short and long term benefi ts and risks of 
the procedures including aneurysm related mortality and operative mortality.” This 
decision was based on an economic analysis that estimated the incremental cost-
effectiveness ratio of endovascular procedures to be in the range of £12,000. 

  Fig. 12.3    3D reconstruction of 
thoracoabdominal aneurysm that has 
been repaired with a branched 
endograft. In these cases, the endograft 
is manufactured with branches designed 
to individual patient anatomy. In the 
illustrated case, the graft has two 
fenestrations for the renal arteries and 
two branches for the visceral vessels       

   Table 12.2    Mortality rates    for open 
and endovascular surgery (EVR) in 
three randomized trials   

 30-d mortality EVR  30-d mortality open 
 EVAR-1  1.7  4.7 
 DREAM  1.2  4.6 
 OVER1.7  0.2  2.3 

 



19312 Surgical Approaches to Abdominal Aortic Aneurysm Repair

 Despite the positive data presented above, endovascular procedures are  asso ciated 
with some disadvantages. Most reports suggest that aneurysm-related  reinterventions 
after endovascular procedures are signifi cantly greater than open repair. It must also 
be remembered that endovascular procedures are not applicable to all aneurysms, 
and that the percentage of patients treated by current commercially available 
endografts may be as low as 40%, if the indications for use are followed. 

 Endografts have continued to evolve since their inception and there is evidence 
from several studies that the newer generation of endografts perform better than 
early generations  [  10,   15  ] . In designing new endografts, several features have 
become increasingly desirable:

   The ability to treat a higher proportion of patients with infra-renal aneurysms. In • 
particular designs need to incorporate features to allow fi xation and seal in dif-
fi cult proximal neck anatomy and narrow, tortuous iliac access  
  An ability to reduce intraoperative complication rate should be incorporated with • 
less reliance on adjunctive procedures which are known to affect outcome  [  16,   17  ]   
  A reduction in the postoperative intervention rate with a reduction in endoleak • 
and limb thrombosis rates    
 The evolution of endovascular aneurysm repair has been rapid and now 

approaches the treatment of fi rst choice for many patients with AAA. Improvements 
in the design and follow-up protocols remain likely over the next few years.  

    12.4   Centralization of Aortic Surgery 

 It seems a paradox that, in the modern healthcare climate, vascular professionals 
and commissioners continue to debate whether complex surgical interventions with 
high morbidity and mortality should be performed in centers of proven excellence 
with an adequate caseload, or whether they should remain in a greater number of 
more local, low-volume providers with little proof of safety. The evidence for cen-
tralization appears robust and incontrovertible, but aortic services in the UK have 
not been rationalized into large volume centers. 

    12.4.1   The Volume–Outcome Relationship for Elective 
Aneurysm Repair 

 There is a strong evidence base that suggests that mortality from elective aneurysm 
surgery is signifi cantly less in centers with a high caseload than in units that perform 
a lower number of procedures. A meta-analysis of the existing literature  [  18  ]  
reviewed studies containing 421,299 elective aneurysm repairs and reported a 
weighted odds ratio of 0.66 in favor of higher volume centers dichotomized at 43 
cases per year. This result echoes meta-analyses of most complex surgical interven-
tions and should be regarded as defi nitive and highly informative. 

 However, although robust, meta-analyses can be criticized due to publication 
bias, heterogeneity, and the predominance of data from certain countries. Additional 
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information may be gathered by analyzing national administrative data. A typical 
“volume–outcome” curve is illustrated in Fig.  12.4   [  19  ]  for elective aneurysm repair 
in the UK between 2001 and 2005. These data demonstrated that the mean mortality 
for an elective repair was 7.4%, and that 80% of all aneurysm repairs were carried 
out in units performing less than 33 cases annually (Table  12.3 ). Importantly, the 
mortality rate in the units with lowest caseload was 8.5% as compared to the 5.9% 
reported by units with a higher workload. Even more worrying are the many small 
volume centers where the elective mortality may often exceed 20% (region A in 
Fig.  12.4 ). These data provide the strongest possible inditement of the organization 
of vascular services.   

 Individual hospital performance from administrative datasets can be assessed by 
safety plots  [  20  ] . In a safety analysis of UK data, 30 of 410 hospitals performing 
elective aneurysm surgery had a mortality rate signifi cantly above the national 
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  Fig. 12.4    Figure demonstrating mortality plotted against number of aneurysm repairs over a 
5-year period (2000–2005)       

   Table 12.3    Organization of elective aneurysm services as derived from HES data for the years 
2000–2005   
 Quintile  Quintile volume  No. of cases  No. of deaths  Mortality (%)  No. of hospitals 
 1  0–7.2  3,149  269  8.5  272 
 2  7.3–12.6  3,070  234  7.6  60 
 3  12.7–19.4  3,126  225  7.2  38 
 4  19.5–32  2,943  227  7.7  25 
 5  >32  3,227  190  5.9  15 
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 average. All of these units with high mortality rates were at the low end of the vol-
ume spectrum. Additionally, to statistically demonstrate a record of safe surgery 
(below the national average), an annual volume of at least 39 elective cases was 
required with a mean national mortality of 7.4%. If the national mean mortality 
were to be lower (as might be expected with EVAR or different service confi gura-
tion), then a greater number of cases would be needed in order to prove safety. 

 Data from alternative sources  [  21,   22  ]  confi rms that elective and ruptured aneu-
rysm repair is performed with lower mortality rates in units with a large caseload, 
that services are currently inappropriately organized in a mass of small volume 
centers, and that units with low volumes cannot demonstrate evidence of safety. 

 Vascular surgery has been curiously reluctant to recognize the importance of the 
volume–outcome relationship, with an attendant excess mortality under current ser-
vice confi gurations, and centralize aneurysm services. A number of theoretical 
objections to centralization have been raised which will be discussed below.  

    12.4.2   Is the Magnitude of Absolute Difference in Mortality 
Sufficient to Justify Centralization? 

 It might be argued that the 3–4% absolute mortality difference between the lowest 
volume and highest volume units does not justify centralization of aneurysm ser-
vices. Irrespective of the absolute mortality differences in elective surgery, the mor-
tality differences in the emergency setting are more dramatic. In a study of ruptured 
AAA in the UK between 2003 and 2008, the absolute mortality differences between 
hospitals in the lowest and highest volume quintiles reached 24%  [  23  ] . 

 In addition, relying on operative mortality will minimize differences in outcome, 
as case mix and patients considered “unfi t” for surgery must also be considered. In 
these areas, there is evidence to suggest disparate practices, with no surgical inter-
vention being offered to over 50% of emergency patients in lowest quintile units as 
compared to approximately 20% in the highest volume centers  [  23  ] .  

    12.4.3   What About Low-Volume Centers with No Mortality? 

 In any volume–outcome plot, there are a number of relatively low-volume units 
that have an elective aneurysm mortality of 0% (region B in Fig.  12.4 ). It is tempt-
ing to speculate that these units should not be part of any centralization due to their 
apparent good results. This zero mortality paradox was investigated by Dimick and 
Welch  [  24  ]  who studied hospitals that had reported a zero mortality between 1997 
and 1999. When the outcomes for these hospitals in 2000 were compared with the 
rest of the Medicare data, the “zero mortality” hospitals had a lower caseload (4 vs. 
13) and higher mortality (6.3% vs. 5.8%). The fi nding of zero mortality in this 
study was therefore not refl ective of superior results, just a function of low case 
volume. None of these hospitals would be able to demonstrate statistical evidence 
of safety.  
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    12.4.4   Are Volume–Outcome Data Applicable 
to the Endovascular Era? 

 The majority of data investigating the effect of caseload on elective aneurysm sur-
gery have been derived by analysis of patients undergoing open repair. Clearly, the 
advent of endovascular surgery will change this relationship. Two recent studies 
have investigated the effect of endovascular repair on the volume–outcome relation-
ship for elective aneurysm surgery. The studies demonstrated that:

   The volume–outcome relationship was maintained for endovascular surgery, • 
open surgery, and the combined cohort  [  25  ] . There was a signifi cant difference 
between endovascular mortality between the lowest and highest quintile provid-
ers (6.88% vs. 2.88%), and a 77% reduction in mortality was observed for every 
100 endovascular repairs performed.  
  Higher volume hospitals were more likely to adopt endovascular therapy (44% • 
in high-volume hospitals vs. 18% in low-volume hospitals)  [  21  ] .  
  Hospital volume was an independent predictor of mortality.  • 
  Results were defi ned by the total aneurysm caseload rather than either endovas-• 
cular or open cohorts alone, i.e., hospitals with a large, predominantly endovas-
cular, caseload also reported better than average results from open aneurysm 
repair.    
 The data from both studies suggested that, if anything, the relationship between 

hospital caseload and outcome becomes even more important if endovascular tech-
nology is incorporated into the analysis.  

    12.4.5   Travel Times and Patient Preferences 

 The most important aspect defi ning the provision of aneurysm (or any other) services 
must be the acceptability to patients. There is a clear trade-off between the advan-
tages associated with a high-volume center and the diffi culties caused by prolonged 
travel times for both patients and relatives. In a modeling exercise, Holt et al.  [  26  ]  
defi ned the increased travel times that would be associated with a centralized model 
of care for aneurysm surgery in the UK   . If aneurysm surgery was performed in cen-
ters with a record of demonstrable safety and a relatively low-volume threshold of 33 
procedures per year, the number of hospitals performing aneurysm repair fell from 
242 to 48 and travel times increased by 28 min relative to the nearest hospital. 

 The acceptability of increased travel times was assessed in a study of 262 patients 
 [  27  ] . Patients were asked to complete a questionnaire that was calibrated against the 
time an individual was willing to travel to access specifi c attributes of an aneurysm 
service. Approximately 92% of individuals stated a willingness to travel for at least 
1 h beyond their nearest hospital in order to access services with a lower periopera-
tive mortality, lower nonfatal complication rates, a high annual caseload of aneu-
rysm repairs, and routine availability of endovascular repair. This study demonstrated 
that patients’ preference to access safe, modern surgery in a high-volume center 
outweighed their concerns over travel.  
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    12.4.6   Centralization Implies Poor Surgeon Performance 
in Low-Volume Units 

 Undoubtedly, discussion of centralization has been made more diffi cult by the feel-
ing that stopping aneurysm surgery at an institution implies that surgeons in these 
centers are performing poorly. While there is a relationship between individual sur-
gical caseload and outcome  [  28  ] , it is the institutional experience which is the most 
important facet of delivering good quality care. The importance of the institutional 
component was recently emphasized by Ghaferi et al.  [  29  ]  who studied 84,730 inpa-
tients undergoing vascular or general surgery. The study reported that complication 
rates after surgery were not different between high- and low-volume institutions but 
that mortality following major complications was much higher in the low-volume 
units (21.4% vs. 12.5%). This study gives credence to the impression that outcomes 
may be defi ned by the institutional facilities, protocols, and familiarity with chal-
lenging management of complex interventions. 

 The data presented above would imply that aneurysm services should be performed 
in high-quality, high-volume providers with a proven record of safety. There appear to 
be no convincing arguments for maintaining aneurysm repair in low- volume hospitals. 

 Perhaps the most pertinent unresolved question is how to defi ne high- and low-
volume centers. The available literature utilizes differing thresholds according to 
study design with many studies merely dividing caseload data into quartiles or quin-
tiles to demonstrate the nature of the relationship. Exact volume thresholds will 
differ in various healthcare systems where there is disparate organization of ser-
vices. However, it is important to note that the volume–outcome relationship is con-
tinuous with improvements in outcome seen with increasing volume. Clearly a 
pragmatic approach to defi ning an appropriate threshold is mandated. It might be 
suggested that aneurysm repair should not be undertaken    in centers performing less 
than 50 cases per year, and ideally the annual caseload.   

    12.5   Concluding Remarks 

 The UK has been notoriously poor in managing patients with abdominal aneurysms 
with mortality rates inferior to most    international comparators. Initiatives from 
commissioning bodies to centralize services will continue the trends toward better 
management that have been stimulated in recent years by the adoption of modern 
technology and institution of screening programs.      
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           13.1   Introduction 

 Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in 
pulmonary arterial pressure in association with variable degrees of pulmonary vas-
cular remodeling, vasoconstriction, and in situ thrombosis. This leads to increased 
pulmonary vascular resistance and eventual right heart failure and death. A greater 
understanding of the complex pathobiology of PAH is essential for the future devel-
opment of new therapeutic options. The following is a brief review of this 
pathobiology.  

    13.2   What Is Normal? 

 Normal pulmonary arteries have a thin media of circular muscle whose thickness is 
less than 5% of the diameter of the vessel  [  1  ]  (Fig.  13.1 ). Consequently, under phys-
iological conditions, the pulmonary circulation is characterized by low pressure and 
low vascular resistance. An exhaustive systemic review of the literature  [  2  ]  that 
included data from 1887 healthy individuals enrolled in 47 studies from 13 coun-
tries revealed that the mean pulmonary artery pressure (mPAP) at rest was 
14.0 ± 3.3 mmHg, and this was independent of sex and ethnicity and only slightly 
infl uenced by age (<30 years: 12 ± 3.1 mmHg, >50 years: 14.7 ± 4.0 mmHg).  

 Therefore, if the upper limit of normal is defi ned by the mean plus two times the 
standard deviation, then the upper limit for the mPAP at rest in healthy subjects is 
20.6 mmHg; this is considerably lower than the established defi nition for pulmonary 
hypertension of >25 mmHg. This same systematic review  [  2  ]  showed that the mPAP 
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with exercise was dependent on age, exercise type, and exercise intensity, making it 
diffi cult to establish a threshold value that would accurately defi ne exercise-induced 
pulmonary hypertension. As a result, the former exercise criterion (>30 mmHg) was 
abandoned during the Fourth World Symposium on Pulmonary Hypertension in 
Dana Point  [  3  ] . Although modestly elevated mPAPs in the setting of chronic lung 
diseases are often associated with a poor prognosis  [  4–  7  ] , the signifi cance of a “bor-
derline” mPAP (20–25 mmHg) in subjects that are otherwise healthy remains unclear. 
This highlights the importance of the clinical assessment and the need for early bio-
markers as compared to a focus on hemodynamics alone, especially since these data 
suggest that the prevalence of individuals with an mPAP >25 mmHg will be substan-
tially higher than the known prevalence of PAH  [  2,   8  ] .  

    13.3   The Pathologic Lesion 

 The histologic fi ndings in PAH are characterized by variable intimal hyperplasia, 
medial hypertrophy, adventitial proliferation, and fi brosis culminating in concentric 
obliterative lesions (Fig.  13.2 ) that occur in close proximity to plexiform lesions 
(Fig.  13.3 ). The plexiform lesion results from neo-intimal proliferation and pro-
gresses from a cellular to fi brotic lesion with advanced disease  [  9  ] . It is made up of a 
predominance of endothelial cells in different stages of vascular organization. The 
endothelial cells in a plexiform lesion express growth factors typically seen in angio-
genesis (vascular endothelial growth factor and hypoxia inducible factor). Therefore, 
the disease state might represent an abnormal form of angiogenesis  [  10  ] . Pulmonary 
vascular remodeling has also been associated with in situ thrombosis and infi ltration 
by infl ammatory and progenitor cells  [  9,   11  ] . In idiopathic PAH (IPAH), these histo-
logic abnormalities are heterogeneous in their distribution and prevalence within the 

  Fig. 13.1    Normal pulmonary 
arteriole    (Van Giesen elastic stain) 
fl anked by a normal bronchiole (the 
latter at the 11 o’clock position) 
courtesy    of Ellen Reimer, M.D., 
J.D., Assistant Professor of 
Pathology and Laboratory Medicine, 
Medical University of South 
Carolina.       
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lungs and typically spare the airway, veins, bronchial circulation, capillaries, and 
systemic vasculature  [  12  ] .    

    13.4   PAH is a Disease of Resistance Resulting in Right 
Heart Failure 

 As the vascular pathology progresses, the pulmonary vascular resistance (PVR) 
increases and pulmonary artery pressure rises in concert in order to maintain cardiac 
output. As long as the right ventricle is able to compensate for the resistance, the pres-
sure continues to increase as the PVR increases. When the contractile reserve of the 
right ventricle (RV) is exhausted, right ventricular systolic failure ensues. A varying 
degree of right ventricular diastolic dysfunction is also present in pulmonary hyper-
tension and is related to RV muscle mass and after-load and correlates with parameters 
of disease severity. The combination of reduced RV output and diastolic dysfunction 
enhances diastolic interdependence, severely impairing left ventricular fi lling and ulti-

  Fig. 13.3    Plexiform lesions 
characteristic of PAH (Van 
Giesen elastic stain, 10× 
objective) courtesy of Russel 
Harley, M.D., Professor of 
Pathology and Laboratory 
Medicine, MUS and 
Chairman, Dept. of 
Pulmonary and Mediastinal 
Pathology, AFIP       

  Fig. 13.2    Concentric 
obliterative lesion 
characteristic of PAH. There 
is intimal proliferation with 
encroachment on the lumen. 
Note a plexiform lesion to the 
left of the artery (at the 
9 o’clock position) (Van 
Giesen elastic stain, 
40× objective) courtesy of 
Russel Harley, M.D., 
Professor of Pathology and 
Laboratory Medicine, MUS 
and Chairman, Dept. of 
Pulmonary and Mediastinal 
Pathology, AFIP       
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mately resulting in hemodynamic deterioration  [  13  ] . Consequently, prognostic indica-
tors are generally related to right ventricular  function and include: clinical and 
echocardiographic fi ndings of right ventricular failure/dysfunction, exercise tolerance, 
functional class, serum concentrations of B-type natriuretic peptide, and hemodynam-
ics (right atrial pressure, cardiac index)  [  14  ] . 

 With longstanding PAH, the right ventricle attempts to revert to the fetal/neonatal 
phenotype and becomes hypertrophied (RVH) allowing for ejection against an 
increased pulmonary vascular resistance. For example, in RVH, phosphodiesterase 
type-5 (PDE-5), which was expressed in the fetal RV, is selectively reexpressed  [  15  ] . 
In addition, there appears to be a metabolic switch to glycolysis with increased 
expression of the glucose transporter type 4 (GLUT4) and increased activation of 
adenosine monophosphate (AMP)–activated protein kinase and pyruvate dehydroge-
nase kinase  [  16  ] .  

    13.5   Classification 

 Pulmonary hypertension was previously classifi ed into two categories: primary pul-
monary hypertension or secondary pulmonary hypertension, depending on the 
absence or the presence of identifi able causes or risk factors. The diagnosis of pri-
mary pulmonary hypertension was one of exclusion after ruling out all other causes 
for PH. Subsequent classifi cation schemes have attempted to create categories of 
PH that share pathologic and clinical features as well as similar therapeutic options. 
These classifi cation schemes have allowed investigators to conduct clinical trials in 
well-defi ned groups of PAH patients with a shared underlying pathogenesis result-
ing in nine approved therapies. The more inclusive category of PAH has also 
afforded increased opportunities for treatment of some rare forms of PAH that were 
previously too rare for individual treatment studies. The most recent classifi cation 
scheme was a product of the 4th World Symposium on PH held in 2008 in Dana 
Point, California  [  17  ]  (Table  13.1 ).  

 Unfortunately, a limitation of these classifi cation schemes is the fact that the 
many patients with PH have “multifactorial pulmonary hypertension.” The clini-
cian is thus faced with treating PH patients with a variety of clinical scenarios that 
often include features from more than one of the WHO groups. For example, there 
may be some elevation of pulmonary venous pressures, some obstructive or 
restrictive lung diseases, or some valvular heart disease that under usual clinical 
presentations would not account for PH severity. These “out of proportion” PH 
patients are not included in clinical trials; therefore, there is a paucity of data 
pertaining to the safety and effi cacy of conventional PAH therapies in this popula-
tion. There are also different survival curves for different types of PAH. For exam-
ple, patients with congenital heart disease typically have an improved survival 
compared to patients with IPAH, whereas patients with connective tissue disease 
have a worse survival  [  18  ] . This highlights another limitation of the classifi cation 
scheme. Although the different types of PAH share similar pathobiology, there are 
key differences that include different responses of the right ventricle (congenital 
heart disease), differences in the pathologic lesion (absence or reduced presence 
of the plexiform lesion seen in the connective tissue diseases), concomitant left 
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ventricular diastolic dysfunction and/or pulmonary fi brosis (commonly seen in 
scleroderma), differing response to vasodilatation, hyperdynamic/high fl ow states 
(congenital heart disease, portopulmonary hypertension, and chronic hemolysis), 
and other comorbidities seen in all of the “associated” forms of PAH. Unfortunately, 
what is known about the pathobiology of PAH largely stems from research on 
patients with IPAH or animal models that are meant to represent IPAH.  

    13.6   Pathobiology 

 The pathobiology of PAH is thought to result from a multiple-hit hypothesis  [  19  ]  
involving the interaction of a predisposing state interacting with an inciting stimu-
lus. This results in the alteration of various pathways and mediators (Table  13.2 ) 
that lead to vascular constriction, cellular proliferation, and a pro-thrombotic state, 
ultimately leading to the pathologic lesion of PAH and its clinical sequelae.  

    13.6.1   Genetics 

 Several genotypes have been associated with heritable PAH. These include muta-
tions in bone morphogenetic protein receptor II (BMPR2), active-like kinase type-1 
(ALK-1), and endogolin  [  20  ] . 

 BMPR2 mutations are seen in 70–80% of patients with heritable PAH, but are 
relatively uncommon in patients with associated PAH  [  20,   21  ] . Fortunately, pene-

   Table 13.1    Updated clinical classifi cation of pulmonary hypertension   
 1. Pulmonary arterial hypertension (PAH) 
  1.1 Idiopathic PAH 
  1.2 Heritable 
  1.2.1 BMPR2 
  1.2.2 ALK1, endoglin 
  1.2.3 Unknown 
  1.3 Drug or toxin-induced 
  1.4 Associated with 
  1.4.1 Connective tissue diseases 
  1.4.2 HIV infection 
  1.4.3 Portal hypertension 
  1.4.4 Congenital heart diseases 
  1.4.5 Schistosomiasis 
  1.4.5 Chronic hemolytic anemia 
  1.5 Persistent pulmonary hypertension of the newborn 

 1 ¢ . Pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis 
 2. Pulmonary hypertension owing to left heart disease 
 3. Pulmonary hypertension owing to lung disease and/or hypoxia 
 4. Chronic thromboembolic pulmonary hypertension (CTEPH) 
 5. Pulmonary hypertension with multifactorial mechanisms 

  Adapted from Simonneau et al.  [  17  ]   
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trance is low, and only approximately 25% of carriers will go on to develop PAH 
 [  22  ] . The mechanism of BMPR2 mutations is felt to be largely a result in defective 
SMAD signaling, which results in vascular proliferation and suppression of 
apoptosis. 

 Like BMPR2, Activin-like kinase type-1 and endogolin are also members of the 
transforming growth factor-beta (TGF- b ) super-family and are located on endothe-
lial cells. Mutations in ALK-1 and/or endogolin are associated with the autosomal 
dominant disorder hereditary hemorrhagic telangiectasia and PAH  [  23  ] . 

 Research into epigenetic mechanisms (gene methylation) and single nucleotide 
polymorphisms with a current focus on the serotonin transporter (SERT)  [  24  ] , 
voltage-gated potassium channels (Kv1.5)  [  25  ]  and TRPC6 (Transient receptor 
potential cation channel, subfamily C, member 6)  [  26  ]  is currently underway with 
hopes to explain other forms of heritable PAH and/or enhanced disease 
susceptibility.  

    13.6.2   Cellular Mediators and Pathways 

 PAH results from an imbalance that favors vasoconstriction, thrombosis, and mito-
genesis; restoration of this balance by inhibition of endothelin and thromboxane or 
augmentation of nitric oxide and prostacyclin forms the basis of today’s current 
therapies. Ongoing research of other mediators and pathways (Table  13.2 ) promises 
new targets for novel therapies. 

    13.6.2.1   Prostacyclin 
 Prostacyclin (PGI 

2
 ) is a product of endothelial cells as a result of the action of pros-

tacyclin synthase on arachidonic acid. Prostacyclin relaxes smooth muscle by 
increasing intracellular cyclic AMP (cAMP). It is also an inhibitor of platelet aggre-
gation and smooth muscle cell proliferation. Patients with PAH have increased 
excretion of urinary metabolites of thromboxane and decreased excretion of urinary 
metabolites of prostacyclin when compared with normal controls  [  27  ] . Likewise, 
there is reduced prostacyclin synthase activity in patients with PAH  [  28  ] .  

   Table 13.2    Mediators and 
pathways in PAH   

 Increased activity  Decreased activity 

 Endothelin-1  Prostacyclin 
 Serotonin  Prostacyclin synthase 
 Thromoxane A 

2
   Nitric oxide 

 Angiopoietin-a  Nitric oxide synthase 
 Plasminogen activator 
inhibitor-1 

 Vasoactive intestinal peptide 

 Growth factors  Voltage-gated potassium channels 
 Oxidant stress  Fibrinolysis 
 Infl ammation 
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    13.6.2.2   Endothelin 
 Endothelin-1 (ET-1) is synthesized and secreted by endothelial cells and is metabolized 
in the normal lung. It is a potent acute vasodilator and chronically stimulates cellular 
proliferation and fi brosis. Patients with PAH have increased plasma levels of endothe-
lin-1 and decreased clearance when compared to normal controls; furthermore, levels 
of ET-1 correlate with severity of PAH and prognosis  [  29,   30  ] . Endothelin-1 immuno-
reactivity is increased in pulmonary arteries of all sizes in subjects with PAH  [  31  ]  and 
acts on two different endothelin-1 receptors: ETA and ETB. Both receptors are located 
on vascular smooth muscle cells. ETB is also expressed on the endothelial cell. Both 
ETA and ETB receptors mediate vascular smooth muscle proliferation. ETA receptors 
also mediate vasoconstriction, whereas ETB receptors may have a role in either vaso-
constriction via actions on smooth muscle receptors or vasodilation and clearance via 
actions on endothelial cells  [  31  ] .  

    13.6.2.3   Nitric Oxide 
 Nitric oxide (NO) is a potent vasodilator that is produced by endothelial cells from 
arginine by nitric oxide synthase and acts on the vascular smooth muscle cells via 
cyclic guanosine monophosphate (cGMP). Phosphodiesterase-5 degrades cGMP, 
thus counteracting this vasodilatory pathway. Patients with PAH have decreased 
plasma levels of nitric oxide metabolites  [  32  ] ; likewise, endothelial nitric oxide 
synthase (eNOS) expression is reduced in the pulmonary arteries  [  33  ] .  

    13.6.2.4   Serotonin 
 Serotonin (5-HT) is a smooth muscle mitogen that is transported into cells primarily 
via serotonin transporter (SERT, 5-HTT). Elevated plasma levels of serotonin and 
increased SERT function  [  34,   35  ]  have been observed in patients with PAH. 
Administration of the selective serotonin reuptake inhibitor (SSRI) fl uoxetine, 
which inhibits SERT uptake of serotonin, results in a decrease in serotonin uptake 
when compared to controls indicating that the increased uptake of serotonin is 
through the SERT pathway  [  34  ] . The expression of the serotonin receptors is also 
increased in PAH and mediates vasoconstriction and vascular proliferation  [  35  ] .  

    13.6.2.5   Ion Channels 
 Downregulation of the expression and activity of voltage-gated potassium channels, 
especially Kv1.5, is common in PAH, particularly in the resistance arteries that are 
the major site of pathology. Not only do these channels regulate the resting mem-
brane potential important for controlling vascular tone, but through the regulation of 
intracellular potassium, these channels also affect proliferation and apoptosis and 
thus vascular remodeling  [  12  ] . These channels are inhibited by a number of stimuli 
including chronic hypoxia and dexfenfl uramine, both of which have been impli-
cated in the development of PAH  [  12  ] .  

    13.6.2.6   Coagulation 
 As a result of endothelial dysfunction, abnormalities of the coagulation cascade, 
and disordered platelet function, a number of procoagulant alterations in patients 
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with PAH have been identifi ed. These include increased levels of von Willebrand 
factor, plasma fi brinopeptide A, plasminogen activator inhibitor-1, serotonin, and 
thromboxane and decreased levels of tissue plasminogen activator, thrombomodu-
lin, NO, and PGI 

2
   [  14  ] .  

    13.6.2.7   Vasoactive Intestinal Peptide 
 Vasoactive intestinal peptide (VIP) is a member of the glucagon-growth hormone-
releasing super-family and increases cardiac output, scavenges oxygen free radical 
species, inhibits platelet activation, is a potent vasodilator and inhibits the prolifera-
tion of pulmonary artery smooth muscle cells  [  12  ] . Reduced serum and lung levels 
of VIP associated with increased VIP receptor expression and receptor-binding 
affi nity in pulmonary artery smooth muscle cells in patients with PAH compared 
with controls suggests that VIP may be an important mediator  [  36  ] .  

    13.6.2.8   Inflammation 
 There is increasing evidence for the role of infl ammation in the pathogenesis 
of PAH. This includes the presence of perivascular infl ammation as well as infl am-
matory cells within plexiform lesions, autoantibodies to endothelial cells and fi bro-
blasts, and raised cytokine (interleukin-1 b  and interleukin-6) and chemokine 
levels  [  12,   37  ] .    

    13.7   In Conclusion 

 In conclusion, PAH is a panvasculopathy that begins in the lumen of the pulmonary 
artery and extends through the adventitia. The pathobiology includes excesses of 
vasoconstriction, thrombosis, and mitogenesis, resulting in concentric obliteration 
of pulmonary arteries, formation of the plexiform lesion, increased pulmonary vas-
cular resistance, right heart failure, and death. PAH may occur as a result of genetic 
mutations or polymorphisms, coexisting disease, and/or environmental exposures. 
As a result of a better understanding of the pathobiology of PAH, and the interplay 
between multiple pathways, novel therapeutic targets and therapeutic strategies are 
under development that hopefully will lead to a cure.      
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 The pathophysiology of PAH is not fully elucidated and no curative treatment is yet 
available. However, the presence of infl ammatory cells and the intense release of 
infl ammatory mediators in pulmonary PAH lesions, associated with the high level 
of pro-infl ammatory cytokines and of autoantibodies targeting vascular components 
in the sera of patients, raise the question of the involvement of infl ammation and 
autoimmunity in the initiation, the perpetuation, and/or the worsening of the  disease. 
This review covers PAH immunopathological aspects with a special emphasis on 
the role of infl ammation on the pulmonary vascular remodeling, the potential immu-
nopathological mechanisms of PAH, the relevance of infl ammatory mediators as 
prognostic and predictive markers in PAH, and on the immunomodulatory proper-
ties of current PAH therapies. 

    14.1   Introduction 

 Pulmonary arterial hypertension (PAH) belongs to a heterogeneous group of 
 progressive precapillary diseases characterized by an increase in resting mean pul-
monary arterial pressure above 25 mmHg. PAH occurs as a consequence of small 
pulmonary arterial obstruction that leads to an impaired blood fl ow in the pulmo-
nary vascular bed. The increased pulmonary vascular resistances (PVR) result in a 
compensatory right ventricular hypertrophy (RV), followed by right cardiac failure 
in the late and symptomatic phase of this severe disease  [  1,   2  ] . 

 PAH can be idiopathic (IPAH), heritable, or associated with other diseases and 
drugs (connective tissue diseases, congenital heart disease, human immunodefi -
ciency virus (HIV) infection, portal hypertension, drug-induced anorexia, etc.)  [  3  ] . 
Germline mutations in the bone morphogenetic protein receptor type 2 ( BMPR2 ) 
are detected in 10–40% of IPAH and in 58–74% of heritable PAH  [  4  ] . The current 
PAH therapies are essentially focused on decreasing the PVR by stimulating pulmo-
nary vasodilation (prostacyclin analogues, inhibitors of the phosphodiesterase-5, 
and endothelin receptor antagonists)  [  2  ] . These treatments improve disease symp-
toms and the quality of life in a majority of PAH patients. Nevertheless, new treat-
ments targeting other PAH pathophysiological mechanisms would be useful to slow 
down the disease progression. One of the novel pathways under evaluation is 
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 represented by the tyrosine kinase inhibitors (TKI), such as imatinib and sorafenib, 
that have been shown to partially reverse PAH in different animal models  [  5,   6  ] . One 
of the benefi cial effects of TKI relies on inhibition of the platelet-derived growth 
factor (PDGF) receptor, one of the signaling pathways linked to growth factors 
implicated in PAH pathophysiology  [  7  ] . Even though the use of TKI has been sug-
gested to have benefi cial effects in few clinical cases  [  8  ] , it has clearly been shown 
that imatinib and sorafenib might induce cardiac toxicity, leading to serious safety 
problems in a disease characterized by underlying cardiac failure  [  9,   10  ] . 

 Another therapeutic option would be to target PAH immunopathological compo-
nent. Increasing evidences suggest that infl ammatory mechanisms could play a role in 
human and experimental PAH genesis. Increased serum levels of pro- infl ammatory 
cytokines and chemokines (cytokines involved in chemoattraction of leukocytes) 
have been measured in IPAH patients, without any underlying infl ammatory, infec-
tious, or recognized autoimmune disease by defi nition  [  11–  13  ] . In IPAH, the pul-
monary vascular lesions are sites of intense chemokine production often associated 
to infl ammatory cells recruitment  [  14  ] . Circulating autoantibodies, in particular 
anti-endothelial cells and anti-fi broblasts, have been reported in 10–40% of IPAH 
patients  [  15,   16  ] , suggesting a possible role of autoimmunity in the pathogenesis of 
PAH pulmonary vascular lesions. The importance of infl ammatory mechanisms in 
PAH pathophysiology has also been highlighted by the kinetics of infl ammatory 
patterns in standard experimental models, such as monocrotaline (MCT)-induced 
and hypoxia-induced PAH in rats. In these models, it has been clearly shown that 
infl ammation precedes vascular remodeling and PAH. It has also been demonstrated, 
particularly in MCT-induced PAH, that immunosuppressive therapies prevent PAH 
development and reverse totally or partially PAH lesions  [  17–  19  ] . Finally, immune 
mechanisms are obviously implicated in the etiology of PAH associated with auto-
immune diseases or with HIV infection  [  14  ] , in which PAH develops in a clear 
infl ammatory context. In these cases, immunosuppressive or anti-infl ammatory 
treatments signifi cantly improve hemodynamic and clinical parameters  [  20,   21  ] , 
highlighting the role of immune mechanisms in PAH genesis or progression. 

 This chapter covers PAH immunopathological aspects and their infl uence on pul-
monary vascular remodeling.  

    14.2   Inflammation and Pulmonary Vascular Remodeling 

 The classical form of arterial infl ammation, that is arteritis with fi brinoid necrosis, 
as described in the Heath and Edwards’ classifi cation of PAH associated with con-
genital heart diseases, is less frequently observed nowadays  [  22  ] . Classical arteritic 
PAH lesions comprise transmural infl ammatory cell infi ltrates with focal vessel wall 
necrosis and fi brinoid insudation, a histological pattern which has been etiologically 
linked with particularly severe forms of PAH. The histological “infl ammatory 
mark,” which is much more frequent if not common, corresponds to perivascular 
infl ammatory infi ltrates, mainly constituted of T lymphocytes, of mast cells, and of 
macrophages  [  14  ] . Furthermore, it has been shown that immature dendritic cells are 
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present within the perivascular infi ltrates of idiopathic PAH lungs. These dendritic 
cells could contribute to the immune disorders observed in PAH  [  23  ] . Whether these 
infl ammatory infi ltrates are involved in the pathobiology of PAH or whether they 
are only epiphenomena linked to other pathologic mechanisms leading to pulmo-
nary vascular remodeling is still unclear. However, according to the experience 
gained in our national reference center which gives us access to a large collection of 
heart-lung samples from severe PAH, infl ammatory lesions seem more often associ-
ated to “active” and cellular arterial remodeling, rather than cicatricial-like fi brotic 
modifi cations, suggesting an early role of infl ammation in disease progression. 

 In the recent past, there has been increasing scientifi c evidence for infl ammatory 
involvement in the initiation of pulmonary vascular remodeling in pulmonary hyper-
tension. In this fi eld, animal models have demonstrated their effi ciency in dissecting 
the kinetics of events leading to PAH. In the rat PAH model induced by monocrota-
line (MCT), a potent vegetal toxin, an early endothelial injury is followed by a 
marked pulmonary vascular infl ammation during the fi rst 2 weeks post-injection. 
Subsequently, obliterative vascular remodeling and severe PAH are present at 3 
weeks post-injection, leading to right heart failure 1 week later  [  24  ] . In this model, a 
number of immunosuppressive and anti-infl ammatory approaches have been suc-
cessful in treating or preventing the development of the disease  [  17–  19,   25  ] . Hypoxia-
induced PAH involves perivascular infl ammatory infi ltrates, as well, and the 
importance of this infi ltration is proportional to the extent of pulmonary vascular 
remodeling  [  25  ] . PAH also develops spontaneously in transgenic mice overexpress-
ing specifi cally in the lungs the pro-infl ammatory cytokine IL-6  [  26  ] . Knockdown of 
genes that are crucial for the integrity of the pulmonary vasculature reciprocally 
leads to perivascular infl ammatory infi ltration  [  27,   28  ] . More generally, pulmonary 
vasculature is sensitive to infl ammation, and remodels frequently in infl ammatory 
conditions, even though it does not necessarily lead to a recognized PAH. For 
instance, experimental allergic asthma is associated with pulmonary vascular thick-
ening without PAH  [  29,   30  ] , and infection of macaques with a chimeric viral con-
struct containing the HIV nef gene in a simian immunodefi ciency virus (SIV) 
backbone (SHIV-nef)  [  31  ] , or injection of  Schistosoma mansoni  eggs into mice  [  32  ] , 
induces pulmonary vascular lesions similar to those described in human explanted 
PAH lungs. However, this vascular remodeling is not associated with hemodynamic 
alteration in the analyzed time-course (which could have been too short). In this 
context, it seems that pulmonary vascular smooth muscle cell (SMC) proliferation is 
a physiological response to infl ammatory stimuli. Indeed, it has been shown that 
these cells are able to proliferate and/or migrate in vitro, in response to some pro-
infl ammatory cytokines/chemokines  [  13,   33,   34  ] . When pulmonary infl ammation is 
dysregulated, one can hypothesize that vascular remodeling switches from an adap-
tive and asymptomatic form to an obliterative and symptomatic condition. Chronicity 
and loss of tolerance seem to be key elements responsible for this imbalance. Swain 
et al.  [  35  ]  have recently highlighted this point of view, showing that infection of 
immunocompetent mice with  Pneumocystis pneumonia  leads to a strong pulmonary 
infl ammation associated with a transient PAH linked to a temporary thickening of the 
pulmonary vasculature. Conversely, when CD4 T cells are temporally depleted in 
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 Pneumocystis -infected mice, and then allowed to recover, the prolonged  infl ammation 
results in PAH that persists even after clearance of  Pneumocystis . A genetic predis-
position can also favor the switch from a transient and asymptomatic vascular remod-
eling to a fi xed and symptomatic condition. Indeed, the pulmonary endo thelial injury 
and infl ammation caused by exposure to MCT combined with intratracheal instil-
lation of replication-defi cient adenovirus expressing 5-lipoxygenase (MCT + Ad5LO) 
has no hemodynamic effect in wild-type mice (it is known that mice are resistant to 
MCT-induced PAH) whereas it induced persistent PAH in heterozygous BMPR2-
mutant mice  [  28  ] . Moreover, Hagen et al.  [  36  ]  have demonstrated both in vitro and 
in vivo a complete negative feedback loop between IL-6 and BMP, suggesting that an 
important consequence of BMPR2 mutations may be poor regulation of cytokines 
and thus susceptibility to an infl ammatory second hit. Hence, individual genetic pre-
disposition associated to a switch from resolved to chronic uncontrolled infl amma-
tory condition could result in persistent pulmonary vascular remodeling and may 
precipitate the occurrence of PAH.  

    14.3   PAH Immunopathological Mechanisms 

 Besides infl ammation in the broader sense, fi ne targeted immune mechanisms are 
characterized by a specifi c response to an antigen. These mechanisms are favored 
by an infl ammatory background and refer to adaptive immunity. The effectors of the 
immune response are the T and B lymphocytes which are selected in the thymus and 
in the bone marrow, respectively, to react against the non-self antigens, and are acti-
vated only in the presence of foreign antigens from pathogens and/or different from 
self-antigens. When adaptive immunity attacks the self-antigens, there is a break-
down of self-tolerance, and, as a consequence, there is the development of an auto-
immune response (i.e., directed against self-antigens) that can give rise to an 
autoimmune disease. The self-tolerance is controlled in the periphery by a particular 
population of T lymphocytes called regulatory T lymphocytes (Treg), which develops 
in the thymus and plays a role in the pathogenesis of several infl ammatory and auto-
immune diseases. Tregs are involved in the feedback control of the immune response 
and in the return to homeostasis. They are also known to dampen autoreactive 
responses and may delay the onset and progression of autoimmune disorders  [  37,   38  ] . 
Reduced Treg cell count and/or defective suppressor function has been observed in 
humans, namely patients with systemic lupus erythematosus, juvenile idiopathic 
arthritis, autoimmune type II polyglandular syndrome, and multiple sclerosis  [  39–  44  ] . 
Interestingly, the  BMPR2  pathway plays a role in T cell thymic development  [  45  ] , 
which could contribute to an intrinsic defect in the function and/or number of Treg 
in PAH  BMPR2  mutation carriers. Little is known about the role of Treg in pulmo-
nary diseases, particularly in PAH. Two recent studies showed a Treg increase in 
peripheral blood in PAH patients  [  46,   47  ] . Although these studies raise new hypoth-
esis in PAH physiopathology, the data remain descriptive and Treg identifi cation 
needs to be better defi ned  [  48  ] . In PAH, the Treg function has not yet been explored. 
It also remains to investigate the presence of these cells in patients’ lungs, which 
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represent an important infl ammatory site where the self-tolerance breaks and auto-
immunity can potentially take place. 

 The hypothesis that autoimmunity participates in PAH pathogenesis is still 
largely debated. According to current knowledge, it is particularly diffi cult to assess 
if such autoimmunity would be cause or effect of the disease. Nevertheless, since 
almost 50 years, it is recognized that severe PAH is associated with autoimmune 
disorders or chronic infections, leading to immunodefi ciency (Table  14.1 ). One trait 
in common between these immune disorders is a confi rmed or latent immunodefi -
ciency that could lead to immune dysregulation and activation of pathogenic T and 
B cells. It is important to note that patients with an associated immune disorder 
present pulmonary lesions that cannot be discriminated from those encountered in 
patients with IPAH, and respond to the same treatments, indicating similar effector 
mechanisms. It is clear that T and B cells are present in vascular lesions  [  61  ] , and 
that dendritic cells invade vascular lesions in both experimental PAH and human 
IPAH  [  23  ] . Immunoglobulin G deposits have even been detected – in and around – 
the plexiform lesions in patients with IPAH  [  45  ] . Hence, all the effectors of a local 
immune response are present around the remodeled vessels in patients with IPAH.  

 Little progress has been achieved in understanding how immune aggression could 
contribute in PAH pathogenesis. However, the search of autoantibodies in patients 
with IPAH, or with PAH associated with an autoimmune disease, has become a 
growing    fi eld of investigation. It is estimated that 30–40% of patients with IPAH 
present anti-nuclear antibodies, and 10–15% of these patients have anti- phospholipid 
antibodies  [  62  ] . The latter are able to bind to and activate endothelial cells  [  63  ] . It has 
been  proposed that antibodies directed to vascular endothelium could promote 

   Table 14.1    Immune disorders linked to severe PAH   
 Incidence of PAH  References 

 Autoimmune disorders 
 Scleroderma  7–12%   [  49  ]  
 Mixed connective tissue 
disease 

 Rare, <1%   [  50  ]  

 Systemic lupus erythematosus  Rare and often multifactorial, 0.5–14%   [  51  ]  
 Sjögren syndrome  <50 reported cases   [  52  ]  
 Sarcoidosis  5%, Often multifactorial (interstitial pathology, 

mediastinitis, pulmonary arterial compression) 
  [  53  ]  

 Polymyositis/
dermatopolymyositis 

 Some cases reported   [  54  ]  

 Autoimmune thyroid disease  Frequent association, 30–50%   [  55  ]  
 Systemic vasculitis     Rare   [  56  ]  
 APECED syndrome  <10 cases described   [  57  ]  
 Chronic infections 
 HIV infections  0.1–0.5%   [  58  ]  
 Bilharziosis  Frequent in severe hepatosplenic forms of the 

disease 
  [  59  ]  

 Castleman’s disease associated 
with HIV infection 

 Some cases reported   [  60  ]  

  APECED syndrome: type-1 autoimmune polyendocrinopathy  
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endothelial cell apoptosis, and that endothelium aggression could initiate a dysfunc-
tion leading to uncontrolled proliferation  [  45,   64,   65  ] . Consequently, an altered com-
munication between endothelial cells and smooth muscle cells would lead to the 
development of the typical vascular lesions found in PAH, to remodeling and vascu-
lar dysfunction. Figure  14.1  integrates such an autoimmune mechanism, as central in 
the pathophysiology of PAH. A similar mechanism could operate in experimental 
models of PAH using VEGF-R antagonists, which induce early endothelial cell 
apoptosis, then compensated and relieved by uncontrolled endothelial cell prolifera-
tion  [  66  ] . Antibodies to endothelial cells are detected in autoimmune diseases associ-
ated to PAH, such as lupus and scleroderma  [  67,   68  ] . The prevalence of anti-endothelial 
cell antibodies has recently been estimated to 82% in patients with PAH associated 
to connective tissue disease  [  69  ] . In PAH associated to lupus and to Sjögren syn-
drome, antibody and complement deposits were  localized to the vascular wall  [  70, 
  71  ] . Another pretty favorable  condition to local autoimmunity is the presence of 

TRIGGERS

PULMONARY VASCULAR INFLAMMATION

PULMONARY VASCULAR DYSFUNCTION

PULMONARY VASCULAR REMODELING

RIGHT HEART HYPERTROPHY

Smooth muscle
cell dysfunction

Endothelial cell
dysfunction

– Autoimmunity
– HIV, severe infection

– Molecular mimicry
– Drugs, toxins...

– BMPR2, ALK-1
– 5-HTT

– HLA genes...

GENETIC
PREDISPOSITION

Autoantibodies Vascular injury

Inflammation

  Fig. 14.1    A model of disease progression in PAH. Different triggers intervening in susceptible 
subjects with genetic predisposition could lead to unresolved pulmonary vascular infl ammation. 
As a consequence, autoantibodies against vascular components are raised and can initiate and/or 
perpetuate a vicious circle of vascular injury, infl ammation, and autoimmunity, leading to endothe-
lial and smooth muscle cell dysfunction. Infl ammation and vascular dysfunction promote pulmo-
nary vascular remodeling, increase in the pulmonary vascular resistances and compensatory right 
heart hypertrophy       
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mastocytes in and around vascular lesions  [  72,   73  ]  as a source of IL-4 needed for 
local B cell expansion and as a link between immune and adaptive immune responses, 
namely within the context of autoimmunity  [  74  ] . All this is on top of the pro-infl am-
matory environment of PAH, with increased production of IL-1 and IL-6  [  11  ] , two 
proinfl ammatory cytokines involved in activation, proliferation, and differentiation 
of B cells. It is worth noting that patients with IPAH or with PAH associated to con-
nective tissue disease do not present autoantibodies directed to BMPR-II or ALK-1, 
indicating that a mechanism based on autoantibody attack of the BMPR-II pathway 
does not contribute to PAH development  [  75  ] .  

 More recently, systematic search of autoantibodies of the IgG type, directed 
against different components of the vascular wall (not only endothelial cells but also 
smooth muscle cells and fi broblasts), has been undertaken, as well as the search of 
the targets of these autoantibodies using proteomic approaches, in the purpose to 
identify biomarkers for the diagnosis and follow-up of PAH  [  15,   16,   76,   77  ] . Among 
the 21 targets recognized in the fi broblasts, keys actors involved in cell biology and 
the maintenance of homeostasis are represented  [  16  ] . It is important to note that this 
approach identifi es not only autoantibodies against vascular wall components, but 
that the differential analysis which is performed refl ects in addition pathophysiolog-
ical changes of the different cell types brought into play. However, among all the 
autoantibody targets identifi ed, it remains to defi ne which ones are recognized by 
pathogenic antibodies that would infl uence the vascular function and/or play a role 
in remodeling. It is noteworthy that the proteomic approach using bi-dimensional 
gels does not favor the detection of targets present at the cell membrane, which does 
not exclude the potential pathogenic role of autoantibodies directed against cyto-
plasmic or nuclear components. Such autoantibodies would emerge following ini-
tial endothelial cell aggression through a toxic compound, inducing endothelial cell 
apoptosis and neoantigen exposure. Yet, a recent study has confi rmed the preva-
lence of anti-endothelial cell autoantibodies that recognize cell surface components 
in patients with IPAH (62% prevalence) or associated PAH (prevalence 78%)  [  65  ] . 
The presence of these autoantibodies may indicate the possibility of humoral mech-
anisms in the pathogenesis of PAH. It remains that such autoantibodies should be 
considered as a circumstantial observation associated to the disease, and do not 
constitute a formal proof of autoimmunity. A direct demonstration of pathogenicity 
is required in experimental models of PAH, and by serum or cell transfer from 
human to animals.  

    14.4   Interest in Inflammatory Mediators as Prognostic 
and Predictive Markers in PAH 

 Previous chapters highlighted the likely involvement of infl ammation and autoim-
munity in the progression of PAH, favoring and accompanying pulmonary vascular 
remodeling, from early stages of disease development to late stages characterized 
by extensive vascular obstruction and right heart failure requiring lung or heart-lung 
transplantation. 
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 In clinical practice, these observations fi nd expression in several studies 
demonstrating a relationship between circulating levels of some infl ammatory 
mediators and patient survival. Quark et al.  [  78  ]  recently showed that circulating 
CRP levels were increased in chronic thromboembolic pulmonary hypertension 
(CTEPH) and PAH patients compared with those in control subjects, and that CRP 
levels were correlated with PAH severity and patient survival. In additional support 
to this observation of high CRP levels that could be interpreted as a marker of hemo-
dynamic severity and right heart failure, Soon et al.  [  79  ]  showed that the circulating 
levels of interleukin (IL)-1 b , -2, -4, -6, -8, -10, -12p70 and TNF- a  were increased 
in IPAH patients and that levels of IL-6, -8, -10, and -12p70 allowed the prediction 
of patient survival – high levels of these cytokines being associated with poor prog-
nosis, without any correlation with hemodynamic data in these patients. These 
observations possibly reveal independent markers of right heart function, that are 
potentially involved in the pathobiology of IPAH. Circulating levels of LIGHT 
( Lymphotoxin-like Inducible protein that competes with Glycoprotein D for 
Herpesvirus entry mediator on T lymphocytes ), a chemokine implicated in vascular 
infl ammation  [  80  ] , were also associated with PAH patient mortality  [  81  ] , high lev-
els predicting poor prognosis. In this study, the prothrombotic action of LIGHT on 
pulmonary vascular endothelium was also highlighted, that could explain the harm-
ful effect of LIGHT on PAH vasculature. Another chemokine, CXCL10/ Interferon 
gamma-induced protein 10 kDa  (IP-10), which is important for the recruitment of 
activated T lymphocytes, is also increased in the serum of PAH patients  [  82  ] . 
However, patients presenting the highest circulating levels of CXCL10 do survive 
better than those with lower levels. As CXCL10 is known to hold anti-angiogenic 
properties, its rise could be benefi cial to counterbalance the aberrant endothelial 
growth occurring in PAH.  

    14.5   Immunomodulatory Properties of Current 
PAH Therapies 

 Three therapeutic classes are currently used in the treatment of PAH: prostacyclin 
(epoprostenol) and its analogues (treprostinil, iloprost, beraprost), endothelial 
receptor antagonists (ERA) (bosentan, ambrisentan), and phosphodiesterase type 5 
inhibitors (iPDE5) (sildenafi l, tadalafi l). These treatments target endothelial dys-
function and induce vasodilation. However, they may also hold immunomodulatory 
properties, which could contribute to their effi cacy. 

 Prostacyclin and its analogues act on IP 
2
  receptors, inducing vasodilation and 

inhibition of platelet aggregation. Moreover, anti-infl ammatory properties of pros-
tacyclin have recently been discovered. Iloprost reduces dendritic cell migration and 
recruitment, and epoprostenol prevents CD4+ Th2 cells’ recruitment in animal 
models of asthma  [  83,   84  ] . Prostacyclin analogues inhibit also in vitro pro-infl am-
matory cytokines production by T lymphocytes  [  85  ]  and alveolar macrophage acti-
vation stimulated by LPS through NF-kappaB  [  86  ] . Moreover, prostacyclin 
analogues diminish in vitro the adhesion between lymphocytes and endothelial 
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cells, and decrease the expression of adhesion molecules and cytokines by a cAMP-
dependent mechanism  [  87  ] . Circulating levels of VCAM-1 were also decreased 
with a beraprost treatment in human diabetes mellitus  [  88  ] . Finally, treatment with 
epoprostenol signifi cantly decreases MCP-1 serum levels in PAH patients, a 
chemokine known to be elevated in this population  [  89  ] . Circulating neutrophils of 
PAH patients release much more infl ammatory mediators than those of the control 
population, and this production is reduced by iloprost treatment  [  90  ] . Moreover, 
endothelial cell activation is decreased in PAH patients treated by prostacyclin asso-
ciated with ERA, which supports its immunomodulatory role. Indeed, anti-infl am-
matory properties of prostacyclin and its analogues could constitute an additional 
benefi t in the treatment of PAH. However, due to these anti-infl ammatory proper-
ties, immunosuppression is not excluded, and increased risk of infection with pros-
tacyclin treatment needs to be considered  [  91,   92  ] . 

 As a potent vasoconstrictor, endothelin-1 (ET-1) also holds pro-infl ammatory 
effects through NF-kappaB activation  [  93  ] , increasing vascular permeability and 
activation of neutrophils  [  94  ] . Dual ET-A and ET-B receptors antagonists bosentan 
reduces vascular permeability in animal infl ammatory models  [  95  ] . Bosentan also 
decreases pro-infl ammatory cytokine expression in bronchoalveolar lavages 
through NF-kappaB inhibition  [  96  ] . Moreover, bosentan exposition of CRP-pre-
treated endothelial cells reduces signifi cantly the expression of adhesion molecules 
and MCP-1 production  [  97  ] . A treatment with a selective antagonist to ET-A recep-
tors, ambrisentan, decreases pro-infl ammatory genes expression in ischemia/reper-
fusion models, leading to a cytoprotective effect on vascular and neuronal 
microcirculation  [  98,   99  ] . ET-1 receptor blockade leads to maturation defect and 
alteration of antigen-presenting capacity of dendritic cells  [  100  ] . In PAH patients, 
a recent study demonstrated that the reduction of ICAM-1 and of IL-6    plasmatic 
levels that occurred after bosentan treatment correlated with a hemodynamic 
improvement  [  101  ] . 

 Immunomodulatory effects of iPDE-5 are linked to the cyclic GMP pathway. 
Treatment by sildenafi l decreases infl ammation, mucus production, and leukocyte 
infi ltration in animal models of airway infl ammation  [  102,   103  ] . Moreover, sildena-
fi l restores antitumoral immunity through su   ppression of arginase 1 and NO syn-
thase inducible expression – two enzymes required to activate immunosuppressor 
myeloid cells, the  myeloid-derived suppressor cells  (MDSCs) recruited by growing 
tumors  [  104  ] . No study on the immunomodulatory effects of iPDE-5 was reported 
in PAH patients. However, the potent anti-infl ammatory properties of the others 
iPDE5 (mainly iPDE4), their antiproliferative properties, and restoration capacity 
of endothelial function support the use of iPDE-5 use as potential treatment for 
autoimmune disease  [  105  ] . 

 The recent implication of PDGF signaling in the pathophysiology of PAH  [  7  ]  
focused attention to tyrosine kinase inhibitors (TKI) as a new therapeutic option in 
PAH management. Among these TKI, imatinib has anti-infl ammatory properties, 
inhibiting in vitro monocyte/macrophage development from bone marrow progenitors 
 [  106  ] , and affecting T lymphocytes and dendritic cells in their capacity to mount a 
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cytotoxic lymphocytic response  [  107,   108  ] . Imatinib also has antitumoral properties 
through activation of a specifi c type of dendritic cells recently identifi ed as  interferon-
producing killer dendritic cells  (IKDC)  [  109  ] . 

 In conclusion, current therapeutics of PAH act all along the infl ammatory pro-
cess, blocking adhesion molecules expression on endothelial cells, inhibiting the 
release of pro-infl ammatory cytokines and chemokines, and preventing the activa-
tion of effector cells such as lymphocytes and dendritic cells.  

    14.6   Conclusion 

 This chapter brings to light a unique sensitivity of the pulmonary vascular bed to 
infl ammatory stimuli. A deregulated and unresolved pulmonary infl ammation on 
the top of a genetic predisposition background could conduct to a persisting vas-
cular remodeling leading to PAH. In this context, some mediators of infl amma-
tion are correlated to the survival of patients suffering from this severe condition. 
Whether autoimmune manifestations are cause or worsening consequence of 
PAH deserves further in-depth examination. Only circumstantial data on associa-
tion between the presence of autoantibodies and the disease are currently avail-
able. A long road remains to be covered in order to assess the role of autoimmunity 
in PAH. 

 Several avenues could be explored:
   A better characterization of infl ammatory infi ltrates in patients  • 
  The search for defi cient immunoregulation, for example, a defect in regulatory • 
T cells  
  The formal proof that a tolerance breakdown toward an autoantigen expressed by • 
pulmonary vascular components could conduct to PAH  
  The search of pathogenic autoantibodies, and the proof of their mechanism of • 
action, with the possibility to transfer the disease from man to animal  
  The discovery of novel experimental models of PAH, involving autoimmune • 
mechanisms  
  The formal proof that autoimmunity infl uences vascular remodeling    • 
 In this line, a multifactor appraisal of the pathogenic process in PAH, in which 

infl ammatory mechanisms, namely autoantibodies directed to vascular wall compo-
nents, play a central role could be proposed (Fig.  14.2 ). The pulmonary environ-
ment being tolerogenic in nature, perturbation agents could act as triggering factors 
in a given genetic and environmental background. An initial acute infl ammation that 
is normally expected to resolve with return to homeostasis would conduct to the 
production of autoantibodies against vascular wall components, and would shift to 
chronic persisting    and chronic infl ammation, endothelial barrier breakdown, infi l-
tration by immune cells, local and chronic autoimmunity, and vascular remodeling 
culminating in PAH. Identifi cation of the factors that could trigger this irreversible 
process remains a major challenge to understanding the mechanisms of PAH, and to 
the proposal of novel therapeutic targets.       
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    15.1   Endothelin: An Endothelium-Derived Vasoconstrictor 

 In 1980, Robert Furchgott made the seminal observation that endothelial cells 
modulate vascular tone by releasing a vasodilator factor  [  1  ] , which was later identi-
fi ed as nitric oxide  [  2  ] . Only 1 year later, de Mey and Vanhoutte fi rst reported 
endothelium-dependent vasoconstriction  [  3–  5  ] . By the mid-1980s, several investi-
gators independently reported a peptidergic vasoconstrictor activity released from 
cultured endothelial cells  [  3,   6–  9  ] . After a combined effort of several Japanese 
groups led by Tomoh Masaki  [  10,   11  ] , sequences of the gene and the peptide 
encoding for endothelin were published in  Nature  in March 1988  [  12  ] . Today, 
endothelin still represents the most potent and long-lasting vasoconstrictor known 
in humans  [  13,   14  ] , being 100-times more potent than noradrenaline  [  15,   16  ] .  

    15.2   Molecular Biology and Biological Functions 
of Endothelin 

    15.2.1   The Endothelin Peptide Family 

 Endothelin-1 (ET-1) is a 21-amino acid peptide with a hydrophobic C terminus and 
two cysteine bridges at the N terminus and the main member of the endothelin 
 peptide family  [  3,   17  ] . Two structurally related peptides differing by two and six 
amino acids were identifi ed and termed endothelin-2 (ET-2) and endothelin-3 
 (ET-3), respectively; they were identifi ed shortly after the discovery of ET-1  [  17  ] . 

  ET-1  is produced by vascular endothelial  [  18  ]  and smooth muscle cells, airway epithe-
lial cells, macrophages, fi broblasts, cardiac myocytes, brain neurons,  pancreatic islets, 
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and also by other cells    (reviewed in  [  15,   19  ] ). Endothelial cell–specifi c overexpression of 
ET-1 in vascular endothelial cells causes hypertension-associated changes in the vascula-
ture, including hypertrophy and infl ammation  [  20–  22  ] . In contrast, endothelial cell–spe-
cifi c deletion of the preproendothelin gene is associated with hypotension  [  18,   22  ] ; this 
blood pressure–lowering effect of gene deletion is similar to that of vascular smooth 
muscle–specifi c deletion of the ET 

A
  receptor  [  18  ] . In endothelial cell–specifi c ppET-1 

null mice, plasma levels of ET-1 are reduced by about 90%, indicating that endothelial 
cells are indeed the major source of circulating ET-1  [  18  ] . Moreover, ET-1 tissue levels in 
organs such as the heart and the lung markedly reduced in these animals consistent with 
the notion that endothelial cells in these organs largely contribute to endothelin-1 produc-
tion in tissue  [  18  ] . 

  ET-2  is expressed in the ovary and in intestinal epithelial cells, and, among other 
functions, is involved in the regulation of lung alveolarization, thermoregulation, 
ovulation, and intestinal epithelial cell homeostasis, and thus possibly for infl amma-
tory bowel disease  [  23–  26  ] . 

  ET-3  is found in endothelial cells, brain neurons, renal tubular epithelial cells, 
and intestinal epithelial cells and mediates release of the vasodilators NO and pros-
tacyclin, among others  [  19  ] .  

    15.2.2   Endothelin-Converting Enzymes 

 The endothelin-1 precursors are processed by two proteases to create the mature 
active forms  [  19,   27  ]  (Fig.   15.1  ). The 212-residue preproendothelins are cleaved at 
dibasic sites by furin-like endopeptidase to form biologically inactive intermediates, 
namely 37- to 41-amino acid peptides termed pro- or big endothelins (big ETs) 
(Fig.   15.1  ). Processing is mediated by a family of membrane-bound zinc metallopro-
teases from the neprilysin superfamily, termed endothelin-converting enzymes 
(ECEs) (reviewed in  [  19  ] ). Depending on the cleaving enzyme (Fig.   15.1  ), 21-, 31-, 
or 32-amino acid isoforms with specifi c receptor activities are formed. In addition to 
these proteases, other enzymes such as vascular chymase  [  28–  30  ]  and non-ECE met-
alloproteinase  [  31  ]  must contribute    to the fi nal processing step, since in mice lacking 
both ECE-1 and ECE-2, the levels of mature endothelin peptides are reduced by only 
one-third  [  32  ] . Recent studies suggest that carboxypeptidase A (cathepsin A) plays 
an important role in degradation of the ECE product endothelin-1  [  33  ] . The role of 
ET-1 degradation in physiology and disease, however, remains yet to be studied.   

    15.2.3   Endothelin Receptors 

 In humans, two seven-transmembrane domain, G protein–coupled endothelin recep-
tors (ET 

A
  and ET 

B
 ) mediate the cellular activities of endothelins (reviewed in  [  34  ] ) 

(Fig.   15.1  ). It is currently not clear whether receptor dimerization into homo- or 
heterodimers  [  35  ]  plays a role of endothelin receptor activity and function in vivo 
such as endothelin effects on diuresis  [  23,   36  ] , or whether receptor dimerization is 
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affected by drug treatment. The ET 
A
  receptor shows sub-nanomolar affi nities for 

ET-1 and ET-2 and 100-fold lower affi nity for ET-3  [  19  ] . ET 
B
  has equal sub-nano-

molar affi nities for all endothelin peptides. The ET 
A
  receptor mediates constriction 

and growth, whereas the ET 
B
  receptor inhibits cell growth and vascular tone; the 

ET 
B
  receptor also functions as a “clearance receptor,” as indicated by the ET 

B
 -

dependent inhibition of the accumulation of intravenously administered, radio-
labeled ET-1 in tissue  [  15,   19  ] . This ET 

B
  receptor–mediated clearance mechanism 

is particularly important in the lung, which clears about 80% of circulating ET-1 
 [  15  ] . The ET 

A
  receptor can be considered the principal vasoconstrictor and growth-

promoting receptor, whereas the endothelial ET 
B
  receptor generally inhibits cell 

growth and vasoconstriction in the vascular system, with only few vascular beds 
expressing contraction-mediating ET 

B
  receptors in the media  [  15,   27  ] . The ET 

B
  

receptor is important for embryonic development, and its defi ciency is associated 

  Fig. 15.1    Biosynthetic pathways of endothelin peptides ET-1 
(1–21)

 , ET 
(1–31)

 , and ET 
(1–32)

  peptides 
following transcription of preproendothelin-1 mRNA. Enzymes are in  italics.  Prepro-ET mRNA is 
translated into preproET-1, a 203-amino acid peptide, which is cleaved by furin convertase to the 
38-amino acid precursor, big ET-1 

(1–38)
 . Big ET-1 is processed to ET-1 

(1–21)
  by endothelin-converting 

enzymes (ECEs), mast cell and smooth muscle cell chymases, and a novel non-ECE metallopro-
tease (secreted soluble endopeptidase, SEP) ( left ). Two novel pathways involve mast cell chymase, 
yielding the 31-amino acid ET-1 

(1–31)
  ( middle ), and matrix metalloproteinase-2 (MMP-2), forming 

another vasoconstrictor peptide, ET-1 
(1–32)
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with a phenotype consistent with Hirschsprung’s disease, featuring aganglionosis 
and megacolon development  [  37–  39  ] . The endothelial ET 

B
  receptor also functions 

   as a “clearance receptor,” because ET 
B
 -selective antagonists inhibit the accumula-

tion of intravenously administered, radio-labeled ET-1 in tissue  [  15,   19,   40  ] . 
This ET 

B
  receptor–mediated clearance mechanism is particularly important in the 

lung which clears about 80% of circulating ET-1  [  41  ] , which however is affected by 
chronic endothelin receptor antagonist (ERA) treatment distributing clearance to 
other organs such as the liver  [  40  ] . In animals lacking ET 

A
  receptors specifi cally in 

vascular smooth muscle, a compensatory upregulation of vasoconstrictor ET 
B
  recep-

tors occurs  [  18  ] . In vast majority of tissues, the disease- promoting effects of ET-1 
are mediated by activation of the ET 

A
  receptor, and include activity such as infl am-

mation, excessive cell proliferation, contraction, ROS formation, and coagulatory 
activation (Fig.   15.2  )  [  27,   43,   44  ] .   

  Fig. 15.2    Effects of endothelin (ET-1) in vascular endothelial and smooth muscle cells. ET-1 is 
generated by endothelial and smooth muscle cells in response to lipoproteins, Ang II, and infl am-
matory stimuli. Activation of endothelial ET 

B
  receptors increases the release of nitric oxide (NO), 

whereas ET 
A
  receptors mediate cell proliferation, migration, and contraction. Endothelin induces 

expression of TNF- a  and interleukins in monocytes and vascular adhesion molecule expression, 
and stimulates leukocyte adherence and platelet aggregation. Endothelin also enhances production 
and activity of other growth factors, and promotes DNA and protein synthesis and progression of 
the cell cycle. Abbreviations used in fi gure:  Ang II  angiotensin II,  ONOO  −  peroxynitrite,  ET-1  
endothelin-1,  ET  

 A 
  endothelin ET 

A
  receptor,  ET  

 B 
  endothelin ET 

B
  receptor,  NO  nitric oxide,  NOS  

nitric oxide synthase,  MCP-1  monocyte chemoattractant protein-1,  ICAM-1  intracellular adhesion 
molecule-1,  VCAM-1  vascular cell adhesion molecule-1,  LDL  low-density lipoprotein,  oxLDL  oxi-
dized low-density lipoproteins,  O  

 2 −
  superoxide anion;  LOX  oxidized LDL receptor,  IL-1  interleu-

kin-1,  IL-6  interleukin-6,  IL-8  interleukin-8,  TNF- a   tumor necrosis factor- a ,  TGF- b 1  transforming 
growth factor- b 1,  phox  NADPH oxidase, ( + ) stimulation, (−) inhibition (Reproduced from  [  42  ] , 
with permission of the publisher and the American Heart Association)       
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    15.2.4   Biological Functions of Endothelin 

 Endothelins (ETs), of which ET-1 represents the predominant and biologi-
cally most relevant isoform  [  15,   19  ] , can be considered ubiquitously expressed 
stress-responsive regulators working in a paracrine and autocrine fashion, with both 
benefi cial and detrimental effects  [  19  ] . Endothelins exert a number functions during 
embryonic development and physiology  [  45  ] , including neural crest cell develop-
ment and neurotransmission (reviewed in  [  19  ] ). In the vascular system, endothelin 
via activation of ET 

A
  receptors has a basal vasoconstricting role  [  46  ]  and contributes 

to the development of vascular disease in hypertension and atherosclerosis  [  43,   47  ]  
(Fig.   15.2  ). Endothelins are involved in the regulation of myocardial contractility, 
 [  14  ] , chronotropy  [  19  ] , and arrhythmogenesis  [  48  ] , as well as myocardial remodel-
ing during congestive heart failure  [  49  ] . In the lung, the endothelin system regulates 
the bronchial tone  [  50  ]  and proliferation of pulmonary airways blood vessels and 
promotes the development of pulmonary hypertension  [  51  ] . Endothelin also con-
trols water and sodium excretion and renal acid–base balance under physiological 
   conditions  [  27  ] , and promotes the development of glomerulosclerosis  [  52–  55  ] . In 
the brain, the endothelin system modulates cardio-respiratory centers and release of 
hormones  [  19  ]  and regulates the growth guidance of developing sympathetic neu-
rons (Makita et al. 2008). In addition, endothelins participate in physiologic and 
pathophysiologic functions of the immune system  [  44,   56,   57  ] , the liver  [  58  ] , 
muscle, adipose tissue, the reproductive system, and are involved in glucose homeo-
stasis  [  58–  60  ] .   

    15.3   Role of Endothelin in Development and Therapy 
of Cardiovascular Disease 

    15.3.1   Arterial Hypertension 

 The identifi cation of endothelin as a vasoconstrictor  [  16  ]  and the fi nding of its release 
from vascular endothelial cells suggested that this peptide is involved in the pathogen-
esis of hypertension and vascular disease  [  61  ] . Further support for this hypothesis 
came from case reports of hemangioendothelioma patients that presented with mark-
edly elevated high levels of plasma ET-1 and hypertension and showed normalization 
of elevated ET-1 levels and blood pressure after tumor removal  [  62  ] . In contrast, ET-1 
plasma levels are mostly normal in patients with essential hypertension; however, 
local ET-1 levels increase in the vascular wall in hypertension  [  63,   64  ] . In the 1990s, 
the role of endothelin and experimental hypertension due to high salt or angiotensin II 
was investigated in several laboratories, results demonstrating potent antihypertensive 
effects and end-organ protection of endothelin receptor antagonists (reviewed in  [  47, 
  64–  67  ] ). Endothelial cell–specifi c overexpression of endothelin in vascular endothe-
lial cells causes hypertension-associated changes in the vasculature, including hyper-
trophy and infl ammation, yet does not cause hypertension  [  20–  22  ] . On the other hand, 
endothelial cell–specifi c deletion of the  preproendothelin gene is associated with 
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hypotension  [  18,   22  ] ; this blood pressure–lowering effect of gene deletion is similar 
to that of vascular smooth muscle–specifi c deletion of the ET 

A
  receptor  [  18  ] . In mice 

lacking endothelin in vascular endothelial cells, plasma levels of ET-1 are reduced by 
about 90%, indicating that endothelial cells are indeed the major source of circulating 
ET-1  [  18  ] . In human hypertension, ET-1 plasma levels are mostly  normal; however, 
ET-1 levels increase locally in the vascular wall in hypertension  [  47,   65,   66,   68  ] . 

 The kidney expresses all components of the endothelin system  [  69  ] . Endothelins 
were shown to be involved in the regulation of renal blood fl ow, re-absorption of 
water and sodium, as well as in acid–base balance  [  23,   69  ] . The renal vasculature 
represents one of the most sensitive vascular beds contracting to endothelin concen-
trations in the picomolar range, and contraction is mainly mediated by ET 

A
  recep-

tors  [  16,   70  ] . Renal endothelin has been linked to the development of salt-sensitive 
hypertension which may involve both the infl ammatory NOS (iNOS)  [  43,   71  ] , 
which is constitutively expressed in the kidney,  [  43,   71  ]  and the ET 

B
  receptor  [  32  ] . 

Indeed, blockade of the endothelin system with an ET 
A
  receptor antagonist in genet-

ically salt-sensitive hypertensive Dahl rats increases the abnormally low NO syn-
thase activity in the kidney and markedly attenuates blood pressure induced by salt 
feeding  [  43  ] . Most recent work indicates that NOS also – at least in part – mediates 
endothelin-1-dependent sodium excretion in the collecting duct and blood pressure  [  72  ] . 
Interestingly, collecting duct–specifi c defi ciency of endothelin abrogated the 
increase in activity of all three NOS isoforms in the inner medulla in response to 
sodium loading  [  72  ] . Also, genetic defi ciency of the ET 

B
  receptor via conditional 

knockout results in sodium-sensitive hypertension that can be improved by blocking 
the luminal epithelial sodium channel using amiloride  [  32  ] . These studies indicate 
that salt sensitivity, a common feature of patients with resistant hypertension, 
involves several underlying pathomechanisms and that it may be particularly acces-
sible to treatment with endothelin antagonists. 

 Preclinical data on hypertension have been underscored by clinical studies in 
humans with essential hypertension. Treatment with either the nonselective ET 
receptor antagonist bosentan  [  73  ]  or the ET 

A
  receptor-selective antagonist darusen-

tan  [  74,   75  ]  causes substantial reductions of arterial blood pressure in patients with 
essential or resistant essential hypertension   , darusentan even when added to existing 
therapy of at least three antihypertensives, including a diuretic  [  74,   76,   77  ] . It 
remains currently unclear whether selective antagonists provide an advantage over 
nonselective compounds. Selectivity appears to be a crucial issue as blockade of 
ET 

B
  receptor–mediated effects may attenuate the pressure-lowering effect and inter-

fere with endothelium-dependent dilation  [  78,   79  ] . In this regard, the reported selec-
tivity and specifi city data of drugs may depend on the assays and cells employed for 
the selectivity determination and appear to largely vary between drug companies. 
Indeed, recent studies indicate that selectivity profi les of several endothelin receptor 
antagonists from different pharmaceutical companies largely differ from the data in 
published literature depending on whether human or animal cell assays were used 
 [  80  ] . This also dictates caution with the interpretation of results from  experimental 
studies regarding the selectivity of individual components. Resistant  hypertension is 
frequently seen in African American and in obese patients, who are both at increased 
risk for cardiovascular and renal disease and show elevated plasma ET-1 levels 
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 [  81–  83  ] . Long-term clinical studies are required to determine whether treatment 
with darusentan or other endothelin antagonists has the potential role to lower mor-
tality in these patients, which might involve organ protection beyond that of the 
pressure-lowering effects of ET receptor blockade  [  84–  86  ] .  

    15.3.2   Atherosclerosis and Coronary Artery Disease 

 Expression of endothelin and its receptors is increased in the atherosclerotic plaques 
of human coronary arteries  [  87,   88  ]  and both endothelin-1 peptide and ET 

A
  recep-

tors have been causally implicated in the development of atherosclerosis, as inhibi-
tion of this pathway inhibits formation of atherosclerotic plaque in animal models 
 [  43,   71,   89–  91  ] ; moreover, acute blockade of endothelin ET 

A
  receptors ameliorates 

myocardial ischemia and biochemical changes caused by infarction in mice with 
coronary atherosclerosis  [  92  ]  and reduces lipid-induced macrophage activation 
 [  89  ] . Indeed, endothelin has strong growth-promoting activity in the vascular wall 
and both endothelin and its receptors are widely expressed in macrophages, vascu-
lar smooth muscle cells, and fi broblasts (reviewed in  [  15,   43  ] ) (Fig.   15.2  ). A com-
mon observation made in almost all studies investigating effects of endothelin 
receptor blockade on vascular function in animal models of hypertension, hyperc-
holesterolemia, or atherosclerosis was that chronic treatment improved endothe-
lium-dependent, NO-mediated vasodilation  [  43,   71,   93,   94  ] . This improvement of 
NO-dependent vasodilation after endothelin ET 

A
  receptor blockade has also been 

observed in clinical studies and is blocked by ET 
B
  antagonists  [  79  ] . Acute blockade 

of endothelin receptors of isolated internal mammary arteries in vitro obtained from 
in patients with coronary atherosclerosis improves endothelium-dependent vasodi-
lation  [  95,   96  ] , and similar fi ndings have been reported from in vivo studies in 
humans with atherosclerosis  [  97–  101  ] . A recent study of the    effects of 6-month 
treatment with the ET 

A
  antagonist atrasentan in patients with coronary artery disease 

also reported improved coronary artery endothelium-dependent vasodilation  [  102, 
  103  ] . Although ACE inhibitors  [  104  ]  and statins  [  105  ]  inhibit endothelin expression 
in vitro, ACE inhibition and statin treatment surprisingly has no effect on the mark-
edly elevated endothelin peptide expression in the mammary artery of patients with 
coronary atherosclerosis  [  106  ] , suggesting the need for additional therapies. In con-
trast, ET 

A
  blockade is effective to completely normalize endothelin peptide levels in 

atherosclerosis, at least in experimental studies  [  63,   71  ] . 
 Environmental cardiovascular risk factors such as cigarette smoking or air pollu-

tion have been only recently investigated. Smoking is one of the central risk factors 
contributing to many cardiovascular deaths  [  107  ] . Cigarette smoke enhances infl am-
matory airway responses  [  108  ]  and induces ECE-1 peptide expression  [  21  ] . 
Correspondingly, contractile responses to ET-1 in arteries from patients with coro-
nary artery disease are much stronger in smokers than in non-smokers  [  109  ] . Cox 
et al. described protective effects of ERA treatment after smoke inhalation–induced 
pulmonary injury  [  110  ] , and preventive effects of ERA treatment on emphysema 
development, one of the long-term consequences of smoking and COPD, have been 
reported  [  111  ] . As with cigarette smoke, air pollution by car fumes, particularly 
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diesel exhaust, increases cardiovascular morbidity  [  112  ] . Exposure to diesel exhaust 
results in ET 

B
  receptor dysfunction  [  113  ]  and increases in vasoconstrictor responses 

to ET-1  [  114  ] ; car fumes have also shown to increase vascular endothelin in athero-
sclerosis  [  114,   115  ] . Effects of diesel exhaust on endothelin activation have also 
been observed in humans  [  116  ] . Fine particulate matter as part of air pollution has 
also been implicated in diseases such as hypertension and airway diseases  [  117  ]  and 
causes infl ammation  [  21  ] . Increases in carbon and    particulate matter air pollution 
increases circulating ET-1 levels  [  118  ] , and ET 

A
  receptor expression  [  111,   119  ] . 

Importantly, air pollutants may also induce endothelin and endothelin receptors in 
the absence of any local or systemic infl ammation  [  120  ] . 

 Obesity is another independent risk factor for atherosclerosis  [  121,   122  ] . Six years 
ago, according to WHO estimates, 1.6 billion adults worldwide were overweight, and 
400 million were obese. By 2015, the numbers are expected to increase further to 2.3 
billion overweight and 700 million obese, respectively  [  123  ] . In both cases, these 
numbers do not include children and adolescents, in which obesity has also become a 
worldwide problem  [  121  ] . Obesity leads to insulin resistance and subsequently to 
diabetes, and is associated with activation of the renal but not the pulmonary renin-
angiotensin system in an ET 

A
 -dependent manner  [  121  ] . Antidiabetic and benefi cial 

structural effects of ERA treatment have been reported in numerous preclinical stud-
ies  [  58,   124–  127  ] , and recent clinical data suggest that proteinuria in diabetes may be 
directly linked to endothelin activation  [  128–  131  ] . In diet-induced obesity, renal acti-
vation of ACE occurs, which is regulated via ET 

A
  receptors, suggesting that under 

certain conditions ET 
A
  receptors may actually act as ACE inhibitors  [  43  ] . ET 

A
  recep-

tors also regulate vascular expression of bone morphogenetic protein (BMP)-2  [  132  ]  
(Fig.  15.3 ), an important regulator of vascular calcifi cation and cell growth  [  133  ] . In 
obesity, endothelin and ET 

A
  receptors are increased in the vasculature and kidney  [  43, 

  134,   135  ]  ET-mediated vascular tone and metabolic function is abnormal in obesity 
and diabetes  [  59,   134–  137  ] . In type 1-diabetes, ET 

A
  receptor blockade also prevents 
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  Fig. 15.3    Vascular mRNA expression of bone 
morphogenetic protein (BMP) receptor II in mice 
with autoimmune diabetes. Chronic treatment 
with an ET 

A
  receptor-selective ERA (BSF 

431314, a follow-up compound of ambrisentan) 
for 6 weeks reduced BMP-receptor II expression 
by almost 80%, indicating its regulation through 
endothelin (Reproduced from  [  132  ] , with 
permission of the publisher)        
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upregulation of ECE-1 and ECE-2 isoenzymes  [  126  ]  (Fig.  15.4 ). Endothelin also 
directly affects obesity development by regulating adipogenesis and lipolysis  [  138, 
  139  ] , and stimulates the release of pro-infl ammatory cytokines from adipocytes  [  25  ] . 
Thus, endothelin blockade may be particularly feasible to interfere with cardiovascu-
lar and renal disease in obese patients and possibly might also be suitable for treat-
ment of obesity and its associated complications such as insulin resistance  [  58  ] . 
Endothelin inhibits insulin action  [  140  ] , and accordingly, Pernow and coworkers have 
recently shown that insulin sensitivity or impaired skeletal muscle glucose uptake in 
insulin-resistant humans  [  59  ]  is improved after ERA treatment  [  141  ] . Insulin, which 
facilitates glucose uptake in target tissues  [  59  ] , not only stimulates endothelin expres-
sion and synthesis  [  142  ] , but insulin secretion is also stimulated by endothelin  [  143  ] , 
 suggesting a positive feedback loop between these two pathways which may be of 
therapeutic importance regarding ERA treatment.   
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  Fig. 15.4    Effects of diabetes and ERA treatment on ECE-1 and ECE-2 gene expression in the 
arterial vasculature of control (CTL) and non-obese diabetic (NOD) mice, a model of type 1 
 diabetes. Diabetes increased expression of ECE-1 and ECE-2. This upregulation was completely 
prevented by concomitant endothelin receptor blockade using the orally active compound BSF/
LU461314, indicating that ERA treatment has ECE-inhibitor-like effects under certain pathologi-
cal conditions (Reproduced from  [  126  ] )       
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 Endothelin blockade may thus be particularly feasible to prevent cardiovascular 
and renal disease in these patients and possibly might also be suitable for treatment 
of obesity and its associated complications such as insulin resistance  [  58  ] . Finally, 
endothelin contributes to glycemic control and glucose uptake  [  144–  146  ]  and devel-
opment of type 1 diabetes  [  126  ] , making metabolic diseases and obesity potential 
and attractive clinical targets for the application of endothelin receptor antagonists.  

    15.3.3   Heart Failure 

 Congestive heart failure is a clinical syndrome with high mortality caused by differ-
ent etiopathologies, hypertension and coronary artery disease being among the most 
important ones. In the heart, the endothelin system helps to maintain cardiac func-
tion, with ET-1 and the ET 

A
  receptor being the predominant signaling components of 

the endothelin system  [  147–  149  ] . In the normal heart, endothelins contribute to 
inotropy, chronotropy, and arrhythmogenesis, as well as myocardial contractility 
 [  19  ] . Early studies have shown that impairment of cardiac function results in increases 
in circulating levels of ET-1 or big ET-1  [  17  ]  that are reliable prognostic indicators of 
survival in patients with heart failure  [  150,   151  ] . Elevated circulating levels of ET-1 
in heart failure are thought to derive from pulmonary congestion, which impairs the 
clearance function of the lung  [  152  ] . The role of endothelin in the post-infarct heart 
remains controversial. Although a number of experimental prevention studies have 
demonstrated a benefi t of chronic endothelin blockade on survival and left ventricu-
lar remodeling in animals of myocardial infarction  [  149,   153–  155  ] , there is currently 
no evidence for a protective effect of chronic endothelin antagonism in humans with 
heart failure  [  23,   156  ] . It is also important to note that in all experimental studies 
except for one  [  157  ]  treatment was begun in animals without preexisting heart fail-
ure, i.e., before or immediately after inducing myocardial infarction. In chronic heart 
failure, i.e., in long-term survivors of experimental infarction, ET

A
 receptor blockade 

more or less normalized hypertrophy of the right atrium and ventricle and reduced 
pulmonary congestion  [  157  ]  (Fig.   15.5  ). Moreover, treatment was performed in 
models that had no ischemic myocardial damage due to coronary artery disease 
which is present in many heart failure patients. Thus, well-designed experimental 
studies are still lacking. Studies in humans showed that treatment with the nonselec-
tive ET receptor antagonist bosentan over 2 weeks reduced pulmonary and mean 
arterial pressures, pulmonary and systemic resistance between 10% and 30%, and 
caused a 13% increase of the cardiac index  [  158  ] . Similar effects were seen in heart 
failure patients who received the ET 

A
  receptor-selective antagonist BQ-123 where 

treatment reduced pulmonary and arterial pressures, decreased systemic (but not pul-
monary) resistance, and increased cardiac index  [  159  ] . Although the results of these 
early studies looked promising, all long-term clinical trials investigating chronic 
endothelin receptor antagonist treatment in patients with acute or chronic congestive 
heart failure have been negative without exception  [  23,   55,   156,   160  ] . These studies 
include the ENABLE trial (bosentan), the HEAT-CHF trial (darusentan), the EARTH 
trial (darusentan), the ENCOR trial (enrasentan), and the RITZ-1 through RITZ-4 
trials (tezosentan)  [  23  ] . A problem inherent to most of these studies is the fact that 
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only the results of some of these studies were published and also that if published, 
not all data were included in the manuscripts or are otherwise available to the scien-
tifi c community  [  161  ] . Also, due to FDA regulations study patients had to be main-
tained on standard heart failure therapy and received the endothelin antagonist on top 
of standard treatment, which could be one of the reasons for the disappointing results. 
It may well be possible that certain predisposing pathological conditions in heart 
failure patients may be determinants of therapeutic success or failure, such as devel-
opment of peripheral edema, one of the most often encountered side effects seen in 
patients on endothelin blocker. In addition, drug dosages  [  23  ]  and drug toxicity of 
sulfonamide-based ERAs in patients with heart failure may be a critical problem, 
particularly in those with right heart failure and subsequent hepatic congestion. 
Before these data have been fully analyzed and published, no defi nitive conclusion 
on whether endothelin antagonists on top of ACE or ARB treatment may be effective 
remedies in selected patients with heart failure is possible.   

    15.3.4   Pulmonary Arterial Hypertension (PAH) 

 Both heart and lungs are important sources and targets of ET-1. Unlike normal sub-
jects, patients with pulmonary hypertension have higher pulmonary arterial vs. 
venous plasma levels of ET-1, suggesting increased pulmonary ET-1 production 
and/or decreased lung clearance  [  19  ] . In the pulmonary vasculature, ET-1 induces 
ET 

A
 -dependent vasoconstriction, and perhaps more importantly, acts as a growth 

factor leading to proliferation of pulmonary artery vascular smooth muscle cells 

*
*

*

0.3

0.2

0.1

O
rg

an
 W

ei
gh

t (
g)

0

0.3

Atrium Ventricle Lung

0.2

0.1

0

3

2

1

0
CTL CHF CHF

DAR
CTL CHF CHF

DAR
CTL CHF CHF

DAR

  Fig. 15.5    Effects of chronic experimental heart failure and ERA treatment with darusentan on 
right atrial and ventricular remodeling and pulmonary edema measured by tissue weight. In rats 
which had survived acute myocardial infarction for 6 months, right atrial and ventricular weights 
were increased compared to sham controls (CTL), compatible with right heart hypertrophy. 
Similarly, lung weight, an indicator of pulmonary edema, was increased by approximately 35%. 
After darusentan treatment    (50 mg/kg/d, DAR) of animals with chronic heart failure for 6 weeks, 
increased myocardial or pulmonary weights were reduced or even normalized. * p  < 0.05 vs. CTL; 
†  p  < 0.05 vs. CHF (Reproduced from  [  157  ] , with permission of the publisher)       
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(Fig.  15.2 )  [  51  ] . The inhibition of cell growth by ERAs is likely to be one of the 
important factors contributing to the long-term benefi t of endothelin blockade in 
patients with pulmonary hypertension interfering with pulmonary artery remodel-
ing  [  162  ] . Effectiveness of both ET 

A
  receptor antagonists as well as nonselective ET 

receptor blockade with bosentan has been demonstrated to reduce pulmonary artery 
pressures, right ventricular hypertrophy, and remodeling of pulmonary arteries in a 
number of experimental studies  [  147,   162,   163  ] . In contrast, ET 

B
 -selective antago-

nists administered to dogs with pulmonary hypertension increase pulmonary resis-
tance and pressures  [  19  ] . This suggests that selective ET 

A
  receptor antagonists might 

be advantageous in the treatment of pulmonary hypertension. 
 In the past two decades, the pharmaceutical industry has extensively tested pul-

monary hypertension as a clinical target for ET antagonism, and fi rst randomized 
clinical trials have demonstrated benefi cial effects on clinical outcome and quality of 
life compared with placebo  [  164,   165  ] . In 2001, bosentan ( Tracleer ™) was the fi rst 
endothelin receptor antagonist ever to receive approval for the treatment of patients 
 [  166  ] . This historically important approval was granted for the treatment of primary 
pulmonary arterial hypertension (PAH), a severe disease with unfavorable prognosis 
often seen in patients with connective tissue disease, heart failure, or HIV infection 
 [  167,   168  ] . Meanwhile, another ET antagonist has been granted approval by the FDA 
or by Federal Health Agencies around the world for the treatment of PAH, the ET 

A
  

receptor-selective antagonists ambrisentan ( Letairis ™), a follow-up compound of 
darusentan. Whether selective antagonists    are superior over nonselective ones in 
terms of clinical benefi ts, side effects, and survival in PAH patients is unknown, and 
the same holds true for the two different classes of endothelin antagonists (propionic 
vs. sulfonamide compounds); respective clinical trials are needed, and ongoing trials 
also include combination therapy of endothelin antagonists as with other pulmonary 
vasodilators such as sildenafi l or prostacyclin  [  23  ] . A fi rst study suggests superiority 
of bosentan over prostacyclin treatment in patients with cirrhosis and pulmonary 
hypertension  [  26  ] . Finally, new treatment options such as aerosol delivery of endothe-
lin antagonists appear to be effi cacious and can minimize side effects  [  169–  172  ] . 
Endothelin antagonists have now become a standard part of pulmonary hypertension 
therapy to improve survival in these severely ill patients.  

    15.3.5   Cardiac Transplantation and Allograft Rejection 

 Chronic allograft rejection after cardiac transplantation increases endothelin in the 
graft  [  173  ]  but also increases the expression of endothelin system components in the 
host organs such as the liver  [  174  ]  (Fig.  15.6 ). An immunomodulatory role of 
endothelin has also been shown in different models of acute or chronic rejection fol-
lowing solid organ transplantation. Even in the absence of standard immunosuppres-
sion from endothelin receptor, ET 

A
  blockade was able to prevent upregulation of 

circulating interleukin and TNF  a  levels  [  175  ]  after cardiac allo-transplantation 
which again would be compatible with a direct role of endogenous endothelin con-
tributing to the host’s immune response. It is thus not surprising that treatment with 
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ERAs very effectively interferes with the development of graft atherosclerosis or the 
development of fi brosis or glomerulosclerosis-related to solid organ transplantation 
of the liver, lung, aorta, heart, or kidney, even in the absence of immunosuppression 
 [  154,   176–  180  ] . Up to now, no clinical studies have been performed to investigate the 
therapeutic potential of endothelin receptor antagonists in transplantation medicine, 
which possibly could also lead to improved donor organ preservation by adding ET 
antagonists to the preservation solution  [  181  ]  or to novel combination therapies. 
Possibly, this would also allow to reduce the amount of immunosuppressant drugs 
which are responsible for many of the unwanted side effects of solid organ transplan-
tation, such as neurotoxicity  [  182,   183  ] , development of kidney disease due to neph-
rotoxicity of drugs like cyclosporin, and secondary, drug-induced hypertension due 
to immunosuppressive therapy with cyclosporin  [  184,   185  ] .   

    15.3.6   Proteinuric Renal Disease 

 Chronic renal disease and proteinuria are independent risk factors for atherosclerosis 
and coronary artery disease  [  52  ] ; in fact, the majority of deaths of patients with renal 
disease is due to cardiovascular causes  [  52  ] . Work from several laboratories in the 
early 1990s has demonstrated that the endothelin system contributes to the pathologi-
cal changes leading to glomerulosclerosis in models of hypertension or renal ablation 
(reviewed in  [  186–  188  ] ). This pro-sclerotic effect of endothelin in the kidney was 
confi rmed by overexpressing human ET-1 in mice which develop glomerulosclerosis 
even without developing hypertension  [  54  ] . A large number of experimental preven-
tion studies have investigated the effects of chronic endothelin blockade on the devel-
opment of glomerulosclerosis due to    hypertension, subtotal nephrectomy, chronic 
nitric oxide defi ciency, diabetic nephropathy, focal segmental glomerulosclerosis, 
among others  [  55,   189  ] . The majority of these studies found pronounced nephropro-
tective effects that were either in part or even completely independent of systemic 
blood pressure  [  186,   190–  194  ] . The mechanisms by which endothelin contributes to 
glomerular injury following damage of podocytes  [  192–  194  ] , which form the glom-
erular fi ltration barrier, include protein that induces endothelin in glomerular podo-
cytes, which in turn causes reorganization of the podocyte actin cytoskeleton  [  195  ] . 
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  Fig. 15.6    Hepatic mRNA expression of 
endothelin-converting enzyme (ECE)-1 in a 
cardiac allograft recipient undergoing chronic 
rejection (CR). Chronic allograft rejection of 
the heart was associated with a twofold 
upregulation of ECE-1 mRNA in the liver of 
the host (Reproduced from  [  174  ] , with 
permission of the publisher)       
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This effect is mediated by ET 
A
  receptors  [  194,   196  ] . Interestingly, dietary protein 

aggravates renal injury by augmenting renal acid production and worsening protei-
nuria  [  197  ] . This effect can be blocked by the ET 

A
 -selective antagonist darusentan 

but not by the nonselective antagonist bosentan  [  197  ] , indicating a role for the ET 
B
  

receptor which is highly expressed in podocytes. Indeed, this hypothesis is supported 
by a most recent study indicating sera of patients with proteinuria increase glomeru-
lar formation of endothelin and shedding of the podocyte-specifi c protein nephrin, 
which can be prevented by an endothelin ET 

A
  receptor antagonist  [  198  ] . These stud-

ies collectively and strongly indicate that glomerular protein loss, which is caused by 
and further aggravates podocyte injury, depends on mechanisms that are at least in 
part endothelin-mediated  [  52  ] . This appears to be even more important since protei-
nuria or albuminuria is a good predictor of future cardiovascular events  [  189,   199  ] . 

 Only few studies have investigated the effects of endothelin receptor blockade in 
conditions in which renal disease was already established  [  52  ] . Studies have inves-
tigated the anti-proteinuric effect of endothelin receptor antagonists in normoten-
sive or severely hypertensive animal models  [  192,   194,   200,   201  ] . In these studies, 
treatment not only a reversed proteinuria but also lead to a partial healing of the 
previously injured glomeruli and podocytes (Fig.  15.7 ). This suggested that renal 
disease is a particularly relevant area for the clinical application of ERAs with the 
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  Fig. 15.7    Proposed concept of renal disease regression after inhibition of endothelin action 
through blockade of endothelin ET 

A
  receptors, RAAS-inhibition through blockade of angiotensin 

AT 
1
  receptor blockers (ARBs) or ACE inhibitors, or statin therapy.  Left : Glomerular renal injury 

with damage of podocytes ( dark green ) and formation of fi brotic, “sclerotic” tissue ( yellow ) result-
ing in proteinuria (“Injury”).  Right : Glomerulosclerosis can be reversed by drug treatment if renal 
structural injury is less than severe. Disease regression is accompanied by improvements of glom-
erular architecture and structural improvement of podocytes ( dark green ) and the GBM of the 
glomerular capillary (“Regression”) (Reproduced from  [  52  ] , with permission of the publisher)       
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potential to reverse established glomerular disease  [  53,   194,   201  ] , as has been dem-
onstrated for experimental vascular disease  [  202,   203  ] .    

    15.4   Endothelin Antagonists in Clinical Practice: 
Current Developments 

 Within only 4 years after the discovery of endothelin, its receptors were cloned and 
receptor antagonists had become available  [  204,   205  ] . Several hundred compounds 
are available today of which the majority is orally active  [  206  ] . The fi rst clinical trial 
in patients with congestive heart failure was performed in Zurich, Switzerland, in the 
early 1990s and results were published in 1995  [  158  ] . Nevertheless, it took a number 
of years and numerous unsuccessful clinical trials in heart failure patients until 
endothelin receptor blockade could be established as a new therapeutic concept in 
clinical medicine  [  55,   147,   207  ] . Ten years ago, bosentan ( Tracleer ™) was the fi rst 
endothelin receptor antagonist to receive approval for clinical application from the U. 
S. Federal Food and Drug Administration (FDA)  [  166  ] . Bosentan, which is a nonse-
lective ET 

A
 /ET 

B
  receptor antagonist, was approved in 2001 for the treatment of 

patients with primary pulmonary arterial hypertension (PAH)  [  164,   165  ] . In 2007, 
ambrisentan ( Letairis ™), an ET 

A
  receptor-selective antagonist, was also approved by 

the U.S. FDA for the same indication. A number of other receptor antagonists have 
been or are being evaluated in clinical studies for indications such as PAH, conges-
tive heart failure–resistant hypertension, cancer, coronary artery disease, or proteinu-
ric renal disease. The highly selective ET 

A
  receptor antagonist sitaxsentan ( Thelin ™) 

had even approved for treatment of PAH in three continents; yet, after several cases 
of fatal liver failure, Pfi zer withdrew Thelin™ from the market at the end of 2010 
 [  208  ] . Two years earlier, Speedel announced the discontinuation of the development 
of avosentan after severe drug-related side effects including heart failure had occurred 
in diabetics with advanced proteinuric renal disease  [  208  ] . These studies will be 
briefl y discussed below. The development of the ET 

A
  receptor antagonist darusentan 

as an antihypertensive with nephroprotective properties was abandoned by Gilead 
Sciences, Inc. after the completion of two phase III trials in patients with resistant 
hypertension at the end of 2009  [  74,   76,   77,   208  ] . According to information avail-
able, issues such as short remaining patent life of darusentan and fi nancial risks for 
further phase III trials were among the reasons for the discontinuation. In addition, 
ERAs have been evaluated in clinical trials for the treatment of coronary artery dis-
ease and atherosclerosis  [  95–  103  ] , cancer  [  23,   209–  211  ] , and autoimmune diseases 
such as scleroderma  [  51,   212–  218  ] . More recently, proteinuric renal disease has been 
revived as target for endothelin antagonism  [  84,   208  ] . Treatment with a  selective ET 

A
  

receptor antagonist atrasentan ( Xinlay ™) for 12 weeks reduces proteinuria and blood 
pressure  [  219  ] , and even more impressive reductions in albuminuria reduction were 
seen using the endothelin ET 

A
  receptor blocker avosentan in patients with diabetic 

nephropathy in the ASCEND trial  [  129,   130  ] . Interestingly, these effects were mostly 
independent of systemic blood pressure  [  129,   130  ] . In many of the patients with 
chronic renal disease participating in the ASCEND trial, fl uid ret   ention and heart 
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failure developed because of which the study was stopped prematurely  [  129  ] . It is 
noteworthy that the effects of proteinuria were seen despite the fact that patients are 
already receiving ACE inhibitors or AT 

1
  receptor antagonists, indicating additive and 

thus independent benefi cial effects of both treatments. Thus, ERAs represent a new 
treatment option to halt and even reverse proteinuric renal disease (Fig.  15.7 ). 
Antiproteinuric effects of ERA therapy were also observed with the ET 

A
  receptor 

antagonist sitaxsentan  [  216,   220–  223  ] . The ET 
A
  antagonist atrasentan was also 

recently reported to have anti-proteinuric effects in patients with diabetic nephropa-
thy, without having major side effects  [  128  ] . It should be noted that most of the 
patients studied in randomized endothelin antagonist trials in hypertension and dia-
betic nephropathy were overweight or obese, conditions known to be associated with 
impaired renal sodium handling  [  224  ] . Thus, it is likely that the side effects of 
endothelin blockade will depend on the overall health status and comorbidities of the 
patient receiving the drug. Indeed, in patients with chronic renal disease and normal 
body weight receiving ET 

A
  receptor antagonists, edema rarely occured  [  216, 

  220–  223  ] .  

    15.5   Conclusion and Perspectives 

 Endothelin – acting predominantly through the ETA receptor – is now recognized as 
a multifunctional peptide with cytokine-like activity affecting almost all aspects of 
cardiovascular cell function. Although pharmaceutical companies had rapidly devel-
oped drugs blocking endothelin receptors within only a few years after the discovery 
of endothelin, clinical drug development has been complicated by the fact that both, 
pharmaceutical industry and clinical investigators, embarked in clinical trials without 
really knowing endothelin physiology in general and in humans in particular. Also, 
at the time, the relevance of the endogenous endothelin system in maintaining central 
organ function in disease (i.e., during heart failure) was not known. It came to no 
surprise that the largest part of clinical trials were negative, i.e., patient selection 
(comorbidity burden, stage/severity of disease), excessively high doses of ERAs 
used, liver toxicity of the sulfonamide-based ERAs in patients with liver comorbidi-
ties (hepatic congestion in heart failure, fatty liver disease    in obese type II diabetics), 
and the FDA requirement to study ERAs only if given on top of standard therapy are 
some of the reasons why so many trials failed. Also, timing of therapy initiation 
appears to be a critical issue, as is evident from studies in patients with advanced 
form of cancer, which have been mostly negative  [  209  ] . Recent work from 
Theodorescu’s laboratory has shown that endothelin plays a critical role in cancer 
metastasis  [  225  ] , which may in part explain the ineffi cacy of ERA treatment in 
advanced forms of cancer  [  209,   210,   226  ] . It is therefore reasonable to    assume that 
ERA treatment (with its controllable side effect fl uid retention) will be effective only 
if disease is diagnosed early, as has been shown for moderate but not advanced renal 
failure  [  128–  130  ] . 

 Some of the clinical indications initially chosen for clinical studies such as heart 
failure have been not yet shown to benefi t from ERA therapy on top of standard 
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treatment due to the lack of adequately designed studies and inadequate patient 
selection  [  227  ] . In contrast, therapeutic effi cacy of ERA therapy had been shown 
in preclinical studies of PAH, which became the fi rst clinical indication for ERAs 
 [  166  ] . Similarly, results from preclinical studies of diseases that are similarly asso-
ciated with cell    growth and/or infl ammatory activation such as or resistant arterial 
hypertension and glomerulosclerosis or immune-mediated disease such as cancer, 
connective tissue diseases, chronic allograft rejection, or metabolic diseases such 
as obesity or diabetes (Fig.  15.8 ) suggest that these conditions could become new 
indications for endothelin antagonist therapy in the future  [  27,   208,   227  ] . Today, 
more than two decades after the discovery of endothelin and its receptors, only two 
compounds (bosentan and ambrisentan) are approved and in use for treatment of 
patients, and only for two indications (PAH and scleroderma-related ulcerations). 
It is well possible that factors such as the desire to be the fi rst to publish results 
from clinical studies with these new drugs, lack of knowledge about limitations of 
patient suitability and disease severity, and perhaps hope for economic reward 
from the potential sales of “blockbuster” drug candidates pre-marketed to investors 
have contributed to the unsuccessful clinical drug development of ERAs  [  227  ] . 
Also, some drug companies dropped drug candidates after successful completion 
of phase III trials for which the remaining patent lives was only a few years. Several 
hundreds of ERAs have been developed  [  206  ] , and well and carefully designed 
clinical studies in correctly selected patients are still warranted to test, verify, or 
disprove any therapeutic benefi t of ERAs for cardiovascular medicine and related 
fi elds. That this is possible, without risking severe side effects using carefully 
selected patients, was recently demonstrated by Kohan and colleagues in patients 
with moderate proteinuric renal disease  [  128  ] . Hope remains that ERA treatment 
will be available for more than only two indications once the pharmaceutical indus-
try realizes the potential of their drugs and supports investigators in performing 
correctly done clinical trials.         
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