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I PREFACE

Heat transfer has emerged as a central discipline in contemporary engineering sci-
ence. The research activity of a few decades ago—the material reviewed in the first
handbooks—has distilled itself into textbook concepts and results. Heat transfer has
become not only a self-standing discipline in the current literature and engineering
curricula, but also an indispensable discipline at the interface with other pivotal and
older disciplines. For example, fluid mechanics today is capable of describing the
transport of heat and other contaminants because of the great progress made in mod-
ern convective heat transfer. Thermodynamics today is able to teach modeling, sim-
ulation, and optimization of “realistic” energy systems because of the great progress
made in heat transfer. Ducts, extended surfaces, heat exchangers, and other features
that may be contemplated by the practitioner are now documented in the heat transfer
literature.

To bring this body of results to the fingertips of the reader is one of the objectives
of this new handbook. The more important objective, however, is to inform the reader
on what has been happening in the field more recently. In brief, heat transfer marches
forward through new ideas, applications, and emerging technologies. The vigor of
heat transfer has always come from its usefulness. For example, the challenges of
energy self-sufficiency and aerospace travel, which moved the field in the 1970s,
are still with us; in fact, they are making a strong comeback. Another example is
the miniaturization revolution, which continues unabated. The small-scale channels
of the 1980s do not look so small anymore. Even before “small scale” became the
fashion, we in heat transfer had “compact” heat exchangers. The direction for the
future is clear.

The importance of optimizing the architecture of a flow system to make it fit into
a finite volume with purpose has always been recognized in heat transfer. It has been
and continues to be the driving force. Space comes at a premium. Better and better
shapes of extended surfaces are evolving into networks, bushes, and trees of fins. The
many surfaces designed for heat transfer augmentation are accomplishing the same
thing: They are increasing the heat transfer rate density, the size of the heat transfer
enterprise that is packed into a given volume.

The smallest features are becoming smaller, but this is only half of the story. The
other is the march toward greater complexity. More and more small-scale features
must be connected and assembled into a device whose specified size is always macro-
scopic. Small-scale technologies demand the optimization of increasingly complex
heat-flow architectures.

A highly distinguished group of colleagues who are world authorities on the
frontiers of heat transfer today have contributed to this new handbook. Their chapters
provide a bird’s-eye view of the state of the field, highlighting both the foundations
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X PREFACE

and, especially, the edifices that rest on them. Because space comes at a premium, we
have allocated more pages to those chapters dedicated to current applications. The
latest important references are acknowledged; the classical topics are presented more
briefly.

One feature of the handbook is that the main results and correlations are summa-
rized at the ends of chapters. This feature was chosen to provide quick access and
to help the flow of heat transfer knowledge from research to computer-aided design.
It is our hope that researchers and practitioners of heat transfer will find this new
handbook inspiring and useful.

Adrian Bejan acknowledges with gratitude the support received from Professor
Kristina Johnson, Dean of the Pratt School of Engineering, and Professor Kenneth
Hall, Chairman of the Department of Mechanical Engineering and Materials Science,
Duke University. Allan Kraus acknowledges the assistance of his wife, who has
helped in the proofreading stage of production.

Both authors acknowledge the assistance of our editor at John Wiley, Bob Argen-
tieri, our production editor, Milagros Torres, and our fantastic copy editor, known
only to us as Barbara from Pennsylvania.

ADRIAN BEJAN
ALLAN D. Kraus
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2 BASIC CONCEPTS
1.1 HEAT TRANSFER FUNDAMENTALS

1.1.1 Introduction

Practitioners of the thermal arts and sciences generally deal with four basic thermal
transport modes: conduction, convection, phase change, and radiation. The process
by which heat diffuses through a solid or a stationary fluid is termed heat conduction.
Situations in which heat transfer from a wetted surface is assisted by the motion of
the fluid give rise to heat convection, and when the fluid undergoes a liquid—solid
or liquid—vapor state transformation at or very near the wetted surface, attention is
focused on this phase-change heat transfer. The exchange of heat between surfaces,
or between a surface and a surrounding fluid, by long-wavelength electromagnetic
radiation is termed thermal heat radiation.

It is our intent in this section to describe briefly these modes of heat transfer, with
emphasis on an important parameter known as the thermal resistance to heat transfer.
Simple examples are given for illustration; detailed descriptions of the same topics
are presented in specialized chapters.

1.1.2 Conduction Heat Transfer

One-Dimensional Conduction Thermal diffusion through solids is governed
by Fourier’s law, which in one-dimensional form is expressible as

q=—-kA— (W) (1.1)
dx

where ¢ is the heat current, k the thermal conductivity of the medium, A the cross-
sectional area for heat flow, and dT /dx the temperature gradient, which, because it
is negative, requires insertion of the minus sign in eq. (1.1) to assure a positive heat
flow ¢g. The temperature difference resulting from the steady-state diffusion of heat
is thus related to the thermal conductivity of the material, the cross-sectional area A,
and the path length L (Fig. 1.1), according to

L
' —T)ea=9— K 1.2
(' —T)ea = ¢ A (K) (1.2)
The form of eq. (1.2), where k and A are presumed constant, suggests that in a way
that is analogous to Ohm’s law governing electrical current flow through a resistance,
it is possible to define a conduction thermal resistance as
_nh-T» L

Ra==— =10 KW (1.3)

One-Dimensional Conduction with Internal Heat Generation Situations
in which a solid experiences internal heat generation, such as that produced by the
flow of an electric current, give rise to more complex governing equations and require
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Figure 1.1 Heat transfer by conduction through a slab.

greater care in obtaining the appropriate temperature differences. The axial temper-
ature variation in the slim, internally heated conductor shown in Fig. 1.2 is found to

equal
T 4 L?[x (x>2
Tl Tl | T \L

where 7, is the edge temperature. When the two ends are cooled to an identical
temperature, and when the volumetric heat generation rate g, (W/m?) is uniform
throughout, the peak temperature is developed at the center of the solid and is given
by
L2
Thax =T, + Qgg_k (K) (14)

Alternatively, because ¢, is the volumetric heat generation g, = q/LWS3, the

center—edge temperature difference can be expressed as

L2 L
SkLWs  I8kA

Thax — T, = q (1.5)
where the cross-sectional area A is the product of the width W and the thickness 8.
An examination of eq. (1.5) reveals that the thermal resistance of a conductor with a
distributed heat input is only one-fourth that of a structure in which all of the heat is
generated at the center.
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Figure 1.2 Temperature variation in an internally heated conductor.

1.1.3 Spreading Resistance

In configurations where there is a discrete heat source on the surface of a conducting
medium, provision must be made for the lateral spreading of the heat generated
in successive “layers” in the conducting medium below the source. The additional
resistance associated with this lateral flow of heat is called the spreading resistance.
According to Yovanovich and Antonetti (1988), the spreading resistance for a small
heat source on a thick conductor or heat spreader (required to be three to five times
thicker than the square root of the heat source area) can be expressed as

1 —1.410€ 4 0.344€’ 4 0.043€” + 0.034¢’

o = 1k (K/W) (1.6)

where ¢ is the ratio of the heat source area to the substrate area, k the thermal
conductivity of the conductor, and a the square root of the area of the heat source.

For relatively thin conducting layers on thicker substrates, such as encountered
in the cooling of microcircuits, eq. (1.6) cannot provide an acceptable prediction of
Rp. Instead, use can be made of the numerical results plotted in Fig. 1.3 to obtain the
requisite value of the spreading resistance.

1.1.4 Interface—Contact Resistance

Heat transfer across the interface between two solids is generally accompanied by
a measurable temperature difference, which can be ascribed to a contact or inter-
face thermal resistance. For perfectly adhering solids, geometrical differences in the
crystal structure (lattice mismatch) can impede the flow of phonons and electrons
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Figure 1.3 Thermal resistance for a circular discrete heat source on a two-layer conducting
medium. (From Yovanovich and Antonetti, 1988.)

across the interface, but this resistance is generally negligible in engineering design.
However, when dealing with real interfaces, the asperities present on each of the sur-
faces (Fig. 1.4) limit actual contact between the two solids to a very small fraction
of the apparent interface area. The flow of heat across the gap between two solids in
nominal contact is by solid conduction in areas of actual contact and fluid conduction
across the “open” spaces. Radiation across the gap can be important in a vacuum
environment or when surface temperatures are high. The heat transferred across an
interface can be found by adding the effects of solid-to-solid conduction and conduc-
tion through the fluid and recognizing that solid-to-solid conduction in the contact
zones involves heat flowing sequentially through the two solids. With the total con-
tact conductance %.,, taken as the sum of solid-to-solid conductance /. and the gap
conductance /g,

heo =he+he  (W/m?-K) (1.7a)

the contact resistance based on the apparent contact area A, may be defined as

1
Reo = hoA, (K/W) (1.7b)

In eq. (1.7a), h. is given by (Yovanovich and Antonetti, 1988)

m [ P\"%
he = 1.25k; — (E) (1.8a)
o
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/
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Y

Figure 1.4 Physical contact between two nonideal surfaces.

where k; is the harmonic mean thermal conductivity for solid 1 and solid 2,

2k
Pkt

(W/m - K)

o is the effective root mean square (rms) surface roughness,

o= (0] +03) 2 (um)

m is the effective absolute surface slope,

m = (m% —i—m%)l/2

P is the contact pressure, and H is the microhardness of the softer material, both in
N/m?Z. In the absence of detailed information, the o /m ratio can be taken as 5 to 9 um

for relatively smooth surfaces.
In eq. (1.7a), hy is given by
k
hy = —*
Y+ M

where k, is the thermal conductivity of the gap fluid, Y is the distance between the

mean planes (Fig. 1.4), given by

Y P\ 10547
— =1.185 |:—ln <3.132—>i|
o H
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and M is a gas parameter used to account for rarified gas effects,
M = afA

where o is an accommodation parameter (approximately equal to 1.7 for air and clean
metals), A is the mean free path of the molecules (equal to approximately 0.06 pm
for air at atmospheric pressure and 15°C), and p is a fluid property parameter (equal
to approximately 1.7 for air and other diatomic gases). Equations (1.8a) and (1.8b)
can be added and, in accordance with eq. (1.7a), the contact resistance becomes

m [ P\ X -1
Rop = {[1.25@ P <ﬁ> +3 jM} Aa} (1.9)

1.1.5 Lumped-Capacity Heating and Cooling

An internally heated solid of relatively high thermal conductivity that is experiencing
no external cooling will undergo a constant rise in temperature according to

aT _4q
Tt gy (1.10)

where ¢ is the rate of internal heat generation, m the mass of the solid, and ¢ the
specific heat of the solid. Equation (1.10) assumes that all the mass can be represented
by a single temperature. This approach is commonly called the lumped-capacity
model for transient heating.

Expanding on the analogy between thermal and electrical resistances suggested
previously, the product of mass and specific heat can be viewed as analogous to
electrical capacitance and thus to constitute the thermal capacitance.

When this same solid is externally cooled, the temperature rises asymptotically
toward the steady-state temperature, which is itself determined by the external resis-
tance to heat flow, R. Consequently, the time variation of the temperature of the solid
is expressible as

T(t) = T(t =0) +gR(l — e /Fm)y  (K) (1.11)

where the product of the external resistance R and the thermal capacitance mc is seen
to constitute the thermal time constant of the system.

1.1.6 Convective Heat Transfer

Heat Transfer Coefficient Convective thermal transport from a surface to a
fluid in motion can be related to the heat tranfser coefficient &, the surface-to-fluid
temperature difference, and the “wetted” surface area S in the form

q=hS(T;=Tp) (W) (1.12)
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The differences between convection to a rapidly moving fluid, a slowly flowing
fluid, or a stagnant fluid, as well as variations in the convective heat transfer rate
among various fluids, are reflected in the values of %. For a particular geometry and
flow regime, 7 may be found from available empirical correlations and/or theoret-
ical relations. Use of eq. (1.12) makes it possible to define the convective thermal
resistance as

R,, = 1 (K/W) (1.13)

Dimensionless Parameters Common dimensionless quantities that are used in
the correlation of heat transfer data are the Nusselt number Nu, which relates the
convective heat transfer coefficient to the conduction in the fluid:

h hL

Nu=—— = —
k/IL Tk

The Prandtl number Pr, which is a fluid property parameter:

c v
prEP_u:_
k o

the Grashof number Gr, which accounts for the bouyancy effect:

2 3
L°AT
or = PBELAT
v
and the Reynolds number Re, which relates the momentum in the flow to the viscious
dissipation:

All thermal properties in the foregoing dimensionless groups apply to the fluid at its
bulk temperature.

Natural Convection In natural convection, fluid motion is induced by density
differences resulting from temperature gradients in the fluid. The heat transfer coef-
ficient for this regime can be related to the buoyancy and the thermal properties of
the fluid through the Rayleigh number Ra, which is the product of the Grashof and
Prandtl numbers:

AT = SSL3 AT
ov

2
Ra= 2P Bicf’ L g

where the fluid properties p, B, ¢,, i, and k are evaluated at the fluid bulk temperature.
Empirical correlations for the heat transfer coefficient in natural convection boundary
layer flow have taken the form
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h= C%(Ra)” (W/m? - K) (1.14)

where 7 is found to be approximately 0.25 for 10* < Ra < 10°, representing laminar
flow; 0.33 for 10° < Ra < 10'2, the region associated with the transition to turbulent
flow; and 0.4 for Ra > 10'2, when strong turbulent flow prevails. The precise value
of the correlating coefficient C depends on fluid, the geometry of the surface, and
the Rayleigh number range. Nevertheless, for common plate, cylinder, and sphere
configurations, it is found to vary in the relatively narrow range of 0.45 to 0.65 for
laminar flow and 0.11 to 0.15 for turbulent flow past the heated surface.

Natural convection in vertical channels such as those formed by arrays of lon-
gitudinal fins is of major significance. Elenbaas (1942) was the first to document a
detailed study of this configuration, and his experimental results for isothermal plates
were later confirmed numerically by Bodoia and Osterle (1964). A uniform picture
of the thermal transport in such a vertical channel has emerged from these and com-
plementary studies.

It has been shown that the value of the Nusselt number lies between two extremes
that are based on the size of the space between the plates or width of channel. For
wide spacing, the plates appear to have little influence on one another, and the Nusselt
number in this case achieves its isolated plate limit. On the other hand, for closely
spaced plates or for relatively long channels, the fluid attains its fully developed value
and the Nusselt number reaches its fully developed limit. Intermediate values of the
Nusselt number can be obtained from a correlating method suggested by Churchill
and Usagi (1972) for smoothly varying processes, and these values have been verified
by a plethora of detailed experimental and numerical studies.

Thus, the correlation for the average value of & along isothermal vertical channels
spaced z units apart is

Lk (576 2.873)‘/2

B e (119

z
where El is the channel Elenbaas number-:

_ p°Bgeyt AT
o wkL

El

and AT is the surface temperature minus the bulk fluid temperature, AT = Ty — T5.
Natural convection fundamentals and results are covered in more detail in Chapter 7.

Forced Convection For forced flow in long or very narrow parallel-plate chan-
nels, the heat transfer coefficient attains an asymptotic value (the fully developed
limit), which for symmetrically heated channel surfaces is equal approximately to
4k
h=— (W/m? - K) (1.16)
d.
where d, is the hydraulic diameter defined in terms of the flow area A and the wetted
perimeter of the surfaces p:
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4A
p

de

In the inlet zones of such parallel-plate channels and along isolated plates, the heat
transfer coefficient varies with the distance from the leading edge. The low-velocity,
or laminar flow, average convective heat transfer coefficient along a surface of length
L for Re < 3 x 10° is found to be

k
h = 0.664zRe1/2 . pr!/3 (W/m? - K) (1.17)

where k is the fluid thermal conductivity, L the characteristic dimension of the sur-
face, and Re the Reynolds number based on L: namely, VL /V.

A similar relation applies to a flow in tubes, pipes, annuli or channels, with the
equivalent diameter d, serving as the characteristic dimension in both the Nusselt
and Reynolds numbers. For laminar flow, Re < 2100,

hd A3 " 0.14
£ =1.86 (Re . Pr—e) (-) (1.18)
k L Mo

which is attributed to Sieder and Tate (1936) and where w,, is the viscosity of the
convective medium at the channel wall temperature. Observe that this relationship
shows that the heat transfer coefficient attains its maximum value at the inlet to the
channel and decreases as d, /L decreases.

In higher-velocity turbulent flow along plates, the dependence of the convective
heat transfer coefficient on the Reynolds number increases, and in the range Re >
3 x 105,

k
h= 0.036ZRe0'8 -Pr!/3 (W/m? - K) (1.19)

In pipes, tubes, annuli, and channels, turbulent flow occurs at an equivalent
diameter-based Reynolds number of 10,000, with the regime bracketed by 2100 <
Re < 10,000 usually referred to as the transition region. For the transition region,
Hausen (1943) has provided the correlating equation

hd d, 2/3 0.14
¢ =0.116(Re — 125)Pr'? | 1 + [ = L (1.20)
k L 19

and Sieder and Tate (1936) give for turbulent flow

hd, 0.14
— 0.023Re* . Pr!/3 <i> (1.21)

My

Forced convection in internal and external flows is treated in greater detail in Chapters
5 and 6.
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1.1.7 Phase-Change Heat Transfer

Boiling heat transfer displays a complex dependence on the temperature difference
between the heated surface and the saturation temperature (boiling point) of the
liquid. Following Rohsenow (1952), the heat transfer rate in nucleate boiling, the
primary region of interest, can be approximated by a relation of the form

qo = Cop AT, — T)> (W) (1.22)

where Cy; is a function of the surface—fluid combination. For comparison purposes,
it is possible to define a boiling heat transfer coefficient /:

h¢ = Csf(Ts - Tsat)z (W/m2 : K)

which, however, will vary strongly with surface temperature. Boiling and condensa-
tion are treated in greater detail in Chapters 9 and 10, respectively.

1.1.8 Finned Surfaces

Frequent use is made of finned or extended surfaces, and while such finning can
substantially increase the surface area in contact with the coolant, conduction in the
fin reduces the average temperature of the exposed surface relative to the fin base. In
the analysis of such finned surfaces, it is common to define a fin efficiency 7 as being
equal to the ratio of the actual heat dissipated by the fin to the heat that would be
dissipated if the fin possessed an infinite thermal conductivity. Using this approach,
heat transferred from a fin or a fin structure can be expressed in the form

qgr =hS(T, —T) (W) (1.23)

where Sy is the surface area of the fin, T}, the temperature at the base of the fin, T
the surrounding temperature, and g, the heat entering the base of the fin, which in
the steady state is equal to the heat dissipated by the fin. The thermal resistance of a
finned surface is given by

Ry = —— (1.24)
and 1 is approximately 0.63 for a thermally optimum rectangular-cross-section fin.

1.1.9 Flow Resistance

The transfer of heat to a flowing gas or liquid that is not undergoing a phase change
results in an increase in the coolant temperature from an inlet temperature of Tj, to
an outlet temperature of Ty, according to

q = I’hC[, (Tou — Tin) (W) (1.25)
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Based on this relation, it is possible to define an effective flow resistance, Ry;, as

1
Ry = e (K/W) (1.26)

1.1.10 Radiative Heat Transfer

Unlike conduction and convection, radiative heat transfer between two surfaces or
between a surface and its surroundings is not linearly dependent on the temperature
difference and is expressed instead as

q=cAF (T} -T)) (W) (1.27)

where F includes the effects of surface properties and geometry and o is the Stefan—
Boltzmann constant, ¢ = 5.669 x 1078 W/m? - K*. For modest temperature differ-
ences, this equation can be linearized to the form

gr =h.S(Ty — T») (W) (1.28)
where £, is the effective “radiation” heat transfer coefficient,
hy =oF (T} + T7) (T1 + T») (W/m? - K) (1.29a)
and for small AT = T; — T is approximately equal to
h, = 46 F (I, T»)*? (W/m? - K) (1.29b)

It is of interest to note that for temperature differences on the order of 10 K, the
radiative heat transfer coefficient 4, for an ideal (or “black”) surface in an absorbing
environment is approximately equal to the heat transfer coefficient in natural convec-
tion of air. Noting the form of eq. (1.27), the radiation thermal resistance, analogous
to the convective resistance, is seen to equal

1
h,S

R, = (K/W) (1.30)

1.2 COORDINATE SYSTEMS

Heat transfer and fluid flow analyses of objects of various sizes and shapes and
their corresponding flow fields are facilitated by working in a coordinate system
that provides a good fit to the flow geometry. Figure 1.5 presents diagrams for the
rectangular (Cartesian), cylindrical, and spherical coordinate systems. Equations for
the gradient of a scalar, divergence and curl of a vector, and the Laplacian are given
below for the three coordinate systems.
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=

S)

Cartesian coordinates

Plane of
Z = constant

- z2=0

Il

Cylindrical coordinates

Spherical coordinates

Figure 1.5 Rectangular (Cartesian), cylindrical, and spherical coordinate systems.
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1.2.1 Rectangular (Cartesian) Coordinate System

For a rectangular coordinate system with coordinates x, y, and z and unit vectors e,,
e,, and e, the gradient of the scalar T is

oT oT oT
ox +e— +e— (1.31)

gradT = VT =e,—
ay 0z

The divergence of a vector V having components V., V,, and V, is

IV, v, av.

divV=V.V= 1.32
v ox + ay + e ( )
The curl of the vector V is
V. aV,
curlV=Vx V=e, 2
ay 0z
oV, dV, aVy 9V
e, - + e, (1.33)
S\ 0z dx ox 8y
Alternatively, curl V may be written as the determinant
[ e, e,
0l 0 a
— — — (1.34)
ax ay 0z
Vi vy f

The Laplacian of the scalar T is

°T  9°T  9°T
VT = — 4+ — 4+ —— 1.35
dx?2 + dy?2 + 972 (135

1.2.2 Cylindrical Coordinate System

For a cylindrical coordinate system with coordinates r, 6, and z and unit vectors e,
eg, and e, the gradient of the scalar T is

oT 10T oT
gradT =VT =e,— +e—— +e,— (1.36)
ar r 00 0z

The divergence of a vector V having components, V,., Vy, and V, is

1aeyy) 1
dvv=vy.y= o0V 1oV oV
r or r 36 0z

(1.37)
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The curl of the vector V is

1oV, aV
curlV=V xV=e, bl
r 00
av, aV, 1[a(rVy) 9V,
- - - — 1.38
+ee<az 8r)+ r|: or ae} (1.38)
Alternatively, curl V may be written as the determinant
1 1
e — €y e, —
r r
9 9 9 (1.39)
ar 20 0z
V, rVy V,
The Laplacian of the scalar T is
gep o 10 (roTy 1 9T N 9T (1.40)
Tror \ar r2 90> = 972 '

1.2.3 Spherical Coordinate System

For a spherical coordinate system with coordinates r, 8, and ¢ and unit vectors e,, ey,
and ey, the gradient of the scalar T is

oT 10T 1 9T

adT =VT =e,— +e,— — 1.41
& ar T8 90 T % sing 90 (1.41)
The divergence of a vector V having components, V,., Vp, and Vj is
1 3(2V, 1 3(Vysi 1 3V
givv=v.v= L0V L Aesing) L Ve,
rr  or rsin ¢ o rsing 00
The curl of the vector V is
1 0 (Vg si V.
curl V=V xV=¢e — Vosind) _ Ve
rsin ¢ b a0
1 1 oV, 9@V, 1] a(rV, aV,
IpYS L/ (GLON (vs) (1.43)
r | sing 96 or r ar b

The Laplacian of the scalar T is

5 1a (,0T 1 9 (. T 1 9°T
"2 or or rZsin ¢ d Lo} r2sin“¢ 00
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1.2.4 General Curvilinear Coordinates

In general, a curvilinear coordinate system can be proposed where a vector V has
components Vi, V5, and V3 in the x|, x,, and x3 coordinate directions. The unit vectors
are e;, €, and e3 in the coordinate directions x;, x,, and x3 and there are scale factors,
s1, §2, and s3 that relate the general curvilinear coordinate system to the rectangular,
cylindrical, and spherical coordinate systems.

In the general curvilinear coordinate system, the gradient of a scalar T is

1 0T 10T 1 0T
gradT =VT =ej—— +ep—— +es—— (1.45)
51 8x1 52 8x2 §3 8x3

The divergence of a vector V having components, Vi, V,, and V3 is

1 0 V 0 V. 0 V-
divV = V.V — (s253V1) + (s351V2) + (s152V3) (1.46)
5185283 Bxl BJCQ 8)63
The curl of the vector V is
1 [a(szV (s, V.
curlV=VxV=¢e— (53 3)— (52V2)
5283 3)62 3)63
1 (s V; a(s3V- 1 d(s2 V- a(s1V;
Lo (s1Vi)  9(s3V3) be— (2V2)  d(siV) (1.47)
5183 8)(3 3)61 5182 8x1 axz

The Laplacian of the scalar T is

V2T = 1 i 5253 B_T
5185283 3)(1 851 8)61
d oT 9 oT
e (22 ) (22— (1.48)
3)62 \Y) 3x2 8)63 S53 3)63
In egs. (1.45) through (1.48), the conversion from the general curvilinear coordi-
nate system to the rectangular, cylindrical, and spherical coordinate systems depends

on the assignment of values to the coordinates x;, x,, and x3 and the scale factors
s1, $2, and s3.

X1 X2 X3 S1 52 53
Rectangular: x y z 1 1 1
Cylindrical: r 6 z 1 r 1
Spherical: r ¢ 6 1 r rsing

1.3 CONTINUITY EQUATION

A control volume is a region in space selected for analysis. An incremental control
volume carrying a mass flux is shown in Fig. 1.6. The conservation of mass principle
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can be applied to the control volume by noting that the net rate of mass flux out of
the control volume plus the rate of accumulation of mass within the control volume

must equal zero:
/f p(V-n) dA = i/f/pdv (1.49)
at
A 14

Observe that the mass within the control volume is
m=pAx Ay Az
and that the mass flux at each of the faces of Fig. 1.6 will be p(V -n), where n is the
normal to the area d A.
Noting that the density can vary from point to point and with time, p = f(x, y, z,

1), the net mass flux out of the control volumes in each of the coordinate directions
will be

(WHHAX —~ pVx\x) Ay Az
<pV)7|y+Ay - pV)’\)’) Ax Az

(p\leAz — p‘}z‘z> Ax Ay
With all of the foregoing substituted into eq. (1.49),
(PVure = 0Vu1s) Ay Az + (09,58, — V) Ax Az

. N a
+ (pvz|z+Az - szIz) Ax Ay + a_i)Ax AyAz=0

Figure 1.6 Mass flux through an incremental flow volume.
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and after division by Az Ay Az, the result is

panMAx — pVix n pV_V|y+Ay —pVyy " PVt Az — oV n @ _

Ax Ay Az ot 0
In the limit as Ax, Ay, and Az all tend to zero, the result is
N A a ap
a(pVx) + 5(9%) + a—z(sz) to = 0 (1.50)
This may be written as
v-p\?+@=0 (1.51)

dt

where V - pV = div pV is the divergence of the vector V. This equation is general: It
applies to unsteady three-dimensional flow with variable p.

Equation (1.51) is a vector equation that represents the equation of continuity in
rectangular, cylindrical, and spherical coordinates. If the flow is incompressible, so
that p is independent of time, eq. (1.51) reduces to

V.pV=0 (1.52)
which applies to both steady and unsteady flow. This equation is also a vector equation

that applies to rectangular, cylindrical, and spherical coordinates.
Equation (1.50) can be written as

dp A dp A dp A Dp v, vV, v,
— Vi + Vy— + V. — — 4+ —Z)=0
o T T >ayJr zaz+ ax  dy 0z
or
De | v v =0 (1.53)
pr P o ’
where

Dp 0dp ~ dp A~ dp A Jp
—=—+Vi—+V,—+V,— 1.54
Dt ot ax oy T (154

is called the substantial derivative of the density p. Thus, in rectangular coordinates,

D _2 93 190 1p2 (1.55)
Dt ar  Tox  Tay ‘oz '

The substantial derivative in cylindrical coordinates is
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D 9 ~3 Ved 0

= - = a —— 1.56
Dt 8t+ 8r+r89+ ‘9z ( )
and in spherical coordinates, it is
D 3 8 Vyd Vo 9
IS AT T (1.57)

Dr ot "or 7 8¢  rsind a0

The equation of continuity representing the conservation of mass can be summa-
rized for the three coordinate systems. For the rectangular coordinate system,

dp (V) (V. ApV,
_p+(p)+(py)+(pz)=

0 (1.58)
ot 0x ay 0z
for the cylindrical coordinate system,
dp  13(prV,)  1a(pVe)  a(pV.
dp  LaterV) | 19(eVe)  3(pVa) _ (1.59)

ot r Or r 00 0z

and for the spherical coordinate system,

ap 1 9(pr2V,) 1 3(pVgsin ) 1oV

=0 1.60
or  rr  or rsin ¢ o rsing 90 (1.60)
In the event that the flow may be modeled as incompressible,
aVX+al7y+aVZ =0 (1.61)
ox ay dz )
for the cylindrical coordinate system,
19rV,)  13Vy V.
2y 270 =0 1.62
rdr + r 06 + 0z ( )
and for the spherical coordinate system,
1802V, 1 3(Vysing) 1 av
13V ¢ b —0 (1.63)

2 or rsing  0d rsing 00

1.4 MOMENTUM AND THE MOMENTUM THEOREM

The momentum theorem of fluid mechanics provides a relation between a group of
field points. It is especially useful when the details of the flow field are more than
moderately complicated and it is based on Newton’s law, which can be written as
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av _ d(mV) 168

F=m—
dt dt

where mV is the momentum. Equation (1.64) is the statement of the conservation of
momentum principle.

Note that the conservation of momentum principle is stated in terms of the proper-
ties of particles and not in terms of the properties of a field. To derive the momentum
theorem, a region in a fluid confined by the control surface S;, shown in Fig. 1.7, is
employed. The surface S contains a definite and fixed number of particles at time #;.
At time 1,, these particles will have moved to a region bounded by the control surface
S,, which is shown as a dashed curve to distinguish it from S;.

The control surfaces S; and S, enclose three separate and distinct regions, desig-
nated by a, b, and c. Let the momentum in the three regions be P,, P,, and P, re-
spectively. At time ¢, the particles within surface S; will possess momentum P, +Py;.
At time 1, these particles will have momentum, Py, + P, because they have moved
into the region enclosed by surface S,. Hence the momentum change during the time
interval f, — t; may be described by

Pp2 +Pc) — Pp1 +Py) = P2 — Ppy) + (P — Py)

and the time rate of change of momentum will be

P, — P, P.—P,
lim ( b T OO ) (1.65)
h—1) h— 1 h—1

As 1, approaches #; as a limit, the control surface S, will coincide with S;. The
first term in eq. (1.65) is therefore the time rate of change of momentum of the fluid
contained within region 1, R|, contained within S;. This may be written as the integral
over R;. Because the mass of fluid contained in R; is

ff

Ry

the time rate of change of momentum of the fluid contained within region 1 will be

d ~

— V dR

i ] o8
R

The second term in eq. (1.65) is the momentum efflux through the control surface
S . If the flux in the outward direction is taken as positive, this efflux can be expressed

by the integral
[[ o3, as

Si

where V), is the component of velocity normal to ;.
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Figure 1.7 Regions bounded by control surfaces used for the development of the momentum
theorem.

The conservation of momentum principle then becomes

F_mzz /// deR1+f/ oVV, dS (1.66)

or, by rearrangement of terms,

d N A A

5f// oV, dR, = F, —f/ pV.V, dS, (1.67a)
R1 Sl

d N A A

o oV, dR, = Fy — || oV,V, dS, (1.67b)
R, S

—f// oV, dR, = F, /f oV, V, dS, (1.67¢)

Si

in the three rectangular coordinate directions.

The foregoing development leads to the statement of the momentum theorem: The
time rate of increase of momentum of a fluid within a fixed control volume R will
be equal to the rate at which momentum flows into R through its confining surface
S, plus the net force acting on the fluid within R. When the flow is incompressible,
the viscosity is constant, and the flow is laminar, the Navier—Stokes equations result.
In Cartesian coordinates, with Fy, F,, and F; taken as the components of the body
force per unit volume, the Navier—Stokes equations are

Ve A 0Ve A Ve V.
|l —=+V,—+Vv,— +

at T ox Y oy “ 9z



22 BASIC CONCEPTS

P 2V, | PV, 9V, L F
T Tax "M\ e T T2 x

v, v % Aaf/“r‘;a}
ar Y ) T dy © 9z
_ P 92V, N 3%V, N 3V, L F
9y WPy 9y? 972 Y
vV, AV, A~ oV. V.
v 1% v
p(az T TGy T
P 2V, 92V, 92V, F
9z M\ o2 0y? 072

(1.68b)

(1.68¢)

In cylindrical coordinates with F,, Fy, and F, taken as the components of the body

force per unit volume, the Navier—Stokes equations are

8\7,+‘A/8\7,+‘79 v, \762+‘78f/, P
\Vor T T a0 oz | T T or
N 32V, N 19V, V. N 192V, 2V, 9%V, CF
K ar2 r or r2 0 r2 99? r2 96 972 "
dVy ~ B‘A/e ‘79 8‘79 ‘7,‘79 ~ 0 Ae 1 0P
v,— 4 22 V— | = ———
<3t + or + r 00 r G z r 00

N 32V, N 1Ve Vo 13%V, 20V, N 32V, CF
K ar2 roor r2 - r2 9o r2 00 372 o
av. +‘78V V98V +\78‘71 P
P\ o or 00 | oz )T T dz
N 32V, N 19V, 102V, 9%V, F
W ar2 ror  r2 9e? dz 2

(1.69a)

(1.69b)

(1.69¢)

Finally, in spherical coordinates with F;, Fy, and F,, taken as the components of

the body force per unit volume and with

D 3 -3 Vyd Vo 0

7=tV t e — —

DT  dt r d¢ rsin¢ 20

o L (50 N sind)a N 1 9?
T r2or U or r2sind 9¢ ad)  r2sin® ¢ 96°
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the Navier—Stokes equations are

<D17, V2 + \%3) P
p —_— — =

Dt r _3_r

.2V, 209V, 2Vycotd 2 v,
vip, - L 2T - —)+F @70
+”< 2T 7299 ) sing o9 ) T (70
DVy V.V, VZcot¢)\ = 10P
. Dt r r or b
.29V, v, 2cosd AV
Vi, 4 =L )+ F 1.70b
+M< ¢ r2 3 r2 sin ¢ I"ZSin2(]) 90 ) + Fy ( )
DVQ n ‘A/e‘A/r n ‘A/¢‘A/9 COt(') . ‘A/e oP
Dt r r "~ rsind 90
A \79 2 8\7,. 2 cos ¢ 8‘79
V2V, — - — F, 1.70
+M< ) P2sin’ ¢ r2sing 00 rZsin2¢ 99 + Fy ( c)

1.5 CONSERVATION OF ENERGY

In Fig. 1.8, an imaginary two-dimensional control volume of finite size Ax Ay with
flow velocity V = e, V. + e, V), heat flux q” = e,q; + e,q}, specific internal energy
u, and rate of internal heat generation g, the first law of thermodynamics requires

that
rate of energy
( accumulation within )
the control volume

net transfer net heat

= (of energy by) + ( transfer by )

fluid flow conduction
cate of net work

« ( ) . transfer from the

internal heat (1.71)
control volume to

generation .
the environment

Four of the five terms indicated do not involve work transfer from the control volume
to the environment.

* The rate of energy accumulated in the control volume is

d
AXx Ayg(pu) (1.72a)
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[pf/yu + %(p% u) Ay:l A

X

| |
| N 3
R | | [p‘&u +g(p‘éu) AXJ Ay
pWiu Ay d(pe)
___9-| 5 Ax Ay I———-——>
| |
| |
| |
y L
p\A{Vu Ax
>y " gy
ﬁ (qy + BN Ay) Ax
————————— 1
|
|
| } y
mn " q
q')'CAy:>. q"Ax Ay l:> (qx-l- 8;Ax)Ay
|
|
l
I, .

Figure 1.8 First law of thermodynamics applied to
dimensional flow.

* The net transfer of energy by fluid flow is
(Ax Ay) 9 (pVieu) +
— (Ax —(pViu
y ax p

* The net heat transfer by conduction is

an imaginary control volume in two-

i( 1% )] (1.72b)
2y pVyu .
8q;’
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* The rate of internal heat generation is

(Ax Ay)g" (1.72d)

The origin of the term involving the net work transferred from the control volume
to the environment is shown in Fig. 1.9, where the normal and tangential stresses are
sketched. For example, the work done per unit time by the normal stress ¢, on the left

-
|
|
|
2
pVE Ay =——> B — I [M‘ T o
|
|
|
_J

ViV, Ax
oT,.,
(Tm + a;y Ay)Ax
- A N X
— P P P
———————— 7
r M
——— ——
( | |
| |
e [ bl VY
()-.X
o, Ay < I l [+ as)
| X Ax Ay |
| L
I |
— ——
U T _J )
- - < -—
N — J
T, Ax

Figure 1.9 Force balance in the x direction of an imaginary control volume in two-dimensional
flow.
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side of the Ax Ay element is negative and equal to the force acting on the boundary
oy, multiplied by the boundary displacement per unit time V. This yields —Vy o, A,.
Similarly, the work transfer associated with normal stresses acting on the right side
of the element is positive and equal to

Ax) Ay

N doy - v,
Ox X x
aIx aIx

The net work transfer rate due to these two contributions is

Ve  ~ 9oy
Oy —— + Vx (Ax Ay)

ox 0x

Three more work transfer rates can be calculated in the same way by examining
the effect of the remaining three stresses, 1, in the x direction and o, and t,, in the
y direction. This gives

Vv, GAA v, v,
(Ax A)’) Ox - Txy O'y_J — Tyx_
ox ay dy ax
+ (A A ) ‘A/ a(fx ‘7 3‘cxy + ‘A/ 30,, ‘7 313”
X X 5. T YxT5 o T VY
Y ox ay 79y ox

where the eight terms have been separated into two groups. It can be shown that the
second group reduces to

D Vi4 V2
“"pi 2

which represents the change of kinetic energy of the fluid in the control volume. This

change may be considered negligible relative to the internal energy change, d (pu)/dt,

so that the work transfer becomes

V. Vv, v, v,
(Ax Ay) O‘xg—'[xyg +O‘y¥—'[yx¥ (1726)

The stresses o, and 1, can be related to the flow field via the constitutive relations
given by Rohsenow and Choi (1961):

P-2 A 42 Al + o, (1.73a)
o =P — - — .
M ox T3M\ o Ty

and

av,  av,
Ty = 1 + (1.73b)
’ dy ax



CONSERVATION OF ENERGY 27

The bookkeeping required by eq. (1.71) dictates the assembly of eqs. (1.72), using
egs. (1.73), into

Du (PP v ¥ V.q' +q" —PV-Vipd (174
Du  (Dp )= _v. _pv. ,
D, o e q +q "

where | is the dynamic viscosity of the fluid and & is the viscous dissipation function,
which is detailed subsequently in rectangular, cylindrical, and spherical coordinates.
However, eq. (1.53) shows that the term in parentheses on the left-hand side of eq.
(1.74) is equal to zero, so that eq. (1.74) reduces to

pD—L:=—v-q”+q”’—PvV+m> (1.75)

In the special case where the flow can be modeled as incompressible and two-
dimensional, the viscous dissipation function reduces to

A\ 2 A\ 2 ~ A\ 2
V. vy vV, v,
P =2 - — - : 1.76

To express eq. (1.74) in terms of enthalpy, the definition

P
h=u+Pv=u+—
p

is invoked. Hence,

Dh  Du 1DP P Dp

_— = 4 - 1.77
Dt Dt ( )

p Dt 0 Dr

Moreover, the heat fluxes g, and gy can be expressed in terms of local temperature
gradients through use of Fourier’s law:

q = —kVT (1.78)

Thus, the combination of eqs. (1.74), (1.77), and (1.78) results in

Dh G vty 1"+ 22 puo— B (2P 4oy ¥)  79)
"pr T a pr W o \ Dt . ’

Here, too, eq. (1.53) points out that the terms in parentheses in eq. (1.79) are equal to
zero, so that eq. (1.75) reduces to

Dh—V (kVT) + ”’+DP+ ® (1.80)
°Dr T 4 pr ¥ ‘

Bejan (1995) points out that the change in specific enthalpy for a single-phase fluid
is given by
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dP
dh=Tds+vdP =Tds + — (1.81)
o

where T is the absolute temperature and ds is the specific entrophy change:

ds ds
ds=|—) dT — | dP 1.82
= (i), o+ (), a2
The last of the Maxwell relations given by Bejan (1997)
a a(l 1 /0
9N _ |/ _ L (oe\ _ B (1.83)
oP J, or |p 0> \3T /p o
where B is the volumetric coefficient of thermal expansion,
1/0
B=—- (—p) (1.84)
p \oT /p
With ¢, taken as the specific heat at constant pressures, it can be shown that
d
B (1.85)
ar ), ~ T

and eqgs. (1.81) through (1.85) can be combined,
1
dh =c,dT + -1 —BT)dP (1.86)
Y

so that the left-hand side of eq. (1.80) can be written as

b _ 0 PT 2P (1.87)
T TP Dy Dt :

Thus, the temperature formulation of the first law of thermodynamics is
b1 V.- (k&VT) + ”’+BTDT+ o) (1.88)
C,— — . _ .
Y 1 pr "
with the special forms for the ideal gas where p = 1/T,
DT V- (kVT)+q" + br + pd (1.89a)
cp,— =V — .89a
Y T T T
and for an incompressible fluid where § = 0,
DT n
pc,,D—t =V-(kVT)+q" +pd (1.89b)

Most convection problems concern an even simpler model where the fluid has
constant thermal conductivity k, neglible viscous dissipation @, zero internal heat
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generation (¢” = 0), and a negligible compressibility effect, BT (DP/Dt) ~ 0. The
energy equation for this model is simply

DT

pep 5 = k V2T (1.90)

or, in the rectangular coordinate system,
3T+‘78T+‘78T+‘78T . 82T+82T+82T (L9D)
cp | — — ) — — | = —t — + — .
Pr\ o T ax T Py T s ax2 9y T oz
in the cylindrical coordinate system,

8T+‘78T+‘798T+‘78T
cp| — r— + —— —
Per\ ar or r 90 ‘oz

19 (T 1 3°T 3°T
—kl == (r= —— 4 — 1.92
[r8r<r8r>+r2892+812:| (1.92)

and in the spherical coordinate system,

aT+‘>aT+\7¢aT Vo OT
C —_— F— _— - -
P\ o ar " 96 rsing 90

r 190 (,0T n 1 a (. ¢8T n 1 9°T (1.93)
=k|=s—(r"— ——— | sinp— —_— .
r29r \' or r2sind ¢ dd sin’¢ 96°
If the fluid can be modeled as incompressible then, as in eq. (1.89b), the specific
heat at constant pressure c, is replaced by c. And when dealing with extremely

viscous flows, the model is improved by taking into account the internal heating due
to viscous dissipation,

DT
0o =k V2T + pd (1.94)

In the rectangular coordinate system, the viscous dissipation can be expressed as
o, \" [av,\" [ov.\

d=2 = Y £
N A\ 2 N A\ 2 N A\ 2

n avx+avy n 8Vy_+_8VZ n 3VZ+8VX

ay ox az ay dox 0z

A A N 2
2 (V. vV, V.
—5( + 2+ Z) (1.95)

ox ay 9z
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in the cylindrical coordinate system as
A\ 2 . A\ 2 AN 2
I av, n 18V9+V, n oV,
N ar r 00 r 0z
N N A\ 2 N A\ 2
+1 aVy V9+18V, +1 18VZ+8V9
2\ or r r 00 2\r 06 0z

N AN\ 2
18V, oV, 1 e
= — V-V 1.96
+2(az+8r) 3( )] (1.96)

and in the spherical coordinate system as

A\ 2 N A\ 2 N . A 2
®—2 av, n 18V9+Vr n 1 8V9+V,+V¢cot¢
B ar r 0o r rsind 06 r r
N A 2 N A T2
1 (Vs 19V, 1|sing 9 Vi 1 Vg
+-lr—=l—)+-——1| += — - +
2|1 or \ r r 0 2 r d¢ \rsind rsin¢d 96
1l 1 av o (V\T| 2
r 0 a2
- — [ — ——(V-V 1.97
+2|:rsind> 90 +r8r<r):| 3V V) (1.97)

1.6 DIMENSIONAL ANALYSIS

Bejan (1995) provides a discussion of the rules and promise of scale analysis. Dimen-
sional analysis provides an accounting of the dimensions of the variables involved in
a physical process. The relationship between the variables having a bearing on friction
loss may be obtained by resorting to such a dimensional analysis whose foundation
lies in the fact that all equations that describe the behavior of a physical system must
be dimensionally consistent. When a mathematical relationship cannot be found, or
when such a relationship is too complex for ready solution, dimensional analysis
may be used to indicate, in a semiempirical manner, the form of solution. Indeed, in
considering the friction loss for a fluid flowing within a pipe or tube, dimensional
analysis may be employed to reduce the number of variables that require investiga-
tion, suggest logical groupings for the presentation of results, and pave the way for a
proper experimental program.

One method for conducting a dimensional analysis is by way of the Buckingham-m
theorem (Buckingham, 1914): If r physical quantities having s fundamental dimen-
sions are considered, there exists a maximum number ¢ of the r quantities which, in
themselves, cannot form a dimensionless group. This maximum number of quanti-
ties ¢ may never exceed the number of s fundamental dimensions (i.e., g < s). By
combining each of the remaining quantities, one at a time, with the g quantities, n
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dimensionless groups can be formed, where n = r — g. The dimensionless groups
are called T ferms and are represented by 1y, 7o, 73, .. . .

The foregoing statement of the Buckingham-m theorem may be illustrated quite
simply. Suppose there are eight variables that are known or assumed to have a bearing
on a cetain problem. Then » = 8 and if it is desired to express these variables in terms
of four physical dimensions, such as length L, mass M, temperature 6, and time T,
then s = 4. It is then possible to have ¢ = r — s = 8 — 4 = 4 physical quantities,
which, by themselves, cannot form a dimensionless group.

The usual practice is to make ¢ = s in order to minimize labor. Moreover, the ¢
quantities should be selected, if possible, so that each contains each of the physical
quantities at least once. Thus, if ¢ = 4, there willbe n = r —q = 8§ —4 = 4 different
7 terms, and the functional relationship in the equation that relates the eight variables
will be

[y, ma, 73, T4)

1.6.1 Friction Loss in Pipe Flow

It is expected that the pressure loss per unit length of pipe or tube will be a function
of the mean fluid velocity V, the pipe diameter d, the pipe roughness e, and the fluid
properties of density p and dynamic viscosity . These variables are assumed to be
the only ones having a bearing on A P/L and may be related symbolically by

AP A

T=f(V,d,€,p,M)

Noting that r = 6, the fundamental dimensions of mass M, length L, and time T
are selected so that s = 3. This means that the maximum number of variables that
cannot, by themselves, form a dimensionless group willbe g =r —s =6 —3 = 3.

The variables themselves, together with their dimensions, are displayed in Table
1.1. Observe that because mass in kilograms is a fundamental dimension, pressure
must be represented by N/m?, not kg/m?. Pressure is therefore represented by F/A =
mg/A and dimensionally by MLT ~2/L?> = M /LT>.

Suppose that v, p, and d are selected as the three primary quantities (g = 3).
These clearly contain all three of the fundamental dimensions and there will be
n=r —q = 6 —3 = 3 dimensionless 7 groups:

AP
T, = — V4Pde
1 7 P

7, = eV pbd¢
73 = M"}u pbdc

In each of the m groups, the exponents are collected and equated to zero. The
equations are then solved simultaneously for the exponents. For 7y,
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TABLE 1.1 Variables and Dimensions for the Example
of Section 1.6.1, SI System

Variable Dimension
Pressure loss AP M/LT?
Length L L

Velocity V L/T
Diameter d L
Roughness e L

Density p M/L3
Viscosity M/LT
Pressure loss per unit length AP/L M/L*T?

AP "}a bdc L ¢ M b c
T =— = — —
'TL 22 \1) \13
Then
M: 0=1+5b
L: 0=-2+4+a—-3b+c
T: 0=-2-—a
A simultaneous solution quickly yieldsa = —2, b = —1, and ¢ = +1, so that
AP A APd AP
= —V 2 ld= — = ~
L pLVZ  (L/d)pV?
For 15,
Vaptde = L LY (M bLf
TH = € = —_— _— 3
2 P T I3
Then
M: 0=0b
L: O0=14a—-3b+c
T: 0=—a
This time, the simultaneous solution provides a = b = 0 and ¢ = —1, so that
1, =ed ! = ¢
2T T d
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For 73,
papge - M L\ MbLC
T3 = = — —_ J—
3TRYE r \7) \13
Then
M: 0=1+5b
L: O0=—-14a—-3b+c
T: 0=-1—a
from whicha = b = ¢ = —1, so that
3 = uV‘lp_'d_l = LA
pVd

the reciprocal of the Reynolds number.
Let a friction factor f be defined as

2(AP/L)d
5o HAP/Dd (1.98)
pV?
such that the pressure loss per unit length will be given by
AP of V2
= _ 1.99
L 2d (1.99)

Equation (1.99) is a modification of the Darcy—Fanning head-loss relationship,
and the friction factor defined by eq. (1.95), as directed by the dimensional analysis,
is a function of the Reynolds number and the relative roughness of the containing
pipe or tube. Hence,

b (1.100)

_2g(AP/L)  [pVd e
pV2d WL

A representation of eq. (1.100) was determined by Moody (1944) (see Fig. 5.13).

1.6.2 Summary of Dimensionless Groups

A summary of the dimensionless groups used in heat transfer is provided in Table
1.2. A summary of the dimensionless groups used in mass transfer is provided in
Table 1.3. Note that when there can be no confusion regarding the use of the Stanton
and Stefan numbers, the Stefan number, listed in Table 1.2, is sometimes designated
as St.
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TABLE 1.2 Summary of Dimensionless Groups Used in Heat Transfer

Group Symbol Definition
Bejan number Be APL?/pa

Biot number Bi hL/k
Colburn j-factor Jn St - pr?/3
Eckert number Ec V2 /ep(Ty — Too)
Elenbass number El pZBgcpz“AT/kaL
Euler number Eu AP/p V2
Fourier number Fo at/L?

Froude number Fr V2 /gL

Graetz number Gz pCp Va? /kL
Grashof number Gr gB AT L3/V?
Jakob number Ja prCpi(Tw — Tsa) /08N rg)
Knudsen number Kn N/L

Mach number Ma 1% /a

Nusselt number Nu hL/k

Péclet number Pe Re - Pr= pchL /k
Prandtl number Pr cp/k=v/a
Rayleigh number Ra Gr - Pr= pgB AT L*/pa
Reynolds number Re p VL /I
Stanton number St Nu/Re - Pr=h/pc, 1%
Stefan number Ste cp(Ty — T’Z’) /by
Strouhal number Sr Lf/V

Weber number We pV2L /o

TABLE 1.3 Summary of Dimensionless Groups Used in Mass Transfer

Group Symbol Definition
Biot number Bi hpL/D
Colburn j-factor Jjp STp - Sc%/3
Lewis number Le Sc/Pr=a/D
Péclet number Pep Re-Sc=VL/D
Schmidt number Sc v/D
Sherwood number Sh hpL/D
Stanton number Stp Sh/Re - Sc = hp/ 1%
1.7 UNITS

As shown in Table 1.4, there are seven primary dimensions in the SI system of units
and eight in the English engineering system. Luminous intensity and electric current
are not used in a study of heat transfer and are not considered further.
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TABLE 1.4 Primary Dimensions and Units for the SI and English
Engineering Systems

Di . Unit and Symbol

imension

(Quantity) SI System English System
Mass kilogram (kg) pound-mass (Iby,)
Length meter (m) foot (ft)

Time second (s) second (s)
Temperature kelvin (K) rankine (°R)
Amount of substance mole (mol) mole (mol)
Luminous intensity candela (Cd) candle

Electric current ampere (A) ampere (A)
Force newton (N) pound-force (1by)

1.7.1 Sl System (Systéme International d’Unités)

The SI system of units is an extension of the metric system and has been adopted in
many countries as the only system accepted legally. The primary dimensions used in
a study of the thermal sciences embrace the first five entries in the center column of
Table 1.1. There are standards for all these units. For example, the standard for the
second is the duration of 9,192,631,770 periods, corresponding to the transition states
between two levels of the ground state of the cesium-133 atom.

The mole is defined as the molecular weight of a substance expressed in the
appropriate mass unit. For example, a gram-mole (g-mol) of nitrogen contains 28.01
grams (g) and 1 kg-mol of nitrogen contains 28.01 kilograms (kg). The number of
moles of a substance, N, is related to its mass m and molecular weight by the simple
expression

N=— 1.101
i ( )

In the SI system, force is a secondary dimension. The unit of force is therefore a
secondary or derived unit and is the newton (N), which can be obtained from Newton’s
second law, F' = ma, as

IN = 1kg(m/s*) = 1kg-m/s’
and the constant of proportionality is unity, or

IN-s?
kg-m

=1 (1.102)

Because pressure is force per unit area, P = F/ A, the unit of pressure, the pascal
(Pa), can be expressed as

1Pa=1N/m?= (1kg-m/s?)(1/m?) = nllﬁ

> (1.103)
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A work interaction, or work, is represented by
W = Fx
The unit of work or energy is the joule (J), defined as
W=1J=1N-m (1.104)
and because power P is the rate of doing work, the unit of power is the watt:

aw .
=W=W=1J/s=1N~m/s (1.105)
Note that quantities that pertain to a rate can be designated by a dotted quantity.
Observe that the weight of a body is equal to the force of gravity on the body.
Hence, weight always refers to a force, and in the SI system this force is always in
newtons. The mass of the body can always be related to its weight via

P

W =mg (1.106)
where g, the local gravitational acceleration, has a mean value at sea level of
g = 9.807 m/s?

and is a function of location. This shows that the weight of a body may vary, whereas
the mass of the body is always the same.

1.7.2 English Engineering System (U.S. Customary System)

The English engineering system (sometimes referred to as the U.S. customary system
of units) is often used in the United States. This system takes the first five entries and
the last entry in the right-hand column of Table 1.4. Here both mass and force are
taken as primary dimensions and the pound is used as the unit of mass (the lb,,,) and
the unit of force (the Ibg). This leads to more than a little confusion when this system
is used.

Because there are now six primary dimensions to be used with Newton’s second
law, it must be written as

F «<ma

When the proportionality constant g, is inserted, the result is

ma

8c

F =

(1.107)

with g. = 32.174 ft/s* taken as the standard acceleration of gravity. This means that
a force of 1 1b; will accelerate a mass of 1 lby, at a rate of 32.174 ft/s2. Thus,

(32.174 ft/s*) (1 1by,)
8¢

11b; =

or
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_ 32,174 Iby,y-ft

.= 1.108
& lbf—82 ( )
Thus Newton’s second law must be written as
F=_"4 (1.109)
T 32174 '

It is important to remember that the ST system of units does not require this conversion
factor.

1.7.3 Conversion Factors

Conversion factors from English engineering units to SI units are given in Table 1.5.
Conversion factors for commonly used heat transfer parameters are given in Table 1.6.

TABLE 1.5 Conversion Factors from English Engineering Units to SI Units

To Convert from: To: Multiply by:
Acceleration

ft/sec? m/s? 3.048 x 107!
Area

ft? m? 9.2903 x 1072

in? m? 6.4516 x 1074
Density

1by/in® kg/m3 2.7680 x 10*

1b,/ft? kg/m3 16.018
Energy, heat, and work

Btu J 1.0544 x 10

ft-1bg J 1.3558

kW-hr J 3.60 x 10°
Force

Ib¢ N 4.4482
Length

ft m 3.048 x 107!

in. m 2.54 x 1072

mi km 1.6093
Mass

by, kg 4.5359 x 107!

ton kg 9.0718 x 10?
Power

ft-Ibg /min W 2.2597 x 1072

horsepower (hp) w 7.457 x 102
Pressure

atm Pa 1.0133 x 10°

1b; /£t Pa 47.880

1b¢/in® Pa 6.8948 x 103
Velocity

ft/sec m/s 3.048 x 107!

mi/hr m/s 4.4704 x 107!
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TABLE 1.6 Conversion Factors for Heat Transfer Parameters from English

Engineering Units to SI Units

To Convert from: To: Multiply by:
Heat flux

btu/hr-ft? W/m? 3.1525

kcal/h - m? W/m? 1.163
Heat transfer coefficient

Btu/hr-ft>-°F W/m? - K 5.678

kecal/h - m? . °C W/m? - K 1.163
Heat transfer rate

Btu/hr W 0.2931
Mass flow rate

1by/hr kg/s 1.26 x 10~*

Ib,/sec kg/s 4.536 x 107!
Specific heat

Btu/lb,,-°F J/kg - K 4.187 x 103
Surface tension

Ib/ft N/m 1.4594 x 10!
Temperature

1°R K 0.5555
Thermal conductivity

Btu/hr-ft-°F W/m - K 1.731

kcal/h - m - °F W/m - K 1.163
Thermal diffusivity

ft¥/sec m?/s 9.29 x 1072

ft?/h m?/s 2.581 x 107
Thermal resistance

°F-hr/Btu K/W 1.8958
Viscosity (dynamic)

Ib,, /ft-sec N - s/m? 1.4881

centipoise N - s/m? 1 x 10°
Viscosity (kinematic)

ft*/hr m?/s 9.29 x 1072

ft?/hr stoke 929
NOMENCLATURE
Roman Letter Symbols

A cross-sectional area, m

a square root of heat source area, m?

speed of sound, m/s

constant, dimensionless

specific heat, W/m - K

D substantial differential, dimensionless
mass diffusivity, m?%/s

IO
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NOMENCLATURE

differential, dimensionless
diameter, m

unit vector, dimensionless
roughness, m

specific energy, J/kg - K

force vector, N

force, N

radiation factor, dimensionless
frequency, m~!

mass velocity, kg/m? - s
acceleration of gravity, m/s?
microhardness, N/m?

heat transfer coefficient, W/m? - K
specific enthalpy, J/kg

thermal conductivity, W/m - K
path length, m

physical dimension, dimensionless
gas parameter, m

physical dimension, kg

surface slope, dimensionless
mass, kg

mass flow rate, kg/s

number of moles, dimensionless
number of dimensionless groups, dimensionless
normal direction, dimensions vary
pressure, N/m?

wetted perimeter, m

heat flow, W

maximum number of quantities, dimensionless
heat generation, W/m?

heat flux, W/m?

heat generation, W/m?

heat flux vector, W/m?

thermal resistance, K/W

region, dimensionless

radial direction, m

radius, m

number of physical quantities, dimensionless
surface area, m>

specific entropy, J/kg - K

scale factor, dimensions vary
number of fundamental dimensions, dimensionless
temperature, K

time, s

physical dimension, s

39
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specific internal energy, J/kg
volume, m?

velocity vector, m/s
velocity, m/s

width, m

length coordinate, m
generalized coordinate, dimensions vary
mean plane distance, m
length coordinate, m

length coordinate, m

fin spacing, m

= E<<d<s

~

N

Greek Letter Symbols
o accommodation parameter, dimensionless

thermal diffusivity, m?%/s

coefficient of volumetric expansion, m~

change, dimensionless

thickness, m

area ratio, dimensionless

fin efficiency, dimensionless

angle in cylindrical coordinate system, rad

angle in spherical coordinate system, rad

mean free path of molecules, m

dynamic viscosity, N/m - s

kinematic viscosity, m*/s

group, dimensionless

density, kg/m?

surface roughness, m

surface tension, N/m

Stefan—Boltzmann constant, W/m? - K*

normal stress, N/m?

shear stress, N/m?

viscous dissipation factor, s~

angle in spherical coordinate system, rad

vector operator, s~

Laplacian operator, s~

1

3 MmN TR

Qo® a4 <E >

1

4<49© o

2 2

Roman Letter Subscripts

c contact

cd conduction
co contact

cv convection
D diffusion

e equivalent
f fin

fluid
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fl flow
g generated
gap
standard acceleration of gravity
in inlet condition
12 liquid
m melting
max maximum condition
min minimum condition
n normal direction
o nominal value
out outlet condition
p constant pressure
r radiation
radial direction
s harmonic mean
surface condition
sat saturated condition
sp spreading
sf surface parameter in boiling
w wall condition
X x-coordinate direction
y y-coordinate direction
z z-coordinate direction
00 free stream condition

Greek Letter Subscripts

0 6-coordinate direction
0} phase change
¢d-coordinate direction
Superscripts
a exponent in dimensional analysis
b exponent in dimensional analysis
c exponent in dimensional analysis
n exponent in natural convection correlation
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2.3.3 Property values of solid materials
2.3.4 Measuring thermophysical properties of solids
Thermal conductivity
Specific heat
Thermal diffusivity
Thermal expansion
Nomenclature
References

Graphs of thermophysical properties

2.1 INTRODUCTION

The need for accurate thermophysical properties in the design and analysis of en-
gineered systems is well established. The industrial applications of various working
fluids and solids require a variety of property values with accuracies that range from
crude estimates to precisions of 1 part in 10,000 for some sensitive applications. It
is particularly true that small errors in properties for custody transfer of fluids can
result in significant costs or benefits to those involved in commercial transactions. It
is the responsibility of the engineer to decide what level of accuracy is needed for a
particular application and to establish the uncertainty of the related design or analysis
in light of the accuracy of the properties used.

In addition to the individual properties for system design and analysis, there is a
need for combined heat transfer parameters and dimensionless groups that occur in
equations for conduction, convection, and radiation. These include:

Biot number Boussinesq number Eckert number
Fourier number Graetz number Grashof number
Lewis number Nusselt number Péclet number
Prandt]l number Rayleigh number Reynolds number
Schmidt number Sherwood number

Only the Prandt]l number is a fluid property; the others incorporate system character-
istics such as velocity, length, or diameter. These groups are defined elsewhere in this
book and are not discussed in this chapter.

The term thermophysical properties is used here to refer to both thermodynamic
(equilibrium) properties and transport properties. The thermodynamic properties de-
fine equilibrium states of the system and include such properties as temperature,
pressure, density, internal energy, heat capacity, speed of sound, enthalpy, and en-
tropy. The transport properties are those such as thermal conductivity, viscosity, and
thermal diffusivity which pertain to the transfer of momentum or energy within the
system. In a practical sense, design and analysis of heat transfer systems require
information about both transport and thermodynamic properties. The thermodynamic
properties are generally well defined by measurement for most common fluids and
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mixtures and are usually of higher accuracy than the transport properties available for
the same fluids and mixtures. This is, in part, because the experimental methods for
measuring transport properties are generally less accurate than those for the thermo-
dynamic properties, although the state of the art is improving for such measurements
(see Wakeham et al., 1991).

Current practice in the design and analysis of fluid systems requires the use of
computer programs in various forms for thermophysical properties. Based on the ex-
perience of the authors in the development and evaluation of computer programs for
engineered systems, we recommend the use of the most accurate computer databases
available to the engineer. Such sources of highly accurate properties are often referred
to as standard reference quality sources, and many are the result of international
agreements among qualified experts on the current best values of properties. A typical
accurate equation of state is a polynomial with 15 to 35 terms, as described later. If
special applications require equations with fewer terms for rapidly estimating proper-
ties or for calculating abbreviated tables, these can be developed based on properties
calculated by means of the best available models, and estimates of uncertainties in
the properties used in design can be determined by comparisons to values from the
source, the accuracies of which are generally well specified.

We have assumed that the user of this book has access to a reasonably current
personal computer and to the World Wide Web. Because the National Institute of
Standards and Technology (NIST) databases generally incorporate the best available
fluid properties algorithms and equations, we rely heavily on those sources in the
recommended values given in this chapter. We provide summary tables of properties
of common fluids and materials for estimating purposes and, at the end of the chapter,
graphical comparisons of various properties of different fluids to assist in the selection
of materials for design. We have not, in general, attempted to repeat tabular values
for fluid properties that are readily available in other sources, including common
engineering textbooks and other handbooks, although some general tables of property
values at common conditions are given for completeness.

The values of the thermodynamic and transport properties for a large number of
fluids may be calculated using several comprehensive computer programs from NIST,
including NIST Standard Reference Databases 10, 12, 14, and 23. A limited computer
program is included in this book for use in calculating properties for design and
analysis of heat transfer systems using the most common fluids. Some properties are
also available on the NIST Chemistry Webbook at http://webbook.nist.gov/chemistry.

Although the NIST programs provide the most accurate values currently avail-
able, additional research, experimentation, and correlation activities worldwide will
increase the accuracy, the number of fluids, and the ranges of available states for the
covered fluids. The full programs with source code and mixture capabilities are avail-
able from NIST at a nominal cost and are updated periodically. Details concerning
the current databases available from the Standard Reference Data Office of NIST are
located at the Web address http://www.nist.gov/srd by searching for the key words
NIST10, NIST12, NIST14, or NIST23.

There are fewer sources of properties of solids for design than there are for fluids,
and the data available have not yet been incorporated into evaluated wide-range com-
puter models. The uncertainties associated with published values for many properties
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of solids are generally larger than those for properties of fluids, in part because of im-
purities or compositional variations in experimental samples. In this chapter we have
included selected properties of solids from reliable published sources.

This chapter contains a minimum of theory and no details on the correlation and
analysis of thermophysical property data for determining the recommended values for
both fluids and solids. Literature references are given for the best available sources
known for the various properties. The references should be useful to the reader who is
interested in greater detail about the correlation methods and about the data on which
the correlations and recommended values are based.

2.2 THERMOPHYSICAL PROPERTIES OF FLUIDS

The thermodynamic and transport properties of fluids are discussed separately in this
section. Sources of calculated values and brief descriptions of the methods used to
determine values in the tables and graphs in this book are given. References to original
works that contain details of both correlation and measurement techniques are also
included.

2.2.1 Thermodynamic Properties

A property formulation is the set of equations used to calculate properties of a fluid
at specified thermodynamic states defined by the appropriate independent variables.
A typical thermodynamic property formulation is based on an equation of state that
allows the correlation and computation of all thermodynamic properties of the fluid,
including properties such as entropy that cannot be measured directly.

The general term equation of state in this chapter refers to an empirical model
developed for calculating thermodynamic properties of fluids. The term fundamental
equation is often used in the literature to refer to empirical descriptions of one of
four fundamental relations: internal energy as a function of volume and entropy,
enthalpy as a function of pressure and entropy, Gibbs energy as a function of pressure
and temperature, and Helmholtz energy as a function of density and temperature.
Modern equations of state for the thermodynamic properties of pure fluids are usually
fundamental equations explicit in the Helmholtz energy as a function of density and
temperature.

The equation of state for a pure fluid using the Helmholtz energy as the fundamen-
tal property is given by

a(p,T) =a’(p.T) +a’ (p,T) 2.1

where a is the molar Helmholtz energy, a®(p,T) is the ideal gas contribution to the
Helmbholtz energy, and a” (p,T) is the residual Helmholtz energy that corresponds to
the influence of intermolecular forces. All thermodynamic properties can be calcu-
lated as derivatives of the Helmholtz energy. For example, the pressure derived from
this expression is
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p=0 (g—“) 22)
P/ T

Also, the thermodynamic properties at saturation conditions can be calculated with-
out additional ancillary equations through the use of the Maxwell criterion (equal
pressures and Gibbs energies at constant temperature during phase changes).

The quality of a thermodynamic property formulation is determined by its ability
to model the physical behavior of the fluid as represented by the available data as
well as by its conformance to theory (to assure reasonable extrapolation behavior).
Published correlations should include estimates of the accuracy of calculated proper-
ties as well as a careful definition of the range of validity. A modern thermodynamic
property formulation is generally capable of representing all data values within the
estimated experimental uncertainty of the measurements (see Table 2.1). The practi-
cal models of today are empirical or semiempirical in nature, although virtually all
are based on sound theoretical principles. The limitations of the model selected must
be understood by the user for effective system optimization and related work.

Correct behavior of the equation of state in the critical region (bounded by +0.25p,.
and £0.057;) is sometimes a concern of users of property formulations. Classical
equations (those that do not use an additional scaling theory) cannot represent the
theoretically expected behavior at the critical point. However, state-of-the-art multi-
parameter equations of state are sufficiently accurate in the critical region to satisfy

TABLE 2.1 General Standard Uncertainty Estimates for Various Fluid Properties

Uncertainty
State-of-the-Art to Be Expected
Experimental from a Modern
Calculated Property Region Uncertainty (%) Equation of State (%)
Pressure — 0.02
Temperature — 0.001 K
Density — 0.02 0.1
Isochoric heat capacity 0> p, 0.5 0.5
P <P 1 1
Isobaric heat capacity 0> p, 0.5 1
P <P 2 1
Speed of sound P> p, 0.1 0.5
P <P 0.01 0.1
Vapor pressure p < 0.1 MPa 0.05 0.5
p > 0.1 MPa 0.01 0.2
Thermal conductivity 0> P, 0.5 0.5
P <P 2 2
Viscosity 0> p, 2 2

P < P 0.5 0.5
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most data needs (although they should not be used as the basis for theoretical cal-
culations regarding the limiting behavior at the critical point). Older or less accurate
equations of state may show significant shortcomings with regard to the representa-
tion of properties in the critical region.

Most modern reference equations of state yield reasonable extrapolation behav-
ior up to the limits of chemical stability of the corresponding substance. However,
in general, multiparameter equations of state should not be extrapolated beyond the
given range of validity, especially when using older equations or equations where the
functional form was not optimized to the experimental data. When extrapolation is
necessary, the reliability of the results must be checked carefully, unless reasonable
extrapolation behavior is stated explicitly by the authors of the equation. The extrap-
olation behavior of empirical multiparameter equations of state has been discussed
by Span and Wagner (1997) and Span (2000).

Table 2.2 lists sources of recommended multiparameter equations of state that are
suitable for use in system design and analysis and in scientific applications. We be-
lieve that these are the most accurate published equations available for these fluids.
To assess whether an equation is suitable for a certain application, details given in the
original publications should be considered. The fluids listed in bold type in Table 2.2
can be considered primary standards with typical uncertainties of 0.02% in density,
0.5% in heat capacities and the liquid speed of sound, and 0.02% in the vapor speed
of sound. Properties of italicized fluids are also represented by equations of high ac-
curacy with typical uncertainties in density of 0.1%, 0.5% in heat capacities and the
liquid speed of sound, and 0.1% in the vapor speed of sound. The uncertainties of the
correlations for the other fluids are generally greater depending on the quality of data
used in the fit and the ability of the correlator to develop a thermodynamically con-
sistent equation with proper extrapolation behavior. Uncertainties in viscosities and
thermal conductivities are generally within 2% for fluids with published equations.
The uncertainty rises for fluids using extended corresponding states (ECS) techniques
that were fitted to data, and can exceed 10% for those fluids that use the ECS model
in a purely predictive mode (see Section 2.2.2).

Table 2.3 displays the molecular weight, critical temperature, critical pressure, crit-
ical density, triple-point temperature, normal boiling point temperature (at 0.101325
MPa), acentric factor (defined as [—1og(psa/ pc) — 11 at T/ T, = 0.7), and dipole mo-
ment for the fluids listed in Table 2.2. These values were taken from the references
listed in Table 2.2. Tables 2.4, 2.5, and 2.6 give the ideal gas isobaric heat capacity,
dilute gas thermal conductivity, and dilute gas viscosity. The thermodynamic and
transport properties along the saturated liquid and vapor lines are given in Table 2.7.
Values of the thermodynamic properties, transport properties, and surface tension
given in these tables were calculated using NIST databases. Additional details of the
fitted equations are given in the databases.

Equation of State The functional form for the equation of state used for the
fluid properties given here is explicit in the dimensionless Helmholtz energy o, using
independent variables of dimensionless density and temperature. The form of this
equation is
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TABLE 2.2 Equations of State and Transport Equations for Pure Fluids®

Temp. Max.

Thermal Conductivity Range (K)  Pressure
Fluid Equation of State Equation Viscosity Equation (EOS) (MPa)
Methane Setzmann and Wagner (1991) Friend et al. (1989) Younglove and Ely (1987) 90.6941-625 1000
Ethane Friend et al. (1991) Friend et al. (1991) Friend et al. (1991) 90.352-625 70
Propane Miyamoto and Watanabe (2000) Marsh et al. (2002) Vogel et al. (1998) 85.48-623 103
Butane Miyamoto and Watanabe (2001a)  Perkins et al. (2002) Vogel et al. (1999) 134.87-589 69
Isobutane Miyamoto and Watanabe (2001b)  Perkins (2002) Vogel et al. (2000) 113.56-573 35
Pentane Span (2000) NIST14, Version 9.08 NIST14, Version 9.08 143.47-600 100

Isopentane Polt et al. (1992) NIST14, Version 9.08 NIST14, Version 9.08 200-553 7.5
Neopentane Polt et al. (1992) Not currently available Not currently available 273-498 20
Hexane Span (2000) NIST14, Version 9.08 NIST14, Version 9.08 177.83-600 100
Heptane Span (2000) NIST14, Version 9.08 NIST14, Version 9.08 182.55-600 100
Octane Span (2000) Not currently available Not currently available 216.37-600 100
Ammonia Tillner-Roth et al. (1993) Tufeu et al. (1984) Fenghour et al. (1995) 195.495-700 1000
Argon Tegeler et al. (1999) Lemmon and Jacobsen (2001) Lemmon and Jacobsen (2001)  83.806-700 1000
Benzene Polt et al. (1992) Not currently available Not currently available 283-635 78

Carbon dioxide
Carbon monoxide
Cyclohexane
Cyclopropane
Deuterium
Ethylene

Fluorine

Heavy water
Helium

Hydrogen (normal)

Span and Wagner (1996)
Lemmon and Span (2001)
Penoncello et al. (1995)
Polt et al. (1992)
McCarty (1989)

Smukala et al. (2000)

de Reuck (1990)

Hill et al. (1982)
McCarty and Arp (1990)
Younglove (1982)

Vesovic et al. (1990)
NIST14, Version 9.08

Not currently available
Not currently available
Not currently available
Holland et al. (1983)

Not currently available
TAPWS (1994)

Hands and Arp (1981)
McCarty and Weber (1972)

Fenghour et al. (1998)
NIST14, Version 9.08

Not currently available
Not currently available
Not currently available
Holland et al. (1983)

Not currently available
TAPWS (1994)

Arp et al. (1998)

McCarty and Weber (1972)

216.592-1100 800
68.127-1000 100
279.47-700 80

273-473 28
18.71-423 320

103.986-450 260

53.4811-300 20
276.97-800 100
2.1768-1500 100
13.957-400 121

continued
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TABLE 2.2 Equations of State and Transport Equations for Pure Fluids® (Continued)

Temp. Max.
Thermal Conductivity Range (K)  Pressure

Fluid Equation of State Equation Viscosity Equation (EOS) (MPa)
Hydrogen sulfide Lemmon and Span (2001) NIST14, Version 9.08 NIST14, Version 9.08 187.7-760 170
Krypton Lemmon and Span (2001) ECS (fitted) ECS (fitted) 115.77-800 300
Methanol de Reuck and Craven (1993) Not currently available Not currently available 175.61-620 800
Neon Katti et al. (1986) ECS (fitted) ECS (fitted) 24.562-700 700
Nitrogen Span et al. (2000) Lemmon and Jacobsen (2001) Lemmon and Jacobsen (2001)  63.151-2000 2200
Nitrogen trifluoride ~ Younglove (1982) Not currently available Not currently available 85-500 50
Oxygen Schmidt and Wagner (1985) Lemmon and Jacobsen (2001) Lemmon and Jacobsen (2001)  54.361-1000 82
Parahydrogen Younglove (1982) McCarty and Weber (1972) McCarty and Weber (1972) 13.8-400 121
Perfluorobutane ECS (fitted) Not currently available Not currently available 189-500 30
Perfluoropentane ECS (fitted) Not currently available Not currently available 200-500 30
Perfluoropropane Lemmon and Span (2001) Not currently available Not currently available 113-500 30
Propylene Angus et al. (1980) Not currently available Not currently available 100-600 200
Propyne Polt et al. (1992) Not currently available Not currently available 273-474 32
Sulfur dioxide Polt (1987) Not currently available Not currently available 273-523 32
Sulfur hexafluoride  de Reuck et al. (1991) Not currently available Not currently available 222.38-525 55
Toluene Lemmon and Span (2001) Not currently available Not currently available 179-750 100
Water Wagner and Pruss (2002) TAPWS (1998) IAPWS (1997) 273.16-1275 1000
Xenon Lemmon and Span (2001) McCarty (1989) McCarty (1989) 161.36-800 300
R-11 Jacobsen et al. (1992) ECS (fitted) ECS (fitted) 162.68-625 30
R-113 Marx et al. (1992) ECS (fitted) ECS (fitted) 236.93-525 200
R-114 Platzer et al. (1990) ECS (fitted) ECS (fitted) 273.15-507 21
R-115 ECS (fitted) ECS (fitted) ECS (fitted) 173.76-500 60
R-116 Kozlov (1996) ECS (predictive) ECS (predictive) 176-423 50
R-12 Marx et al. (1992) ECS (fitted) ECS (fitted) 116.099-525 200
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R-123
R-124
R-125
R-13
R-134a
R-14
R-141b
R-142b
R-143a
R-152a
R-22
R-227ea
R-23
R-236ea
R-236fa
R-245ca
R-245fa
R-32
R-41
RC318

Younglove and McLinden (1994)
de Vries et al. (1995)

Sunaga et al. (1998)

Magee et al. (2000)

Tillner-Roth and Baehr (1994)
Platzer et al. (1990)

Lemmon and Span (2001)
Lemmon and Span (2001)
Lemmon and Jacobsen (2000)
Outcalt and McLinden (1996)
Kamei et al. (1995)

ECS (fitted)

Penoncello et al. (2003)

ECS (fitted)

Outcalt and McLinden (1995)
ECS (fitted)

ECS (fitted)

Tillner-Roth and Yokozeki (1997)
Outcalt (1996)

Platzer et al. (1990)

Laesecke et al. (1996)
ECS (predictive)
ECS (fitted)

ECS (fitted)
Perkins et al. (2000)
ECS (predictive)
ECS (predictive)
ECS (fitted)

ECS (fitted)

Krauss et al. (1996)
ECS (fitted)

ECS (fitted)

Shan et al. (2000)
ECS (predictive)
ECS (predictive)
ECS (fitted)

ECS (fitted)

ECS (fitted)

ECS (predictive)
ECS (predictive)

Tanaka and Sotani (1995)
ECS (predictive)
ECS (fitted)

ECS (fitted)
Laesecke (2000)
ECS (predictive)
ECS (predictive)
ECS (fitted)

ECS (fitted)
Krauss et al. (1996)
ECS (fitted)

ECS (fitted)

Shan et al. (2000)
ECS (predictive)
ECS (predictive)
ECS (fitted)

ECS (fitted)

ECS (fitted)

ESC (predictive)
ECS (predictive)

166-600
120470
172.52-500
92-403
169.85-455
98.94-623
169.85-500
142.72-500
161.34-650
154.56-500
115.73-550
200-500
118.20-475
242-500
179.52-500
200-500
200-500
136.340-435
175-500
233.35-623

40
40
60
35
70
51
100
60
100
60
60
60
120
60
40
60
60
70
60
60

“The equations of state for the fluids in bold type can be considered primary standards, and those for the italicized fluids are high-accuracy equations. See the text for

additional details.
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N TABLE 2.3 Physical Constants and Fixed Points

Molecular Critical Critical Critical Normal Dipole
Weight Temperature Pressure Density Triple Boiling Acentric Moment
(g/mol) (K) (MPa) (kg/m?) Point (K) Point (K) Factor (D)

Methane 16.043 190.56 4.5992 162.66 90.694 111.67 0.0114 0
Ethane 30.070 305.33 4.8718 206.58 90.352 184.55 0.0993 0
Propane 44.096 369.82 4.2471 218.50 85.480 231.06 0.1524 0.083
Butane 58.122 425.13 3.7960 227.84 134.87 272.59 0.2000 0.02
Isobutane 58.122 407.82 3.6400 224.36 113.56 261.48 0.1850 0.132
Pentane 72.149 469.70 3.3700 232.00 143.47 309.21 0.2510 0.37
Isopentane 72.149 460.35 3.3957 236.00 112.65 300.97 0.2296 0.10
Neopentane 72.151 433.75 3.1963 232.00 256.60 282.63 0.1960 0
Hexane 86.175 507.82 3.0340 233.18 177.83 341.86 0.2970 0.05
Heptane 100.20 540.13 2.7360 232.00 182.55 371.53 0.3480
Octane 114.23 569.32 2.4970 234.90 216.37 398.77 0.3930
Ammonia 17.030 405.40 11.333 225.00 195.50 239.82 0.2560 1.47
Argon 39.948 150.69 4.8630 535.60 83.806 87.302 —0.0022 0
Benzene 78.108 562.05 4.8940 309.00 278.70 353.23 0.2092
Carbon dioxide 44.010 304.13 7.3773 467.60 216.59 — 0.2239 0
Carbon monoxide 28.011 132.80 3.4935 303.92 67.127 81.648 0.0510 0.10
Cyclohexane 84.161 553.64 4.0750 273.00 279.47 353.89 0.2093 0.30
Cyclopropane 42.081 398.30 5.5797 258.50 145.70 241.67 0.1305
Deuterium 4.0282 38.340 1.6653 69.797 18.710 23.309 —0.1750 0
Ethylene 28.054 282.35 5.0418 214.24 103.99 169.38 0.0866 0
Fluorine 37.997 144.41 5.1724 592.86 53.481 85.037 0.0449 0
Heavy water 20.027 643.89 21.671 358.00 276.97 374.56 0.3640 1.90
Helium 4.0026 5.1953 0.2275 69.641 2.1768 4.2304 —0.3820 0
Hydrogen 2.0159 33.190 1.3150 30.118 13.957 20.277 —0.2140 0
Hydrogen sulfide 34.082 373.60 9.1100 337.41 187.70 212.86 0.0960 0.90
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Krypton
Methanol

Neon

Nitrogen
Nitrogen trifluoride
Oxygen
Parahydrogen
Perfluorobutane
Perfluoropentane
Perfluoropropane
Propylene
Propyne

Sulfur dioxide
Sulfur hexafluoride
Toluene

Water

Xenon

R-11

R-113

R-114

R-115

R-116

R-12

R-123

R-124

R-125

R-13

R-134a

R-14

R-141b

83.804
32.042
20.179
28.013
71.019
31.999
2.0159
238.03
288.03
188.02
42.080
40.060
64.066
146.06
92.138
18.015
131.30
137.37
187.38
170.93
154.47
138.01
120.91
152.93
136.47
120.02
104.46
102.03
88.010
116.95

209.48
513.38
44.492
126.19
234.00
154.58
32.938
386.33
420.56
345.10
365.57
402.38
430.65
318.73
593.88
647.10
289.73
471.11
487.21
418.83
353.10
293.03
385.12
456.83
395.43
339.17
302.00
374.21
227.51
479.96

5.5100
8.2158
2.6786
3.3958
4.4607
5.0430
1.2838
2.3234
2.0450
2.6710
4.6646
5.6260
7.8800
3.7546
4.2380
22.064
5.8400
4.4076
3.3922
3.2570
3.1200
3.0420
4.1361
3.6618
3.6243
3.6290
3.8790
4.0593
3.7500
4.4600

908.44
281.50
481.91
313.30
562.47
436.14
31.360
599.84
609.47
628.00
223.39
244.90
525.00
743.81
290.24
322.00
1099.0
554.00
560.00
580.00
613.10
622.00
565.00
550.00
560.00
568.00
582.88
511.90
625.70
460.00

115.77
175.61
24.562
63.151
66.360
54.361
13.800
145.00
200.00
113.00
87.950
170.50
197.70
222.38
179.00
273.16
161.36
162.68
236.93
179.00
173.76
176.00
116.10
166.00
74.000
172.52
92.000
169.85
98.940
169.85

119.78
337.63
27.104
77.355
144.14
90.188
20.277
271.06
302.90
236.32
225.46
191.00
256.61
383.70
373.12
165.03
296.86
320.74
276.74
234.21
194.98
243.40
300.97
261.19
225.02
191.67
247.08
145.10
305.21

—0.0017
0.5625
—0.0387
0.0372
0.1260
0.0222
—0.2180
0.3740
0.4230
0.3210
0.1408
0.2040
0.2300
0.2100
0.2610
0.3440
0.0036
0.1888
0.2525
0.2523
0.2520
0.2540
0.1795
0.2819
0.2881
0.3061
0.1723
0.3268
0.1785
0.2235

0.14
0.14
0.40
0.70
1.60
0
0.40
1.855
0
0.45
0.803
0.658
0.52
0
0.51
1.356
1.469
1.563
0.51
2.058
0
2.014
continued



1]

TABLE 2.3 Physical Constants and Fixed Points (Continued)
Molecular Critical Critical Critical Normal Dipole

Weight Temperature Pressure Density Triple Boiling Acentric Moment

(g/mol) (K) (MPa) (kg/m?) Point (K) Point (K) Factor (D)
R-142b 100.50 410.26 4.0700 446.00 142.72 264.04 0.2337 2.14
R-143a 84.041 345.86 3.7610 431.00 161.34 225.91 0.2615 2.34
R-152a 66.051 386.41 4.5168 368.00 154.56 249.13 0.2752 2.262
R-22 86.468 369.30 4.9900 523.84 115.73 232.34 0.2208 1.458
R-227ea 170.03 374.88 2.9290 584.00 146.35 256.71 0.3632 1.456
R-23 70.014 299.29 4.8280 526.50 118.02 191.13 0.2646 1.649
R-236ea 152.04 412.44 3.5020 563.00 — 279.35 0.3794 1.129
R-236fa 152.04 398.07 3.2000 551.29 179.52 271.71 0.3772 1.982
R-245ca 134.05 447.57 3.9250 523.59 — 298.28 0.3536 1.74
R-245fa 134.05 427.20 3.6400 517.00 — 288.05 0.3724 1.549
R-32 52.024 351.25 5.7820 424.00 136.34 221.50 0.2769 1.978
R-41 34.033 317.28 5.8970 316.51 129.82 195.02 0.2012 1.851
RC318 200.04 388.38 2.7775 620.00 233.35 267.18 0.3553
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TABLE 2.4 Ideal Gas Isobaric Heat Capacity (kJ/kg - K)

100 K 150 K 200 K 250 K 300 K 350 K 400 K 450 K 500 K 550 K 600 K
Methane 2.0742 2.0759 2.0890 2.1360 2.2301 2.3663 2.5312 2.7118 2.8989 3.0868 3.2720
Ethane 1.1871 1.2846 1.4048 1.5617 1.7523 1.9626 2.1785 1.3904 2.5935 2.7858 2.9671
Propane 0.9365 1.1064 1.2714 1.4616 1.6771 1.9050 2.1321 2.3496 2.5537 2.7434 2.9194
Butane — 1.1579 1.3157 1.4944 1.7024 1.9251 2.1472 2.3595 2.5581 2.7422 2.9126
Isobutane — 1.0373 1.2359 1.4442 1.6713 1.9078 2.1411 2.3624 2.5681 2.7574 2.9313
Pentane — 1.1214 1.2966 1.4703 1.6716 1.8915 2.1143 2.3292 2.5313 2.7194 2.8939
Isopentane — 0.9488 1.1782 1.4163 1.6563 1.8927 2.1210 2.3380 2.5416 2.7308 2.9058
Neopentane — — — — 1.6849 1.9344 2.1664 2.3840 2.5894 2.7846 2.9704
Hexane — — 1.2832 1.4607 1.6625 1.8829 2.1062 2.3212 2.5222 2.7078 2.8786
Heptane — — 1.2739 1.4518 1.6565 1.8787 2.1023 2.3164 2.5159 2.6997 2.8684
Octane — — — 1.4453 1.6519 1.8753 2.0988 2.3121 2.5107 2.6934 2.8608
Ammonia — — 2.0084 2.0364 2.0953 2.1743 2.2666 2.3681 2.4759 2.5879 2.7024
Argon 0.5203 0.5203 0.5203 0.5203 0.5203 0.5203 0.5203 0.5203 0.5203 0.5203 0.5203
Benzene — — — — 1.0547 1.2518 1.4337 1.6010 1.7543 1.8941 2.0211
Carbon dioxide — — — 0.7916 0.8458 0.8951 0.9392 0.9786 1.0141 1.0463 1.0755
Carbon monoxide 1.0388 1.0390 1.0390 1.0388 1.0385 1.0384 1.0384 1.0386 1.0390 1.0396 1.0405
Cyclohexane — — — — 1.2730 1.5342 1.7852 2.0280 2.2591 2.4756 2.6759
Cyclopropane — — — — 1.3371 1.5814 1.8225 2.0480 2.2519 2.4339 2.5999
Deuterium 7.4682 7.3039 7.2477 7.2459 7.2499 7.2526 7.2570 7.2667 7.2842 7.3108 7.3468
Ethylene — 1.1999 1.2602 1.3768 1.5338 1.7098 1.8889 2.0169 2.2248 2.3762 2.5166
Fluorine 0.7662 0.7693 0.7812 0.8013 0.8247 0.8475 0.8681 0.8859 0.9012 0.9142 0.9253
Heavy water — — — — 1.7122 1.7439 1.7788 1.8164 1.8560 1.8971 1.9393
Helium 5.1931 5.1931 5.1931 5.1931 5.1931 5.1931 5.1931 5.1931 5.1931 5.1931 5.1931
Hydrogen 11.195 12.591 13.530 14.045 14.309 14.429 14.473 14.492 14.511 14.529 14.535
Hydrogen sulfide — — 0.9809 0.9913 1.0059 1.0241 1.0451 1.0683 1.0931 1.1189 1.1454
Krypton — 0.2480 0.2480 0.2480 0.2480 0.2480 0.2480 0.2480 0.2480 0.2480 0.2480
continued
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© TABLE 2.4 Ideal Gas Isobaric Heat Capacity (kJ/kg - K) (Continued)

100 K 150 K 200 K 250K 300K 350K 400 K 450 K 500 K 550K 600 K

Methanol — — 1.2384 1.2923 1.3775 1.4873 1.6101 1.7368 1.8616 1.9814 2.0952
Neon 1.0301 1.0301 1.0301 1.0301 1.0301 1.0301 1.0301 1.0301 1.0301 1.0301 1.0301
Nitrogen 1.0389 1.0390 1.0391 1.0392 1.0397 1.0412 1.0441 1.0490 1.0559 1.0646 1.0748
Nitrogen trifluoride 0.4793 0.5287 0.6024 0.6809 0.7541 0.8178 0.8711 0.9150 0.9514 0.9830 1.0127
Oxygen 0.9098 0.9098 0.9102 0.9126 0.9183 0.9280 0.9409 0.9558 0.9717 0.9876 1.0030
Parahydrogen 13.408 16.188 16.071 15.329 14.836 14.624 14.573 14.587 14.615 14.633 14.638

Perfluorobutane — — 0.6181 0.7188 0.8069 0.8835 0.9495 1.0059 1.0537 1.0938 1.1273
Perfluoropentane — — — 0.7283 0.8176 0.8952 0.9621 1.0192 1.0676 1.1083 1.1422
Perfluoropropane — 0.5023 0.6100 0.7054 0.7894 0.8627 0.9263 0.9809 1.0274 1.0667 1.0996
Propylene — 1.0550 1.1898 1.3545 1.5375 1.7259 1.9116 2.0901 2.2592 2.4178 2.5658
Propyne — — — — 1.5199 1.6703 1.8100 1.9398 2.0602 2.1722 2.2763
Sulfur dioxide — — — — 0.6229 0.6518 0.6785 0.7029 0.7252 0.7454 0.7635
Sulfur hexafluoride — — — 0.5779 0.6674 0.7397 0.7971 0.8427 0.8790 0.9082 0.9318
Toluene — — 0.7409 0.9347 1.1347 1.3316 1.5206 1.6978 1.8608 2.0093 2.1439
Water — — — — 1.8648 1.8806 1.9018 1.9272 1.9554 1.9852 2.0163
Xenon — — 0.1583 0.1583 0.1583 0.1583 0.1583 0.1583 0.1583 0.1583 0.1583
R-11 — — 0.4719 0.5283 0.5738 0.6106 0.6402 0.6641 0.6836 0.6996 0.7128
R-113 — — — 0.5896 0.6501 0.6998 0.7413 0.7761 0.8055 0.8303 0.8513
R-114 — — — — 0.6925 0.7454 0.7912 0.8308 0.8648 0.8933 0.9156
R-115 — — 0.5458 0.6380 0.7156 0.7801 0.8330 0.8757 0.9098 0.9368 0.9582
R-116 — — 0.5985 0.6890 0.7722 0.8445 0.9060 0.9580 1.0020 1.0391 1.0707
R-12 — 0.4113 0.4873 0.5511 0.6045 0.6490 0.6860 0.7166 0.7421 0.7633 0.7810
R-123 — — 0.5312 0.6069 0.6731 0.7310 0.7819 0.8267 0.8667 0.9031 0.9369
R-124 — 0.4935 0.5777 0.6557 0.7284 0.7968 0.8619 0.9247 0.9862 1.0474 1.1092
R-125 — — 0.6187 0.7079 0.7901 0.8658 0.9345 0.9957 1.0492 1.0957 1.1358
R-13 0.3445 0.4304 0.5081 0.5776 0.6389 0.6921 0.7371 0.7738 0.8024 0.8228 0.8350
R-134a — — 0.6457 0.7448 0.8367 0.9230 1.0047 1.0828 1.1577 1.2299 1.2998



LS

R-14
R-141b
R-142b
R-143a
R-152a
R-22
R-227ea
R-23
R-236ea
R-236fa
R-245ca
R-245fa
R-32
R-41
RC318

0.4576

0.5331

0.5361
0.5943
0.6406
0.7119
0.7968
0.5292

0.5887

0.6610

0.7058
0.9882

0.6187
0.6789
0.7402
0.8260
0.9101
0.5915
0.7126
0.6590
0.7699
0.7412
0.7738
0.7684
0.7597
1.0368
0.7005

0.6972
0.7562
0.8319
0.9329
1.0259
0.6518
0.8018
0.7318
0.8505
0.8226
0.8923
0.8640
0.8282
1.1077
0.7848

0.7664
0.8263
0.9157
1.0318
1.1417
0.7088
0.8818
0.8035
0.9261
0.9052
0.9968
0.9541
0.9060
1.1955
0.8599

0.8238
0.8891
0.9916
1.1221
1.2548
0.7613
0.9524
0.8712
0.9966
0.9889
1.0874
1.0389
0.9871
1.2951
0.9264

0.8698
0.9445
1.0596
1.2038
1.3626
0.8086
1.0138
0.9333
1.0621
1.0738
1.1640
1.1183
1.0666
1.4012
0.9848

0.9080
0.9927
1.1196
1.2771
1.4625
0.8506
1.0660
0.9894
1.1224
1.1598
1.2265
1.1924
1.1421
1.5085
1.0358

0.9445
1.0336
1.1718
1.3427
1.5518
0.8877
1.1088
1.0393
1.1777
1.2470
1.2751
1.2610
1.2124
1.6119
1.0799

0.9887
1.0673
1.2160
1.4015
1.6278
0.9204
1.1424
1.0836
1.2278
1.3354
1.3097
1.3243
1.2773
1.7062
1.1178




o
® TABLE 2.5 Dilute Gas Thermal Conductivity (mW/m - K)

100 K 150 K 200 K 250 K 300K 350K 400 K 450 K 500 K 550K 600 K

Methane 9.9026  15.868 21.802 27.874 34.479 41.870 50.076 59.003 68.524 78.519 88.889
Ethane 3.4561 6.6236  10.488 15.264 21.126 28.070 35.953 44.583 53.783 63.407 73.350
Propane 24171 5.3426 8.9969  13.380 18.492 24.333 30.902 38.200 46.277 54.983 64.467
Butane — 5.5793 8.5006  12.224 16.749 22.075 28.204 35.134 42.867 51.401 60.737
Isobutane — 4.4607 8.0380  12.264 17.139 22.662 28.834 35.655 43.125 51.243 60.010
Pentane — 4.3338 6.9608  10.186 14.217 19.058 24.571 30.583 36.944 43.542 50.300
Isopentane — 5.1984 6.7668  10.433 14.946 20.218 26.125 32.531 39.301 46.321 53.501
Hexane — — 6.4043 9.4223  13.207 17.797 23.080 28.891 35.078 41.521 48.133
Heptane — — 5.6156 83151 11.723 15.857 20.608 25.826 31.375 37.151 43.074
Ammonia — — 19.670 21.331 24.988 30.369 37.130 44.854 53.052 61.163 68.551
Argon 6.3522 9.5054 12427 15.143 17.683 20.073 22.332 24.479 26.527 28.488 30.372
Carbon dioxide — — — 12.897 16.747 20.887 25.110 29.317 33.465 37.358 41.533
Carbon monoxide 10.021 14.905 19.199 23.039 26.545 29.794 32.833 35.702 38.431 41.044 43.562
Ethylene — 83718  11.061 14.860 20.458 27.290 34.643 42.151 49.908 58.435 68.602
Heavy water — — — — 18.236 22218 26.556 31.260 36.330 41.766 47.558
Helium 73.632 96.857  117.90 137.46 155.90 173.45 190.29 206.52 222.23 237.48 252.33

Hydrogen (normal)  68.059  100.76 132.27 160.44 185.63 210.20 233.94 256.84 280.40 304.11 327.99

Hydrogen sulfide — — 11.372 14.611 17.981 21.445 24971 28.563 32.194 35.864 39.571
Krypton — 47716 6.3942 7.9417 9.3899  10.743 12.014 13.216 14.360 15.454 16.504
Neon 22.510 30.298 36.923 42.828 48.261 53.356 58.191 62.814 67.259 71.549 75.704
Nitrogen 9.9841 14.527 18.623 22.365 25.828 29.079 32.181 35.183 38.123 41.025 43.901
Oxygen 9.2232  13.938 18.367 22.568 26.635 30.654 34.673 38.705 42.738 46.753 50.729
Parahydrogen 80.159  127.56 155.47 174.04 192.13 212.10 232.94 253.84 274.90 296.11 317.49

Water — — — — 18.571 22.066 26.148 30.672 35.559 40.758 46.230
Xenon — — 3.7573 4.6490 5.5177 6.3636 7.1858 7.9837 8.7574 9.5073  10.234
R-11 — — — 6.4835 8.4849  10.564 12.667 14.753 16.796 18.784 20.710

R-113 — — — 6.4431 8.5520  10.770 13.050 15.348 17.629 19.871 22.062
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R-114
R-115
R-116
R-12
R-123
R-124
R-125
R-13
R-134a
R-14
R-141b
R-142b
R-143a
R-152a
R-22
R-227ea
R-23
R-236ea
R-236fa
R-245ca
R-245fa
R-32
R-41
RC318

6.2130
7.7455
5.3594
3.6100
6.1013
7.2748
6.6108
5.4948
8.7606
5.9144
7.1323
4.5237
5.5304

8.1950

6.5632

7.2338
10.345

9.0983
11.135
7.5944
6.4575
8.6795
10.483
9.3773
9.4998
12.450
7.1637
8.5481
10.703
9.3901
7.8754
9.3315
10.878
9.5352
9.2338
8.9551
9.0415
9.6396
13.591
9.0906

10.265
12.240
14.872
10.008
9.3050
11.567
14.099
12.361
13.505
16.482
9.5957
11.542
15.005
14.256
10.655
12.617
13.583
12.680
12.327
12.420
12.231
12.434
17.327
12.250

12.898
15.493
18.749
12.510
12.154
14.694
18.026
15.440
17.510
20.629
12.253
14.803
19.968
19.123
13.835
16.146
16.244
16.110
15.809
16.204
15.764
15.602
21.564
15.640

15.602
18.748
22.639
15.027
15.004
18.014
22.157
18.515
21.514
24.713
15.064
18.240
25.509
23.989
17.362
19.807
18.927
19.747
19.646
20.171
19.563
19.081
26.279
19.163

18.326
21.928
26.471
17.511
17.852
21.497
26.397
21.504
25.519

17.957
21.771
31.549
28.856
21.180
23.502
21.610
23.525
23.814
24.191
23.559
22.791
31.411
22.737

21.026
24.986
30.209
19.933
20.699
25.138
30.673
24.342
29.524

20.870
25.325
38.021
33.722
25.243
27.147
24.293
27.384
28.294
28.144
27.689
26.665
36.861
26.301

23.655
27.903

22.280
23.546
28.945
34.937
26.970
33.529

23.745
28.839
44.873
38.589
29.516
30.670
26.976
31.278
33.075
31.924
31.901
30.653
42.495
29.811

26.160
30.679

24.547
26.393
32.938
39.159

37.534

26.530
32.262
52.069
43.455
33.973
34.009
29.659
35.165
38.149
35.434
36.150
24.722

33.234




o
© TABLE 2.6 Dilute Gas Viscosity (uPa - s)

100 K 150 K 200 K 250 K 300K 350K 400 K 450 K 500 K 550K 600K

Methane 3.9829 5.9087 7.7900 9.5673  11.233 12.795 14.264 15.652 16.969 18.225  19.426
Ethane 3.3157 4.8014 6.3522 7.8926 9.3864  10.820 12.192 13.504 14.759 15963  17.118
Propane 2.9792 4.2268 5.5379 6.8715 8.2038 9.5190  10.807 12.060 13.273 14443  15.568
Butane — 3.7091 4.9832 6.2381 7.4730 8.6883 9.8849  11.064 12.226 13.371  14.502
Isobutane — 3.7994 5.0857 6.3403 7.5639 8.7583 9.9253  11.067 12.184 13279  14.353
Pentane — 3.4241 4.5472 5.7121 6.8932 8.0678 9.2197  10.339 11.421 12.465 13.472
Isopentane — 3.9857 4.8092 6.0426 7.2928 8.5359 9.7548  10.939 12.084 13.189  14.254
Hexane — — 4.3039 5.4420 6.5526 7.6788 8.8014 9.9075  10.989 12.041  13.063
Heptane — — 3.5540 4.9393 5.9304 6.9437 7.9569 8.9564 99342 10.886  11.810
Ammonia — — 6.9639 8.4513  10.188 12.052 13.977 15.922 17.862 19.783  21.678
Argon 8.1386  12.179 15.922 19.402 22.656 25.718 28.612 31.363 33.987 36.499 38913
Carbon dioxide — — — 12.556 15.014 17.395 19.690 21.896 24.013 26.044  27.995
Carbon monoxide 6.8135  10.031 12.857 15.385 17.696 19.836 21.836 23.720 25.507 27.212  28.847
Ethylene — 5.3064 7.0041 8.6638  10.361 12.008 13.575 15.061 16.478 17.838  19.149
Heavy water — — — — 10.235 11.879 13.740 15.724 17.780 19.876  21.991
Helium 9.7650  12.491 15.135 17.597 19.926 22.151 24.290 26.356 28.361 30.311  32.213
Hydrogen (normal) 4.1824 5.5558 6.7762 7.8996 8.9507 9.9440  10.890 11.797 12.670 13.516  14.337
Hydrogen sulfide — — 8.4917  10.686 12.882 15.035 17.121 19.129 21.056 22905  24.685
Krypton — 12.825 17.186 21.346 25.238 28.875 32.291 35.532 38.598 41.538  44.361
Neon 14.568 19.609 23.897 27.718 31.235 34.532 37.662 40.654 43.530 46.307  48.996
Nitrogen 6.9167  10.063 12.900 15.490 17.882 20.111 22.205 24.185 26.069 27.868  29.594
Oxygen 7.6302  11.275 14.609 17.682 20.539 23.214 25.735 28.124 30.399 32.575  34.663
Parahydrogen 4.1824 5.5558 6.7762 7.8996 8.9507 9.9440  10.890 11.797 12.670 13.516  14.337
Water — — — — 9.9262  11.531 13.347 15.285 17.294 19.345  21.416
Xenon — — 15.942 19.472 23.021 26.536 29.984 33.346 36.615 39.787  42.864
R-11 — — — 8.5895  10.366 12.144 13.899 15.613 17.277 18.887  20.444

R-113 — — — 8.0710 9.7388  11.413 13.070 14.694 16.275 17.807  19.290



19

R-114
R-115
R-116
R-12
R-123
R-124
R-125
R-13
R-134a
R-14
R-141b
R-142b
R-143a
R-152a
R-22
R-227ea
R-23
R-236ea
R-236fa
R-245ca
R-245fa
R-32
R-41
RC318

6.9581

8.7213

8.3439
9.4781
7.8613
6.9649
7.7230
8.6666
9.3573
7.7659
11.679
6.6993
7.3820
6.7055
8.4013

9.9500

7.3159

8.3720
7.3138

10.501
11.889
9.8945
8.9742
9.7203
10.903
11.747
9.8718
14.491
7.7183
8.4275
9.2892
8.4826
10.575
9.6938
12.554
9.1613
9.2059
8.5345
8.6749
10.538
9.1921
9.6361

10.967
12.633
14.212
11.925
10.863
11.697
13.102
14.059
11.893
17.118
9.3140
10.166
11.169
10.367
12.735
11.678
15.012
11.052
11.101
10.301
10.468
12.695
11.022
11.616

12.823
14.700
16.420
13.914
12.632
13.617
15.223
16.264
13.830
19.570
10914
11.881
12.987
12.174
14.840
13.615
17.329
12.918
12.964
12.059
12.245
14.801
12.775
13.556

14.633
16.684
18.510
15.838
14.281
15.461
17.252
18.355
15.686
21.873
12.495
13.550
14.729
13.909
16.868
15.484
19.533
14.735
14.772
13.785
13.981
16.834
14.443
15.435

16.384
18.581
20.493
17.688
15.810
17.225
19.188
20.340
17.468
24.051
14.042
15.163
16.392
15.577
18.813
17.277
21.634
16.491
16.515
15.464
15.663
18.784
16.030
17.242

18.072
20.394
22.382
19.463
17.219
18.912
21.035
22.231
19.181

15.547
16.714
17.982
17.182
20.674
18.996
23.645
18.181
18.189
17.089
17.286
20.653
17.543
18.977

19.696
22.131
24.188
21.166
18.507
20.529
22.805
24.040
20.831

17.004
18.206
19.504
18.731
22.459
20.644
25.576
19.807
19.797
18.657
18.849
22.446
18.991
20.641

21.259
23.800

22.803
19.675
22.082
24.504
25.777
22.423

18.414
19.643
20.965
20.288
24.174
22.228
27.436
21.372
21.345
20.170
20.355
24.169
20.381
22.243




o TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line“
N

Methane (R-50)

T 100.00 110.00 120.00 130.00 140.00 150.00 160.00 170.00 180.00 185.00 190.00
p 0.0344 0.0881 0.1914 0.3673 0.6412 1.0400 1.5921 2.3283 3.2852 3.8617 4.5186
o (liq.) 438.89 424.78 409.90 394.04 376.87 357.90 336.31 310.50 276.23 251.36 200.78
o (vap.) 0.6746 1.5982 3.2619 5.9804 10.152 16.328 25.382 38.974 61.375 80.435 125.18
h (liq.) —40.269 —5.8134 29.405 65.628 103.20 142.64 184.80 231.24 285.94 320.51 378.27
h (vap.) 490.21 508.02 524.02 537.66 548.34 555.23 557.07 551.54 532.83 512.49 459.03
s (liq.) —0.3793 —0.0522 0.2521 0.5385 0.8116 1.0761 1.3378 1.6054 1.8991 2.0765 2.3687
s (vap.) 4.9255 4.6191 4.3738 4.1695 3.9912 3.8267 3.6645 3.4895 3.2707 3.1142 2.7937
¢y (liq.) 2.1136 2.0642 2.0196 1.9795 1.9452 1.9186 1.9037 1.9095 1.9669 2.0623 2.6022
¢y (vap.) 1.5887 1.6108 1.6390 1.6739 1.7172 1.7727 1.8473 1.9556 2.1404 23118 2.8546
cp (liq.) 3.4084 3.4692 3.5493 3.6580 3.8129 4.0474 4.4354 5.1872 7.2923 11.109 94.012
¢p (vap.) 2.1458 2.2053 2.2930 2.4208 2.6108 2.9083 3.4189 4.4585 7.5740 13.527 140.81
w (liq.) 1452.0 1354.7 1253.5 1148.1 1037.7 920.85 795.43 657.52 497.01 398.59 250.31
w (vap.) 260.09 270.01 271.76 283.13 285.93 285.97 283.01 276.66 266.04 258.03 238.55
n (liq.) 155.78 121.34 97.432 79.868 66.333 55.437 46.266 38.115 30.193 25.773 18.982
n (vap.) 3.9976 4.3964 4.1823 5.2517 5.7254 6.2526 6.8688 7.6515 8.8251 9.8238 12.455
X (lig.) 199.67 186.18 172.15 157.91 143.65 129.43 115.19 100.73 85.799 78.733 96.970
X (vap.) 10.015 11.350 12.811 14.449 16.334 18.581 21.423 25477 33.392 43.706 119.40
o 0.0163 0.0137 0.0113 0.0091 0.0071 0.0052 0.0035 0.0021 0.0009 0.0004 0.0000

Ethane (R-170)

T 100.00 120.00 140.00 160.00 180.00 200.00 220.00 240.00 260.00 280.00 300.00
p 0.000011 0.00035 0.0038 0.0215 0.0787 0.2174 0.4923 0.9673 1.7125 2.8076 4.3565
o (liq.) 641.24 619.31 596.90 573.82 549.66 523.96 496.10 465.08 429.02 383.15 303.22
p (vap.) 0.0004 0.0107 0.0991 0.4893 1.6257 4.1746 9.0367 17.492 31.703 56.583 114.50
h (liq.) —199.04 —152.04 —105.35 —58.612 —11.027 38.151 89.685 144.53 204.23 272.18 363.80

h (vap.) 386.60 410.88 435.96 460.84 484.38 505.82 524.45 539.23 548.17 546.52 512.98



s (liq.)
s (vap.)
e (liq.)
cy (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
N (vap.)

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (liq.)
s (vap.)
¢y (lig.)
¢y (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)

€9

—1.4399
4.4165
1.6012
0.9080
2.3318
1.1840
1938.3
189.89
877.99
3.3157
248.15
3.4562
0.0300

100.00
2.5x 1078
718.54
0.0000
—168.39
379.56
—1.0920
4.3876
1.3436
0.7480
1.9310
0.9365
2026.4
153.65

—1.0115
3.6795
1.5345
0.9168
2.3453
1.1875
1795.5
207.39
488.15
3.8961
230.30
4.6535
0.0267

125.00
7.5 x 1076
693.01
0.0003
—119.73
404.10
—0.6577
3.5329
1.3339
0.8366
1.9613
1.0252
1857.6
169.94

—0.6516
3.2149
1.4647
0.8995
2.3284
1.1618
1647.8
223.45
320.91
4.4956
210.90
5.9584
0.0233

150.00
0.00028
667.73
0.0100
—70.291
430.71
—0.2973
3.0427
1.3391
0.9184
1.9956
1.1075
1684.4
184.59

—0.3398
2.9067
1.4282
0.9217
2.3497
1.1888
1498.5
236.89
231.74
5.1100
191.08
7.4110
0.0200

Propane (R-290)

175.00
0.0034
642.23
0.1026
—19.808
459.04
0.0138
2.7501
1.3582
1.0016
2.0461
1.1933
1515.0
197.65

—0.0603
2.6920
1.4184
1.0065
2.4082
1.3017
1347.7
246.81
176.39
5.7388
171.51
9.0663
0.0168

200.00
0.0201
615.98
0.5404
32.227
488.58
0.2915
2.5733
1.3926
1.0946
2.1194
1.2950
1349.7
208.68

0.1974
2.5357
1.4281
1.1280
2.5019
1.4791
1194.8
252.96
138.23
6.3908
152.56
10.997
0.0136

225.00
0.0769
588.40
1.8711
86.460
518.59
0.5465
2.4670
1.4423
1.2040
2.2196
1.4244
1187.5
216.87

0.4403
2.4165
1.4536
1.2633
2.6377
1.7090
1039.0
254.94
109.90
7.0891
134.47
13.305
0.0105

250.00
0.2179
558.78
4.9424
143.65
548.27
0.7863
2.4048
1.5065
1.3313
2.3515
1.5908
1027.5
221.28

0.6745
2.3190
1.4941
1.4047
2.8398
2.0151
878.23
252.03
87.650
7.8826
117.37
16.179
0.0076

275.00
0.5020
526.17
10.941
204.67
576.71
1.0168
2.3697
1.5839
1.4736
2.5233
1.8048
868.89
220.90

0.9066
2.2294
1.5513
1.5560
3.1805
2.4986
708.85
243.27
69.273
8.8799
101.18
20.060
0.0048

300.00
0.9980
489.14
21.658
270.61
602.56
1.2428
2.3493
1.6738
1.6281
2.7572
2.0984
710.10
214.52

1.1481
2.1279
1.6356
1.7365
3.9711
3.6068
520.93
227.16
52.962
10.381
85.534
26.418
0.0023

325.00
1.7832
444.89
40.480
343.27
623.16
1.4699
2.3311
1.7794
1.7975
3.1371
2.5937
544.17
200.36

1.4478
1.9451
1.8781
2.0507
9.9832
12.744
276.76
200.47
34.918
14.023
71.371
46.929
0.0003

350.00
2.9510
384.02
77.052
427.71
630.91
1.7116
2.2921
1.9248
2.0004
4.2091
4.0530
350.19
175.23
continued



D
& TABLE 2.7

Thermophysical Properties of Fluids along the Saturation Line’ (Continued)

n (lig.)

n (vap.)
x (lig.)

N (vap.)
o

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (liq.)
s (vap.)
¢y (lig.)
¢y (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)
n (liq.)
n (vap.)
X (lig.)
N (vap.)

3821.5
2.9792
203.49
24171
0.0354

150.00
8.8 x 107°
720.91
0.0004
—58.828
422.68
—0.2501
2.9600
1.4290
1.0149
1.9824
1.1580
1719.0
156.47
1370.6
3.7090
171.21
5.5793
0.0313

1269.7
3.5913
192.17
3.7887
0.0315

200.00
0.0020
673.73
0.0687
41.883
484.26
0.3289
2.5407
1.4718
1.1748
2.0537
1.3198
1430.6
178.85
494.94
4.9792
149.19
8.4973
0.0243

655.97
4.2258
178.46
5.3418
0.0277

225.00
0.0106
649.75
0.3336
93.960
517.46
0.5741
2.4563
1.5135
1.2650
2.1155
1.4147
1290.7
188.13
349.26
5.5998
137.42
10.250
0.0210

Propane (R-290) (Continued)

415.28
4.8708
163.55
7.0722
0.0239

250.00
0.0393
624.93
1.1234
147.89
551.89
0.8011
24171
1.5709
1.3681
2.2004
1.5282
1153.3
195.52
259.20
6.2086
125.77
12.197
0.0177

289.68
5.5148
148.25
8.9711
0.0203

212.58
6.1540
133.13
11.040
0.0167

Butane (R-600)

275.00
0.1109
598.78
2.9507
204.27
587.15
1.1055
2.4078
1.6422
1.4849
2.3092
1.6644
1018.2
200.40
198.78
6.8131
114.53
14.357
0.0146

300.00
0.2580
570.67
6.5301
263.73
622.77
1.2215
2.4183
1.7248
1.6133
2.4435
1.8266
884.92
202.11
155.62
7.4364
103.94
16.785
0.0116

160.60
6.8026
118.62
13.323
0.0132

325.00
0.5206
539.76
12.847
326.94
685.13
1.4223
24414
1.8161
1.7508
2.6082
2.0227
752.87
199.83
123.09
8.1245
94.180
19.604
0.0088

123.31
7.5026
105.08
15.957
0.0099

350.00
0.9447
504.77
23.402
394.69
692.20
1.6206
2.4707
1.9147
1.8955
2.8194
2.2764
620.83
192.54
97.300
8.9613
85.386
23.061
0.0061

95.085
8.3405
92.755
19.248
0.0068

375.00
1.5821
463.27
40.982
468.29
722.98
1.8200
2.4992
2.0215
2.0485
3.1351
2.6684
483.83
178.61
75.697
10.110
77.581
27.664
0.0037

72.351
9.5083
81.720
23.915
0.0039

400.00
2.4950
408.14
72.839
551.10
745.40
2.0282
2.5140
2.1482
22178
3.8592
3.6114
328.58
154.97
55.863
12.016
70.526
34.993
0.0015

51.632
11.634
71.502
32.636
0.0014

425.00
3.7828
256.91
201.07
680.26
709.19
2.3307
2.3988
2.4543
2.4822
211.56
242.27
119.17
113.84
27.110
21.260
118.63
123.39
0.0000



p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (liq.)

s (vap.)
¢ (lig.)
¢y (vap.)
cp (liq)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
N (vap.)

p (lig.)
p (vap.)
h (liq.)
h (vap.)

<9

150.00
0.000023
706.14
0.0011
—49.648
404.10
—0.1998
2.8252
1.3103
0.8943
1.8104
1.0374
1612.0
157.76
1751.4
3.7993
148.49
4.4606
0.0285

150.00

2.7 x 1077
756.28
0.0000
—334.92
139.41

175.00
0.00045
682.48
0.0179
—3.4665
431.22
0.0848
2.5688
1.3524
0.9947
1.8850
1.1383
1470.8
169.14
903.05
4.4453
139.48
6.1666
0.0253

200.00
0.0002
711.19
0.0086
—235.81
199.97

200.00
0.0038
658.25
0.1318
44.680
460.56
0.3419
24212
1.4019
1.0959
1.9684
1.2419
1332.1
179.38
551.15
5.0797
129.36
8.0276
0.0221

250.00
0.0076
666.32
0.2651
—132.70
268.35

225.00
0.0185
633.09
0.5807
95.083
491.72
0.5791
2.3419
1.4620
1.2040
2.0652
1.3564
1195.1
188.05
369.87
5.6991
118.75
10.032
0.0189

275.00
0.0266
643.13
0.8533
—78.400
305.08

250.00
0.0631
606.61
1.8175
148.13
524.22
0.8023
2.3066
1.5336
1.3230
2.1781
1.4894
1059.3
194.51
262.91
6.3047
108.11
12.174
0.0158

Pentane

300.00
0.0732
618.95
2.1937
—21.633
343.22

Isobutane (2-Methylpropane, R-600a)

275.00
0.1672
578.29
4.5187
204.27
557.51
1.0155
2.3000
1.6160
1.4541
2.3095
1.6466
924.64
198.00
194.15
6.9095
97.862
14.477
0.0128

325.00
0.1685
593.35
4.8038
38.051
382.47

300.00
0.3698
547.48
9.6081
264.00
591.00
1.2220
2.3121
1.7077
1.5954
2.4623
1.8340
791.59
197.70
147.22
7.5457
88.323
17.026
0.0099

350.00
0.3396
565.69
9.3842
101.10
422.37

325.00
0.7162
513.31
18.417
327.86
623.83
1.4243
2.3350
1.8073
1.7446
2.6446
2.0676
660.70
192.61
113.53
8.2773
79.776
20.030
0.0071

375.00
0.6177
535.02
16.939
168.03
462.26

350.00
1.2577
474.24
33.238
396.67
654.41
1.6250
2.3614
1.9144
1.9021
2.8911
2.4005
528.31
181.32
87.888
9.2413
72.402
23.954
0.0045

400.00
1.0384
499.73
29.117
239.58
500.99

375.00
2.0551
425.57
59.391
472.64
679.12
1.8296
2.3802
2.0356
2.0749
3.3822
3.0674
378.18
161.42
66.264
10.815
66.126
30.110
0.0022

425.00
1.6429
456.47
49.281
317.05
536.24

400.00
3.1920
340.74
119.80
566.69
683.39
2.0643
2.3561
2.2388
2.3041
6.5400
7.3172
183.42
128.34
42.436
14.857
62.048
46.264
0.0003

450.00
2.4836
395.85
87.430
404.03
561.62
continued



o TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line® (Continued)

(=]

s (lig.)

s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)
n (liq.)
n (vap.)
X (lig.)
X (vap.)
o]

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (lig.)
s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)

—1.5046
1.6576
1.4426
1.0061
1.9682
1.1214
1788.3
138.80
2750.8
3.4236
172.92
4.3338
0.0323

260.00
0.0189
652.36
0.6394
—89.675
283.21
—0.3195
1.1147
1.5651
1.3572
2.0902
1.4807

—0.9346
1.2443
1.4869
1.1817
2.0091
1.2972
1500.5
159.00
689.40
4.5515
152.50
6.9615
0.0265

280.00
0.0461
633.24
1.4647
—46.927
312.03
—0.1613
1.1207
1.6409
1.4595
2.1834
1.5904

—0.4749
1.1292
1.5862
1.3597
2.1283
1.4793
1244.1
175.83
344.14
5.7318
130.68
10.207
0.0208

300.00
0.0980
613.33
2.9606
—2.2196
341.94
—0.0074
1.1398
1.7196
1.5639
2.2843
1.7064

—0.2681
1.1264
1.6572
1.4629
22171
1.5889
1122.1
182.32
267.51
6.3409
120.37
12.164
0.0180

—0.0709
1.1453
1.7397
1.5763
2.3239
1.7141
1002.5
186.93
214.42
6.9672
110.64
14.393
0.0153

Pentane (Continued)

0.1197
1.1794
1.8310
1.6983
2.4480
1.8562
884.21
189.09
174.84
7.6198
101.54
16.928
0.0126

Isopentane (2-Methylbutane)

320.00
0.1872
592.35
5.4417
44.614
372.68
0.1432
1.1685
1.8006
1.6702
2.3939
1.8305

340.00
0.3284
569.95
9.3072
93.760
403.97
0.2914
1.2038
1.8832
1.7785
2.5142
1.9659

360.00
0.5382
545.63
15.089
145.45
435.42
0.4380
1.2435
1.9673
1.8887
2.6495
2.1186

0.3056
1.2235
1.9284
1.8272
2.5916
2.0189
765.87
188.17
143.56
8.3158
93.033
19.811
0.0100

380.00
0.8347
518.63
23.563
199.99
466.50
0.5840
1.2853
2.0530
2.0017
2.8094
2.3018

0.4889
1.2735
2.0303
1.9619
2.7620
22132
645.89
183.35
117.61
9.0883
85.073
23.099
0.0075

400.00
1.2377
487.67
36.004
257.89
496.36
0.7304
1.3265
2.1412
2.1188
3.0149
2.5477

0.6714
1.3249
2.1363
2.1029
2.9808
2.4707
522.16
173.48
95.070
10.004
77.560
26.897
0.0051

420.00
1.7700
450.35
54.920
320.05
523.38
0.8792
1.3633
2.2348
2.2439
3.3265
2.9552

0.8561
1.3719
2.2488
2.2543
3.3177
2.9032
391.45
156.77
74.436
11.222
70.311
31.431
0.0030

440.00
2.4600
400.63
86.923
388.70
543.59
1.0350
1.3870
2.3440
2.3883
4.0252
4.0178

1.0503
1.4005
2.3821
2.4328
4.1782
4.2191
246.17
130.14
53.842
13.312
62.809
37.367
0.0011

460.00
3.3570
287.45
190.32
482.73
525.56
1.2378
1.3309
2.5665
2.6252
42.070
69.567



w (lig.)
w (vap.)
n (liq.)
n (vap.)
X (lig.)
N (vap.)

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (liq.)
s (vap.)
¢y (lig.)
¢y (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)

19

1138.6
178.39
410.30
6.2933
106.77
11.321
0.0187

280.00
0.0921
606.22
2.9706
—5.8227
312.19
—0.0206
1.1151
1.5236
1.4748
2.2006
1.6124
1004.3
180.13

200.00
0.000021

1041.7
182.73
310.40
6.7963
100.93
13.160
0.0164

300.00
0.1819
583.28
5.6289
39.477
341.69
0.1351
1.1424
1.6487
1.5909
2.3239
1.7470
871.57
181.48

250.00
0.0015

946.48
185.71
241.39
7.3046
95.472
15.181
0.0143

320.00
0.3267
559.16
9.8434
87.305
371.77
0.2885
1.1775
1.7722
1.7088
24512
1.8952
757.88
180.61

300.00
0.0219

852.31
187.00
192.27
7.8224
90.390
17.403
0.0121

758.32
186.27
156.15
8.3586
85.637
19.849
0.0101

663.63
183.10
128.61
8.9291
81.154
22.552
0.0081

567.22
176.93
106.74
9.5620
76.898
25.565
0.0062

Neopentane (2,2-Dimethylpropane)

340.00
0.5443
533.36
16.232
137.73
401.99
0.4401
1.2174
1.8881
1.8300
2.5860
2.0660
644.46
177.10

325.00
0.0578

360.00
0.8539
505.00
25.712
190.96
431.75
0.5905
1.2594
1.9973
1.9560
2.7422
22777
535.00
170.36

Hexane

350.00
0.1299

370.00
1.0497
489.41
32.056
218.75
446.19
0.6656
1.2803
2.0507
2.0217
2.8372
2.4110
480.86
165.54

375.00
0.2582

380.00
1.2766
472.49
39.849
247.47
460.11
0.7409
1.3005
2.1043
2.0897
2.9526
2.5762
426.56
159.57

400.00
0.4661

467.82
167.00
88.534
10.310
72.801
28.972
0.0044

390.00
1.5378
453.76
49.555
277.28
473.26
0.8169
1.3194
2.1592
2.1610
3.1027
2.7952
371.55
152.24

425.00
0.7803

363.47
152.15
72.481
11.286
68.750
32.944
0.0027

400.00
1.8370
432.43
61.938
308.47
485.20
0.8941
1.3359
22171
2.2369
3.3181
3.1163
315.16
143.28

450.00
1.2313

249.42
130.49
57.021
12.827
64.508
37914
0.0012

410.00
2.1782
407.01
78.430
341.55
495.16
0.9738
1.3484
2.2810
2.3197
3.6796
3.6677
256.39
132.30

475.00
1.8567

102.20
96.500
28.956
18.849
54.273
47.550
0.0000

420.00
2.5670
374.05
102.36
377.75
501.37
1.0586
1.3529
2.3577
2.4140
4.5015
4.9415
193.67
118.65

500.00
2.7139
continued



o TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line® (Continued)
©

Hexane (Continued)

o (liq.) 741.90 697.89 652.98 629.48 604.84 578.59 550.08 518.24 481.07 433.62 350.12
p (vap.) 0.0011 0.0639 0.7683 1.9057 4.0858 7.8720 14.046 23.808 39.364 66.089 129.04
h (lig.) —306.56 —206.69 —98.600 —40.702 20.138 84.182 151.72 223.16 299.18 381.51 478.78
h (vap.) 121.00 189.30 265.66 306.52 348.84 392.27 436.28 480.06 522.13 559.07 577.03
s (liq.) —1.1456 —0.7005 —0.3070 —0.1219 0.0581 0.2342 0.4075 0.5793 0.7510 0.9260 1.1209
s (vap.) 0.9922 0.8835 0.9072 0.9465 0.9972 1.0557 1.1189 1.1838 1.2464 1.2998 1.3174
¢, (liq.) 1.4405 1.5804 1.7503 1.8457 1.9453 2.0475 2.1508 2.2547 2.3600 24716 2.6218
¢, (vap.) 1.1868 1.3657 1.5758 1.6930 1.8161 1.9433 2.0731 2.2053 2.3409 2.4847 2.6579
cp (liq.) 1.9301 2.0713 2.2598 2.3714 2.4933 2.6263 2.7743 2.9479 3.1796 3.6056 6.5887
¢p (vap.) 1.2833 1.4636 1.6817 1.8086 1.9478 2.1011 2.2746 2.4853 2.7854 3.4001 7.5559
w (lig.) 1515.7 1269.4 1047.6 942.17 838.85 736.47 633.63 528.43 417.67 294.59 138.19
w (vap.) 144.44 160.40 172.79 176.83 178.87 178.39 174.77 167.09 153.94 132.74 98.609
n (lig.) 1306.4 529.19 290.31 227.83 183.11 149.58 123.38 101.98 83.551 66.222 45.006
n (vap.) 4.2946 5.4709 6.6161 7.2117 7.8304 8.4853 9.2018 10.031 11.090 12.712 16.804
X (lig.) 154.97 142.43 125.48 117.26 109.61 102.62 96.301 90.550 85.124 79.386 70.105
X (vap.) 6.4043 9.4265 13.258 15.531 18.065 20.879 24.003 27.502 31.520 36.488 44.807
o] 0.0293 0.0234 0.0177 0.0151 0.0125 0.0100 0.0077 0.0055 0.0035 0.0017 0.0003
Heptane
T 200.00 250.00 300.00 325.00 350.00 375.00 400.00 425.00 450.00 475.00 500.00
p 2.1 x 10.7¢ 0.00031 0.0067 0.0204 0.0514 0.1121 0.2182 0.3887 0.6451 1.0120 1.5191
o (liq.) 761.24 719.62 677.94 656.47 634.23 610.90 586.03 558.97 528.70 493.27 448.22
p (vap.) 0.0001 0.0150 0.2702 0.7680 1.8293 3.8189 7.2279 12.736 21.379 34.995 57.736
h (lig.) —380.96 —279.59 —171.54 —114.10 —54.026 8.9028 74.888 144.16 217.04 294.13 376.79
h (vap.) 47.527 115.51 192.43 234.17 277.88 323.27 369.98 417.53 465.21 511.77 554.66
s (liq.) —1.3567 —0.9047 —0.5112 —0.3274 —0.1495 0.0238 0.1936 0.3609 0.5264 0.6915 0.8588

s (vap.) 0.7857 0.6757 0.7020 0.7442 0.7987 0.8621 0.9314 1.0041 1.0779 1.1497 1.2146



¢y (lig.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)

w (vap.)
n (lig.)

n (vap.)
X (lig.)

X (vap.)

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (lig.)

s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)

69

1.5143
1.1910
1.9825
1.2739
1576.5
133.23
2171.4
3.5470
153.82
5.6156
0.0310

250.00
0.000063
736.69
0.0035
—347.92
46.050
—1.0811
0.4947
1.6551
1.3726
2.0786
1.4455
1344.5
138.40
0.0259

1.6246
1.3692
2.0836
1.4526
1336.1
148.24
741.16
4.9751
143.43
8.3161
0.0253

300.00
0.0021
696.69
0.0946
—240.35
123.10
—0.6893
0.5222
1.8107
1.5808
2.2333
1.6551
1138.6
150.71
0.0210

1.7815
1.5776
2.2477
1.6644
1120.1
160.82
380.04
6.0076
130.74
11.741
0.0198

350.00
0.0207
655.47
0.8269
—123.85
209.74
—0.3306
0.6225
1.9962
1.8108
24311
1.8916
948.81
160.16
0.0163

1.8727
1.6923
2.3479
1.7838
1018.0
165.69
293.16
6.5434
124.39
13.757
0.0172

375.00
0.0497
633.81
1.8851
—61.705
256.28
—0.1593
0.6887
2.0936
1.9299
2.5400
2.0180
857.47
163.15
0.0141

1.9689
1.8118
2.4574
19115
918.29
169.16
233.07
7.0975
118.19
15.983
0.0148

Octane

400.00
0.1048
611.07
3.8175
3.2520
304.60
0.0081
0.7615
2.1916
2.0498
2.6544
2.1498
767.20
164.51
0.0119

2.0678
1.9344
2.5748
2.0475
819.96
170.85
189.27
7.6775
112.17
18.427
0.0123

425.00
0.1993
586.81
7.0696
71.155
354.35
0.1724
0.8387
2.2891
2.1699
2.7750
2.2887
676.95
163.85
0.0098

2.1676
2.0586
2.7007
2.1934
721.82
170.28
155.88
8.2967
106.32
21.103
0.0100

450.00
0.3489
560.43
12.255
142.17
405.08
0.3341
0.9183
2.3854
2.2896
2.9049
2.4391
585.56
160.64
0.0078

2.2674
2.1837
2.8386
2.3540
622.51
166.88
129.39
8.9798
100.56
24.041
0.0078

475.00
0.5717
530.96
20.289
216.57
456.14
0.4941
0.9984
2.4806
2.4092
3.0521
2.6120
491.62
154.15
0.0058

2.3669
2.3095
2.9977
2.5425
520.31
159.83
107.48
9.7730
94.763
27.294
0.0058

500.00
0.8882
496.64
32.752
294.82
506.48
0.6533
1.0767
2.5754
2.5299
3.2372
2.8367
393.17
143.24
0.0040

2.4667
2.4372
3.2033
2.7963
412.79
147.86
88.425
10.775
88.670
30.978
0.0038

525.00
1.3229
453.63
53.043
378.01
554.02
0.8139
1.1491
2.6724
2.6547
3.5293
3.2176
287.24
125.94
0.0023

2.5700
2.5703
2.5488
3.2569
295.82
128.88
70.558
12.243
81.714
35.390
0.0021

550.00
1.9082
389.70
92.190
469.56
592.73
0.9816
1.2055
2.7811
2.7926
4.3831
4.4619
168.34
98.584
0.0008

continued



~ TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line (Continued)

o

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (lig.)

s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)
n (liq.)
n (vap.)
X (lig.)
X (vap.)

p (lig.)
p (vap.)
h (liq.)
h (vap.)

200.00
0.0087
728.12
0.0891
18.997
1492.9
0.0960
7.4653
2.9264
1.5649
4.2270
2.0755
2080.2
35791
507.28
6.9515
803.14
19.684
0.0604

90.000
0.1335
1378.6
7.4362
—114.49
44.572

220.00
0.0338
705.76
0.3188
104.71
1528.9
0.5042
6.9780
2.8894
1.6196
4.3423
2.1599
1913.7
373.38
346.68
7.4846
733.17
20.132
0.0523

100.00
0.3238
1313.7
16.859
—103.06
47.401

240.00
0.1022
681.75
0.8969
192.70
1561.7
0.8866
6.5907
2.8545
1.7054
4.4488
2.2984
1766.9
386.30
254.85
8.0587
665.09
20.978
0.0447

110.00
0.6653
1242.8
33.287
—91.129
48.840

260.00
0.2553
656.22
2.1154
282.79
1589.9
1.2461
6.2735
2.8213
1.8232
4.5477
2.5028
1624.5
396.20
197.34
8.6558
600.07
22.258
0.0374

115.00
0.9098
1204.2
45.126
—84.874
48.899

Ammonia (R-717)

280.00
0.5509
629.08
4.3817
374.99
1612.3
1.5860
6.0051
2.7898
1.9719
4.6562
2.7878
1481.0
402.59
158.12
9.2664
538.50
24.034
0.0306

300.00
1.0617
599.97
8.2507
469.71
1627.7
1.9098
5.7697
2.7624
2.1482
4.8001
3.1767
1333.2
404.95
129.33
9.8938
480.25
26.408
0.0242

Argon (R-740)

120.00
1.2130
1162.8
60.144
—78.353
48.413

125.00
1.5823
1117.9
79.194
—71.488
47.268

320.00
1.8728
568.19
14.510
567.90
1634.2
2.2221
5.5542
2.7430
2.3490
5.0184
3.7181
1177.9
402.70
106.91
10.561
42483
29.568
0.0183

130.00
2.0255
1068.1
103.56
—64.161
45.295

340.00
3.0802
532.44
24.395
671.27
1629.2
2.5287
5.3462
2.7388
2.5745
5.3846
4.5302
1011.8
395.05
88.555
11.330
371.51
33.945
0.0129

135.00
2.5509
1011.5
135.39
—56.177
42.211

360.00
4.7929
490.26
40.187
783.03
1607.8
2.8384
5.1294
2.7636
2.8322
6.0817
5.9545
830.62
380.83
72.796
12.346
319.25
40.752
0.0080

140.00
3.1682
943.71
178.86
—47.162
37.472

380.00
7.1402
436.07
67.368
910.32
1558.3
3.1686
4.8739
2.8531
3.1467
7.8177
9.3949
628.75
357.96
58.315
14.025
266.57
54.556
0.0038

145.00
3.8896
854.28
244.44
—36.192
29.757

400.00
10.305
344.56
131.09
1085.0
1431.9
3.5949
4.4622
3.1772
3.5984
22.728
34.924
384.58
318.22
41.802
18.529
216.00
113.54
0.0005

150.00
4.7346
680.43
394.50
—17.880
11.522



L

s (liq.)
s (vap.)
¢ (liq.)
cy (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
N (vap.)

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (liq.)
s (vap.)
¢y (lig.)
¢y (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)

1.4090
3.1763
0.5268
0.3309
1.1212
0.5757
819.45
172.83
247.64
7.3861
122.07
5.7436
0.0119

300.00
0.0138
871.65
0.4357
—95.464
336.21
—0.2922
1.1467
1.1906
0.9505
1.7055
1.0608
1295.7
187.37
0.0280

1.5278
3.0324
0.4976
0.3445
1.1537
0.6269
746.91
178.91
183.99
8.3516
108.87
6.6691
0.0094

325.00
0.0388
844.82
1.1393
—51.903
362.75
—0.1529
1.1230
1.2529
1.0545
1.7839
1.1696
1180.0
192.67
0.0247

1.6390
29114
0.4747
0.3633
1.2176
0.7122
669.20
183.03
140.92
9.4080
95.888
7.8579
0.0071

350.00
0.0916
817.14
2.5361
—6.0993
390.92
—0.0173
1.1170
1.3416
1.1573
1.8779
1.2807
1060.9
196.74
0.0215

1.6928
2.8560
0.4653
0.3752
1.2663
0.7760
627.79
184.33
123.88
9.9908
89.504
8.6048
0.0060

375.00
0.1894
788.52
5.0014
42.075
420.32
0.1153
1.1239
1.4289
1.2597
1.9710
1.3967
947.23
199.21
0.0185

1.7461
2.8025
0.4576
0.3893
1.3324
0.8627
584.19
185.09
108.89
10.628
83.208
9.5027
0.0050

Benzene

400.00
0.3528
758.60
9.0028
92.593
450.58
0.2451
1.1401
1.5092
1.3626
2.0643
1.5206
839.45
199.73
0.0155

1.7995
2.7495
0.4520
0.4064
1.4253
0.9857
537.83
185.28
95.502
11.341
77.005
10.612
0.0040

425.00
0.6053
726.83
15.138
145.52
481.27
0.3726
1.1626
1.5840
1.4666
2.1640
1.6573
735.77
197.89
0.0126

1.8538
2.6957
0.4492
0.4275
1.5638
1.1717
487.88
184.85
83.326
12.166
70.891
12.031
0.0030

450.00
0.9724
692.37
24.226
201.07
511.90
0.4984
1.1891
1.6568
1.5728
2.2794
1.8161
633.92
193.24
0.0099

1.9102
2.6390
0.4509
0.4544
1.7903
1.4822
433.10
183.74
72.024
13.165
64.854
13.935
0.0021

475.00
1.4820
653.91
37.522
259.71
541.72
0.6235
1.2172
1.7314
1.6828
2.4258
2.0169
531.41
185.11
0.0072

1.9712
2.5757
0.4598
0.4940
2.2247
2.1036
371.63
181.50
61.193
14.466
58.883
16.706
0.0013

500.00
2.1651
609.15
57.259
32222
569.48
0.7495
1.2441
1.8130
1.7999
2.6373
2.3136
425.31
172.54
0.0048

2.0425
2.4973
0.4893
0.5662
3.3994
3.8959
297.06
176.57
50.126
16.416
53.102
21.516
0.0006

525.00
3.0585
553.06
88.461
390.29
592.42
0.8793
1.2643
1.9106
1.9316
3.0331
29126
311.24
153.85
0.0025

2.1589
2.3550
0.7060
0.8218
23.582
35.468
174.74
157.01
35.321
21.305
50.932
40.853
0.0000

550.00
4.2145
466.88
150.30
469.81
600.44
1.0230
1.2605
2.0533
2.1038
47654
5.8688
179.15
125.56
0.0006
continued



~ TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line (Continued)
N
Carbon Dioxide (R-744)
T 220.00 230.00 240.00 250.00 260.00 270.00 280.00 285.00 290.00 295.00 300.00
P 0.5991 0.8929 1.2825 1.7850 2.4188 3.2033 4.1607 4.7123 5.3177 5.9822 6.7131
p (lig.) 1166.1 1128.7 1088.9 1046.0 998.89 945.83 883.58 847.05 804.67 752.56 679.24
p (vap.) 15.817 23.271 33.295 46.644 64.417 88.374 121.74 143.92 171.96 209.72 268.58
h (lig.) 86.728 106.57 126.84 147.71 169.44 192.41 217.30 230.86 245.63 262.38 283.38
h (vap.) 431.64 434.60 436.49 437.04 435.92 432.56 425.94 420.80 413.75 403.64 387.08
s (liq.) 0.5517 0.6387 0.7235 0.8068 0.8895 0.9732 1.0598 1.1056 1.1544 1.2087 1.2759
s (vap.) 2.1194 2.0649 2.0137 1.9641 1.9144 1.8626 1.8050 1.7720 1.7341 1.6876 1.6215
¢y (lig.) 0.9698 0.9567 0.9454 0.9364 0.9323 0.9396 0.9605 0.9748 0.9937 1.0265 1.1199
¢y (vap.) 0.6389 0.6700 0.7053 0.7459 0.7943 0.8517 0.9232 0.9686 1.0260 1.1060 1.2476
cp (liq.) 1.9618 1.9970 2.0510 2.1320 2.2554 2.4534 2.8141 3.1333 3.6756 4.7939 8.6979
cp (vap.) 0.9303 1.0053 1.1033 1.2366 1.4295 1.7307 2.2769 2.7668 3.6142 5.4316 11.921
w (liq.) 951.21 879.09 806.38 731.78 652.58 565.46 471.54 422.75 371.95 31591 245.67
w (vap.) 223.15 223.57 222.96 221.22 218.19 213.75 207.72 203.94 199.45 193.84 185.33
n (lig.) 242.01 204.23 172.96 146.74 124.40 105.02 87.731 79.548 71.409 62.936 53.107
n (vap.) 11.135 11.689 12.272 12.902 13.614 14.469 15.601 16.361 17.357 18.792 21.306
X (lig.) 176.15 163.28 150.75 138.47 126.35 114.25 102.03 95.810 89.546 83.558 80.593
X (vap.) 11.301 12.221 13.297 14.610 16.306 18.687 22.468 25.424 29.821 37.215 53.689
o 0.0163 0.0139 0.0115 0.0093 0.0071 0.0051 0.0033 0.0024 0.0017 0.0010 0.0003
Carbon Monoxide
T 70.000 80.000 90.000 95.000 100.00 105.00 110.00 115.00 120.00 125.00 130.00
p 0.0210 0.0836 0.2384 0.3685 0.5443 0.7741 1.0663 1.4299 1.8745 24112 3.0556
p (lig.) 840.21 798.97 754.42 730.36 704.70 677.01 646.65 612.68 573.40 525.22 45545
p (vap.) 1.0232 3.6494 9.6370 14.530 21.137 29.920 41.533 56.990 78.080 108.67 161.99
h (lig.) —25.074 —3.5476 18.162 29.279 40.692 52.515 64.903 78.078 92.410 108.66 129.41
h (vap.) 205.08 213.81 220.88 223.56 225.53 226.64 226.69 225.37 222.13 215.82 202.48



€L

s (liq.)
s (vap.)
¢ (liq.)
cy (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
N (vap.)

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (liq.)
s (vap.)
¢y (lig.)
¢y (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)

—0.3301
2.9578
1.2779
0.7540
2.1606
1.0669
967.52
169.27
255.08
4.7766
162.95
6.8841
0.0119

300.00
0.0141
772.06
0.4810
—107.66
283.43
—0.3290
0.9747
1.3176
1.1713
1.8265
1.2732
1245.3
177.99
0.0244

—0.0436
1.6734
1.1803
0.7727
2.1448
1.1157
872.05
178.52
178.90
5.6070
145.12
7.9811
0.0098

325.00
0.0388
748.08
1.2313
—59.864
315.78
—0.1761
0.9797
1.4866
1.3075
1.9899
1.4148
1108.1
182.88
0.0214

0.2097
24621
1.1075
0.8056
2.1877
1.2115
773.63
184.85
139.80
6.6165
126.19
9.1267
0.0078

350.00
0.0900
723.43
2.6979
—8.3171
350.42
—0.0236
1.0014
1.6165
1.4443
2.1282
1.5618
996.64
186.30
0.0185

0.3280
2.3731
1.0780
0.8280
2.2355
1.2858
722.64
186.78
125.97
7.2220
116.48
9.7277
0.0067

375.00
0.1833
697.80
5.2621
46.568
386.93
0.1275
1.0351
1.7279
1.5846
2.2570
1.7199
895.44
187.76
0.0157

0.4426 0.5547
2.2909 2.2130
1.0525 1.0312
0.8546 0.8857
2.3068 2.4110
1.3860 1.5243
670.00 615.20
187.83 187.97
114.09 103.40
7.9187 8.7333
106.76 97.193
10.359 11.039
0.0057 0.0047

Cyclohexane

400.00 425.00
0.3373 0.5729
670.77 641.79
9.4161 15.830
104.68 166.10
42483 463.47
0.2769 0.4249
1.0772 1.1248
1.8312 1.9316
1.7297 1.8806
2.3858 2.5224
1.8951 2.0972
797.11 697.60
186.80 182.91
0.0130 0.0104

0.6658
2.1366
1.0147
0.9225
2.5651
1.7245
557.54
187.16
93.380
9.7056
87.895
11.803
0.0037

450.00
0.9133
609.94
25.495
231.07
502.44
0.5722
1.1752
2.0139
2.0381
2.6760
2.3452
594.66
175.58
0.0079

0.7778
2.0586
1.0049
0.9673
2.8045
2.0383
495.94
185.34
83.643
10.903
78.967
12.730
0.0027

475.00
1.3839
573.73
40.045
300.04
540.44
0.7196
1.2257
2.1344
2.2032
2.8629
2.6798
487.67
164.25
0.0056

0.8933
1.9744
1.0063
1.0249
3.2168
2.5995
428.49
182.45
73.841
12.453
70.419
13.986
0.0018

500.00
2.0124
530.62
62.573
373.80
576.11
0.8685
1.2731
2.2419
2.3752
3.1201
3.1989
378.12
148.10
0.0034

1.0180
1.8752
1.0305
1.1072
4.1075
3.8853
351.29
178.27
63.508
14.661
61.995
15.999
0.0010

525.00
2.8316
475.08
100.85
454.16
606.53
1.0221
1.3123
2.3598
2.5444
3.6393
4.2107
263.49
124.78
0.0016

1.1730
1.7323
1.1232
1.2555
7.9566
9.7719
253.47
171.80
51.253
18.685
52.280
20.331
0.0003

550.00
3.8928
349.73
198.59
559.79
617.68
1.2136
1.3188
2.5605
2.6403
11.570
11.408
108.39
87.229
0.0001
continued



\l
# TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line (Continued)

p (liq.)
p (vap.)
h (liq.)
h (vap.)
s (liq.)

s (vap.)
¢y (lig.)
¢y (vap.)
cp (lig.)
¢p (vap.)
w (lig.)
w (vap.)

p (liq.)
p (vap.)
h (lig.)
h (vap.)
s (lig.)
s (vap.)
¢y (lig.)
¢y (vap.)

290.00
0.5777
631.52
11.361
240.80
655.85
1.1437
2.5749
1.4862
1.1838
2.3257
1.5298
875.75
239.65

20.000
0.0333
171.96
0.7929
—22.077
303.50
—0.9991
15.280
3.5194
2.4782

300.00
0.7615
616.18
14.851
263.98
663.68
1.2213
2.5537
1.4188
1.2513
2.3054
1.6387
836.04
238.29

22.000
0.0678
167.25
1.4776
—9.5250
315.14
—0.4114
14.346
4.1411
2.2988

310.00
0.9849
600.11
19.140
287.23
671.20
1.2964
2.5350
1.4010
1.3221
2.3424
1.7615
789.18
236.10

24.000
0.1232
161.96
2.5031
5.3945
325.69
0.2224
13.568
4.6767
2.1682

320.00
1.2529
583.17
24.390
311.06
678.30
1.3705
2.5182
1.4173
1.3961
2.4242
1.9024
736.55
232.99

26.000
0.2055
156.41
3.9668
22.156
334.40
0.8721
12.882
4.9486
2.1164

Cyclopropane

330.00 340.00
1.5709 1.9441
565.14 545.75
30.814 38.698
335.82 361.86
684.84 690.64
1.4450 1.5208
2.5027 2.4878
1.4571 1.5130
1.4735 1.5546
2.5449 2.7051
2.0682 2.2705
679.48 618.85
228.84 223.51

Deuterium

28.000 30.000
0.3209 0.4767
150.64 144.33
6.0163 8.9050
40.366 60.234
340.44 342.68
1.5187 2.1673
12.236 11.582
4.9985 4.9028
2.1737 2.3814

350.00
2.3784
524.57
48.459
389.49
695.42
1.5985
2.4726
1.5800
1.6400
2.9144
2.5304
554.99
216.83

32.000
0.6814
136.77
13.070
82.614
339.65
2.8420
10.874
4.7342
2.8067

360.00
2.8796
500.93
60.747
419.11
698.72
1.6791
2.4558
1.6556
1.7305
3.1994
2.8917
487.71
208.55

34.000
0.9432
126.83
19.017
109.06
330.70
3.5829
10.102
4.5971
3.5034

370.00
3.4546
473.63
76.696
451.33
699.73
1.7642
2.4355
1.7388
1.8276
3.6306
3.4598
416.20
198.34

36.000
1.2621
113.42
26.539
140.62
319.19
4.4081
9.3686
4.7493
43132

380.00
4.1114
440.16
98.678
487.35
696.75
1.8564
2.4074
1.8322
1.9341
4.4382
4.5706
338.70
185.70

37.000
1.4389
103.75
30.756
160.36
313.41
4.9041
9.0408
5.1300
4.6790

390.00
4.8609
393.04
133.76
530.72
684.85
1.9643
2.3595
1.9471
2.0566
6.9802
8.1541
251.34
169.73

38.000
1.6903
83.193
83.193
195.52
195.52
5.7696
5.7696
6.4594
6.4594



SL
<N

cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)

p (liq.)
p (vap.)
h (lig.)
h (vap.)
s (lig.)

s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
X (vap.)

5.6785
4.1521
1023.8
266.64
0.0038

120.00
0.0014
634.17
0.0385
—119.17
428.29
—0.8307
3.7314
1.5530
0.8937
24271
1.1920
1660.4
217.51
427.51
3.3390
248.79
6.7795
0.0250

60.000
0.0015

6.7969
3.9417
919.13
280.24
0.0034

140.00
0.0118
608.02
0.2876
—70.809
451.32
—0.4581
3.2714
1.4655
0.9064
2.4081
1.2125
1520.9
233.95
277.58
4.8414
222.34
7.8923
0.0212

70.000
0.0120

7.8537
3.8780
858.60
292.49
0.0030

160.00
0.0562
580.87
1.2123
—22.661
473.00
—0.1372
2.9607
1.3948
0.9335
2.4067
1.2598
1376.7
247.39
200.13
5.6998
197.46
9.1146
0.0175

80.000
0.0547

8.5907
4.0466
830.29
302.87
0.0026

9.2946
4.5882
801.77
310.72
0.0021

10.320
5.7989
755.58
315.32
0.0017

Ethylene (Ethene, R-1150)

180.00
0.1818
552.20
3.5889
25.871
49231
0.1473
2.7386
1.3464
0.9783
2.4413
1.3467
1227.0
256.98
153.02
6.4011
174.60
10.360
0.0140

90.000
0.1730

200.00
0.4555
521.22
8.4936
75.686
508.13
0.4070
2.5692
1.3214
1.0431
2.5286
1.4920
1069.9
261.94
120.52
7.1332
153.73
11.862
0.0106

Fluorine

100.00
0.4275

220.00
0.9566
486.67
17.452
128.03
519.07
0.6516
2.4290
1.3196
1.1320
2.7002
1.7382
903.49
261.54
95.681
8.0066
134.45
13.943
0.0075

110.00
0.8891

12.182
8.3068
683.32
316.51
0.0013

240.00
1.7730
446.11
33.066
184.88
522.74
0.8911
2.2989
1.3435
1.2540
3.0430
22112
724.39
254.88
74.961
9.1616
116.07
17.142
0.0046

120.00
1.6342

15.584
12.743
578.05
315.63
0.0009

250.00
2.3295
422.02
44.970
216.09
520.39
1.0132
2.2304
1.3679
1.3344
3.3629
2.6608
628.10
248.80
65.398
9.9344
106.84
19.563
0.0033

125.00
2.1389

21.483
18.581
437.40
313.14
0.0005

260.00
3.0035
393.47
61.542
250.40
513.45
1.1413
2.1530
1.4068
1.4387
3.9457
3.5116
524.13
240.47
55.950
10.957
97.241
23.219
0.0021

130.00
2.7475

40.467
23.229
337.51
309.68
0.0003

270.00
3.8125
356.39
86.795
290.30
498.32
1.2836
2.0541
1.4839
1.5918
5.4086
5.7658
404.99
229.17
46.028
12.506
86.860
30.451
0.0010

135.00
3.4739

75.419
75.419
243.33
243.33
0.0000

280.00
4.7835
290.70
140.70
347.75
457.49
1.4814
1.8733
1.7784
1.9809
19.562
29.260
246.68
208.88
33.085
16.176
83.422
71.723
0.0001

140.00
4.3357
continued



~ TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line® (Continued)

»

p (liq.)

p (vap.)
h (liq.)
h (vap.)
s (liq.)

s (vap.)
¢ (lig.)
¢v (vap.)
cp (lig.)
¢p (vap.)
w (lig.)
w (vap.)
o

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (lig.)

s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)

1665.4
0.1134
—37.242
157.21
—-0.5175
2.7233
0.9015
0.5482
1.4654
0.7686
1043.5
135.46
0.0208

300.00
0.0031
1104.0
0.0246
—313.36
1951.3
—0.9330
6.6158
42158
1.3169
4.2420
1.7387

1602.3
0.7882
—22.484
164.56
—0.2901
2.3819
0.8618
0.5522
1.4810
0.7787
973.15
145.85
0.0177

350.00
0.0388
1080.3
0.2690
—102.51
2032.9
—0.2829
5.8181
3.9214
1.3891
4.1850
1.8326

1536.5
3.1953
—7.5901
171.31
—0.0916
2.1446
0.8352
0.5622
1.4964
0.8043
871.16
154.65
0.0148

400.00
0.2374
1040.2
1.4704
105.78
2106.1
0.2729
5.2737
3.5946
1.4982
4.1541
2.0042

Fluorine (Continued)

1466.3
9.2442
7.5700
177.09
0.0860
1.9696
0.8062
0.5793
1.5295
0.8519
779.02
161.52
0.0120

Heavy Water (Deuterium oxide)

425.00
0.4893
1015.3
2.9030
209.99
2136.7
0.5250
5.0585
3.4528
1.5800
4.1763
2.1482

1390.0
21.494
23.208
181.58
0.2488
1.8325
0.7772
0.6027
1.5855
0.9269
692.27
166.12
0.0093

450.00
0.9205
987.24
5.2871
315.22
2161.4
0.7646
4.8673
3.3293
1.6917
4.2306
2.3575

1305.2
43.338
39.593
184.41
0.4016
1.7182
0.7517
0.6303
1.6788
1.0440
603.67
168.12
0.0067

475.00
1.6075
955.76
9.0422
42231
2178.8
0.9946
4.6926
3.2237
1.8413
4.3211
2.6583

1207.4
80.165
57.183
184.90
0.5494
1.6138
0.7329
0.6641
1.8572
1.2591
506.54
167.26
0.0044

500.00
2.6406
920.48
14.735
532.19
2187.4
1.2178
4.5282
3.1347
2.0334
4.4572
3.0848

1150.6
107.32
66.712
183.83
0.6237
1.5607
0.7285
0.6868
2.0212
1.4604
452.05
165.81
0.0033

525.00
4.1228
880.63
23.177
646.06
2185.2
1.4368
4.3685
3.0614
2.2679
4.6615
3.6902

1084.8
143.72
77.048
181.40
0.7005
1.5032
0.7314
0.7186
2.3048
1.8232
391.41
163.76
0.0022

550.00
6.1713
834.82
35.632
765.72
2169.4
1.6550
4.2071
3.0045
2.5414
4.9842
4.5816

1003.7
195.17
88.724
176.84
0.7834
1.4361
0.7504
0.7697
2.8936
2.6291
321.84
161.03
0.0013

575.00
8.9205
780.47
54.331
894.20
2134.8
1.8773
4.0349
2.9694
2.8503
5.5435
6.0279

890.17
278.28
103.17
168.02
0.8817
1.3449
0.8149
0.8707
4.7992
5.5472
238.35
156.46
0.0005

600.00
12.530
712.24
83.999
1037.4
2071.1
2.1127
3.8356
2.9721
3.1963
6.7062
8.8990



w (lig.)
w (vap.)
n (liq.)
n (vap.)
X (lig.)
N (vap.)

p (lig.)

p (vap.)
h (lig.)
h (vap.)
s (liq.)

s (vap.)
¢y (lig.)
¢y (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)
n (liq.)
n (vap.)
X (lig.)
N (vap.)

L

1394.9
404.89
1046.6
10.228
596.96
18.277
0.0716

2.5000
0.0100
144.96
2.1163
—6.1796
16.972
—1.6199
7.6406
2.5212
3.4863
2.7003
6.2582
216.03
87.618
3.7456
0.6382
14.894
4.7651
0.0003

1457.7
434.21
433.25
11.828
631.93
22.532
0.0632

2.7500
0.0159
143.37
3.1344
—5.5295
17.858
—1.3874
7.1170
2.0330
3.4759
2.3729
6.4127
216.77
90.530
3.7462
0.7164
15.783
5.3301
0.0002

1413.3
457.95
253.36
13.544
633.11
27.812
0.0536

3.0000
0.0237
141.35
4.4284
—4.8686
18.659
—1.1767
6.6658
2.0609
3.4520
2.5978
6.5921
214.33
93.038
3.6940
0.7961
16.553
5.8927
0.0002

1366.2
466.94
207.17
14.395
624.05
31.041
0.0484

3.2500
0.0339
138.91
6.0404
—4.1185
19.361
—0.9599
6.2645
2.1996
3.4184
2.9782
6.8185
209.15
95.167
3.6113
0.8783
17.209
6.4659
0.0002

1306.7
473.39
174.50
15.229
609.65
34.820
0.0429

1235.6
476.73
150.33
16.050
590.46
39.366
0.0372

Helium (R-704)

3.5000
0.0466
136.06
8.0221
—3.2577
19.947
—0.7324
5.8975
2.3317
3.3779
3.4138
7.1215
202.40
96.937
3.5106
0.9640
17.751
7.0604
0.0002

3.7500
0.0622
132.75
10.443
—2.2773
20.396
—0.4941
5.5522
2.4323
3.3325
3.9093
7.5475
194.56
98.367
3.3987
1.0544
18.173
7.6838
0.0001

1152.3
476.36
131.71
16.871
566.82
45.081
0.0313

4.0000
0.0810
128.90
13.406
—1.1643
20.679
—0.2439
5.2169
2.5045
3.2839
4.5230
8.1786
185.70
99.469
3.2785
1.1509
18.476
8.3555
0.0001

1056.2
471.63
116.77
17.722
538.88
52.701
0.0254

4.2500
0.1032
124.35
17.077
0.1065
20.749
0.0216
4.8785
2.5575
3.2328
5.3796
9.1817
175.63
100.26
3.1500
1.2554
18.668
9.1128
0.0001

946.14
461.90
104.18
18.655
506.76
63.267
0.0194

4.5000
0.1292
118.81
21.756
1.5856
20.525
0.3106
4.5193
2.6013
3.1794
6.7756
10.964
164.00
100.75
3.0100
1.3718
18.785
10.036
0.0001

820.49
446.35
92.820
19.769
470.46
76.284
0.0136

4.7500
0.1594
111.65
28.103
3.3849
19.838
0.6427
4.1065
2.6462
3.1221
9.6775
14.856
150.22
101.05
2.8488
1.5075
18.915
11.314
0.0000

674.99
423.35
81.477
21.290
430.22
98.667
0.0079

5.0000
0.1945
100.83
38.213
5.8545
18.183
1.0809
3.5467
2.7093
3.0526
20.240
29.094
132.96
101.63
2.6342
1.6874
19.301
13.587
0.0000

continued



~ TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line® (Continued)

(-]

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (lig.)

s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)
n (liq.)
n (vap.)
X (lig.)
X (vap.)

p (lig.)
p (vap.)
h (liq.)
h (vap.)

14.000
0.0079
76.867
0.1391
—51.323
397.84
—2.9267
29.156
5.4352
6.5127
7.7121
10.885
1359.6
305.17
25.310
0.6670
76.650
10.431
0.0030

200.00
0.0504
971.76
1.0479
—25.538
534.46

16.000
0.0215
75.116
0.3380
—36.642
415.41
—1.9580
26.296
4.7859
6.4022
7.2964
11.012
1271.6
325.05
19.784
0.8106
90.079
12.681
0.0027

220.00
0.1436
936.62
2.7604
14.221
551.02

18.000
0.0481
73.220
0.6880
—20.891
430.92
—1.0526
24.048
5.1897
6.4898
8.2552
11.469
1185.5
340.22
16.182
0.9355
98.405
14.669
0.0023

240.00
0.3374
899.77
6.1003
54.188
565.59

20.000
0.0932
71.110
1.2429
—2.7322
443.88
—0.1300
22.201
5.6168
6.5876
9.4843
12.128
1110.7
352.59
13.607
1.0569
103.01
16.716
0.0020

260.00
0.6870
860.53
11.898
94.816
577.58

Hydrogen (R-702)

22.000 24.000
0.1631 0.2641
68.727 65.997
2.0666 3.2435
18.221 42.350
453.66 459.49
0.8199 1.8035
20.613 19.184
5.9417 6.1793
6.7038 6.8464
10.881 12.575
13.096 14.572
1038.2 960.99
362.25 369.34
11.641 10.057
1.1819 1.3151
104.87 104.60
18.956 21.493
0.0017 0.0014
Hydrogen Sulfide
280.00 300.00
1.2555 2.1116
817.99 770.74
21.243 35.712
136.65 180.44
586.27 590.63

26.000
0.4025
62.801
4.9001
70.318
460.25
2.8358
17.833
6.3692
7.0274
14.893
16.982
874.29
373.96
8.7151
1.4619
102.53
24477
0.0011

320.00
3.3296
716.26
57.989
227.37
588.92

28.000
0.5852
58.916
7.2581
103.40
454.04
3.9492
16.472
6.5599
7.2696
18.656
21.456
773.58
376.19
7.5160
1.6331
98.654
28.202
0.0007

330.00
4.1000
684.82
73.601
252.68
584.82

30.000
0.8199
53.838
10.814
144.51
436.68
5.2217
14.961
6.8276
7.6185
26.883
32.270
652.73
375.97
6.3620
1.8628
92.547
33.407
0.0004

340.00
4.9939
648.98
93.816
279.89
571.57

31.000
0.9596
50.432
13.459
170.44
420.39
5.9839
14.047
7.0430
7.8644
37.140
46.373
581.16
37491
5.7518
2.0375
88.221
37.226
0.0003

350.00
6.0257
606.07
121.19
310.11
565.71

32.000
1.1168
45.636
17.503
204.55
392.55
6.9620
12.837
7.4038
8.2019
70.365
92.295
497.24
373.31
5.0391
2.3378
82.176
43.200
0.0002

360.00
7.2129
549.45
161.67
346.08
545.98



s (liq.)
s (vap.)
¢y (liq)
cy (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
N (vap.)

T

p

p (lig.)
p (vap.)
h (liq.)
h (vap.)
s (liq.)

s (vap.)
¢y (lig.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)

6.

—0.1235
2.6765
1.2344
0.7538
1.9878
1.0162
1386.6
252.66
386.41
8.5566
241.07
11.438

120.00
0.1031
2411.5
8.9533
0.1163
107.33
0.0010
0.8944
0.2555
0.1607
0.5251
0.2753
685.71
138.00

0.0655
2.5055
1.1873
0.7721
1.9854
1.0547
1280.4
262.30
311.85
9.4845
219.71
12.822

130.00
0.2108
2334.5
17.276
5.4315
108.90
0.0431
0.8391
0.2454
0.1673
0.5335
0.2928
643.02
141.81

0.2385
2.3693
1.1483
0.7962
2.0037
1.1118
1173.3
269.67
252.16
10.455
199.10
14.334

140.00
0.3873
2253.2
30.370
10.873
110.09
0.0829
0.7915
0.2369
0.1755
0.5481
0.3172
598.86
144.75

0.3994
2.2562
1.1162
0.8254
2.0468
1.1936
1064.3
274.46
204.45
11.485
179.34
16.022

150.00
0.6547
2166.2
49.827
16.509
110.79
0.1209
0.7495
0.2299
0.1853
0.5706
0.3510
552.79
146.78

0.5519
2.1577
1.0900
0.8595
2.1242
1.3123
951.91
276.40
165.98
12.606
160.41
17.954

Krypton

160.00
1.0363
2071.6
77.728
22422
110.91
0.1579
0.7110
0.2242
0.1965
0.6044
0.3988
504.18
147.90

0.6992
2.0665
1.0697
0.8990
2.2577
1.4961
834.38
275.21
134.42
13.873
142.13
20.231

170.00
1.5562
1966.5
117.09
28.727
110.28
0.1946
0.6743
0.2202
0.2095
0.6566
0.4707
452.07
148.07

0.8453
1.9752
1.0561
0.9453
2.5040
1.8187
708.55
270.62
107.82
15.397
124.18
23.039

180.00
2.2396
1846.2
172.91
35.606
108.66
0.2318
0.6377
0.2187
0.2252
0.7439
0.5913
394.88
147.23

0.9198
1.9263
1.0529
0.9720
27174
2.0937
640.77
267.00
95.796
16.328
115.11
24.759

185.00
2.6512
1777.8
209.69
39.354
107.33
0.2511
0.6185
0.2194
0.2347
0.8130
0.6890
363.54
146.39

0.9970
1.8725
1.0534
1.0021
3.0656
2.5378
568.10
262.49
84.274
17.454
105.74
26.822

190.00
3.1145
1701.2
255.02
43.396
105.53
0.2712
0.5983
0.2218
0.2459
0.9158
0.8377
329.61
145.21

1.0798
1.8101
1.0604
1.0369
3.7338
3.3708
488.44
257.21
72.846
18.919
95.684
29.451

195.00
3.6339
1613.0
312.65
47.852
103.08
0.2928
0.5760
0.2271
0.2598
1.0866
1.0909
292.16
143.62

1.1753
1.7306
1.0806
1.0794
5.5180
5.4584
398.78
251.56
60.710
21.089
84.012
33.217

200.00
42148
1505.6
390.21
52.975
99.598
0.3168
0.5499
0.2375
0.2783
1.4338
1.6167
249.52
141.42
continued



® TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line“ (Continued)

n (liq.)

n (vap.)
x (lig.)

N (vap.)
o

p (lig.)

p (vap.)
h (lig.)
h (vap.)
s (liq.)

s (vap.)
¢y (lig.)
¢y (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)

405.25
10.282
110.26
3.6296
0.0155

200.00
6.1 x 107°
880.28
0.0001
—334.31
955.68
—1.2581
5.1918
1.7695
1.1423
2.2141
1.4194
1471.1
253.63
0.0313

26.000
0.0716

319.90
11.243
101.11
3.9992
0.0135

250.00
0.00081
831.52
0.0126
—221.69
1013.1
—0.7559
4.1834
1.8828
1.9688
2.3121
2.3704
1266.7
276.25
0.0264

28.000
0.1316

258.92
12.261
92.317
4.4367
0.0115

300.00
0.0187
784.51
0.2462
—100.87
1065.3
—0.3161
3.5711
2.1179
2.9830
2.5461
3.6638
1093.5
297.15
0.0221

30.000
0.2231

Krypton (Continued)

213.53
13.353
83.757
4.9695
0.0095

325.00
0.0603
760.74
0.7463
—35.064
1089.5
—0.1057
3.3546
2.2679
3.3331
2.7223
4.1950
1015.5
305.94
0.0200

32.000
0.3545

178.25
14.550
75.416
5.6654
0.0076

Methanol

350.00
0.1617
735.84
1.9053
35.664
1111.6
0.1035
3.1777
2.4278
3.5800
2.9362
4.6631
938.89
312.61
0.0179

Neon (R-720)

34.000
0.5344

149.55
15.900
67.252
6.6462
0.0058

375.00
0.3748
708.86
4.2757
112.27
1129.6
0.3140
3.0268
2.5914
3.7842
3.1891
5.1821
859.31
316.20
0.0155

36.000
0.7720

125.00
17.506
59.207
8.1320
0.0041

400.00
0.7737
678.59
8.7343
195.83
1140.4
0.5281
2.8894
2.7555
4.0140
3.4912
5.9366
772.84
315.37
0.0130

38.000
1.0770

113.68
18.466
55.204
9.2053
0.0033

425.00
1.4561
643.38
16.754
287.71
1140.3
0.7483
2.7543
2.9204
4.2985
3.8713
7.1409
676.21
308.41
0.0103

40.000
1.4603

102.69
19.599
51.199
10.663
0.0025

450.00
2.5433
600.49
30.831
390.11
1129.3
0.9783
2.6209
3.0907
4.4435
4.4067
8.2711
567.09
295.26
0.0073

42.000
1.9355

91.727
21.008
47.196
12.775
0.0017

475.00
4.1688
544.35
54.371
507.42
1117.9
1.2257
2.5109
3.2830
4.0231
5.3805
8.1500
441.11
275.02
0.0042

43.000
2.2121

80.323
22.922
43.284
16.186
0.0011

500.00
6.5250
451.53
109.88
656.91
1048.0
1.5223
2.3044
3.6076
3.9538
9.9683
19.040
269.59
236.75
0.0012

44.000
2.5168
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o (liq.) 1226.1 1191.2 1154.0 1113.1 1068.3 1018.9 963.27 897.21 807.59 739.37 632.15
o (vap.) 6.9815 12.168 19.828 30.680 45.664 66.143 94.361 134.66 197.94 248.26 333.79

h (liq.) —2.0721 1.6942 5.6339 9.8416 14.330 19.129 24.344 30.236 37.552 42.540 49.772
h (vap.) 84.820 86.375 87.428 88.045 88.180 87.726 86.492 84.107 79.688 75.959 69.666
s (liq.) —0.0771  0.0606 0.1937 0.3257 0.4568 0.5874 0.7200 0.8604 1.0251 1.1340 1.2900

s (vap.) 3.2649 3.0849 2.9202 2.7696 2.6288 2.4928 2.3554 2.2072 2.0283 1.9112 1.7421
¢y (liq.) 0.9016 0.8822 0.8608 0.8401 0.8233 0.8140 0.8146 0.8283 0.8683 0.9153 1.0016
¢y (vap.) 1.0924 0.7929 0.7237 0.7218 0.7434 0.7774 0.8233 0.8852 0.9730 1.0319 1.1005
cp (liq.) 1.8756 1.8931 2.0117 2.1481 2.2966 2.4903 2.8047 3.4429 5.3776 8.7614 22.206
cp (vap.)  1.6402 1.3352 1.3141 1.3990 1.5570 1.8104 2.2403 3.0926 5.4496 9.1322 27.296
w (liq.) 617.51 579.65 548.99 514.19 474.28 429.96 381.08 325.39 256.54 213.78 170.57
w (vap.) 121.12 130.23 135.55 138.54 140.26 141.11 141.18 140.49 138.95 137.87 136.83
n (liq.) 130.15 106.36 88.574 74.741 63.597 54.286 46.180 38.726 31.144 26.666 20.958
n (vap.) 4.3247 4.7040 5.1031 5.5284 5.9702 6.4766 7.0646 7.8037 8.9012 9.8049 11.526
X (lig.) 161.88 149.59 137.57 125.73 114.09 102.69 91.512 80.499 69.885 66.995 129.48
X (vap.) 6.3618 6.9727 7.7049 8.6200 9.9203 11.433 13.666 17.259 24.333 31.873 54.986
o 0.0050 0.0041 0.0034 0.0026 0.0020 0.0014 0.0010 0.0006 0.0003 0.0001 0.0000

Nitrogen (R-728)

T 70.000 80.000 85.000 90.000 95.000 100.00 105.00 110.00 115.00 120.00 125.00
4 0.0385 0.1369 0.2289 0.3605 0.5405 0.7783 1.0833 1.4658 1.9370 2.5106 3.2069
p (lig.) 838.51 793.94 770.13 745.02 718.26 689.35 657.52 621.45 578.70 523.36 426.08
p (vap.) 1.8960 6.0894 9.8241 15.079 22.272 31.961 44,959 62.579 87.294 125.09 205.18
h (lig.) —136.97 —116.58 —106.16 —95.517 —84.571 —73.209 —61.268 —48.486 —34.389 —17.870  6.4029
h (vap.) 71.098 79.099 82.352 84.970 86.828 87.766 87.557 85.835 81911 74.173 55.034
s (lig.) 2.6321 2.9028 3.0277 3.1473 3.2630 3.3761 3.4882 3.6015 3.7198 3.8514 4.0373
s (vap.) 5.6045 5.3487 5.2454 5.1527 5.0672 4.9858 4.9055 4.8226 47311 4.6185 4.4263
¢y (liq.) 1.1297 1.0691 1.0429 1.0196 0.9996 0.9832 0.9715 0.9667 0.9742 1.0106 1.2380
¢y (vap.) 0.7580 0.7773 0.7909 0.8078 0.8288 0.8548 0.8874 0.9284 0.9896 1.0985 1.4021

continued
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TABLE 2.7

Thermophysical Properties of Fluids along the Saturation Line® (Continued)

cp (lig.)
¢p (vap.)
w (lig.)
w (vap.)
n (liq.)
n (vap.)
. (lig.)
A (vap.)
o

p (lig.)
p (vap.)
h (liq.)
h (vap.)
s (liq.)
s (vap.)
¢ (lig.)
¢y (vap.)
¢p (liq.)
¢p (vap.)
w (lig.)
w (vap.)

2.0145
1.0816
925.74
168.42
219.88
4.8792
161.84
6.7968
0.0106

100.00
0.00095
1734.8
0.0809
—44.273
142.74
—0.3661
1.5040
0.6268
0.3627
1.0016
0.4804
1018.1
124.38

2.0555
1.1449
824.36
176.72
145.05
5.6413
140.20
7.7802
0.0083

120.00
0.0128
1648.8
0.9158
—24.275
152.12
—0.1838
1.2861
0.5889
0.3806
0.9983
0.5022
894.02
135.01

2.0906
1.1957
772.44
179.68
121.11
6.0405
129.93
8.3518
0.0072

140.00
0.0752
1557.5
4.7318
—4.2035
161.00
—0.0295
1.1505
0.5693
0.4100
1.0106
0.5441
779.79
142.91

Nitrogen (Continued)

2.1407
1.2655
719.01
181.78
102.53
6.4592
119.89
9.0210
0.0061

160.00
0.2719
1459.6
15.700
16.448
168.69
0.1075
1.0590
0.5659
0.4513
1.0543
0.6151
671.28
147.30

2.2126
1.3628
663.50
182.99
87.656
6.9056
110.09
9.8408
0.0050

2.3180
1.5026
605.23
183.25
75.375
7.3920
100.50
10.893
0.0041

Nitrogen Trifluoride

170.00
0.4576
1406.8
25.765
27.219
171.85
0.1720
1.0228
0.5689
0.4764
1.0923
0.6662
614.73
147.95

180.00
0.7246
1350.1
40.315
38.442
174.41
0.2350
0.9904
0.5750
0.5044
1.1451
0.7329
554.78
147.44

2.4789
1.7139
543.30
182.51
64.882
7.9386
91.091
12.314
0.0031

190.00
1.0918
1288.0
60.917
50.264
176.21
0.2974
0.9603
0.5844
0.5357
1.2190
0.8236
490.50
145.68

2.7433
2.0618
476.44
180.76
55.566
8.5822
81.788
14.350
0.0022

200.00
1.5791
1217.8
89.943
62.889
177.00
0.3601
0.9307
0.5983
0.5705
1.3278
0.9566
421.22
142.53

3.2403
2.7490
402.67
177.75
46.895
9.4010
72.515
17.541
0.0014

210.00
2.2073
1135.4
131.52
76.645
176.36
0.4246
0.8995
0.6189
0.6099
1.5091
1.1806
346.33
137.79

4.5076
4.6309
317.33
172.61
38.206
10.611
63.318
23.495
0.0007

220.00
3.0003
1030.8
194.82
92.252
173.29
0.4938
0.8621
0.6508
0.6568
19114
1.6856
264.69
131.07

16.717
23.743
195.48
160.26
27.250
13.460
59.228
45.040
0.0001

230.00
3.9918
862.72
317.54
112.76
163.59
0.5802
0.8012
0.7112
0.7232
4.3165
4.6205
171.03
121.80



Oxygen (R-732)

T 60.000 70.000 80.000 90.000 100.00 110.00 120.00 130.00 140.00 145.00 150.00
D 0.00073 0.0063 0.0301 0.0994 0.2540 0.5434 1.0223 1.7491 2.7878 3.4477 4.2186
o (lig.) 1282.0 1237.0 1190.5 1142.1 1090.9 1035.5 973.85 902.48 813.24 755.13 675.48
o (vap.) 0.0466 0.3457 1.4684 4.3871 10.425 21.281 39.308 68.369 116.76 154.91 214.94
h (liq.) —184.19 —167.42 —-150.61 —133.69 —11645 —98.641 —79.904 —59.662 —36.695 —23.219 —6.6708
h (vap.) 54.188 63.092 71.695 79.551 86.155 91.054 93.754 93.466 88.474 82.830 72.562
s (lig.) 2.2571 2.5155 2.7397 2.9383 3.1184 3.2855 3.4444 3.6001 3.7612 3.8498 3.9546
s (vap.) 6.2300 5.8086 5.5185 5.3076 5.1445 5.0100 4.8915 4.7780 4.6552 4.5812 4.4828
¢y (liq.) 1.0886 1.0167 0.9697 0.9296 0.8949 0.8658 0.8430 0.8293 0.8323 0.8497 0.9057
¢y (vap.)  0.6818 0.7052 0.6950 0.6758 0.6752 0.6988 0.7415 0.8002 0.8834 0.9461 1.0492
¢, (lig.) 1.6734 1.6781 1.6816 1.6989 1.7375 1.8068 1.9271 2.1534 2.6907 3.3684 5.4639
cp (vap.)  0.9475 0.9780 0.9743 0.9705 1.0064 1.1014 1.2763 1.6002 2.3696 3.3693. 6.6254
w (liq.) 1127.4 1066.3 987.43 905.90 822.19 734.77 641.52 539.50 423.10 355.20 273.80
w (vap.) 147.03 158.07 168.36 177.30 184.06 188.14 189.41 187.75 182.82 178.78 172.82
n (liq.) 648.81 395.81 268.59 196.85 152.43 122.72 101.36 84.640 69.800 62.062 52.886
n (vap.) 4.4773 5.2944 6.1260 6.9976 7.9429 9.0060 10.253 11.812 14.010 15.663 18.361
X (lig.) 194.02 180.49 166.32 151.89 137.31 122.49 107.41 92.121 77.064 70.180 64.843
X (vap.) 5.2712 6.2754 7.2936 8.3487 9.4862 10.795 12.450 14.807 18.760 22.190 28.695
o 0.0211 0.0184 0.0158 0.0132 0.0108 0.0084 0.0061 0.0040 0.0021 0.0013 0.0005

Parahydrogen (R-702p)

T 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.000 30.000 31.000 32.000
D 0.0079 0.0215 0.0481 0.0932 0.1631 0.2641 0.4025 0.5852 0.8199 0.9596 1.1168
o (liq.) 76.867 75.116 73.220 71.110 68.727 65.997 62.801 58.916 53.838 50.432 45.636
o (vap.) 0.1391 0.3380 0.6880 1.2429 2.0666 3.2435 4.9001 7.2581 10.814 13.459 17.503

h (liq.) —51.158  —36.595 —-20.869  —2.7300  18.209 42.329 70.294 103.39 144.50 170.45 204.57
h (vap.) 398.00 415.46 430.94 443.88 453.65 459.47 460.22 454.02 436.67 420.40 392.57
® s (liq) —29159 —-19553 —-1.0514 —0.1299 0.8193 1.8025 2.8347 3.9483 5.2213 5.9839 6.9625

continued



o TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line® (Continued)

H

s (vap.)
¢y (lig.)
¢y (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
N (vap.)
o]

p (liq.)
p (vap.)
h (lig.)
h (vap.)
s (lig.)
s (vap.)
¢y (lig.)
¢y (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)

29.167
5.2321
6.3096
7.5091
10.682
1367.4
307.13
25.310
0.6670
76.869
10.649
0.0030

200.00
0.0016
1790.9
0.2240
—69.244
49.696
—0.2952
0.2995
0.7851
0.5841
0.9301
0.6196
665.06

26.298
4.7725
6.3887
7.2829
10.998
1272.2
325.20
19.784
0.8106
90.003
12.604
0.0026

220.00
0.0071
1739.5
0.9323
—50.453
62.322
—0.2057
0.3069
0.7959
0.6273
0.9504
0.6639
602.10

24.049
5.1779
6.4780
8.2434
11.457
1186.0
340.35
16.182
0.9355
98.339
14.603
0.0023

240.00
0.0238
1684.9
2.8907
—31.173
75.566
—0.1219
0.3228
0.8142
0.6696
0.9779
0.7084
538.46

Parahydrogen (R-702p) (Continued)

22.201
5.6085
6.5793
9.4761
12.120
1111.1
352.69
13.607
1.0569
103.00
16.705
0.0020

Perfluorobutane (Decafluorobutane)

260.00
0.0635
1626.1
7.2680
—11.288
89.260
—0.0424
0.3443
0.8353
0.7112
1.0099
0.7545
476.02

20.612
5.9359
6.6980
10.875
13.090
1038.4
362.33
11.641
1.1819
104.89
18.981
0.0016

280.00
0.1432
1561.8
15.730
9.2884
103.22
0.0336
0.3691
0.8571
0.7528
1.0463
0.8038
414.72

19.183
6.1759
6.8430
12.572
14.569
961.13
369.39
10.057
1.3151
104.64
21.529
0.0013

300.00
0.2846
1490.0
30.613
30.651
117.22
0.1070
0.3955
0.8794
0.7946
1.0885
0.8595
353.81

17.832
6.3695
7.0278
14.894
16.982
874.28
373.96
8.7151
1.4619
102.56
24.507
0.0010

320.00
0.5131
1407.5
55.438
52.937
130.99
0.1784
0.4223
0.9022
0.8372
1.1414
0.9279
292.10

16.471
6.5651
7.2748
18.661
21.461
773.39
376.10
7.5160
1.6331
98.669
28.217
0.0007

340.00
0.8582
1308.1
96.371
76.393
144.10
0.2487
0.4478
0.9269
0.8820
1.2184
1.0271
227.66

14.960
6.8381
7.6290
26.893
32.280
652.36
375.77
6.3620
1.8628
92.543
33.404
0.0004

360.00
1.3548
1176.4
167.48
101.61
155.65
0.3196
0.4697
0.9572
0.9327
1.3753
1.2313
156.85

14.047
7.0562
7.8776
37.153
46.387
580.72
374.65
5.7518
2.0375
88.209
37.214
0.0003

370.00
1.6737
1084.1
226.83
115.40
160.06
0.3566
0.4773
0.9784
0.9638
1.5773
1.4992
117.66

12.838
7.4195
8.2177
70.380
92.311
496.76
372.98
5.0391
2.3378
82.155
43.179
0.0001

380.00
2.0512
943.56
331.05
131.16
161.84
0.3976
0.4783
1.0086
1.0069
2.3729
2.6364
76.452



w (vap.)

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (lig.)
s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)

p (lig.)
p (vap.)
h (liq.)
h (vap.)
s (lig.)

G8

85.873
0.0178

220.00
0.0010
1866.0
0.1538
—85.533
31.600
—0.3288
0.2036
0.7650
0.6404
0.9862
0.6696
690.92
81.346
0.0175

140.00
0.000028
1944.6
0.0045
77.035
213.34
0.3920

89.483
0.0155

240.00
0.0044
1804.0
0.6356
—65.657
45.274
—0.2424
0.2199
0.7831
0.6816
1.0029
0.7115
625.87
84.569
0.0154

160.00
0.00041
1876.2
0.0583
93.906
223.37
0.5046

92.376
0.0133

260.00
0.0147
1740.9
1.9857
—45.368
59.599
—0.1612
0.2425
0.8089
0.7215
1.0265
0.7528
560.34
87.264
0.0134

180.00
0.0030
1808.5
0.3796
111.07
234.24
0.6057

94.250
0.0111

Perfluoropentane (Dodecafluoropentane)

280.00
0.0397
1675.7
5.0554
—24.559
74.444
—0.0842
0.2694
0.8368
0.7605
1.0542
0.7944
496.98
89.195
0.0114

94.770
0.0090

300.00
0.0909
1607.4
11.073
—3.1602
89.660
—0.0105
0.2989
0.8647
0.7988
1.0850
0.8375
435.94
90.088
0.0095

93.564
0.0070

320.00
0.1832
1534.5
21.731
18.896
105.08
0.0605
0.3298
0.8921
0.8368
1.1198
0.8838
376.54
89.644
0.0076

90.163
0.0051

340.00
0.3348
1454.6
39.427
41.695
120.51
0.1293
0.3611
0.9191
0.8749
1.1606
0.9363
317.78
87.507
0.0059

Perfluoropropane (Octafluoropropane, R-218)

200.00
0.0138
1740.1
1.5753
128.75
245.79
0.6987

220.00
0.0455
1669.4
4.8108
147.08
257.81
0.7860

240.00
0.1193
1594.6
11.891
166.20
270.09
0.8690

260.00
0.2637
1513.5
25.406
186.24
282.37
0.9488

83.851
0.0033

360.00
0.5664
1364.2
67.915
65.373
135.67
0.1965
0.3918
0.9463
0.9136
1.2131
1.0023
258.33
83.193
0.0042

280.00
0.5142
1422.4
49.244
207.38
294.32
1.0264

73.248
0.0017

380.00
0.9016
1256.0
114.18
90.197
150.13
0.2629
0.4206
0.9756
0.9546
1.2944
1.1034
196.07
75.897
0.0026

300.00
0.9123
1314.7
90.244
229.92
305.43
1.1032

65.430
0.0009

400.00
1.3696
1110.4
195.87
116.87
162.82
0.3303
0.4451
1.0122
1.0021
1.4863
1.3447
127.37
63.940
0.0011

320.00
1.5087
1174.7
164.29
254.58
314.56
1.1811

54.827
0.0003

420.00
2.0154
790.04
446.07
150.50
166.32
0.4105
0.4482
1.0786
1.0877
7.2710
9.1686
47.747
42.446
0.0000

340.00
2.3722
918.89
339.94
284.94
317.26
1.2705
continued
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TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line® (Continued)

Perfluoropropane (Octafluoropropane, R-218) (Continued)

s (vap.) 1.3656 1.3138 1.2899 1.2839 1.2893 1.3018 1.3185 1.3369 1.3549 1.3686 1.3656
¢y (liq.) 0.5459 0.5699 0.5994 0.6314 0.6643 0.6977 0.7312 0.7653 0.8009 0.8411 0.9086
¢y (vap.) 0.4350 0.4807 0.5247 0.5682 0.6121 0.6571 0.7028 0.7494 0.7978 0.8517 0.9276
¢p (liq.) 0.8413 0.8487 0.8696 0.8989 0.9346 0.9764 1.0259 1.0885 1.1796 1.3643 2.9357
¢p (vap.) 0.4792 0.5250 0.5696 0.6150 0.6633 0.7165 0.7772 0.8517 0.9598 1.1880 2.8405
w (liq.) 1011.3 892.00 787.19 692.48 604.62 521.14 440.07 359.64 277.92 191.43 87.125
w (vap.) 82.581 87.853 92.650 96.748 99.796 101.38 101.04 98.200 92.062 81.308 63.602
o 0.0228 0.0201 0.0175 0.0150 0.0125 0.0101 0.0078 0.0056 0.0036 0.0018 0.0003

Propylene (Propene, R-1270)

T 160.00 180.00 200.00 220.00 240.00 260.00 280.00 300.00 320.00 340.00 360.00
p 0.0012 0.0070 0.0269 0.0785 0.1877 0.3874 0.7150 1.2118 1.9231 2.9015 4.2202
o (liq.) 685.79 663.00 639.79 615.80 590.59 563.65 534.23 501.22 462.62 413.59 329.22
p (vap.) 0.0386 0.1968 0.6889 1.8601 4.1883 8.2949 15.017 25.615 42.352 70.506 133.82
h (liq.) —46.027 —5.6479 35.723 78.278 122.36 168.41 216.94 268.70 324.84 388.00 471.23
h (vap.) 457.53 479.22 501.31 523.35 544.87 565.30 583.97 599.91 611.43 614.68 593.11
s (liq.) —0.1487 0.0889 0.3067 0.5090 0.7000 0.8828 1.0604 1.2356 1.4119 1.5964 1.8237
s (vap.) 2.9985 2.7827 2.6346 2.5321 2.4604 2.4093 2.3712 2.3396 2.3075 2.2631 2.1622
¢y (liq.) 1.2910 1.3130 1.3325 1.3589 1.3949 1.4404 1.4950 1.5584 1.6321 1.7217 1.8578
¢y (vap.) 0.8826 0.9368 0.9987 1.0695 1.1496 1.2393 1.3389 1.4493 1.5731 1.7160 1.8962
cp (liq.) 1.9939 2.0426 2.0941 2.1592 2.2433 2.3518 2.4940 2.6918 3.0073 3.7071 9.4092
¢p (vap.) 1.0812 1.1385 1.2081 1.2941 1.4014 1.5369 1.7144 1.9649 2.3754 3.2987 10.060
w (liq.) 1573.5 1450.8 1328.3 1203.5 1075.9 946.08 814.70 681.71 545.64 401.15 229.03
w (vap.) 196.55 206.90 215.70 222.51 226.88 228.30 226.21 219.92 208.55 190.85 164.25

o 0.0272 0.0239 0.0207 0.0176 0.0146 0.0118 0.0090 0.0064 0.0041 0.0020 0.0003



Propyne (Methyl Acetylene)

T 280.00 300.00 320.00 330.00 340.00 350.00 360.00 370.00 380.00 390.00 400.00
D 0.3335 0.6142 1.0494 1.3399 1.6878 2.0999 2.5834 3.1460 3.7958 4.5427 5.4015
o (lig.) 640.72 608.37 574.86 557.05 538.14 517.73 495.22 469.69 439.34 399.70 328.84
o (vap.) 6.2075 11.137 18.918 24310 31.044 39.505 50.262 64.241 83.182 111.33 170.13
h (liq.) 214.96 259.99 308.98 335.53 363.70 393.70 425.83 460.54 498.76 542.80 604.67
h (vap.) 702.61 723.17 741.02 748.48 754.64 759.16 761.59 761.21 756.71 744.86 709.59
s (lig.) 1.0537 1.2074 1.3631 1.4432 1.5254 1.6101 1.6979 1.7898 1.8878 1.9976 2.1481
s (vap.) 2.7953 2.7514 2.7132 2.6945 2.6752 2.6542 2.6305 2.6024 2.5666 2.5157 2.4104
¢y (liq.) 0.7129 0.9966 1.2488 1.3648 1.4750 1.5802 1.6812 1.7799 1.8800 1.9922 2.1785
¢y (vap.) 1.3614 1.4656 1.5825 1.6484 1.7212 1.8028 1.8957 2.0031 2.1290 2.2788 2.4494
¢, (lig.) 2.1869 2.3279 2.5802 2.7406 2.9274 3.1507 3.4333 3.8296 4.4951 6.1004 20.603
¢p (vap.) 1.6777 1.8543 2.0974 2.2624 2.4748 2.7607 3.1683 3.8008 4.9329 7.6836 30.312
w (liq.) 1574.9 1180.1 937.04 839.03 748.75 662.69 578.26 493.25 405.36 311.27 202.30
w (vap.) 246.19 245.98 242.39 239.13 234.76 229.17 222.15 213.39 202.31 187.67 166.14
o 0.0137 0.0109 0.0083 0.0071 0.0059 0.0047 0.0036 0.0026 0.0016 0.0008 0.0001

Sulfur Dioxide (R-764)

T 280.00 300.00 320.00 340.00 360.00 370.00 380.00 390.00 400.00 410.00 420.00
p 0.2337 0.4440 0.7897 1.3224 2.1006 2.6020 3.1898 3.8734 4.6632 5.5711 6.6128
p (liq.) 1441.8 1373.2 1307.1 1239.8 1167.2 1127.2 1083.4 1034.5 978.02 909.56 817.46
o (vap.) 6.8047 12.411 21.500 35.666 57.320 72.134 90.627 114.07 144.64 186.69 251.94
h (liq.) 200.59 208.65 223.87 244.45 269.61 283.90 299.45 316.45 335.26 356.62 382.49
h (vap.) 524.14 532.10 538.57 543.11 545.00 544.62 543.07 539.99 534.77 526.21 511.17
s (lig.) 1.0020 1.0291 1.0773 1.1384 1.2083 1.2463 1.2863 1.3288 1.3744 1.4248 1.4842
s (vap.) 2.1576 2.1073 2.0608 2.0167 1.9733 1.9509 1.9274 1.9020 1.8732 1.8384 1.7906
¢y (liq.) 0.5977 0.6615 0.7193 0.7753 0.8350 0.9090
¢y (vap.) 0.5446 0.5786 0.6167 0.6598 0.7100 0.7389 0.7715 0.8089 0.8533 0.9085 0.9825
K ¢ (liq.) 1.5129 1.6701 1.8742 2.1738 27111 4.1931

continued



@ TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line“ (Continued)
Sulfur Dioxide (R-764) (Continued)
¢p (vap.) 0.7273 0.7888 0.8690 0.9790 1.1435 1.2631 1.4278 1.6715 2.0740 2.8740 5.2428
w (liq.) 623.50 545.29 473.03 402.63 330.91 254.54
w (vap.) 207.80 210.92 212.27 211.55 208.35 205.67 202.14 197.66 192.05 185.08 176.18
o 0.0252 0.0214 0.0176 0.0138 0.0102 0.0085 0.0068 0.0052 0.0037 0.0023 0.0010
Sulfur Hexafluoride
T 230.00 240.00 250.00 260.00 270.00 280.00 290.00 295.00 300.00 305.00 310.00
p 0.3056 0.4445 0.6264 0.8590 1.1502 1.5088 1.9447 2.1952 2.4696 2.7698 3.0984
p (lig.) 1814.6 1762.4 1706.3 1646.1 1580.7 1508.0 1424.1 1375.7 1320.8 1256.3 1176.3
p (vap.) 25.484 36.561 51.245 70.523 95.801 129.25 174.58 203.77 239.35 284.28 344.86
h (liq.) 160.42 168.75 177.65 187.01 196.81 207.12 218.08 22391 230.05 236.63 243.90
h (vap.) 266.93 271.10 275.12 278.93 282.42 285.46 287.79 288.56 288.94 288.75 287.60
s (liq.) 0.8450 0.8801 0.9161 0.9522 0.9885 1.0251 1.0626 1.0819 1.1018 1.1228 1.1456
s (vap.) 1.3081 1.3066 1.3059 1.3057 1.3056 1.3049 1.3029 1.3010 1.2981 1.2937 1.2865
¢y (liq.) 0.4792 0.5205 0.5523 0.5787 0.6023 0.6250 0.6485 0.6611 0.6749 0.6908 0.7120
¢y (vap.) 0.4943 0.5206 0.5476 0.5756 0.6050 0.6362 0.6704 0.6893 0.7102 0.7341 0.7637
cp (lig.) 0.7963 0.8624 0.9126 0.9581 1.0085 1.0751 1.1778 1.2566 1.3718 1.5592 1.9345
¢p (vap.) 0.5784 0.6167 0.6609 0.7138 0.7808 0.8727 1.0161 1.1278 1.2952 1.5798 2.1856
w (lig.) 539.86 489.70 440.25 391.49 343.00 294.10 243.92 218.04 191.41 163.77 134.40
w (vap.) 112.77 112.19 110.92 108.86 105.91 101.93 96.707 93.543 89.944 85.845 81.148
o 0.0104 0.0089 0.0075 0.0061 0.0048 0.0036 0.0024 0.0019 0.0014 0.0009 0.0005
Toluene (Methylbenzene)
T 200.00 250.00 300.00 350.00 400.00 425.00 450.00 475.00 500.00 525.00 550.00
p 1.1 x 1076 0.00018 0.0042 0.0348 0.1576 0.2878 0.4875 0.7775 1.1804 1.7220 2.4326
p (lig.) 951.41 905.53 859.98 813.06 762.88 735.78 706.70 674.88 639.11 597.24 544.89
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o (vap.) 0.0001 0.0078 0.1546 1.1231 4.6109 8.1655 13.600 21.661 33.501 51.153 78.960

h (liq.) —312.30 —236.54 —154.93 —65.411 33.182 86.171 141.80 200.27 261.90 327.27 397.62
h (vap.) 164.08 205.88 257.25 317.25 383.99 419.15 454.98 491.00 526.46 560.19 589.90
s (liq.) —1.0886 —0.7508 —0.4537 —0.1781 0.0845 0.2125 0.3391 0.4646 0.5897 0.7156 0.8441
s (vap.) 1.2933 1.0188 0.9203 0.9152 0.9615 0.9960 1.0350 1.0766 1.1189 1.1592 1.1937
¢y (liq.) 1.0597 1.1466 1.2799 1.4315 1.5884 1.6664 1.7432 1.8189 1.8938 1.9690 2.0480
¢y (vap.) 0.6507 0.8447 1.0465 1.2501 1.4528 1.5530 1.6523 1.7508 1.8496 1.9504 2.0581
¢, (lig.) 1.4803 1.5643 1.7064 1.8771 2.0664 2.1682 2.2774 2.3987 2.5429 2.7358 3.0588
cp (vap.) 0.7409 0.9351 1.1387 1.3493 1.5705 1.6877 1.8130 1.9532 2.1236 2.3641 2.8127
w (liq.) 1746.0 1505.2 1287.9 1088.3 898.66 805.26 711.52 616.36 518.61 416.90 309.53
w (vap.) 143.36 157.98 170.97 181.24 186.72 186.88 184.82 180.07 171.98 159.69 141.94
o 0.0406 0.0340 0.0278 0.0219 0.0163 0.0136 0.0111 0.0087 0.0064 0.0043 0.0024

Water (R-718)

T 300.00 350.00 400.00 425.00 450.00 475.00 500.00 525.00 550.00 575.00 600.00
p 0.0035 0.0417 0.2458 0.5003 0.9322 1.6160 2.6392 4.1019 6.1172 8.8140 12.345
o (lig.) 996.51 973.70 937.49 915.27 890.34 862.49 831.31 796.13 755.81 708.30 649.41
o (vap.) 0.0256 0.2603 1.3694 2.6693 4.8120 8.1598 13.199 20.617 31.474 47.607 72.842
h (liq.) 112.56 321.79 532.95 640.17 749.16 860.62 975.43 1094.8 1220.5 1355.4 1505.4
h (vap.) 2549.9 2637.7 2715.7 2748.1 2774.4 2793.1 2802.5 2800.3 2783.3 2746.0 2677.8
s (liq.) 0.3931 1.0380 1.6013 1.8606 2.1087 2.3480 2.5810 2.8104 3.0394 3.2727 3.5190
s (vap.) 8.5174 7.6549 7.0581 6.8205 6.6092 6.4164 6.2351 6.0591 5.8809 5.6912 5.4731
¢, (liq.) 4.1305 3.8895 3.6324 3.5149 3.4077 3.3112 3.2255 3.1515 3.0913 3.0510 3.0475
¢y (vap.) 1.4422 1.5053 1.6435 1.7594 1.9074 2.0800 2.2714 2.4818 2.7181 2.9928 3.3271
cp (lig.) 4.1809 4.1946 4.2555 4.3120 4.3927 4.5055 4.6635 4.8901 5.2331 5.8055 6.9532
¢p (vap.) 1.9141 2.0033 2.2183 2.4105 2.6742 3.0181 3.4631 4.0622 4.9332 6.3560 9.1809
w (lig.) 1501.4 1554.8 1509.5 1461.8 1400.4 1326.1 1239.6 1140.5 1027.9 899.25 749.57
w (vap.) 427.89 459.58 484.67 493.86 500.41 504.09 504.55 501.23 493.31 479.46 457.33
n (lig.) 853.84 368.77 218.60 180.07 152.98 133.02 117.66 105.27 94.746 85.206 75.773

continued
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TABLE 2.7

Thermophysical Properties of Fluids along the Saturation Line® (Continued)

n (vap.)
N (lig.)
N (vap.)

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (liq.)

s (vap.)
¢y (lig.)
¢y (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)
n (liq.)
n (vap.)
X (lig.)
N (vap.)

9.9195
610.28
18.673
0.0717

180.00
0.2216
2837.0
20.542
5.1356
97.052
0.0295
0.5402
0.1613
0.1066
0.3442
0.1865
599.04
133.38
398.17
14.780
64.909
3.5348
0.0157

11.487
668.00
22.707
0.0632

190.00
0.3477
2766.5
31.174
8.6275
97.849
0.0482
0.5178
0.1567
0.1102
0.3498
0.1970
570.00
135.47
349.91
15.592
61.180
3.7825
0.0138

13.192
683.64
28.347
0.0536

200.00
0.5207
2692.6
45.483
12.193
98.437
0.0661
0.4974
0.1528
0.1143
0.3579
0.2104
540.11
137.12
308.34
16.460
57.451
4.0521
0.0121

14.056
681.72
31.873
0.0483

210.00
0.7499
2614.8
64.297
15.858
98.785
0.0836
0.4785
0.1493
0.1189
0.3691
0.2274
509.18
138.33
272.06
17.398
53.748
4.3506
0.0104

14.917
674.59
35.904
0.0429

Xenon

220.00
1.0446
2532.0
88.648
19.653
98.853
0.1007
0.4607
0.1463
0.1241
0.3842
0.2493
476.96
139.09
240.00
18.428
50.081
4.6887
0.0087

Water (R-718) (Continued)

15.779
662.21
40.471
0.0373

230.00
1.4146
2443.0
119.90
23.614
98.589
0.1177
0.4436
0.1438
0.1297
0.4049
0.2785
443.11
139.38
211.31
19.577
46.442
5.0845
0.0072

16.653
644.05
45.666
0.0315

240.00
1.8700
2346.0
159.97
27.795
97.919
0.1346
0.4268
0.1420
0.1361
0.4342
0.3193
407.13
139.19
185.32
20.889
42.812
5.5731
0.0057

17.564
619.08
51.756
0.0256

250.00
2.4215
2238.0
211.82
32.271
96.734
0.1519
0.4098
0.1411
0.1436
0.4780
0.3806
368.28
138.48
161.41
22.432
39.160
6.2321
0.0042

18.563
585.95
59.456
0.0197

260.00
3.0807
2114.4
280.44
37.165
94.846
0.1699
0.3918
0.1418
0.1527
0.5496
0.4834
325.30
137.18
138.96
24.333
35.494
7.2516
0.0029

19.749
544.05
70.685
0.0139

270.00
3.8611
1965.5
375.85
42,717
91.891
0.1894
0.3716
0.1454
0.1649
0.6897
0.6918
275.99
135.11
117.20
26.859
32.045
9.1505
0.0017

21.350
495.46
91.052
0.0084

280.00
4.7805
1764.6
525.13
49.568
86.911
0.2125
0.3459
0.1565
0.1838
1.1092
1.3341
215.47
131.75
94.450
30.802
29.622
13.683
0.0007



p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (liq.)

s (vap.)
¢y (lig.)
¢y (vap.)
¢p (liq.)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
N (vap.)

p (lig.)
p (vap.)
h (lig.)
h (vap.)

16

200.00
0.00043
1691.9
0.0358
138.94
353.48
0.7403
1.8130
0.5569
0.4135
0.8101
0.4748
1099.1
117.77
1752.4

118.01

0.0311

260.00
0.0076
1652.1
0.6670
188.29
350.90

225.00
0.0030
1639.2
0.2212
159.42
365.46
0.8368
1.7525
0.5687
0.4469
0.8273
0.5096
996.42
124.15
1028.3
7.6997
109.32
5.5342
0.0275

280.00
0.0208
1605.8
1.6931
206.16
362.90

250.00
0.0134
1585.4
0.8909
180.30
377.93
0.9247
1.7153
0.5790
0.4790
0.8427
0.5441
900.09
129.86
702.05
8.5563
101.20
6.4895
0.0241

R-113 (1,1,2-Trichloro-1,2,2-trifluoroethane, CFC-113)

300.00
0.0482
1558.6
3.7087
224.37
375.16

R-11 (Trichlorofluoromethane, CFC-11)

275.00
0.0435
1529.9
2.6678
201.59
390.72
1.0058
1.6936
0.5886
0.5090
0.8605
0.5781
810.44
134.61
516.70
9.4064
93.558
7.4898
0.0207

320.00
0.0989
1510.0
7.2565
242.98
387.54

300.00
0.1131
1471.9
6.4840
223.40
403.59
1.0815
1.6822
0.5984
0.5367
0.8826
0.6123
725.77
138.07
396.78
10.244
86.285
8.5279
0.0175

340.00
0.1840
1459.3
13.018
262.01
399.91

325.00
0.2492
1410.2
13.590
245.84
416.24
1.1530
1.6774
0.6085
0.5624
0.9105
0.6489
644.16
139.87
312.19
11.077
79.291
9.6226
0.0143

360.00
0.3166
1405.9
21.851
281.52
412.16

350.00
0.4847
1343.5
25.648
269.08
428.30
1.2214
1.6763
0.6191
0.5871
0.9461
0.6919
563.73
139.68
248.58
11.931
72.483
10.801
0.0113

380.00
0.5113
1348.5
34.881
301.58
424.11

375.00
0.8570
1269.9
45.010
293.34
439.34
1.2876
1.6769
0.6307
0.6119
0.9935
0.7488
482.57
137.09
198.16
12.857
65.765
12.138
0.0085

400.00
0.7840
1285.7
53.693
322.27
435.57

400.00
1.4074
1185.7
75.450
318.92
448.79
1.3524
1.6771
0.6439
0.6383
1.0636
0.8358
398.34
131.61
156.21
13.960
59.050
13.754
0.0058

420.00
1.1522
1215.0
80.766
343.77
446.26

425.00
2.1811
1084.1
124.37
346.46
455.64
1.4175
1.6744
0.6611
0.6685
1.1918
1.0024
307.60
122.37
119.39
15.481
52.286
16.074
0.0034

440.00
1.6354
1131.6
120.59
366.38
455.69

450.00
3.2329
943.21
212.96
371.77
457.26
1.4867
1.6633
0.6891
0.7082
1.5893
1.5284
203.77
107.74
83.759
18.227
46.661
20.850
0.0013

460.00
2.2568
1023.5
183.51
390.82
462.82
continued
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N TABLE 2.7

Thermophysical Properties of Fluids along the Saturation Line’ (Continued)

s (liq.)

s (vap.)
¢y (lig.)
¢y (vap.)
cp (lig.)
¢p (vap.)
w (lig.)
w (vap.)
n (liq.)
n (vap.)
. (lig.)
A (vap.)
o

T

14

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (liq.)
s (vap.)
¢y (lig.)
¢y (vap.)
¢p (liq.)

0.9561
1.5815
0.6368
0.5605
0.8855
0.6063
828.94
111.03
1217.5
8.3780
76.719
6.8569
0.0216

280.00
0.1145
1508.8
8.7845
206.60
341.38
1.0238
1.5052
0.6839
0.6250
0.9661

1.0223
1.5821
0.6535
0.5867
0.9014
0.6342
759.92
114.38
859.37
9.0218
72.151
7.7005
0.0193

300.00
0.2275
1449.0
16.788
226.22
353.56
1.0912
1.5157
0.7019
0.6523
0.9945

R-113 (1,1,2-Trichloro-1,2,2-trifluoroethane, CFC-113) (Continued)

1.0850 1.1449 1.2025 1.2580 1.3118 1.3643
1.5876 1.5967 1.6081 1.6208 1.6342 1.6475
0.6712 0.6885 0.7053 0.7214 0.7372 0.7531
0.6118 0.6360 0.6598 0.6833 0.7069 0.7309
0.9196 0.9396 0.9617 0.9868 1.0165 1.0540
0.6619 0.6904 0.7206 0.7541 0.7929 0.8413
692.84 628.04 565.13 503.50 442.41 380.97
117.08 118.97 119.89 119.66 118.07 114.87
645.95 504.29 403.15 326.93 266.92 217.88
9.6611 10.288 10.918 11.561 12.237 12.986
67.853 63.782 59.900 56.168 52.545 48.991
8.5700 9.4607 10.385 11.348 12.370 13.485
0.0170 0.0148 0.0126 0.0105 0.0085 0.0066

R-114 (1,2-Dichloro-1,1,2,2-tetrafluoroethane, CFC-114)

320.00 330.00 340.00 350.00 360.00 370.00
0.4102 0.5350 0.6862 0.8670 1.0811 1.3323
1384.6 1350.1 1313.5 1274.5 1232.4 1186.1
29.651 38.550 49.568 63.201 80.128 101.34
246.49 256.91 267.54 278.42 289.59 301.10
365.44 371.18 376.73 382.04 387.03 391.61
1.1562 1.1880 1.2194 1.2505 1.2815 1.3125
1.5279 1.5343 1.5405 1.5466 1.5522 1.5571
0.7215 0.7317 0.7421 0.7527 0.7637 0.7753
0.6804 0.6950 0.7102 0.7262 0.7431 0.7615
1.0300 1.0511 1.0754 1.1043 1.1400 1.1867

1.4160
1.6600
0.7700
0.7560
1.1063
0.9087
317.99
109.72
176.32
13.879
45.465
14.754
0.0048

380.00
1.6246
1134.0
128.36
313.05
395.62
1.3436
1.5609
0.7878
0.7818
1.2530

1.4676
1.6706
0.7895
0.7834
1.1925
1.0201
251.65
102.05
139.65
15.069
41.934
16.351
0.0031

390.00
1.9630
1073.5
163.86
325.60
398.84
1.3754
1.5632
0.8018
0.8047
1.3589

1.5207
1.6772
0.8159
0.8165
1.3875
1.2754
179.46
90.902
105.13
16.948
38.567
18.804
0.0016

400.00
2.3530
998.95
213.09
339.09
400.80
1.4086
1.5629
0.8189
0.8317
1.5650



¢p (vap.)
w (liq.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
X (vap.)
o]

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (lig.)
s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
X (vap.)

€6

0.6833
617.82
116.64
343.29
10.092
64.871
9.2879
0.0129

180.00
0.0038
1744.4
0.3895
115.98
259.35
0.6278
1.4244
0.5034
0.4522
0.8125
0.5072
871.69
103.84
883.93
7.4741
91.430
5.1681
0.0193

0.7193
545.01
117.29
272.64
10.793
60.564
10.359
0.0107

200.00
0.0162
1677.4
1.5196
132.53
269.56
0.7150
1.4002
0.5368
0.4958
0.8442
0.5529
771.03
108.30
580.60
8.3095
83.457
6.2202
0.0166

0.7624
472.58
116.25
218.66
11.506
56.352
11.507
0.0085

220.00
0.0512
1608.8
4.4456
149.80
280.23
0.7972
1.3900
0.5739
0.5384
0.8824
0.6000
674.85
111.73
414.58
9.1393
76.095
7.3494
0.0140

0.7883
436.26
115.00
195.98
11.878
54.262
12.125
0.0074

0.8189
399.72
113.19
175.46
12.268
52.173
12.780
0.0064

0.8562
362.81
110.75
156.71
12.689
50.077
13.475
0.0054

0.9035
325.38
107.63
139.36
13.158
47.963
14.238
0.0045

R-115 (Chloropentafluoroethane, CFC-115)

240.00
0.1303
1537.2
10.647
167.90
291.10
0.8756
1.3890
0.6103
0.5806
0.9253
0.6506
584.54
113.72
309.63
9.9536
69.224
8.5499
0.0115

260.00
0.2820
1460.6
22.183
186.92
301.89
0.9513
1.3935
0.6454
0.6230
0.9746
0.7081
498.43
113.87
236.71
10.782
62.726
9.8470
0.0090

280.00
0.5412
1376.4
42.028
207.02
312.24
1.0251
1.4009
0.6797
0.6660
1.0351
0.7789
414.26
111.69
182.31
11.658
56.481
11.289
0.0067

300.00
0.9480
1279.5
75.066
228.47
321.65
1.0980
1.4086
0.7151
0.7111
1.1198
0.8799
329.28
106.57
139.13
12.674
50.364
12.986
0.0046

0.9673
287.21
103.71
123.11
13.704
48.825
15.108
0.0035

310.00
1.2209
1223.5
99.259
239.86
325.74
1.1346
1.4117
0.7343
0.7352
1.1821
0.9559
285.28
102.61
120.23
13.297
47.312
14.022
0.0035

1.0600
248.03
98.885
107.63
14.376
43.667
16.157
0.0027

320.00
1.5489
1159.4
131.38
251.85
329.18
1.1718
1.4135
0.7558
0.7613
1.2746
1.0710
239.30
97.474
102.44
14.067
44.256
15.315
0.0026

1.2106
207.45
92.999
92.535
15.264
41.544
17.541
0.0018

330.00
1.9398
1082.0
175.92
264.73
331.56
1.2104
1.4129
0.7820
0.7912
1.4387
1.2797
190.47
90.861
85.077
15.112
41.293
17.123
0.0017

1.5052
164.86
85.834
77.218
16.560
39.809
19.640
0.0011

340.00
2.4037
978.74
244.04
279.15
331.93
1.2521
1.4073
0.8174
0.8290
1.8463
1.8218
138.88
82.340
66.950
16.776
39.563
20.245
0.0008
continued



©
& TABLE 2.7

Thermophysical Properties of Fluids along the Saturation Line’ (Continued)

p (liq.)
p (vap.)
h (liq.)
h (vap.)
s (liq.)

s (vap.)
¢y (lig.)
¢y (vap.)
cp (lig.)
¢p (vap.)
w (lig.)
w (vap.)
n (liq.)
n (vap.)
. (lig.)
A (vap.)

p (lig.)
p (vap.)
h (lig.)

180.00
0.0419
1669.5
3.9752
100.42
222.95
0.5658
1.2465
0.6433
0.5151
0.9172
0.5872
542.56
107.94
412.30
8.4436
75.336
6.5676
0.0130

125.00
1.6 x 10°°
1805.2
0.0002
73.862

200.00
0.1317
1582.0
11.637
118.94
232.88
0.6630
1.2328
0.6589
0.5648
0.9427
0.6513
509.57
110.51
288.78
9.4174
67.094
7.8096
0.0103

150.00
0.000092
1739.6
0.0089
94.438

210.00
0.2128
1537.3
18.328
128.53
237.76
0.7096
1.2297
0.6701
0.5917
0.9720
0.6890
479.05
110.91
245.42
9.8763
63.241
8.4927
0.0090

175.00
0.0014
1674.3
0.1174
114.83

R-116 (Hexafluoroethane, FC-116)

220.00
0.3271
1490.1
27.699
138.45
242.54
0.7554
1.2285
0.6828
0.6194
1.0088
0.7309
44211
110.58
209.55
10.330
59.495
9.2285
0.0077

230.00
0.4824
1439.1
40.517
148.77
247.17
0.8008
1.2286
0.6965
0.6474
1.0535
0.7779
400.49
109.36
179.11
10.784
55.816
10.038
0.0064

240.00
0.6866
1382.8
57.843
159.58
251.58
0.8461
1.2295
0.7107
0.6754
1.1083
0.8328
356.12
107.03
152.66
11.251
52.169
10.939
0.0052

250.00
0.9483
1319.4
81.290
170.94
255.64
0.8917
1.2305
0.7247
0.7029
1.1760
0.9010
311.45
103.37
129.14
11.759
48.525
11.938
0.0040

R-12 (Dichlorodifluoromethane, CFC-12)

200.00
0.0100
1608.0
0.7307
135.52

225.00
0.0430
1539.6
2.8376
156.77

250.00
0.1331
1467.5
8.1095
178.78

275.00
0.3273
1390.1
18.930
201.74

260.00
1.2771
1247.0
113.61
182.96
259.13
0.9378
1.2308
0.7377
0.7297
1.2613
0.9954
268.70
98.137
107.81
12.372
44.893
13.109
0.0029

300.00
0.6839
1304.3
38.700
225.90

270.00
1.6854
1163.4
160.16
195.76
261.65
0.9849
1.2289
0.7496
0.7553
1.3855
1.1497
226.45
91.227
88.060
13.256
41.403
14.691
0.0018

325.00
1.2694
1205.0
73.003
251.69

280.00
2.1908
1060.3
233.17
209.77
262.42
1.0341
1.2222
0.7642
0.7782
1.6746
1.4589
176.28
82.842
68.961
14.894
38.798
17.614
0.0009

350.00
2.1593
1080.3
133.91
280.08

290.00
2.8203
881.57
380.08
227.86
258.44
1.0953
1.2007
0.7935
0.7928
4.1002
3.6372
107.44
72.721
46.463
19.069
53.980
27.103
0.0001

375.00
3.4527
883.06
269.11
314.63



h (vap.)
s (lig.)

s (vap.)
cy (lig.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
X (vap.)
o]

p (liq.)
p (vap.)
h (liq.)
h (vap.)
s (lig.)
s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)

G6

200.00
0.00025
1694.4
0.0230
130.25
339.57
0.7034
1.7500
0.6361
0.4770
0.9253
0.5315
1104.3

225.00
0.0020
1638.4
0.1660
153.55
353.25
0.8132
1.7007
0.6473
0.5168
0.9408
0.5720
998.61

306.91
0.6164
1.7140
0.5275
0.3827
0.8194
0.4250
1026.5
119.04
965.60
6.8573
115.83
4.3416
0.0262

R-123 (2,2-Dichloro-1,1, 1-trifluoroethane, HCFC-123)

250.00
0.0101
1581.1
0.7469
177.37
367.66
0.9135
1.6747
0.6649
0.5553
0.9648
0.6123
894.26

318.39
0.7269
1.6412
0.5370
0.4208
0.8371
0.4920
915.19
125.92
612.98
7.8481
104.39
5.3635
0.0223

275.00
0.0355
1521.6
2.4243
201.83
382.55
1.0067
1.6638
0.6855
0.5932
0.9923
0.6540
793.34

330.28
0.8269
1.5980
0.5515
0.4578
0.8631
0.5334
808.46
131.52
431.42
8.8378
93.947
6.4653
0.0185

300.00
0.0978
1459.1
6.2595
227.03
397.63
1.0942
1.6629
0.7070
0.6309
1.0219
0.6988
696.37

342.18
0.9193
1.5729
0.5683
0.4944
0.8961
0.5794
705.34
135.31
320.10
9.8222
84.277
7.6492
0.0149

325.00
0.2248
1392.7
13.752
253.01
412.60
1.1771
1.6681
0.7289
0.6687
1.0545
0.7488
602.81

353.63
1.0063
1.5586
0.5862
0.5317
0.9376
0.6344
604.49
136.70
243.90
10.816
75.197
8.9383
0.0115

350.00
0.4515
1320.8
26.977
279.89
427.11
1.2563
1.6769
0.7514
0.7068
1.0939
0.8078
511.47

364.09
1.0894
1.5501
0.6050
0.5706
0.9934
0.7072
504.07
135.10
187.31
11.866
66.250
10411
0.0083

375.00
0.8185
1240.6
49.027
307.88
440.74
1.3327
1.6870
0.7749
0.7458
1.1481
0.8846
420.73

372.80
1.1705
1.5431
0.6258
0.6126
1.0802
0.8204
400.97
129.75
142.19
13.091
58.063
12.293
0.0053

400.00
1.3722
1146.8
85.321
337.44
452.74
1.4078
1.6960
0.8011
0.7872
1.2375
1.0044
328.57

378.21
1.2522
1.5326
0.6544
0.6620
1.2618
1.0658
289.31
119.47
103.30
14.819
49.727
15.258
0.0027

425.00
2.1672
1026.4
148.41
369.62
461.52
1.4840
1.7002
0.8335
0.8348
1.4385
1.2728
231.85

374.56
1.3438
1.5036
0.7208
0.7423
2.1896
2.5120
158.26
102.14
63.988
18.726
46.867
23.499
0.0006

450.00
3.2806
819.52
296.39
409.08
460.11
1.5713
1.6847
0.8881
0.9048
2.9067
3.3587
119.97
continued



«© TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line® (Continued)

»

w (vap.)
n (lig.)
n (vap.)
X (lig.)
N (vap.)
o

p (liq.)
p (vap.)
h (lig.)
h (vap.)
s (liq.)
s (vap.)
¢y (lig.)
¢y (vap.)
¢, (lig.)
¢p (vap.)
w (lig.)
w (vap.)
n (liq.)
n (vap.)
X (lig.)
N (vap.)

110.02
1795.0
6.9646
105.59
3.6080
0.0275

116.07
1124.7
7.9822
98.545
5.0248
0.0242

150.00
0.000011
1774.6
0.0012
77.013
290.42
0.4062
1.8289
0.6426
0.4326
0.9363
0.4936
1157.4
102.10

121.40
768.49
8.9646
90.832
6.4350
0.0211

R-124 (1-Chloro-1,2,2,2-tetrafluoroethane, HCFC-124)

175.00
0.00029
1709.8
0.0273
100.64
303.28
0.5518
1.7097
0.6534
0.4759
0.9550
0.5371
1043.8
109.63

6.7326

4.9531
0.0258

125.72
551.59
9.9065
83.129
7.8477
0.0180

200.00
0.0030
1644.3
0.2443
124.81
317.07
0.6809
1.6422
0.6706
0.5185
0.9798
0.5807
932.36
116.42
1045.8
7.7137
102.64
6.1026
0.0224

128.63
408.74
10.804
75.902
9.2909
0.0150

225.00
0.0166
1576.9
1.2235
149.68
331.55
0.7979
1.6063
0.6915
0.5620
1.0096
0.6273
824.09
122.21
634.47
8.6921
92.804
7.3533
0.0190

129.74
309.64
11.664
69.320
10.815
0.0121

250.00
0.0619
1506.4
4.1891
175.36
346.36
0.9060
1.5900
0.7147
0.6082
1.0445
0.6807
719.17
126.48
432.13
9.6539
83.792
8.7039
0.0157

128.62
238.12
12.515
63.340
12.497
0.0093

275.00
0.1747
1431.2
11.131
202.01
361.10
1.0073
1.5858
0.7396
0.6582
1.0863
0.7452
617.30
128.63
311.61
10.604
75.439
10.165
0.0125

R-123 (2,2-Dichloro-1,1, 1-trifluoroethane, HCFC-123) (Continued)

124.74
184.60
13.445
57.789
14.451
0.0067

300.00
0.4050
1349.0
24.975
229.85
375.32
1.1036
1.5885
0.7660
0.7120
1.1391
0.8258
517.54
128.00
230.86
11.575
67.582
11.778
0.0094

117.30
142.78
14.683
52.407
16.867
0.0043

325.00
0.8136
1255.7
50.266
259.21
388.44
1.1965
1.5942
0.7948
0.7693
1.2133
0.9360
417.74
123.82
171.82
12.648
60.047
13.665
0.0065

104.85
107.74
16.913
46.810
20.168
0.0021

350.00
1.4717
1143.4
95.626
290.76
399.39
1.2884
1.5988
0.8293
0.8326
1.3428
1.1240
313.56
114.94
125.13
14.035
52.635
16.178
0.0039

84.236
71.220
23.904
40.476
26.721
0.0003

375.00
2.4663
987.37
185.30
326.38
405.30
1.3840
1.5945
0.8796
0.9134
1.7183
1.6905
198.17
99.240
84.022
16.477
45.323
21.002
0.0015



p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (liq.)

s (vap.)
¢ (lig.)
¢y (vap.)
cp (liq)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
N (vap.)

p (liq.)
p (vap.)
h (liq.)
h (vap.)

16

180.00
0.0057
1666.4
0.4576
95.143
281.44
0.5353
1.5703
0.6746
0.5142
1.0459
0.5857
909.89
118.55
1003.1
7.7601
116.42
6.1300
0.0206

100.00
2.7 x 1076
1838.1
0.0003
39.457
229.98

200.00
0.0247
1600.2
1.8130
116.24
292.86
0.6464
1.5295
0.6963
0.5594
1.0658
0.6358
800.94
123.47
635.17
8.6274
105.35
7.2865
0.0174

120.00
0.00013
1773.3
0.0139
55.920
237.21

220.00
0.0787
1531.5
5.3578
137.89
304.36
0.7494
1.5061
0.7199
0.6103
1.0994
0.6974
701.53
126.98
442.77
9.4598
95.117
8.5383
0.0144

140.00
0.0019
1706.8
0.1691
72.678
245.04

R-125 (Pentafluoroethane, HFC-125)

240.00
0.2003
1458.3
12.946
160.34
315.62
0.8467
1.4937
0.7447
0.6660
1.1445
0.7725
606.80
128.59
324.15
10.303
85.528
9.9061
0.0114

260.00
0.4327
1378.2
27.244
183.84
326.28
0.9400
1.4879
0.7710
0.7236
1.2034
0.8635
513.52
127.77
242.88
11.180
76.421
11.438
0.0087

270.00
0.6064
1334.4
38.100
196.07
331.25
0.9857
1.4864
0.7850
0.7528
1.2405
0.9183
466.60
126.27
210.77
11.652
71.996
12.302
0.0073

280.00
0.8279
1287.4
52.361
208.69
335.86
1.0310
1.4852
0.7998
0.7824
1.2855
0.9839
419.00
123.91
182.60
12.167
67.625
13.252
0.0060

R-13 (Chlorotrifluoromethane, CFC-13)

160.00
0.0125
1637.8
0.9949
89.538
253.25

180.00
0.0518
1565.5
3.7116
106.70
261.55

200.00
0.1550
1488.9
10.304
124.44
269.66

220.00
0.3714
1406.1
23.541
143.02
277.27

290.00
1.1049
1236.0
71.093
221.77
339.99
1.0761
1.4838
0.8160
0.8131
1.3433
1.0676
370.32
120.57
157.44
12.753
63.281
14.341
0.0048

240.00
0.7602
1313.8
47.397
162.81
283.96

300.00
1.4459
1178.6
95.933
235.43
343.45
1.1214
1.4815
0.8343
0.8457
1.4234
1.1845
320.00
116.10
134.54
13.458
58.935
15.665
0.0036

260.00
1.3878
1205.2
88.789
184.36
288.96

310.00
1.8604
1112.4
129.69
249.87
345.90
1.1676
1.4774
0.8564
0.8820
1.5481
1.3706
267.33
110.29
113.17
14.372
54.566
17.427
0.0025

280.00
2.3316
1063.8
164.64
208.88
290.35

320.00
2.3597
1031.7
178.02
265.50
346.72
1.2157
1.4696
0.8858
0.9255
1.7857
1.7372
211.15
102.86
92.452
15.691
50.240
20.135
0.0015

300.00
3.7065
777.60
388.24
244.14
276.51
continued



©
@ TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line* (Continued)

R-13 (Chlorotrifluoromethane, CFC-13) (Continued)

s (lig.) 0.1008 0.2508 0.3799 0.4924 0.5934 0.6864 0.7742 0.8590 0.9432 1.0309 1.1470
s (vap.) 2.0060 1.7615 1.6111 1.5156 1.4536 1.4125 1.3844 1.3638 1.3455 1.3218 1.2549
¢y (liq.) 0.5665 0.5346 0.5103 0.5056 0.5167 0.5376 0.5637 0.5919 0.6210 0.6525 0.7094

¢y (vap.) 0.2649 0.3004 0.3359 0.3731 0.4133 0.4561 0.5005 0.5458 0.5923 0.6439 0.7231
¢p (liq.) 0.7968 0.8358 0.8393 0.8481 0.8691 0.9031 0.9526 1.0262 1.1497 1.4407 7.1130
¢p (vap.) 0.3445 0.3802 0.4169 0.4577 0.5058 0.5629 0.6319 0.7219 0.8650 1.2201 8.7804

w (liq.) 1032.1 1072.1 992.15 879.99 763.71 653.03 549.57 451.26 354.31 252.29 122.38
w (vap.) 101.74 109.91 117.29 123.73 128.85 132.18 133.16 131.16 125.37 114.75 98.019
n (liq.) — — 1074.8 619.60 413.61 295.83 218.78 163.36 120.15 83.240 42.014
n (vap.) — 5.5560 6.4782 7.4051 8.3561 9.2869 10.222 11.203 12.357 14.113 20.216
X (lig.) — — 108.32 99.067 90.580 82.644 75.047 67.555 59.925 52.204 33.975
X (vap.) — 2.9848 3.7768 4.6577 5.6304 6.7144 7.9588 9.5027 11.666 15.535 36.022
o 0.0302 0.0265 0.0228 0.0193 0.0159 0.0126 0.0095 0.0067 0.0041 0.0018 0.0001

R-134a (1,1,1,2-Tetrafluoroethane, HFC-134a)

T 180.00 200.00 220.00 240.00 260.00 280.00 300.00 320.00 340.00 360.00 370.00
D 0.0011 0.0063 0.0244 0.0725 0.1768 0.3727 0.7028 1.2166 1.9715 3.0405 3.7278
p (liq.) 1564.2 1510.5 1455.2 1397.7 1337.1 1271.8 1199.7 1116.8 1015.0 870.11 740.32
o (vap.) 0.0770 0.3898 1.3850 3.8367 8.9052 18.228 34.193 60.715 105.73 193.58 293.90
h (liq.) 83.483 107.39 131.78 156.79 182.56 209.27 237.19 266.77 298.88 336.06 360.64
h (vap.) 340.88 353.06 365.65 378.34 390.76 402.55 413.27 422.25 428.17 427.08 417.68
s (lig.) 0.4814 0.6073 0.7235 0.8321 0.9349 1.0333 1.1287 1.2226 1.3178 1.4207 1.4857
s (vap.) 1.9114 1.8356 1.7865 1.7552 1.7357 1.7236 1.7156 1.7085 1.6981 1.6735 1.6398
¢y (liq.) 0.7912 0.8016 0.8193 0.8403 0.8631 0.8877 0.9144 0.9443 0.9802 1.0390 1.1146

¢y (vap.) 0.5267 0.5732 0.6204 0.6700 0.7234 0.7810 0.8426 0.9093 0.9852 1.0854 1.1690
¢p (liq.) 1.1871 1.2058 1.2332 1.2669 1.3082 1.3606 1.4324 1.5426 1.7507 2.4368 5.1048



¢p (vap.)
w (liq.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
X (vap.)
o]

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (lig.)
s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
X (vap.)

66

0.6097
1068.3
130.05
1478.6
6.8981
139.12
3.8934
0.0263

120.00
0.0113
1731.1
1.0025
188.05
334.63
0.2722
1.4937
0.4752
0.3228
0.8547
0.4193
849.39
120.58
580.41
6.9030
118.21
4.1155
0.0170

0.6586
967.61
135.98
866.56
7.7531
127.74
5.4978
0.0230

130.00
0.0304
1681.6
2.5092
196.60
338.60
0.3406
1.4328
0.4596
0.3363
0.8604
0.4354
800.48
124.35
438.50
7.4762
109.59
4.6071
0.0150

0.7109
869.85
141.01
585.96
8.5863
117.17
7.1080
0.0197

140.00
0.0697
1630.3
5.4125
205.35
342.46
0.4052
1.3846
0.4713
0.3514
0.8883
0.4554
736.34
127.42
343.99
8.0467
101.36
5.1432
0.0131

0.7705
775.00
144.73
425.63
9.3983
107.27
8.7325
0.0165

0.8418
682.14
146.75
321.76
10.199
97.920
10.389
0.0135

0.9296
590.17
146.63
248.50
11.014
88.990
12.118
0.0106

1.0438
497.89
143.88
193.32
11.892
80.335
14.009
0.0078

R-14 (Tetrafluoromethane, FC-14)

150.00
0.1412
1576.9
10.433
214.43
346.14
0.4675
1.3456
0.4890
0.3685
0.9224
0.4807
669.70
129.66
276.40
8.6194
93.465
5.7360
0.0113

160.00
0.2593
1520.9
18.464
223.87
349.52
0.5279
1.3132
0.5060
0.3878
0.9598
0.5132
604.18
130.96
225.43
9.2032
85.871
6.3544
0.0095

170.00
0.4405
1461.3
30.643
233.71
352.48
0.5868
1.2855
0.5212
0.4098
1.0028
0.5561
539.97
131.18
185.34
9.7925
78.518
7.0923
0.0077

180.00
0.7030
1396.8
48.512
244.03
354.86
0.6448
1.2605
0.5352
0.4349
1.0572
0.6155
476.19
130.22
152.62
10.420
71.345
7.9818
0.0061

1.2109
404.00
137.86
149.30
12.927
71.774
16.294
0.0053

190.00
1.0663
1325.4
74.366
254.95
356.44
0.7023
1.2365
0.5494
0.4641
1.1335
0.7034
411.57
127.94
124.97
11.125
64.302
9.1167
0.0045

1.5238
306.37
127.57
111.95
14.353
63.074
19.687
0.0030

200.00
1.5523
1243.2
112.10
266.70
356.86
0.7607
1.2115
0.5656
0.4989
1.2558
0.8505
344.50
124.21
100.76
11.987
57.364
10.713
0.0031

2.6064
196.05
111.25
76.801
17.043
54.117
27.401
0.0010

210.00
2.1864
1142.5
169.77
279.76
355.39
0.8217
1.1819
0.5870
0.5428
1.5008
1.1593
272.56
118.82
78.511
13.178
50.825
13.357
0.0017

6.8622
127.23
99.370
55.825
20.660
52.102
40.656
0.0002

220.00
3.0022
998.53
272.45
295.60
349.79
0.8918
1.1381
0.6217
0.6059
2.3618
2.3090
190.63
111.42
55.883
15.320
50.943
19.379
0.0006
continued



S TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line® (Continued)

R-141b (1,1-Dichloro-1-fluoroethane, HCFC-141b)

T 260.00 280.00 300.00 320.00 340.00 360.00 380.00 400.00 420.00 440.00 460.00
p 0.0149 0.0381 0.0841 0.1657 0.2982 0.4990 0.7872 1.1835 1.7104 2.3943 3.2695
p (liq.) 1305.2 1268.4 1230.4 1190.8 1149.0 1104.5 1056.0 1002.3 940.91 866.87 766.81
o (vap.) 0.8134 1.9487 4.0769 7.6901 13.399 21.977 34.459 52.370 78.256 117.23 183.52
h (liq.) 185.26 207.74 230.64 254.08 278.17 303.04 328.85 355.79 384.22 414.78 449.24
h (vap.) 428.86 442.35 456.02 469.74 483.35 496.67 509.47 521.42 531.99 540.17 543.32
s (lig.) 0.9447 1.0280 1.1068 1.1822 1.2549 1.3255 1.3945 1.4626 1.5306 1.5999 1.6741
s (vap.) 1.8816 1.8658 1.8581 1.8562 1.8584 1.8633 1.8698 1.8767 1.8824 1.8849 1.8786
¢y (liq.) 0.7839 0.7953 0.8096 0.8258 0.8432 0.8615 0.8805 0.9003 0.9210 0.9439 0.9729
¢y (vap.) 0.6309 0.6672 0.7037 0.7403 0.7766 0.8124 0.8477 0.8829 0.9184 0.9559 0.9991
¢p (liq.) 1.1154 1.1327 1.1562 1.1853 1.2205 1.2629 1.3157 1.3854 1.4873 1.6681 2.1653
¢p (vap.) 0.7065 0.7468 0.7895 0.8350 0.8843 0.9390 1.0028 1.0836 1.2005 1.4126 2.0258
w (liq.) 965.48 888.40 813.58 740.44 668.42 596.95 525.39 453.00 378.62 300.17 212.70
w (vap.) 142.44 146.37 149.41 151.38 152.08 151.30 148.75 144.11 136.84 126.18 110.96
n (liq.) 660.72 505.40 400.16 323.93 265.87 219.82 182.01 149.94 121.83 96.148 70.787
n (vap.) 8.0066 8.6210 9.2309 9.8432 10.463 11.103 11.785 12.546 13.465 14.722 16.914
X (lig.) 106.81 100.03 93.619 87.517 81.666 76.008 70.484 65.042 59.635 54.319 50.633
X (vap.) 7.6353 8.6087 9.6283 10.704 11.841 13.060 14.402 15.941 17.844 20.568 25.867
o 0.0232 0.0206 0.0181 0.0157 0.0133 0.0110 0.0088 0.0067 0.0047 0.0028 0.0012

R-142b (1-Chloro-1,1-difluoroethane, HCFC-142b)

T 150.00 175.00 200.00 225.00 250.00 275.00 300.00 325.00 350.00 375.00 400.00
D 0.000012 0.00028 0.0028 0.0150 0.0553 0.1548 0.3575 0.7169 1.2941 2.1600 3.4073
p (liq.) 1425.6 1375.0 1324.8 1273.8 1221.0 1165.0 1104.4 1036.8 958.28 860.13 708.10
o (vap.) 0.0009 0.0196 0.1681 0.8190 2.7584 7.2444 16.064 31.807 58.788 106.36 210.67

h (liq.) 55.776 85.033 113.63 142.39 171.82 202.30 234.18 267.87 303.98 343.71 391.51



(1] 8

h (vap.)
s (lig.)

s (vap.)
cy (lig.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
X (vap.)
o]

p (liq.)
p (vap.)
h (liq.)
h (vap.)
s (lig.)
s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)

180.00
0.0059
1285.0
0.3359
75.254
331.08
0.4475
1.8687
0.8139
0.5794
1.2286
0.6848
969.14

200.00
0.0246
1234.8
1.2699
100.17
343.78
0.5786
1.7967
0.8308
0.6357
1.2638
0.7483
874.04

369.69
0.6332
1.9135
0.7937
0.5663
1.1430
0.6527
1041.8
137.45
1005.4
6.6910
122.50
5.9167
0.0245

220.00
0.0759
1182.4
3.6364
125.91
356.59
0.7010
1.7496
0.8564
0.6948
1.3095
0.8205
778.88

385.48
0.7687
1.8490
0.8026
0.6294
1.1605
0.7221
933.10
144.09
615.63
7.5308
110.57
7.1925
0.0210

401.70
0.8925
1.8120
0.8214
0.6960
1.1946
0.8002
828.22
149.20
423.84
8.3658
99.635
8.5903
0.0176

418.00
1.0084
1.7927
0.8461
0.7643
1.2426
0.8874
726.06
152.24
309.47
9.1971
89.593
10.127
0.0143

433.99
1.1187
1.7847
0.8745
0.8320
1.3055
0.9857
625.29
152.62
232.80
10.046
80.345
11.852
0.0112

R-143a (1,1,1-Trifluoroethane, HFC-143a)

240.00
0.1890
1127.0
8.5946
152.68
369.08
0.8170
1.7187
0.8862
0.7587
1.3653
0.9077
683.65

260.00
0.4025
1067.2
17.796
180.72
380.80
0.9284
1.6980
0.9184
0.8277
1.4357
1.0175
587.94

280.00
0.7628
1000.4
33.738
210.37
391.15
1.0370
1.6826
0.9528
0.9014
1.5325
1.1653
490.70

300.00
1.3234
922.32
60.818
242.26
399.14
1.1449
1.6679
0.9911
0.9815
1.6872
1.3973
389.93

449.10
1.2254
1.7830
0.9056
0.8983
1.3898
1.1047
524.42
149.69
176.91
10.965
71.782
13.893
0.0082

310.00
1.6983
876.21
81.198
259.41
401.68
1.1998
1.6587
1.0135
1.0259
1.8139
1.5895
337.04

462.40
1.3307
1.7833
0.9396
0.9643
1.5154
1.2740
421.36
142.54
133.20
12.073
63.794
16.566
0.0054

320.00
2.1483
822.31
109.18
277.77
402.62
1.2564
1.6465
1.0406
1.0757
2.0205
1.9129
281.21

471.95
1.4376
1.7796
0.9789
1.0342
1.7576
1.6106
311.75
129.67
96.421
13.676
56.323
20.899
0.0028

330.00
2.6850
754.94
150.42
298.05
400.80
1.3167
1.6280
1.0785
1.1362
2.4501
2.6199
220.39

470.74
1.5567
1.7548
1.0407
1.1227
2.9075
3.3426
179.80
107.82
60.679
17.213
51.519
32411
0.0006

340.00
3.3250
654.79
224.36
322.63
392.40
1.3873
1.5925
1.1501
1.2253
4.2484
5.7113
149.32
continued



_. TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line® (Continued)

o
N

R-143a (1,1,1-Trifluoroethane, HFC-143a) (Continued)
w (vap.) 143.91 149.60 153.71 155.74 155.15 151.36 143.59 137.85 130.56 121.34 109.29

n (liq.) 598.25 418.61 310.60 238.18 185.70 145.21 112.04 97.149 82.830 68.425 52.084
n (vap.) 6.6109 7.3509 8.0868 8.8271 9.5960 10.444 11.716 12.423 13.342 14.693 17.360
X (ligq.) 125.83 114.66 104.42 94.972 86.152 71777 69.619 65.523 61.342 57.032 53.120
X (vap.) 5.9266 7.1478 8.5171 10.059 11.830 13.974 17.067 19.371 22.801 28.686 43.217
o 0.0138 0.0132 0.0122 0.0107 0.0089 0.0067 0.0044 0.0033 0.0022 0.0012 0.0003

R-152a (1,1-Difluoroethane, HFC-152a)

T 180.00 200.00 220.00 240.00 260.00 280.00 300.00 320.00 340.00 360.00 380.00
D 0.0011 0.0061 0.0228 0.0665 0.1602 0.3354 0.6298 1.0873 1.7577 2.7000 3.9966
o (liq.) 1146.0 1108.4 1069.9 1030.0 988.11 943.43 894.75 840.12 775.99 694.20 559.36
o (vap.) 0.0504 0.2432 0.8374 22727 5.1996 10.519 19.497 34.064 57.642 98.069 189.74
h (liq.) 52.162 82.726 113.69 145.33 177.92 211.73 247.07 284.40 324.50 369.16 425.84
h (vap.) 437.63 452.68 467.99 483.19 497.90 511.72 524.16 534.55 541.68 542.84 526.44
s (liq.) 0.3416 0.5026 0.6501 0.7875 0.9176 1.0422 1.1629 1.2816 1.4006 1.5245 1.6719
s (vap.) 2.4831 2.3524 2.2605 2.1953 2.1482 2.1135 2.0866 2.0634 2.0394 2.0069 1.9366
¢y (liq.) 1.0305 1.0310 1.0399 1.0578 1.0817 1.1097 1.1410 1.1763 1.2177 1.2713 1.3632
¢y (vap.) 0.6286 0.6764 0.7291 0.7877 0.8522 0.9224 0.9978 1.0785 1.1660 1.2655 1.3998
¢, (lig.) 1.5220 1.5356 1.5620 1.6022 1.6550 1.7220 1.8094 1.9327 2.1336 2.5736 5.4456
¢p (vap.) 0.7558 0.8069 0.8669 0.9389 1.0260 1.1326 1.2677 1.4523 1.7462 2.3930 6.6870
w (liq.) 1236.1 1131.3 1031.8 933.98 836.44 738.29 638.61 536.30 429.89 316.40 183.93
w (vap.) 164.78 172.27 178.66 183.57 186.60 187.33 185.34 180.10 170.91 156.55 134.10
n (liq.) 1346.4 799.04 546.26 366.72 253.77 198.37 159.59 128.39 101.41 76.671 50.477
n (vap.) 6.0336 6.6946 7.3581 8.0896 8.8523 9.6064 10.371 11.199 12.226 13.850 18.080
\ (lig.) 158.94 146.60 135.25 124.73 115.02 105.93 97.294 88.992 80.876 72.836 67.267

X (vap.) 2.5785 4.5306 6.4952 8.4883 10.540 12.704 15.087 17.914 21.728 28.123 45.999
o 0.0275 0.0243 0.0211 0.0181 0.0151 0.0122 0.0095 0.0069 0.0044 0.0022 0.0004



€0}

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (liq.)

s (vap.)
¢ (lig.)
¢y (vap.)
cp (liq)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
N (vap.)

p (lig.)
p (vap.)
h (lig.)
h (vap.)

160.00
0.00052
1605.8
0.0341
76.746
352.65
0.4212
2.1456
0.6776
0.3827
1.0617
0.4792
1190.6
138.70
1140.0

150.39

0.0305

220.00
0.0151
1662.6
1.4175
144.21
290.25

180.00
0.0037
1553.2
0.2145
97.975
362.31
0.5462
2.0147
0.6671
0.4093
1.0611
0.5071
1095.0
145.98
740.55
7.5310
139.46
4.7194
0.0269

240.00
0.0464
1599.4
4.0605
164.54
303.10

R-22 (Chlorodifluoromethane, HCFC-22)

200.00 220.00 240.00 260.00 280.00 300.00
0.0167 0.0547 0.1432 0.3169 0.6186 1.0970
1499.7 1444.5 1386.6 1324.9 1257.9 1183.4
0.8752 2.6485 6.5009 13.759 26.226 46.539
119.22 140.63 162.40 184.80 208.10 232.62
372.15 381.91 391.27 399.92 407.49 413.50
0.6581 0.7599 0.8544 0.9435 1.0289 1.1122
1.9227 1.8567 1.8080 1.7709 1.7411 1.7151
0.6585 0.6545 0.6562 0.6635 0.6759 0.6926
0.4378 0.4692 0.5044 0.5439 0.5879 0.6368
1.0643 1.0763 1.1001 1.1368 1.1893 1.2653
0.5391 0.5778 0.6262 0.6880 0.7698 0.8851
1001.1 908.04 814.96 721.58 627.58 532.11
152.37 157.61 161.35 163.24 162.92 159.98
531.77 403.35 315.93 252.00 202.53 162.37
8.3851 9.2315 10.075 10.926 11.810 12.780
129.14 119.33 109.91 100.76 91.777 82.820
5.5390 6.4424 7.4444 8.5755 9.9012 11.573
0.0235 0.0201 0.0168 0.0137 0.0107 0.0078

R-227ea (1,1,1,2,3,3,3-Heptafluoropropane, HFC-227ea)

260.00 280.00 300.00 310.00 320.00 330.00
0.1165 0.2510 0.4814 0.6439 0.8446 1.0891
1532.3 1459.7 1379.4 1335.2 1287.3 1234.6
9.6473 20.061 38.012 51.061 67.842 89.545
185.65 207.64 230.69 242.69 255.05 267.86
316.19 329.29 342.06 348.20 354.08 359.58

320.00
1.8061
1097.4
79.186
258.89
417.16
1.1949
1.6895
0.7137
0.6919
1.3907
1.0710
433.11
153.86
128.17
13.957
73.742
13.956
0.0051

340.00
1.3834
1175.2
118.06
281.22
364.52

340.00
2.8081
990.07
133.94
288.07
416.77
1.2804
1.6589
0.7413
0.7580
1.6650
1.4696
326.68
143.71
97.172
15.654
64.397
18.143
0.0027

350.00
1.7347
1105.5
156.81
295.33
368.59

360.00
4.1837
823.43
246.68
324.43
406.25
1.3798
1.6071
0.7921
0.8579
3.0011
3.4689
201.90
127.92
64.683
19.259
57.477
29.834
0.0007

360.00
2.1517
1018.0
213.24
310.62
371.14
continued



S TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line® (Continued)

R-227ea (1,1,1,2,3,3,3-Heptafluoropropane, HFC-227ea) (Continued)

s (lig.) 0.7738 0.8621 0.9463 1.0275 1.1064 1.1454 1.1841 1.2229 1.2621 1.3021 1.3441
s (vap.) 1.4375 1.4394 1.4485 1.4619 1.4777 1.4857 1.4936 1.5009 1.5071 1.5114 1.5122
¢y (liq.) 0.7251 0.7494 0.7753 0.8022 0.8300 0.8444 0.8594 0.8753 0.8932 0.9149 0.9448
¢y (vap.) 0.6088 0.6512 0.6941 0.7381 0.7838 0.8075 0.8322 0.8581 0.8859 0.9171 0.9552
¢p (liq.) 0.9988 1.0341 1.0751 1.1230 1.1821 1.2185 1.2627 1.3194 1.3988 1.5258 1.7832
¢p (vap.) 0.6607 0.7071 0.7574 0.8145 0.8841 0.9272 0.9799 1.0485 1.1472 1.3120 1.6716
w (liq.) 704.83 628.41 553.77 480.06 406.17 368.65 330.34 290.81 24941 205.28 157.36
w (vap.) 106.83 109.94 111.73 111.79 109.68 107.62 104.77 100.98 96.058 89.744 81.651
n (liq.) 84791 578.41 419.33 313.80 237.79 206.86 179.27 154.26 131.15 109.22 87.430
n (vap.) 8.4734 9.2457 10.012 10.787 11.609 12.062 12.566 13.153 13.878 14.852 16.345
X (lig.) 74.567 68.652 63.124 57.901 52.897 50.448 48.016 45.588 43.159 40.758 38.679
X (vap.) 7.5338 8.7314 10.008 11.376 12.873 13.693 14.587 15.591 16.776 18.296 20.564
o 0.0164 0.0139 0.0115 0.0091 0.0068 0.0057 0.0046 0.0036 0.0026 0.0017 0.0009

R-23 (Trifluoromethane, HCFC-23)

T 120.00 140.00 160.00 180.00 200.00 220.00 240.00 250.00 260.00 270.00 280.00
D 0.000082 0.0014 0.0111 0.0508 0.1649 0.4204 0.9041 1.2631 1.7194 2.2893 2.9920
p (liq.) 1695.5 1628.6 1559.3 1487.4 1411.4 1329.1 1236.5 1184.2 1125.9 1058.8 977.25
o (vap.) 0.0057 0.0861 0.5881 2.4451 7.3704 18.002 38.444 54.440 76.250 106.63 151.12
h (liq.) —1.2359 22.757 46.716 70.930 95.679 121.36 148.55 162.98 178.20 194.54 212.60
h (vap.) 290.22 300.04 309.78 319.10 327.57 334.58 339.33 340.46 340.39 338.64 334.23
s (lig.) —0.0502 0.1348 0.2947 0.4371 0.5671 0.6885 0.8051 0.8628 0.9210 0.9806 1.0438
s (vap.) 2.3786 2.1154 1.9388 1.8159 1.7265 1.6577 1.6000 1.5727 1.5448 1.5143 1.4781
¢y (liq.) 0.7912 0.7298 0.7180 0.7138 0.7155 0.7232 0.7373 0.7474 0.7604 0.7776 0.8024
¢y (vap.) 0.3822 0.4117 0.4527 0.5023 0.5589 0.6218 0.6912 0.7290 0.7701 0.8160 0.8700

¢p (liq.) 1.2133 1.1953 1.2020 1.2201 1.2542 1.3123 1.4106 1.4868 1.5970 1.7732 2.1125



SOL

¢p (vap.)
w (liq.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
X (vap.)
o]

p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (lig.)
s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
X (vap.)

0.5020
1217.4
136.73
1888.0
5.4612
261.13
3.9025
0.0339

260.00
0.0429
1539.6
3.0942
184.21
358.49
0.9408
1.6112
0.8695
0.7413
1.1914
0.8048
692.02
121.07
487.80
9.4904
81.617
10.154
0.0166

0.5350
1113.6
146.52
927.24
6.6166
204.73
4.9794
0.0291

280.00
0.1040
1480.7
7.1277
208.33
373.18
1.0301
1.6188
0.8913
0.7812
1.2209
0.8527
620.13
123.12
371.39
10.254
75.536
11.425
0.0142

0.5841
995.20
154.86
551.43
7.7511
169.63
6.0746
0.0245

300.00
0.2196
1418.5
14.508
233.15
387.77
1.1154
1.6308
0.9152
0.8228
1.2591
0.9075
548.27
123.69
289.51
11.008
69.810
12.776
0.0117

0.6493
883.92
161.50
369.10
8.8611
145.56
7.2269
0.0200

320.00
0.4157
1351.4
26.974
258.82
402.04
1.1977
1.6453
0.9399
0.8663
1.3062
0.9722
475.96
122.45
228.30
11.793
64.355
14.233
0.0092

0.7341
775.28
165.88
265.41
9.9521
127.55
8.5073
0.0158

340.00
0.7231
1277.3
47.043
285.52
415.72
1.2780
1.6609
0.9648
0.9118
1.3664
1.0537
402.79
119.00
180.18
12.657
59.085
15.861
0.0068

0.8476
665.63
167.34
198.77
11.048
112.93
10.028
0.0118

350.00
0.9290
1236.5
61.109
299.34
422.20
1.3175
1.6686
0.9776
0.9354
1.4046
1.1052
365.76
116.28
159.53
13.146
56.493
16.784
0.0056

1.0131
552.13
165.16
151.35
12.216
100.02
11.971
0.0081

R-236ea (1,1,1,2,3,3-Hexafluoropropane, HFC-236ea)

360.00
1.1760
1192.4
78.831
313.54
428.34
1.3570
1.6759
0.9907
0.9598
1.4522
1.1692
328.35
112.80
140.55
13.697
53.916
17.824
0.0045

1.1344
492.95
162.43
131.88
12.874
93.782
13.198
0.0064

370.00
1.4692
1143.9
101.35
328.19
434.02
1.3964
1.6824
1.0045
0.9852
1.5148
1.2536
290.46
108.44
122.90
14.346
51.347
19.046
0.0034

1.3075
431.40
158.45
114.19
13.633
87.452
14.689
0.0048

380.00
1.8141
1089.5
130.44
343.42
439.04
1.4362
1.6878
1.0192
1.0121
1.6040
1.3749
251.87
103.11
106.22
15.152
48.795
20.569
0.0024

1.5860
366.62
153.03
97.630
14.580
80.781
16.580
0.0033

390.00
22172
1026.5
169.14
359.44
443.11
1.4768
1.6914
1.0355
1.0411
1.7478
1.5716
212.17
96.688
90.109
16.222
46.333
22.627
0.0015

2.1324
297.21
145.89
81.441
15.907
73.342
19.152
0.0019

400.00
2.6856
949.53
223.41
376.70
445.66
1.5193
1.6917
1.0547
1.0729
2.0323
1.9597
170.38
88.985
73.980
17.787
44.346
25.712
0.0007
continued



S TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line® (Continued)

R-236fa (1,1,1,3,3,3-Hexafluoropropane, HFC-236fa)

T 200.00 220.00 240.00 260.00 280.00 300.00 320.00 340.00 360.00 380.00 390.00
p 0.0013 0.0061 0.0216 0.0604 0.1415 0.2897 0.5346 0.9107 1.4595 2.2351 2.7324
p (liq.) 1656.8 1598.7 1540.2 1480.5 1418.8 1353.5 1282.3 1200.8 1100.1 955.88 838.36
o (vap.) 0.1164 0.5132 1.6746 4.3901 9.8077 19.515 35.820 62.567 107.75 195.16 284.95
h (liq.) 116.72 138.54 161.04 184.28 208.33 233.27 259.23 286.49 315.64 348.26 367.66
h (vap.) 309.52 322.84 336.52 350.41 364.34 378.10 391.36 403.62 413.82 419.02 416.49
s (lig.) 0.6465 0.7504 0.8483 0.9412 1.0300 1.1157 1.1988 1.2805 1.3624 1.4485 1.4975
s (vap.) 1.6105 1.5881 1.5794 1.5801 1.5872 1.5984 1.6118 1.6250 1.6351 1.6347 1.6227
¢y (liq.) 0.7932 0.7981 0.8139 0.8389 0.8686 0.8997 0.9311 0.9630 0.9985 1.0474 1.0879
cy(vap.) 0.6073 0.6413 0.6774 0.7159 0.7568 0.8000 0.8457 0.8950 0.9518 1.0281 1.0863
¢p (liq.) 1.0731 1.1078 1.1427 1.1808 1.2223 1.2691 1.3271 1.4097 1.5568 1.9736 2.9554
¢p (vap.) 0.6627 0.6982 0.7374 0.7815 0.8318 0.8909 0.9647 1.0702 1.2673 1.9382 3.7265
w (liq.) 785.19 767.34 723.90 664.16 594.57 518.80 438.37 353.27 262.22 162.46 107.86
w (vap.) 109.04 113.74 117.69 120.57 122.02 121.60 118.77 112.82 102.72 87.507 78.176
n (liq.) 1333.2 822.85 569.41 418.88 319.33 248.35 194.64 151.71 115.24 80.986 61.838
n (vap.) 7.3120 8.0565 8.7977 9.5318 10.261 10.998 11.778 12.684 13.951 16.457 19.508
X (lig.) 97.208 89.557 82.508 75.997 69.951 64.290 58.917 53.708 48.488 43.104 41.351
X (vap.) 6.5637 7.5810 8.6731 9.8431 11.100 12.464 13.988 15.782 18.227 23.348 31.175
o 0.0207 0.0188 0.0167 0.0145 0.0122 0.0099 0.0075 0.0052 0.0030 0.0012 0.0004

R-245ca (1,1,2,2,3-Pentafluoropropane, HFC-245ca)

T 240.00 260.00 280.00 300.00 320.00 340.00 360.00 380.00 400.00 420.00 440.00
D 0.0055 0.0179 0.0476 0.1082 0.2179 0.3991 0.6778 1.0834 1.6493 2.4161 3.4432
o (lig.) 1522.4 1477.5 1430.8 1381.6 1329.4 1273.0 1210.7 1139.9 1055.5 945.62 750.95
o (vap.) 0.3739 1.1282 2.8168 6.1026 11.886 21.382 36.317 59.394 95.583 156.83 301.50

h (liq.) 158.71 183.36 208.81 235.12 262.34 290.58 319.97 350.77 383.44 419.08 463.03



201

h (vap.)
s (lig.)

s (vap.)
cy (lig.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
X (vap.)
o]

p (liq.)
p (vap.)
h (liq.)
h (vap.)
s (lig.)
s (vap.)
¢y (liq.)
¢y (vap.)
cp (liq.)
¢p (vap.)
w (lig.)

388.91
0.8390
1.7982
0.9241
0.6934
1.2131
0.7584
868.33
126.83
1680.5
8.1691
106.65
8.3146
0.0241

220.00
0.0022
1530.7
0.1653
133.87
366.14
0.7313
1.7871
0.8035
0.6480
1.1852
0.7111
1078.1

403.85
0.9376
1.7857
0.9528
0.7478
1.2516
0.8160
793.28
130.82
1033.2
8.8554
99.625
9.6231
0.0215

240.00
0.0091
1484.5
0.6151
158.13
380.40
0.8368
1.7629
0.8602
0.6906
1.2347
0.7557
946.32

419.34
1.0318
1.7837
0.9828
0.8021
1.2926
0.8759
720.25
133.92
716.21
9.5368
93.059
11.007
0.0189

260.00
0.0283
1436.7
1.7875
183.17
395.10
0.9369
1.7521
0.8911
0.7344
1.2681
0.8034
843.61

435.15
1.1224
1.7892
1.0130
0.8570
1.3363
0.9402
648.66
135.88
528.66
10.217
86.882
12.465
0.0163

R-245fa (1,1,1,3,3-Pentafluoropropane, HFC-245fa)

280.00
0.0726
1386.6
4.3238
208.89
410.08
1.0321
1.7506
0.9180
0.7798
1.3027
0.8554
752.12

451.03
1.2100
1.7996
1.0430
0.9127
1.3837
1.0110
577.85
136.40
404.54
10.906
81.025
14.002
0.0137

300.00
0.1599
1333.7
9.1230
235.36
425.13
1.1232
1.7557
0.9459
0.8271
1.3428
0.9134
665.21

466.73
1.2951
1.8132
1.0727
0.9693
1.4375
1.0913
507.13
135.20
315.87
11.628
75.413
15.637
0.0112

320.00
0.3135
1277.1
17.393
262.71
440.06
1.2110
1.7652
0.9755
0.8763
1.3906
0.9794
580.24

481.95
1.3785
1.8284
1.1024
1.0267
1.5024
1.1872
435.77
131.92
248.68
12.424
69.965
17.419
0.0087

340.00
0.5605
1215.1
30.801
291.13
454.61
1.2966
1.7774
1.0067
0.9277
1.4502
1.0583
496.00

496.23
1.4608
1.8436
1.1324
1.0855
1.5890
1.3136
362.99
126.07
195.14
13.371
64.578
19.472
0.0063

360.00
0.9322
1145.3
51.868
320.86
468.41
1.3806
1.7905
1.0397
0.9820
1.5299
1.1607
411.62

508.80
1.5432
1.8566
1.1639
1.1477
1.7250
1.5136
287.61
116.91
150.27
14.638
59.133
22.143
0.0040

380.00
1.4639
1063.2
85.032
352.33
480.79
1.4644
1.8024
1.0758
1.0409
1.6525
1.3172
325.85

517.83
1.6283
1.8634
1.2021
1.2191
2.0237
1.9727
205.82
103.10
110.05
16.709
53.525
26.633
0.0020

400.00
2.1977
958.96
140.30
386.52
490.21
1.5501
1.8094
1.1187
1.1088
1.9037
1.6510
235.78

515.08
1.7276
1.8459
1.2882
1.3280
4.5489
5.9950
104.18
81.608
66.093
22.618
51.435
43.415
0.0004

420.00
3.1929
790.91
258.30
427.27
490.65
1.6467
1.7976
1.1835
1.2000
3.2693
3.5853
132.14
continued



_. TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line® (Continued)

[=]
[==]

R-245fa (1,1,1,3,3-Pentafluoropropane, HFC-245fa) (Continued)

w (vap.) 122.04 126.65 130.49 133.30 134.77 134.58 132.35 127.57 119.55 107.08 87.604
n (liq.) 1949.4 1096.6 727.44 522.67 392.66 302.53 235.84 183.76 140.96 103.52 65.435
n (vap.) 7.5986 8.2993 9.0067 9.7051 10.404 11.118 11.878 12.749 13.862 15.549 19.436
X (liq.) 108.44 100.64 93.361 86.554 80.146 74.064 68.227 62.541 56.903 51.242 47.573
X (vap.) 7.3261 8.4555 9.6593 10.938 12.298 13.754 15.346 17.166 19.453 22.967 31.829
o 0.0239 0.0214 0.0189 0.0164 0.0138 0.0113 0.0087 0.0063 0.0040 0.0020 0.0004

R-32 (Difluoromethane, HFC-32)

T 140.00 160.00 180.00 200.00 220.00 240.00 260.00 280.00 300.00 320.00 340.00
D 0.000084 0.0010 0.0069 0.0295 0.0938 0.2396 0.5216 1.0069 1.7749 2.9194 4.5614
o (liq.) 1420.4 1371.6 1321.9 1270.6 1217.1 1160.3 1098.9 1031.1 953.22 857.19 714.82
o (vap.) 0.0037 0.0408 0.2408 0.9422 2.7796 6.7367 14.239 27.430 49.971 89.651 172.78
h (liq.) —13.253 18.272 49.508 80.723 112.21 144.31 177.42 212.09 249.17 290.38 341.38
h (vap.) 446.71 459.81 472.65 484.76 495.69 504.99 512.14 516.34 516.27 509.21 486.63
s (liq.) -0.0628 0.1477 0.3316 0.4959 0.6457 0.7848 0.9163 1.0430 1.1682 1.2970 1.4451
s (vap.) 3.2226 2.9073 2.6824 2.5161 2.3888 2.2877 2.2037 2.1297 2.0586 1.9809 1.8723
¢y (liq.) 1.0568 1.0138 0.9807 0.9569 0.9417 0.9343 0.9344 0.9422 0.9598 0.9952 1.0878
¢y (vap.) 0.5019 0.5193 0.5479 0.5929 0.6539 0.7248 0.8000 0.8783 0.9634 1.0647 1.2130
¢, (lig.) 1.5875 1.5668 1.5586 1.5641 1.5847 1.6231 1.6853 1.7848 1.9578 2.3336 3.9321
¢p (vap.) 0.6622 0.6819 0.7177 0.7782 0.8670 0.9828 1.1291 1.3275 1.6420 2.2966 5.0360
w (liq.) 1395.1 1289.9 1185.7 1082.1 978.59 874.35 768.33 658.88 543.11 415.41 263.77
w (vap.) 171.76 182.88 192.69 200.85 206.99 210.73 211.65 209.26 202.95 191.66 172.68
n (liq.) — 724.13 500.13 370.61 286.05 226.15 181.04 145.28 115.50 89.141 62.690
n (vap.) — 6.6699 7.5068 8.3476 9.1881 10.033 10.898 11.821 13.170 14.796 17.853
\ (lig.) — 231.95 218.25 204.67 191.12 177.46 163.51 149.01 133.54 116.30 94.871
X (vap.) — 5.5629 6.3769 7.2546 8.2175 9.3075 10.610 12.322 15.620 22.973 51.021

o 0.0382 0.0337 0.0294 0.0251 0.0210 0.0171 0.0133 0.0098 0.0065 0.0035 0.0010
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p (lig.)
p (vap.)
h (lig.)
h (vap.)
s (liq.)

s (vap.)
¢ (lig.)
¢y (vap.)
cp (liq)
¢p (vap.)
w (lig.)
w (vap.)
n (lig.)
n (vap.)
X (lig.)
N (vap.)

p (lig.)
p (vap.)
h (lig.)
h (vap.)

180.00
0.0408
912.22
0.9532
—7.3311
502.72
0.0886
2.9222
1.2475
0.7982
2.0820
1.0916
1247.6
238.64
455.12
6.5276
269.60
9.2053
0.0220

240.00
0.0281
1707.8
2.8694
166.25
292.33

200.00
0.1325
870.42
2.8703
34.553
515.86
0.3087
2.7153
1.2202
0.8752
2.1038
1.2251
1107.9
246.68
324.11
7.2516
241.95
10.449
0.0181

260.00
0.0745
1640.4
7.1467
186.32
305.65

220.00
0.3398
825.48
7.0096
77.148
525.59
0.5105
2.5489
1.1962
0.9754
2.1506
1.4178
971.29
250.94
241.69
7.9823
215.71
11.887
0.0143

280.00
0.1674
1568.6
15.360
207.28
319.15

R-41 (Fluoromethane, HFC-41)

230.00
0.5090
801.43
10.354
98.902
528.99
0.6063
2.4762
1.1880
1.0314
2.1887
1.5395
903.70
251.49
210.69
8.3587
202.99
12.725
0.0124

240.00
0.7357
776.07
14.866
121.10
531.30
0.6995
2.4087
1.1834
1.0900
2.2405
1.6822
836.30
250.88
184.25
8.7503
190.45
13.689
0.0107

250.00
1.0310
749.13
20.868
143.88
532.37
0.7909
2.3449
1.1826
1.1502
2.3110
1.8526
768.77
249.06
161.29
9.1664
178.05
14.842
0.0090

260.00
1.4070
720.24
28.796
167.42
531.96
0.8812
2.2833
1.1860
1.2114
2.4089
2.0633
700.58
245.91
141.01
10.007
165.72
16.714
0.0073

RC318 (Octafluorocyclobutane, FC-C318)

300.00
0.3314
1490.8
29.698
229.18
332.58

320.00
0.5954
1404.3
53.394
252.10
345.64

330.00
0.7749
1356.3
70.324
264.00
351.90

340.00
0.9921
1303.7
92.014
276.26
357.86

270.00
1.8766
688.82
39.280
191.99
529.75
0.9714
2.2224
1.1940
1.2736
2.5503
2.3383
630.89
241.33
122.78
10.630
153.35
19.220
0.0058

350.00
1.2519
1244.9
120.21
288.95
363.38

280.00
2.4542
653.89
53.307
217.99
525.15
1.0628
2.1598
1.2075
1.3369
2.7686
2.7290
558.39
235.16
106.06
11.381
140.82
23.312
0.0043

360.00
1.5601
1176.5
158.00
302.22
368.24

290.00
3.1558
613.62
72.619
246.13
517.15
1.1577
2.0922
1.2288
1.4027
3.1447
3.3634
481.04
227.13
90.314
12.347
127.87
30.715
0.0029

370.00
1.9239
1091.9
211.83
316.40
371.93

300.00
4.0010
564.05
100.95
277.89
503.56
1.2604
2.0127
1.2642
1.4743
3.9440
4.6729
395.35
216.80
74.809
13.743
114.06
46.326
0.0016

380.00
2.3532
970.93
301.19
33243
373.07
continued
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TABLE 2.7 Thermophysical Properties of Fluids along the Saturation Line“ (Continued)

s (lig.) 0.8686
s (vap.) 1.3940
¢y (liq.) 0.7084
¢y (vap.) 0.6425
cp (lig.) 0.9819
cp (vap.) 0.6873
w (lig.) 654.66
w (vap.) 101.56
n (lig.) 506.03
n (vap.) 9.1935
X (lig.) 63.039
X (vap.) 8.5065
o 0.0153

0.9488
1.4078
0.7397
0.6803
1.0244
0.7291
579.81
103.78
375.90
9.9598
58.334
9.7277
0.0128

RC318 (Octafluorccyclobutane, FC-C318) (Continued)

1.0262
1.4258
0.7739
0.7183
1.0699
0.7746
504.72
104.61
287.28
10.697
53.929
11.014
0.0103

1.1014
1.4461
0.8070
0.7571
1.1182
0.8270
430.19
103.64
222.61
11.458
49.767
12.394
0.0080

1.1748
1.4671
0.8385
0.7976
1.1752
0.8931
355.56
100.37
172.66
12.270
45.779
13.905
0.0058

1.2110
1.4773
0.8541
0.8189
1.2109
0.9360
317.77
97.668
151.41
12.721
43.825
14.731
0.0047

1.2471
1.4871
0.8699
0.8413
1.2557
0.9910
279.32
94.081
131.94
13.232
41.886
15.633
0.0037

1.2833
1.4959
0.8862
0.8652
1.3173
1.0680
239.80
89.431
113.78
13.844
39.956
16.657
0.0028

1.3199
1.5033
0.9040
0.8914
1.4133
1.1911
198.61
83.456
96.438
14.638
38.064
17.908
0.0019

1.3579
1.5080
0.9246
0.9215
1.6004
1.4390
154.70
75.752
79.162
15.803
36.443
19.659
0.0011

1.3995
1.5065
0.9524
0.9597
2.2182
2.2820
105.83
65.658
60.232
17.976
37.590
22.983
0.0004

“T, temperature (K); p, pressure (MPa); p, density (kg/m3); h, enthalpy (kJ/kg); s, entropy (kJ/kg - K); ¢y, isochoric heat capacity (kJ/kg - K); ¢, isobaric heat capacity
(kJ/kg - K); w, speed of sound (m/s); n, viscosity (iPa-s); \, thermal conductivity (mW/m - K); o, surface tension (N/m).
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a(p,T)
RT

=adr) = OLO(?),I) +a ") (2.3)

where 8 = p/p., T = T,./T, and the ideal gas constant R is 8.314472 J/mol - K (Mohr
and Taylor, 1999). The Helmholtz energy of the ideal gas (the fluid in the limit of
noninteracting particles realized at zero density, where p = pRT) is given by

a®=h"— RT — Ts° (2.4)

The ideal gas enthalpy is given by

T
h® = hy + / c)dT (2.5)
T

0

where h8 is the enthalpy reference point at 7y and cg is the ideal gas heat capacity
given by eq. (2.9). The ideal gas entropy is given by

0_ .0 e oT
sT =154+ —dT — Rln — (2.6)
n T poTo

where sg is the entropy reference point at 7 and pg, and p, is the ideal gas density at
Ty and po. The values for i) and s) are chosen arbitrarily for each fluid. Combining
these equations results in the following equation for the Helmholtz energy of the ideal

gas:
T T 0 oT
a0=h8+/;0 cng—RT—T(sg—i-/To 7{’ dT — Rlnm> (2.7)
This ideal gas Helmholtz energy can be expressed in dimensionless form by

hyt s 5 iz
=T Sy T /_de Lar @8
RT, R doT T 1

0

where 89 = py/p, and 19 = T,/ Tp.

In the calculation of the thermodynamic properties using an equation of state
explicit in the Helmholtz energy, an equation for the ideal gas heat capacity, c,,, is
needed to calculate the Helmholtz energy for the ideal gas, o’. Equations for the
ideal gas heat capacity are generally given in the form

0
L PV VL 4o LG (2.9)
R Z ' Z [exp@up) — 1]

where uy is M/ T. Ny and M are constants determined from spectroscopic or other
experimental data. Table 2.4 gives values of the ideal gas isobaric heat capacity for
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selected fluids. The values were calculated from the ideal gas heat capacity equations
given in the references in Table 2.2.

Unlike the equations for the ideal gas, dense fluid or residual behavior is often
described using empirical models that are only loosely tied with theory. The dimen-
sionless residual Helmholtz energy is generally given as

o 3,7) = Z N8tk + Z Nid* vt exp (—S’k)
k k

+ ) NS T exp [~ (5 — 1)? — Br(t — yp)?] (2.10)
k

Although the values of iy, jx, and /; are empirical fitting constants, jj is generally
expected to be greater than zero, and iy and /; are integers greater than zero. The terms
in the third sum correspond to modified Gaussian bell-shaped terms, introduced by
Setzmann and Wagner (1991) to improve the description of properties in the critical
region.

Calculation of Properties The functions used for calculating pressure, com-
pressibility factor, internal energy, enthalpy, entropy, Gibbs energy, isochoric heat
capacity, isobaric heat capacity, and the speed of sound from eq. (2.3) are given as
egs. (2.11t02.19). These equations were used in calculating values of thermodynamic
properties given in the tables.

a r
p=oRT [1+5( 2 @.11)
3 ).
7= (™ 2.12)
"~ pRT a3 ), '
- 500 par\
L I N Y (2.13)
RT L\ 0T J; 9T /5
h WE o\ T do”
— =1| (= 5 1 2.14
RT T<3T>a+<at)g_+(38>r+ 219
/o 0 oo\ ]
R (i) + (i —a’—a" (2.15)
R L\ 9T J; 0t Js |
8 0 r da”
g 5 2.16
o +0L+a+<88)t (2.16)

Cy o [(9%a° N 3%a" @17
—=-1||— .

R At J 9t Jy

Cp Gy [l + 8(da” /9d) — 31 (32u’/38 8r)]2

& _ G 2.18
K™ R [T+ 2500/05), + 5 (0% /5°) | o
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2
(2.19)

30") +62<82u’>  [14800/88) — bt (9%ar/ 05 o)’

M
=1+28
* ( 33 3%* [ (02a0/012), + (020 /072),]

RT

Equations for additional thermodynamic properties are given in Lemmon et al.
(2000). Table 2.3 displays the molecular weight, critical temperature, and critical
density used in these equations for various fluids. The thermodynamic properties of
various fluids along the saturated liquid and vapor lines are given in Table 2.7.

Thermodynamic Properties of Mixtures The Helmholtz energy for mixtures
of fluids can be calculated from a generalized mixture model using the equations
of state for the pure fluids in the mixture and an excess function to account for the
interactions between different species, as given by Lemmon and Jacobsen (1999).
This model is used in the REFPROP program available from the Standard Reference
Data Program of NIST for mixture calculations. (See the introduction for additional
details on the NIST databases.)
The Helmholtz energy of a mixture is

a = a9 4 qFf (2.20)

where the Helmholtz energy for an ideal mixture defined at constant reduced temper-
ature and density (similar to simple corresponding states) is

n
gidmix _ in [a?(p,T) + a} (8,7) + RT Inx;] (2.21)

i=1

where 7 is the number of components in the mixture, a? is the ideal gas Helmholtz
energy for component i, and a] is the pure fluid residual Helmholtz energy of com-
ponent i evaluated at a reduced density and temperature defined below.

The excess contribution to the Helmholtz energy from mixing is

E n—1 n 10
% =af 0T =) Y xxFy Y Ndh (2.22)
i=1 j=i+1 k=1

where the coefficients and exponents are obtained from nonlinear regression of ex-
perimental mixture data. The same set of mixture coefficients (N, di, and #;) is used
for all mixtures in the model, and the parameter F;j; is a scaling factor that relates the
excess properties of one binary mixture to those of another. Multicomponent mixtures
can then be calculated without any additional ternary or higher interaction parameters.

All single-phase thermodynamic properties [such as those given in egs. (2.11 to
2.19)] can be calculated from the Helmholtz energy using the relations

n 0 T
o= x, [% + lnxii| (2.23)
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o =) xa[ (1) +a"(3,1,%) (2.24)

i=1

where the derivatives are taken at constant composition. The reduced values of density
and temperature for the mixture are

L (2.25)
Pred
Tred
= 2.26
T= (226)

where p and 7 are the mixture density and temperature, respectively, and p,q and
Tieq are the reducing values,

n n—1 n
bea= | D+ 3 ity (2.27)
i=1 Pei i=1 j=i+l
n n—1 n
Tea =Y xiTo+ ) D xixg; (2.28)
i=1 i=1 j=i+l

The parameters ¢;; and §;; are used to define the shapes of the reducing temperature
line and reducing density line. These reducing parameters are not the same as the
critical parameters of the mixture and are determined simultaneously with the other
parameters of the mixture model for each binary pair in the nonlinear fit of experi-
mental data.

2.2.2 Transport Properties

The equations used for calculating the transport properties of fluids are given in the
references cited in Table 2.2. For many substances, equations for transport properties
have not been developed or published, and alternative techniques must be used. A
widely used method for calculating the transport properties of fluids is based on
predictions using the extended corresponding states (ECS) concept. In Table 2.2,
those fluids for which the ECS method is used to determine the best current values are
identified. Values for some of the fluids have been improved by fitting experimental
data, while others are used in a purely predictive mode.

Extended Corresponding States The principle of corresponding states stems
from the observation that the properties of many fluids are similar when scaled by
their respective critical temperatures and densities. Extended corresponding states
models modify this scaling by using additional shape factors to improve the repre-
sentation of data. ECS methods may be used to predict both the thermodynamic and
transport properties, especially for fluids with limited data. The method starts with
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the ECS model of Huber et al. (1992) and Ely and Hanley (1983) and combines this
predictive model with the best available thermodynamic equations of state (see Klein
et al., 1997; McLinden et al., 2000).

The viscosity of a fluid can be represented as the sum of the dilute gas and the real
fluid contributions,

(T, p) =n"(T) + 0" (T, p) (2.29)

where n* is the Chapman—Enskog dilute gas contribution described later. The ther-
mal conductivity of a fluid can be represented as the sum of energy transfer due to
translational and internal contributions.

MT, p) = N"(T) + W5(T, p) (2.30)

where the superscript “trans” designates the translational term (i.e., contributions aris-
ing from collisions between molecules) and the superscript “int” designates the con-
tribution from internal motions of the molecule). The internal term is assumed to be
independent of density. The translational term is divided into a dilute-gas contribution
\* and a density-dependent term, which is further divided into a residual part (super-
script r) and a critical enhancement (superscript “crit”). The thermal conductivity is
thus the sum of four terms:

MT, p) = N"(T) + W(T) + V' (T, p) + 2T, p) (2.31)

Dilute-Gas Contributions The standard formulas for the dilute-gas contribu-
tions that arise from kinetic theory and which have been used by Ely and Han-
ley (1983), Huber et al. (1992), and others, but with an empirical modification, are
used here. The transfer of energy associated with internal degrees of freedom of the
molecule is assumed to be independent of density and can be calculated from the
Eucken correlation for polyatomic gases given in Hirschfelder et al. (1967),

‘mmﬁT)(

M) =
D ==

5
- §R> (2.32)

where cg is the ideal gas heat capacity, R the gas constant, and M the molar mass. The

subscript j emphasizes that all quantities are to be evaluated for fluid j. The factor

fint accounts for the energy conversion between internal and translational modes.
The dilute-gas part of the translational term is given by

1SRN (T)

V(T =
i () 4M;

(2.33)

The Chapman—Enskog dilute-gas viscosity is given by standard kinetic gas theory
from Hirschfelder et al. (1967):

(M]T)I/Z

_ 2.34
2 Q2 (KT /) 239

WH(T) =



116 THERMOPHYSICAL PROPERTIES OF FLUIDS AND MATERIALS

where o; and ¢/ k are the molecular size and energy parameters associated with an
intermolecular potential function such as the Lennard-Jones 12-6 potential, and Q%
is the collision integral (again for the Lennard-Jones fluid), which is a function of
the reduced temperature, kT /g;. The empirical function of Neufeld et al. (1972) is
often used for Q. While the dilute-gas viscosity equation is derived from theory,
the molecular size and energy parameters are most often evaluated from low-density
viscosity data. This function can thus be treated as a theoretically based correlating
function.

Where experimentally based Lennard-Jones parameters are not available, they
may be estimated by the relations suggested by Huber and Ely (1992):

Tcrit
k=22 (2.35)
EJ/ - k Tocrit .
pcril 173
0 =00 | = (2.36)
p(i:rl

where the zero subscript refers to the reference fluid used in the ECS described below.
Tables 2.5 and 2.6 give values for the dilute-gas thermal conductivity and viscosity.

Density-Dependent Contributions The principle of corresponding states can
be used to model the residual part of the thermal conductivity and viscosity. Such
models have been applied to a wide variety of fluids by many authors, including
Leland and Chappelear (1968), Hanley (1976), Ely and Hanley (1983), and Huber et
al. (1992). This approach is especially useful for fluids for which limited experimental
data exist.

The simple corresponding states model is based on the assumption that different
fluids are conformal; that is, they obey, in reduced coordinates, the same intermolec-
ular force laws. A reduced property may be obtained by dividing the individual state
values by the value of the property at the critical point. This assumption leads to
the conclusion that with appropriate scaling of temperature and density, the reduced
residual Helmholtz energies and compressibilities of the unknown fluid j and a ref-
erence fluid O (for which an accurate, wide-ranging equation of state is available) are
equal:

o (T, p) = ag(To, po) (2.37)
Zi(T, p) = Zo(To, po) (2.38)
The reference fluid is usually chosen as one that has a molecular structure similar to

the fluid of interest. The conformal temperature 7 and density p, are related to the
actual T and p of the fluid of interest by

T Tcrit
To=Lop_to (2.39)
F T, p)
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crit

Y
po = ph = ppo (T, p) (2.40)

crit

J
where the multipliers 1/f and h are termed equivalent substance reducing ratios, or
simply reducing ratios.

Initially, the corresponding states approach was developed for spherically sym-
metric molecules for which the reducing ratios are simple ratios of the critical pa-
rameters (6 and ¢ both equal to 1). The ECS model extends the method to other types
of molecules by the introduction of the shape factors 6 and ¢. These shape factors
are functions of temperature and density, although the density dependence is often
neglected.

The ECS method has been applied to both the thermodynamic and transport prop-
erties. In this model, the thermal conductivity is

N (T, p) = Fv(To, po) (2.41)
and the viscosity is
n; (T, p) = Fymy(To, po) (2.42)
where
M\ 12
Fo= " (22 2.43
= f M, (2.43)
Mo\ 2
F, = f1Ph=23 =L 2.44
hn=f 7 (2.44)

Following the methods of Klein et al. (1997) and McLinden et al. (2000), the reducing
ratios 1/f and h are further modified by empirical viscosity shape factors and ther-
mal conductivity shape factors fitted to experimental data. The thermal conductivity
approaches infinity at the critical point, and even well removed from the critical point
the critical enhancement can be a significant portion of the total thermal conductivity.
The transport properties of various fluids along the saturated liquid and vapor lines
are given in Table 2.7.

Transport Properties of Mixtures For mixtures, the calculation of thermal
conductivity and viscosity from extended corresponding states principles uses the
same terms as those given in equations for pure fluids. For the thermal conductivity,
the internal and translational contributions are calculated using

nx [x}m(T) ¥ x;(T)]

AT x) 4+ 0E (T, x) =
Z i Xi Qji

mix

(2.45)

mix

j=1

where
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2
(N AN g1+ o (2.46)
i = ny M; M; '
All quantities in the dilute-gas terms are evaluated at the temperature of the mix-

ture rather than at some conformal temperature. The residual viscosity includes an
additional term,

Nmix = ANg ( ) Fy + An*(p, x) (2.47)

T
Sxs phy

where Ay, is the residual viscosity of the reference fluid and the additional term An*
is an Enskog hard-sphere correction for effects of differences in size and mass in a
mixture.

The F,_ term in the residual part of the transport equations is

Fy = flPh;*P gl (2.48)

where the subscript x indicates a mixture quantity, and
M1/2 n o n o) —1/2 1 3 4/3
12 _ Mo 1/4 13, 1173
gl = xixi(fif) (—) [— (h,. +h! ) } (2.49)
£Ph Eg S 1/gi +1/g; 8 !

The g; are

2
o (To, po) —4/3
=My | X0 fihG 2.50
8 0 |:.}\jr(7-}’ pj) f} j ( )

The reducing ratios are defined as fy = T/To, hy = po/p, fj =T, fx/T, and h; =
phy/p;. The conformal conditions for component j and the mixture are found by
solving the equations

o (T, p;) = o (T, 0, X) (2.51)
Zi(Tj, 0j) = Zuix(T, p, X) (2.52)
o (To, po) = ot (7', p, x) (2.53)
Zj(To, po) = Zmix(T, p, X) (2.54)

where the mixture properties are calculated using the Helmholtz energy mixture
model described earlier.

2.3 THERMOPHYSICAL PROPERTIES OF SOLIDS

In this section we discuss the transport properties associated with heat transfer in
solid materials. Starting with the equation for the conservation of energy, we demon-
strate the need for constitutive models for the internal energy and heat flux. A brief
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discussion of the physical mechanisms that contribute to heat transfer in solids fol-
lows. Next, several common measurement techniques are discussed to assist the
reader in assessing their applicability should property measurements be needed. In
practice, such measurements might be desired because the tabulated property values
of a listed material may differ from those of the material obtained for use because of
differences in alloying, level of impurities, or crystalline structure, for example.

Introduction to the molecular modeling of thermal conductivity may be found
in Klemens (1969) and Parrott and Stuckes (1975). Brief discussions of thermal
conductivity, specific heat, and thermal expansion may be found in introductory
texts in solid-state physics (e.g., Reif, 1965; Brown, 1967; Kittel, 1996). The general
behavior of material properties with respect to temperature may also be found in
Jakob (1955) and in introductory texts (e.g., Incropera and DeWitt, 1996).

2.3.1 Conservation of Energy

The equation for the conservation of energy in the absence of stress power may be
written as
di

=V d+q” (2.55)

where i the enthalpy per unit volume, ¢ the time, ¢ the heat flux vector, and ¢””
the volumetric rate of heat generation due, for example, to chemical reaction or to
absorption of electromagnetic radiation. The stress power is the rate of work done
by the stress field during deformation. It is identically zero for rigid-body motion. In
general, i may be a function of deformation and temperature and ¢ may be a function
of the temperature gradient as well. Two constitutive equations are needed for eq.
(2.55), one for i and another for ¢. Changes in the specific internal energy may be
written as

di T

yTie PmCp T (2.56)
where c), is the specific heat per unit mass at constant pressure, p,, the mass density,
and T the temperature. For solids, it may easily be shown that the specific heat is
nearly independent of pressure (i.e., ¢, =~ c,, where c, is the specific heat at constant
volume) (see, e.g., Reif, 1965). Similarly, it is usually assumed that c,, is independent
of internal stresses (Parrott and Stuckes, 1975). Fourier’s equation is most often
assumed to relate ¢ to temperature. It agrees well with most measurements and may
be written as

g=—-\-VT (2.57)

where \ is the thermal conductivity tensor. In most common circumstances, the
thermal conductivity is isotropic and eq. (2.57) may be rewritten as q = —\ VT.

In the absence of internal heat generation and assuming isotropic thermal conduc-
tivity, substituting eqs. (2.56) and (2.57) into eq. (2.55) yields
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dT

cpgr =" VAT (2.58)

Prm

Grouping the material properties, the thermal diffusivity is defined as ap = \/p,,cp.
Thus, the important thermophysical properties are ap, \, p,,, and c,. In general,
these properties can be functions of direction, deformation, and temperature. Some
crystalline elements, such as carbon, bismuth, and tin, have anisotropic thermal con-
ductivities. Some polymers develop anisotropy after finite deformation (Choy et al.,
1978; Broerman et al., 1999; Ortt et al., 2000). The temperature dependence of o
is sometimes less strong than that of A, which can simplify analytical solutions of
conduction problems (Ozisik, 1980). For analyses of transient heat transfer, o p is the
important parameter, while for analyses of steady heat transfer and boundary condi-
tions of transient analyses, \ is required.

Equation (2.58) is nonphysical because it predicts an infinite speed of propagation
of temperature change, that is, a temperature change in one part of the body causes
an immediate change in temperature throughout the body. Substituting the Maxwell—
Cattaneo equation for Fourier’s equation yields

LdT 1 dT _ oy 2.59
ap dt 2 dtr (259)
where ¢ has dimensions of velocity. If ¢ is approximated as the speed of sound in the
body, then for good conductors the ratio of the coefficients is ap/c = 10! s (Parrott
and Stuckes, 1975). Thus, except in rare circumstances, finite propagation speeds are
important only for very short times. Joseph and Preziosi (1989, 1990) provide an
extensive review of studies examining Maxwell-Cattaneo conduction.

In general, analyses of thermal conduction assume that materials are rigid and
incompressible. This is not strictly so. Relaxing this assumption requires the addition
of the simultaneous solution of the balance of linear momentum and the addition of
the stress work term (see, e.g., Day, 1985). The linear coefficient of thermal expansion
may be defined as p = (L — Lg)/ [Lo(T — Tp)], where L is the length of the solid
at its new temperature 7, and Ly is its length at the reference temperature 7j. At
room temperature, | typically ranges from 0.6 x 10~°°C~! for silicon carbide to
500 x 107%°C~! for rubber (Brown, 1967). The volumetric coefficient of thermal
expansion L, = (1 4+ p)* & (1 4 3p) relates the specific volume at T to the specific
volume at Tj.

2.3.2 Behavior of Thermophysical Properties of Solids

The thermal conductivity and specific heat are defined above as continuum properties.
Some indication of their behavior may be found by considering the molecular nature
of materials. In solids, thermal transport properties result from molecular vibrations,
and in electrical conductors, from electron transport. The vibrations of the molecules
in a crystal lattice may be analyzed as harmonic oscillators and quantized (see, e.g.,
Reif, 1965 or Brown, 1967). These quanta are called phonons, and heat conduction
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can be pictured as the diffusion of phonons from a hotter region to a colder one.
Transport of electrons dominates that of phonons in metals at moderate temperatures,
which explains why their thermal conductivities are typically larger than those of
dielectrics. Typical values of thermal conductivity for metallic elements at 300 K
range from 23 W/m- K for zirconium to 427 W/m-K for silver, whereas typical
values for dielectrics run from 0.12 W/m - K for paper to almost 3.0 W/m-K for
granite and marble (Baehr and Stephan, 1998). Diamond is anomalous in that it has
a thermal conductivity as high as 2310 W/m - K at 300 K (Ho et al., 1974).

As the temperature approaches absolute zero, both the thermal conductivity and
the specific heat tend toward zero, in accordance with the third law of thermodynam-
ics. In dielectrics, the change in conductivity decreases as 1/ T3, while in metals it
decreases as 1/T, owing to the transport of electrons. As the material warms, the
conductivity usually reaches a maximum and then decreases with increasing temper-
ature. The trend at higher temperatures is not universal, however, and the thermal
conductivity may still increase with temperature for some materials that melt or de-
compose before the maximum is reached. The molar specific heat of many simple
materials reaches approximately 3R at moderate temperatures, in accordance with
the observations of Dulong and Petit (see, e.g., Brown, 1967; Reif, 1965). Modeling
of materials such as glasses and amorphous polymers is less complete (Kittel, 1996).
Dashora (1994) examined the temperature dependence of the thermal diffusivity of
elastomers, and Eiermann (1966) discussed a resistive network model of heat con-
duction in amorphous polymers.

Some material systems, such as heterogeneous polymers (Bigg, 1995), biological
tissues (Chato, 1985), and composite materials (Dowding et al., 1996) have been
modeled using apparent thermal properties. In fact, these material systems are com-
posed of materials with different densities, thermal conductivities, and specific heats.
Prediction of the performance of material systems that include continuous fibers of
dispersed particles or voids within a matrix material is difficult. Measurement of ap-
parent properties may then be more expedient and accurate for a given system. Cooper
and Trezek (1971), for example, proposed correlations for the apparent conductivity
of biological soft tissue as functions of the mass fractions of water, protein, and fat.
Even so, tabulated and correlated values of the thermophysical properties of biolog-
ical materials must be used with caution because of potential anisotropy, specimen-
to-specimen variation, and changes due to denaturation of protein during heating.

2.3.3 Property Values of Solid Materials

Unlike gases and liquids, there is no standard, reference-quality computer package
for the calculation of thermophysical properties of solids. Perhaps the most extensive
compilation of solid properties comes from the Center for Information and Numerical
Data Synthesis and Analysis (CINDAS) at Purdue University, which was established
by Yeram S. Touloukian (1981) as the Thermophysical Properties Research Center
(TPRC). The reference materials produced by this group have been used extensively
as a resource for this part of the chapter. Tables of typical values for metallic alloys
and nonmetallic solids have been taken from the introductory text by Bejan (1993).



122 THERMOPHYSICAL PROPERTIES OF FLUIDS AND MATERIALS

Tables 2.8, 2.9, and 2.10 list the properties of solids that have been grouped into
categories of solid elements, solid metallic alloys, and miscellaneous nonmetallic
solids. Unlike those of fluids, the properties of solids vary little with changes in
pressure, and thus the tables in this section neglect the effects of pressure on solid
property values.

The thermal conductivities of elements are sensitive to even minute levels of im-
purity, especially at low temperatures, although the purity of the samples measured
is often omitted in reports of measurements. Even near room temperature, values
quoted by different sources may vary by 15% or more. The values of thermal con-
ductivity for all elements recommended by Ho et al. (1974), listed in Table 2.8, were
derived from critical and comprehensive evaluations by CINDAS of the data available
in the literature up to the early 1970s. Accuracy for the thermal conductivity values
may vary from 2 to 20%, depending on the purity and temperature levels. The reader
should refer to the original work for detailed information if requirements for accuracy
are high.

2.3.4 Measuring Thermophysical Properties of Solids

Measuring thermal conductivity and thermal diffusivity requires the development
of experimental approximations of boundary value problems. Carslaw and Jaeger
(1959) provide analytical solutions to many classical boundary value problems that
have been useful in the measurement of thermal transport properties. Reviews of
methods for measuring thermal transport properties may be found in Maglic et al.
(1984, 1992), Shirtliffe and Tye (1985), Parrott and Stuckes (1975), and Jakob (1955).
The American Society for Testing and Materials (ASTM) has established several
standards for measuring transport properties, and the National Institute of Standards
and Technology (NIST) can provide some standard reference materials (SRMs). As
noted above, sources of error include impurities in the sample and variables omitted
from the analysis, such as deformation of polymers (Choy et al., 1978; Greig and
Sahota, 1978; Doss and Wright, 2000). New methods of measurement are constantly
being developed to overcome such sources of error, and the results are published as
appropriate.

Thermal Conductivity Direct measurement of thermal conductivity has tradi-
tionally used steady-state methods. For materials of moderate to high thermal con-
ductivity (~10 to 500 W/m - K), axial heat flow, radial heat flow, and direct electrical
heating methods are often used (Maglic et al., 1984). Materials of lower thermal con-
ductivity are most commonly tested in using the guarded hot plate (thermal insulation
materials) or hot wire methods; the latter is a transient method. These methods can
provide high accuracy and simple data reduction but require a relatively long time to
reach steady state. This reduces their suitability for measuring properties of a material
that may change during measurement, such as biological tissues. Thermal conductiv-
ity is sometimes determined via indirect methods by measuring the diffusivity and
using the density and specific heat to calculate the conductivity. The 3w technique

(text continues on page 140)
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TABLE 2.8 Thermophysical Properties of Solid Elements®

Cp

ap

50
2736

1350

50

88.3

50
9872

100
2732
481
302
230

100
6724

46.4

100

195
990

100
9855
109

150
2726

248

150
6714

35.6

200

1109
301

200
9817
120

200
2719
797
237
109

200
6704

30.2

273

1624
218

273
9788
122

Aluminum (Al)
273 298
2706 2701
881 893
236 237
99.0 98.3

Antimony (Sb)
273 298
6688 6683
206 208
25.5 24.4
18.5 17.6

Beryllium (Be)
298 400
1850 1843
1764 2119
201 161
61.6 41.2

Bismuth (Bi)

298 350
9778 9758
123 126

400
2681
944
240
94.8

400
6660
214
21.3
15.0

500
1835
2317
139
32.7

400
9738
129

500
2661
994
236
89.2

400
6636
220
19.5
13.4

600
1826
2458
126
28.1

500
9700
134

600
2639
1044
231
83.8

600
6613
226
18.3
12.2

800
1807
2671
106
22.0

700
2616
1094
225
78.6

700
6590
232
17.4
11.4

1000
1785
2847
90.8
17.9

800
2591
1144
218
73.6

800
6568
238
16.8
10.7

1200
1763

78.7

900
2564
1194
210
68.6

900

244
16.7

1400
1739

69.4

(continued)
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TABLE 2.8

Thermophysical Properties of Solid Elements® (Continued)

ap

32.6

50

404

50

120

16.5
15.4

100

190

100
8799

103

100
1568

9.69
8.2

150

93.5

200
8724

99.3

200
1559

222

Bismuth (Bi) (Continued)
8.20 7.89 7.39

6.9 6.5 6.0
Boron (B)

200 273 298
— — 2500
— 1061 1104

55.1 31.8 27.4
— — 9.9

Cadmium (Cd)

273 298 373

8666 8646 8585

228 231 237

97.5 96.9 95.3
49.3 48.6 46.7

Calcium (Ca)
273 298 350
1552 1549 1544
649 658 676
206 201 193
204 197 185

7.04
5.6

400
2496
1277
16.8
53

400
8562
240
94.7
46.1

400
1539
693
188
176

6.63
5.1

600
2488
1618
10.6
2.6

473
8499
247
92.8
443

500
1528
728
181
163

800
2479
1958
9.60
2.0

500
8475
249
92.0
43.6

573
1520
754
179
156

1000
2470
2299
9.85
1.7

573
8405
256
89.1
414

600
1517
763
178
154

1100
2465
2469
10.1
1.7

800

774
153

1300
2455

1000

128
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T

p (amorphous)
¢, (graphite)

X\ (amorphous)

Cp

ap

50

0.377

50

3.79

50
1962

44.7

50

317

100

0.668

100

6.00

100
1944

39.7

100

190
159

150

0.938

150

7.66

150
1926

37.8

200

382
111

200

1.18

200

9.00

200
1907

36.8

273

454
96.5

Carbon (C)

273 298
— 1950
633 744
1.50 1.59
Cerium (Ce)
273 298
— 6899
186 187
10.8 11.3
— 8.8
Cesium (Cs)
273 298
1880 1871
218 232
36.1 35.9
88.0 82.5

Chromium (Cr)

298 400
7139 7124
460 484
93.9 90.9
28.6 26.3

400
1948
1040
1.89

400
6888
190
133
10.1

600
7086
532
80.7
21.4

600
1944
1364
2.19

500
6875
194
15.0
11.3

800
7042
579
71.3
17.5

800
1940
1595
2.37

600
6861
198
16.5
12.2

1000
6995
627
65.4
14.9

1000
1936
1800
2.53

700
6846
201
18.0
13.1

1200
6944
674
61.9
13.2

1500
1924

3.48

800
6831
205
19.3
13.8

1500
6860
746
572
11.2

2500
1892

1000
6795

21.8

1800
6761
817
52.6
9.5

(continued)
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TABLE 2.8

Thermophysical Properties of Solid Elements® (Continued)

50

299

50

1250

50

421

50
7918

405

100
8919
234
167
80.0

100
9009
254
482
210.6

100
19,030
109
327
157.7

100
7913
216
134
78.4

200
8892
376
122
36.5

200
8973
357
413
128.9

200
18,950
124
323
137.4

200
7895
384
94.0
31.0

273
8869
428
105
27.7

273
8942
384
403

117.2

273

18,900

128
319

132.4

273
7876
440
83.5
24.1

Cobalt (Co)
298 400
8860 8823
434 458
100 85.4
26.0 21.1

Copper (Cu)
298 400
8931 8884
387 397
401 393
116.1 111.5

Gold (Au)
298 400
18,880 18,790
128 131
318 311
131.3 125.9

Iron (Fe)
298 400
7869 7838
452 501
80.4 69.5
22.6 17.7

600
8744
505
67.4
15.3

600
8788
416
379
103.7

600
18,620
138
298
116.4

600
7772
596
54.7
11.8

800
8642
553
58.2
12.2

800
8686
435
366
96.8

800
18,440
144
284
107.2

800
7699
692
433
8.1

1000
8561
600
52.1
10.1

1000
8576
454
352
90.3

1000
18,250
150
270
98.8

1000
7624
787
32.8
5.5

1200
8475
647
49.3
8.99

1100
8519
464
346
87.5

1100
18,140
153
262
94.5

1200
7632
629
28.3
59

1400

694
41.7

1200
8458
474
339
84.6

1200
18,030
156
255
90.7

1400
7527
629
31.2
6.6

1700

765
43.0

1300
8396
483
332
81.8

1300
17,920
159
247
86.7

1600
7424
629
33.0
7.1
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Cp

ap

>0 o N

Q
o]

50

43.6

50
547

235

50

465

50

4.06

100
11,520
118
39.7
29.2

100
546

104

100
1761
648
169
148.1

100

5.79

200
11,430
125
36.7
25.7

200
541

90.1

200
1751
929
159
91.7

200
7474

7.17

Lead (Pb)

273 298 400
11,360 11,340 11,230
128 129 133
35.6 353 34.0
24.5 242 22.8

Lithium (Li)

273 298 300
535 534 533
3373 3644 3666
85.9 84.8 84.7
47.6 43.6 43.3
Magnesium (Mg)
273 298 400
1742 1739 1726
973 1004 1086
157 156 153
92.6 89.3 81.6

Manganese (Mn)

273 298 400
7440 7428 7376
442 456 514
7.68 7.81
2.3 23

500
11,130
137
32.8
21.5

350
530
4208
82.8
37.1

500
1711
1135
151
1.7

600
7257
628

600

11,010

141
314
20.2

400
526
4751
80.4
322

600
1696
1172
149
74.9

800
7109
741

450
521
5293

700
1680
1204
147
72.7

900
7020
198

800
1663
1232
146
71.2

1000

855

900
1645
1259
145
70.0

(continued)
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TABLE 2.8

Thermophysical Properties of Solid Elements® (Continued)

50 100
— 232
400 164
50 100
— 21,500
— 101
109 71.5
— 35.6
50 100
911 904
112 107
50 100
2422 2422
2680 884

200

383
107

200
21,500
127
72.6
26.6

200
888

104

200
2421

264

273

428
94.1

273
21,460
134
71.7
25.0

273
874
723
104
165

273
2420
678
168
102.3

Nickel (Ni)
298 400
8898 8860
440 486
90.0 80.2
23.2 18.6

Platinum (Pt)
298 400
21,450 21,390
134 137
71.6 71.8
24.8 24.5

Potassium (K)

298 300
869 869
738 739
103 102
160 160
Silicon (Si)
298 400
2420 2418
713 798
149 98.9
86.4 51.3

600
8779
577
65.6
12.9

600
21,270
142
732
24.3

323
864
753
100
154

600
2413
868
61.9
29.5

800
8694
550
67.6
14.1

800
21,140
147
75.6
24.4

336
861
760
99

150

800
2407
905
422
19.4

1000
8606
563
71.8
14.8

1000
21,010
152
78.7
24.7

1000
2401
932
31.2
13.9

1200
8516
576
76.2
15.5

1400
20,720
162
87.1
26.0

1200
2394

25.7

1500
8372
595
82.6
16.6

1800
20,400
172
96.1
274

1400
2388

235

1700

608

1900
20,310

97.8

1600
2381

22.1
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Cp

ap

>N

Q
o]

50

700

50

158

50

72.0

50

115

100

187
444

100
1007

136

100

59.2

100
5815
189
85.3
77.6

200
10,550
225
430
181

200
990

142

200

57.5

200
5783
214
733
59.2

273
10,500
233
429
175

273
975
1178
142
124

273

143
574

273
5757
224
68.2
52.8

Silver (Ag)

298 400
10,490 10,430
235 240
429 425
174 169
Sodium (Na)
298 300
970 970
1202 1204
142 141
122 121

Tantalum (Ta)

298 400
16,600 16,570
143 146
57.5 57.8
24.1 23.9
Tin (Sn)
298 400
7307 7255
228 246
66.8 62.2
40.0 349

500 600
10,360 10,300
246 252
419 412
164 159
371

955

1274

132

109

600 800
16,500 16,430
150 155
58.6 594
23.6 233
500

7199

263

59.6

31.5

700 800
10,230 10,160
258 264
404 396
153 148
1000 1500
16,360 16,180
160

60.2 62.2
23.1

1000 1200
10,010 9855
275 287
379 361
137 128
2000 3000
15,970 15,340
64.1 66.6

(continued)
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TABLE 2.8

Thermophysical Properties of Solid Elements® (Continued)

50

374

50

428

50

18.9

50

40.5

100

30.5

100

208

100

21.7

100

35.8

200
4510

24.5

200

186

200

25.1

200

313

273
4502
298
224
16.7

273

182
177

273

117
27.0

273

479
30.7

Titanium (Ti)

298 400
4499 4487
382 582
21.9 20.4
12.7 7.8

Tungsten (W)

298 400

19,300 19,270

187 207

174 159

48.1 39.8
Uranium (U)

298

19,070

117

27.5

12.4
Vanadium (V)

298 400

6198 6214

481 489

30.7 31.3

10.3 10.3

600
4461
733
19.4
59

500
19,250
227
146
334

600
6244
505
333
10.6

800
4432

19.7

1000
19,110
326
118
19.0

800
6272
521
35.7
10.9

1000
4402

20.7

1500
18,950
424
107
13.3

1000
6298
537
38.2
11.3

1200
4379

22.0

2000
18,790
523
100
10.2

1400
6339
569
43.4
12.0

1400
4348

23.6

3000
18,380

914

1800
6364
601
48.4
12.7

1600
4315

25.3

3600
18,050

89.5

2000
6369

50.9



R4

50
o J—
Cp —
PN 205
op —

100
7258
295
117
54.6

200
7199
366
118
44.8

273
7153
383
117
42.7

Zinc (Zn)

298
7137
387
116
41.9

400
7070
405
111
38.8

500
7002
422
107
36.2

600
6933
440
103
33.8

“T, temperature (K); p, density (kg/m3); cp, heat capacity (J/kg - K); \, thermal conductivity (W/m - K); ap, thermal diffusivity (10~% m%s). The heat capacities are from
Liley et al. (1997). The densities are calculated from the formulations of thermal linear expansion by Touloukian et al. (1975, 1977). Those at temperatures higher than
273 K are calculated from the formulations compiled by Liley et al. (1997). The uncertainties of these formulations are about 2% for most elements listed.
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N TABLE 2.9 Thermophysical Properties of Metallic Alloys

Properties at 20°C (293 K) Thermal Conductivity N (W/m - K)
o cp N oap —100°C  0°C 100°C 200°C 400°C 600°C
(kg/m®) (kI/kg-K) (W/m-K) (cm?s) 173K 273K 373K 473K 673K 873K

Aluminum

Duralumin (94-96% Al, 3-5% Cu, trace Mg) 2787 0.883 164 0.667 126 159 182 194

Silumin (87% Al, 13% Si) 2659 0.871 164 0.710 149 163 175 185
Copper

Commercial 8300 0.419 372 1.07

Aluminum bronze (95% Cu, 5% Al) 8666 0.410 83 0.233

Brass (70% Cu, 30% Zn) 8522 0.385 111 0.341 88 — 128 144 147

Brass (60% Cu, 40% Zn) 8400 0.376 113 0.358

Bronze (75% Cu, 25% Sn) 8666 0.343 26 0.086

Bronze (85% Cu, 6% Sn, 9% Zn, 1% Pb) 8800 0.377 61.7 0.186

Constantan (60% Cu, 40% Ni) 8922 0.410 22.7 0.161 21 — 22.2 26

German silver (62% Cu, 15% Ni, 22% Zn) 8618 0.394 24.9 0.073 19.2 — 31 40 48
Iron

Cast (5% C) 7272 0.420 52 0.170

Carbon steel, 0.5% C 7833 0.465 54 0.148 — 55 52 48 42 35

Carbon steel, 1.0% C 7801 0.473 43 0.117 — 43 43 42 36 33

Carbon steel, 1.5% C 7753 0.486 36 0.097 — 36 36 36 33 31

Chrome steel, 1% Cr 7865 0.460 61 0.167 — 62 55 52 42 36

Chrome steel, 5% Cr 7833 0.460 40 0.111 — 40 38 36 33 29

Chrome steel, 20% Cr 7689 0.460 22 0.064 — 22 22 22 24 24
Chrome-nickel steel

15% Cr, 10% Ni 7865 0.460 19 0.053
20% Cr, 15% Ni 7833 0.460 15.0 0.042

Invar (36% Ni) 8137 0.460 10.7 0.029
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Manganese steel 1% Mn
Manganese steel 5% Mn
Nickel-chrome steel
80% Ni, 15% Cr
20% Ni, 15% Cr
Silicon steel, 1% Si
Silicon steel, 5% Si
Stainless steel, type 304
Stainless steel, type 347
Tungsten steel, 2% W
Tungsten steel, 10% W
Wrought (0.5% CH)
Magnesium
6-8% Al, 1-2% Zn electrolytic
2% Mn
Manganese
Manganin (84% Cu, 4% Ni, 12% Mn)
Monel 505 (at 60°C)
Nickel
Nichrome (24% Fe, 16% Cr)
90% Ni, 10% Cr

7865
7849

8522
7865
7769
7417
7817
7817
7961
8314
7849

1810
1778

8400
8360

8250
8666

0.460
0.460

0.460
0.460
0.460
0.460
0.460
0.420
0.444
0.419
0.460

1.000
1.000

0.406
0.544

0.448
0.444

50
22

17
14
42
19
13.8
15
62
48
59

66
114

21.9
19.7

12.6
17

0.139
0.064

0.045
0.039
0.116
0.056
0.040
0.044
0.176
0.139
0.163

0.360
0.640

0.064
0.043

0.034
0.044

93

62

59

52
111

17.1

15.1

15
16
59
57

62
125

18.9

15.1

17
18
54
52

74
130

20.9

21
20
48

45

24.6

25
23
45

36

Source: Bejan (1993), with permission.



-
w
=

TABLE 2.10 Thermophysical Properties of Nonmetallic Solids

T 0 Cp N op
°O) (kg/m>) (kJ/kg - K) (W/m - K) (cm?/s)
Asbestos
Cement board 20 0.6
Felt (16 laminations per centimeter) 40 0.057
Fiber 50 470 0.82 0.11 0.0029
Sheet 20 0.74
50 0.17
Asphalt 20 2120 0.92 0.70 0.0036
Bakelite 20 1270 1.59 0.230 0.0011
Bark 25 340 1.26 0.074 0.0017
Brick
Carborundum 1400 11.1
Cement 10 720 0.34
Common 20 1800 0.84 0.38-0.52 0.0028-0.0034
Chrome 100 1.9
Facing 20 1.3
Firebrick 300 2000 0.96 0.1 0.00054
Magnesite (50% MgO) 20 2000 2.68
Masonry 20 1700 0.84 0.66 0.0046
Silica (95% SiO,) 20 1900 1.07
Zircon (62% Z1O,) 20 3600 2.44
Brickwork, dried in air 20 1400-1800 0.84 0.58-0.81 0.0049-0.0054
Carbon
Diamond (type Ilb) 20 3250 0.51 1350 8.1
Graphite (firm, natural) 20 2000-2500 0.61 155 1.02-1.27
Carborundum (SiC) 100 1500 0.62 58 0.62

Cardboard 0-20 ~790 ~0.14
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Celluloid
Cement (portland, fresh, dry)
Chalk (CaCO3)
Clay
Fireclay
Sandy Clay
Coal
Anthracite
Brown coal
Bituminous in situ
Dust
Concrete, made with gravel, dry
Cinder
Cork
Board
Expanded
Cotton
Earth
Clayey (28% moisture)
Coarse-grained
Diatomaceous
Sandy (8% moisture)
Fat
Felt, hair

Fiber insulating board
Glass

Borosilicate

Fiber

20
20
20
20
100
20
20
900
900

30
20
24

20
20
30

20
20
20
20
20
-7
94
20

30
20

1380
3100
2000-3000
1450
1700-2000
1780
1200-1500
1500

1300
730
2200

150
120
81

1500
2040
466
1500
910
130-200
130-200
240

2230
220

1.67
0.75
0.74
0.88
0.84

1.26

1.3

0.88

1.88

1.15

1.84

0.88

1.93

0.23
0.3
22
1.28
0.5-1.2
0.9
0.26
0.2
0.1
0.5-0.7
0.12
1.28
0.76

0.042
0.036
0.059

1.51
0.59
0.126
1.05
0.17
0.032-0.04
0.054-0.051
0.048

1.09
0.035

0.001
0.0013
0.01-0.015

0.01
0.35-0.71
0.0014-0.0017
0.003-0.004
0.0013
0.0066
0.0015
0.0063
0.0016

0.0031

0.001

(continued)



% TABLE 2.10 Thermophysical Properties of Nonmetallic Solids (Continued)

T 0 cp N op
(°C) (kg/m?) (kJ/kg - K) (W/m-K) (cm?/s)
Glass (Continued)
Lead 20 2890 0.68 0.7-0.93 0.0036-0.0047
Mirror 20 2700 0.80 0.76 0.0035
Pyrex 60-100 2210 0.75 1.3 0.0078
Quartz 20 2210 0.73 1.4 0.0087
Window 20 2800 0.80 0.81 0.0034
Wool 0 200 0.66 0.037 0.0028
Granite 20 2750 0.89 29 0.012
Gypsum 20 1000 1.09 0.51 0.0047
Ice 0 917 2.04 2.25 0.012
Ivory 80 0.5
Kapok 30 0.035
Leather, dry 20 860 1.5 0.12-0.15 ~0.001
Limestone (Indiana) 100 2300 0.9 1.1 ~0.005
Linoleum 20 535 0.081
Lunar surface dust, in high vacuum 250 1500£300 ~0.6 ~0.0006
Magnezia (85%) 38-204 0.067-0.08
Marble 20 2600 0.81 2.8 0.013
Meat
Beef 25 ~0.0014
Chuck 43-66 1060 0.0012
Liver 27 0.5
Eye of loin, parallel to fiber 2-17 0.3
Ground 6 0.35
Lean 2-47 0.45

Chicken
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Muscle, perpendicular to fiber
Skin
Egg, white
Egg, whole
Egg, albumen gel, freez-dried
Egg, yolk
Fish
Cod fillets
Halibut
Herring
Salmon, perpendicular to fiber

Salmon, freeze-dried, parallel to fiber

Horse
Lamb, lean
Pork
Ham, smoked
Fat
Lean, perpendicular to fiber
Lean, parallel to fiber
Pig skin
Sausage
23% fat
15% fat
Seal, blubber
Turkey
Breast, perpendicular to fiber

Breast, parallel to fiber
Leg, perpendicular to fiber

5-27
5-27
33-38
-8
41
24-38

—19
43-66
—19
-23
-29
25
7-57

43-66
25
27-57

7-57
25

25
25
(=13)~(=2)

-3
2
-8
2

1080

1090

0.41
0.03
0.55
0.46
0.04
0.42

1.17

0.8
1.3
0.04
0.41
0.45

0.15
0.52
0.45
0.37

0.38
0.43
0.21

1.05
0.7
14
0.7

0.0014

0.0014

(continued)



& TABLE 2.10 Thermophysical Properties of Nonmetallic Solids (Continued)

T P Cp N op
°C) (kg/m?) (kl/kg - K) (W/m-K) (cm?¥s)

Mica 20 2900 0.52
Mortar 20 1900 0.8 0.93 0.0061
Paper 20 700 1.2 0.12 0.0014
Paraffin 30 870-925 2.9 0.24-0.27 ~0.001
Plaster 20 1690 0.8 0.79 0.0058
Plexiglas (acrylic) 20 1180 1.44 0.184 0.0011
Plums —16 0.3
Polyethylene 20 920 2.30 0.35 0.0017
Polystyrene 20 1050 0.157
Polyurethane 20 1200 2.09 0.32 0.0013
Polyvinyl chloride (PVC) 20 1380 0.96 0.15 0.0011
Porcelain 95 2400 1.08 1.03 0.004
Quartz 20 2100-2500 0.78 1.40 ~0.008
Rubber

Foam 20 500 1.67 0.09 0.0011

Hard (ebonite) 20 1150 2.01 0.16 0.0006

Soft 20 1100 1.67 ~0.2 ~0.001

Synthetic 20 1150 1.97 0.23 0.001
Salt (rock salt) 0 2150-2500 0.92 7 0.003-0.036
Sand

Dry 20 0.58

Moist 20 1640 1.13
Sandstone 20 2150-2300 0.71 1.6-2.1 0.01-0.013
Sawdust, dry 20 215 0.07
Silica stone (85% SiC) 700 2720 1.05 1.56 0.055

Silica aerogel 0 140 0.024
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Silicon
Silk (artificial)
Slag
Slate
Parallel to lamination
Perpendicular to lamination
Snow, firm
Soil (see also Earth)
Dry
Wet
Strawberries, dry
Sugar (fine)
Sulfur
Teflon (polytetrafluoroethylene)
Wood, perpendicular to grain
Ash
Balsa
Cedar
Mahogany
Oak
Pine, fir, spruce
Plywood
Wool
Sheep
Mineral
Slag

20
35
20

20
20

15
15
—18

20
20

15
15
15
20
20
20
20

20
50
25

2330
100
2500-3000

2700
2700
560

1500
1930

1600
2070
2200

740
100
480
700
600-800
416421
590

100
200
200

0.703

1.33
0.84

0.75
0.75
2.1

1.84

1.25
0.72
1.04

24
2.72

1.72
0.92
0.8

153
0.049
0.57

2.9
1.83
0.46

1
2
0.59
0.58
0.27
0.23

0.14-0.3
0.05
0.11
0.16
0.17-0.25
0.15
0.11

0.036
0.042
0.05

0.94
0.0037
0.0023-0.0027

0.014
0.009
0.0039

0.004

0.0029
0.0018
0.001

~0.0012
0.0012

0.0021
0.0025
0.0031

Source: Bejan (1993), with permission.
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(Cahill, 1990) is being applied widely to measure the thermal conductivity of thin
films, especially for microelectronic applications. A single metal strip is fabricated
on the film to be tested, which is in turn mounted on a substrate of another material
(e.g., silicon). The metal film acts as both heater and temperature sensor. Analysis of
the oscillation of electrical resistance at a frequency of 3w, in response to oscillations
of power and temperature of 2w, provides the in-plane thermal conductivity.

Specific Heat Differential scanning calorimetry (DSC) has become widely used
because modern commercial instrumentation allows simple use, although the con-
struction and control system of the device may be complex (Richardson, 1992). In
DSC, a small test sample and a reference sample of similar size are placed in adjacent
separate holders. The samples are heated simultaneously at a specified rate, often 1
to 10°C/min. Thermocouples are typically used to monitor the temperature of each
sample. The change in enthalpy of the sample is then determined by measurement
of how much energy must be added to the test sample to make its temperature track
that of the reference. By keeping the sample and the reference the same size and
temperature and making the two holders of the same material, the effects of para-
sitic convective and radiative losses are automatically canceled in the comparison of
the two samples. Modulating the temperature rise of a DSC (e.g., by adding an ac
component to the steady rise in temperature) provides additional insight into phase
transitions in polymers.

Thermal Diffusivity Measurements of thermal diffusivity are popular because
they typically require only measurement of a temperature history due to a thermal
perturbation of the sample, which is easier than measuring heat flux as required in
many steady-state methods. Formerly hampered by complex error analysis, micro-
processors have made commercial devices relatively easy to use. The flash method
(Parker et al., 1961) is a standard method for measuring the out-of-plane component
of diffusivity in a variety of materials (ASTM, 1992). Extensions of the flash method
have been made to allow measuring components of o (Donaldson and Taylor, 1975;
Mallet et al., 1990; Fujii et al., 1997; Doss and Wright, 2000). Other methods have
been employed to measure multiple components of o in anisotropic thin films (Ju
et al., 1999), carbon—carbon composite specimens (Dowding et al., 1996), and in
elongated polymers (Broerman et al., 1999).

Thermal Expansion The linear coefficient of expansion is easier to measure than
the volumetric coefficient of expansion. Usually, a cylindrical specimen is heated and
its change in length measured either mechanically or with optical methods, such as
interferometry.

Heat conduction in solids is a mature field. Even so, new materials, applications,
and methods of analysis require new measurement of, and increased accuracy in,
the values of thermal transport properties. New challenges exist for properties in
biological systems, micro- and nanoscale devices, and composites.



NOMENCLATURE

NOMENCLATURE

Roman Letter Symbols

a molar Helmholtz energy, J/mol

Cp isobaric (constant pressure) heat capacity, J/mol - K

Cy isochoric (constant volume) heat capacity, J/mol - K

f equivalent substance reducing ratio for temperature,
dimensionless

fint factor in Eucken correlation for dilute-gas thermal
conductivity, dimensionless

F, F, multiplier for thermal conductivity and viscosity,
dimensionless

F; mixture parameter, dimensionless

g molar Gibbs energy, J/mol

h molar enthalpy, J/mol

i enthalpy per unit volume, J/m?

k Boltzmann constant, J/K

L length, m

M molar mass, g/mol

N coefficient, dimensionless

p pressure, MPa

Pr Prandtl number, dimensionless [= nc, /)]

q heat flux vector, W/m?

R molar gas constant, J/(mol - K)

s molar entropy, J/mol - K

T temperature, K

u molar internal energy, J/mol

coefficient, dimensionless

v molar volume, dm?/mol

w speed of sound, m/s

X composition (mole fraction), dimensionless

Z compressibility factor, dimensionless [= p/pRT]

Greek Letter Symbols

o reduced Helmbholtz energy, dimensionless [= a/RT]

ap thermal diffusivity, m*/s [= \/pc,]

o thermal diffusivity tensor, m?/s

B coefficient in critical region terms, dimensionless

Y coefficient in critical region terms, dimensionless

d reduced density, dimensionless [= p/p,]

e/k molecular energy parameter, K

C mixture parameter, dimensionless

n viscosity, dimensionless pPa - s

0 shape factor for temperature, dimensionless
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N thermal conductivity, W/m - K
thermal conductivity tensor, W/m - K
v coefficient of linear thermal expansion, K!
Ky coefficient of volumetric thermal expansion, K~!
v kinematic viscosity, m?/s
£ mixture parameter, dimensionless
P molar density, mol/dm?3
Om mass density, kg/m?
o molecular size parameter, nm
surface tension, N/m
T inverse reduced temperature, [= 7./ T], dimensionless
[0} shape factor for density, dimensionless
10 coefficient in critical region terms, dimensionless
) fundamental frequency in the 3w method, dimensionless
Q2 collision integral, dimensionless
Superscripts
0 ideal gas property
crit critical point
E excess-like property
idmix ideal mixture
int thermal conductivity arising from internal motions
r residual or real gas property
trans translational part of thermal conductivity
* dilute-gas (ideal gas) state
Subscripts
0 reference state property
c critical point property
i,J pure fluid properties
mix mixture quantity
red reducing property
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GRAPHS OF THERMOPHYSICAL PROPERTIES

The following figures show property behavior for several groups of similar fluids in
the gas phase. The fluid groups include atmospheric gases, hydrocarbons, refriger-
ants, and other inorganic gases. The plots are given to allow qualitative comparisons
of properties of the various fluids. Properties displayed include those important to
heat transfer calculations, including thermal conductivity, viscosity, thermal diffusiv-
ity and Prandtl number. These plots provide assistance in the selection of working
fluids in thermal system design. The plots were constructed using values calculated
from the NIST databases.
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3.1 INTRODUCTION

This chapter is concerned with the characterization of conduction heat transfer, which
is a mode that pervades a wide range of systems and devices. Unlike convection,
which pertains to energy transport due to fluid motion and radiation, which can
propagate in a perfect vacuum, conduction requires the presence of an intervening
medium. At microscopic levels, conduction in stationary fluids is a consequence of
higher-temperature molecules interacting and exchanging energy with molecules at
lower temperatures. In a nonconducting solid, the transport of energy is exclusively
via lattice waves (phonons) induced by atomic motion. If the solid is a conductor, the
transfer of energy is also associated with the translational motion of free electrons.

The microscopic approach is of considerable contemporary interest because of its
applicability to miniaturized systems such as superconducting thin films, microsen-
sors, and micromechanical devices (Duncan and Peterson, 1994; Tien and Chen,
1994; Tzou, 1997; Tien et al., 1998). However, for the vast majority of engineer-
ing applications, the macroscopic approach based on Fourier’s law is adequate. This
chapter is therefore devoted exclusively to macroscopic heat conduction theory, and
the material contained herein is a unique synopsis of a wealth of information that is
available in numerous works, such as those of Schneider (1955), Carslaw and Jaeger
(1959), Gebhart (1993), Ozisik (1993), Poulikakos (1994), and Jiji (2000).

3.2 BASIC EQUATIONS

3.2.1 Fourier’s Law

The basic equation for the analysis of heat conduction is Fourier’s law, which is based
on experimental observations and is

aT
q; = —kn— 3.1
on

where the heat flux g, (W/m?) is the heat transfer rate in the n direction per unit area
perpendicular to the direction of heat flow, k,, (W/m - K) is the thermal conductivity
in the direction n, and 97 /0n (K/m) is the temperature gradient in the direction
n. The thermal conductivity is a thermophysical property of the material, which is,
in general, a function of both temperature and location; that is, k = k(T, n). For
isotropic materials, k is the same in all directions, but for anisotropic materials
such as wood and laminated materials, k is significantly higher along the grain or
lamination than perpendicular to it. Thus for anisotropic materials, k can have a
strong directional dependence. Although heat conduction in anisotropic materials
is of current research interest, its further discussion falls outside the scope of this
chapter and the interested reader can find a fairly detailed exposition of this topic in
Ozisik (1993).

Because the thermal conductivity depends on the atomic and molecular structure
of the material, its value can vary from one material to another by several orders of
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magnitude. The highest values are associated with metals and the lowest values with
gases and thermal insulators. Tabulations of thermal conductivity data are given in
Chapter 2.

For three-dimensional conduction in a Cartesian coordinate system, the Fourier
law of eq. (3.1) can be extended to

q" =iq} +jq; +kq! (32)
where
aoT aT oT
V= —k— "= —k— V= —k— 33
4x ox 4y dy 4 0z (3-3)

and i, j, and k are unit vectors in the x, y, and z coordinate directions, respectively.

3.2.2 General Heat Conduction Equations

The general equations of heat conduction in the rectangular, cylindrical, and spherical
coordinate systems shown in Fig. 3.1 can be derived by performing an energy balance.
Cartesian coordinate system:

0 oT 0 oT 0 oT aT
8x<8x>+8y<8y>+8z<81>+q Yy (34
Cylindrical coordinate system:
19 oT 19 oT 0 oT aT
—— | kr— —— | k— — | k— ] = pc— 35
r8r<r8r>+r28¢<8¢>+az<Bz)+q L (3-5)
Spherical coordinate system:
19 ,0T 1 d oT
——kr'— )|+ ———— | k—
r2 or or r2sin20 09 ad

o 0 ne?T = T (3.6)
—_— SIn 9 —— = —_— .
+2sin0 90 90 ) T4 TPy

In egs. (3.4)—(3.6), ¢ is the volumetric energy addition (W/m?), p the density of
the material (kg/m?), and ¢ the specific heat (J/kg - K) of the material. The general
heat conduction equation can also be expressed in a general curvilinear coordinate
system (Section 1.2.4). Ozisik (1993) gives the heat conduction equations in prolate
spheroidal and oblate spheroidal coordinate systems.

3.2.3 Boundary and Initial Conditions

Each of the general heat conduction equations (3.4)—(3.6) is second order in the
spatial coordinates and first order in time. Hence, the solutions require a total of six
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qz + dz
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X

Figure 3.1 Differential control volumes in (a) Cartesian, (b) cylindrical, and (c) spherical
coordinates.

boundary conditions (two for each spatial coordinate) and one initial condition. The
initial condition prescribes the temperature in the body at time ¢+ = 0. The three
types of boundary conditions commonly encountered are that of constant surface
temperature (the boundary condition of the first kind), constant surface heat flux (the
boundary condition of the second kind), and a prescribed relationship between the
surface heat flux and the surface temperature (the convective or boundary condition
of the third kind). The precise mathematical form of the boundary conditions depends
on the specific problem.

For example, consider one-dimensional transient condition in a semi-infinite solid
that is subject to heating at x = 0. Depending on the characterization of the heating,
the boundary condition at x = 0 may take one of three forms. For constant surface
temperature,
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TO,t) =T, 3.7
For constant surface heat flux,
aT (0, t
ox
and for convection at x = 0,
aT (0, ¢t
—k ; ) =h[Tsw — T(0,1)] (3.9
X

where in eq. (3.9), h/(W/m?- K) is the convective heat transfer coefficient and T, is
the temperature of the hot fluid in contact with the surface at x = 0.

Besides the foregoing boundary conditions of eqs. (3.7)—(3.9), other types of
boundary conditions may arise in heat conduction analysis. These include bound-
ary conditions at the interface of two different materials in perfect thermal contact,
boundary conditions at the interface between solid and liquid phases in a freezing
or melting process, and boundary conditions at a surface losing (or gaining) heat
simultaneously by convection and radiation. Additional details pertaining to these
boundary conditions are provided elsewhere in the chapter.

3.3 SPECIAL FUNCTIONS

A number of special mathematical functions frequently arise in heat conduction anal-
ysis. These cannot be computed readily using a scientific calculator. In this section
we provide a modest introduction to these functions and their properties. The func-
tions include error functions, gamma functions, beta functions, exponential integral
functions, Bessel functions, and Legendre polynomials.

3.3.1 Error Functions

The error function with argument (x) is defined as
£(r) = — / - dt (3.10)
erf(x) = — e .
77 Jo

where ¢ is a dummy variable. The error function is an odd function, so that
erf(—x) = —erf(x) (3.11)
In addition,
erf(0) =0 and erf(oo) =1 (3.12)

The complementary error function with argument (x) is defined as

erfe(x) = 1 —erf(x) = % /oo e dt (3.13)
T Jx
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The derivatives of the error function can be obtained by repeated differentiations
of eq. (3.10):

 erf(r) = ——e*  and @ f(x) 2 e (3.14)
—erf(x) = —e and — erf(x) = ———=xe .
dx JT dx? JT
The repeated integrals of the complementary error function are defined by
o0
i" erfc(x) = / i"Lerfe(r) dt n=1,2,3,..) (3.15)
X
with
.0 1 2 7X2
i~ erfc(x) =erfc(x) and i~ erfc(x) = ——e (3.16)
JT
The first two repeated integrals are
 erfe(x) = ——e* — xerfe(x) (3.17)
i erfc(x) = ——e ™ — xerfc(x .
JT
i* erfe(x) = ! (1 +2x?) erfe(x) — 2 e (3.18)
4 JT '

Table 3.1 lists the values of erf (x), d erf (x)/dx, d* erf (x) /dx?, and d* erf (x) /d x>
for values of x from O to 3 in increments of 0.10. Table 3.2 lists the values of
erfc(x), i erfc(x), i? erfe(x), and i® erfc(x) for the same values of x. Both tables
were generated using Maple V (Release 6.0).

3.3.2 Gamma Function

The gamma function, denoted by I'(x), provides a generalization of the factorial 7!
to the case where n is not an integer. It is defined by the Euler integral (Andrews,
1992):

['(x) = /OotHe*f dt (x > 0) (3.19)
0

and has the property
'x+1)=xI'x) (3.20)
which for integral values of x (denoted by n) becomes
I'n+1) =n! (3.21)

Table 3.3 gives values of I'(x) for values of x from 1.0 through 2.0. These values
were generated using Maple V, Release 6.0.
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TABLE 3.1 Values of erf(x), d erf(x)/dx, d* erf(x)/dx?, and d3 erf (x)/dx3

x erf(x) derf(x)/dx d?erf(x)/dx? d? erf (x) /dx>
0.00 0.00000 1.12838 0.00000 —2.25676
0.10 0.11246 1.11715 —0.22343 —2.18962
0.20 0.22270 1.08413 —0.43365 —1.99481
0.30 0.32863 1.03126 —0.61876 —1.69127
0.40 0.42839 0.96154 —0.76923 —1.30770
0.50 0.52050 0.87878 —0.87878 —0.87878
0.60 0.60386 0.78724 —0.94469 —0.44086
0.70 0.67780 0.69127 —0.96778 —0.02765
0.80 0.74210 0.59499 —0.95198 0.33319
0.90 0.79691 0.50197 —0.90354 0.62244
1.00 0.84270 0.41511 —0.83201 0.83021
1.10 0.88021 0.33648 —0.74026 0.95560
1.20 0.91031 0.26734 —0.64163 1.00521
1.30 0.93401 0.20821 —0.54134 0.99107
1.40 0.95229 0.15894 —0.44504 0.92822
1.50 0.96611 0.11893 —0.35679 0.83251
1.60 0.97635 0.08723 —0.27913 0.71877
1.70 0.98379 0.06271 —0.21322 0.59952
1.80 0.98909 0.04419 —0.15909 0.48434
1.90 0.99279 0.03052 —0.11599 0.37973
2.00 0.99532 0.02067 —0.08267 0.28934
2.10 0.99702 0.01372 —0.05761 0.21451
2.20 0.99814 0.00892 —0.03926 0.15489
2.30 0.99886 0.00569 —0.02617 0.10900
2.40 0.99931 0.00356 —0.01707 0.07481
2.50 0.99959 0.00218 —0.01089 0.05010
2.60 0.99976 0.00131 —0.00680 0.03275
2.70 0.99987 0.76992 x 103 —0.00416 0.02091
2.80 0.99992 0.44421 x 1073 —0.00249 0.01305
2.90 0.99996 0.25121 x 1073 —0.00146 0.00795
3.00 0.99997 0.13925 x 1073 —0.83552 x 1073 0.00473

The incomplete gamma function is defined by the integral (Andrews, 1992)
[o¢]
I(a,x) = / e dt (3.22)
X

Values of I'(1.2, x) for 0 < x < 1 generated using Maple V, Release 6.0 are given in
Table 3.4.

3.3.3 Beta Functions
The beta function, denoted by B(x,y), is defined by

1
B(x,y) = / (1= tar (3.23)
0



170

CONDUCTION HEAT TRANSFER

TABLE 3.2 Values of erfc(x), i erfc(x), i% erfe(x), and i3 erfe(x)

X erfc(x) i erfc(x) i% erfc(x) i3 erfc(x)
0.00 1.00000 0.56419 0.25000 0.09403
0.10 0.88754 0.46982 0.19839 0.07169
0.20 0.77730 0.38661 0.15566 0.05406
0.30 0.67137 0.31422 0.12071 0.04030
0.40 0.57161 0.25213 0.09248 0.02969
0.50 0.47950 0.19964 0.06996 0.02161
0.60 0.39614 0.15594 0.05226 0.01554
0.70 0.32220 0.12010 0.03852 0.01103
0.80 0.25790 0.09117 0.02801 0.00773
0.90 0.20309 0.06820 0.02008 0.00534
1.00 0.15730 0.05025 0.01420 0.00364
1.10 0.11979 0.03647 0.00989 0.00245
1.20 0.08969 0.02605 0.00679 0.00162
1.30 0.06599 0.01831 0.00459 0.00106
1.40 0.04771 0.01267 0.00306 0.68381 x 1073
1.50 0.03389 0.00862 0.00201 0.43386 x 1073
1.60 0.02365 0.00577 0.00130 0.27114 x 1073
1.70 0.01621 0.00380 0.82298 x 103 0.16686 x10~3
1.80 0.01091 0.00246 0.51449 x 103 0.10110 x1073
1.90 0.00721 0.00156 0.31642 x 1073 0.60301 x10~*
2.00 0.00468 0.97802 x 1073 0.19141 x 1073 0.35396 x 10~*
2.10 0.00298 0.60095 x 1073 0.11387 x 1073 0.20445 x 10~*
2.20 0.00186 0.36282 x 1073 0.66614 x 10~4 0.11619 x 10~*
2.30 0.00114 0.21520 x 1073 0.38311 x 10~ 0.64951 x 1072
2.40 0.68851 x 1073 0.12539 x 1073 0.21659 x 10~ 0.35711 x 1073
2.50 0.40695 x 1073 0.71762 x 10~* 0.12035 x 1074 0.19308 x 107
2.60 0.23603 x 1073 0.40336 x 1074 0.65724 x 1073 0.10265 x 1072
2.70 0.13433 x 1073 0.22264 x 1074 0.35268 x 1073 0.53654 x 107°
2.80 0.75013 x 10~4 0.12067 x 10~* 0.18595 x 1073 0.27567 x 10~
2.90 0.41098 x 10~* 0.64216 x 1073 0.96315 x 10~° 0.13922 x 10~
3.00 0.22090 x 10~* 0.33503 x 1073 0.49007 x 10~ 0.69101 x 1077

The beta function is related to the gamma function:

has the symmetry property

and for nonnegative integers,

(m—1D!n -1
(m—+n-—1)!

B(x,y)

B(mn) =

_ F)T(y)
F'x+y)

x>0,y>0)

B(x,y) = B(y.x)

m, n nonnegative integers

(3.24)

(3.25)

(3.26)
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TABLE 3.3 Gamma Function

X I'x) X I'ix) X I'ix) X I'x)
1.00 1.00000 1.25 0.90640 1.50  0.88623 1.75 0.91906
1.01 0.99433 1.26  0.90440 1.51 0.88659 1.76 092137
1.02  0.98884 1.27  0.90250 1.52  0.88704 1.77  0.92376
1.03 0.98355 1.28  0.90072 1.53 0.88757 1.78 0.92623
1.04 097844 1.29  0.89904 1.54  0.88818 1.79  0.92877
1.05 0.97350 1.30  0.89747 1.55 0.88887 1.80  0.93138
1.06  0.96874 1.31 0.89600 1.56  0.88964 1.81 0.93408
1.07  0.96415 1.32  0.89464 1.57  0.89049 1.82  0.93685
1.08  0.95973 1.33 0.89338 1.58 0.89142 1.83 0.93969
1.09  0.95546 1.34  0.89222 1.59  0.89243 1.84  0.94261
1.10  0.95135 1.35 0.89115 1.60  0.89352 1.85 0.94561
1.11 0.94740 1.36  0.89018 1.61 0.89468 1.86  0.94869
1.12  0.94359 1.37  0.88931 1.62  0.89592 1.87 0.95184
1.13 0.93993 1.38  0.88854 1.63 0.89724 1.88 0.95507
1.14  0.93642 1.39  0.88785 1.64  0.89864 1.89  0.95838
1.15 0.93304 1.40  0.88726 1.65 0.90012 1.90 0.96177
1.16  0.92980 1.41 0.88676 1.66  0.90167 1.91 0.96523
1.17  0.92670 142  0.88636 1.67  0.90330 1.92  0.96877
1.18  0.92373 1.43 0.88604 1.68  0.90500 1.93 0.97240
1.19  0.92089 1.44  0.88581 1.69  0.90678 1.94  0.97610
1.20 091817 1.45 0.88566 1.70  0.90864 1.95 0.97988
1.21 0.91558 1.46  0.88560 1.71 0.91057 1.96  0.98374
1.22 091311 1.47  0.88563 .72 0.91258 1.97 0.98768
1.23 0.91075 1.48  0.88575 1.73 0.91467 1.98 0.99171
1.24  0.90852 1.49  0.88595 1.74 091683 1.99  0.99581

2.00 1.00000

TABLE 3.4 Incomplete Gamma
Function, I'(a, x),a = 1.2

X I'(a, x)
0.00 0.91817
0.10 0.86836
0.20 0.80969
0.30 0.75074
0.40 0.69366
0.50 0.63932
0.60 0.58813
0.70 0.54024
0.80 0.49564
0.90 0.45426

1.00 0.41597
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TABLE 3.5 Incomplete Beta
Function, B, (0.3, 0.5)

X B;(0.3,0.5)
0.00 0.00000
0.10 0.64802
0.20 0.94107
0.30 1.18676
0.40 1.41584
0.50 1.64284
0.60 1.87920
0.70 2.13875
0.80 2.44563
0.90 2.86367
1.00 4.55444

The incomplete beta function, B;(x,y), is defined by
t
B:(x,y) = / A= ar (3.27)
0

Values of B,(0.3, 0.5) for the range 0 < ¢ < 1 generated using Maple V, Release
6.0 are given in Table 3.5.

3.3.4 Exponential Integral Function

The exponential integral function E|(x) or — E; (—x) for a real argument x is defined
by

e} e—l
Ei(x) or —Ei(—x)= / Tdt (3.28)
and has the following properties:

dEy(x) e
dx

E(0) =00 Ei((c0) =0 (3.29)

As indicated by the entries in Table 3.6, the function decreases monotonically from
the value E{(0) = oo to E;(0c0) = 0 as x is varied from O to oo.

3.3.5 Bessel Functions

Bessel functions of the first kind of order n and argument x, denoted by J,,(x), and
Bessel functions of the second kind of order n and argument x, denoted by Y, (x), are
defined, respectively, by the infinite series
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TABLE 3.6 Exponential Integral Function

x Ei(x) x Ei(x)
0.00 o0 0.80 0.31060
0.01 4.03793 0.90 0.26018
0.02 335471 1.00 0.21938
0.03 295912 1.10 0.18599
0.04 2.68126 1.20 0.15841
0.05 246790 1.30 0.13545
0.06 229531 1.40 0.11622
0.07 2.15084 1.50 0.10002
0.08 2.02694 1.60 0.08631
0.09 1.91874 1.70 0.07465
0.10 1.82292 1.80 0.06471
0.15 1.46446 1.90 0.05620
0.20 122265 2.00 0.04890
0.30 0.90568 2.20 0.03719
0.40 0.70238 2.40 0.02844
0.50 0.55977 2.60 0.02185
0.60 0.45438 2.80 0.01686
0.70 0.37377 3.00 0.01305
S (_1)m (x/2)2m+n
L) =>" P Tp—— (3.30)
m=0
and
Y, () = pWeosnm = I 000 (3.31a)
SIN T
or
Y, () = fim 208 = Jn@) s (331b)
m—n SInmT7t

Numerous recurrence relationships involving the Bessel functions are available
(Andrews, 1992). Some that are relevant in this chapter are

Jo(x) = (= 1)1, (@) (332)
dJ,(x) n n
T = S () = () = ) = () (333)
d n n
[ @] = 2 @) (3:34)
d . _ _
— [T @] = T @) (335)

dx
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The relations given by eqs. (3.32)—(3.35) apply to the Bessel functions of the second
kind when the J’s are replaced by Y’s.

Modified Bessel functions of the first kind of order n and argument x, denoted by
I,,(x), and modified Bessel functions of the second kind of order n and argument x,
denoted by K, (x), are defined, respectively, by the infinite series

S (x/2)2m+n
I(x) = Z_(:) m (3.36)
and
K,(x) = T [1-n(x) = I, (x)] (n#0,1,2,...) (3.37a)
or
K,(x) = lim (1o (x) = Ln(x)] n=0,1,2,...) (3.37b)

m—>n 2 SINNT

I, (x) and K, (x) are real and positive whenn > —1 and x > 0.
A selected few of the numerous recurrence relationships involving the modified
Bessel functions are

L(x) = (V" J,(1x) (3.38)
I_,(x) = )" J_n(x) (3.39)
dl,(x) n n
e wo1(x) = =L, (x) = =L, (x) + L1 (x) (3.40)
X X X
d n n
o [x"I,(x)] = x" L, —1 (x) (3.41)
d -n -n
o [x L) = x " L1 (x) (3.42)
K_,(x) = K, (x) n=0,1,2,3,...) (3.43)
dlizn(x) S A Kpp1(x) = =K1 (x) — Zk.0)  (344)
X X X
d
= [x"Kn(x)] = —x"K,—1(x) (3.45)
d
= [x7"Ky(0)] = =x " Kp41(x) (3.46)

Fairly extensive tables for the Bessel functions and modified Bessel functions of
orders 1 and 2 and those of fractional order I_,3(x), I_3/3(x), I1,3(x), and I5/3(x)
in the range 0 < x < 5 with a refined interval are given in Kern and Kraus (1972),
and polynomial approximations are given by Kraus et al. (2001), culled from the
work of Abramowitz and Stegun (1955). Maple V, Release 6.0 can also be used to
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generate these tables. Figure 3.2 displays graphs of Jy(x), Ji(x), Yo(x), and Y; (x).
These functions exhibit oscillatory behavior with amplitude decaying as x increases.
Figure 3.3 provides plots of Iy(x), I;(x), Ko(x), and K| (x) as a function of x and
these functions exhibit monotonic behavior.

1.5

Jo(x)
1.0

Jy(x)
0.5 -

0.0 7 7 <
2T, Ss TN

—-05 - I /

1
1 7
104 7 \Yl(x)

N . | f ! | | ! 1 |
00 10 20 30 40 50 60 70 80 9.0 100

Bessel Function

Figure 3.2 Graphs of Jy(x), J1(x), Yp(x), and Y| (x).
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Figure 3.3 Graphs of Iy(x), I;(x), Ko(x), and K;(x).
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Thomson functions ber;(x), bei; (x), ker; (x), and kei;(x) arise in obtaining the
real and imaginary parts of the modified Bessel functions of imaginary argument.
The subscripts i denote the order of the Thomson functions. Note that it is cus-
tomary to omit the subscript when dealing with Thomson functions of zero order.
Hence bery(x), beig(x), kerg(x), and keig(x) are written as ber(x), bei(x), ker(x),
and kei(x). The Thomson functions are defined by

Io(x+/V) = ber(x) + tbei(x) (3.47)

Ko(x4/V) = ker(x) + tkei(x) (3.48)
with
ber(0) =1 bei(0) =0 ker(0) = oo kei(0) = —o0 (3.49)

Expressions for the derivatives of the Thomson functions are

% [ber(x)] = % [ber; (x) + bei; (x)] (3.50)
i [bei(x)] = L [bei; (x) — ber;(x)] (3.51)
dx J2
ix [ker(x)] = % [ker;(x) 4 keij(x)] (3.52)
i [kei(x)] = L [kei; (x) — ker;(x)] (3.53)
dx J2

Table 3.7 gives the values of ber(x), bei(x), ker(x), and kei(x) for 1 < x <5,
and the values of dber(x)/dx, dbei(x)/dx, dker(x)/dx, and dkei(x)/dx are pro-
vided for the same range of x values in Table 3.8. Figure 3.4 displays graphs of
ber(x), bei(x), ker(x), and kei(x).

TABLE 3.7 Functions ber(x), bei(x), ker(x), and kei(x)

X ber(x) bei(x) ker(x) kei(x)
1.00 0.98438 0.24957 0.28671 —0.49499
1.50 0.92107 0.55756 0.05293 —0.33140
2.00 0.75173 0.97229 —0.04166 —0.20240
2.50 0.39997 1.45718 —0.06969 —0.11070
3.00 —0.22138 1.93759 —0.06703 —0.05112
3.50 —1.19360 2.28325 —0.05264 —0.01600
4.00 —2.56342 2.29269 —0.03618 0.00220
4.50 —4.29909 1.68602 —0.02200 0.00972

5.00 —6.23008 0.11603 —0.01151 0.01119
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TABLE 3.8 Functions d ber(x)/dx, d bei(x)/dx, d ker(x), dx, and d kei(x) /dx

X dber(x)/dx dbei(x)/dx dker(x)/dx dkei(x)/dx
1.00 —0.06245 0.49740 —0.69460 0.35237
1.50 —0.21001 0.73025 —0.29418 0.29561
2.00 —0.49307 0.91701 —0.10660 0.21981
2.50 —0.94358 0.99827 —0.01693 0.14890
3.00 —1.56985 0.88048 0.02148 0.09204
3.50 —2.33606 0.43530 0.03299 0.05098
4.00 —3.13465 —0.49114 0.03148 0.02391
4.50 —3.75368 —2.05263 0.02481 0.00772
5.00 —3.84534 —4.35414 0.01719 —0.00082

0.4

0.2

—-0.2

—-04

Figure 3.4 Thomson functions.

3.3.6 Legendre Functions

The Legendre function, also known as the Legendre polynomial P,(x), and the asso-
ciated Legendre function of the first kind P (x), are defined by

n

2'n! dx"

P,(x) = xZ=1" (3.54)

Plx)= (- xz)"’/ijn; [P, (x)] (3.55)

The Legendre function Q,(x) and the associated Legendre function of the second
kind, Q' (x), are defined by

(=220 [(n/2)!
n!

y [x L= De+Y) o = De =3+ D0+ _}

Qn(x) =

3! 5!
(n =even, |x| < 1) (3.56)
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(=)D on=t ([(n — 1)/2]1)%}

Qn(x) = 1.3.5...n
! nn+1) , nmr—-2)n+1m+3) 4
o TR 41 o
(n=odd, x| <1) (3.57)
dm
05 () = (1 =x*)"? 2 [0y ()] (3.58)
X

Several relationships involving P, (x), Q,(x), P)"(x), and Q"' (x) are useful in
heat conduction analysis. They are

Po(=x) = (—=1)" P, (x) (3.59)
P =2 - b)) (360)
n—+1 n—+1
% [P (0)] - % [Pt ()] =200 + D P, (x) (3.61)
Ou(x = £1) = 00 (3.62)
P'(x)=0 (m > n) (3.63)
0, (x ==+1) =00 (3.64)

The numerical values of the Legendre functions and their graphs can be generated
with Maple V, Release 6.0. Table 3.9 lists the values of Py(x) through Ps(x) for the
range —1 < x < 1, and a plot of these functions appears in Fig. 3.5.

3.4 STEADY ONE-DIMENSIONAL CONDUCTION

In this section we consider one-dimensional steady conduction in a plane wall, a
hollow cylinder, and a hollow sphere. The objective is to develop expressions for
the temperature distribution and the rate of heat transfer. The concept of thermal
resistance is utilized to extend the analysis to composite systems with convection
occurring at the boundaries. Topics such as contact conductance, critical thickness of
insulation, and the effect of uniform internal heat generation are also discussed.

3.4.1 Plane Wall

Consider a plane wall of thickness L made of material with a thermal conductivity &,
as illustrated in Fig. 3.6. The temperatures at the two faces of the wall are fixed at 7 |
and T, with Ty | > T ,. For steady conditions with no internal heat generation and
constant thermal conductivity, the appropriate form of the general heat conduction
equation, eq. (3.4), is
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TABLE 3.9 Numerical Values of P, (x)

x Po(x) Py (x) P (x) Ps(x) Py(x)
—1.00 1.00000 —1.00000 1.00000 —1.00000 1.00000
—0.80 1.00000 —0.80000 0.46000 —0.08000 —0.23300
—0.60 1.00000 —0.60000 0.04000 0.36000 —0.40800
—0.40 1.00000 —0.40000 —0.26000 0.44000 —0.11300
—0.20 1.00000 —0.20000 —0.44000 0.28000 0.23200

0.00 1.00000 0.00000 —0.50000 0.00000 0.37500
0.20 1.00000 0.20000 —0.44000 —0.28000 0.23200
0.40 1.00000 0.40000 —0.26000 —0.44000 —0.11300
0.60 1.00000 0.60000 0.04000 —0.36000 —0.40800
0.80 1.00000 0.80000 0.46000 0.08000 —0.23300
1.00 1.00000 1.00000 1.00000 1.00000 1.00000

14

—0.5 1

-1+

Figure 3.5 Legendre polynomials.
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Figure 3.6 One-dimensional conduction through a plane wall.

T =0 (3.65)
dx? ’
with the boundary conditions expressed as
Tx=0)=T,; and T(x=L)=T,» (3.66)

Integration of eq. (3.65) with subsequent application of the boundary conditions of
eg. (3.66) gives the linear temperature distribution

x
T=T1+ (Ts2 — TS'I)Z (3.67)

and application of Fourier’s law gives

kAT, — T)

2 (3.68)

q

where A is the wall area normal to the direction of heat transfer.

3.4.2 Hollow Cylinder

Figure 3.7 shows a hollow cylinder of inside radius r;, outside radius r;, length L,
and thermal conductivity k. The inside and outside surfaces are maintained at constant
temperatures 7T | and T 5, respectively with T | > T ». For steady-state conduction
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TS,2 J

Figure 3.7 Radial conduction through a hollow cylinder.

in the radial direction with no internal heat generation and constant thermal conduc-
tivity, the appropriate form of the general heat conduction equation, eq. (3.5), is

d ar 0 (3.69)
Z =)= .
dr dr

with the boundary conditions expressed as
T(r=r)= Ts,l and T(r=nr)= T;yz (3.70)

Following the same procedure as that used for the plane wall will give the temperature
distribution
T, — Ty
T=T,, + 2122, L 3.71)
In(ri/r2)  n
and the heat flow

_ 2T|IkL(Tx,1 — Ts,z)
(R YRy

(3.72)

3.4.3 Hollow Sphere

The description pertaining to the hollow cylinder also applies to the hollow sphere
of Fig. 3.8 except that the length L is no longer relevant. The applicable form of eq.

(3.6) is
% <r2‘2_f> —0 (3.73)
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q

Figure 3.8 Radial conduction through a hollow sphere.

with the boundary conditions expressed as
Tr=r)=T, and T(r=r)=T, (3.74)

The expressions for the temperature distribution and heat flow are

TS.l_TSZ 1 1
T=T,+— % (- _= (3.75)
’ 1/r, —1/r \n r
4mk(T, ) — T,
g = k(7,1 2) (3.76)
1/ri—=1/r

3.4.4 Thermal Resistance

Thermal resistance is defined as the ratio of the temperature difference to the associ-
ated rate of heat transfer. This is completely analogous to electrical resistance, which,
according to Ohm’s law, is defined as the ratio of the voltage difference to the current
flow. With this definition, the thermal resistance of the plane wall, the hollow cylinder,
and the hollow sphere are, respectively,

L

Reond = a (377)
In(ry/71)
Reont = —2 1 3.78
T TonkL (3-78)
1/r —1
Ry = /1 =1/12 (3.79)

4tk
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When convection occurs at the boundaries of a solid, it is convenient to define the
convection resistance from Newton’s law of cooling:

q =hA(T; — T) (3.80)

where h is the convection heat transfer coefficient and T, is the convecting fluid
temperature. It follows from eq. (3.80) that

T, — T 1
Reopy = ———2 = — 3.81
conv q hA ( )

3.4.5 Composite Systems
The idea of thermal resistance is a useful tool for analyzing conduction through

composite members.

Composite Plane Wall For the series composite plane wall and the associated

thermal network shown in Fig. 3.9, the rate of heat transfer ¢ is given by

_ Too,l - Too,2
1/hiA+Li/kiA+Ly/ koA +1/hyA

q (3.82)

Once g has been determined, the surface and interface temperatures can be found:

T =Toy —q—o 383
1 50,1 thA (3.83)
1L
Ty=Tei—q|— +—- (3.84)
PTG A T A
Top=Tooy—q — + 2L 4 L2 (3.85)
$2 T Lol T\ A T A T A :

Figure 3.10 illustrates a series—parallel composite wall. If materials 2 and 3 have
comparable thermal conductivities, the heat flow may be assumed to be one-dimen-
sional. The network shown in Fig. 3.10 assumes that surfaces normal to the direction
of heat flow are isothermal. For a wall of unit depth, the heat transfer rate is

Ts,l - TS,Z
" Li/kiHy, + LyLs3/(koHo Ly + k3 Hs L) + Ly ke Hy

q (3.86)

where H; = H,+ H; = H, and the rule for combining resistances in parallel has been
employed. Once g has been determined, the interface temperatures may be computed:

L,
T, =T, — 3.87
] 1 qk1H1 (3.87)
L
Ty=To)+q— (3.88)

kyHy
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r_,\/‘/J“/\_A_
k k,
= q
T, 5,1 T 2 T 5,2
Hot fluid Cold fluid
Too,l’ hl Too,23 h2
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1 L, L, 1
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Figure 3.9 Series composite wall and its thermal network.
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Figure 3.10 Series—parallel composite wall and its thermal network.
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Cold fluid

Hot fluid
Too1shy

1 In(ry/ry) In(r3/ry) 1
h2wr L C 2wk L 2wk, L hy2wry L

T, 1 Ts, 1 T2 Ts‘,Z TOOZ

Figure 3.11 Series composite hollow cylinder and its thermal network.

Composite Hollow Cylinder A typical composite hollow cylinder with both
inside and outside experiencing convection is shown in Fig. 3.11. The figure includes
the thermal network that represents the system. The rate of heat transfer g is given by

_ Too,l - Too,2
1/2nhyr L + In(ra/r1)/27k L + In(r3/r2) /27tko L + 1/27thors L

q (3.89)

Once g has been determined, the inside surface T j, the interface temperature 75, and
the outside surface temperature 7§ » can be found:

T =Twon — (3.90)

q2nh1r1L
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1 In(ra/r1)
T =Txw1— 3.91
27 foa q[znth 2k L } 391
1
T, =T - 3.92
2 0,2+ 4 YhorsL ( )

Composite Hollow Sphere Figure 3.12 depicts a composite hollow sphere
made of two layers and experiencing convective heating on the inside surface and
convective cooling on the outside surface. From the thermal network, also shown in
Fig. 3.12, the rate of heat transfer g can be determined as

_ Too,l - Too,z
]/4]‘[/117‘12 + (1’2 — rl)/4nk1r1r2 + (1’3 — 7‘2)/4311621’37'2 + ]/4]'[]127‘3%

q (3.93)

Once g has been determined, temperatures 75 1, 7>, and 7 » can be found:

* Cold fluid
Twz, h2

Hot fluid
Toys hy
1 Ury—1ry  Ury, — l/ry 1
hy4mr? 4k, 4k, hydmr3
q
Toy T, T, T, Ty

Figure 3.12 Series composite hollow sphere and its thermal network.
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1

Ti1=Tew1—qg—— 3.94
,1 00,1 q4]‘[h1}"12 ( )
S R AR 395

27 ool 9 4nh1r12 4]'[/(1 I r ’

Tso =Teo + 3.96

,2 00,2 q4]‘[l’l2}"§ ( )

3.4.6 Contact Conductance

The heat transfer analyses for the composite systems described in Section 3.4.5 as-
sumed perfect contact at the interface between the two materials. In reality, how-
ever, the mating surfaces are rough and the actual contact occurs at discrete points
(asperities or peaks), as indicated in Fig. 3.13. The gaps of voids are usually filled
with air, and the heat transfer at the interface is the sum of solid conduction across
the contact points and fluid conduction through the gaps. Because of the imperfect
contact, there is a temperature drop across the gap or interface, AT,. The contact
conductance i, (W/m?-K) is defined as the ratio of the heat flux q/A through the
interface to the interface temperature drop:

q/A 1
hC: = —
AT. R!

(3.97)

where ¢/ A is the heat flux through the interface and R/ (m?- K/W), the inverse of A,
is the contact resistance.

The topic of contact conductance is of considerable contemporary interest, as
reflected by a review paper of Fletcher (1988), a book by Madhusudana (1996),

qlA

AT,

Figure 3.13 Contact interface for actual surfaces.
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and numerous contributions from several research groups. Chapter 4 of this book
is devoted exclusively to this subject.

3.4.7 Critical Thickness of Insulation

When a plane surface is covered with insulation, the rate of heat transfer always
decreases. However, the addition of insulation to a cylindrical or spherical surface
increases the conduction resistance but reduces the convection resistance because
of the increased surface area. The critical thickness of insulation corresponds to the
condition when the sum of conduction and convection resistances is a minimum. For
a given temperature difference, this results in a maximum heat transfer rate, and the
critical radius r. is given by

% (cylinder) (3.98)
2k

7

e =

(sphere) (3.99)

where k is the thermal conductivity of the insulation and /4 is the convective heat
transfer coefficient for the outside surface.

The basic analysis for obtaining the critical radius expression has been modified
to allow for:

¢ The variation of & with outside radius

* The variation of & with outside radius, including the effect of temperature-
dependent fluid properties

* Circumferential variation of &
* Pure radiation cooling
* Combined natural convection and radiation cooling

The analysis for a circular pipe has also been extended to include insulation
boundaries that form equilateral polygons, rectangles, and concentric circles. Such
configurations require a two-dimensional conduction analysis and have led to the
conclusion that the concept of critical perimeter of insulation, P, = 2m(k/h), is
more general than that of critical radius. The comprehensive review article by Aziz
(1997) should be consulted for further details.

3.4.8 Effect of Uniform Internal Energy Generation

In some engineering systems, it becomes necessary to analyze one-dimensional steady
conduction with internal energy generation. Common sources of energy generation
are the passage of an electric current through a wire or busbar or a rear window
defroster in an automobile. In the fuel element of a nuclear reactor, the energy is
generated due to neutron absorption. A vessel containing nuclear waste experiences
energy generation as the waste undergoes a slow process of disintegration.
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Plane Wall Consider first a plane wall of thickness 2L, made of a material having
a thermal conductivity k, as shown in Fig. 3.14. The volumetric rate of energy gener-
ation in the wall is ¢ (W/m?). Let T ; and T} » be the two surface temperatures, and
assuming the thermal conductivity of the wall to be constant, the appropriate form of

eq. (3.4)is
T + q_ 0 (3.100)
dx?  k '

and the boundary conditions are
Tx=—-L)=T,; and T(x=L)=T;, (3.101)
The solution for the temperature distribution is

q Tip — T,

=§(L2—x2)+ 5 ,lx+Ts.2+Ts,l

2L 2

(3.102)

The maximum temperature occurs at x = k(75 — T;.1)/2Lq and is given by

q.L2 k(Ts,Z - Ts,l)2 T&‘,Z + Ts,l
Tmax = 57 -
2k 8gL 2

(3.103)

If the face at x = — L is cooled by convection with a heat transfer coefficient #; and
coolant temperature T ;, and the face at x = +L is cooled by convection with a
heat transfer coefficient /1, and coolant temperature 7 7, the overall energy balance
gives

2qL = hl(Ts,l - Too,l) + hZ(TS,Z - Too,Z) (3104)

TS,Z

P

tt
hy T, ho, T

©

f

1>

I

Figure 3.14 Conduction in a plane wall with uniform internal energy generation.
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When T, = T, the temperature distribution is symmetrical about x = 0 and is
given by
T = % (L2 =¥ + T, (3.105)

and the maximum temperature occurs at the midplane (x = 0), which can be ex-
pressed as

Thax = — + T (3106)

When Ty = T2 = To and by = hy = h, eq. (3.104) reduces to
qL

Hollow Cylinder For the hollow cylinder shown in Fig. 3.15, the appropriate form
of eq. (3.5) for constant k is

Ld (4L + 9 _ 0 (3.108)
rar \'dar k ’
and the boundary conditions are

Tr=r)=T,; and T(r=r) =T, (3.109)

Cold fluid
Too’2: hz

Cold fluid
Too,ls hl

Figure 3.15 Conduction in a hollow cylinder with uniform internal energy generation.
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The solution of eq. (3.108) that satisfies eqs. (3.109) is

rer, 2 ()
= 152 E (Z)
) 2
qgra |, (N _ In(ra/r)
_ {_4k [1 <r2) ]+ (T;.2 Ts,l)} s/ (3.110)

If the inside and outside surfaces are cooled by convection, the inside with fluid at
T.1 with heat transfer coefficient 4,, the overall energy balance gives

G (r3 = ri) =2hir (T — Toot) + 2022 (T2 — T 2) (3.111)

and for the case of T 1 = T; 2, eq. (3.110) is reduced to

ror4+ 2 [1 - (L)T _in [1 - (Q)Z} In(2/r) (3112
4k r 4k 123 In(ry/ry)

Similarly, when T | = Too 2 = Too and hy = hy = h, eq. (3.111) is reduced to

q@ry —ry)
Ty — Too = —— 3.113
0 o ( )

Solid Cylinder Equation (3.108) also applies to the solid cylinder of Fig. 3.16,
but the boundary conditions change to

Cold fluid

Figure 3.16 Conduction in a solid cylinder with uniform internal energy generation.
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dT

20 and Tor=r)=T, (3.114)
dr r=0

The temperature distribution is given by

q
T=T+ (ro —r?) (3.115)

and the maximum temperature occurs along the centerline at r = 0:

)
qry

Toax = Ty + —= 3.116

+ % ( )

If the outside surface of the cylinder is cooled by convection to a fluid at T, through
a heat transfer coefficient #, the overall energy balance gives

_ qro

LimTe=7,

(3.117)

Hollow Sphere For the hollow sphere shown in Fig. 3.17, the appropriate form
of eq. (3.6) with constant thermal conductivity k is

1 d (,dT\ ¢
—— —_— ==0 3.118
r2dr (r dr>+k ( )

and eq. (3.109) provides the boundary conditions

T(r=r)=T,; and T =nr) =T (3.109)

L4 Tzc ,Z’hz

TS,Z

Figure 3.17 Conduction in a hollow sphere with uniform internal energy generation.
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The temperature distribution is found to be
) 2
qr2 r
T =T, —=|1—-(—
2t [ (r2> }
) 2
1/r—1
_ 12 1— 4l +(Ts2—Ts,1) u (3.119)
6k r ’ 1/ri —1/r
If the inside and outside surfaces are cooled by convection, the inside with fluid at

T, with heat transfer coefficient 4, and the outside with fluid at 7o, » with heat
transfer coefficient 4,, the overall energy balance gives

. 3_.3
g ("23 ) _ 2 (Toy = Toon) + hard (Toz — Too2) (3.120)

and when T, | = T, = Ty, eq. (3.119) reduces to
) 2 ) 2
1/r—1
ror 42 (2) | dzy (n) | M2 gy,
6k r 6k ) 1/ri—=1/r

When Too,1 = Too2 = To, and by = hy = h, eq. (3.120) is reduced to

(3 —r)

Ty —Too = ——5+ 3.122
5 3 (2 4 r2) G122
Solid Sphere For the solid sphere, eq. (3.118),
1d (,dT q
—— — -=0 3.118
rdr <r dr ) + k ( )
must be solved subject to the boundary conditions of eqs. (3.114):
dT
— =0 and T =r)=T, (3.114)
dr r=0
The solution is
T =T+ (3 =17 (3.123)

6k

The maximum temperature that occurs at the center of the sphere where r = 0 is

)
qry

Toax = Ty + —= 3.124

+ ok ( )
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and if the cooling at the outside surface is to a fluid at T, via a heat transfer coefficient
of h, the overall energy balance gives

_

Tv - Too -
3h

(3.125)
For additional analytical results for one-dimensional steady conduction with uni-

form internal heat generation, the reader should consult Incropera and DeWitt (1996,
App. O).

3.5 MORE ADVANCED STEADY ONE-DIMENSIONAL CONDUCTION

The results presented in Section 3.4 have been based on assumptions such as constant
thermal conductivity, uniform heat generation, and pure convective cooling or heating
at the boundary. In some applications, these assumptions may introduce significant
errors in predicting the thermal behavior of the system.

The conducting medium may be nonhomogeneous, causing thermal conductivity
to vary with location. Similarly, the temperature dependence of thermal conductivity
cannot be ignored if the temperature difference driving the conduction process is
large and the assumption of uniform heat generation may prove too restrictive. For
example, when the shield of a nuclear reactor is irradiated with gamma rays, the
resulting release of energy decays exponentially with distance from the irradiated
surface, making the heat generation location dependent. A more realistic modeling
of heat generation due to the passage of electric current or a chemical reaction requires
that g be treated as temperature dependent. Finally, if the heat transfer process at a
boundary is driven by natural convection, radiation becomes equally important and
must be taken into account. This section is devoted to a discussion of such situations.

3.5.1 Location-Dependent Thermal Conductivity

Plane Wall Consider the plane wall of Fig. 3.6 and let the thermal conductivity k
increase linearly with x in accordance with

k = ko(1 + ax) (3.126)

where kj is the thermal conductivity at x = 0 and a is a measure of the variation of
k with x. The equation governing the temperature distribution is

a4 <kd—T> - (3.127)

Solving eq. (3.127) subject to the boundary conditions of eq. (3.66),

T(x=0)=T,; and T(x=L)=T,, (3.66)
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gives

In(1 4 ax)
T =T+ (T2 — T1) P (3.128)

and the rate of heat transfer will be

_ koAa(T — Ty )

(3.129)
In(1 +aL)

In the limit, as a — 0, eqgs. (3.128) and (3.129) reduce to eqs. (3.67) and (3.68),
respectively.
Now consider the case where k is of the form

k = ko(1 + ax?) (3.130)

The solutions for T and ¢ are given by

arctan(./ax
T =T+ (T2—Ti) arctan(/ax) (3.131)
arctan(y/aL)
and the rate of heat transfer will be
_ koAa(Ts — Ty ) (3.132)

arctan(y/aL)

Hollow Cylinder When modified to allow for the location-dependent thermal
conductivity of the form

k=a(l +br) (3.133)

analysis of Section 3.4.2 for a hollow cylinder (Fig. 3.7) gives the following results
for the temperature distribution and the rate of heat transfer:

1+b 1+b
T 1n 2 ror + T;2In o v
’ 14+br, r ’ r 1+ br

T (3.134)

1+br1 r
In| ————
14+bryr

2nal Ty, — Ts,2)
N 1 =+ brl r
In —=
1+bryr
When b = 0, k = a and the thermal conductivity is constant. In this case, eqgs. (3.134)
and (3.135) are reduced to eqs. (3.71) and (3.72), respectively.

q (3.135)
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3.5.2 Temperature-Dependent Thermal Conductivity

Plane Wall 1.et the thermal conductivity k of the plane wall of Fig. 3.6 be a linear
function of the temperature T, expressed as

k = ko(1 +aT) (3.136)

Equation (3.127) will then take the form

d dT
— |ko(1 +aT)— | =0 3.137
dx[o( +a )dx} ( )

which must be integrated using the boundary conditions of egs. (3.66):
T(x=0=T,; and T(x=L)=Ts, (3.66)

The solution is facilitated by the introduction of a new variable, 7*, defined by the
Kirchhoff transformation:

T
T* = / (1+aT)dT =T + taT? (3.138)
0

Differentiation of eq. (3.138) with respect to x gives

dT*
dx

dT
=(14+al)— (3.139)
dx

which allows eq. (3.137) to be written as

d’T*
dx?

(3.140)

The boundary conditions of eq. (3.66) in terms of 7* become
TA(x=0)=T,,+ 3aT}, and T),(x=L)=T,»+1aT}, (3.141)
The solution for 7* is

T =T + (T — TH) > (3.142)

s s,l)z

Once T* has been found, T can be reclaimed by solving the quadratic of eq. (3.138),
which gives

T:l(—1+m) (3.143)
a

and the rate of heat transfer can be shown to be
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o kmA(Ts,l - TS,Z)

; (3.144)

where k,, = ko(1 + aTj,,) is the thermal conductivity at the mean temperature,

Tv,l + T&‘,Z

Ts,m - )

For a variation of the thermal conductivity with temperature represented by
k=ko(l +aT? (3.145)

the temperature distribution in the plane wall (Fig. 3.6) is given by the cubic equation

1 1 1
T + 3aT3 =T+ gale + [ga (T}, - T)) + (T,n — Ts,l)] % (3.146)

and the corresponding rate of heat transfer is

Ako (Tsy — Tyn) [1+ (a/3) (T + i1 T o + T) |
q:
L

(3.147)

Hollow Cylinder For the thermal conductivity-temperature relation of eq. (3.136),
the Kirchhoff transformation of eq. (3.138) can also be used for the hollow cylinder
of Fig. 3.7. The final result for 7* is

T — T

T* — Tv*l + S,l 5,2 r

sl Te2 g, T (3.148)
In(ri/r) n

where T}*; and 7", are as given in eq. (3.141). Once T for any radius r is found from
eq. (3.148), eq. (3.143) can be used to find the corresponding value of T. The rate of
heat transfer then follows as

2wk L (To1 — Ti )
T T Iy

(3.149)

where k,, is the thermal conductivity at the mean temperature,

Ta+Tso

T, =
’ 2

Hollow Sphere The results for a hollow sphere (Fig. 3.8) whose thermal conduc-
tivity—temperature variation follows eq. (3.136) are

% % Ts*l - Ts*2 1 1
T =T+ 22 [ = — - (3.150)
’ 1/r,—1/r \n r
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T=l(—1+m) (3.151)
a

. 4T[km (Ts,l - Ts,Z)
ER YTy

(3.152)

Gebhart (1993) provides one-dimensional steady conduction analyses for single
and composite solids when the thermal conductivity varies simultaneously with lo-
cation and temperature. He also gives expressions for the conduction resistances of a
plane wall, a hollow cylinder, and a hollow sphere for three cases of variable thermal
conductivity: k = k(T), k = k(x) or k(r), and k = k(x, T) = k(T) f (x). Note that
the last case assumes that k(x, 7T') can be expressed as a product of two functions,
k(T) and f(x), each a function of a single variable.

3.5.3 Location-Dependent Energy Generation

Plane Wall Figure 3.18 presents a plane wall that experiences location-dependent
energy generation of the form

c}=c}o(1 —%) (3.153)

The temperature distribution in the wall is given by

qoLx 4o 2 x?
T =T ey -5 3.154
T T (x 3L> (3.154)
k Tmax
q=qy(1 —x/L)
Ts,l
L —x x=L
x=0

Figure 3.18 Plane wall with linearly decaying, location-dependent internal energy gener-
ation.
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and the maximum temperature occurs at x = L for an insulated face:
T=T,+— (3.155)

Next, assume that the plane wall of Fig. 3.6 represents the shield of a nuclear
reactor. The absorption of gamma radiation at the left surface (x = 0) triggers energy
release into the shield which decays exponentially with the penetration distance x
and can be represented by the relation

q = qopae” ™ (3.156)

where g (W/m?) is the incident radiation heat flux and a (m’l) is the absorption
coefficient of the shield.
The temperature distribution in the shield is

1 1

=t B (1) + B )]

3.157
py? ( )

I =

and the maximum temperature occurs at

1 | gyalL
=—1In
a  ak(Ts1 — Ti2) + qo(1 — e™9k)

(3.158)

Solid Cylinder Reconsidering the solid cylinder of Fig. 3.16, ¢ will now be
assumed to vary linearly with the radial distance r, that is,

C} = ar (3159)

where a (W/m*) is a constant. The temperature distribution in this case is

2

ar, a
T =Tx+ 3—}3 + o1 (rg — 1) (3.160)

from which the centerline (r = 0) temperature 7, and the surface (r = ry) tempera-
ture T follow as

S SR WL (3.161)
3 T ok

T, = To + arg (3.162)

s — o0 3h .

3.5.4 Temperature-Dependent Energy Generation

In this section we present a collection of results for one-dimensional steady conduc-
tion in a plane wall, a solid cylinder, and a solid sphere when each experiences energy
generation that increases linearly with local temperature in accordance with
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g =qs[1+a(T —Ty)] (3.163)
where ¢y is the energy generation at the surface temperature 7; and a is a constant.

Plane Wall For a plane wall of thickness 2L having identical surface temperatures
T, on both faces, the temperature distribution is

1 /cosnx
T=T + - ( - 1) (3.164)
a \cosnL

where n = /ag,/k and nL < 1/2 to ensure that the temperatures remain finite.

If the convection cooling, characterized by the temperature T, and heat transfer
coefficient £, is identical on both faces of the wall, the relationship between T, and
T is given by

T, = T + %tannL (3.165)

where m = /q;k/a.

Solid Cylinder For a solid cylinder of radius ry, the temperature distribution is

_ I JoGmr)
T=T+- [Jo(nro) 1] (3.166)

where n = /aq,/k and Jj is the Bessel function of the first kind of zero order (see
Section 3.3.5). The parallel counterpart of eq. (3.165) is

m Jy(nrg)

Ty = Too + —
*© + h J()(I’ZV())

(3.167)

where m = /q;k/a,n = /aq;/k, and J; is the Bessel function of the first kind of
order 1. In egs. (3.166) and (3.167), nry < 2.4048 to assure finite temperatures in the
cylinder.

Solid Sphere For a solid sphere of radius rg, the temperature distribution is

e
T=T, +- (V—O R 1) (3.168)

a \ r sinnrg

where nrg < mw to assure finite temperatures in the sphere and the relationship
between 7, and the coolant temperature T, is

k
T =T, + —[1 — (nry) cotnry] (3.169)
hroa

where, here too, nry < m to assure finite temperatures in the sphere.
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3.5.5 Radiative—Convective Cooling of Solids with Uniform Energy
Generation

The solutions obtained in Section 3.4.8 for a plane wall (the thermal symmetry
case), a solid cylinder, and a solid sphere are now extended to accommodate surface
cooling by simultaneous convection and radiation. The surface energy balance for
each geometry gives

4 4 dT
h(Ty, — Ty,) + €0 (T_Y — TOO) + kd_ =0 (plane wall) (3.170)
X x=L
4 o4 dr : :
h(Ty, — To) + €0 (T, — Tot) + kd— =0 (solid cylinder and sphere) (3.171)
r r=ro

where € is the surface emissivity, o the Stefan—Boltzmann constant, and T, represents
the surrounding or ambient temperature for both convection and radiation. In eqs.
(3.170) and (3.171), the last terms can be evaluated using eqs. (3.105), (3.115), and
(3.123), respectively.

Because eqgs. (3.170) and (3.171) require a numerical approach for their solutions,
it is convenient to recast them in dimensionless form as

\ a9
Ni(®— D)+ N> (6 —1)+—| =0 (plane wall) (3.173)
’ dX |x_,
\ a9 ,
Ni(6; — 1)+ No (6] — 1) + IR =0 (cylinder and sphere)  (3.173)
R=1

where 0 = T/ T, N; = hL/k for the plane wall, Ny = hry/k for the cylinder and
sphere, N, = EGT;L / k for the plane wall, and N, = echoro / k for the cylinder and
sphere, X = x/L, R =r/ry, and 6 = T /T. The numerical values for 6, are given
in Table 3.10 for a range of values of N; and N, and gL?/kT,, = 1 for the plane
wall and §rZ/kTs = 1 for the cylinder and sphere.

3.6 EXTENDED SURFACES

The term extended surface is used to describe a system in which the area of a surface
is increased by the attachment of fins. A fin accommodates energy transfer by conduc-
tion within its boundaries, while its exposed surfaces transfer energy to the surround-
ings by convection or radiation or both. Fins are commonly used to augment heat
transfer from electronic components, automobile radiators, engine and compressor
cylinders, control devices, and a host of other applications. A comprehensive treat-
ment of extended surface technology is provided by Kraus et al. (2001).

In this section we provide the performance characteristics (temperature distribu-
tion, rate of heat transfer, and fin efficiency) for convecting, radiating, and convecting-
radiating fins. Configurations considered include longitudinal fins, radial fins, and
spines. The section concludes with a discussion of optimum fin designs.
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TABLE 3.10 Dimensionless Surface Temperature in Solids with Uniform Energy
Generation and Radiative-Convective Surface Cooling

05
N N> Plane Wall Solid Cylinder Solid Sphere
0.25 0.25 1.4597 1.2838 1.2075
0.50 0.25 1.4270 1.2559 1.1840
0.75 0.25 1.3970 1.2320 1.1646
1.00 0.25 1.3698 1.2115 1.1484
0.25 0.50 1.2993 1.1759 1.1254
0.50 0.50 1.2838 1.1640 1.1159
0.75 0.50 1.2693 1.1534 1.1076
1.00 0.50 1.2559 1.1439 1.1004
0.25 0.75 1.2258 1.1288 1.0905
0.50 0.75 1.2164 1.1221 1.0853
0.75 0.75 1.2075 1.1159 1.0807
1.00 0.75 1.1991 1.1103 1.0764
0.25 1.00 1.1824 1.1020 1.0710
0.50 1.00 1.1759 1.0976 1.0677
0.75 1.00 1.1698 1.0935 1.0647
1.00 1.00 1.1640 1.0897 1.0619

3.6.1 Longitudinal Convecting Fins

The five common profiles of longitudinal fins shown in Fig. 3.19 are rectangular,
trapezoidal, triangular, concave parabolic, and convex parabolic. The analytical ex-
pressions obtained are based on several assumptions.

The heat conduction in the fin is steady and one-dimensional.
The fin material is homogeneous and isotropic.
There is no energy generation in the fin.

b S

The convective environment is characterized by a uniform and constant heat
transfer coefficient and temperature.

5. The fin has a constant thermal conductivity.
6. The contact between the base of the fin and the primary surface is perfect.
7. The fin has a constant base temperature.

Rectangular Fin For the rectangular fin (Fig. 3.19a), the temperature distribution,
rate of heat transfer, and fin efficiency are given for five cases of thermal boundary
conditions.

1. Constant base temperature and convecting tip:

6  coshm(b —x) + H sinhm(b — x)
0, coshmb + H sinhmb

(3.174)
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sinhmb + H coshmb

=k 3.175

ar At coshmb + H sinhmb ( )

qia = (hPb+ h,A)g, (3.176)

n= k1a (3.177)

qid

T‘bv‘ e insulated

nsulate

Vv

tip

P = fin perimeter
=2(L+3§
(@) (L+9)

(b)

* T h
(©

Figure 3.19 Longitudinal fins of (a) rectangular, (b) trapezoidal, (c) triangular, (d) concave
parabolic, and (e) convex parabolic profiles.
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where 6 = T — Ty, 0, = T — Too,m> = hP/kA = 2h/k8, H = h,/km, and
T}, is the fin base temperature, T the fin temperature at location x, T, the convective
environmental temperature, b the fin height, A the fin cross-sectional area, P the fin
perimeter, k the fin thermal conductivity, 4 the convective heat transfer coefficient for
surfaces other than the fin tip, /4, the tip convective heat transfer coefficient, g, the
fin heat dissipation, and g;, the ideal fin heat dissipation.

2. Constant base temperature and insulated tip (H = 0):

0 coshm (b — x)

—_—= 3.178
0 coshmb ( )
qr = km A8y, tanhmb (3.179)
tanhmb
n=-—n (3.180)
mb
3. Constant base and tip temperatures:
3 _ (6:/6p) sinhm?c + sinhm (b — x) (3.181)
0, sinhmb
hmb — (6,/6
ar = km g, S0 = O /%) (3.182)
sinhmb

with gjq and n given by eqs. (3.176) and (3.177), respectively, T, taken as the pre-
scribed tip temperature, and 6, = T; — T.
4. Convective heating at the base and insulated tip:

0 Bicosh(mb — x)

— 3.183
Or Bicoshmb + mb sinhmb ( )
Bi sinhmb
qr = kmAQ; — . (3.184)
Bicoshmb + mb sinhmb

where Bi = hyb/k, 6y = Ty —Tx, and hy and Ty characterize the convection process
at the fin base. Equations (3.176) and (3.177) can be used to find g;q and mn, but 6,
must be found first from eq. (3.183).

5. Infinitely high fin with constant base temperature:

0

g=e (3.185)
b

qr = kmA®, (3.186)

Because the fin is infinitely high, giq and 1 cannot be calculated. Instead, one may
calculate the fin effectiveness € as the ratio of g, to the rate of heat transfer from the
base surface without the fin, h A6;,. Thus
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kP\ 2
¢ = %feb — (ﬂ) (3.187)

Several important conclusions can be drawn from eq. (3.187). First, the fin effec-
tiveness is enhanced by choosing a material with high thermal conductivity. Copper
has a high value (k = 401 W/m - K at 300K), but it is heavy and expensive. Aluminum
alloys have lower k (k = 168 to 237 W/m - K at 300 K) but are lighter, offer lower
cost, and in most instances are preferable to copper. Second, the fins are more effective
when the convecting fluid is a gas (low #) rather than a liquid (higher /). Moreover,
there is a greater incentive to use the fin under natural convection (lower &) than under
forced convection (higher %). Third, the greater the perimeter/area (P /A) ratio, the
higher the effectiveness. This, in turn, suggests the use of thin, closely spaced fins.
However, the gap between adjacent fins must be sufficient to prevent interference of
the boundary layers on adjacent surfaces.

Trapezoidal Fin For a constant base temperature and insulated tip, the tempera-
ture distribution, rate of heat transfer, ideal rate of heat transfer, and fin efficiency for
a trapezoidal fin (Fig. 3.19b) are

0 Ih@mvbx)K\(2m/bx,) + Ko(2m~/bx)1;(2m+/bx.)

— — 3.188

0, Iy2mb)K,(2m+/bx,) + Ko(2mb) I, 2m+/bx,) ( )
I 2mb)K,(2 bx.) — K1(2mb)I; (2 bx,

g7 = kmbyL6, 12mb)K 1 (2m+/bx 12mb)1; (2m+/bx,) (3.189)
: TIo@mb) K, 2m~/br.) + Ko(2mb) I, 2m~/bx.)

did = 2Lbh9b (3190)

and eq. (3.177) gives the fin efficiency. In eqs. (3.188) and (3.189), m = /2h/ k3,
and x, is the distance to the fin tip. The modified Bessel functions appearing here and
in subsequent sections are discussed in Section 3.3.5.

Triangular Fin The rectangular fin (Fig. 3.19¢) is a special case of the trapezoidal
fin with x, = 0 and

0 Iy(2mv/bx)

A 3.191

917 Io(2mb) ( )

g7 = kmd, Lo, LZ0) (3.192)
I,(2mb)

_ _nemd) 3.193

N = bly(2mb) (3.193)

Concave Parabolic Fin For the concave parabolic fin shown in Fig. 2.19d, the
temperature distribution, rate of heat transfer, and fin efficiency are
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0 X\ —1/2+172(1+4m>b%) /2
0 (5) (3.194)
kd, L6
ar = ;b i [—1 + (l +4m2b2)1/2] (3.195)
2
b (3.196)

1+ (1 +4m2b2)1/2

Convex Parabolic Fin For the convex parabolic fin shown in Fig. 3.19e, the
temperature distribution, rate of heat transfer, and fin efficiency are

a1 4 pl/4 /4
ﬂz(i) 1/3(3’"4 ) (3.197)
6;, b 171/3 (gmb)
Lys (3mb)
— kmd, L0, —13 3.198
qy = kmdyp bL1/3 (%mb) ( )
Lys (34mb
ne 23 (5mb) (3.199)

mb 1_1/3 ($mb)

The efficiency of longitudinal fins of rectangular, triangular, concave parabolic,
and convex parabolic fins are plotted as a function of mb in Fig. 3.20.

3.6.2 Radial Convecting Fins

The radial fin is also referred to as an annular fin or circumferential fin, and the
performance of three radial fin profiles is considered. These are the rectangular,
triangular, and hyperbolic profiles. Analytical results are presented for the rectangular
profile, and graphical results are provided for all three profiles.

Rectangular Fin For the radial fin of rectangular profile shown in the inset of
Fig. 3.21, the expressions for the temperature distribution, rate of heat transfer, and
fin efficiency are

6 K (mry)Io(mr) + Iy (mrg) Ko(mr)

9 _ (3.200)
Op  lo(mry) K(mr,) + Iy (mr,) Ko(mry)

1 K — K )1
g7 = 2mrykmd0, 1(mr,) Ky (mry) 1(mrg) I (mry) (3.201)
To(mry) Ky (mry) + I (mrg) Ko(mry,)

21y I (mry) Ky (mrp) — Ky (mry) 1 (mryp)
m (r2 = r2) Io(mry) Ky (mry) + 11 (mry) Ko(mry)

n= (3.202)
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Figure 3.20 Efficiencies of longitudinal convecting fins.
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Figure 3.21 Efficiency of radial (annular) fins of rectangular profile. (Adapted from Ullman
and Kalman, 1989.)
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Figure 3.22 Efficiency of radial (annular) fins of triangular profile. (Adapted from Ullman
and Kalman, 1989.)

The efficiency of a radial fin of rectangular profile given by eq. (3.202) is plotted as
a function of mb in the main body of Fig. 3.21 for r,/r;, = 1 (longitudinal fin), 1.5,
2.0, 3.0, 4.0, and 5.0.

Triangular Fin The inset in Fig. 3.22 shows a radial fin of triangular profile. The
analysis for this profile is given in Kraus et al. (2001) and involves an infinite series
that is omitted in favor of numerical results for the fin efficiency, which are graphed
in Fig. 3.22. Note that n is a function of m, r,/rp, and 3,/r,. Once 1 is known,
qr = 2]‘[("3 — r,f)hehn.

Hyperbolic Fin A radial fin of hyperbolic profile appears as an inset in Fig. 3.23.
The lengthy analytical results are presented in Kraus et al. (2001) and a graph of the
fin efficiency is presented in Fig. 3.23. Note that v is a function of m, r, /rp, and 8,/ rp,
and once n is known, gr = 2n(r2 — rf)he;,n.

3.6.3 Convecting Spines

Four commonly used shapes of spines, shown in Fig. 3.24, are the cylindrical, coni-
cal, concave parabolic, and convex parabolic. Analytical results for the temperature
distribution, rate of heat transfer, and fin efficiency are furnished.
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Figure 3.23 Efficiency of radial (annular) fins of hyperbolic profile. (Adapted from Ullman

and Kalman, 1989.)

Cylindrical Spine For the cylindrical spine, the results for the rectangular fins are
applicable if m = (4h/kd)"/? is used instead of m = (2h/k8)"/?. If the spine tip is
insulated, eqs. (3.178)—(3.180) can be used.

Conical Spine

where M = (4hb/kdy)'/>.

8 _ (g)‘/z 1(2M /%)
6 \x/ nLCMVb)
_ mkd} M6, L(2M /D)
VETUh hemdb
2 L2MVb)

YN SYRCITNG

Concave Parabolic Spine

0
0p

X\ —3/2+1/2(9+4M%)!/?
(5)

(3.203)

(3.204)

(3.205)

(3.206)
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wkdyBy, [—3 + (9 +4M?)' /2]

ar = 8b

2
L+ (1 + Sm2p)12

n

where M = (4hb/kdy)'/* and m = (2h/kdy)'/>.
Convex Parabolic Spine

0 _ I (3Mx)

0 Lo (MDY

wkd} M6y, I (3MbY1)
2614 Iy (3MBb34)

_ 3 11(%\/57711?)
n= 22 mblo(%\/imb)

qr =

where M = (4hb'/?/kd),)'/? and m = (2h/kdy)"/>.

(3.207)

(3.208)

(3.209)

(3.210)

(3.211)

Figure 3.25 is a plot of 1 as a function of mb for the four spines discussed.

Ty:h T, h
t ‘
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e
b >
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T.h T .h

(©) )

Figure 3.24 Spines: (a) cylindrical; (b) conical; (¢) concave parabolic; (d) convex parabolic.
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Figure 3.25 Efficiencies of convecting spines.

3.6.4 Longitudinal Radiating Fins

Unlike convecting fins, for which exact analytical solutions abound, few such so-
lutions are available for radiating fins. Consider the longitudinal fin of rectangular
profile shown in Fig. 3.19a and let the fin radiate to free space at 0 K. The differential
equation governing the temperature in the fin is

d*T _ 20¢€ T4 (3212)
dx?  kd '
with the boundary conditions
dT
Tx=0=T7, and — =0 (3.213)
dx |,_,

where € is the emissivity of the fin surface and o is the Stefan—Boltzmann constant
(o0 = 5.667 x 1078 W/m?- K*).

The solution for the temperature distribution, rate of heat transfer, and fin effi-
ciency are

200eT3\ "/
B(0.3,05) = B,(03,0.5) = b ( — (3.214)
oENI2 s s
g5 = 2k5L (_5k8) (17 - 17) (3.215)
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_ 2kSL(0€/5kd)' (T, — 17)"”
n= 20eb LT}

(3.216)

where B and B, are complete and incomplete beta functions discussed in Section
3.3.3,u = (T;/T)? and T, is the unknown tip temperature. Because 7; is not known,
the solution involves a trial-and-error procedure.

Sen and Trinh (1986) reported the solution of eqs. (3.212) and (3.213) when the
surface heat dissipation is proportional to T™ rather than T*. Their solution appears
in terms of hypergeometric functions which bear a relationship to the incomplete beta
function. Kraus et al. (2001) provide an extensive collection of graphs to evaluate the
performance of radiating fins of different profiles.

3.6.5 Longitudinal Convecting—Radiating Fins

A finite-difference approach was taken by Nguyen and Aziz (1992) to evaluate the
performance of longitudinal fins (Fig. 3.19) of rectangular, trapezoidal, triangular,
and concave parabolic profiles when the fin surface loses heat by simultaneous con-
vection and radiation. For each profile, the performance depends on five parameters,
2b/8y, hdy )2k, Too) Tyy, Ty/ T, and 2b%ce Tb3/k8b, where T is the effective sink tem-
perature for radiation. A sample result for the fin efficiency is provided in Table 3.11.
These results reveal a more general trend—that a convecting—radiating fin has a lower
efficiency than that of a purely convecting fin (2b*ce Tb3 / k8, = 0).

3.6.6 Optimum Dimensions of Convecting Fins and Spines

The classical fin or spine optimization involves finding the profile so that for a pre-
scribed volume, the fin or spine rate of heat transfer is maximized. Such optimizations
result in profiles with curved boundaries that are difficult and expensive to fabricate.
From a practical point of view, a better approach is to select the profile first and then
find the optimum dimensions so that for a given profile area or volume, the fin or spine
rate of heat transfer is maximized. The results of the latter approach are provided here.
For each shape, two sets of expressions for optimum dimensions are given, one set for

TABLE 3.11 Efficiency of Longitudinal Convecting—Radiating Fins,
Too/Ty =T,/ T, = 0.8, 2hb* [ ks = 1

Trapezoidal Concave

2bh%ce T; / k8 Rectangular dt/8, = 0.25 Triangular Parabolic
0.00 0.6968 0.6931 0.6845 0.6240
0.20 0.4679 0.4677 0.4631 0.4244
0.40 0.3631 0.3644 0.3616 0.3324
0.60 0.3030 0.3051 0.3033 0.2811
0.80 0.2638 0.2666 0.2655 0.2471

1.00 0.2365 0.2396 0.2390 0.2233
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when the profile area or volume is specified and another set for when the fin or spine
rate of heat transfer is specified. Note that g for fins in the expressions to follow is
the fin rate of heat transfer per unit length L of fin.

Rectangular Fin When the weight or profile area A, is specified,

A2h 1/3

Sopt = 0.9977 (%) (3.217)
A\

bop = 1.0023 (T") (3.218)

and when the fin rate of heat transfer (per unit length) g is specified,

0.6321 [g;/(Ty — To) |’

Bopt = 7 (3.219)
0.7978q,
=—— 3.220
o = T T ( )
Triangular Fin When the weight or profile area A, is specified,
Azp\'"?
Sp.opt = 1.6710 <%) (3.221)
AR\
bopt = 1.1969 <T"> (3.222)
and when the fin rate of heat transfer (per unit length) g is specified,
2
0.8273 [q7/(Ty — Two) |
bopt = o (3.223)
0.8422q,
bopt = ————— 3.224
T (T, - Too) G229

Concave Parabolic Fin When the weight or profile area A, is specified,

Azh 1/3

Sopt = 2.0801 (—]’; ) (3.225)
Ak 1/3

bopr = 1.4422 <T”) (3.226)

and when the fin rate of heat transfer (per unit length) g is specified,
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(1 qas ’
8b,opl = (hk) |:(Tb — Too):| (3227)

ar

—h(Tb T (3.228)

bopl =

Cylindrical Spine When the weight or volume V is specified,

v\’

dop; = 1.5031 (T) (3.229)
sz 1/5

bopi = 0.5636 (?> (3.230)

and when the spine rate of heat transfer g is specified,

7 1/3
f
doy = 09165 | ——— 3.231
[()} a2
1/3
qrk
bopy = 0.4400 | ———— 3.232
P [hz(Tb—TooJ (3:232)

Conical Spine When the weight or volume V is specified,

hvz 1/5

dp,opt = 1.9536 (T) (3.233)
Vi

bope = 1.0008 <?> (3.234)

and when the spine rate of heat transfer g, is specified,

q2 1/3
r
dpopt = 1.0988 | ————— 3.235
o [hk(n - Tooﬂ} (3239
ark 1/3
bopl = 0.7505 [m} (3.236)

Concave Parabolic Spine When the weight or volume V is specified,

h V2 1/5
) (3.237)

dp opt = 2.0968 (T
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Vk2 1/5
bope = 1.4481 < ) (3.238)

n

and when the spine rate of heat transfer g is specified,

e 13
f
dpopt = 1.1746 | ———— 3.239
biop [hkm, - Tw>2] (3239
1/3
_ ark
bopy = 1.0838 [m} (3.240)

Convex Parabolic Spine When the weight or volume V is specified,

PRVENE
db.opt = 1.7980 (T) (3241)
Vi
bopr = 0.7877 (F) (3.242)
and when the spine rate of heat transfer g is specified,
42 1/3
— S
dp.opt = 1.0262 [m] (3.243)
qrk 3
b = 03951 1555 | (.244)

The material presented here is but a small fraction of the large body of literature
on the subject of optimum shapes of extended surfaces. The reader should consult
Aziz (1992) for a comprehensive compilation of results for the optimum dimensions
of convecting extended surfaces. Another article by Aziz and Kraus (1996) provides
similar coverage for radiating and convecting-radiating extended surfaces. Both ar-
ticles contain a number of examples illustrating the design calculations, and both are
summarized in Kraus et al. (2001).

3.7 TWO-DIMENSIONAL STEADY CONDUCTION

The temperature field in a two-dimensional steady-state configuration is controlled by
a second-order partial differential equation whose solution must satisfy four boundary
conditions. The analysis is quite complex, and consequently, exact analytical solu-
tions are limited to simple geometries such as a rectangular plate, a cylinder, and a
sphere under highly restrictive boundary conditions. Problems that involve complex
geometries and more realistic boundary conditions can only be solved by using an
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approximate technique or a numerical method. Approximate techniques that are em-
ployed include the integral method, the method of scale analysis, and the method of
conduction shape factors. The two most popular numerical techniques are the finite-
difference and finite-element methods. There are numerous sources for information
on approximate and numerical techniques, some of which are Bejan (1993), Ozisik
(1993, 1994), Comini et al. (1994), and Jaluria and Torrance (1986). In the follow-
ing section we provide an example of an exact solution, a table of conduction shape
factors, and a brief discussion of the finite-difference method and its application to
two-dimensional conduction in a square plate and a solid cylinder.

3.7.1 Rectangular Plate with Specified Boundary Temperatures

Figure 3.26 shows a rectangular plate with three sides maintained at a constant
temperature 77, while the fourth side is maintained at another constant temperature,
T,(T, # Ty). Defining

T —T,
6= ! (3.245)
nL-T
the governing two-dimensional temperature distribution becomes
0% + 0% =0 (3.246)
ax2 = 9y? '
with the boundary conditions
0(0,y) =1 (3.247a)
08(x0) =0 (3.247b)
0(Ly) =0 (3.247c)
O, H) =0 (3.2474d)
Use of the separation of variables method gives the solution for 6 as
0— i i sinh.[(2n + (L —x)/H]sin[2n + 1)nty/H] (3.248)
T sinh[(2n + 1)L/ H] 2n + 1

Using eq. (3.248), Bejan (1993) developed a network of isotherms and heat flux lines,
which is shown in Fig. 3.27 for H/L = 2 (a rectangular plate) and for H/L =1 (a
square plate).

The heat flow into the plate from a hot left face is given by

i_ﬁk(T _T)i ! (3.249)
woon V& @n+ Dtanh [(2n + DnL/H] '
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Figure 3.26 Two-dimensional steady conduction in a rectangular plate.
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Figure 3.27 Isotherms and heat flux lines in a rectangular plate and a square plate. (From
Bejan, 1993.)

where W is the plate dimension in the z direction. Solutions for the heat flux and
convective boundary conditions are given in Ozisik (1993) and Poulikakos (1994).

3.7.2 Solid Cylinder with Surface Convection

Figure 3.28 illustrates a solid cylinder of radius ry and length L in which conduction
occurs in both radial and axial directions. The face at z = 0 is maintained at a constant
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e T..h

Figure 3.28 Radial and axial conduction in a hollow cylinder.

temperature 77, while both the lateral surface and the face at z = L lose heat by
convection to the environment at T, via the heat transfer coefficient 4. The system
described represents a two-dimensional (r, z) convecting spine discussed by Aziz and
Lunardini (1995). The equation governing the two-dimensional heat conduction in

the cylinder is

329+1ae+329_
OR2  ROR 9872

where

T — Ty r z L
e = —————— —_ y = —
T1 = Too ro L ro
and Bi is the Biot number, Bi = hr(/k. The boundary conditions are
B(R0O) =1

a9
—(0,2) =0
8R( )

36
—(1,Z)=-Bi-6(1,Z
g L2 i-6(1,2)

00

—(R,]) = —Bi-y0(R,1
8R( ) i-yO(R]1)

The solution obtained via the separation of the variables is

9 _ i 2)\.nJ] ()\n)JO()\nR)

cosh\,yZ — Ysinh\,yZ
(02 + B2) o2 Y Y2

n=1

(3.250)

(3.251a)

(3.251b)

(3.251¢)

(3.251d)

(3.252)
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where

_ A, sinh,,y + Bicosh\,y
M cosh\,y + Bisinh),y

and where Jy and J; are the Bessel functions of the first kind (Section 3.3.5) and the
eigenvalues ), are given by

M J1(h) = Bi - Jo(hy) (3.253)
The heat flow into the cylinder from the hot left face is

> M [J1 Ohg
q = dmkro(Ty — OO)Z 02 +1£11([J32xn)]ﬂ (3.254)

A three-dimensional plot of 6 as a function of r and z is shown in Fig. 3.29 for
ro =1, L = 1,and h/k = 1. This plot was generated using Maple V, Release 5.0. As
expected, the temperature decreases along both the radial and axial directions. Ozisik
(1993) has devoted a complete chapter to the method of separation of variables in
cylindrical coordinates and provides solutions for several other configurations.

3.7.3 Solid Hemisphere with Specified Base and Surface
Temperatures

Poulikakos (1994) considers a hemispherical droplet condensing on a cold horizontal
surface as shown in Fig. 3.30. The heat conduction equation for the two-dimensional
(r, B) steady-state temperature distribution in the droplet is given by

9 9 1 3
— r2—¢ + — sin O —d’ =0 (3.255)
ar or sinH 96 00

where ¢ = T — T,. Two of the boundary conditions are

9(}"0, e) =T, -T. = (])s (3256&)
¢ (r, g) =0 (3.256b)
Because the boundary condition at r = 0 falls on the 6 = m/2 plane, which is

the base of the hemispherical droplet, it must meet the boundary condition of eq.
(3.256b), that is,

b (r, 2) =0 (3.256¢)
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Figure 3.29 Three-dimensional plot of the temperature distribution in a solid cylinder. (From
Aziz, 2001.)

The fourth boundary condition at 8 = 0 is obtained by invoking the condition of
thermal symmetry about 6 = 0, giving

¢

—(r,0)=0 3.256d
30 (r,0) ( )
Use of the method of separation of the variables provides the solution for ¢ as

o=b0 Y [Pt = Pi(D) = Posi0) + Py 0] (:—0> P.(cos6) (3.257)
n=1

where the P’s are the Legendre functions of the first kind, discussed in Section 3.3.6.
Ozisik (1993) may be consulted for a comprehensive discussion of the method of
separation of the variables in spherical coordinates.
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Az

X

Figure 3.30 Hemispherical droplet condensing on an isothermal surface. (Adapted from
Poulikakos, 1994.)

3.7.4 Method of Superposition

The configuration considered in the preceding section involved one nonhomogeneous
boundary condition [either eq. (3.247a), (3.251a), or (3.256a)]. When two or more
nonhomogeneous boundary conditions occur, the analysis can be split into two sub-
analyses each containing one nonhomogeneous boundary condition. Each subanaly-
sis can then be solved using the method of separation of the variables, and the sum of
the solutions to the two subanalyses will provide the solution to the overall problem.
This approach is illustrated in Fig. 3.31 for a rectangular plate with two homogeneous
boundary conditions.
The mathematical description of the problem is

0% + 0% =0 (3.258)
axz = 9y? '
where 6 = T — T3. The boundary conditions are
000,y)=6,=T, — T3 (3.259a)
0(x,0) =0, =T, — T3 (3.259b)
O(L,y) =0 (3.259¢)

6(x,H)=20 (3.2594)
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Figure 3.31 Rectangular plate with two nonhomogeneous boundary conditions.
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Figure 3.32  Splitting the problem of Fig. 3.31 into two subproblems with known solutions.

The problem is split into two subproblems, as indicated in Fig. 3.32, and the two
solutions can be obtained from eq. (3.248) with appropriate adjustment to account
for the definition of 6 and the coordinates, x and y. The sum of the two solutions is

0— ﬂ Z sinh [2n + )7t(L — x)/H)] sin[(2n + 1)(ny/H)]
R sinh [(2n + 1)L/H)] 2n + 1

_2 Z sinh[(2n + 1)w(H — y)/L)] sin[(2n 4+ 1)(mtx/L)] (3.260)
T = sinh [(2n + 1)(wH/L)] 2n + 1

3.7.5 Conduction Shape Factor Method

Although the conduction shape factor method does not give the temperature distribu-
tion, it provides a simple equation for the rate of heat transfer:
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q =kS AT (3.261)

where k is the thermal conductivity of the conducting medium, AT the tempera-
ture difference driving the heat flow, and S the conduction shape factor. Table 3.12
provides expressions for the conduction shape factor for various two-dimensional
configurations.

The conduction resistance for a two-dimensional system follows from eq. (3.261) as

1
Reond = ﬁ (3.262)

3.7.6 Finite-Difference Method

Cartesian Coordinates In the finite-difference approach, the conducting region
is covered with a grid consisting of intersecting lines. The points of intersection
are called nodes. For a rectangular region, the grid lines are drawn parallel to the
boundaries. For simplicity, the spacings Ax and Ay are chosen so that Ax = Ay.
Nodes are identified by double-subscript notation, ij, where i and j count the grid
lines along the x- and y-coordinate directions, respectively. The node i, j, which
represents a particular subvolume, is presumed to be isothermal at the temperature,
T; ;. InFig. 3.33, five different types of nodes are identified together with their control
volumes, which are shown as dashed enclosures. The finite-difference approximation
for each type of node is given here with the control volume assumed to have no energy
generation.

1. Internal node:
-T.;+ % (Ti+L,j + T +Tio+ Ti,j—l) =0 (3.263)

2. Node on plane convecting surface:

2h Ax <h Ax

2T+ T ja+ T j + TTOO -2 + 2) T;; =0 (3.264)

3. External corner node with convection:

2h Ax h Ax
Lja+Ti;+ 3 T —2(1+ X Ti;=0 (3.265)
4. Internal corner node with convection:
2h Ax

2(Ti 1+ T jt) + Tigrj + Tijor +

h A
—2 (3 n Tx> T.,=0 (3.266)
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TABLE 3.12 Conduction Shape Factors for Selected Two-Dimensional Systems
[q = Sk(T1 — T1)]

System Schematic Restrictions Shape Factor
Case 1: T
. = 2nD
Isothermal sphere buried _jQ_i_ z>D/2 1—D/4s
in a semi-infinite medium h—7=""p — D/4z
Case 2: T,
—|—_]— 2nL
Horizontal isothermal z L>D +
cylinder of length L %,\ costi" (2z/D)
buried in a semi-infinite _/H*" L>D 2nL
medium ! ¢>3D/2 In(4z/D)
T
Case 3: 1
. o ! 2nL
Vertical cylinder in a 5 L>D B e
T : gl In(4L/D)
semi-infinite medium e
D
Case 4:
: L> Dy, D, 2nL
D D
tCondu(:_tlon between Tl—)z:j( I }:{ 2 > w i D D2
wo cylinders of length 7 cosh™! 1 2
L in infinite medium |‘_ w _’l 2D, D,
Case 5:
. . D/2 21tL
Horizontal circular % L o > _—
‘__f_L_’ L>z
cylinder of length L z In(8z/7D)
midway between parallel - _*-}?‘; -
planes of equal length w 1! 3
and infinite width 1,
Case 6: .
[ 2nL
Circular cylinder of D f >>> 3

In(1.08w/D)

length L centered in a Q/ W
square solid of equal T i

length

Case 7: d T
2nL

B p
Eccentric circular | ? I
D2 d2 —4 2
i’ z cosh-! (#)

Vv
LY

cylinder of length L in
a cylinder of equal length i 2Dd

L T,
Case 8: I L _‘
Conduction through the T 14 D>1L/5 0.54D
edge of adjoining walls L
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TABLE 3.12 Conduction Shape Factors for Selected Two-Dimensional Systems
[g = Sk(T1 — T»)] (Continued)

System Schematic Restrictions Shape Factor

Case 9:

L < length and

Conduction through . width of wall 0.15L
corner of three walls with
a temperature difference
AT, _; across the wall
Case 10:
. . [—P T,
Disk of diameter D and None 2D
T on a semi-infinite -
medium of thermal ) A S
conductivity k and T
Case 11: 174
< w 2nL
Square channel of -1, — <14 _——
length L L7, w 0.785In(W/w)
s w 2nL
w 0.930(W/w) — 0.050
5. Node on a plane surface with a uniform heat flux:
2q" Ax
(2Tiq1j + Tijr + Tij) + —4T; ;=0 (3.267)

In eqgs. (3.264)—(3.266), h = 0 applies to a node on an adiabatic boundary and
h = oo appiles to a node on an isothermal boundary.

By writing an appropriate finite-difference approximation for each node in the
grid, a set of n-linear algebraic equations (one for each of the n nodes) in the unknown
node temperatures can be produced. A standard numerical procedure or a computer
code can be used to solve the system of equations giving the temperatures at all the
nodes.

Consider the square plate shown in Fig. 3.34. For Ax = Ay = 0.1/16 = 0.00625
m, the finite-difference solution generated by Aziz (2001) gives the temperatures on
the convecting surface. For j = 1,3,5,7,...17,

Ti7,; = 67.85, 68.24, 70.19, 73.24, 77.13, 81.67, 86.81, 92.66, and 100.00 all in °C.
Cylindrical Coordinates Consider the solid cylinder of radius ry and length

L (Fig. 3.35) in which steady conduction occurs along the r and z directions. The
conduction equation is
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J
Fluid
* Lok external corner
node (i, )
T
L -1
" 0 - Fluid
T ! T
- (.
node on a node on a plane
plane with r={-A surface (7, )
: 1
uniform heat i -~
flux (17]) r=rea -
y ] ]
- J' internal corner
A node (i, j)
L Fluid
X «T . h
Ay
internal y

node (7, j) —«>i Ax |<— * i

Figure 3.33 Types of nodes and the corresponding control volumes.
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Figure 3.34 Grid for two-dimensional conduction in a square plate.
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TS
[

control
volume
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node

Figure 3.35 Finite-difference grid for radial and axial conduction in a solid cylinder with six
different types of nodes.

°r + LoT + ik =0 (3.268)
or2  ror 972 '

Let the outer surface temperature of the cylinder be T;. The face at z = 0 is insulated
while the face at z = L experiences a constant heat flux ¢”. This description gives
the boundary conditions
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0T (0,z)
3 =0 (thermal symmetry) (3.269a)
,
T (ro,z2) = Ty (3.269b)
aT (r,0
0 _, (3.269¢)
9z
3T (r,L '
L) _ g (3.269d)
4

Six different nodes (a, b, ¢, d, e, and f) have been identified in Fig. 3.35. The finite-
difference approximations for these nodes are as follows:

1. Node a (internal node):

1 Ar Ar
-T.;+ I 1 - 2 Tij1+ |1+ 2 Tijv1+ T+ Ticj | =0 (3.270)

2. Node b (node on an insulated surface, z = 0):

Torilor (1=t o+ (12277 =0 G2y
i,j 4 i+1,j 27‘j i,j—1 2}”j i,j+1 | = .

3. Node c (node on a constant heat flux surface, z = L):

nor (=20 (1420 7y w2
i,j 4 ZVJ' i,j—1 2rj i,j+1 i—1,j

q" Ar
=0 (3.272)
2k
4. Node d (node at the corner of two insulated surfaces):
— T+ 43 (T +2T4) =0  (=1j=1 (3.273)

5. Node e (node at the corner of an insulated surface and a constant heat flux
surface):

1 q" Ar
—T;+ +§ Ty, + 2T 41 + k =0 (3.274)

6. Node f (node on the longitudinal axis):

=T+ é (Tiz1,j + Tisr,j + 4T 1) =0 (3.275)

Taking ro = Im, L = Im, T, = 25°C,k = 20W/m-K, and ¢” = 1000 W/m?,
Aziz (2001) produced the following temperatures at the 20 nodes shown in Fig. 3.35:
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T, =31.03°C  Ts;=32.33°C
T\, =30.54°C  Ts, = 28.95°C
T3 =29.14°C Ty, = 41.42°C
T4 =27.13°C Ty, = 40.43°C
To, =32.02°C  Ty;=37.38°C
To, =3146°C Ty, = 32.15°C
T3 =29.87°C  Ts; =51.59°C
Ths=2753°C  Ts, = 50.42°C
Ty =3524°C  Ts = 46.69°C
Ty, =3450°C  Ts, = 39.35°C

229

A thorough discussion of the finite-difference method appears in Ozisik (1994).
The book also features a large number of examples.

3.8 TRANSIENT CONDUCTION

The term transient conduction is used when the temperature in a heat conduction
process depends on both time and the spatial coordinates. Three models that are com-
monly used to study transient conduction are the lumped thermal capacity model, the
semi-infinite solid model and the finite-sized model. The finite-difference method
provides one of many numerical methods that are used to analyze complicated con-
figurations.

3.8.1 Lumped Thermal Capacity Model

The lumped thermal capacity model assumes that spatial temperature variations
within the body are negligible and the temperature variation is solely a function of
time. Consider a body of arbitrary shape of volume V, surface area A, density p,
and specific heat c, initially at a temperature 7;, as indicated in Fig. 3.36. At time
t > 0, the body is immersed in a convective environment (7, &), where T, < Tj,
and allowed to cool. The differential equation describing the cooling process is

ch[;—Y; = —hA(T — Ty) (3.276)
with the initial condition
Tt=0)=T, (3.277)
The solution is
T = Too _ pnasove (3.278)




230 CONDUCTION HEAT TRANSFER

Radiation sink
atT;.

on T,

= dconvection
or

Yradiation

Figure 3.36  Cooling of a lumped thermal capacity body.

and the cumulative energy transfer to the coolant Q over a period of time ¢ is
0 = pVe(T; — Too) (1 — e MA1/0V0) (3.279)

The lumped thermal capacity model is valid for Bi = hV/kA; < 0.10, a condition
that is met in many engineering applications, such as the annealing of metals.

Attention now turns to some refinements of the basic lumped thermal capacity
model.

Internal Energy Generation If the body experiences uniform thermal energy

generation E, (W) at time ¢ = 0, the temperature variation in the body is given by
Eg B hAY(T B TOO) _ ethxt/ch
Eg — hA(T; — Tw)

(3.280)

This situation occurs when an electronic component is suddenly energized.

Temperature-Dependent Specific Heat If the specific heat varies linearly with
temperature, that is,

¢ = coo[1 £B(T = Too)] (3.281)

the temperature variation given by Aziz and Hamad (1977) is

T —T. T —T,; hAt
In ——= + B (T; — Tw) F =
T, — Ty T, -1, pVeso

(3.282)

Pure Radiation Cooling If the body is cooled solely by radiation, the term
hA(T — Ty is replaced in eq. (3.276) by €c A, (T* — T*), where ¢ is the surface
emissivity and T is the effective sink temperature for radiation. The solution for T’
in this case is given by Aziz and Hamad (1977):
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Ts +T Ts - T;
n
Ts =T Tv + Tl
T T; dec Ay Tft
+ 2| arctan — — arctan — | = —— (3.283)
T; T; pVe
Equation (3.283) is useful, for example, in designing liquid droplet radiation systems
for heat rejection on a permanent space station.

Simultaneous Convective—Radiative Cooling In this case, the radiative term,
—0A(T*— TS4) appears on the right-hand side of eq. (3.276) in addition to —h A (T —
T). An exact solution for this case does not exist except when 7o, = Ty = 0. For
this special case the exact solution is

3 \3
1 [1 + (eoT}’) /W(T/T)) ]  hA (280

37| (+eT?/h)T/T)> | oVe

Temperature-Dependent Heat Transfer Coefficient For natural convection
cooling, the heat transfer coefficient is a function of the temperature difference, and
the functional relationship is

h=C(T —Ty) (3.285)

where C and n are constants. Using eq. (3.285) in (3.276) and solving the resulting
differential equation gives

T—To _(,, nhidt i
T =T pVe

(3.286)

where n # 0 and h; = C(T; — Too)".

Heat Capacity of the Coolant Pool 1If the coolant pool has a finite heat capacity,
the heat transfer to the coolant causes T, to increase. Denoting the properties of the
hot body by subscript 1 and the properties of the coolant pool by subscript 2, the
temperature—time histories as given by Bejan (1993) are

_ T1(0) — T2(0) ot
Ti(t) =T (0) — T 01V101/02V2C2(1 —e) (3.287)

T,(0) 4+ T>(0) _
T =750 1—e™ 3.288
2() 2(0) + 1+ (92V2€2/01V16‘1)( €) ( )

where 1 (0) and 7, (0) are the initial temperatures and

V V
n= hASM (3.289)
(p1Vic1)(p2Vac2)
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T | hT,
T0,0)=T, =T, + ar” —k2H _, =4} —kZH _, = hIT, — T(0,0]
T(x,0)=T; I(x,0)=T;

(@) @ (©)

Figure 3.37 Semi-infinite solid with (a) specified surface temperature, (b) specified surface
heat flux, and (c) surface convection.

3.8.2 Semi-infinite Solid Model

As indicated in Fig. 3.37, the semi-infinite solid model envisions a solid with one
identifiable surface and extending to infinity in all other directions. The parabolic
partial differential equation describing the one-dimensional transient conduction is

92T 10T
—_— = —— 3.290
ax2 o Ot ( )

Specified Surface Temperature 1f the solid is initially at a temperature T;, and
if for time r > 0 the surface at x = 0 is suddenly subjected to a specified temperature—
time variation f(¢), the initial and boundary conditions can be written as

Tx,00=T, (x=0) (3.291a)
T(0,1) = f(t) =T, + ar"? (3.291b)
T(co,t) =T, (r>0) (3.291¢)

where a is a constant and 7 is a positive integer.
Using the Laplace transformation, the solution for T is obtained as

T =T +al (1 + ﬁ) ()2 erfe | —2 (3.292)
2 2ot

where I" is the gamma function (Section 3.3.2) and i" erfc is the nth repeated integral
of the complementary error function (Section 3.3.1). The surface heat flux ¢ is

on—1 n X
=02k, (1 —) =1 erf 3293
ai= g ke (L) [ et ()| 629

Several special cases can be deduced from egs. (3.292) and (3.293).
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Case 1: f(t) = To This is the case of constant surface temperature which occurs
whenn =0anda =Ty — T;:

T =T _ o ( al > (3.294)
— = CrIC .
o —T; 2/ at
k(To —T)
(S A—— 3.295
0 (Tar)l/? ( )

Case 2: f(r) = T; +at This is the case of a linear variation of surface temperature
with time which occurs when n = 2:

X
T(x,t)=T; + 4ati® erfc ( ) 3.296
(x, 1) N ( )
y _ 2kat (3.297)
9 = (mar)1/? '

Case 3: f(t) = T; + at'/?  This is the case of a parabolic surface temperature
variation with time with n = 1.

T(x,t) =T; +a~/ntierfc < (3.298)

=)
2/ ot
ka |
= = 3.299
9 =5Vq ( )

Specified Surface Heat Flux For a constant surface heat flux g, the boundary
conditions of eq. (3.291b) is replaced by

aT(0,1)
—k =q 3.300
ax 90 ( )
and the solution is
2g{/at
T(x.1) =T, + 20V ierfc( ad ) (3.301)
k 2Jat
Surface Convection The surface convection boundary condition
0T (0,1
—k ©.0 =h|[Tsx — T(0,1)] (3.302)
ax
replaces eq. (3.291b) and the solution is
T(x,t)—T; ( X ) (o JK) (ot ) R h X
— L —erfe | —= | — eM/ROFI/ID orfe | — ar + —— 3.303
Too — T; 2.t k 2 at ( )



234 CONDUCTION HEAT TRANSFER

Constant Surface Heat Flux and Nonuniform Initial Temperature Zhuang
et al. (1995) considered a nonuniform initial temperature of the form

T(x,0) =a+ bx (3.304)

where a and b are constants to find a modified version of eq. (3.301) as

"
T(x.1) = a+ bx + 2J/at (%0 +b>ierfc( ) (3.305)

X
2Jat

The surface temperature is obtained by putting x = 0 in eq. (3.305), which gives

t "
TO.0) =a+2,— (%0 + b) (3.306)
T

Zhuang et al. (1995) found that the predictions from egs. (3.305) and (3.306) matched
the experimental data obtained when a layer of asphalt is heated by a radiant burner,
producing a heat flux of 41.785 kW/m?2. They also provided a solution when the initial
temperature distribution decays exponentially with x.

Constant Surface Heat Flux and Exponentially Decaying Energy Gener-
ation When the surface of a solid receives energy from a laser source, the effect of
this penetration of energy into the solid can be modeled by adding an exponentially
decaying heat generation term, gope™“*/k (where a is the surface absorption coeffi-
cient), to the left side of eq. (3.290). The solution for this case has been reported by
Sahin (1992) and Blackwell (1990):

X
T=T + T+ T;)erfc | —=
(To ) <2 roct)
C?O X 1 a’at+ax X
+ — | erfc — e erfc | —— +avat
ka2|: (2«/0LI) 2 (2«/oct )

_ le(ﬂar—ax erfc (L _ d\/@) + e—axe(uzo(z—l):| (3307)

2 2a+/ar
Both Sahin (1992) and Blackwell (1990) have also solved this case for a convective
boundary condition (4, 7o) at x = 0. Blackwell’s results show that for a given

absorption coefficient a, thermal properties of o and k, initial temperature 7;, and
surface heat generation gy, the location of the maximum temperature moves deeper
into the solid as time progresses. If A is allowed to vary, for a given time the greater
value of A provides the greater depth at where the maximum temperature occurs.
The fact that the maximum temperature occurs inside the solid provides a possible
explanation for the “explosive removal of material” that has been observed to occur
when the surface of a solid is given an intense dose of laser energy.
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3.8.3 Finite-Sized Solid Model

Consider one-dimensional transient conduction in a plane wall of thickness 2L, a long
solid cylinder of radius ry, and a solid sphere of radius ry, each initially at a uniform
temperature 7;. At time ¢ = 0, the exposed surface in each geometry is exposed to a
hot convective environment (%, T, ). The single parabolic partial differential equation
describing the one-dimensional transient heating of all three configurations can be

written as

10 oT 10T

— s — )= —— (3.308)
s os as o dt

where s = x,n = 0 for a plane wall, s = r,n = 1 foracylinder, and s = r,n = 2
for a sphere. In the case of a plane wall, x is measured from the center plane. The
initial and boundary conditions for eq. (3.308) are

T(s,0)=T,; (3.309a)
aT (0, t
E() ) =0 (thermal symmetry) (3.309b)
s
oT (L ,t
k% — h[Too — T(L o ro, 1)] (3.309¢)
s

According to Adebiyi (1995), the separation of variables method gives the solution
for 6 as

[e.¢]

3 2Bi R J_y(R) .
= e n

3.310
A2+ Bi* +2v- Bi  J () 3310

n=1

where 6 = (Too — T)/(Too — T;), R = x/L for a plane wall, R = r/ry for both
cylinder and sphere, Bi = hL/k or hro/k, v = at/L> or 1 = oct/rg, v=(1-n)/2,
and the \,, are the eigenvalues given by

hnd—v—1y(hn) = Bi - J_y(h) (3.311)
The cumulative energy received over the time 7 is

= 2(1+ ) BiP(1 —e7h7)
Q=pcV(Too — T;) Z 22 ()\2 + Bi2 4 2v- Bi)

n=1

(3.312)

Solutions for a plane wall, a long cylinder, and a sphere can be obtained from eqs.
(3.310) and (3.312) by puttingn = 0, (v = %), n=1(v=0),andn =2(v = _%),
respectively. It may be noted that

2\ /2
]1/2(Z)=<n—z> cos Z
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2\ 12
JI/Z(Z):(n_z> sin z

2\ "% /sinz
J30(2) = o —, cosz

With these representations, eqs. (3.310) and (3.312) reduce to the standard forms
appearing in textbooks. Graphical representations of eqs. (3.310) and (3.312) are
called Heisler charts.

3.8.4 Multidimensional Transient Conduction

For some configurations it is possible to construct multidimensional transient conduc-
tion solutions as the product of one-dimensional results given in Sections 3.8.2 and
3.8.3. Figure 3.38 is an example of a two-dimensional transient conduction situation
in which the two-dimensional transient temperature distribution in a semi-infinite
plane wall is the product of the one-dimensional transient temperature distribution in
an infinitely long plane wall and the one-dimensional transient temperature distribu-
tion in a semi-infinite solid. Several other examples of product solutions are given by
Bejan (1993).

3.8.5 Finite-Difference Method

Explicit Method For two-dimensional transient conduction in Cartesian coordi-
nates, the governing partial differential equation is

o

ST Toh Tk [ Toh Tk x

X2

|
|
| ) e
fﬂxz ’

lo— 21— fo—21—

T, h
T(xy, xp, t) = T, = T(xy, ) — T, x T(x,0)—T,
T, - T, semi- Ty =T, linfinitely T — T semi-
infinite long plane infinite
plane wall solid

wall

Figure 3.38 Product solution for a two-dimensional transient conduction problem.
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*T 9*T 10T
9x2 + ay2  a ot (3:313)
which assumes no internal heat generation and constant thermal properties. Approx-
imating the second-order derivatives in x and y and the first-order derivative in ¢ by
forward differences, the explicit finite-difference approximations (using Ax = Ay)
for various nodes (see Fig. 3.33) can be expressed using the Fourier modulus, Fo =
o At/(Ax)?,Bi=h Ax/k,and t = p At.

* Internal node: With Fo < }T,

T = Fo (T, + T, + Tl + 1)) + (L= 4FO)T),  (3314)

e Node at interior corner with convection: With Fo(3 4+ Bi) < %,

12
T = 3Fo (Ti[-:—l,j 270+ 2T + T

+ 2BiToo>

+ (1 — 4Fo — 3 Bi - Fo) T, (3.315)
* Node on a plane surface with convection: With Fo(2 + Bi) < %,

T/ = Fo (2Ti’11,j + T + T +2Bi Too)

+ (1 — 4Fo — 2Bi - Fo) Tz; (3.316)
* Node at exterior corner with convection: With Fo(1 4+ Bi) < %,
T/ = 2Fo (T2, + T/, +2Bi- T)
+ (1 — 4Fo — 4Bi - Fo) Tlpj =0 (3.317)

. . . . . l
Node on a plane surface with uniform heat flux: With Fo < 7,

T/ = (= 4FO) T, + Fo (217, + T/ + T,

A
) + 2Fo.- q”Tx (3.318)

The choice of Ax and Ar must satisfy the stability constraints, introducing each
of the approximations given by eqs. (3.314)—(3.318) to ensure a solution free of
numerically induced oscillations. Once the approximations have been written for each
node on the grid, the numerical computation is begun with ¢+ = 0(p = 0), for which
the node temperatures are known from the initial conditions prescribed. Because eqs.
(3.313)—(3.318) are explicit, node temperatures at ¢ = Af(p = 1) can be determined
from a knowledge of the node temperatures the preceding time, t = 0(p = 0). This
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“marching out” in time type of computation permits the transient response of the
solid to be determined in a straightforward manner. However, the computational time
necessary to cover the entire transient response is excessive because extremely small
values of At are needed to meet the stability constraints.

Implicit Method In the implicit method, the second derivatives in x and y are
approximated by central differences but with the use of temperatures at a subsequent
time, p + 1, rather than the current time, p, while the derivative in ¢ is replaced by
a backward difference instead of a forward difference. Such approximations lead to
the following equations:

* Internal node:

(1 +4F0) T/ = Fo (121 + 123 + 10 + 120 ) =17 (3319)

e Node at interior corner with convection:

[(1+4Fo) (1 + 1B)] 7" — 2o (125 + 2777

4217 Tiff,tll) =77 +4Fo - Bi- T (3.320)

* Node on a plane surface with convection:

[142Fo2 + Bi)I T/ = Fo (2775, + 1778 + 7777

= szj + 2Bi-Fo- Ty (3.321)
* Node at exterior corner with convection:

1 +4Fo(1 + Bi) 7" — 2Fo (Ti‘jj‘j + T,{’jtll) =T/ +4Bi Fo- T, (3322)

* Node on a plane surface with uniform heat flux:

, 2Fo-q” A
(1 +4Fo) T/ +Fo (217 + 177 + 177 ) = 1, + === (3.323)

The implicit method is unconditionally stable and therefore permits the use of
higher values of At¢, thereby reducing the computational time. However, at each time
t, the implicit method requires that the node equations be solved simultaneously rather
than sequentially.

Other Methods Several improvements of the explicit and implicit methods have
been advocated in the numerical heat transfer literature. These include the three-time-
level scheme of Dufort and Fankel, the Crank—Nicholson method, and alternating
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direction explicit methods. For a discussion of these methods as well as stability
analysis, the reader should consult Pletcher et al. (1988).

3.9 PERIODIC CONDUCTION

Examples of periodic conduction are the penetration of atmospheric temperature
cycles into the ground, heat transfer through the walls of internal combustion engines,
and electronic components under cyclic operation. The periodicity may appear in the
differential equation or in a boundary condition or both. The complete solution to
a periodic heat conduction problem consists of a transient component that decays
to zero with time and a steady oscillatory component that persists. It is the steady
oscillatory component that is of prime interest in most engineering applications. In
this section we present several important solutions.

3.9.1 Cooling of a Lumped System in an Oscillating Temperature
Environment

Revisit the lumped thermal capacity model described in Section 3.8.1 and consider
a scenario in which the convective environmental temperature 7, oscillates sinu-
soidally, that is,

Too = Toom -+ a sin wt (3.324)

where a is the amplitude of oscillation, ® = 2w f the angular frequency, f the
frequency in hertz, and T, the mean temperature of the environment.

The method of complex combination described by Arpaci (1966), Myers (1998),
Poulikakos (1994), and Aziz and Lunardini (1994) gives the steady periodic solution
as

1
0 = ———sin(Bt — B) (3.325)
1+ B? P
where
T —Teom Vv hAt
f=—>0 B = goo T=— f = arctan B (3.326)
a hA pVe

A comparison of eq. (3.325) with the dimensionless environmental temperature vari-
ation (sin Bt) shows that the temperature of the body oscillates with the same fre-
quency as that of the environment but with a phase lag of . As the frequency of
oscillation increases, the phase angle § = arctan B increases, but the amplitude of
oscillation 1/(1 + B?)!/? decreases.

3.9.2 Semi-infinite Solid with Periodic Surface Temperature

Consider the semi-infinite solid described in Section 3.8.2 and let the surface temper-
ature be of the form
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TO,t) =T, =T, + acos wt (3.327)

In this case, eqs. (3.291) are still applicable, although the initial condition of eq.
(3.291a) becomes irrelevant for the steady periodic solution, which is

12
T(x,t) = T; + ae [©20"x] ¢ [(,0; _ (;) x:| (3.328)
a

Three conclusions can be drawn from this result. First, the temperatures at all lo-
cations oscillate with the same frequency as the thermal disturbance at the surface.
Second, the amplitude of oscillation decays exponentially with x. This makes the so-
lution applicable to the finite thickness plane wall. Third, the amplitude of oscillation
decays exponentially with the square root of the frequency w. Thus, higher-frequency
disturbances damp out more rapidly than those at lower frequencies. This explains
why daily oscillations of ambient temperature do not penetrate as deeply into the
ground as annual and millenial oscillations. The surface heat flux variation follows
directly from eq. (3.328):

q"0,1) = 4% — ka (g)l/z cos (u)t _ ;) (3.329)

and this shows that ¢” (0, ¢) leads T'(0, ) by 1t/4 radians.

3.9.3 Semi-infinite Solid with Periodic Surface Heat Flux

In this case, the boundary condition of eq. (3.327) is replaced with
” _ T o
q"0,1) = k—8 (0,1) = g, cos ot (3.330)
X

and the solution takes the form

_7 4 90 (N oy (e lE
T(x,t)_7",+k<w) P cos | wr (m) x—2| (33

It is interesting to note that the phase angle increases as the depth x increases with the
minimum phase angle of /4 occurring at the surface (x = 0). A practical situation
in which eq. (3.331) becomes useful is in predicting the steady temperature variations
induced by frictional heating between two reciprocating parts in contact in a machine.
This application has been described by Poulikakos (1994).

3.9.4 Semi-infinite Solid with Periodic Ambient Temperature

The surface boundary condition in this case is

Tso = Too.m + a cos wt (3.332)
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and the steady periodic temperature distribution is given by

Bi

o= e V™ cos (2mT — VT X — 3.333
(Bi* + 2Bi + 2)!/2 ( VEX=P) (5339
where
T — Too m
f=_—°on (3.334a)
a
® \1/2
X = (m) x (3.334b)
t
=2 (3.334¢)
27
ho(2\"?
Bi= — <—) o (3.334d)
k \a
— arct 3.334
f = arctan B ( e)

Note that as h —> 00, Bi —> 00, and B —> 0, egs. (3.333) reduce to eq. (3.328)
with T m = T;. The presence of the factor Bi/(Bi+2Bi+2)!/? in eq. (3.333) shows
that convection enhances the damping effect and that it also increases the phase angle
by an amount § = arctan 1/(1 + Bi).

3.9.5 Finite Plane Wall with Periodic Surface Temperature

Consider a plane wall of thickness L with the face at x = 0 insulated and the face at
x = L subjected to a periodic temperature change of the form

T(L,t)=T; 4+ acoswt (3.335)
where 7; is the initial temperature of the wall and the insulated boundary condition
at x = 0 gives

aT (0, ¢
0.0 _,
0x

(3.336)

The steady periodic solution is

T(x,1) = T) + ad, [% (%)1/2 L} cos {wt + dy [% (%)1/2 L“ (3.337)

where the numerical values of ¢, as a function of x/L and (w/2a)'/?L are supplied
in Table 3.13, and ¢,, which is also a function of x /L and (w/2a)'/%L, is given by

0,00 — 0,

(3.338)
PPy — dcPy

¢, = arctan
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TABLE 3.13 Values of the Amplitude Decay Function, ¢ as a Function of x /L
and 0 = (0/20)/2L

o x/L=0 0125 0250 0375 0500 0.625 0.750 0.875 1.000
0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 1.00
1.0 0.77 0.77 0.77 0.78 0.79 0.81 0.85 0.91 1.00
1.5 0.47 0.47 047 048 052 058 0.68 0.83 1.00
2.0 0.27 0.27 0.28 0.30 0.36 0.45 0.58 0.77 1.00
4.0 0.04 0.04 0.05 0.08 0.13 0.22 0.37 0.64 1.00
8.0 0.00 0.00  0.01 0.01 002  0.05 0.14  0.36 1.00
00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
where
W\ 1/2 w\1/2
=cos||— L | cosh (—) L 3.339a
Z [<2<x> } [ 20 ] ( )
w\1/2 h w\ 1/2 b
=cos||— cos — X 3.339
@ [<2a> i| |:(2oc ] ( )
w\1/2 w\1/2
b, = sin [(—) } sinh [(—) L] (3.339)
o 2a
in | (2)" x| sinn | ()" 3.339d
= S1n -— X | sSin -— X .
¢a [(m) ] [(m) ] ( )
3.9.6 Infinitely Long Semi-infinite Hollow Cylinder with Periodic
Surface Temperature

Consider an infinitely long cylinder of inside radius, r;, extending to infinity in the
radial direction. The inner surface is subjected to a periodic temperature variation of
the form

T(ri,t) =T, + acoswt

(3.340)

where 7; is the initial temperature of the cylinder. The equation governing the tem-
perature distribution is

The other boundary condition is

9°T 19T 10T
a2 " rar o dt
9T (00, 1)
T(o,n=T1,  ————=

ar

0

(3.341)

(3.342)
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and the initial condition is
T@r, 0 =T,; (3.343)

An application of the method of complex combination gives the steady-state periodic
solution as

r-T :
6= p = Ajcoswt — A, sin wt (3.344)
where

ker(«/u)/ocri)ker( m/ocr)+ke1( oo/ocr,)kel («/oo/ocr)

A= (3.345a)
ker? ( w/a r,)+ke1 («/co/(x r,)

ker (Vo/ar;) kei (vo/or) —kei (o o r;) ker (Vo or)
= .345b
= ker® (Vw/ar;) + kei® (Vo/ar;) (3:345)

and ker and kei are the Thomson functions discussed in Section 3.3.5.

As indicated in Section 3.9.1, the method of complex combination is described by
Arpaci (1966), Myers (1998), Poulikakos (1994), and Aziz and Lunardini (1994). The
method may be extended to numerous other periodic heat problems of engineering
interest.

3.10 CONDUCTION-CONTROLLED FREEZING AND MELTING

Heat conduction with freezing (melting) occurs in a number of applications, such as
ice formation, permafrost melting, metal casting, food preservation, storage of latent
energy, and organ preservation and cryosurgery. Books and review articles on the
subject include those of Lunardini (1991), Cheng and Seki (1991), Rubinsky and
Eto (1990), Aziz and Lunardini (1993), Viskanta (1983, 1988), and Alexiades and
Solomon (1993). Because of the vastness of the literature, only selected results that
are judged to be of fundamental importance are discussed in this section.

3.10.1 One-Region Neumann Problem

The one-region Neumann problem deals with a semi-infinite region of liquid initially
at its freezing temperature, 7y. At time ¢ > 0, the face at x = 0 is suddenly reduced
and kept at Ty such that Ty < Ty, as shown in Fig. 3.39. This initiates the extraction
of heat by conduction from the saturated liquid to the surface and the liquid begins to
freeze. As the cooling continues, the interface (assumed sharp) between the solid and
liquid phases penetrates deeper into the liquid region. The prediction of the location
of the interface calls for determination of the one-dimensional transient temperature
distribution in the solid assuming that the liquid continues to remain at 7 at all times.
The governing partial differential equation is
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Solid

Xf

Figure 3.39 One-region Neumann problem (freezing).

82T_18T (3.346)
axr o 3t '
with the boundary conditions
TO,1)=T, (3.347a)
T(xp,t) =Ty (3.347b)

where x; denotes the location of the interface, which is not known a priori and must
be determined as part of the solution. An energy balance at the interface gives

aT 9
il IRl & (3.348)
ox o dt

where k and p are the thermal conductivity and density of the solid phase, respectively,
and L is the latent heat.
The temperature distribution in the solid is given as

-7 _ ef (x/2v/ar)
T—To ' o (x/27a0) (349

where xy/2+/at, denoted by X, is a root of the transcendental equation

Joherf(he?) = St (3.350)
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TABLE 3.14 Interface
Location Parameter A

by St

0.0 0.0000
0.2 0.0822
0.4 0.3564
0.6 0.9205
0.8 1.9956
1.0 4.0601
12 8.1720

and
c(Ty — T;
St = % (3.351)

is the Stefan number, the ratio of the sensible heat to the latent heat. For water, St
is about 0.10, for paraffin wax about 0.90, for copper about 2.64, and for silicon
dioxide about 436. Table 3.14 gives selected values of \ and St that satisfy eq. (3.350).
Viskanta (1983) reports that the Neumann model accurately predicts the solidification
of n-octadecane on a horizontal plate.

The solution presented here applies to the one-region melting problem if T is
replaced by the melting temperature 7;,,. With Ty > T,,, eq. (3.349) gives the temper-
ature in the liquid region.

3.10.2 Two-Region Neumann Problem

The two-region Neumann problem allows for heat conduction in both the solid and
liquid phases. For the configuration in Fig. 3.40, the mathematical description of the
problem is

°T _ 19T © dt>0) (3.352)

—_— = — <x<xrandf > .

ox2  a ot !

21, 137, ( dt>0) (3.353)

— = —— <x <ooandt > .

ax2 oy Ot A=

with initial and boundary conditions

Ti(x,0)=T, (3.354a)
7,(0,t) =Ty (3.354b)

TGy, 0) = Ty, 1) = Ty (3.354¢)
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AT,  oT) d
fy T8 g 2L S R (3.354d)
ox ox o dt

where the subscripts s and / refer to the solid and liquid phases, respectively.
The solutions for T; and 7; are

I, —To  erf(x/2/as1)

Tr— Ty erf(xs/2/o51) (3.355)
T, — T erfe(x/2 /) 5356

T, — Ty erfc(xp/2/o51)

With xf/2./a,t denoted by \, the interface energy balance given by eq. (3.354d)
leads to the transcendental equation for \:

e T-T [(kpch}l/z e VAL

herf(\) Tf — Ty | (kpc)s \ erfc [)\(065/011)'/2] = C(Tf Ty (3.357)

Churchill and Evans (1971) noted that A is a function of three parameters:

6*

T =Ty [ (kpe) 77 . O
oy L

Ty — T,
_ o — g Iy —To)
Ty — Ty | (kpo)s

and solved eq. (3.357) for a range of values of these parameters. Table 3.15 summa-
rizes these results for \.

Solid Liquid
T
kg, o
p,L
T
T
k], OLI
Ty
X
0 Xr

Figure 3.40 Two-region Neumann problem (freezing).
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TABLE 3.15 Values of &

e*
St a* 0.50 1.0 1.5 2.0 3.0 5.0 10.0

0.1 2.0 0.202 0.187 0.173 0.161 0.141 0.111 0.071
0.1 1.5 0.203 0.188 0.175 0.163 0.142 0.113 0.072
0.1 1.0 0.204 0.189 0.176 0.164 0.144 0.114 0.073
0.2 2.0 0.270 0.241 0.216 0.195 0.165 0.123 0.074
0.2 1.5 0.271 0.243 0.219 0.199 0.167 0.125 0.075
0.2 1.0 0.273 0.245 0.222 0.202 0.170 0.128 0.076
0.5 2.0 0.374 0.313 0.268 0.234 0.186 0.133 0.077
0.5 1.5 0.378 0.320 0.273 0.240 0.192 0.135 0.078
0.5 1.0 0.383 0.325 0.280 0.246 0.197 0.139 0.079
1.0 2.0 0.452 0.358 0.298 0.254 0.198 0.137 0.077
1.0 1.5 0.460 0.367 0.305 0.261 0.203 0.140 0.079
1.0 1.0 0.470 0.378 0.315 0.270 0.209 0.144 0.080
2.0 2.0 0.517 0.391 0.317 0.267 0.204 0.139 0.078
2.0 1.5 0.530 0.403 0.327 0.275 0.210 0.142 0.079
2.0 1.0 0.546 0.418 0.339 0.286 0.217 0.146 0.080

3.10.3 Other Exact Solutions for Planar Freezing

Besides the one- and two-region Neumann solutions, several other exact solutions for
planar freezing problems are available. These include:

1. The two-region problem with different solid- and liquid-phase densities (Lu-
nardini, 1991)

2. The two-region problem with phase change occurring over a temperature range
(Cho and Sunderland, 1969)

3. The one-region problem with a mushy zone separating the pure solid and pure
liquid phases (Solomon et al., 1982)

4. The two-region problem with temperature-dependent thermal conductivities k;
and k; (Cho and Sunderland, 1974)

5. The two-region problem with arbitrary surface temperature and initial condi-
tions (Tao, 1978)

3.10.4 Exact Solutions in Cylindrical Freezing

Carslaw and Jaeger (1959) give an exact solution for the freezing of a subcooled liquid
while the solid phase remains at the freezing temperature. The latent heat released is
used to bring the subcooled liquid to its freezing temperature. The process is described
by the differential equation
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ror

1o (oT\ 10T
1o <,8_r> =20 < (3358)

and the initial boundary conditions

T(rf, t) = Tf (3.359a)

lim T(r,t) =T, (3.359p)
r—>00

I'(r,0)=T1 (3.359¢)

where r, represents the radial growth of the solid phase and Ty < T is the subcooled
liquid temperature.
The solution of eq. (3.358) satisfying the conditions of eqs. (3.359) is

Ei(— r?/4ar)

T=T+ (T — Tp) —F/—————= 3.360
o+ Ty =) Ei(— r2/4ar) (3:360)

where A = r}% /4at is given by
22 Bi(—22)e +5t=0 (3.361)

Inegs. (3.360) and (3.361), Ei is the exponential integral function discussed in Section
3.3.4, and in eq. (3.361), St is the Stefan number. Table 3.16 provides the solution of
eq. (3.361).

Another situation for which an exact solution is available is shown in Fig. 3.41.
A line heat sink of strength Q;(W/m) located at »r = 0 and activated at time ¢t = 0
causes the infinite extent of liquid at a uniform temperature 7;(7; > Ty) to freeze.
The interface grows radially outward. The mathematical formulation for the solid and
liquid phases leads to

10 aT 1 97
o - ) =— : 362
r8r<r8r) oy 0t O<r<rp) (3.362)
19 T, 10T, ( 00) (3.363)
-——\|\r—=)=— re<r< .
ror ar o ot !
with initial and boundary conditions
Ti(00, 1) =T, (3.364a)
Ii(r,0) =T, (3.364b)

AT,  oT) d
(ks— _ k,—’) = oYL (3.3644)
r p— dt
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TABLE 3.16 Stefan Number
and Interface Location Parameter

St N
0.1 0.1846
0.2 0.3143
0.3 0.4491
0.4 0.6006
0.5 0.7811
0.6 1.0095
0.7 1.3237
0.8 1.8180

Ozisik (1993) gives the solution as

r—1 4+ 2 g(_" Ej i 0 3.365
=t o 1<_4ast>_ "\ T O<r<rp (3365

r—1__ =T g < o ) ( ) (3.366)
=T — — il - rp<r <oo .
: El(— rf/4oqt) 4oyt !

where N = ry/2./a,t is obtained from the transcendental equation

%e,)f n ki(T; — Ty) N/ 2

o, pL 3.367
4 Ei(—\2ay /o) P ( )

The solution presented by eqs. (3.365) through (3.367) has been extended by
Ozisik and Uzzell (1979) for a liquid with an extended freezing temperature.

P T(r, 1)

<L
é:ﬁll: / 1) \

0 | T,(r, 1)

=
I

Figure 3.41 Cylindrical freezing due to a line strength of fixed strength.
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3.10.5 Approximate Analytical Solutions

Because of the mathematical complexity and the restrictive nature of exact analyti-
cal solutions, several approaches have been employed to generate approximate an-
alytical solutions that provide rapid results in a number of practical situations. The
methods used are the quasi-steady solution, the heat balance integral approach of
Goodman (1958) and Lunardini (1991), and the perturbation method of Aziz and
Na (1984), Aziz and Lunardini (1993), and others. A collection of such solutions is
provided next.

One-Region Neumann Problem The quasi-steady-state solution where St = 0
for this problem is

T =Ty+ (I) — Ty)— (3.368)
| P
2(Ty — Ty)
f= 1 3.369
s oL (3.369)

One-Region Neumann Problem with Surface Convection With convective
cooling, the boundary condition of eq. (3.347a) is replaced by

oT
kS| = R[T,1) — Tl (3.370)
dx x=0

where Ty, is now the coolant temperature. The quasi-steady-state approach with
St = 0 yields

/’l(Tf — Too)(x — Xf)

T =T 3.371
f + k + ]’l)Cf ( )

pLxs hxy
t=——— 14+ — 3.372
h(Ty — Teo) < + 2k ( )

as the results.

Outward Cylindrical Freezing Consider a saturated liquid at the freezing tem-
perature Ty, surrounding a cylinder of radius ro whose outer surface is kept at a sub-
freezing temperature, Ty < Ty. If a quasi-steady-state assumption (St = 0) is used,
the solution is

Tf—TO r
T=Tp+ L —"m_- (3.373)
In(re/ro) 1o
pL L, rr 1,5, 2
=P | le2m (2o 3.374
gy 2 1) (3374)
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An improvement on the quasi-steady-state solution can be achieved with the reg-
ular perturbation analysis provided by Aziz and Na (1984). The improved version of
eq. (3.374) is

L 1
e |:—rJ% In I
2 ro

L s 5 1 2 2 1
——(ri — — =St (r; — 14+ — 3.375
4 (rf r(]) 4 (rf r()) ln(rf/rg) ( )
If the surface of the cylinder is convectively cooled, the boundary condition is

oT

k— =h[T(ro,t) — Tso] (3.376)
ar

r=ro

and the quasi-steady-state solutions for St = 0 in this case is
T, —T.

T= [ e n =

(k/hro) +1In(rg/ro)  rf

pL Lo rp 1os 2k
PR N PSP 3378
k(Ty — Too) [2rf il U U v (3379

+ Ty (3.377)

Noting that the quasi-steady-state solutions such as eqs. (3.377) and (3.378) strictly
apply only when St = 0, Huang and Shih (1975) used them as zero-order solutions in
a regular perturbation series in St and generated two additional terms. The three-term
perturbation solution provides an improvement on eqs. (3.377) and (3.378).

Inward Cylindrical Freezing Consider a saturated liquid at the freezing temper-
ature contained in a cylinder of inside radius ;. If the surface temperature is suddenly
reduced to and kept at T such that Ty < Ty, the liquid freezes inward. The governing
equation is

10 aT 10T

- lr—=)=-=— (3.379)

r or or a ot

with initial and boundary conditions

T, t)="T (3.380a)
T(rs,0) =Ty (3.380b)
aT drf

k— =pL— 3.380
or T (3-3500)
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Equations (3.373) and (3.374) also give the quasi-steady-state solutions in this case
except that ryp now becomes ;.

If the surface cooling is due to convection from a fluid at temperature T, with
heat transfer coefficient %, the quasi-steady-state solutions for 7" and ¢ are

=) (7 =)
T =Ty + mi_ L (3.381)
In(rs/ri) — (k/ hr;) ri  hr

LR ! 4 2k 3382
KT =T oo)[ ——|—4(r —rf)(+h—)i| (3.382)

Outward Spherical Freezing Consider a situation where saturated liquid at
the freezing temperature Ty is in contact with a sphere of radius ry whose surface
temperature Ty is less than 7. The differential equation for the solid phase is

19°(Tr) 18T
roor2 o or

(3.383)

which is to be solved subject to the conditions of egs. (3.380) (r; replaced by rg).
In this case, the quasi-steady-state solution with St = 0 is

T, —Ty (1 1
T =T+ o (2 _ 1 (3.384)
Vrp—=1/rg \r ro
erg 1 ry 3 1 ry 2 1
_ (Y (2 - 3.385
k(Tf - T()) |:3 ro 2 ro + 6 ( )

A regular perturbation analysis allows an improved version of eqs. (3.384) and
(3.385) to be written as

T—T, 1—1/R R?—3R; +2 1 R?—3R+2
0 = / +St|:¥<l——>——+i| (3.386)

Iy—=To 1-1/Ry 6(R; — )* R) 6R;(R; —1)3
and
= [(1+2R} —3R%) + St (1+ R} —2Ry)] (3.387)
where
. rr_o R = % S c(TfL— T _ k(T:)L—rgTo)t

If the surface boundary condition is changed to eq. (3.376), the quasi-steady-state
solutions (St = 0) for T and ¢ are

(Tf — To)l"o 1 1
T=T +—— — - (3.388)
1—r0/rf+k/hro ry r
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_Lrg l r_f)s_ < i)_l(’”_f)z 1
t= k(Tr — Two) {3 |:(r0 1 I+ hro 2\ + > (3.389)

A three-term solution to the perturbation solution which provides an improvement
over eqs. (3.388) and (3.389) is provided by Huang and Shih (1975).

Other Approximate Solutions Yan and Huang (1979) have developed pertur-
bation solutions for planar freezing (melting) when the surface cooling or heating is
by simultaneous convection and radiation. A similar analysis has been reported by
Seniraj and Bose (1982). Lock (1971) developed a perturbation solution for planar
freezing with a sinusoidal temperature variation at the surface. Variable property pla-
nar freezing problems have been treated by Pedroso and Domato (1973) and Aziz
(1978). Parang et al. (1990) provide perturbation solutions for the inward cylindrical
and spherical solidification when the surface cooling involves both convection and
radiation.

Alexiades and Solomon (1993) give several approximate equations for estimating
the time needed to melt a simple solid body initially at its melting temperature 7,,,.
For the situation when the surface temperature 7y is greater than 7, the melt time z,,
can be estimated by

12
tm = YT oSt [1+(0.25+0.170”7) St] (0<St<4) (3.390)
where
1A T — Ty
w=—— l and St = —Cl( ! ) (3391)
14 L

and / is the characteristic dimension of the body, A the surface area across which heat
is transferred to the body, and V the volume of the body. For a plane solid heated at
one end and insulated at the other, ®w = 0 and / is equal to the thickness. For a solid
cylinder and a solid sphere, [ becomes the radius and w = 1 for the cylinder and
o = 2 for the sphere.

If a hot fluid at temperature 7., convects heat to the body with heat transfer
coefficient 4, the approximate melt time for 0 < St < 4 and Bi > 0.10 is

l2
~ 20;(1 + 0)St

Im

2
[1 + 5o + 025+ 0.17000'70)St:| (3.392)
1

where Bi = hl/k.
In this case, the surface temperature 7' (0, ¢) is given by the implicit relationship

pcik; 7,0 - T, 1'% Too—Tn T
r= 1.18St| ——~ " +]—=_" | —1} (3.393)
2h2 - St Too — T(0,1) Too — T(0,1)

Equations (3.390), (3.392), and (3.393) are accurate to within 10%.
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3.10.6 Multidimensional Freezing (Melting)

In Sections 3.10.1 through 3.10.5 we have discussed one-dimensional freezing and
melting processes where natural convection effects were assumed to be absent and
the process was controlled entirely by conduction. The conduction-controlled models
described have been found to mimic experimental data for freezing and melting
of water, n-octadecane, and some other phase-change materials used in latent heat
energy storage devices.

Multidimensional freezing (melting) problems are far less amenable to exact so-
Iutions, and even approximate analytical solutions are sparse. Examples of approxi-
mate analytical solutions are those of Budhia and Kreith (1973) for freezing (melting)
in a wedge, Riley and Duck (1997) for the freezing of a cuboid, and Shamshundar
(1982) for freezing in square, elliptic, and polygonal containers. For the vast majority
of multidimensional phase-change problems, only a numerical approach is feasible.
The available numerical methods include explicit finite-difference methods, implicit
finite-difference methods, moving boundary immobilization methods, the isotherm
migration method, enthalpy-based methods, and finite elements. Ozisik (1994) and
Alexiades and Solomon (1993) are good sources for obtaining information on the
implementation of finite-difference schemes to solve phase-change problems. Papers
by Comini et al. (1974) and Lynch and O’Neill (1981) discuss finite elements with
reference to phase-change problems.

3.11 CONTEMPORARY TOPICS

A major topic of contemporary interest is microscale heat conduction, mentioned
briefly in Section 3.1, where we cited some important references on the topic. Another
area of active research is inverse conduction, which deals with estimation of the
surface heat flux history at the boundary of a heat-conducting solid from a knowledge
of transient temperature measurements inside the body. A pioneering book on inverse
heat conduction is that of Beck et al. (1985), and the book of Ozisik and Orlande
(2000) is the most recent, covering not only inverse heat conduction but inverse
convection and inverse radiation as well.

Biothermal engineering, in which heat conduction appears prominently in many
applications, such as cryosurgery, continues to grow steadily. In view of the increas-
ingly important role played by thermal contact resistance in the performance of elec-
tronic components, the topic is pursued actively by a number of research groups.
The development of constructal theory and its application to heat and fluid flow dis-
cussed in Bejan (2000) offers a fresh avenue for research in heat conduction. Al-
though Green’s functions have been employed in heat conduction theory for many
decades, the codification by Beck et al. (1992) is likely to promote their use further.
Similarly, hybrid analytic—numeric methodology incorporating the classical integral
transform approach has provided an alternative route to fully numerical methods. Nu-
merous heat conduction applications of this numerical approach are given by Cotta
and Mikhailov (1997). Finally, symbolic algebra packages such as Maple V and
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Mathematica are influencing both teaching and research in heat conduction, as shown
by Aziz (2001), Cotta and Mikhailov (1997), and Beltzer (1995).

NOMENCLATURE

Roman Letter Symbols

A

AP
Ay
a

3% “emroTES zhzmacop o

s =

cross-sectional area, m?

area normal to heat flow path, m?
fin profile area, m?
surface area, m?

constant, dimensions vary
absorption coefficient, m~
frequency, dimensionless
constant, dimensions vary
fin or spine height, m~!
Biot number, dimensionless

constant, dimensions vary

specific heat, kJ/kg - K

spine diameter, m

rate of energy generation, W

Fourier number, dimensionless

frequency, s

height, m

fin tip heat loss parameter, dimensionless

heat transfer coefficient, W/m?2-K

contact conductance, W/m2-K

unit vector along the x coordinate, dimensionless
unit vector along the y coordinate, dimensionless
thermal conductivity, W/m - K

unit vector along the z coordinate, dimensionless
thickness, length, or width, m

thickness, m

characteristic dimension, m

fin parameter, m~1/2

fin parameter, m~!

convection—conduction parameter, dimensionless
radiation—conduction parameter, dimensionless
exponent, dimensionless
integer, dimensionless

heat generation parameter, m~
normal direction, m
parameter, s~

fin perimeter, m

integer, dimensionless

1

1
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0 cumulative heat loss, J
O strength of line sink, W/m
q rate of heat transfer, W
q volumetric rate of energy generation, W/m?3
q" heat flux, W/m?
R radius, dimensionless
thermal resistance, K/W
R! contact resistance, m?-K/W
Ry freezing interface location, dimensionless
r cylindrical or spherical coordinate, m
S shape factor for two-dimensional conduction, m
St Stefan number, dimensionless
s general coordinate, m
T temperature, K
T* Kirchhoff transformed temperature, K
t time, s
Vv volume, m?
w depth, m
X distance, dimensionless
X Cartesian length coordinate, m
y Cartesian length coordinate, m
Z axial distance, dimensionless
Z Cartesian or cylindrical length coordinate, m
Greek Letter Symbols
o thermal diffusivity, m%/s
o* ratio of thermal diffusivities, dimensionless
B constant, K~!
phase angle, rad
Y length-to-radius ratio, dimensionless
d fin thickness, m
€ fin effectiveness, dimensionless
surface emissivity or emittance, dimensionless
n fin efficiency, dimensionless
0 temperature difference, K
temperature parameter, dimensionless
coordinate in cylindrical or spherical coordinate system,
dimensionless
0* temperature, dimensionless
" nth eigenvalue, dimensionless

order of Bessel function, dimensionless
density, kg/m?

Stefan—Boltzmann constant, W/m?-K*
time, dimensionless

temperature difference, K

o AaQo < >
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indicates a function, dimensionless
spherical coordinate, dimensionless
angular frequency, rad/s

shape parameter, dimensionless

Roman Letter Subscripts

a
b

cond
conv

f

max

opt

t
0

fin tip

fin base
conduction
convection

fin

freezing interface
fluid

integer

initial

ideal

integer

liquid

mean

melting
maximum
normal direction
optimum

surface condition
solid

fin tip
conditionatx =0orr =0

Additional Subscript and Superscript

00 free stream condition
p integer
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4.1 INTRODUCTION

When two solids are joined, imperfect joints (interfaces) are formed. The imperfect
joints occur because “real” surfaces are not perfectly smooth and flat. A mechanical
joint consists of numerous discrete microcontacts that may be distributed in a random
pattern over the apparent contact area if the contacting solids are nominally flat (con-
forming) and rough, or they may be distributed over a certain portion of the apparent
contact area, called the contour area, if the contacting solids are nonconforming and
rough. The contact spot size and density depend on surface roughness parameters,
physical properties of the contacting asperities, and the apparent contact pressure. The
distribution of the contact spots over the apparent contact area depends on the local
out-of-flatness of the two solids, their elastic or plastic or elastic—plastic properties,
and the mechanical load. Microgaps and macrogaps appear whenever there is absence
of solid-to-solid contact. The microgaps and macrogaps are frequently occupied by a
third substance, such as gas (e.g., air), liquid (e.g., oil, water), or grease, whose ther-
mal conductivities are frequently much smaller than those of the contacting solids.

The joint formed by explosive bonding may appear to be perfect because there
is metal-to-metal contact at all points in the interface that are not perfectly flat and
perpendicular to the local heat flux vector. When two metals are brazed, soldered,
or welded, a joint is formed that has a small but finite thickness and it consists of a
complex alloy whose thermal conductivity is lower than that of the joined metals. A
complex joint is formed when the solids are bonded or epoxied.

As a result of the “imperfect” joint, whenever heat is transferred across the joint,
there is a measurable temperature drop across the joint that is related directly to the
joint resistance and the heat transfer rate.

There are several review articles by Fletcher (1972, 1988, 1990), Kraus and Bar-
Cohen (1983), Madhusudana and Fletcher (1986), Yovanovich (1986, 1991), Madhu-
sudana (1996), Lambert and Fletcher (1996), and Yovanovich and Antonetti (1988),
that should be consulted for details of thermal joint resistance and conductance of
different types of joints.

4.1.1 Types of Joints or Interfaces

Several definitions are required to define heat transfer across joints (interfaces)
formed by two solids that are brought together under a static mechanical load. The
heat transfer across the joint is frequently related to contact resistances or contact
conductances and the effective temperature drop across the joint (interface). The def-
initions are based on the type of joint (interface), which depends on the macro- and
microgeometry of the contacting solids, the physical properties of the substrate and
the contacting asperities, and the applied load or apparent contact pressure.

Figure 4.1 illustrates six types of joints that are characterized by whether the
contacting surfaces are smooth and nonconforming (Fig. 4.1a), rough and conforming
(nominally flat) (Fig. 4.1¢), or rough and nonconforming (Fig. 4.15). One or more
layers may also be present in the joint, as shown in Fig. 4.1d—f.

If the contacting solids are nonconforming (e.g., convex solids) and their surfaces
are smooth (Fig. 4.1a and d), the joint will consist of a single macrocontact and a
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Figure 4.1 Six types of joints.

macrogap. The macrocontact may be formed by elastic, plastic, or elastic—plastic
deformation of the substrate (bulk). The presence of a single “layer” will alter the
nature of the joint according to its physical and thermal properties relative to those
of the contacting solids. Thermomechanical models are available for finding the joint
resistance of these types of joints.

The surfaces of the solids may be conforming (nominally flat) and rough (Fig.
4.1c and f). Under a static load, elastic, plastic, or elastic—plastic deformation of the
contacting surface asperities occurs. The joint (interface) is characterized by many
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discrete microcontacts with associated microgaps that are more or less uniformly
distributed in the apparent (nominal) contact area. The sum of the microcontact
areas, called the real area of contact, is a small fraction of the apparent contact
area. Thermomechanical models are available for obtaining the contact, gap, and joint
conductances (or resistances) of these types of joints.

A third type of joint is formed when nonconforming solids with surface roughness
on one or both solids (Fig. 4.1b and e) are brought together under load. In this
more complex case the microcontacts with associated microgaps are formed in a
region called the contour area, which is some fraction of the apparent contact area.
The substrate may undergo elastic, plastic, or elastic—plastic deformation, while the
microcontacts may experience elastic, plastic, or elastic—plastic deformation. A few
thermomechanical models have been developed for this type of joint.

The substance in the microgaps and macrogaps may be a gas (air, helium, etc.), a
liquid (water, oil, etc.), grease, or some compound that consists of grease filled with
many micrometer-sized solid particles (zinc oxide, etc.) that increase its effective ther-
mal conductivity and alter its rheology. The interstitial substance is assumed to wet
the surfaces of the bounding solids completely, and its effective thermal conductivity
is assumed to be isotropic.

If one (or more) layers are present in the joint, the contact problem is much more
complex and the associated mechanical and thermal problems are more difficult to
model because the layer thickness, and its physical and thermal properties and surface
characteristics, must be taken into account.

The total (joint) heat transfer rate across the interface may take place by conduction
through the microcontacts, conduction through the interstitial substance, and radia-
tion across the microgaps and macrogaps if the interstitial substance is transparent to
radiation. Definitions of thermal contact, gap, and joint resistances and contact, gap,
and joint conductances for several types of joints are given below.

41.2 Conforming Rough Solids

If the solids are conforming and their surfaces are rough (Fig. 4.1c and f), heat transfer
across the joint (interface) occurs by conduction through the contacting microcontacts
and through the microgap substance and by radiation across the microgap if the
substance is transparent (e.g., dry air). The total or joint heat transfer rate Q;, in
general, is the sum of three separate heat transfer rates:

Qj=0:+0,+0, (W) (4.1)

where Q;, Q., O, and Q, represent the joint, contact, gap, and radiative heat transfer
rates, respectively. The heat transfer rates are generally coupled in some complex
manner; however, in many important problems, the coupling is relatively weak. The
joint heat transfer rate is related to the effective temperature drop across the joint
AT;, nominal contact area A,, joint resistance R;, and joint conductance h; by the
definitions
AT
Q; =hjA, AT; and Q; = X W) 4.2)
J
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These definitions result in the following relationships between joint conductance and
joint resistance:

1

hi =
/ Auh;

(W/m*-K) and R, =

AR (K/'wW) (4.3)

The component heat transfer rates are defined by the relationships
Qc = heAs AT; Qg = heAg AT;, 0, = h, Ay AT; (4.4)

which are all based on the effective joint temperature drop A7; and their respective
heat transfer areas: A, and A,, the apparent and gap areas, respectively. It is the con-
vention to use the apparent contact area in the definition of the contact conductance.
Since A, = A, —Acand A, /A, < 1,then A, =~ A,. Finally, using the relationships
given above, one can write the following relationships between the resistances and
the conductances:

1 1 1 1

—_— =4 — + — W/K 4.5
x=r‘tr TR WK (4.5)
hj = he+hg + h, (W/m? - K) (4.6)

If the gap substance is opaque, then R, — oo and i, — 0, and the relationships
reduce to

1 1 1
— =4 — W/K 4.7
R-R + R, (W/K) 4.7)
hj =he+ hy (W/m? - K) (4.8)

For joints (interfaces) placed in a vacuum where is no substance in the microgaps,
R, — oo and hy — 0 and the relationships become

1 1 1
—_— =4 — W/K 49
KR + o (W/K) (4.9)
h;j =h.+h, (W/m? - K) (4.10)

In all cases there is heat transfer through the contacting asperities and 4. and R,
are present in the relationships. This heat transfer path is therefore very important.
For most applications where the joint (interface) temperature level is below 600°C,
radiation heat transfer becomes negligible, and therefore it is frequently ignored.

4.1.3 Nonconforming Smooth Solids

If two smooth, nonconforming solids are in contact (Fig. 4.1a and d), heat transfer
across the joint can be described by the relationships given in earlier sections. The
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radiative path becomes more complex because the enclosure and its radiative prop-
erties must be considered. If the apparent contact area is difficult to define, the use of
conductances should be avoided and resistances should be used. The joint resistance,
neglecting radiation, is

1
=—+

7 (W/K) A.11)

1 1
Rj Rg

4.1.4 Nonconforming Rough Solids

If two rough, nonconforming solids make contact (Fig. 4.15 and e), heat transfer
across the joint is much more complex when a substance “fills” the microgaps as-
sociated with the microcontacts and the macrogap associated with the contour area.
The joint resistance, neglecting radiative heat transfer, is defined by the relationship

1 1 1
= + (W/K) (4.12)

Rj Rma,c + (I/lec + I/Rmi,g)_1 Rma,g

where the component resistances are R . and R,,; ., the microcontact and microgap
resistances, respectively, and R, . and R, ¢, the macrocontact and macrogap resis-
tances, respectively. If there is no interstitial substance in the microgaps and macro-
gap, and the contact is in a vacuum, the joint resistance (neglecting radiation) consists
of the macro and micro resistances in series:

Rj == Rma,c + Rmi,t (K/W) (413)

4.1.5 Single Layer between Two Conforming Rough Solids

If a single thin metallic or nonmetallic layer of uniform thickness is placed between
the contacting rough solids, the mechanical and thermal problems become more
complex. The layer thickness, thermal conductivity, and physical properties must also
be included in the development of joint resistance (conductance) models. There are
now two interfaces formed, which are generally different.

The presence of the layer can increase or decrease the joint resistance, depending
on several geometric, physical, and thermal parameters. A thin isotropic silver layer
bonded to one of the solids can decrease the joint resistance because the layer is
relatively soft and has a high thermal conductivity. On the other hand, a relatively
thick oxide coating, which is hard and has low thermal conductivity, can increase
the joint resistance. The joint resistance, neglecting radiation, is given by the general
relationship

1 1\ 1 1\
R = + + Riayer + + K/W)  (4.14
/ (Rmi,cl Rmi,gl ) fayer <Rmi,c‘2 Rmi,gZ) ( ) ( )

where R 1, Ryig1 and Ry, 2, Ryni g2 are the microcontact and microgap resistances
at the two interfaces formed by the two solids, which are separated by the layer. The
thermal resistance of the layer is modeled as
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t
Rlayer klayerAu (K/W) (415)
where ¢ is the layer thickness under loading conditions. Except for very soft metals
(e.g., indium, lead, tin) at or above room temperature, the layer thickness under load
conditions is close to the thickness before loading. If the layers are nonmetallic, such
as elastomers, the thickness under load may be smaller than the preload thickness and
elastic compression should be included in the mechanical model.
To develop thermal models for the component resistances, it is necessary to con-
sider single contacts on a half-space and on semi-infinite flux tubes and to find rela-
tions for the spreading—constriction resistances.

4.1.6 Parameters Influencing Contact Resistance or Conductance

Real surfaces are not perfectly smooth (specially prepared surfaces such as those
found in ball and roller bearings can be considered to be almost ideal surfaces) but
consist of microscopic peaks and valleys. Whenever two real surfaces are placed
in contact, intimate solid-to-solid contact occurs only at discrete parts of the joint
(interface) and the real contact area will represent a very small fraction (< 2%) of the
nominal contact area. The real joint (interface) is characterized by several important
factors:

* Intimate contact occurs at numerous discrete parts of the nominal contact area.

 The ratio of the real contact area to the nominal contact area is usually much less
than 2%.

» The pressure at the real contact area is much greater than the apparent contact
pressure. The real contact pressure is related to the flow pressure of the contacting
asperities.

» A very thin gap exists in the regions in which there is no solid—solid contact, and
it is usually occupied by a third substance.

* The third substance can be air, other gases, liquid, grease, grease filled with very
small solid particles, and another metallic or nonmetallic substance.

* The joint (interface) is idealized as a line; however, the actual “thickness” of the
joint (interface) ranges from 0.5 wm for very smooth surfaces to about 60 to 80
pm for very rough surfaces.

» Heat transfer across the interface can take place by conduction through the real
contact area, by conduction through the substance in the gap, or by radiation
across the gap if the substance in the gap is transparent to radiation or if the gap
is under a vacuum. All three modes of heat transfer may occur simultaneously;
but usually, they occur in pairs, with solid—solid conduction always present.

The process of heat transfer across a joint (interface) is complex because the joint
resistance may depend on many geometrical, thermal, and mechanical parameters, of
which the following are very important:
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Geometry of the contacting solids (surface roughness, asperity slope, and out-
of-flatness or waviness)

* Thickness of the gap (noncontact region)
» Type of interstitial fluid (gas, liquid, grease, or vacuum)

Interstitial gas pressure
» Thermal conductivities of the contacting solids and the interstitial substance

Microhardness or flow pressure of the contacting asperities (plastic deformation

of the highest peaks of the softer solid)

* Modulus of elasticity and Poisson’s ratio of the contacting solids (elastic defor-
mation of the wavy parts of the joint)

» Average temperature of the joint influences radiation heat transfer as well as the

thermophysical properties

Load or apparent contact pressure

4.1.7 Assumptions for Resistance and Conductance Model
Development

Because thermal contact resistance is such a complex problem, it is necessary to
develop simple thermophysical models that can be analyzed and verified experimen-
tally. To achieve these goals the following assumptions have been made in the devel-
opment of the several contact resistance models, which will be discussed later:

* Contacting solids are isotropic: thermal conductivity and physical parameters are
constant.

 Contacting solids are thick relative to the roughness or waviness.
* Surfaces are clean: no oxide effect.

* Contact is static: no vibration effects.

» First loading cycle only: no hysteresis effect.

* Relative apparent contact pressure (P /H,, for plastic deformation and P/H, for
elastic deformation) is neither too small (> 10~°) nor too large (< 1071).

» Radiation is small or negligible.
* Heat flux at microcontacts is steady and not too large (< 107 W/m?).

¢ Contact is in a vacuum or the interstitial fluid can be considered to be a continuum
if it is not a gas.
* Interstitial fluid perfectly wets both contacting solids.

4.2 DEFINITIONS OF SPREADING AND CONSTRICTION
RESISTANCES
4.2.1 Spreading and Constriction Resistances in a Half-Space

Heat may enter or leave an isotropic half-space (a region whose dimensions are much
larger than the characteristic length of the heat source area) through planar singly or
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Heat Source

Half Space

Figure 4.2 Heat flow lines and isotherms for steady conduction from a finite heat source into
a half-space. (From Yovanovich and Antonetti, 1988.)

doubly connected areas (e.g., circular or annular area). The free surface of the half-
space is adiabatic except for the source area. If heat enters the half-space, the flux
lines spread apart as the heat is conducted away from the small source area (Fig. 4.2);
then the thermal resistance is called spreading resistance.

If the heat leaves the half-space through a small area, the flux lines are constricted
and the thermal resistance is called constriction resistance. The heat transfer may be
steady or transient. The temperature field T in the half-space is, in general, three-
dimensional, and steady or transient. The temperature in the source area may be two-
dimensional, and steady or transient.

If heat transfer is into the half-space, the spreading resistance is defined as (Car-
slaw and Jaeger, 1959; Yovanovich, 1976¢; Madhusudana, 1996; Yovanovich and
Antonetti, 1988)

T source — T'si
Rs — source sink (K/W) (4 16)

0
where T source 18 the source temperature and 7T i is a convenient thermal sink tem-
perature; and where Q is the steady or transient heat transfer rate:

oT
Q= // gn dA = // —k% dA W) (4.17)
A A

where g, is the heat flux component normal to the area and 97 /9dn is the temperature
gradient normal to the area. If the heat flux distribution is uniform over the area,
Q = gA. For singly and doubly connected source areas, three source temperatures
have been used in the definition: maximum temperature, centroid temperature, and
area-averaged temperature, which is defined according to Yovanovich (1976¢) as

— 1
T source = X // T source dA (K) (418)

A
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where A is the source area. Because the sink area is much larger than the source area,
it is, by convention, assumed to be isothermal (i.e., T sjnx = Too). The maximum and
centroid temperatures are identical for singly connected axisymmetric source areas;
otherwise, they are different (Yovanovich, 1976c; Yovanovich and Burde, 1977);
Yovanovich et al., 1977). For doubly connected source areas (e.g., circular annulus),
the area-averaged source temperature is used (Yovanovich and Schneider, 1977). If
the source area is assumed to be isothermal, T soure = To-

The general definition of spreading (or constriction) resistance leads to the follow-
ing relationship for the dimensionless spreading resistance:

[ 6dA

A

[ — (36/92).—0 dA
A

L
kLR, = = (4.19)
A

where 6 = T(x,y) — T, the rise of the source temperature above the sink tem-
perature. The arbitrary characteristic length scale of the source area is denoted as
L. For convenience the dimensionless spreading resistance, denoted as = kLR,
(Yovanovich, 1976c¢; Yovanovich and Antonetti, 1988), is called the spreading resis-
tance parameter. This parameter depends on the heat flux distribution over the source
area and the shape and aspect ratio of the singly or doubly connected source area. The
spreading resistance definition holds for transient conduction into or out of the half-
space. If the heat flux is uniform over the source area, the temperature is nonuniform;
and if the temperature of the source area is uniform, the heat flux is nonuniform
(Carslaw and Jaeger, 1959; Yovanovich, 1976c¢). The relation for the dimensionless
spreading resistance is mathematically identical to the dimensionless constriction re-
sistance for identical boundary conditions on the source area. For a nonisothermal
singly connected area the spreading resistance can also be defined with respect to its
maximum temperature or the temperature at its centroid (Carslaw and Jaeger, 1959;
Yovanovich, 1976c; Yovanovich and Burde, 1977). These temperatures, in general,
are not identical and they are greater than the area-averaged temperature (Yovanovich
and Burde, 1977).

The definition of spreading resistance for the isotropic half-space is applicable for
single and multiply isotropic layers which are placed in perfect thermal contact with
the half-space, and the heat that leaves the source area is conducted through the layer
or layers before entering into the half-space. The conductance & cannot be defined
for the half-space problem because the corresponding area is not defined.

4.2.2 Spreading and Constriction Resistances in Flux Tubes
and Channels

If a circular heat source of area Ay is in contact with a very long circular flux tube
of cross-sectional area A, (Fig. 4.3), the flux lines are constrained by the adiabatic
sides to “bend” and then become parallel to the axis of the flux tube at some distance
z = £ from the contact plane at z = 0. The isotherms, shown as dashed lines, are
everywhere orthogonal to the flux lines. The temperature in planes z = £ > /A,



DEFINITIONS OF SPREADING AND CONSTRICTION RESISTANCES 273
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Figure 4.3 Heat flow lines and isotherms for steady conduction from a finite heat source into
a flux tube or channel. (From Yovanovich and Antonetti, 1988.)

“far” from the contact plane z = 0 becomes isothermal, while the temperature in
planes near z = 0 are two- or three-dimensional. The thermal conductivity of the
flux tube is assumed to be constant.

The total thermal resistance R\, for steady conduction from the heat source area
in z = 0 to the arbitrary plane z = £ is given by the relationship

QRoar =T —Tome  (K) (4.20)

where T, is the mean source temperature and 7 ._, is the mean temperature of the
arbitrary plane. The one-dimensional resistance of the region bounded by z = 0 and
z = £ is given by the relation

ORp=T,o0—T.—c (K 4.21)

The total resistance is equal to the sum of the one-dimensional resistance and the
spreading resistance:

Rt = Rip + Ry or Ry — Rip =R, (K) (422)

By substraction, the relationship for the spreading resistance, proposed by Mikic and
Rohsenow (1966), is

Ts Tz:O
Ry = ——— (K/W) 4.23)
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where Q is the total heat transfer rate from the source area into the flux tube. It is

given by
aT
= || —k—
¢ // 0z
Ay

The dimensionless spreading resistance parameter v = kLR, is introduced for
convenience. The arbitrary length scale £ is related to some dimension of the source
area. In general, {r depends on the shape and aspect ratio of the source area, the
shape and aspect ratio of the flux tube cross section, the relative size of the source
area, the orientation of the source area relative to the cross section of the flux tube,
the boundary condition on the source area, and the temperature basis for definition of
the spreading resistance.

The definitions given above are applicable to singly and doubly connected source
areas; however, A;/A,; < 1 in all cases. The source area and flux tube cross-sectional
area may be circular, square, elliptical, rectangular, or any other shape. The heat flux
and temperature on the source area may be uniform and constant. In general, both
heat flux and temperature on the source area are nonuniform. Numerous examples
are presented in subsequent sections.

dA, (W) 4.24)

z=0

4.3 SPREADING AND CONSTRICTION RESISTANCES
IN AN ISOTROPIC HALF-SPACE

4.3.1 Introduction

Steady or transient heat transfer occurs in a half-space z > 0 which may be isotropic
or may consist of one or more thin isotropic layers bonded to the isotropic half-space.
The heat source is some planar singly or doubly connected area such as a circular
annulus located in the “free” surface z = 0 of the half-space. The dimensions of the
half-space are much larger than the largest dimension of the source area. The “free”
surface z = 0 of the half-space outside the source area is adiabatic. If the source
area is isothermal, the heat flux over the source area is nonuniform. If the source is
subjected to a uniform heat flux, the source area is nonisothermal.

4.3.2 Circular Area on a Half-Space

There are two classical steady-state solutions available for the circular source area of
radius a on the surface of a half-space of thermal conductivity k. The solutions are
for the isothermal and isoflux source areas. In both problems the temperature field is
two-dimensional in circular-cylinder coordinates [i.e., 6(r, z)]. The important results
are presented here.

Isothermal Circular Source 1In this problem the mixed-boundary conditions
(Sneddon, 1966) in the free surface are
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0 O0<r<a 06 = 6y

7= 90 (4.25)
0 r>a — =0
0z

and the condition at remote points is: As /r2+z2 — oo, then 6 — 0. The
temperature distribution throughout the half-space z > 0 is given by the infinite
integral (Carslaw and Jaeger, 1959)

2 *© dx
6= =6 f e M Jo(r) sin ha— (K) (4.26)
T 0 A

where Jy(x) is the Bessel function of the first kind of order zero (Abramowitz and
Stegun, 1965) and '\ is a dummy variable. The solution can be written in the following
alternative form according to Carslaw and Jaeger (1959):

] 2a
Vo —a)? + 2+ +a)?+ 722

(K) 4.27)

0= —0ysin~
T

The heat flow rate from the isothermal circular source into the half-space is found

from
¢ 00
0= / —k|— 27r dr
0 aZ z=0

o . dn
= 4kab / Ji(\a) sin ha—
0 N

= dkaby (W) (4.28)

From the definition of spreading resistance one finds the relationship for the
spreading resistance (Carslaw and Jaeger, 1959):

_H_ 1 (K/W) (4.29)
Y70 4ka ’

The heat flux distribution over the isothermal heat source area is axisymmetric (Car-
slaw and Jaeger, 1959):

O0<r<a (W/m?) (4.30)

s 2wma - (fa? T

This flux distribution is minimum at the centroid r = 0 and becomes unbounded at
the edge r = a.

Isoflux Circular Source In this problem the boundary conditions in the free
surface are
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a6
0 O0<r<a Pyl —1—0
2= © (4.31)
20
0 r>a — =0
0z
where g9 = Q/ma? is the uniform heat flux. The condition at remote points is

identical. The temperature distribution throughout the half-space z > 0 is given by
the infinite integral (Carslaw and Jaeger, 1959)

_ qa

0
k- Jo

e M IO, (xa)d% (K) (4.32)

where J; (x) is the Bessel function of the first kind of order 1 (Abramowitz and Stegun,
1965), and ) is a dummy variable. The temperature rise in the source area0 <r < a
is axisymmetric and is given by (Carslaw and Jaeger, 1959):

qoa [ dn
0(r) = — Jo(Onr)J1(ha) — (K) (4.33)
k Jo N
The alternative form of the solution according to Yovanovich (1976c) is

0(r) = %%E (5) o=r=a ® (4.34)

where E(r/a) is the complete elliptic integral of the second kind of modulus r/a
(Byrd and Friedman, 1971) which is tabulated, and it can be calculated by means of
computer algebra systems. The temperatures at the centroid » = 0 and the edge r = a
of the source area are, respectively,

2 qoa

9(0)=% and 6(a) = =

— (K) (4.35)

The centroid temperature rise relative to the temperature rise at the edge is greater
by approximately 57%. The values of the dimensionless temperature rise defined as
kO(r/a)/(goa) are presented in Table 4.1.

TABLE 4.1 Dimensionless Source Temperature

r/a kB(r/a)/qoa r/a kOB(r/a)/qoa
0.0 1.000 0.6 0.9028
0.1 0.9975 0.7 0.8630
0.2 0.9899 0.8 0.8126
0.3 0.9771 0.9 0.7459
0.4 0.9587 1.0 0.6366

0.5 0.9342
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The area-averaged source temperature is

_ 1 a o dn
g— o4 / JoOr)Ji(ha)— |2mr dr - (K) (4.36)
na? k J, 0 A

The integrals can be interchanged, giving the result (Carslaw and Jaeger, 1959):

— 2q0 [™ , d\ 8 /qoa
=L rPon==— (L K 4.37
v ), JT09s 3n(k> (K) .37

According to the definition of spreading resistance, one obtains for the isoflux circular
source the relation (Carslaw and Jaeger, 1959)

R—é— 8 ! K/w 4.38
s—a—m(5> (K/W) (4.38)

The spreading resistance for the isoflux source area based on the area-averaged tem-
perature rise is greater than the value for the isothermal source by the factor
(Rs)isoﬂux _ 32

———— = — = 1.08076
(Ry)isothermal 3n2

4.3.3 Spreading Resistance of an Isothermal Elliptical Source Area
on a Half-Space

The spreading resistance for an isothermal elliptical source area with semiaxes a > b
is available in closed form. The results are obtained from a solution that follows the
classical solution presented for finding the capacitance of a charged elliptical disk
placed in free space as given by Jeans (1963), Smythe (1968), and Stratton (1941).
Holm (1967) gave the solution for the electrical resistance for current flow from
an isopotential elliptical disk. The thermal solution presented next will follow the
analysis of Yovanovich (1971).

The elliptical contact area x%/a®> + y*>/b> = 1 produces a three-dimensional
temperature field where the isotherms are ellipsoids described by the relationship

x Yo E 43
a2+c+b2+c+?— (4.39)

The three-dimensional Laplace equation in Cartesian coordinates can be transformed
into the one-dimensional Laplace equation in ellipsoidal coordinates:

29 2 98] _
V20 = T [,/f(;) ag} =0 (4.40)

where ¢ is the ellipsoidal coordinate for the ellipsoidal temperature rise 6(¢) and where

VI© =@+ +ox (4.41)
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The solution of the differential equation according to Yovanovich (1971) is

0=C,—C h % (K) (4.42)
The boundary conditions are specified in the contact plane (z = 0) where
60 =0y within X_§+y_§:1
. ‘ b . (4.43)
2—Z=0 outside ;%-1—%:1

The regular condition at points remote to the elliptical area is 6 — 0 as { — oo. This
condition is satisfied by C, = 0, and the condition in the contact plane is satisfied

by C; = —Q/47k, where Q is the total heat flow rate from the isothermal elliptical
area. The solution is, therefore, according to Yovanovich (1971),
dg
(K) (4.44)
4ﬂk (@® +0)(b> + )¢

When ¢ = 0, 6 = 6y, constant for all points within the elliptical area, and when
¢ — 00, 8 — 0 for all points far from the elliptical area. According to the definition
of spreading resistance for an isothermal contact area, we find that

R, = % = L - s (K/W) (4.45)
T o Aank )y @190 o '

The last equation can be transformed into a standard form by setting sin t = a/
/a?* + ¢. The alternative form for the spreading resistance is

1 /2 dt
= / : (K/W) (4.46)
2ntka Jo {1 — [(a® — b2)/a?] sin? }1/2

The spreading resistance depends on the thermal conductivity of the half-space, the
semimajor axis a, and the aspect ratio of the elliptical area b/a < 1. It is clear that
when the axes are equal (i.e., b = a), the elliptical area becomes a circular area and the
spreading resistance is R; = 1/(4ka). The integral is the complete elliptic integral
of the first kind K () of modulus k = /(a? — b?)/a? (Byrd and Friedman, 1971;
Gradshteyn and Ryzhik, 1965). The spreading resistance for the isothermal elliptical
source area can be written as

1
R, = WK(K) (K/'W) (4.47)

The complete elliptic integral is tabulated (Abramowitz and Stegun, 1965; Magnus
et al. (1966); Byrd and Friedman, 1971). It can also be computed efficiently and very
accurately by computer algebra systems.
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TABLE 4.2 Dimensionless Spreading
Resistance of an Isothermal Ellipse

a/b kvA R, a/b kA R,
1 0.4431 6 0.3678
2 0.4302 7 0.3566
3 0.4118 8 0.3466
4 0.3951 9 0.3377
5 0.3805 10 0.3297

4.3.4 Dimensionless Spreading Resistance of an Isothermal
Elliptical Area

To compare the spreading resistances of the elliptical area and the circular area, it is
necessary to nondimensionalize the two results. For the circle, the radius appears as
the length scale, and for the ellipse, the semimajor axis appears as the length scale.
For proper comparison of the two geometries it is important to select a length scale
that best characterizes the two geometries. The proposed length scale is based on the
square root of the active area of each geometry (i.e., £ = +/A) (Yovanovich, 1976c;
Yovanovich and Burde, 1977; Yovanovich et al., 1977). Therefore, the dimensionless
spreading resistances for the circle and ellipse are

T
(k\/z Rs)circle = %
1 a
(k\/z Rs)ellipse = m\/;K(K)
where k = /1 — (b/a)?. The dimensionless spreading resistance values for an iso-

thermal elliptical area are presented in Table 4.2 for a range of the semiaxes ratio a/b.

The tabulated values of the dimensionless spreading resistance reveal an inter-
esting trend beginning with the first entry, which corresponds to the circle. The di-
mensionless resistance values decrease with increasing values of a/b. Ellipses with
larger values of a/b have smaller spreading resistances than the circle; however, the
decrease has a relatively weak dependence on a/b. For the same area the spread-
ing resistance of the ellipse with a/b = 10 is approximately 74% of the spreading
resistance for the circle.

4.3.5 Approximations for Dimensionless Spreading Resistance

Two approximations are presented for quick calculator estimations of the dimension-
less spreading resistance for isothermal elliptical areas:

JTa
2
kvVA R, = (Vo+1)

forl <a<5
(4.48)

1
———In4a for5 <a <o

24/ o



280 THERMAL SPREADING AND CONTACT RESISTANCES

where o = a/b > 1. Although both approximations can be used at o = 5, the second
approximation is slightly more accurate, and therefore it is recommended.

4.3.6 Flux Distribution over an Isothermal Elliptical Area

The heat flux distribution over the elliptical area is given by (Yovanovich, 1971)

-GG

xX,y) =
(%) 27ab
The heat flux is minimum at the centroid, where its magnitude is go = Q/2nab, and
it is “unbounded” on the perimeter of the ellipse.

4.4 SPREADING RESISTANCE OF RECTANGULAR SOURCE AREAS

4.4.1 Isoflux Rectangular Area

The dimensionless spreading resistances of the rectangular source area —a < x <
a, —b <y < b with aspect ratio a/b > 1 are found by means of the integral method
(Yovanovich, 1971). Employing the definition of the spreading resistance based on
the area-averaged temperature rise with Q = 4qab gives the following dimensionless
relationship (Yovanovich, 1976c; Carslaw and Jaeger, 1959):

11 1 1\*?
kvVA R, = Ve sinh™' = 4+ — sinh~le 4+ < |14+ — — (14 = (4.50)
T € € 3 3 €

where € = a/b > 1. Employing the definition based on the centroid temperature rise,
the dimensionless spreading resistance is obtained from the relationship (Carslaw and
Jaeger, 1959)

1 1
kvA R, = G <— sinh e + sinh_l—) (4.51)
T € €

Typical values of the dimensionless spreading resistance for the isoflux rectangle
based on the area-average temperature rise for 1 < a/b < 10 are given in Table 4.3.

Table 4.3 Dimensionless Spreading
Resistance of an Isoflux Rectangular Area

a/b kA R, a/b kv A R,
1 0.4732 6 0.3950
2 0.4598 7 0.3833
3 0.4407 8 0.3729
4 0.4234 9 0.3636
5 0.4082 10 0.3552
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TABLE 4.4 Dimensionless Spreading
Resistance of an Isothermal Rectangular Area

a/b kA R,
1 0.4412
2 0.4282
3 0.4114
4 0.3980

4.4.2 Isothermal Rectangular Area

Schneider (1978) presented numerical values and a correlation of those values for
the dimensionless spreading resistance of an isothermal rectangle for the aspect ratio
range: 1 < a/b < 4. The correlation equation is

a a 0.6786
kvVA R, = [ —10.06588 — 0.00232 ( — _— 4.52
) b |: (b)+a/b+0.8145] ( )

The numerical values are given in Table 4.4.

A comparison of the values for the isothermal rectangular area and the isothermal
elliptical area reveals a very close relationship. The maximum difference of approxi-
mately —0.7% is found at a/b = 4. It is expected that the close agreement observed
for the four aspect ratios will hold for higher aspect ratios because the dimensionless
spreading resistance is a weak function of the shape if the areas are geometrically
similar. In fact, the correlation values for the rectangle and the analytical values for
the ellipse are within £1.5% over the wider range, 1 < a/b < 13.

4.4.3 Isoflux Regular Polygonal Area

The spreading resistances of isoflux regular polygonal areas has been examined
extensively. The regular polygonal areas are characterized by the number of sides
N > 3, the side dimension s, and the radius of the inscribed circle denoted as r;.
The perimeter is P = Ns; the relationship between the inscribed radius and the
side dimension is s/r; = 2tan(w/N). The area of the regular polygon is A =
Nr? tan(m/N). The temperature rises from the minimum values located on the edges
to a maximum value at the centroid. It can be found easily by means of integral
methods based on the superposition of point sources. The general relationship for
the spreading resistance based on the centroid temperature rise is found to be

B l N 1 + sin(w/N)
kvVA Ry = - | ETI) In s/ N >3 (4.53)

The expression above gives k+/A R, = 0.5516 for the equilateral triangle N = 3,
which is approximately 2.3% smaller than the value for the circle where N — oo0.
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Numerical methods are required to find the dimensionless spreading resistance for
regular polygons subjected to a uniform heat flux. The corresponding value for the
area-averaged basis was reported by Yovanovich and Burde (1977) to be k+/A R, =
0.4600 for the equilateral triangle, which is approximately 4% smaller than the value
for the circle.

4.4.4 Arbitrary Singly Connected Area

The spreading resistances for isoflux, singly connected source areas were obtained
by means of numerical methods applied to the integral formulation of the spreading
resistance. The source areas examined were isosceles triangles having a range of
aspect ratios, the semicircle, L-shaped source areas (squares with corners removed),
and the hyperellipse area defined by

X\ y n
(—) + (—) —1 (4.54)
a b
where a and b are the semiaxes along the x and y axes, respectively. The shape
parameter n lies in the range 0 < n < oo. Many interesting geometries can be

generated by the parameters a, b, and n. The area of the hyperellipse is given by the
relationship

4 dab T+ 1/mI(/n)

2
n T +2/n) (m) (4.55)

where I'(x) is the gamma function which is tabulated (Abramowitz and Stegun,
1965), and it can be computed accurately by means of computer algebra systems.
The dimensionless spreading resistance was found to be a weak function of the shape
of the source area for a wide range of values of n. Typical values are given in Table 4.5.

The dimensionless spreading resistances were based on the centroid temperature
rise denoted as R, and the area-averaged temperature rise, denoted R. The dimen-
sionless spreading resistance was based on the length scale £ = +/A. All numer-
ical results were found to lie in narrow ranges: 0.4424 < kvA R < 0.4733 and
0.5197 < k~/A Ry < 0.5614. The corresponding values for the equilateral trian-
gle are kvA R = 0.4600 and kA Ry = 0.5616, and for the semicircle they are
kv/AR = 0.4610 and k+/A Ry = 0.5456.

TABLE 4.5 Effect of n on Dimensionless
Spreading Resistances

n kvAR kvA Ry
0.5 0.4440 0.5468
1 0.4728 0.5611
2 0.4787 0.5642
4 0.4770 0.5631
o0 0.4732 0.5611
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The following approximations were recommended by Yovanovich and Burde
(1977) for quick approximate calculations: kA Ry = g and kv/AR = 0.84 ky/A Ry.

The ratios of the area-averaged and centroid temperature rises for all geometries
examined were found to be closely related such that 6/6) = 0.84 £ 1.7%.

4.4.5 Circular Annular Area

Analytical methods have been used to obtain the spreading resistance for the isoflux
and isothermal circular annulus of radii @ and b in the surface of an isotropic half-
space having thermal conductivity k.

Isoflux Circular Annulus The temperature rise of points in the annular area
a <r < bwasreported by Yovanovich and Schneider (1977) to have the distribution

em:;%{E(g)_gE(g)+g[1_<§)2]K(§)} K) (456

where the special functions K (x) and E (x) are the complete elliptic integrals of the
first and second kinds, respectively, of arbitrary modulus x (Abramowitz and Stegun,
1965; Byrd and Friedman, 1971). The dimensionless spreading resistance, based on
the area-averaged temperature rise, of the isoflux circular annulus was reported by
Yovanovich and Schneider (1977) to have the form

8 1

where the modulus is € = a/b < 1. When € = 0, the annulus becomes a circle of
radius b, and the relationship above gives kbR = 8/(37?), which is in agreement
with the result obtained for the isoflux circular area.

Isothermal Circular Annulus The spreading resistance for the isothermal cir-
cular annulus cannot be obtained directly by the integral method. Mathematically,
this is a mixed boundary value problem that requires special solution methods, which
are discussed by Sneddon (1966). Smythe (1951) reported the solution for the capac-
itance of a charged annulus. Yovanovich and Schneider (1977) used the two results
of Smythe to determine the spreading resistance. Yovanovich and Schneider (1977)
reported the following relationships for the spreading resistance of an isothermal cir-
cular annular contact area:
1 In164+1In[(1 +¢€)/(1 —¢€)]

kbR, = 4.58
§ =3 e (4.58)

for 1.000 < 1/e < 1.10, and

/8
kbR, = 4.59)
(cos~! e+ /1 — e tanh~'e)[1 4+ 0.0143¢ ! tan3(1.28¢)]
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for 1.1 < 1/e < co. When € = 0, the annulus becomes a circle, and the spreading re-
sistance gives Ry, = 1/(4kb), in agreement with the result obtained for the isothermal
circular area.

4.4.6 Other Doubly Connected Areas on a Half-Space

The numerical data of spreading resistance from Martin et al. (1984) for three dou-
bly connected regular polygons: equilateral triangle, square, and circle were nondi-
mensionalized as k+/A. R;. The dimensionless spreading resistance is a function
of € = /A;/A,, where A; and A, are the inner and outer projected areas of the
polygons. The active areais A, = A, — A;.

Accurate correlation equations with a maximum relative error of 0.6% were given.
For the range 0 < e < 0.995,

ky/A. R, = ag [1 - (ai) 2} ‘ (4.60)
1

and for the range 0.995 < € < 0.9999,

aq
kP,R; = asln ———— 4.61
s =asin o (4.61)

where P, is the outer perimeter of the polygons and the correlation coefficients: ag
through as are given in Table 4.6.

The correlation coefficient a represents the dimensionless spreading resistance of
the full contact area, in agreement with results presented above. Since the results for
the square and the circle are very close for all values of the parameter ¢, the correlation
equations for the square or the circle may be used for other doubly connected regular
polygons, such as pentagons, hexagons, and so on.

Effect of Contact Conductance on Spreading Resistance Martin et al.
(1984) used a novel numerical technique to determine the effect of a uniform contact
conductance & on the spreading resistance of square and circular contact areas. The
dimensionless spreading resistance values were correlated with an accuracy of 0.1%
by the relationship

TABLE 4.6 Correlation Coefficients for Doubly Connected Polygons

Circle Square Triangle
ap 0.4789 0.4732 0.4602
ai 0.99957 0.99980 1.00010
a 1.5056 1.5150 1.5101
as 0.35931 0.37302 0.38637
as 39.66 68.59 11591

as 0.31604 0.31538 0.31529
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TABLE 4.7 Correlation Coefficients for Squares and Circles

Circle Square
cl 0.46159 0.45733
2 0.017499 0.016463
c3 0.43900 0.47035
4 1.1624 1.1311
kv A R; = ¢ — ¢y tanh(c3 InBi — ¢y) 0<Bi<o (4.62)

with Bi = hv/A/ k. The correlation coefficients ¢; through ¢, are given in Table 4.7.

When Bi < 0.1, the predicted values approach the values corresponding to the
isoflux boundary condition, and when Bi > 100, the predicted values are within
0.1% of the values obtained for the isothermal boundary condition. The transition
from the isoflux values to the isothermal values occurs in the range 0.1 < Bi < 100.

4.5 TRANSIENT SPREADING RESISTANCE IN AN ISOTROPIC
HALF-SPACE

Transient spreading resistance occurs during startup and is important in certain micro-
electronic systems. The spreading resistance may be defined with respect to the
area-averaged temperature or with respect to a single point temperature such as the
centroid temperature. Analytical solutions have been reported for a circular area
on an isotropic half-space with isothermal, isoflux, and other heat flux distributions
(Beck, 1979; Blackwell, 1972; Dryden et al., 1985; Keltner, 1973; Normington and
Blackwell, 1964, 1972; Schneider et al., 1976; Turyk and Yovanovich, 1984; Negus
and Yovanovich (1989); Yovanovich et al. (1984). Various analytical and numerical
methods were employed to obtain short- and long-time solutions.

4.5.1 Isoflux Circular Area

Beck (1979) reported the following integral solution for a circular area of radius a
which is subjected to a uniform and constant flux g for r > 0:

_8 [ 200 %
4kaR, = — /0 erf (C\/F_o> Gk (4.63)

where erf is the error function, J;(x) is a Bessel function of the first kind of order
1 (Abramowitz and Stegun, 1965), and ¢ is a dummy variable. The dimensionless
time is defined as Fo = at/a?, where a is the thermal diffusivity of the half-space.
The spreading resistance is based on the area-averaged temperature. Steady state is
obtained when Fo — oo, and the solution goes to 4kaR, = 32/(371?).

Beck (1979) gave approximate solutions for short and long times. For short times
where Fo < 0.6,
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ttaR. = S [Fo  Fo N Fo® N Fo’ N 15Fo* “4.64)
ET\WE T T T3 Sizn '

and for long times where Fo > 0.6,

32 2 |:1 1 1 1

4kaR, = —— — - -
“ 312 132 Fo 3(dFo) T 6(dFo)2  12(4Fo)

The maximum errors of about 0.18% and 0.07% occur at Fo = 0.6 for the short- and
long-time expressions, respectively.

:| (4.65)

4.5.2 Isoflux Hyperellipse

The hyperellipse is defined by (x/a)" + (y/b)" = 1 with b < a, where n is the
shape parameter and a and b are the axes along the x and y axes, respectively.
The hyperellipse reduces to many special cases by setting the values of n and the
aspect ratio parameter y = b/a, which lies in the range 0 < y < 1. Therefore, the
solution developed for the hyperellipse can be used to obtain solutions for many other
geometries, such as ellipse and circle, rectangle and square, diamondlike geometries,
and so on. The transient dimensionless centroid constriction resistance k+/A Ro,
where Ry = Typ/Q, is given by the double-integral solution (Yovanovich, 1997)

\/_ 2 /2 ro r
kvA Ry = —— rfc | ————— | dr d 4.66
0 wz/o /0 ¢ C<2\/Z«/_Fo> e (4:60)

with Fo = ar/A, and the area of the hyperellipse is given by A = (4y/n)B(1 +
1/n, 1/n) and B(x,y) is the beta function (Abramowitz and Stegun, 1965). The upper
limit of the radius is given by ry = y/[(sin w)" + y" (cos ®)"]/" and the aspect ratio
parameter y = b/a. The solution above has the following characteristics: (1) for
small dimensionless times, Fo < 4 x 1072, kv/A Ry = (Z/ﬁ)«/F_o for all values of
n and y; (2) for long dimensionless times, Fo > 107, the results are within 1% of the
steady-state values, which are given by the single integral

2y [T dw
kA Ry = = : 4.67
T VA Jo  [sinw) + y*(cos w) ]/ @67

which depends on the aspect ratio y and the shape parameter n. The dimensionless
spreading resistance depends on the three parameters Fo, y, and » in the transition
region 4 X 10~2 < Fo < 103 in some complicated manner that can be deduced from
the solution for the circular area. For this axisymmetric shape we puty = 1, n = 2
into the hyperellipse double integral, which yields the following closed-form result
valid for all dimensionless time (Yovanovich, 1997):

kA Ry = @[% - % exp Gﬁ)
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1 1
+ Zﬁ«/ﬁ erfc <2ﬁ\/%) :| (4.68)

where the dimensionless time for the circle of radius a is Fo = ar/ma?.

4.5.3 Isoflux Regular Polygons

For regular polygons having sides N > 3, the area is A = Nr?tan(n/N), where
r; is the radius of the inscribed circle. The dimensionless spreading resistance based
on the centroid temperature rise k+/A R is given by the following double integral
(Yovanovich, 1997):

N n/N pl/cosw r
kvVA R =2/—/ f f[ ]dd 4.69
0 tan(vt/N) Jo Jo e 2/N tan(rt/N)+/Fo rde (469

where the polygonal area is expressed in terms of the number of sides N, and for
convenience the inscribed radius has been set to unity. This double-integral solution
has characteristics identical to those of the double-integral solution given above for
the hyperellipse; that is, for small dimensionless time, Fo < 4 x 1072, ka/A Ry =
(2/+/T)/Fy for all polygons N > 3; and for long dimensionless times, Fo > 103,
the results are within 1% of the steady-state values, which are given by the following
closed-form expression (Yovanovich, 1997):

1 N 1 4 sin(w/N)
kVA Ro = ;V tan(m/N) In cos(m/N) (4.70)

The dimensionless spreading resistance k~/A Ry depends on the parameters: Fo and
N in the transition region: 4 x 102 < Fo < 10 in some complex manner which,
as described above, may be deduced from the solution for the circular area. The
steady-state solution gives the values k«/ZR(, = 0.5617,0.5611, and 0.5642 for
the equilateral triangle, N = 3, the square, N = 4, and the circle, N — oo. The
difference between the values for the triangle and the circle is approximately 2.2%,
whereas the difference between the values for the square and the circle is less than
0.6%. The following procedure is proposed for computation of the centroid-based
transient spreading resistance for the range 4 x 1072 < Fo < 10°. The closed-form
solution for the circle is the basis of the proposed method. For any planar singly
connected contact area subjected to a uniform heat flux, take

Yo =2\/F_O|:l—exp (- ! )

Yo(Fo — o0) 47t - Fo

1 1
fi 4.71
* 2+/Fo e <2ﬁ \/F0>j| @70
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where J, = k~/A Ry. The right-hand side of eq. (4.71) can be considered to be
a universal dimensionless time function that accounts for the transition from small
times to near steady state. The procedure proposed should provide quite accurate
results for any planar, singly connected area. A simpler expression that is based on
the Greene (1989) approximation of the complementary error function is proposed
(Yovanovich, 1997):

o 1 [1
Yo(Fo — o0)  z/m

—e ¥ faw Ze_”Z(“‘“)Z] (4.72)

where z = 1/(2+/T+/Fo) and the three correlation coefficients are a; = 1.5577, a; =
0.7182, and a3 = 0.7856. This approximation will provide values of 1\, with maxi-
mum errors of less than 0.5% for Fo > 4 x 1072.

4.6 SPREADING RESISTANCE WITHIN A COMPOUND DISK
WITH CONDUCTANCE

The spreading, one-dimensional flow and total resistances for steady conduction
within compound disks is important in many microlectronic applications. The heat
enters a compound disk of radius b through a circular area of radius a located in the
top surface of the first layer of thickness #; and thermal conductivity k;, which is in
perfect thermal contact with the second layer (called the substrate) of thickness
and thermal conductivity k.

The lateral boundary r = b is adiabatic, the face at z = ¢t = #; + 1, is either cooled
by a fluid through the film conductance 4 or it is in contact with a heat sink through a
contact conductance . In either case, & is assumed to be uniform. A compound disk
with uniform heat flux and uniform conductance along the lower surface is shown in
Fig. 4.4.

—>a
q !
b
i

h = "y

i A
ky : t

v

: \ h

0<kilky< o
=t +1

Figure 4.4 Compound disk with uniform heat flux and conductance. (From Yovanovich et
al., 1980.)
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The boundary condition over the source area may be modeled as either uniform
heat flux or isothermal. The complete solution for these two boundary conditions
has been reported by Yovanovich et al. (1980). The spreading resistance R, and one-
dimensional system resistance R are related to the total system resistance Ry in
the following manner:

%) 1

Romw=R;+Rp=R; + —+ — + — K/'W 4.73
total + Rip +k1 +k2A+hA ( ) 4.73)

where A = mb?. The general solution for the dimensionless spreading resistance pa-
rameter v = 4k;a R, depends on several dimensionless geometric and thermophys-
ical parameters: € = a/b,t = t/b, 1y = t1/b, 1y = to/b,x = ki/ko, Bi = hb/k,,
and p, a parameter that describes the heat flux distribution over the source area. The
general relationship between the total heat flow rate Q and the axisymmetric heat flux
distribution ¢ (u) is

g = 2+ W~ 0wzl (4.74)
Ta

The heat flux distributions corresponding to three values of the parameter | are
presented in Table 4.8, where Q/ma? is the average flux on the area. When . = 0,
the heat flux is uniform, and when @ = —%, the heat flux distribution is called
the equivalent isothermal distribution because it produces an almost isothermal area
provided that a/b < 0.6.

The independent system parameters have the ranges given in Table 4.9. If the first
layer conductivity is lower than the substrate conductivity (i.e., 0 < k < 1), the layer
(coating) is said to be thermally resistive, and if the conductivity ratio parameter lies
in the range 1 < k < oo, the layer is said to be thermally conductive.

The general dimensionless spreading resistance relationship was given as (Yo-
vanovich et al., 1980):

AkaR, = 8(“ +1) ZA (€)B, (T, 1. k. Bi )Jl(6 n€) (4.75)

n=1

The first layer thermal conductivity and the radius of the heat source were used to
nondimensionalize the spreading resistance. If the substrate thermal conductivity

TABLE 4.8 Three Heat Flux Distributions

n qu)
_1 I
2 2na?/1 — u?
0
0 =
na?

30 v1—u?
2ma?

(Sl
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TABLE 4.9 System Parameter Ranges

0<e<l
0<1 <00
0<1 <00
0< kK <@
0<Bi<

is used, the right-hand side of the relationship must be multiplied by the thermal
parameter K.
The coefficients A, are functions of the heat flux parameter . They are

—25sin §,¢€ " .
FUE orp =—z
5273 (3) W=
_211 (ane)
A, = W forp =0 (4.76)
—2sin ¢ |: 1 1 ] " .
- orvL =5
822G, L(5,07 (3,0 tand,e =2

The function B,,, which depends on the system parameters (t;, T, k, Bi), was defined
as

thSn — ¥n
5 _ atanh®,T) — ¢

n 4.77
sy 4.77)
and the two functions that appear in the relationship above are defined as
k—1 .
o, = (coshd,t; — ¢, sinhd,t;) cosh§, 1| 4.78)
3, + Bi tanh3§,
on + B1 tan T (4.79)

~ 3, tanh(3,7) + Bi

The eigenvalues §, are the positive roots of Ji(-) = 0 (Abramowitz and Stegun,
1965). For the special case of an isotropic disk where k = 1, B, = —¢,, which
depends on t and Bi only. Since the general solution depends on several independent
parameters, it is not possible to present the results in tabular or graphical form. The
full solution can, however, be programmed easily into computer algebra systems.

Characteristics of ¢, This function accounts for the effects of the parameters:
d,, T, and Bi. For extreme values of the parameter Bi, it reduces to

(4.80)

tanh §,,t as Bi —» oo
on coth 3,1 asBi— 0
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For all values in the range 0 < Bi < oo and for all values t > 0.72, tanh§,t ~ 1
for all n > 1. Therefore, ¢, ~ 1 for values n > 1.

Characteristics of B, Whent; > 0.72, tanh §,t = 1,¢, = 1forall0 < Bi < oc;
therefore, B, = 1 forn > 1.

4.6.1 Special Cases of the Compound Disk Solution

The general solution for the compound disk may be used to obtain spreading re-
sistances for several special cases examined previously by many researchers. These
special cases arise when some of the system parameters go to certain limits. The spe-
cial cases fall into the following two categories: isotropic half-space, semi-infinite
flux tube, and finite disk problems; and layered half-space and semi-infinite flux tube
problems. Figures 4.5 and 4.6 show the several special cases that arise from the gen-
eral case presented above. Results for several special cases are discussed in more
detail in subsequent sections.

4.6.2 Half-Space Problems

If the dimensions of the compound disk (b, t) become very large relative to the radius
a and the first layer thickness #;, the general solution approaches the solution for
the case of a single layer in perfect thermal contact with an isotropic half-space. In
this case € — 0, 1y — 0 and the spreading resistance depends on the four system
parameters (a, t1, k1, k») and the heat flux parameter . If we set1; = O or k; = k», the
general solution goes to the special case of a circular heat source in perfect contact
with an isotropic half-space. In this case the spreading resistance depends on two
system parameters (a, k») and the heat flux parameter . The dimensionless spreading
resistance is now defined as \y = 4k,a R;, and it is a constant depending on the heat
flux parameter. The total resistance is equal to the spreading resistance in both cases
because the one-dimensional resistance is negligible. The half-space problems are
shown in Figs. 4.5d and 4.6d.

4.6.3 Semi-infinite Flux Tube Problems

The general solution goes to the semi-infinite flux tube solutions when the system
parameter T, — oo. In this case the spreading resistance will depend on the system
parameters (a, b, t1, ki, k;) and the heat flux parameter . The dimensionless spread-
ing resistance will be a function of the parameters (e, Ty, k) and . If one sets #; = 0
or ky = k, = k, the dimensionless spreading resistance {» = 4ka R depends on the
system parameters (a, b, k) and p or € = a/b and | only. The semi-infinite flux tube
problems are shown in Figs. 4.5¢ and 4.6¢.

4.6.4 lIsotropic Finite Disk with Conductance

In this case, one puts k; = k, = k or k = 1. The dimensionless spreading re-
sistance U = 4kaR; depends on the system parameters (a, b, t, k, h) and | or the
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dimensionless system parameters (¢ = a/b,t = t/b,Bi = hb/k) and . This
problem is shown in Fig. 4.6b. These special cases are presented in the following
sections.

4.7 SPREADING RESISTANCE OF ISOTROPIC FINITE DISKS
WITH CONDUCTANCE

The dimensionless spreading resistance for isotropic (k = 1) finite disks (t; < 0.72)
with negligible thermal resistance at the heat sink interface (Bi = 00) is given by the
following solutions (Kennedy, 1960; Mikic and Rohsenow, 1966; Yovanovich et al.,
1998): For p = —%:

Ji (3 S
4kaR, = — Z 1(3 n€) Sindn€ b, T 4.81)
€ d J0 4,)
For p = 0:
_16 >\ J2(3€)
4kaR, = —tanh?),,t 4.82

If the external resistance is negligible Bi — oo, the temperature at the lower face of
the disk is isothermal. The solutions for isoflux i = 0 heat source and isothermal
base temperature were given by Kennedy (1960) for the centroid temperature and the
area-averaged contact area temperature.

4.71 Correlation Equations

A circular heat source of radius a is attached to one end of a circular disk of thickness
t, radius b, and thermal conductivity k. The opposite boundary is cooled by a fluid
at temperature Ty through a uniform heat transfer coefficient /. The sides of the disk
are adiabatic and the region outside the source area is also adiabatic. The flux over
the source area is uniform. The heat transfer through the disk is steady. The external
resistance is defined as Rey = 1/hA, where A = wb?.

The solution for the isoflux boundary condition and with external thermal resis-
tance was recently reexamined by Song et al. (1994) and Lee et al. (1995). They
nondimensionalized the constriction resistance based on the centroid and area-
averaged temperatures using the square root of the source area (as recommended
by Yovanovich, 1976b, 1991, 1997; Yovanovich and Burde, 1977; Yovanovich and
Schneider, 1977; Chow and Yovanovich, 1982; Yovanovich et al., 1984; Yovanovich
and Antonetti, 1988) and compared the analytical results against the numerical results
reported by Nelson and Sayers (1992) over the full range of independent parameters:
Bi = hb/k,e = a/b,t = t/b. Nelson and Sayers (1992) also chose the square
root of the source area to report their numerical results. The agreement between the
analytical and numerical results were reported to be in excellent agreement.



SPREADING RESISTANCE OF ISOTROPIC FINITE DISKS WITH CONDUCTANCE 295

Lee et al. (1995) recommended a simple closed-form expression for the dimen-
sionless constriction resistance based on the area-averaged and centroid temperatures.
They defined the dimensionless spreading resistance parameter as { = /7 kaR,,
where R, is the constriction resistance, and they recommended the following approx-
imations: For the area-averaged temperature

Ve = 2(1 — €)%, (4.83)

and for the centroid temperature:

1
Ymax = ﬁ(l — €)@ (4.84)
with

Bitanh (3. 3
. = M (4.85)

Bi + 3. tanh 8.t

1

3. = —_— 4.86
T+ Tre (4.86)

The approximations above are within £10% of the analytical results (Song et al.,
1994; Lee et al., 1995) and the numerical results of Nelson and Sayers (1992). The
locations of the maximum errors were not given.

4.7.2 Circular Area on a Single Layer (Coating) on a Half-Space

Integral solutions are available for the spreading resistance for a circular source of
radius a in contact with an isotropic layer of thickness #; and thermal conductivity k;
which is in perfect thermal contact with an isotropic half-space of thermal conduc-
tivity k,. The solutions were obtained for two heat flux distributions corresponding
to the flux parameter values . = —% and p = 0.

Equivalent Isothermal Circular Contact Dryden (1983) obtained the solution
for the equivalent isothermal circular contact flux distribution:

q(r) = 2 O<u<l (W/m?) (4.87)

2na’v/1 — u?

The problem is depicted in Fig. 4.7.
The dimensionless spreading resistance, based on the area-averaged temperature,
is obtained from the integral (Dryden, 1983):

4ky [Ny exp(Sti/a) + N1 exp(—tti/a) Ji(5) sing
q; = 4k2aRX = —— 2
wki Jo Mo exp(fi/a) — Ny exp(=thi/a) ¢

dt  (4.88)

with '\ = (1 —ky/k1)/2 and Ny = (1 4+ ky/k1)/2. The parameter ¢ is a dummy vari-
able of integration. The constriction resistance depends on the thermal conductivity
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T=0

Figure 4.7 Layered half-space with an equivalent isothermal flux. (From Yovanovich et al.,
1998.)

ratio k;/k, and the relative layer thickness f;/a. Dryden (1983) presented simple
asymptotes for thermal spreading in thin layers, #;/a < 0.1, and in thick layers,
t1/a > 10. These asymptotes were also presented as dimensionless spreading resis-
tances defined as 4k,a R;. They are:

Thin-layer asymptote:

41 (k k
(4kraRy)in = 1 + — — (—2 - —1> (4.89)
ma kl k2

Thick-layer asymptote:

k 2ak 2
(4k2a R pick = — — el PN S
ki mhki 1+k/k

(4.90)
These asymptotes provide results that are within 1% of the full solution for relative
layer thickness: #;/a < 0.5 and t; /a > 2.

The dimensionless spreading resistance is based on the substrate thermal conduc-
tivity k. The general solution above is valid for conductive layers where k;/k; > 1
as well as for resistive layers where k;/ky < 1. The infinite integral can be evaluated
numerically by means of computer algebra systems, which provide accurate results.

4.7.3 Isoflux Circular Contact

Hui and Tan (1994) presented an integral solution for the isoflux circular source. The
dimensionless spreading resistance is

32 (k) 8 k\*| [ Ji (%) dg
Yok = ﬁ(ﬂ) +5[1_ (H) M [+ (i /k tanh G/ )
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which depends on the thermal conductivity ratio k;/k, and the relative layer thick-
ness #; /a. The dimensionless spreading resistance is based on the substrate thermal
conductivity k,. The general solution above is valid for conductive layers, where
k1/ky > 1, as well as resistive layers, where k;/k, < 1.

4.7.4 Isoflux, Equivalent Isothermal, and Isothermal Solutions

Negus et al. (1985) obtained solutions by application of the Hankel transform method
for flux-specified boundary conditions and with a novel technique of linear superpo-
sition for the mixed boundary condition (isothermal contact area and zero flux outside
the contact area). They reported results for three flux distributions: isoflux, equivalent
isothermal flux, and true isothermal source. There results were presented below.

Isoflux Contact Area For the isoflux boundary condition, they reported the result
for ¢? = 4kjaR;:

q 32 8 . n.n
Y ZQJFEZ(_]) o'l (4.92)
n=1

The first term is the dimensionless isoflux spreading resistance of an isotropic half-
space of thermal conductivity k;, and the second term accounts for the effect of the
layer relative thickness and relative thermal conductivity. The thermal conductivity
parameter o is defined as

1—«
o =
1+«

with k = k1 /k,. The layer thickness—conductivity parameter I, is defined as

1
Iy =>- {2\/2(\/ +DE [\/Z/W + 1)] - L — 2“’”1}

o1

22y

with

0.09375 0.0341797  0.00320435
12 v Y6

I =1+

The relative layer thickness is t; = #/a and the relative thickness parameter is
y=2nt} 4+ 1

The special function E(-) is the complete elliptic integral of the second kind
(Abramowitz and Stegun, 1965).

Equivalent Isothermal Contact Area For the equivalent isothermal flux
boundary condition, they reported the result for \,; = 4kjaR;:
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8 = n_n
Vo =1+ > =D I (4.93)

n=1

where as discussed above, the first term represents the dimensionless spreading resis-
tance of an isothermal contact area on an isotropic half-space of thermal conductivity
ky and the second term accounts for the effect of the layer relative thickness and the
relative thermal conductivity. The thermal conductivity parameter a is defined above.
The relative layer thickness parameter /,; is defined as

L = [,/1 —BP(B—B")+4sinT (BT - 2n'cli|
with 1) = t/a and

=nt ++/n2+1
1

Isothermal Contact Area For the isothermal contact area, Negus et al. (1985)
reported a correlation equation for their numerical results. They reported that {7 =
4kia R in the form

V! = Fitanh F, + F3 (4.94)
where

Fy = 0.49472 — 0.49236k — 0.0034i>
F, = 2.8479 + 1.33371 + 0.068641° with 1 =log,oT
F; = 0.49300 + 0.57312« — 0.06628k>

where k = k;/k,. The correlation equation was developed for resistive layers: 0.01 <
k < 1 over a wide range of relative thickness 0.01 < t; < 100. The maximum
relative error associated with the correlation equation is approximately 2.6% at Tt =
0.01 and k = 0.2. Numerical results for ¢, \s,;, and " for a range of values of
7 and k were presented in tabular form for easy comparison. They found that the
values for |7 were greater than those for s,; and that {,;, < . The maximum
difference between ¢ and {7 was approximately 8%. The values for Yr > Y, for
very thin layers, t; < 0.1 and for k < 0.1; however, the differences were less than
approximately 8%. For most applications the equivalent isothermal flux solution and
the true isothermal solution are simililar.

4.8 CIRCULAR AREA ON A SEMI-INFINITE FLUX TUBE

The problem of finding the spreading resistance in an semi-infinite isotropic cir-
cular flux tube has been investigated by many researchers (Roess, 1950; Mikic and
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kylky = 1

T=1t/b—®
e=alb<0.9

Figure 4.8 Isotropic flux tube with an isoflux area. (From Yovanovich et al., 1998.)

Rohsenow, 1966; Gibson, 1976; Yovanovich, 1976a,b; Negus and Yovanovich, 1984a,
b; Negus et al., 1989). The system with uniform heat flux on the circular area is shown
in Fig. 4.8.

This problem corresponds to the case where k = 1 and T — o0, and therefore
the spreading resistance depends on the system parameters (a, b, k) and the flux
distribution parameter . The dimensionless spreading resistance defined as { =
4kaRg, where Ry is the spreading resistance, depends on € and . The results of
several studies are given below.

4.8.1 General Expression for a Circular Contact Area with Arbitrary
Flux on a Circular Flux Tube

The general expression for the dimensionless spreading (constriction) resistance
4kaR; for a circular contact subjected to an arbitrary axisymmetric flux distribution
f(u) (Yovanovich, 1976b) is obtained from the series

dkaR; =

8/ i]l(ane) !

Jo(@neu) d 495
Tl oy du 2t 5203 Jo RO i G99

where 3,, are the positive roots of J;(-) = 0 and € = a/b is the relative size of the
source area.
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Flux Distributions of the Form (1 — u®>)* Yovanovich (1976b) reported the
following general solution for axisymmetric flux distributions of the form f(u) =
(1 —u?)M, where the parameter . accounts for the shape of the flux distribution. The
general expression above reduces to the following general expression:

ad Ji (Sne)-]u-!—l (3,€)

16 !
4kaR; = — (1 + D2'T( + 1)~
s = (n ) (n )e Si.]()(gn)(&ne)'JL

(4.96)

n=1

where I'(-) is the gamma function (Abramowitz and Stegun, 1965) and Jy(-) is the
Bessel function of arbitrary order v (Abramowitz and Stegun, 1965).

The general expression above can be used to obtain specific solutions for various
values of the flux distribution parameter . Three particular solutions are considered
next.

Equivalent Isothermal Circular Source The isothermal contact area requires
solution of a difficult mathematical problem that has received much attention by
numerous researchers (Roess, 1950; Kennedy, 1960; Mikic and Rohsenow, 1966;
Gibson, 1976; Yovanovich, 1976b; Negus and Yovanovich, 1984a,b).

Mikic and Rohsenow (1966) proposed use of the flux distribution corresponding
topn = —% to approximate an isothermal contact area for small relative contact areas
0 < € < 0.5. The general expression becomes

8 1 o J;(8,€) sin §,¢

4dkaR;, = —
me = 8 IiG,)

(4.97)
1

An accurate correlation equation of this series solution is given below.

Isoflux Circular Source The general solution above with @ = 0 yields the
isoflux solution reported by Mikic and Rohsenow (1966):

161 o~ J2(8,€)
dkaRy, = —- Y L~ (4.98)
T e = IRG,)

An accurate correlation equation of this series solution is given below.

Parabolic Flux Distribution Yovanovich (1976b) reported the solution for the
parabolic flux distribution corresponding to p = %

241 O Ji(3,€)sinde [ 1 1
4kaR, = =~ B 100
BEEEE ; 83725, L(.0?  Betand,e (4.99)

An accurate correlation equation of this series solution is given below.

Asymptotic Values for Dimensionless Spreading Resistances The three
series solutions given above converge very slowly as € — 0, which corresponds to the
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TABLE 4.10 Correlation Coefficients for Three Flux Distributions

c, n=—} =0 =1
Co 1.00000 1.08085 1.12517
Cy —1.40981 —1.41002 —1.41038
Cs 0.303641 0.259714 0.235387
Cs 0.0218272 0.0188631 0.0117527
C7 0.0644683 0.0420278 0.0343458

case of a circular contact area on a half-space. The corresponding half-space results
were reported by Strong et al. (1974):

1 for p = —%
32
4kaR; = — forp =0 (4.100)
3w
11252 forp =3

Correlation Equations for Spreading Resistance Since the three series so-
lutions presented above for the three heat flux distributions p = —%, 0, % converge
slowly as € — 0, correlation equations for the dimensionless spreading resistance
U = 4kaR; for the three flux distributions were developed having the general form

U = Cy+ Cre + C3€> + Cs€® + Cr€’ (4.101)

with the correlation coefficients given in Table 4.10. The correlation equations, ap-
plicable for the parameter range 0 < € < 0.8, provide four-decimal-place accuracy.

Simple Correlation Equations Yovanovich (1976b) recommended the follow-
ing simple correlations for the three flux distributions:

dkaR; = a; (1 — axe) (4.102)
in the range 0 < € < 0.1 with a maximum error of 0.1%, and
dkaR; = a;(1 — e)® (4.103)

in the range 0 < € < 0.3 with a maximum error of 1%. The correlation coefficients
for the three flux distributions are given in Table 4.11.

TABLE 4.11 Correlation Coefficients for . = —1,0, ]

1 1

2 0 2
ay 1 1.0808 1.1252
a 1.4197 14111 1.4098

as 1.50 1.35 1.30
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TABLE 4.12 Coefficients for Correlations of Dimensionless Spreading Resistance
4kaR;

Flux Tube Geometry and

Contact Boundary Condition Co Cy Cs Cs Cy
Circle/circle

Uniform flux 1.08076  —1.41042 0.26604 —0.00016  0.058266

True isothermal flux 1.00000 —1.40978  0.34406 0.04305  0.02271
Circle/square

Uniform flux 1.08076  —1.24110  0.18210 0.00825  0.038916

Equivalent isothermal flux ~ 1.00000 —1.24142  0.20988 0.02715  0.02768

4.8.2 Accurate Correlation Equations for Various Combinations
of Source Areas, Flux Tubes, and Boundary Conditions

Solutions are also available for various combinations of source areas and flux tube
cross-sectional areas, such as circle/circle and circle/square for the uniform flux, true
isothermal, and equivalent isothermal boundary conditions (Negus and Yovanovich,
1984a,b).

Numerical results were correlated with the polynomial

4kaR, = Cy + Cre + C3€° + Cse + Ce’ (4.104)

The dimensionless spreading (constriction) resistance coefficient Cy is the half-
space value, and the correlation coefficients C; through C; are given in Table 4.12.

4.9 MULTIPLE LAYERS ON A CIRCULAR FLUXTUBE

The effect of single and multiple isotropic layers or coatings on the end of a circular
flux tube has been determined by Antonetti (1983) and Muzychka et al. (1999). The
heat enters the end of the circular flux tube of radius » and thermal conductivity k3
through a coaxial, circular area that is in perfect thermal contact with an isotropic
layer of thermal conductivity k; and thickness #;. This layer is in perfect contact with
a second layer of thermal conductivity k, and thickness #,, which is in perfect contact
contact with the flux tube having thermal conductivity k3 (Fig. 4.9).

The lateral boundary of the flux tube is adiabatic and the contact plane outside the
contact area is also adiabatic. The boundary condition over the contact area may be
isoflux or isothermal. The system is depicted in Fig. 4.9. The dimensionless constric-
tion resistance ;) jayers = 4k3a R, is defined with respect to the thermal conductivity
of the flux tube, which is often referred to as the substrate. This constriction resistance
depends on several dimensionless parameters: relative contact size € = a/b where
0 < e < 1; two conductivity ratios: ky; = k»/ky, k3o = k3/kp; two relative layer
thicknesses: T, = t;/a, 1o = f,/a; and the boundary condition over the contact area.
The solution for two layers is given as
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16 ot
b, layers — E HX_; ¢n,eK21K32F (4.105)
where
J2(3,
by = ﬁp (4.106)

G
and the boundary condition parameter is according to Muzychka et al. (1999):

sin §,,€
Pne = 2Jl (8,16)

1 isoflux area

isothermal area

1 : k, t

' 4
2 ! ky ty

i .
3 ks

Figure 4.9 Two layers in a flux tube. (From Muzycha et al., 1999.)
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The thermal conductivity ratios are defined above. The layer parameters ¥+ and
?~ come from the following general relationship:

9% = (1 +ka)(1 +k32) £ (1 —121) (1 + k32) exp(—23,€71)
+ (I —k21)(1 — k32) exp(—23,€12)
£ (1 +k21)(1 — k32) exp[—23,€(T1 + T2)]

The eigenvalues 3, that appear in the solution are the positive roots of J;(-) = 0.

The two-layer solution may be used to obtain the relationship for a single layer
of thermal conductivity k; and thickness f#; in perfect contact with a flux tube of
thermal conductivity k. In this case the dimensionless spreading resistance yy jye
depends on the relative contact size €, the conductivity ratio k,;, and the relative layer
thickness t;:

19-4—

e (4.107)

o0
16
\]r;l layer = __ E d)n,eKZl
S 1
n=

and the general layer relationship becomes

9% = 2[(1 + k21) £ (1 — Kk21) exp(—23,€71)]

4.10 SPREADING RESISTANCE IN COMPOUND RECTANGULAR
CHANNELS

Consider the spreading resistance R; and total one-dimensional resistance R;p for
the system shown in Fig. 4.10. The system is a rectangular flux channel —c < x <
c,—d < y < d, consisting of two isotropic layers having thermal conductivities
ki, k, and thicknesses 71, t,, respectively. The interface between the layers is assumed
to be thermally perfect. All four sides of the flux channel are adiabatic. The planar
rectangular heat source area —a < x < a,—b < y < b is subjected to a uniform
heat flux g, and the region outside the planar source area is adiabatic. The steady heat
transfer rate 0 = gA = 4qcd occurs in the system and the heat leaves the system
through the lower face z = #; + t,. The heat is removed by a fluid through a uniform
heat transfer coefficient & or by a heat sink characterized by an effective heat transfer
coefficient h.
The total thermal resistance of the system is given by the relation

Riota = Ry + Rip (K/'W) (4.108)

where R; is the thermal spreading resistance of the system and R;p is the one-
dimensional thermal resistance, defined as

1 3] %) 1
Rp=——+—+-— h A =4dcd K/W 4.109
1D A(k1+k2+h> where C ( ) ( )
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Figure 4.10 Rectangular isoflux area on a compound rectangular channel. (From Yovanovich
etal., 1999.)

The spreading resistance is given by the general relationship (Yovanovich et al., 1999)

1 >, sin®(ad)
= d
Saedl ; 5 On®

1 >, sin?(b\)
N
+ 2b2cdk; ; IS ()

sin(ad) sin® (b)) W 110
2b2cdk1 XZ: ;T%,n(ﬁ) (K/W)  (4.110)

The general relationship for the spreading resistance consists of three terms. The
two single summations account for two-dimensional spreading in the x and y direc-
tions, respectively, and the double summation accounts for three-dimensional spread-
ing from the rectangular heat source.
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The eigenvalues 3,, and \,,, corresponding to the two strip solutions, depend on
the flux channel dimensions and the indices m and n, respectively. The eigenvalues
B,n.n for the rectangular solution are functions of the other two eigenvalues and both

indices:
c

The contributions of the layer thicknesses ¢, #,, the layer conductivities &, k», and
the uniform conductance # to the spreading resistance are determined by means of the
general expression

(ke L — Bi)e + (kgL — Bi)eX" +
a(kcL — Bi)e™ — (kgL — Bi)eXh +

@) =

(KCL 4 Bi)e?@1H1) 4+ (kgL + Bi)eX N1+
(K§£ + Bi)e2€(2t1+tz) — a(KCL + Bi)eZC(l‘l +10)

where the thermal conductivity ratio parameter is

1—«
o =
14k

with k = ky/k;, Bi = hL/k;, and £ an arbitrary length scale employed to define the
dimensionless spreading resistance:

U = Lki R, 4.112)

which is based on the thermal conductivity of the layer adjacent to the heat source.
Various system lengths may be used and the appropriate choice depends on the system
of interest.

In all summations ¢(¢) is evaluated in each series using ¢ = 3,,, \,, and B, , as
defined above. The general relationship for ¢(¢) reduces to simpler relationships for
two important special cases: the semi-infinite flux channel where t, — 00, shown
in Fig. 4.11, and the finite isotropic rectangular flux channel where k = 1, shown in
Fig. 4.12. The respective relationships are

(€ — D + (e + 1)

= 4.113
Y0 = T e @ =) (4.113)
where the influence of the contact conductance has vanished, and
@ + DL — (1 — e*)Bi
o) = (4.114)

(X — 1)¢L + (1 + X0)Bi

where the influence of k has vanished.
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Figure 4.11 Rectangular isoflux area on a layer bonded to a rectangular flux channel. (From
Yovanovich et al., 1999.)

The dimensionless spreading resistance { depends on six independent dimen-
sionless parameters, such as the relative size of the rectangular source area €, =
a/c, €; = b/d, the layer conductivity ratio k = k;/k, the relative layer thicknesses
11 =1t/L, 1y =t/ L, and the Biot number Bi = hL/k;.

The general relationship reduces to several special cases, such as those described
in Table 4.13. The general solution may also be used to obtain the relationship for an
isoflux square area on the end of a square semi-infinite flux tube.
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Figure 4.12 Rectangular isoflux area on an isotropic rectangular channel. (From Yovanovich
etal., 1999.)

TABLE 4.13 Summary of Relationships for Isoflux Area

Configuration Limiting Values

Rectangular heat source

Finite compound rectangular flux channel a,b,c,d,t,tr, ki, ko, h
Semi-infinite compound rectangular flux channel t) —> 00
Finite isotropic rectangular flux channel ki = ko
Semi-infinite isotropic rectangular flux channel t — 00

Strip heat source

Finite compound rectangular flux channel a,c,b=d,t1,tr, k1, ko, h
Semi-infinite compound rectangular flux channel t, —> o0
Finite isotropic rectangular flux channel ki =k
Semi-infinite isotropic rectangular flux channel tH — o0

Rectangular source on a half-space
Isotropic half-space c— 00,d —> 00,1 = 00
Compound half-space c— 00,d = 00,1) = 00
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4.10.1 Square Area on a Semi-infinite Square Flux Tube

For the special case of a square heat source on a semi-infinite square isotropic
flux tube, the general solution reduces to a simpler expression which depends on
one parameter only. The dimensionless spreading resistance relationship (Mikic and
Rohsenow, 1966; Yovanovich et al., 1999) was recast in the form

S~ mie 1 & S~ mie Sll’lzl’lTEE
WA= 2SR s ] g

m=1 m=1 n=1

where the characteristic length was selected as £ = +/A;. The relative size of the
heat source was defined as € = \/A;/A,, where A; and A, are the source and flux
tube areas, respectively. A correlation equation was reported for eq. (4.115) (Negus
et al., 1989):

ky/ Ay Ry = 0.47320 — 0.62075¢ 4 0.1198¢ (4.116)

in the range 0 < € < 0.5, with a maximum relative error of approximately 0.3%.
The constant on the right-hand side of the correlation equation is the value of the
dimensionless spreading resistance of an isoflux square source on an isotropic half-
space when the square root of the source area is chosen as the characteristic length.

4.10.2 Spreading Resistance of a Rectangle on a Layer
on a Half-Space

The solution for the rectangular heat source on a compound half-space is obtained
from the general relationship for the finite compound flux channel, provided that
t) — 00, ¢ — 00,d — 00. No closed-form solution exists for this problem.

4.10.3 Spreading Resistance of a Rectangle on an Isotropic
Half-Space

The spreading resistance for an isoflux rectangular source of dimensions 2a x2b on an
isotropic half-space whose thermal conductivity is k has the closed-form relationship
(Carslaw and Jaeger, 1959)

11 1 1\*?
kAR = Y8l gl L sinh~'o + 2 | 14+ — — (1 + —2) 4.117)
T e o 3 0 Y

where ¢ = a/b > 1 is the aspect ratio of the rectangle. If the scale length is
L = /A;, the dimensionless spreading resistance becomes a weak function of o. For
a square heat source, the numerical value of the dimensionless spreading resistance is
k+/A R, = 0.4732, which is very close to the numerical value for the isoflux circular
source on an isotropic half-space and other singly connected heat source geometries
such as an equilateral triangle and a semicircular heat source.
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Figure 4.13 Strip on a finite rectangular channel with cooling. (From Yovanovich et al.,
1999.)

4.11 STRIP ON A FINITE CHANNEL WITH COOLING

Spreading resistance due to steady conduction from a strip of width 2a and length
L = 2d through a finite rectangular flux channel of width 2¢ and thickness ¢ and
thermal conductivity k is considered here. A uniform conductance 4 is specified on
the bottom surface to account for cooling by a fluid or to represent the cooling by a
heat sink. The system is shown in Fig. 4.13.

This is a special case of the general relationships presented above for a rectangular
area on a compound rectangular channel. A general flux distribution on the strip is
given by

Q T(k+3/2)
L J/ma"tT(n +1)

q(x) = (@—-xH* O0<x<a  (Wm? (4.118)

where Q is the total heat transfer rate from the strip and I'(-) is the gamma function
(Abramowitz and Stegun, 1965). The parameter | defines the heat flux distribution
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on the strip, which may have the following values: (1) p = —% to approximate an
isothermal strip provided that a/c < 1, (2) p = 0 for an isoflux distribution, and (3)
n= %, which gives a parabolic flux distribution. The three flux distributions are

0 1

= ___- f = _1
Lw. /g2 — 2 orw 2
Q
xX) =9 — fi =0 4.119
q(x) 3La or | ( )
2
sz/az—x2 forp =1
L7a

The dimensionless spreading resistance relationship based on the mean source
temperature is

T(L+3/2) </ 2 \""?sinnme
kLR, = TZ — 1 p (1T, (4120)

n=1
where

nm + Bitanh nmt

n=12,3,...

¥n = nmtanh nmt + Bi

and the three dimensionless system parameters and their ranges are
a . hc t

O<e=—-<1 0<Bi=— <o O<t=-<0o0
c k c

The general relationship gives the following three relationships for the three flux
distributions:

1 <X sinnme
— E Jo(nme forp = —1
(]‘[2 n2 0( )(pn p‘ 2
n=1
LLR 1 <X sin’nme R 0 @.121)
s = E or pw = .
s €2T[3 — n3 (pn
2 i sinnme I ) R 1
—-— ne or L = »
axt =y ! @n h=3

The influence of the cooling along the bottom surface on the spreading resistance is
given by the function ¢,, which depends on two parameters, Bi and t. If the channel is
relatively thick (i.e., T > 0.85), ¢, — 1 for all valuesn = 1 - - - 00, and the influence
of the parameter Bi becomes negligible. When t > 0.85, the finite channel may be
modeled as though it were infinitely thick. This special case is presented next.
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4.12 STRIP ON AN INFINITE FLUX CHANNEL

If the relative thickness of the rectangular channel becomes very large (i.e., T — ©0),
the relationships given above approach the relationships appropriate for the infinitely
thick flux channel. The dimensionless spreading resistance for this problem depends
on two parameters: the relative size of the strip € and the heat flux distribution
parameter L. The three relationships for the dimensionless spreading resistance are
obtained from the relationships given above with ¢, = 1.

Numerical values for Lk R, for three values of . are given in Table 4.14. From the
tabulated values it can be seen that the spreading resistance values for the isothermal
strip are smaller than the values for the isoflux distribution, which are smaller than
the values for the parabolic distribution for all values of €. The differences are large
as € — 1; however, the differences become negligibly small as € — 0.

4.12.1 True Isothermal Strip on an Infinite Flux Channel

There is a closed-form relationship for the true isothermal area on an infinitely thick
flux channel. According to Sexl and Burkhard (1969), Veziroglu and Chandra (1969),
and Yovanovich et al. (1999), the relationship is

1

kLR = —In ——
m  sin(me/2)

(4.122)

Numerical values are given in Table 4.14. A comparison of the values corresponding
ton = —% and those for the true isothermal strip shows close agreement provided
that € < 0.5. For very narrow strips where € < 0.1, the differences are less than 1%.

4.12.2 Spreading Resistance for an Abrupt Change in the Cross
Section

If steady conduction occurs in a two-dimensional channel whose width decreases
from 2a to 2b, there is spreading resistance as heat flows through the common

TABLE 4.14 Dimensionless Spreading Resistance kL R, in Flux Channels

i Isothermal

€ —% 0 % Strip Change
0.01 1.321 1.358 1.375 1.322 1.343
0.1 0.5902 0.6263 0.6430 0.5905 0.6110
0.2 0.3729 0.4083 0.4247 0.3738 0.3936
0.3 0.2494 0.2836 0.2995 0.2514 0.2699
04 0.1658 0.1984 0.2134 0.1691 0.1860
0.5 0.1053 0.1357 0.1496 0.1103 0.1249
0.6 0.0607 0.0882 0.1007 0.0675 0.0794
0.7 0.0283 0.0521 0.0628 0.0367 0.0456

0.8 0.0066 0.0255 0.0338 0.0160 0.0214
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interface. The true boundary condition at the common interface is unknown. The
temperature and the heat flux are both nonuniform. Conformal mapping leads to a
closed-form solution for the spreading resistance.

The relationship for the spreading resistance is, according to Smythe (1968),

1 1 1+¢ 1 —é2
kLR, =—||e+ - )In +21n (4.123)
27 € 1 —¢ de

where € = a/b < 1. Numerical values are given in Table 4.14. An examination of the
values reveals that they lie between the values for p = —% and i = 0. The average
value of the first two columns corresponding to p = —% and p = 0 are in very close
agreement with the values in the last column. The differences are less than 1% for
€ < 0.20, and they become negligible as € — 0.

4.13 TRANSIENT SPREADING RESISTANCE WITHIN ISOTROPIC
SEMI-INFINITE FLUX TUBES AND CHANNELS

Turyk and Yovanovich (1984) reported the analytical solutions for transient spreading
resistance within semi-infinite circular flux tubes and two-dimensional channels. The
circular contact and the rectangular strip are subjected to uniform and constant heat
flux.

4.13.1 Isotropic Flux Tube

The dimensionless transient spreading resistance for an isoflux circular source of
radius a supplying heat to a semi-infinite isotropic flux tube of radius b, constant
thermal conductivity &, and thermal diffusivity o is given by the series solution

16 o~ J2(3,¢€) erf(8,e+/F
skaR, = 205 i 6)3“2( evFo) (4.124)
ey S

where € = a/b < 1, Fo = oct/a2 > 0, and 3, are the positive roots of Ji(-) = 0.
The average source temperature rise was used to define the spreading resistance. The
series solution approaches the steady-state solution presented in an earlier section
when the dimensionless time satisfies the criterion Fo > 1/ €2 or when the real time
satisfies the criterion t > a?/ae>.

4.13.2 Isotropic Semi-infinite Two-Dimensional Channel

The dimensionless transient spreading resistance for an isoflux strip of width 2a
within a two-dimensional channel of width 2b, length L, constant thermal conduc-
tivity k, and thermal diffusivity a was reported as (Turyk and Yovanovich, 1984)

1 & sin’mme erf(mmev/Fo)
LkR, = —- Z — (4.125)

m=1




314 THERMAL SPREADING AND CONTACT RESISTANCES

where € = a/b < 1 is the relative size of the contact strip and the dimensionless time
is defined as Fo = ar/a’. There is no half-space solution for the two-dimensional
channel. The transient solution is within 1% of the steady-state solution when the
dimensionless time satisfies the criterion Fo > 1.46/62.

4.14 SPREADING RESISTANCE OF AN ECCENTRIC RECTANGULAR
AREA ON A RECTANGULAR PLATE WITH COOLING

A rectangular isoflux area with side lengths ¢ and d lies in the surface z = 0 of
a rectangular plate with side dimensions a and b. The plate thickness is #; and its
thermal conductivity is k;. The top surface outside the source area is adiabatic, and
all sides are adiabatic. The bottom surface at z = ¢, is cooled by a fluid or a heat sink
that is in contact with the entire surface. In either case the heat transfer coefficient is
denoted as h and is assumed to be uniform. The origin of the Cartesian coordinate
system (x,y,z) is located in the lower left corner. The system is shown in Fig. 4.14.

QIA,

Al
) f,

A
S
yc 2
v
xC
< u >

g

Figure4.14 Isotropic plate with an eccentric rectangular heat source. (From Muzychka et al.,
2000.)
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The temperature rise of points in the plate surface z = 0 is given by the relationship
0(x,y,z) = Ao + Boz

[e ]
+ Z cos hx (A cosh \z + Bj sinh A7)
m=1
[o¢]

+ Z c0sdy(A; coshdz + B, sinh 8z)

n=1

o oo
+ Z Z cos hx cos dy(AzcoshPBz + B3sinhBz) (4.126)

m=1 n=1

The Fourier coefficients are obtained by means of the following relationships:

O (t 1 0
Ag= = (D42 d By=— 4.127
0T b (lq ty) e B=Er (4.127)

20 [sin (E<ten,,) — sin (Ee=n,,
200 (255,) —sin (255, .
abcky M2 d(hm)

20 [sin (2<45,) — sin (223,
A o [sin (£578,) — sin (%58, ] @129

abcky 82¢:(3,)

160 cos(hy X.) sin (3 hnc) cos(8,Y) sin(38,d)
Ay = (4.130)
abedky By MnSu ® By, 1)

The other Fourier coefficients are obtained by the relationship
B; = — 0 (0 A; i=1,273 (4.131)

where ¢ is replaced by A\, 8,, or B,, ,, as required. The eigenvalues are

)\mzﬂ ang an:\/)‘r2n+8121
a b '

The mean temperature rise of the source area is given by the relationship

_ ad cos(h, X)) sin (%)\mc) > cos(8,Y,)sin (%Snd)
e—GID"+_2ZAm )\.mC +22An End

m=1 n=1

o X cos(3,Y,) sin (18,d) cos(hy X,) sin ($hc)
+4 Z Z A 2 o d 2 (4.132)

m=1 n=1

where the one-dimensional temperature rise is
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g2 (n 1
Bip == <k1+h> (K) (4.133)

for an isotropic plate. The total resistance is related to the spreading resistance and
the one-dimensional resistance:

0
Riota = 5 = Rip + Ry (K/'W) (4.134)
where
Rip= (4] (K/W) (4.135)
= \k " h :

4.14.1 Single Eccentric Area on a Compound Rectangular Plate

If a single source is on the top surface of a compound rectangular plate that consists
of two layers having thicknesses #; and #, and thermal conductivities k; and k;, as
shown in Fig. 4.15, the results are identical except for the system parameter ¢, which
now is given by the relationship

(oce4§’1 _ e2§f1) + Q(62§(211+f2) _ anE(fl-‘rtz))

(0L€4§t1 + gZUI) + Q(e2§(2t1+t2) + qe2® +t2)) (4.136)

@) =

where

C+h/k; 11—«
o=——— and o=
C—h/ky 14+«

(4.137)

withk = ky/k; and ¢ is replaced by \,,, 8,,, or B, ,, accordingly. The one-dimensional
temperature rise in this case is

QOIA
ky 4
k t
2 7 2
A N T N T
h, Tf

Figure 4.15 Compound plate with an eccentric rectangular heat source. (From Muzychka
et al., 2000.)
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= O(n 1n 1
Op=—|[—+—+— K 4.138
D ab<k1+k2+h) (K) ( )

4.14.2 Multiple Rectangular Heat Sources on an Isotropic Plate

The multiple rectangular sources on an isotropic plate are shown in Fig. 4.16. The sur-
face temperature by superposition is given by the following relationship (Muzychka
et al., 2000):

N
T(xy,0)=Tr =Y 0;(xy,00 (K (4.139)

i=1

where 6; is the temperature excess for each heat source by itself and N > 2 is the
number of discrete heat sources. The temperature rise is given by

4l
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X X2
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Figure 4.16 Isotropic plate with two eccentric rectangular heat sources. (From Muzychka et
al., 2000.)
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oo oo
0 (x,y,0) = Al + Z Al coshx + Z Al cosdy

m=1 n=1
o0 o0
+3 > Al coshx cos by (4.140)
m=1 n=1

where ¢ and A = 0)p are defined above for the isotropic and compound plates.
The mean temperature of an arbitrary rectangular area of dimensions ¢; and d;,
located at X, ; and Y. ;, may be obtained by integrating over the region A; = c;d;:

N
_ 1
6 = X//e,» dAj = Z//ZO[(x,y,O) dA; (4.141)
J J i=1
Aj Aj

which may be written as

] =ZAL//e(xy 0) dA; _Ze» (4.142)

P J
i=1 A;

The mean temperature of the jth heat source is given by

N
=38, (4.143)
i=1
where
_ ‘ =, cos(hyXe, ) sin (3 >, cos(3,Y,, ;) sin (18,d))
0= Al 423 Al Tt ) 4 Al SELe R
o 2D A - 22 )
m=1 n=1
© X cos(3,Y. ) sin (£8,d:) cosOu, X i) sin (2 0,,c;
4ZZA1mn ( ’J) (2 J) ( 71) (2 J) (4144)
m=1 n=1 )\ijSndj

Equation (4.143) represents the sum of the effects of all sources over an arbitrary
location. Equation (4.143) is evaluated over the region of interest c;, d; located at
X j, Y j, with the coefficients A}), Ajn, A , and Aiml evaluated at each of the ith
source parameters.

4.15 JOINT RESISTANCES OF NONCONFORMING SMOOTH SOLIDS

The elastoconstriction and elastogap resistance models (Yovanovich, 1986) are based
on the Boussinesq point load model (Timoshenko and Goodier, 1970) and the Hertz
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Figure 4.17 Joint formed by elastic contact of a sphere or a cylinder with a smooth flat
surface. (From Kitscha, 1982.)

distributed-load model (Hertz, 1896; Timoshenko and Goodier, 1970; Walowit and
Anno, 1975; Johnson, 1985). Both models assume that bodies have “smooth” sur-
faces, are perfectly elastic, and that the applied load is static and normal to the plane
of the contact area. In the general case the contact area will be elliptical, having
semimajor and semiminor axes a and b, respectively. These dimensions are much
smaller than the dimensions of the contacting bodies. The circular contact area pro-
duced when two spheres or a sphere and a flat are in contact are two special cases
of the elliptical contact. Also, the rectangular contact area, produced when two ideal
circular cylinders are in line contact or an ideal cylinder and a flat are in contact, are
special cases of the elliptical contact area.

Figure 4.17 shows the contact between two elastic bodies having physical proper-
ties (Young’s modulus and Poisson’s ratio): E, v; and E3, v,, respectively. One body
is a smooth flat and the other body may be a sphere or a circular cylinder having ra-
dius D/2. The contact 2a is the diameter of a circular contact area for the sphere/flat
contact and the width of the contact strip for the cylinder/flat contact. A gap is formed
adjacent to the contact area, and its local thickness is characterized by 8.

Heat transfer across the joint can take place by conduction by means of the contact
area, conduction through the substance in the gap, and by radiation across the gap if
the substance is “transparent,” or by radiation if the contact is formed in a vacuum.
The thermal joint resistance model presented below was given by Yovanovich (1971,
1986). It was developed for the elastic contact of paraboloids (i.e., the elastic contact
formed by a ball and the inner and outer races of an instrument bearing).

4.15.1 Point Contact Model

Semiaxes of an Elliptical Contact Area The general shape of the contact area
is an ellipse with semiaxes a and b and area A = mab. The semiaxes are given by
the relationships (Timoshenko and Goodier, 1970)
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3FA 73 3FA V3
a=m —2 and b=n|——— (4.145)
(A+ B) 2(A+ B)

where F is the total normal load acting on the contact area, and A is a physical
parameter defined by

1/1=v 1—v?
A== ( A —‘)2> (m2/N) (4.146)
2

when dissimilar materials form the contact. The physical parameters are Young’s
modulus E; and E, and Poisson’s ratio v; and v,. The geometric parameters A and
B are related to the radii of curvature of the two contacting solids (Timoshenko and
Goodier, 1970):

1 1 1 1

2A+B)=—+—+—+—
P Py P2 M

1
=— (4.147)
p
where the local radii of curvature of the contacting solids are denoted as py, p, 0,
and p5. The second relationship between A and B is

{(1 1)2 <1 1)2
2B-A)=|{——=)+(—-—
P10 P2 P2

11 11 12
+2(=—-=)(—=——=)cos 20 (4.148)
P1 P P2 [

The parameter ¢ is the angle between the principal planes that pass through the
contacting solids.

The dimensionless parameters m and n that appear in the equations for the semi-
axes are called the Hertz elastic parameters. They are determined by means of the
following Hertz relationships (Timoshenko and Goodier, 1970):

N /3 1/3
m=|:%E(k):| ad o= 2epw)| (4.149)

n k2

where E (k’) is the complete elliptic integral of the second kind of modulus &’
(Abramowitz and Stegun, 1965; Byrd and Friedman, 1971), and

b
K=vV1—k with k=2=2<1 (4.150)
m a
The additional parameters k and &’ are solutions of the transcendental equation (Tim-
oshenko and Goodier, 1970):
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2 ’ /
B _ (/K)EWK) - K(K) (4.151)
A K (k') — E(k')

where K (k") and E (k') are complete elliptic integrals of the first and second kind of
modulus k’.

The Hertz solution requires the calculation of k, the ellipticity, K (k’), and E (k').
This requires a numerical solution of the transcendental equation that relates k, K (k'),
and E (k') to the local geometry of the contacting solids through the geometric pa-
rameters A and B. This is usually accomplished by an iterative numerical procedure.

To this end, additional geometric parameters have been defined (Timoshenko and
Goodier, 1970):

B—-A A

cost=—— and o=
B

<1 (4.152)
+A B

Computed values of m and n, or m/n and n, are presented with T or w as the
independent parameter. Table 4.15 shows how k, m, and n depend on the parameter
o over a range of values that should cover most practical contact problems. The
parameter k' may be computed accurately and efficiently by means of the Newton—
Raphson iteration method applied to the following relationships (Yovanovich, 1986):

=k +— (4.153)

TABLE 4.15 Hertz Contact Parameters and Elastoconstriction Parameter

) k m n v
0.001 0.0147 14.316 0.2109 0.2492
0.002 0.0218 11.036 0.2403 0.3008
0.004 0.0323 8.483 0.2743 0.3616
0.006 0.0408 7.262 0.2966 0.4020
0.008 0.0483 6.499 0.3137 0.4329
0.010 0.0550 5.961 0.3277 0.4581
0.020 0.0828 4.544 0.3765 0.5438
0.040 0.1259 3.452 0.4345 0.6397
0.060 0.1615 2.935 0.4740 0.6994
0.080 0.1932 2.615 0.5051 0.7426
0.100 0.2223 2.391 0.5313 0.7761
0.200 0.3460 1.813 0.6273 0.8757
0.300 0.4504 1.547 0.6969 0.9261
0.400 0.5441 1.386 0.7544 0.9557
0.500 0.6306 1.276 0.8045 0.9741
0.600 0.7117 1.1939 0.8497 0.9857
0.700 0.7885 1.1301 0.8911 0.9930
0.800 0.8618 1.0787 0.9296 0.9972
0.900 0.9322 1.0361 0.9658 0.9994

1.000 1.0000 1.0000 1.0000 1.0000
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where
n_ 2E®K) (5 A\ 4 A
Nk =k ) (k + B) k (1+ B) (4.154)
D) = B K'k? 2k’A Akzk’ 4.155
()_K(k’) “s) T (4.155)

If the initial guess for £’ is based on the following correlation of the results given in
Table 4.15, the convergence will occur within two to three iterations:

A\ 06135 212
K = 1—[0.9446(5) ] (4.156)

Polynomial approximations of the complete elliptic integrals (Abramowitz and Ste-
gun, 1965) may be used to evaluate them with an absolute error less than 10~ over
the full range of k'.

4.15.2 Local Gap Thickness

The local gap thickness is required for the elastogap resistance model developed by
Yovanovich (1986). The general relationship for the gap thickness can be determined
by means of the following surface displacements (Johnson, 1985; Timoshenko and
Goodier, 1970):

d(x,y) =89+ w(x,y) — wo (m) (4.157)

where 8¢ (x, y) is the local gap thickness under zero load conditions, w(x, y) is the total
local displacement of the surfaces of the bodies outside the loaded area, and wy is the
approach of the contact bodies due to loading.

The total local displacement of the two bodies is given by

3FA [ x? y? dt
—_— 1- — (4.158)
21 J, a’?+t  b24t) [(@®+ )% +1)e]/?
where W is the positive root of the equation
X2 y?
—+ =1 4.159
a’+p + b2+ ( )
When p > 0, the point of interest lies outside the elliptical contact area:
X2 y?
) + i 1 (4.160)

When . = 0, the point of interest lies inside the contact area, and when x = y =
0, w(0, 0) = wy, the total approach of the contacting bodies is



JOINT RESISTANCES OF NONCONFORMING SMOOTH SOLIDS 323

_ 3FA /”" dt
=50 ) @+ + o2
_ 3FA

a

K (k') (m) 4.161)

The relationships for the semiaxes and the local gap thickness are used in the
following subsections to develop the general relationships for the contact and gap
resistances.

4.15.3 Contact Resistance of Isothermal Elliptical Contact Areas

The general spreading—constriction resistance model, as proposed by Yovanovich
(1971, 1986), is based on the assumption that both bodies forming an elliptical contact
area can be taken to be a conducting half-space. This approximation of actual bodies
is reasonable because the dimensions of the contact area are very small relative to the
characteristic dimensions of the contacting bodies.

If the free (noncontacting) surfaces of the contacting bodies are adiabatic, the total
ellipsoidal spreading—constriction resistance of an isothermal elliptical contact area
with a > b is (Yovanovich, 1971, 1986)

R, = L4
2kga

(K/W) (4.162)

where a is the semimajor axis, k; is the harmonic mean thermal conductivity of the
joint,

2k1ky
Cktk

(W/m - K) (4.163)

s

and Vs is the spreading/constriction parameter of the isothermal elliptical contact area
developed in the section for spreading resistance of an isothermal elliptical area on
an isotropic half-space:

U= %K(k’) (4.164)

in which K (k) is the complete elliptic integral of the first kind of modulus £’ and is

related to the semiaxes
12
b2
a

The complete elliptic integral can be computed accurately by means of accurate
polynomial approximations and by computer algebra systems. This important special
function can also be approximated by means of the following simple relationships:
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4a
In — 0<k<0.1736

K(K) = (4.165)

27
(1 + /b/a)?

These approximations have a maximum error less than 0.8%, which occurs at k =
0.1736. The ellipsoidal spreading—constriction parameter approaches the value of 1
when a = b, the circular contact area.

When the results of the Hertz elastic deformation analysis are substituted into
the results of the ellipsoidal constriction analysis, one obtains the elastoconstriction
resistance relationship developed by Yovanovich (1971, 1986):

0.1736 <k <1

20 _

ky(4F Ap*)'3R, = U (4.166)
T

where the effective radius of the ellipsoidal contact is defined as p* = [2(A + B)]~.
The left-hand side is a dimensionless group consisting of the known total mechanical
load F, the effective thermal conductivity k,; of the joint, the physical parameter
A, and the isothermal elliptical spreading/constriction resistance R.. The right-hand
side is defined to be {*, which is called the thermal elastoconstriction parameter
(Yovanovich, 1971, 1986). Typical values of {* for a range of values of w are given
in Table 4.15. The elastoconstriction parameter * — 1 when k = b/a = 1, the case
of the circular contact area.

4.15.4 Elastogap Resistance Model

The thermal resistance of the gas-filled gap depends on three local quantities: the local
gap thickness, thermal conductivity of the gas, and temperature difference between
the bounding solid surfaces. The gap model is based on the subdivision of the gap
into elemental heat flow channels (flux tubes) having isothermal upper and lower
boundaries and adiabatic sides (Yovanovich and Kitscha, 1974). The heat flow lines
in each channel (tube) are assumed to be straight and perpendicular to the plane of
contact.

If the local effective gas conductivity kg (x,y) in each elemental channel is assumed
to be uniform across the local gap thickness 8(x,y), the differential gap heat flow
rate is

— kg(xvy) ATg(-xvy)

Qs 3(x,y)

dx dy (W) (4.167)

The total gap heat flow rate is given by the double integral Q, = [ A dQg, where
the integration is performed over the entire effective gap area A,.

The thermal resistance of the gap, R,, is defined in terms of the overall joint
temperature drop AT; (Yovanovich and Kitscha, 1974):
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kg (x,y) AT,(x,y)
_g /f 3(x,y) AT; dAg  (W/K) (4.168)

The local gap thickness in the general case of two bodies in elastic contact forming
an elliptical contact area is given above.

The local effective gas conductivity is based on a model for the effective thermal
conductivity of a gaseous layer bounded by two infinite isothermal parallel plates.
Therefore, for each heat flow channel (tube) the effective thermal conductivity is
approximated by the relation (Yovanovich and Kitscha, 1974)

_ kg’oo _ .
ke(x,y) = T aBA Gy (W/m - K) (4.169)

where k, o is the gas conductivity under continuum conditions at STP. The accom-
modation parameter « is defined as

2—a; 2—ods
4 (4.170)

o =
03] 2%}

where a; and o, are the accommodation coefficients at the solid—gas interfaces (Wied-
mann and Trumpler, 1946; Hartnett, 1961; Wachman, 1962; Thomas, 1967; Kitscha
and Yovanovich, 1975; Madhusudana, 1975, 1996; Semyonov et al., 1984; Wesley
and Yovanovich, 1986; Song and Yovanovich, 1987; Song, 1988; Song et al., 1992a,
1993b). The fluid property parameter § is defined by

2y

= S 4.171)

where y is the ratio of the specific heats and Pr is the Prandtl number. The mean free
path A of the gas molecules is given in terms of A o, the mean free path at STP, as
follows:

Tg Pg,oo

A=A, p—
T Py

(m) 4.172)

Two models for determining the local temperature difference, AT, (x,y), are proposed
(Yovanovich and Kitscha, 1974). In the first model it is assumed that the bounding
solid surfaces are isothermal at their respective contact temperatures; hence

ATy(x,y) = AT; (K) (4.173)
This is called the thermally decoupled model (Yovanovich and Kitscha, 1974), since

it assumes that the surface temperature at the solid—gas interface is independent of
the temperature field within each solid.



326 THERMAL SPREADING AND CONTACT RESISTANCES

In the second model (Yovanovich and Kitscha, 1974), it is assumed that the tem-
perature distribution of the solid—gas interface is induced by conduction through the
solid—solid contact, under vacuum conditions. This temperature distribution is ap-
proximated by the temperature distribution immediately below the surface of an in-
sulated half-space that receives heat from an isothermal elliptical contact. Solving for
this temperature distribution, using ellipsoidal coordinates it was found that

ATg(xa)’) _ _ F(k,7 ll})
AT, K (k")

4.174)

where F (k’, ) is the incomplete elliptic integral of the first kind of modulus k&’ and
amplitude angle | (Abramowitz and Stegun, 1965; Byrd and Friedman, 1971). The
modulus &’ is given above and the amplitude angle is

¥ = sin~! @ \" (4.175)
= Sin .
a+w

where the parameter p is defined above. It ranges between i = 0, the edge of the
elliptical contact area, to L = 00, the distant points within the half-space. Since the
solid—gas interface temperature is coupled to the interior temperature distribution, it
is called the coupled half-space model temperature drop.

The general elastogap model has not been solved. Two special cases of the general
model have been examined. They are the sphere-flat contact, studied by Yovanovich
and Kitscha (1974) and Kitscha and Yovanovich (1975), and the cylinder-flat contact,
studied by McGee et al. (1985). The two special cases are discussed below.

4.15.5 Joint Radiative Resistance

If the joint is in a vacuum, or the gap is filled with a transparent substance such as dry
air, there is heat transfer across the gap by radiation. It is difficult to develop a general
relationship that would be applicable for all point contact problems because radiation
heat transfer occurs in a complex enclosure that consists of at least three nonisother-
mal convex surfaces. The two contacting surfaces are usually metallic, and the third
surface forming the enclosure is frequently a reradiating surface such as insulation.

Yovanovich and Kitscha (1974) and Kitscha and Yovanovich (1975) examined an
enclosure that was formed by the contact of a metallic hemisphere and a metallic
circular disk of diameter D. The third boundary of the enclosure was a nonmetallic
circular cylinder of diameter D and height D /2. The metallic surfaces were assumed
to be isothermal at temperatures 77 and 7, with 77 > T5. These temperatures corre-
spond to the extrapolated temperatures from temperatures measured on both sides of
the joint. The joint temperature was defined as 7; = (17 + 7,)/2. The dimensionless
radiation resistance was found to have the relationship

ke (l—¢ 1-
Dk,R, = ( R 1.103) (4.176)

J'chTj3 € 2¢,
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where 6 = 5.67 x 10~® W/m? . K* is the Stefan-Boltzmann constant, €; and ¢ are the
emissivities of the hemisphere and disk, respectively, and k; is the effective thermal
conductivity of the joint.

4.15.6 Joint Resistance of Sphere—Flat Contact

The contact, gap, radiative, and joint resistances of the sphere—flat contact shown in
Fig. 4.17 are presented here. The contact radius a is much smaller than the sphere
diameter D. Assuming an isothermal contact area, the general elastoconstriction
resistance model (Yovanovich, 1971, 1986; Yovanovich and Kitscha, 1974), becomes

1

R, =
2ksa

(K/'w) 4.177)

where k; = 2kiky/(ky + k) is the harmonic mean thermal conductivity of the
contact, and the contact radius is obtained from the Hertz elastic model (Timoshenko

and Goodier, 1970):
2a _ (3FA\"7" @.178)
D \ D? '
where F is the mechanical load at the contact and A is the joint physical parameter
defined above.
The general-coupled elastogap resistance model for point contacts reduces, for

the sphere—flat contact, to (Yovanovich and Kitscha, 1974; Kitscha and Yovanovich
1975; Yovanovich, 1986):

1 D
Z=1 kgolg p (W/K) (4.179)
8
where L = D/2a is the relative contact size. The gap integral for point contacts
proposed by Yovanovich and Kitscha (1974) and Yovanovich (1975) is defined as
Lox tan=' V/x2 — 1
Iy, = dx (4.180)
1 2/D+2M/D

The local gap thickness 3 is obtained from the relationship
28 x\2T7?
L [1 - (—) ]
D L
1 1
[(2 —xH)sin™! — +/x2 - 1] -5 (4.181)
X

+ nl?

where x = r/a and 1 < x < L. The gap gas rarefaction parameter is defined as
M = aBA (m) (4.182)

where the gas parameters a, 8, and I" are as defined above.
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Contacts in aVacuum The joint resistance for a sphere—flat contact in a vacuum
is (Yovanovich and Kitscha, 1974; Kitscha and Yovanovich, 1975)

1 1 1
X; =X + R (W/K) (4.183)
The models proposed were verified by experiments conducted by Kitscha (1982). The
test conditions were: sphere diameter D = 25.4 mm; vacuum pressure P, = 106
torr; mean interface temperature range 316 < 7,, < 321 K; harmonic mean thermal
conductivity of sphere-flat contact k; = 51.5 W/(m - K); emissivities of very smooth
sphere and lapped flat (rms roughnessiso = 0.13 wum) €; = 0.2 and ¢, = 0.8, respec-
tively; elastic properties of sphere and flat £y = E; = 206 GPa and v; = v, = 0.3.

The dimensionless joint resistance is given by the relationship

— =t — (4.184)
where

i i i} 300\ °
R; = DkR;  RI=DkR.=L  Ri=1415("~ (4.185)

m

The model and vacuum data are compared for a load range in Table 4.16. The agree-
ment between the joint resistance model and the data is excellent over the full range
of tests.

Effect of Gas Pressure on Joint Resistance According to the Model of
Yovanovich and Kitscha (1974), the dimensionless joint resistance with a gas in the

gap is given by

— ==t —+ = (4.186)

TABLE 4.16 Dimensionless Load, Constriction, Radiative, and Joint Resistances

F L T R R;f RJ’.k
(N) D/2a (K) Model Model Test
16.0 115.1 321 1155 104.7 107.0
22.2 103.2 321 1155 94.7 99.4
55.6 76.0 321 1155 71.3 70.9
87.2 65.4 320 1164 61.9 61.9
195.7 50.0 319 1177 48.0 48.8
266.9 45.1 318 1188 434 42.6
467.0 37.4 316 1211 36.4 35.4

Source: Kitscha (1982).
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where

. kyL?
R; = Dk;Ry = ——— (4.187)

kg,oolg,p

The joint model for the sphere—flat contact is compared against data obtained
for the following test conditions: sphere diameter D = 25.4 mm; load is 16 N;
dimensionless load L = 115.1; mean interface temperature range 309 < 7,, < 321
K; harmonic mean thermal conductivity of sphere—flat contact k, = 51.5 W/m - K);
emissivities of smooth sphere and lapped flat are ; = 0.2 and €, = 0.8, respectively.

The load was fixed such that L = 115.1 for all tests, while the air pressure was
varied from 400 mmHg down to a vacuum. The dimensionless resistances are given
in Table 4.17. It can be seen that the dimensionless radiative resistance was relatively
large with respect to the dimensionless gap and contact resistances. The dimension-
less gap resistance values varied greatly with the gas pressure. The agreement be-
tween the joint resistance model and the data is very good for all test points.

4.15.7 Joint Resistance of a Sphere and a Layered Substrate

Figure 4.18 shows three joints: contact between a hemisphere and a substrate, contact
between a hemisphere and a layer of finite thickness bounded to a substrate, and
contact between a hemisphere and a very thick layer where 7 /a > 1.

In the general case, contact is between an elastic hemisphere of radius p and elastic
properties: E3, v3 and an elastic layer of thickness ¢ and elastic properties: Ej, vy,
which is bonded to an elastic substrate of elastic properties: E,, v,. The axial load is
F.Itis assumed that E| < E, for layers that are less rigid than the substrate.

The contact radius a is much smaller than the dimensions of the hemisphere and
the substrate. The solution for arbitrary layer thickness is complex because the contact
radius depends on several parameters [i.e., a = f(F,p,t, E;,v;),i = 1,2, 3]. The
contact radius lies in the range ag < a < aj, where ag corresponds to the very thin

TABLE 4.17 Effect of Gas Pressure on Gap and Joint Resistances for Air

T P, R; R! Rji" R.;‘

(K) (mmHg) Model Model Model Test
309 400.0 77.0 1295 44.5 46.8
310 100.0 87.6 1282 479 49.6
311 40.0 97.4 1270 50.7 52.3
316 4.4 138.3 1211 59.7 59.0
318 1.8 168.9 1188 64.7 65.7
321 0.6 231.3 1155 72.1 73.1
322 0.5 245.9 1144 73.4 74.3
325 0.2 352.8 1113 80.5 80.3
321 vacuum 0 1155 104.7 107.0

Source: Kitscha (1982).
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0 E3, vs 0 E3, vs 0 E3, vs
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Figure 4.18 Contact between a hemisphere and a layer on a substrate: (@) hemisphere and
substrate; (b) hemisphere and layer of finite thickness; (c) hemisphere and very thick layer.
(From Stevanovic et al., 2001.)

layer limit, t/a — O (Fig. 4.18a) and a;, corresponds to the very thick layer limit,
t/a — oo (Fig. 4.18¢).

For the general case, a contact in a vacuum, and if there is negligible radiation heat
transfer across the gap, the joint resistance is equal to the contact resistance, which
is equal to the sum of the spreading—constriction resistances in the hemisphere and
layer—substrate, respectively.

The joint resistance is given by Fisher (1985), Fisher and Yovanovich (1989), and
Stevanovi¢ et al. (2001, 2002)

1
4k3a 4](2(1

R; =R, (K/'w) (4.188)
where a is the contact radius. The first term on the right-hand side represents the con-
striction resistance in the hemisphere, and Vs, is the spreading resistance parameter
in the layer—substrate. The thermal conductivities of the hemisphere and the substrate
appear in the first and second terms, respectively. The layer—substrate spreading resis-
tance parameter depends on two dimensionless parameters: T = t/a and k = ki / k.
This parameter was presented above under spreading resistance in a layer on a half-
space. To calculate the joint resistance the contact radius must be found.

A special case arises when the rigidity of the layer is much smaller than the rigidity
of the hemisphere and the layer. This corresponds to “soft” metallic layers such as
indium, lead, and tin; or nonmetallic layers such as rubber or elastomers. In this case,
since E; < E; and E; K Es3, the hemisphere and substrate may be modeled as
perfectly rigid while the layer deforms elastically.

The dimensionless numerical values for a/a; obtained from the elastic contact
model of Chen and Engel (1972) according to Stevanovi¢ et al. (2001) are plotted
in Fig. 4.19 for a wide range of relative layer thickness Tt = #/a and for a range of
values of the layer Young’s modulus E;. The contact model, which is represented by
the correlation equation of the numerical values, is (Stevanovié et al., 2002)
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Figure 4.19 Comparison of data and model for contact between a rigid hemisphere and an
elastic layer on a rigid substrate. (From Stevanovi¢ et al., 2001.)

L 1 ey expleit®) (4.189)
ar,
with correlation coefficients: ¢; = —1.73, ¢, = 0.734, and ¢3 = 1.04. The reference
contact radius is a, which corresponds to the very thick layer limit given by
3 Fp\'”? t
ap = 220 for — - o0 (4.190)
4 E13 a

The maximum difference between the correlation equation and the numerical
values obtained from the model of Chen and Engel (1972) is approximately 1.9%
for t = 0.02. The following relationship, based on the Newton—Raphson method, is
recommended for calculation of the contact radius (Stevanovié et al., 2001):

a, —ar{l — 1.04 exp[—1.73(t/a,)* 73]}
1+ 1.321(ar /as)(t/a,)?73* exp[—1.73(t/a,)* 3]

(4.191)

Apy1 =
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If the first guess is ap = ar, fewer than six iterations are required to give eight-digit
accuracy.

In the general case where the hemisphere, layer, and substrate are elastic, the
contact radius lies in the range as < a < q; for E; < E;. The two limiting values
of a are, according to Stevanovi¢ et al. (2002),

3 Fp\”? t
as = 2ZP for— — 0
4E23 a

a= - (4.192)
3 Fp / t
ap = -— for — - o0
4E13 a

where the effective Young’s modulus for the two limits are defined as

Eoe 1—\)%4_1—\)% -
=% i

The dimensionless contact radius and dimensionless layer thickness were defined
as (Stevanovi¢ et al., 2002)

1 1

B (L2212 403
23 — E2 E3 .

a—ds
a® = where 0 < a* < 1 (4.194)
ap —das
1/3 1/3
t E
= (-J&) where o = 2& = (ﬁ) (4.195)
a as Ei;

The dimensionless numerical values obtained from the full model of Chen and
Engel (1972) for values of a in the range 1.136 < a < 2.037 are shown in Fig. 4.20.
The correlation equation is (Stevanovié et al., 2002)

_ /4
7S | _exp [—nl/“ <i&> } (4.196)
a

ap —das

Since the unknown contact radius a appears on both sides, the numerical solution
of the correlation equation requires an iterative method (Newton—Raphson method)
to find its root. For all metal combinations, the following solution is recommended
(Stevanovic et al., 2002):

/4
a=as+ (ap — as) {1 —exp |:—n1/4 <@> } } (4.197)

ao

where

/4
ap = as + (a; — as) {1 —exp [—nl/“ <M> ” (4.198)

as +ayg,
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Figure 420 Comparison of the data and model for elastic contact between a hemisphere and
a layer on a substrate. (From Stevanovic et al., 2002.)

4.15.8 Joint Resistance of Elastic-Plastic Contacts of Hemispheres
and Flat Surfaces in a Vacuum

A model is available for calculating the joint resistance of an elastic—plastic contact
of a portion of a hemisphere whose radius of curvature is p attached to a cylinder
whose radius is b; and a cylindrical flat whose radius is b,. The elastic properties of
the hemisphere are E|, vy, and the elastic properties of the flat are E;, v,. The thermal
conductivities are k; and k;, respectively.

If the contact strain is very small, the contact is elastic and the Hertz model can
be used to predict the elastic contact radius denoted as a,. On the other hand, if
the contact strain is very large, plastic deformation may occur in the flat, which is
assumed to be fully work hardened, and the plastic contact radius is denoted a,.
Between the fully elastic and fully plastic contact regions there is a transition called
the elastic—plastic contact region, which is very difficult to model. In the region the
contact radius is denoted as a,,, the elastic—plastic contact radius. The relationship
between a,, a,, and a,, is a, < a,, < a,.
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The elastic—plastic radius is related to the elastic and plastic contact radii by means
of the composite model based on the method of Churchill and Usagi (1972) for
combining asymptotes (Sridhar and Yovanovich, 1994):

agp = (@ +a)""  (m) (4.199)
where n is the combination parameter, which is found empirically to have the value

n = 5. The elastic and plastic contact radii may be obtained from the relationships
(Sridhar and Yovanovich, 1994)

3 Fp\!/ F o2
a, = <Z E) and a, = <nHB> (m) (4.200)
with the effective modulus
L_1owi 10w ey (4.201)
_— = m .
E’ E; E,

The plastic parameter is the Brinell hardness Hp of the flat. The elastic—plastic
deformation model assumes that the hemispherical solid is harder than the flat. The
static axial load is F.

The joint resistance for a smooth hemispherical solid in elastic—plastic contact
with smooth flat is given by (Sridhar and Yovanovich, 1994)

Ro= Wi V2

= K/W 4.202
J 4kiar,  4kaae, ( ) ( )

The spreading—constriction resistance parameters for the hemisphere and flat are

1.5 1.5
U, = (1 — Cl’]—”> and U, = (1 - ‘;—"> (4.203)
1 2

Alternative Constriction Parameter for a Hemisphere The following
spreading—constriction parameter can be derived from the hemisphere solution:

U, = 1.0014 — 0.0438¢ — 4.0264¢> 4 4.968¢° (4.204)

where € = a/b;.
If the contact is in a vacuum and the radiation heat transfer across the gap is
negligible, R; = R.. Also, if by = b, = b,

a

Uy =, = (1 - 5)1'5 (4.205)

The joint and dimensionless joint resistances for this case become
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(I —a/p)'?

b (4.206)

R; = k4 and R} = 2bkR;
2k,a J

where k‘Y = 2k1k2/(k1 + kz).

Sridhar and Yovanovich (1994) compared the dimensionless joint resistance
against data obtained for contacts between a carbon steel ball and several flats of
Ni 200, carbon steel, and tool steel. The nondimensional data and the dimensionless
joint resistance model are compared in Fig. 4.21 for a range of values of the recipro-
cal contact strain b/a. The agreement between the model and the data over the entire
range 20 < b/a < 120 is very good. The points near b/a =~ 100 are in the elastic
contact region, and the points near b/a =~ 20 are close to the plastic contact region.
In between the points are in the transition region, called the elastic—plastic contact
region.

If the material of the flat work-hardens as the deformation takes place, the model
for predicting the contact radius is much more complex, as described by Sridhar and
Yovanovich (1994) and Johnson (1985). This case is not given here.

00000 Test F1 (Ni—200 flat)
oooao  Test F2 (Ni—200 flat)
aanaaan Test F3 (Ni-200 flat)
00000 TestF4 (Tool steel flat)
100 + e fre ey Test K1 (Carbon steel flat) %
Thermal constriction model

Ak d

10 1 i L 1 1 A U
10 100

bla

Figure 4.21 Comparison of the data and model for an elastic—plastic contact between a
hemisphere and a flat. (From Sridhar and Yovanovich, 1994.)
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4.15.9 Ball-Bearing Resistance

Models have been presented (Yovanovich, 1967, 1971, 1978) for calculating the
overall thermal resistance of slowly rotating instrument bearings, which consist of
many very smooth balls contained by very smooth inner and outer races. The thermal
resistance models for bearings are based on elastic contact of the balls with the inner
and outer races and spreading and constriction resistances in the balls and in the inner
and outer races. For each ball there are two elliptical contact areas, one at the inner
race and one at the outer race. The local thickness of the adjoining gap is very complex
to model. There are four spreading—constriction zones associated with each ball. The
full elastoconstriction resistance model must be used to obtain the overall thermal
resistance of the bearing. Since these are complex systems, the contact resistance
models are also complex; therefore, they are not presented here. The references above
should be consulted for the development of the contact resistance models and other
pertinent references.

4.15.10 Line Contact Models

If along smooth circular cylinder with radius of curvature p; = D, /2, length L;, and
elastic properties: E;, vi makes contact with another long smooth circular cylinder
with radius of curvature p, = D, /2, length L, and elastic properties: E;, vy, then in
general, if the axes of the cylinders are not aligned (i.e., they are crossed), an elliptical
contact area is formed with semiaxes a and b, where it is assumed that a < b. If the
cylinder axes are aligned, the contact area becomes a strip of width 2a, and the larger
axes are equal to the length of the cylinder. The general Hertz model presented may
be used to find the semiaxes and the local gap thickness if the axes are not aligned. For
aligned axes, the general equations reduce to simple relationships, which are given
below.

Contact Strip and Local Gap Thickness 1f the two cylinder axes are aligned,
the contact area is a strip of width 2a and length L, where (Timoshenko and Goodier,
1970; Walowit and Anno, 1975)

172
a=2 (fi?) (m) (4.207)

where the effective curvature is

111
-—=—+4+—  (I/m) (4.208)
p P1 P2

and the contact parameter is

1L/1—=v: 1-—1V2
A== Ly 2 2N 4.209
( E + 5 ) (m“/N) ( )
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The contact pressure is maximum along the axis of the contact strip, and it is given
by the relationship

2 F F 12
Pp=—-—= [ — (N/m?) (4.210)
Tal, 2nLipA

and the pressure distribution has the form (Timoshenko and Goodier, 1970; Walowit
and Anno, 1975)

xX\2 )
P(x) = Po,/1 — (;) for0<x<a  (N/m?) 4211)

The mean contact area pressure is

F 4P

P, = = N/m? 4212
2al, (N/m?) ( )

The normal approach of the two aligned cylinders is (Timoshenko and Goodier, 1970;
Walowit and Anno, 1975)

2F [1—=v? 4 1 1 —v2 4 1
o= [ vl(lnﬂ——)+ E"2<lnﬂ—->] (m)  (4213)

T 2 a 2

where F' = F/L is the load per unit cylinder length. The general local gap thickness
relationship is (Timoshenko and Goodier, 1970; Walowit and Anno, 1975)

1/2
»_ (V2 (g
o L? L?

+[€* — 1)'/? = cosh™'g —g> + 1]2L (4.214)
where
_r -
L_Za E_L 1<g=<L (4.215)

If a single circular cylinder of diameter D or (p; = D;/2 = D/2) is in elastic
contact with a flat (p, = 00), put p = D/2 in the relationships above.

Contact Resistance at a Line Contact The thermal contact resistance for the
very narrow contact strip of width 2a formed by the elastic contact of a long smooth
circular cylinder of diameter D and a smooth flat whose width is 2b and whose length
L isidentical to the cylinder length is given by the approximate relationship (McGee
et al., 1985)

R P -V w2 ww @26
.= n—— — n— :
nLk 2 Lk, IS}
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where the thermal conductivities of the cylinder and flat are k; and k5, respectively.
The contact parameters are €; = 2a/ D for the cylinder and €, = a/b for the flat. For
elastic contacts, 2a/D < 1 and 2a/b « 1 for most engineering applications. The
approximate relationship for R, becomes more accurate for very narrow strips.

The width of the flat relative to the cylinder diameter may be 2b > D,2b = D,
or 2b < D. McGee et al. (1985) proposed the use of the dimensionless form of the
contact resistance:

1 kg, = ks 1 /’cs1 1

Rf = LikR. = — —1n — — — 2 Iln— 4.217)
2nk;  F* 2k 2k, 4nF*
where
FA 2k k
F* = and k, = — 2 (4.218)
LD ki + ko

Gap Resistance at a Line Contact The general elastogap resistance model for
line contacts proposed by Yovanovich (1986) reduces for the circular cylinder—flat
contact to

1 _ 4aL1

== kel (WIK) (4.219)
8

where k, o is the gas thermal conductivity and the line contact elastogap integral is
defined as (Yovanovich, 1986)

2 (L h~'(&)d
I, = _/ _cosh™ (§)dE (4.220)
n ), 28/D+M/D
where
=2 - 1<e<1 (4.221)
" 2a L - - ’

This is the coupled elastogap model. Numerical integration is required to calculate
values of I ;.
The gas rarefaction parameter that appears in the gap integral is

M=afA  (m) (4.222)

where the accommodation parameter and other gas parameters are defined as

2—a  2- 2 C
fyzmR g Y, 2 (4223
o o (y+ 1D Pr C,

o =

and the molecular mean free path is

Te Poco (m) (4.224)

A=A
S Tyoo Py
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where A, o is the value of the molecular mean free path at the reference temperature
T,  and gas pressure Py o.

Joint Resistance at a Line Contact The joint resistance at a line contact,
neglecting radiation heat transfer across the gap, is

_1
= 7

7 (W/K) (4.225)

1

R
McGee et al. (1985) examined the accuracy of the contact, gap, and joint resistance
relationships for helium and argon for gas pressures between 107° torr and 1 atm.
The effect of contact load was investigated for mechanical loads between 80 and
8000 N on specimens fabricated from Keewatin tool steel, type 304 stainless steel,
and Zircaloy 4. The experimental data were compared with the model predictions,
and good agreement was obtained over a limited range of experimental parameters.
Discrepancies were observed at the very light mechanical loads due to slight amounts
of form error (crowning) along the contacting surfaces.

Joint Resistance of Nonconforming Rough Surfaces There is ample em-
pirical evidence that surfaces may not be conforming and rough, as shown in Fig. 4.1¢
and f. The surfaces may be both nonconforming and rough, as shown in Fig. 4.1b and
e, where a smooth hemispherical surface is in contact with a flat, rough surface.

If surfaces are nonconforming and rough, the joint that is formed is more complex
from the standpoint of defining the micro- and macrogeometry before load is applied,
and the definition of the micro- and macrocontacts that are formed after load is ap-
plied. The deformation of the contacting asperities may be elastic, plastic, or elastic—
plastic. The deformation of the bulk may also be elastic, plastic, or elastic—plastic.
The mode of deformation of the micro- and macrogeometry are closely connected
under conditions that are not understood today.

The thermal joint resistance of such a contact is complex because heat can cross
the joint by conduction through the microcontacts and the associated microgaps and
by conduction across the macrogap. If the temperature level of the joint is suffi-
ciently high, there may be significant radiation across the microgaps and macrogap.
Clearly, this type of joint represents complex thermal and mechanical problems that
are coupled.

Many vacuum data have been reported (Clausing and Chao, 1965; Burde, 1977;
Kitscha, 1982) that show that the presence of roughness can alter the joint resistance
of a nonconforming surface under light mechanical loads and have negligible effects
at higher loads. Also, the presence of out-of-flatness can have significant effects on
the joint resistance of a rough surface under vacuum conditions.

It is generally accepted that the joint resistance under vacuum conditions may be
modeled as the superposition of microscopic and macroscopic resistance (Clausing
and Chao, 1965; Greenwood and Tripp, 1967; Holm, 1967; Yovanovich, 1969; Burde
and Yovanovich, 1978; Lambert, 1995; Lambert and Fletcher, 1997). The joint resis-
tance can be modeled as
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R; = Rpic + Rmac (K/'W) (4.226)

The microscopic resistance is given by the relationship

Rmic — \l’mic
2k5Nas

(K/W) (4.227)

where ;. is the average spreading—constriction resistance parameter, N is the num-
ber of microcontacts that are distribution in some complex manner over the contour
area of radius a; and ag represents some average microcontact spot radius, and the
harmonic mean thermal conductivity of the joint is k; = 2k 1k, / (k) + k3).

The macroscopic resistance is given by the relationship

_ quac

mac —
ZkSaL

(K/W) (4.228)

where . is the spreading—constriction resistance parameter for the contour area of
radius ay .

The mechanical model should be capable of predicting the contact parameters:
as, ar,and N. These parameters are also required for the determination of the thermal
spreading—constriction parameters i and Wac.

At this time there is no simple mechanical model available for prediction of the ge-
ometric parameters required in microscopic and macroscopic resistance relationships.
There are publications (e.g., Greenwood and Tripp, 1967; Holm, 1967; Burde and
Yovanovich, 1978; Johnson, 1985; Lambert and Fletcher, 1997; Marotta and Fletcher,
2001) that deal with various aspects of this very complex problem.

4.16 CONFORMING ROUGH SURFACE MODELS

There are models for predicting contact, gap, and joint conductances between con-
forming (nominally flat) rough surfaces developed by Greenwood and Williamson
(1966), Greenwood (1967), Greenwood and Tripp (1970), Cooper et al. (1969), Mi-
kic (1974), Sayles and Thomas (1976), Yovanovich (1982), and DeVaal (1988).

The three mechanical models—elastic, plastic, or elastic—plastic deformation of
the contacting asperities—are based on the assumptions that the surface asperities
have Gaussian height distributions about some mean plane passing through each
surface and that the surface asperities are distributed randomly over the apparent
contact area A,. Figure 4.22 shows a very small portion of a typical joint formed
between two nominally flat rough surfaces under a mechanical load.

Each surface has a mean plane, and the distance between them, denoted as Y,
is related to the effective surface roughness, the apparent contact pressure, and the
plastic or elastic physical properties of the contacting asperities.

A very important surface roughness parameter is the surface roughness: either the
rms (root-mean-square) roughness or the CLA (centerline-average) roughness, which
are defined as (Whitehouse and Archard, 1970; Onions and Archard, 1973; Thomas,
1982)
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1 L
CLA roughness = I / |y(x)| dx (m) (4.229)
0

1 L
rms roughness = 7 / y2(x) dx (m) (4.230)
\ 0

where y(x) is the distance of points in the surface from the mean plane (Fig. 4.22)
and L is the length of a trace that contains a sufficient number of asperities. For
Gaussian asperity heights with respect to the mean plane, these two measures of
surface roughness are related (Mikic and Rohsenow, 1966):

cz\/E~CLA
2

A second very important surface roughness parameter is the absolute mean asperity
slope, which is defined as (Cooper et al., 1969; Mikic and Rohsenow, 1966; and
DeVaal et al. 1987).

_ /2 2 —\/m2 2
o= o] t o3 m= m1+m2

Figure 4.22 Typical joint between conforming rough surfaces. (From Hegazy, 1985.)
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1 L
m:—f
L Jo

The effective rms surface roughness and the effective absolute mean asperity slope
for a typical joint formed by two conforming rough surfaces are defined as (Cooper
et al., 1969; Mikic, 1974; Yovanovich, 1982)

OZ,/G%—FG% and m:‘/m%+m§ (4.232)

Antonetti et al. (1991) reported approximate relationships for m as a function of o for
several metal surfaces that were bead-blasted.

The three deformation models (elastic, plastic, or elastic—plastic) give relation-
ships for three important geometric parameters of the joint: the relative real contact
area A, /A,, the contact spot density n, and the mean contact spot radius a in terms
of the relative mean plane separation defined as A = Y /0. The mean plane separation
Y and the effective surface roughness are illustrated in Fig. 4.22 for the joint formed
by the mechanical contact of two nominally flat rough surfaces.

The models differ in the mode of deformation of the contacting asperities. The
three modes of deformation are plastic deformation of the softer contacting asperities,
elastic deformation of all contacting asperities, and elastic—plastic deformation of the
softer contacting asperities. For the three deformation models there is one thermal
contact conductance model, given as (Cooper et al., 1969; Yovanovich, 1982)

dy(x)
dx

dx (rad) (4.231)

. 2nak;
G

where 7 is the contact spot density, a is the mean contact spot radius, and the effective
thermal conductivity of the joint is

(W/m? - K) (4.233)

c

_ 2kk

= W/m - K 4.234
PR ( ) ( )

s

and the spreading/constriction parameter \{r, based on isothermal contact spots, is
approximated by

Y =10—-e for 0<e<0.3 (4.235)

where the relative contact spot size is € = /A, /A,. The geometric parameters n, a
and A, /A, are related to the relative mean plane separation A = Y /o.

4.16.1 Plastic Contact Model

The original plastic deformation model of Cooper et al. (1969) has undergone signif-
icant modifications during the past 30 years. First, a new, more accurate correlation
equation was developed by Yovanovich (1982). Then Yovanovich et al. (1982a) and
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Figure 4.23 Vickers microhardness versus indentation diagonal for four metal types. (From
Hegazy, 1985.)

Hegazy (1985) introduced the microhardness layer which appears in most worked
metals. Figures 4.23 and 4.24 show plots of measured microhardness and macrohard-
ness versus the penetration depth ¢ or the Vickers diagonal dy . These two measures of
indenter penetration are related: d,/t = 7. Figure 4.23 shows the measured Vickers
microhardness versus indentation diagonal for four metal types (Ni 200, stainless
steel 304, Zr-4 and Zr-2.5 wt % Nb). The four sets of data show the same trends:
that as the load on the indenter increases, the indentation diagonal increases and the
Vickers microhardness decreases with increasing diagonal (load). The indentation
diagonal was between 8 and 70 pm.

Figure 4.24 shows the Vickers microhardness measurements and the Brinell and
Rockwell macrohardness measurements versus indentation depth. The Brinell and
Rockwell macrohardness values are very close because they correspond to large in-
dentations, and therefore, they are a measure of the bulk hardness, which does not
change with load. According to Fig. 4.24, the penetration depths for the Vickers mi-
crohardness measurements are between 1 and 10 wm, whereas the larger penetration
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Figure 4.24 Vickers, Brinell, and Rockwell hardness versus indentation depth for four metal
types. (From Hegazy, 1985.)

depths for the Brinell and Rockwell macrohardness measurements lie between ap-
proximately 100 and 1000 pm.

The microhardness layer may be defined by means of the Vickers microhardness
measurements, which relate the Vickers microhardness Hy to the Vickers average
indentation diagonal dy (Yovanovich et al., 1982a; Hegazy, 1985):

Hy = (Z—Z)  (GPa) (4.236)

where dj represents some convenient reference value for the average diagonal, and
c; and ¢, are the correlation coefficients. It is conventional to set dy = 1 wm. Hegazy
(1985) found that c; is closely related to the metal bulk hardness, such as the Brinell
hardness, denoted as Hpg.

The original mechanical contact model (Yovanovich et al., 1982a; Hegazy, 1985)
required an iterative procedure to calculate the appropriate microhardness for a given
surface roughness o and m, given the apparent contact pressure P and the coefficients
C] and Co.

Song and Yovanovich (1988) developed an explicit relationship for the micro-
hardness H,,, which is presented below. Recently, Sridhar and Yovanovich (1996b)
developed correlation equations between the Vickers correlation coefficients ¢; and
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¢, and Brinell hardness Hp over a wide range of metal types. These relationships are
also presented below.

Plastic Contact Geometric Parameters For plastic deformation of the con-
tacting asperities, the contact geometric parameters are obtained from the following
relationships (Cooper et al., 1969; Yovanovich, 1982):

2—; - %erfc (%) (4.237)
n= %6 (@)2 % (4.238)
a= [ 9 exp ( ) erfc < ﬁ) (4.239)

na = 4&% exp (—%) (4.240)

Correlation of Geometric Parameters

A,
=~ = exp(—0.8141 — 0.61778\ — 0.42476)% — 0.004353)\3)

2
n= (@) exp(—2.6516 4+ 0.6178% — 0.5752)% + 0.004353))
[0}

a = 2(1.156 — 0.4526) + 0.0826902 — 0.005736)3)
m

and for the relative mean plane separation

P P\ Py
A = 0.2591-0.5446 (ln —) —0.02320 <ln —) —0.0005308 <ln —) (4.241)
H, H, H,

The relative mean plane separation for plastic deformation is given by

n = /2 erfc! (2—})) (4.242)

p

where H, is the microhardness of the softer contacting asperities.

Relative Contact Pressure The appropriate microhardness may be obtained
from the relative contact pressure P/H,. For plastic deformation of the contacting
asperities, the explicit relationship is (Song and Yovanovich, 1988)

p P 1/(140.071¢,)
[ ] (4.243)

H, | ci(1.620/m)e
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where the coefficients ¢; and ¢, are obtained from Vickers microhardness tests. The
Vickers microhardness coefficients are related to the Brinell hardness for a wide range
of metal types.

Vickers Microhardness Correlation Coefficients The correlation co-
efficients ¢y and ¢, are obtained from Vickers microhardness measurements. Sridhar
and Yovanovich (1996b) developed correlation equations for the Vickers coefficients:

3;8 — 4.0 — 5.77H; + 4.0 (H3)" - 0.61 (Hp)’ (4.244)
Hp

c2 = —0.370 + 0.442 (-) (4.245)
¢

where Hp is the Brinell hardness (Johnson, 1985; Tabor, 1951) and H; = Hp/3178.
The correlation equations are valid for the Brinell hardness range 1300 to 7600 MPa.
The correlation equations above were developed for a range of metal types (e.g.,
Ni200, SS304, Zr alloys, Ti alloys, and tool steel). Sridhar and Yovanovich (1996b)
also reported a correlation equation that relates the Brinell hardness number to the
Rockwell C hardness number:

HRC?> HRC

BHN = 43.7 4+ 10.92 HRC —
+ 5.18 + 340.26

(4.246)
for the range 20 < HRC < 65.

Dimensionless Contact Conductance: Plastic Deformation The dimen-
sionless contact conductance C, is

heo 1 exp(—22/2) (4.247)

ks - 1.5
mo 22w [1 - ‘/%erfc()\/«/i):|

The correlation equation of the dimensionless contact conductance obtained from
theoretical values for a wide range of \ and P/H,, is (Yovanovich, 1982)

h. o P 0.95
C.=-<2 =125 (F) (4.248)
c m

s p

C.

=~

which agrees with the theoretical values to within +1.5% in the range 2 < '\ < 4.75.

It has been demonstrated that the plastic contact conductance model of eq. (4.248)
predicts accurate values of A, for a range of surface roughness o/m, a range of metal
types (e.g., Ni 200, SS 304, Zr alloys, etc.), and a range of the relative contact pres-
sure P/H, (Antonetti, 1983; Hegazy, 1985; Sridhar, 1994; Sridhar and Yovanovich,
1994, 1996a). The very good agreement between the contact conductance models and
experiments is shown in Fig. 4.25.

In Fig. 4.25 the dimensionless contact conductance model and the vacuum data
for different metal types and a range of surface roughnesses are compared over two
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Figure 4.25 Comparison of a plastic contact conductance model and vacuum data. (From
Antonetti, 1983; Hegazy, 1985.)

decades of the relative contact pressure defined as P/H,, where H, was called the
effective microhardness of the joint. The agreement between the theoretical model
developed for conforming rough surfaces that undergo plastic deformation of the con-
tacting asperities is very good over the entire range of dimensionless contact pressure.
Because of the relatively high contact pressures and high thermal conductivity of the
metals, the effect of radiation heat transfer across the gaps was found to be negligible
for all tests.

4.16.2 Radiation Resistance and Conductance for Conforming
Rough Surfaces

The radiation heat transfer across gaps formed by conforming rough solids and filled
with a transparent substance (or its in a vacuum) is complex because the geometry of
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TABLE 4.18 Radiative Conductances for Black Surfaces

AT, T h AT, T h
100 350 9.92 600 600 61.24
200 400 15.42 700 650 80.34
300 450 22.96 800 700 103.2
400 500 32.89 900 750 130.1
500 550 45.53 1000 800 161.5

the microgaps is very difficult to characterize and the temperatures of the bounding
solids vary in some complex manner because they are coupled to heat transfer by
conduction through the microcontacts.

The radiative resistance and the conductance can be estimated by modeling the
heat transfer across the microgaps as equivalent to radiative heat transfer between
two gray infinite isothermal smooth plates. The radiative heat transfer is given by

0r=0AJu(Ti—T3) (W) (4.249)

where 0 = 5.67 x 1078 W/(m? - K*) is the Stefan-Boltzmann constant and 7}; and T},
are the absolute joint temperatures of the bounding solid surfaces. These temperatures
are obtained by extrapolation of the temperature distributions within the bounding
solids. The radiative parameter is given by

1 1 1
—=—4—=1 (4.250)
Fi2 €] €2

where €; and €, are the emissivities of the bounding surfaces. The radiative resistance
is given by
Tji —Tjp Tj1 —T;

R, = = K/W 4251
Ty () B

and the radiative conductance by

, oFn(TH — T4
h= Q _ oF(Ti — T3) (Wm?-K)  (4.252)
T —Tp) . Ti—1,

The radiative conductance is seen to be a complex parameter which depends on the
emissivities €; and €, and the joint temperatures 7;; and 7j,. For many interface prob-
lems the following approximation can be used to calculate the radiative conductance:

T — T3 _
Jjl Jj2 ~ 4(Tj)3
Tj —Tj

where the mean joint temperature is defined as
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— 1
Tj=sTn+Tp) (K

If we assume blackbody radiation across the gap, €¢; = 1,e, = 1 gives Fi» = 1.
This assumption gives the upper bound on the radiation conductance across gaps
formed by conforming rough surfaces. If one further assumes that 7;, = 300 K
and Tj; = Tj; + ATj, one can calculate the radiation conductance for a range of
values of AT; and 7;. The values of A, for black surfaces represent the maximum
radiative heat transfer across the microgaps. For microgaps formed by real surfaces,
the radiative heat transfer rates may be smaller. Table 4.18 shows that when the
joint temperature is 7; = 800 K and A7; = 1000 K, the maximum radiation
conductance is approximately 161.5 W/m? - K. This value is much smaller than the
contact and gap conductances for most applications where 7; < 600 K and AT; <
200 K. The radiation conductance becomes relatively important when the interface is
formed by two very rough, very hard low-conductivity solids under very light contact
pressures. Therefore, for many practical applications, the radiative conductance can
be neglected, but not forgotten.

4.16.3 Elastic Contact Model

The conforming rough surface model proposed by Mikic (1974) for elastic deforma-
tion of the contacting asperities is summarized below (Sridhar and Yovanovich, 1994,
1996a).

Elastic Contact Geometric Parameters The elastic contact geometric param-
eters are (Mikic, 1974)

A1 ©
— = —erfc (—) (4.253)
A, 4 V2
1 2 -2
n=— (T) _exp(=\) (4.254)
16 \o/ erfc(n/+/2)
2 0 <x2> f ( » ) (4.255)
a=——exp|—=)erfc| — .
Tm P 2 V2
1 m 2\
- - = 4.256
na SﬁoeXp< 2) (4.256)
The relative mean plane separation is given by
4p
» = 2erfc™! <?) (4.257)

The equivalent elastic microhardness according to Mikic (1974) is defined as

1
H, = CmE' where C = — =0.7071 (4.258)
V2
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where the effective Young’s modulus of the contacting asperities is

L_1-v 1ov ey (4.259)
i m .
E’ E; E,

Greenwood and Williamson (1966), Greenwood (1967), and Greenwood and Tripp
(1970) developed a more complex elastic contact model that gives a dimensionless
elastic microhardness H,/mE’ that depends on the surface roughness bandwidth o
and the separation between the mean planes of the asperity “summits,” denoted as
\s. For a typical range of values of a and \; (McWaid and Marschall, 1992a), the
value of Mikic (1974) (i.e., H,/mE' = 0.7071) lies in the range obtained with the
Greenwood and Williamson (1966) model. There is, at present, no simple correlation
for the model of Greenwood and Williamson (1966).

Dimensionless Contact Conductance The dimensionless contact conduc-
tance for conforming rough surfaces whose contacting asperities undergo elastic de-
formation is (Mikic, 1974; Sridhar and Yovanovich, 1994)

heo 1 exp (—2%/2) (4.260)

ks 4 1.5
" v [1 - ,/ierfc()\/\/z)]

The power law correlation equation based on calculated values obtained from the
theoretical relationship is (Sridhar and Yovanovich, 1994)

heo P\
‘ =1'54<F) (4.261)

Ym e

~

has an uncertainty of about +2% for the relative contact pressure range 107> <
P/H, <0.2.

Correlation Equations for Surface Parameters The correlation equations
for A, /A,, n, and a for the relative contact pressure range 100°<p /H, < 0.2 are

A,
= 1 exp(—0.8141 — 0.61778)\ — 0.42476).% — 0.004353).”)
m\?2 2 3
n= (—) exp(—2.6516 + 0.6178% — 0.5752)% + 0.0043531.3)
o

1
a = ——2(1.156 — 0.4526) + 0.08269%% — 0.005736))
V2m

and the relative mean planes separation
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P P\ P\’
A = —0.5444 — 0.6636 ( In — | —0.03204 (In — ) —0.000771 (In —
H H, H

e e e

(4.262)

Sridhar and Yovanovich (1994) reviewed the plastic and elastic deformation con-
tact conductance correlation equations and compared them against vacuum data (Mi-
kic and Rohsenow, 1966; Antonetti, 1983; Hegazy, 1985; Nho, 1989; McWaid and
Marschall, 1992a, b) for several metal types, having a range of surface roughnesses,
over a wide range of apparent contact pressure. Sridhar and Yovanovich (1996a)
showed that the elastic deformation model was in better agreement with the vacuum
data obtained for joints formed by conforming rough surfaces of tool steel, which is
very hard.

The elastic asperity contact and thermal conductance models of Greenwood and
Williamson (1966), Greenwood (1967), Greenwood and Tripp (1967, 1970), Bush et
al. (1975), and Bush and Gibson (1979) are different from the Mikic (1974) elastic
contact model presented in this chapter. However, they predict similar trends of
contact conductance as a function apparent contact pressure.

4.16.4 Conforming Rough Surface Model: Elastic—Plastic
Deformation

Sridhar and Yovanovich (1996¢) developed an elastic—plastic contact conductance
model which is based on the plastic contact model of Cooper et al. (1969) and the
elastic contact model of Mikic (1974). The results are summarized below in terms
of the geometric parameters A,/A,, the real-to-apparent area ratio; n, the contact
spot density; a, the mean contact spot radius; and X, the dimensionless mean plane
separation:

A _ fe >
Lt erfc( ﬁ) 4263)

! (ﬂ)z exp(=17) (4.264)

16 \o/ erfc(n/v2)
8 22 Py
a= \/;m% exp (7> erfc (ﬁ) (4.265)
1 /2 22
na = g\/;/fﬁ% exp (—7> (4.266)

o V fep eXp(—=2%/2)
- 1.5
22 [1 -/ (fep/z)erfcwfz)]

&
Qa

(4.267)

>
3
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1 2P
» = +2erfc! (f— — ) (4.268)
ep Llep

The important elastic—plastic parameter f,, is a function of the dimensionless
contact strain €, which depends on the amount of work hardening. This physical
parameter lies in the range 0.5 < f,, < 1.0. The smallest and largest values
correspond to zero and infinitely large contact strain, respectively. The elastic—plastic
parameter is related to the contact strain:

1+ (6.5/e)21?
Jop = [1+65/<)] 0<e<o0 (4.269)
[1+ (13.0/ej)1.2]l/142

The dimensionless contact strain is defined as

E/
¢ = 1.67 <m—> (4.270)
Sy

where Sy is the material yield or flow stress (Johnson, 1985), which is a complex
physical parameter that must be determined by experiment for each metal.

The elastic—plastic microhardness H,, can be determined by means of an iterative
procedure which requires the following relationship:

2.76S
H,, = L 5 4.271)
[1+4 (6.5/€)?]

The elastoplastic contact conductance model moves smoothly between the elastic
contact model of Mikic (1974) and the plastic contact conductance model of Cooper
et al. (1969), which was modified by Yovanovich (1982), Yovanovich et al. (1982a),
and Song and Yovanovich (1988) to include the effect of work-hardened layers on
the deformation of the contacting asperities. The dimensionless contact pressure for
elastic—plastic deformation of the contacting asperities is obtained from the following
approximate explicit relationship:

P 0.9272p  /0F0071e)
= — 4.272)
H,, |:c1(1.43 c/m)02:|

where the coefficients ¢ and ¢, are obtained from Vickers microhardness tests. The
Vickers microhardness coefficients are related to Brinell and Rockwell hardness for
a wide range of metals.

Correlation Equations for Dimensionless Contact Conductance: Elastic—
Plastic Model The complex elastic—plastic contact model proposed by Sridhar
and Yovanovich (19964, b, ¢, d) may be approximated by the following correlation
equations for the dimensionless contact conductance:
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0.94
1.54( ) 0<e <5 4.273)
ep
by
C. =1 1.245p, ( ) 5 < ¢ <400 (4.274)
ep
P 0.95
1.25 ( ) 400 < € < 00 4.275)

ep

where the elastic—plastic correlation coefficients b; and b, depend on the dimension-
less contact strain:

46,690.27"/%°
b= [ @) } (4.276)
1 1/600

4.16.5 Gap Conductance for Large Parallel Isothermal Plates

Two infinite isothermal surfaces form a gap of uniform thickness d which is much
greater than the roughness of both surfaces: d > o, and o;. The gap is filled with
a stationary monatomic or diatomic gas. The boundary temperatures are 77 and 7>,
where 77 > T,. The Knudsen number for the gap is defined as Kn = A/d, where
A is the molecular mean free path of the gas, which depends on the gas temperature
and its pressure. The gap can be separated into three zones: two boundary zones,
which are associated with the two solid boundaries, and a central zone. The boundary
zones have thicknesses that are related to the molecular mean free paths A and A,,
where

T, P T, P
A1 = 1\0—1LO and A2 = A0—2L0 (4278)
Ty P, Ty P,

and Ay, Tp, and P, o represent the molecular mean free path and the reference temper-
ature and gas pressure. In the boundary zones the heat transfer is due to gas molecules
that move back and forth between the solid surface and other gas molecules located at
distances A and A, from both solid boundaries. The energy exchange between the
gas and solid molecules is imperfect. At the hot solid surface at temperature 77, the
gas molecules that leave the surface after contact are at some temperature 7, | < 17,
and at the cold solid surface at temperature 75, the gas molecules that leave the surface
after contact are at a temperature T, » > T>. The two boundary zones are called slip
regions.

In the central zone whose thickness is modeled as d — Ay — A,, and whose
temperature range is T, 1 > T > T, ,, heat transfer occurs primarily by molecular
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diffusion. Fourier’s law of conduction can be used to determine heat transfer across
the central zone.

There are two heat flux asymptotes, corresponding to very small and very large
Knudsen numbers. They are: for a continuum,

-1
Kn — 0 q— qo=k, y (4.279)
and for free molecules,
T, -1
Kn — o0 q = Goo = kg i (4.280)
where
2— 2— 2
M = apA = < ol 0‘2) YA (4.281)
o (0% (y + l)Pr

and k, is the thermal conductivity, a; and o, the accommodation coefficients, y the
ratio of specific heats, and Pr the Prandtl number.
The gap conductance, defined as h, = q/(T1 — T»), has two asymptotes:
ke ke
forKn — 0, hg—> — forKn — oo, hg,— —
d M
For the entire range of the Knudsen number, the gap conductance is given by the
relationship

k
h, = —2
£ d+ M

for 0 < Kn < oo (W/m? - K) (4.282)

This relatively simple relationship covers the continuum, 0 < Kn < 0.1, slip,
0.1 < Kn < 10, and free molecule, 10 < Kn < oo, regimes. Song (1988) introduced
the dimensionless parameters

ky

G="¢ ana mr=M (4.283)
" hed d ‘

and recast the relationship above as
G=1+M* for 0<M* <o (4.284)

The accuracy of the simple parallel-plate gap model was compared against the data
(argon and nitrogen) of Teagan and Springer (1968), and the data (argon and helium)
of Braun and Frohn (1976). The excellent agreement between the simple gap model
and all data is shown in Fig. 4.26. The simple gap model forms the basis of the gap
model for the joint formed by two conforming rough surfaces.



CONFORMING ROUGH SURFACE MODELS 355

102
- © He (Braun & Frohn, 1976)
- A Ar (Braun & Frohn, 1976)
L w Ar (Teagan & Springer, 1968)
| B N, (Teagan & Springer, 1968)
[ Interpolated Model G = 1 + M*

10!

g -
100 |
1071 44]‘1]!]] L d lllllll A A lj_jllll A 1 llllLll ’ A4 1 14l
1073 1072 1071 100 10! 10?

Figure 4.26 Gap conductance model and data for two large parallel isothermal plates. (From
Song et al., 1992a.)

4.16.6 Gap Conductance for Joints between Conforming
Rough Surfaces

If the gap between two conforming rough surfaces as shown in Fig. 4.22 is occupied
by a gas, conduction heat transfer will occur across the gap. This heat transfer is
characterized by the gap conductance, defined as

AT;

=77 (W/m? - K) (4.285)

hng
8
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with AT; as the effective temperature drop across the gas gap and Q, the heat transfer
rate across the gap. Because the local gap thickness and local temperature drop vary
in very complicated ways throughout the gap, it is difficult to develop a simple gap
conductance model.

Several gap conductance models and correlation equations have been presented by
anumber of researchers (Cetinkale and Fishenden, 1951; Rapier et al., 1963; Shlykov,
1965; Veziroglu, 1967; Lloyd et al., 1973; Garnier and Begej, 1979; Loyalka, 1982;
Yovanovich et al., 1982b); they are given in Table 4.19. The parameters that appear in
Table 4.19 are b, = 2(CLA| 4+ CLA;), where CLA; is the centerline-average surface

TABLE 4.19 Models and Correlation Equations for Gap Conductance
for Conforming Rough Surfaces

Authors Models and Correlations
k
Cetinkale and hg = OSOSbigM
Fishenden (1951) 500 +
. 1.2 0.8 2b,
Rapleretal.(l963) hg =kg [m—FTbIIH (1 +ﬁ)}
Shlykov (1965) hy = 10+10+4 4 1+3+21(1+X)
ov y=—{—+—=+—=—-4|—=+—=+—=1In
Y 713 x 0 x2? X3 ' x2 ' x
kg
_ for b, > 15 um
) 0.264 b, + M
Veziroglu (1967) hg =
kg for b, < 15 pm
—_— <
1785, + M ‘ "

kg

Lloyd et al. (1973) hg = 5+ BA/ (o +00)

d not given

exp(—1/Kn) 1 —exp(—1/Kn)
M 3+ M

Garnier and Begej (1979) hg = kg |: ] d not given

k
h, = L
T3+ M +0.162(4 —a; —an)BA

Loyalka (1982) 3 not given

Yovanovich et al. (1982b) hg

_ kefo [ exp[-(Y/o—1/0)/2] | (z)

T V2w Jo t/o+ M/o o
Y 2P
— =V2erfc™! (—)
o H),
P P 1/(140.071¢y)
H, [c1(1.620/m)02]

Source: Song (1988).
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roughness of the two contacting surfaces, M = oA, X = b,/M,0 = ,/G% + 6%,
where the units of ¢ are pm. The Knudsen number Kn that appears in the Garnier
and Begej (1979) correlation equation is not defined.

Song and Yovanovich (1987), Song (1988), and Song et al. (1993b) reviewed the
models and correlation equations given in Table 4.19. They found that for some
of the correlation equations the required gap thickness 8 was not defined, and for
other correlation equations an empirically based average gap thickness was specified
that is constant, independent of variations of the apparent contact pressure. The gap
conductance model developed by Yovanovich et al. (1982b) is the only one that
accounts for the effect of mechanical load and physical properties of the contacting
asperities on the gap conductance. This model is presented below.

The gap conductance model for conforming rough surfaces was developed, modi-
fied, and verified by Yovanovich and co-workers (Yovanovich et al., 1982b; Hegazy,
1985; Song and Yovanovich, 1987; Negus and Yovanovich, 1988; Song et al., 1992a,
1993b).

The gap contact model is based on surfaces having Gaussian height distributions
and also accounts for mechanical deformation of the contacting surface asperities.
Development of the gap conductance model is presented in Yovanovich (1982, 1986),
Yovanovich et al. (1982b), and Yovanovich and Antonetti (1988).

The gap conductance model is expressed in terms of an integral:

kg 1 (exp[—(Y/o—u?/2]  k, 5
hy == Wiz /0 Py du=—=l,  (Whm*-K) (4286

where k, is the thermal conductivity of the gas trapped in the gap and o is the effective
surface roughness of the joint, and u = ¢ /o is the dimensionless local gap thickness.
The integral I, depends on two independent dimensionless parameters: Y /o, the mean
plane separation; and M /o, the relative gas rarefaction parameter.

The relative mean planes separation for plastic and elastic contact are given by the

relationships
Y 1 (2P
g plastic = 2 erfc Fp

Y 4p
<_> elastic = ﬁ erfc_l <_>
o He

The relative contact pressures P/H, for plastic deformation and P/H, for elastic
deformation can be determined by means of appropriate relationships.

The gas rarefaction parameter is M = af A, where the gas parameters are defined
as:

(4.287)

2—a; 2—ods
+ (4.288)

o =
03] £%)

2y

b= v om

(4.289)
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T, P
A =A% (4.290)
Tye0 Peo

where a is the accommodation coefficient, which accounts for the efficiency of gas—
surface energy exchange. There is a large body of research dealing with experimental
and theoretical aspects of a for various gases in contact with metallic surfaces under
various surface conditions and temperatures (Wiedmann and Trumpler, 1946; Hart-
nett, 1961; Wachman, 1962; Thomas, 1967; Semyonov et al., 1984; Loyalka, 1982).
Song and Yovanovich (1987) and Song et al. (1992a, 1993b) examined the several gap
conductance models available in the literature and the experimental data and models
for the accommodation coefficients.

Song and Yovanovich (1987) developed a correlation for the accommodation for
engineering surfaces (i.e., surfaces with absorbed layers of gases and oxides). They
proposed a correlation that is based on experimental results of numerous investiga-
tors for monatomic gases. The relationship was extended by the introduction of a
monatomic equivalent molecular weight to diatomic and polyatomic gases. The final
correlation is

a =exp(CoT) L +[1-— exp(CoT)]ﬂ 4.291)
Ci+ M, (14 p)?

with Cy = —-0.57, T = (T, — Tp)/ Ty, My = M, for monatomic gases (= 1.4M, for
diatomic and polyatomic gases), C; = 6.8 in units of M, (g/mol), and p = M, /M,
where T; and Ty = 273 K are the absolute temperatures of the surface and the gas,
and M, and M, are the molecular weights of the gas and the solid, respectively.
The agreement between the predictions according to the correlation above and the
published data for diatomic and polyatomic gases was within £25%.

The gas parameter f depends on the specific heat ratio y = C,/C, and the
Prandtl number Pr. The molecular mean free path of the gas molecules A depends
on the type of gas, the gas temperature 7, and gas pressure P, and the reference
values of the mean free path Ao, the gas temperature T, o, and the gas pressure Pg g,
respectively.

Wesley and Yovanovich (1986) compared the predictions of the gap conductance
model and experimental measurements of gaseous gap conductance between the fuel
and clad of a nuclear fuel rod. The agreement was very good and the model was
recommended for fuel pin analysis codes.

The gap integral can be computed accurately and easily by means of computer
algebra systems. Negus and Yovanovich (1988) developed the following correlation
equations for the gap integral:

fe

I, = Yot (4.292)

Intherange2 < Y/o < 4:
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The correlation equations have a maximum error of approximately 2%.

4.16.7 Joint Conductance for Conforming Rough Surfaces

The joint conductance for a joint between two conforming rough surfaces is
hj =he+ h, (W/m? - K) (4.293)

when radiation heat transfer across the gap is neglected. The relationship is applicable
to joints that are formed by elastic, plastic, or elastic—plastic deformation of the
contacting asperities. The mode of deformation will influence 4. and &, through the
relative mean plane separation parameter Y /o.

The gap and joint conductances are compared against data (Song, 1988) obtained
for three types of gases, argon, helium, and nitrogen, over a gas pressure range
between 1 and 700 torr. The gases occupied gaps formed by conforming rough Ni
200 and stainless steel type 304 metals. In all tests the metals forming the joint were
identical, and one surface was flat and lapped while the other surface was flat and
glass bead blasted.

The gap and joint conductance models were compared against data obtained for
relatively light contact pressures where the gap and contact conductances were com-
parable. Figure 4.27 shows plots of the joint conductance data and the model predic-
tions for very rough stainless steel type 304 surfaces at Y /o = 1.6 x 10~*. Agreement
among the data for argon, helium, and nitrogen is very good for gas pressures be-
tween approximately 1 and 700 torr. At the low gas pressure of 1 torr, the measured
and predicted joint conductance values for the three gases differ by a few percent
because i, < h. and h; ~ h.. As the gas pressure increases there is a large increase
in the joint conductances because the gap conductances are increasing rapidly. The
joint conductances for argon and nitrogen approach asymptotes for gas pressures ap-
proaching 1 atm. The joint conductances for helium are greater than for argon and
nitrogen, and the values do not approach an asymptote in the same pressure range.
The asymptote for helium is approached at gas pressures greater than 1 atm.

Figure 4.28 shows the experimental and theoretical gap conductances as points and
curves for nitrogen and helium for gas pressures between approximately 10 and 700
torr. The relative contact pressure is 1.7 x 10~* is based on the plastic deformation
model. The joint was formed by Ni 200 surfaces (one flat and lapped and the second
flat and glass bead blasted). The data were obtained by subtracting the theoretical
value of 4. from the measured values of h; to get the values of /, that appear on the
plots. The agreement between the data and the predicted curves is very good.
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Figure 4.27 Joint conductance model and data for conforming rough stainless steel 304
surfaces. (From Song, 1988.)

Figure 4.29 shows the experimental data for argon, nitrogen, and helium and the
dimensionless theoretical curve for the gap model recast as (Song et al., 1993b)

G=1+M" (4.294)

where
k M afA
G=-—% and M*=—= ek (4.295)
hgY Y Y
There is excellent agreement between the model and the data over the entire range
of the gas—gap parameter M*. The joint was formed by very rough conforming Ni
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Figure 4.28 Gap conductance model and data for conforming rough Ni 200 surfaces. (From
Song, 1988.)

200 surfaces. The plastic deformation model was used to calculate Y. The points for
M* < 0.01 correspond to the high-gas-pressure tests (near 1 atm), and the points for
M* > 2 correspond to the low-gas-pressure tests.

4.17 JOINT CONDUCTANCE ENHANCEMENT METHODS

In many electronics packages the thermal joint conductance across a particular joint
must be improved for the thermal design to meet its performance objectives. If the
joint cannot be made permanent because of servicing or other considerations, the joint
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Figure 4.29 Dimensionless gap conductance model and data for conforming rough Ni 200
surfaces. (From Song, 1988.)

conductance must be “enhanced”; that is, it must be improved above the bare joint
situation utilizing one of several known techniques, such as application of thermal
interface materials (TIMs): for example, thermal grease, grease filled with particles
(also called paste), oils, and phase-change materials (PCMs). Enhancement of the
joint conductance has also been achieved by the insertion of soft metallic foils into the
joint, or by the use of a relatively soft metallic coating on one or both surfaces. More
recently, soft nonmetallic materials such as polymers and rubber have been used.

One may consult review articles by Fletcher (1972, 1990), Madhusudana and
Fletcher (1986), Madhusudana (1996), Marotta and Fletcher (1996), Prasher (2001),
Savija et al. (2002a, b), and other pertinent references may be found in these reviews.
This section is limited to a few examples where models and data are available.
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4.17.1 Metallic Coatings and Foils

An effective method for enhancement of joint conductance consists of vapor depo-
sition of a very thin soft metallic layer on the surface of the substrate. The layer
thickness is often less than 100 pwm; it is in “perfect” thermal and mechanical contact
with the substrate, and its bulk resistance is negligibly small relative to the contact
resistance. The thermal resistance at the layer—substrate interface is also negligible.

A comprehensive treatment of the theoretical development and experimental ver-
ification of the thermomechanical model can be found in Antonetti (1983) and An-
tonetti and Yovanovich (1983, 1985). In the following discussion, therefore, only
those portions of the theory needed to apply the model to a thermal design problem
are presented. The general expression for the contact conductance of the coated joint
operating in a vacuum is

H 0.93 k k
h. = h, <F€> ﬁ (W/m? - K) (4.296)

where &, is the uncoated contact conductance, Hg the microhardness of the softer
substrate, H' the effective microhardness of the layer—substrate combination, C a
spreading—constriction parameter correction factor that accounts for the heat spread-
ing in the coated substrate, and k; and k; the thermal conductivities of the two sub-
strates, respectively.

The coated contact conductance relationship consists of the product of three quan-
tities: the uncoated contact conductance 4., the mechanical modification factor (Hg/
H")%%3 and the thermal modification factor. The uncoated (bare) contact conductance
may be determined by means of the conforming, rough surface correlation equation
based on plastic deformation:

2kiky [ P\
h =125 (T) 2R (2 (W/m? - K) (4.297)
o/ ki +ky \ Hg

where Hy is the flow pressure (microhardness) of the softer substrate, m the combined
average absolute asperity slope, and o the combined rms surface roughness of the
joint.

For a given joint, the only unknowns are the effective microhardness H' and the
spreading—constriction parameter correction factor C. Thus, the key to solving coated
contact problems is the determination of these two quantities.

Mechanical Model The substrate microhardness can be obtained from the fol-
lowing approximate relationship (Hegazy, 1985):

26
Hg = (12.2 — 3.54Hp) (3) (GPa) (4.298)
m
which requires the combined surface roughness parameters o and m and the bulk
hardness of the substrate Hg. In the correlation equation the units of the joint rough-
ness parameter o/m are micrometers. For Ni 200 substrates, Hg = 1.67 GPa.
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The effective microhardness must be obtained empirically for the particular layer
(coating)—substrate combination under consideration. This requires a series of Vick-
ers microhardness measurements which will result in an effective microhardness plot
similar to that shown in Fig. 4.30 (e.g., a silver layer on a Ni 200 substrate).

The effective Vickers microhardness measurements, denoted H', are plotted
against the relative indentation depth #/d, where ¢ is the layer thickness and d is
the indentation depth. The three microhardness regions were correlated as

t t t
’ t t
H =1 181H, —021H, (3 - 1) for 1.0 < v < 4.90 (4.300)
t
H; for 5> 4.90 (4.301)

where Hg and H; are the substrate and layer microhardness, respectively. The Ni
200 substrate microhardness is found to be Hg = 2.97 GPa for the joint roughness
parameter values: 0 = 4.27 pm and m = 0.236 rad. The Vickers microhardness of
the silver layer is approximately H; = 40 kg/mm? = 0.394 GPa.

The relative indentation depth is obtained from the following approximate corre-
lation equation (Antonetti and Yovanovich, 1983, 1985)

¢ ¢ P —0.097
Y (E) (F) 4302)

To implement the procedure (Antonetti and Yovanovich, 1983, 1985) for finding H’
from the three correlation equations requires an iterative method.

To initiate the iterative method, the first guess is based on the arithmetic average
of the substrate and layer microhardness values:

_ Hs+HL

H| 5

(GPa)

For a given value of ¢ and P, the first value of ¢#/d can be computed. From the
three correlation equations, one can find a new value for H': say, H;. The new
microhardness value, H,, is used to find another value for # /d, which leads to another
value, Hj;. The procedure is continued until convergence occurs. This usually occurs
within three or four iterations (Antonetti and Yovanovich, 1983, 1985).

Thermal Model The spreading—constriction resistance parameter correction fac-
tor C is defined as the ratio of the spreading—constriction resistance parameter for a
substrate with a layer to a bare substrate, for the same value of the relative contact
spot radius €’:

_ Y€ )

) (4.303)
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Figure 4.30 Vickers microhardness of a silver layer on a nickel substrate. (From Antonetti
and Yovanovich, 1985.)
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The dimensionless spreading—constriction resistance parameter is defined as
/ ’ !
W(e, ¢,) = 4ka'R, (4.304)

where k, is the thermal conductivity of the substrate that is coated, @’ is the con-
tact spot radius for the layer on the substrate, and R, is the spreading—constriction
resistance of the contact spot.

The spreading—constriction resistance parameter with a layer on the substrate is
(Antonetti and Yovanovich, 1983, 1985)

oo

/ 16 JE3,€)
Ve b)) = — X:lj R AN (4.305)
The first of these, ¢,,, accounts for the effect of the layer though its thickness and
thermal conductivity; the second, y,,, accounts for the contact temperature basis used
to determine the spreading—constriction resistance; and the third, p,,, accounts for the
contact spot heat flux distribution. For contacting surfaces it is usual to assume that
the contact spots are isothermal. The modification factors in this case are y, = 1.0 and

_ LK)+ (1= K)er?e®

o = (14+K)—(1—=K)e 2<" (4.306)

where K is the ratio of the substrate-to-layer thermal conductivity, T = ¢/a’ is the
layer thickness-to-contact spot radius ratio, and

o
sin ) e

= (4.307)
2J,(3.€)

Pn

The parameter 3, are the eigenvalues, which are roots of J;(3),) = 0.

Tabulated values of C were reported by Antonetti (1983) for a wide range of the
parameters K and t'. Details of the thermomechanical model development are given
in Antonetti (1983) and Antonetti and Yovanovich (1983, 1985).

The thermomechanical model of Antonetti and Yovanovich (1983, 1985) has been
verified by extensive tests. First the bare joint was tested to validate that part of the
model. Figure 4.31 shows the dimensionless joint conductance data and theory plotted
versus the relative contact pressure for three joints having three levels of surface
roughness. The two surfaces were flat; one was lapped and the other was glass bead
blasted. All tests were conducted in a vacuum. The agreement between the model
given by the correlation equation and all data is very good over the entire range of
relative contact pressure.

The bare surface tests were followed by three sets of tests for joints having three
levels of surface roughness. Figure 4.32 shows the effect of the vapor-deposited silver
layer thickness on the measured joint conductance plotted against the contact pres-
sure. For these tests the average values of the combined surface roughness parameters
were 0 = 4.27 pm and m = 0.236 rad. For the contact pressure range the substrate
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Figure 4.31 Dimensionless contact conductance versus relative contact pressure for bare Ni
200 surfaces in a vacuum. (From Antonetti and Yovanovich, 1985.)

microhardness was estimated to be Hg = 2.97 GPa. The layer thickness was between
0.81 and 39.5 wm. The lowest set of data and the theoretical curve correspond to the
bare surface tests. Agreement between data and model is very good. The highest set
of data for layer thickness of + = 39.5 uwm corresponds to the infinitely thick layer
where thermal spreading occurs in the layer only and the layer microhardness con-
trols the formation of the microcontacts. Again, the agreement between experiment
and theory is good.
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Figure4.32 Effect of layer thickness and contact pressure on joint conductance: vacuum data
and theory. (From Antonetti and Yovanovich, 1985.)

The difference between the highest and lowest joint conductance values is ap-
proximately a factor of 10. The enhancement is clearly significant. The agreement
between the measured values of joint conductance and the theoretical curves for the
layer thicknesses: + = 0.81, 1.2, 1.4, and 5.1 pwm is also very good, as shown in
Fig. 4.32. All the test points for bare and coated surfaces are plotted in Fig. 4.33
as dimensionless joint conductance versus relative contact pressure. The agreement
between experiment and theory is very good for 